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Abstract

Theoretical methods for analyzing synchronization of limit-cycle oscillators are in great demand
in many fields of science and engineering. The aim of this thesis is to extend the class of external
forcing for which synchronization dynamics can be analyzed. The first part deals with a new
type of synchronization, called noise-induced synchronization, for which theoretical analysis has
been limited to the case of white-noise forcing. Using an effective white-noise approximation,
an extended quantitative method for analyzing colored-noise cases is proposed. In the second
part, the fundamental theory for analyzing the synchronization dynamics itself, called the phase
reduction method, is extended so that it can deal with strongly driven oscillators. This extension
is not only useful for analyzing noise-induced synchronization, but also for analyzing other types of
synchronization, e.g., injection locking and mutual synchronization of the oscillators. The validity
and robustness of the proposed methods are confirmed by numerical simulations.
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Chapter 1

Introduction

1.1 Background

Synchronization of oscillators is a ubiquitous phenomenon in nature. It has been studied in many
fields of science and engineering, e.g., biology, chemistry, physics, mechanical engineering, and elec-
trical engineering [1, 2, 3]. Since synchronization phenomena observed in various classes of systems
generally shares basic mathematical mechanisms, theoretical analysis is useful for understanding
synchronization mechanisms in such fields. By theoretical analysis, we can investigate various
dynamical and statistical properties of synchronization (e.g., whether synchronization occurs, the
accuracy of synchronization, and hysteresis). Indeed, theoretical synchronization analysis has been
conducted for many classes of systems in various fields, e.g., neural networks [4, 5], oscillatory pat-
terns in reaction-diffusion systems [6], oscillations in candle combustion [7], frogs’ calling [8] and
pedestrians on a bridge [9]. In such works, unknown nontrivial mechanisms underlying synchro-
nization have been clarified by theoretical analysis. Thus, theoretical approaches provide powerful
tools to understand synchronization mechanisms across the discipline. Therefore, basic theories
useful for practical analysis should be valuable for researchers in many fields.

As such a basic theory, the phase reduction method [2] has played an essential role in theoretical
synchronization analysis of limit-cycle oscillators particularly in physics and applied mathematics.
Using the phase reduction method, we can simplify and reduce a high-dimensional limit-cycle
oscillator subjected to a sufficiently weak perturbation σp(t) (“sufficiently small” indicates σ � 1):

Ẋ = F (X) + σp(t), (1.1)

to a one-dimensional phase equation:

θ̇ = ω + σZ(θ) · p(t) +O(σ2), (1.2)
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Figure 1.1: Schematic of theoretical synchronization analysis based on the phase reduction method.
Using the phase reduction method, we reduce high-dimensional limit-cycle oscillators, e.g., neural
oscillators, to one-dimensional phase equations (red arrow), so we can theoretically analyze their
dynamics. For example, we can theoretically analyze collective dynamics in the network of phase
equations (green arrow). From the theoretical result obtained by synchronization analysis of the
phase equations, we can predict the actual collective dynamics in real network systems, e.g., neural
networks (blue arrow).
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Figure 1.2: Three types of synchronization: (a) mutual synchronization, (b) injection locking, and
(c) noise-induced synchronization.

where X(t) ∈ Rn is an n-dimensional state variable of the oscillator, F (X) ∈ Rn is a vector
field that has a stable limit-cycle orbit with period T and frequency ω := 2π/T , σp(t) is an
input to the oscillator, σ is a scalar parameter that represents the strength of the input, θ(t) is a
scalar variable called a phase, and Z(θ) is a phase sensitivity function [2] that characterizes the
response of the oscillator to the input. In the phase equation, the high-dimensional state X(t) of
an oscillator is represented by the scalar phase variable θ(t). This equation has the advantage of
being simple and easily analyzed, so it makes the theoretical synchronization analysis significantly
easier (see Fig. 1.1 for a schematic of synchronization analysis based on this method). In addition,
this equation is useful in engineering applications such as optimal design of oscillators, because
the response of this equation to the input is explicitly characterized by a simple function Z(θ) of
a single variable θ only. Indeed, the phase reduction method has been applied, e.g., to optimal
design of oscillator circuits [10, 11], optimal control of neurons [12, 13], system identification of
interacting oscillators [14], and the evaluation and analysis of phase noise in oscillator circuits [15,
16, 17, 18, 19]. In particular, the phase reduction method has recently attracted much interest in
electrical engineering [10, 11, 15, 16, 17, 18, 19]. Also in this thesis, we employ the phase reduction
method as a theoretical basis. As discussed below, we extend this fundamental theory, i.e., the
phase reduction method itself, in this thesis.

On the basis of the phase reduction method, various theoretical methods for synchronization
analysis have been developed. In general, synchronization can be classified into the following three
types [3] (see Fig. 1.2 for a schematic):

1. synchronization of limit-cycle oscillators interacting with each other via coupling (mutual
synchronization),

2. synchronization of a limit-cycle oscillator to periodic external forcing applied to the oscillator
(injection locking),

3. synchronization of uncoupled limit-cycle oscillators driven by common stochastic forcing or
noise (noise-induced synchronization).
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This thesis particularly focuses on the analysis of the mechanism of noise-induced synchronization,
because noise-induced synchronization still remains largely unclear while the other two types of
synchronization have been widely studied in the last four decades. Noise-induced synchronization
has a quite different mechanism from the other two. In mutual synchronization or injection locking,
the phase of an oscillator is locked to the phase of other oscillators or periodic external forcing,
while the oscillator is not locked to external forcing but always fluctuates in noise-induced syn-
chronization. Thus, noise-induced synchronization should be treated not only from a viewpoint of
dynamical systems theory, but also from stochastic dynamics. On the basis of stochastic dynamics,
Teramae and Tanaka [20] have proven that noise-induced synchronization of limit-cycle oscillators
always occurs when the oscillators are driven by common weak white noise except for a special
case. This proof has been extended to the case of general colored noise by Teramae and Tanaka [21]
and confirmed in a more rigorous analysis by Goldobin, Teramae, Nakao, and Ermentrout [22].
Indeed, noise-induced synchronization can be ubiquitously observed in many classes of systems,
e.g., neurons [23, 24, 25, 26, 27, 28], electric circuits [29], electronic devices [30], microbial cells [31],
lasers [32], and chaotic dynamical systems [33, 34, 35]. Thus, theoretical methods for analyzing
noise-induced synchronization are useful for researchers in many fields ranging from biology to
electrical engineering.

As one of such theoretical methods, Nakao, Arai, and Kawamura [36] proposed a quantitative
method for theoretically predicting various statistical properties of noise-induced synchronization
from the properties of the oscillators and common noise. This method provides us with var-
ious useful information about the noise-induced synchronization, i.e., not only if noise-induced
synchronization occurs, but also the accuracy of synchronization and the formation of various syn-
chronization patterns including fully synchronized and clustered states. The key contribution of
this work is the characterization of statistical properties of noise-induced synchronization by the
probability density function of phase differences, which can be calculated from the properties of the
oscillators and common noise. This probability density function can nicely characterize stochastic
dynamics of the phase difference between two oscillators driven by common noise. We can predict
what synchronization patterns are induced, from the shape of this probability density function,
e.g, the number and height of peaks and the tail of the distribution, so we can clearly understand
the relation between the synchronization patterns and the dynamical properties of the oscilla-
tors. Therefore, this method is useful for understating underlying mechanism of noise-induced
synchronization in various systems.

However, the theoretical method by Nakao et al. [36] is valid only for the case that the oscillators
are driven by weak white noise, so we cannot apply this method to various synchronization and
clustering phenomena in nature when the common noise is temporally correlated or not sufficiently
small. The aim of this thesis is to overcome these two limitations on the external forcing, i.e.,

1. limitation to white noise (temporally uncorrelated noise),
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2. limitation to sufficiently weak forcing.

The first limitation arises because the Fokker-Planck equation is used for deriving the probabil-
ity density function of the phase differences in Ref. [36]. Using the Fokker-Planck equation, we can
analytically derive the stationary probability density function of a dynamical variable described by
a Langevin equation driven by white noise, while such a useful tool has not been developed for the
case of colored noise. However, the temporal correlation of common noise often plays an important
role in noise-induced synchronization in nature. For example, it is theoretically confirmed that
the temporal correlation in the spikes of neurons significantly affects the propagation of synchro-
nized firings in neural circuits [37]. In addition, it is reported that oscillatory correlation enhances
noise-induced synchronization [38]. It is clear from these examples that the temporal correlation
of common noise to be of great importance in theoretical analysis. Thus, in order to overcome the
first limitation, we have to develop an approximation theory for theoretically treating limit-cycle
oscillators driven by colored noise.

On the other hand, the second limitation results from a more fundamental problem. It is
because a basic theory for synchronization analysis, i.e., the phase reduction method, assumes that
the perturbation to the oscillator is sufficiently weak. This limitation will impose a burden in
theoretically analyzing not only noise-induced synchronization, but also mutual synchronization
and injection locking. We cannot assume that the external forcing and interactions are sufficiently
weak in practical applications, e.g., in biology and electrical engineering, so this limitation will
severely hinder the applicability of the synchronization analysis. Indeed, it has been reported
that we can observe nontrivial behavior in strongly driven limit-cycle oscillators [39, 40, 41]. In
order to overcome this limitation, we have to extend the phase reduction method itself to the
case of strong perturbations. In the history of nonlinear science, the phase reduction method has
played an important role in the theoretical analysis of synchronization phenomena. Therefore, if
we can extend the phase reduction method, this extension enables us to thoroughly extend the
conventional theoretical methods for synchronization analysis. In this sense, this extension has
been an open question in nonlinear science.

1.2 Organization of This Thesis

In Table 1.1, we summarize the relation between this thesis and the conventional theories. Theo-
retical methods for analyzing mutual synchronization of weakly coupled oscillators and injection
locking to weak periodic forcing have already been established in the conventional theories in the
last four decades. In addition, theoretical analysis for noise-induced synchronization has been
developed in Ref. [36], but it is limited to the case of white noise. Thus, we establish synchroniza-
tion analysis for colored-noise-induced synchronization in Chapters 2. In Chapter 3, we propose a
design and control method of noise-induced synchronization patterns by applying the theory pro-
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posed in Chapter 2. Since these theories are based on the phase reduction method that assumes
weak external forcing, we cannot apply them to strongly driven oscillators. To overcome this
problem, we extend the phase reduction method to the case of strong forcing in Chapter 4. Using
the extended phase reduction method, we theoretically analyze injection locking of a limit-cycle
oscillator subjected to strong periodic external forcing.

Table 1.1: Relation between this thesis and the conventional theories.

Input strength Weak Strong
Mutual sync. Conv. Theory (Chap. 4)
Injection locking Conv. Theory Chap. 4
Noise-induced sync. (white noise) Conv. Theory (Chap. 4)

(colored noise) Chap. 2 and 3 (Chap. 4)

1.2.1 Synchronization by Colored Noise (Chap. 2 and 3)

In Chapter 2, we propose a general formulation of synchronization in an ensemble of uncoupled
oscillators driven by common colored noise with an arbitrary power spectrum. To explore statistical
properties of such colored-noise-induced synchronization, we derive the probability density function
of phase differences between two oscillators in the ensemble. The key contribution of this chapter
is to extend a white-noise approximation method proposed by Nakao, Teramae, Goldobin, and
Kuramoto [42]. The effective white-noise approximation is a useful tool for analyzing stochastic
oscillator dynamics, because it enables us to use the Fokker-Planck equation even in the case of
colored noise. Roughly speaking, this technique approximates an oscillator subjected to colored
noise by an augmented oscillator (i.e., the original oscillator coupled to a linear filter that generates
colored noise) subjected to white noise (see Fig. 1.3 for a schematic). In the derivation of the
probability density function of phase differences, it is useful to employ the effective white-noise
approximation of limit-cycle oscillators driven by colored noise, but the original method proposed
by Nakao et al. cannot be used for this purpose, because it is limited to the case of a single oscillator.
We extend the white-noise approximation method for a single oscillator [42] into a two-oscillator
system, so we can theoretically analyze stochastic dynamics of two uncoupled oscillators driven
by common colored noise. This analytical result theoretically predicts various synchronized and
clustered states induced by colored noise, indicating that these phenomena have a quite different
synchronization mechanism from the case of white noise.

Chapter 3 is an application of the theory proposed in Chapter 2. We propose a method for con-
trolling synchronization patterns of limit-cycle oscillators by common noisy inputs, i.e., by utilizing
noise-induced synchronization. Here, the term synchronization pattern represents various statisti-
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Figure 1.3: Schematic of effective white-noise approximation in limit-cycle oscillators driven by
colored noise.

cal properties of noise-induced synchronization in an ensemble of oscillators, e.g., the accuracy of
synchronization, the number and size of synchronized groups or clusters, the fluctuations around
synchronized states, and so on. The key contribution of this chapter is to propose a theoretical
basis useful for optimizing noise-induced synchronization in practical applications. The application
of noise-induced synchronization mainly aims to save energy consumption. Utilizing common en-
vironmental noise for synchronization as in plants [43, 44], we can realize synchronization without
injecting, e.g., periodic signals to the oscillators. Indeed, Yasuda et al. proposed an energy-efficient
synchronization control method in wireless sensor networks by common environmental noise [45].
In such applications, the signal processing in each oscillator will play a key role for realizing the
optimal noise-induced synchronization pattern in each application. For this purpose, we propose
an optimization method for linear filters that process common noisy signals based on an objective
function defined for each application. The objective function represents some statistical quantity
that characterizes synchronization patterns, e.g., the degree of synchronization or clustering, and
the percentage of oscillators in an exact synchronized state, so we can optimize the linear filter
with respect to each practical application. In this method, we can realize various synchronization
patterns, including fully synchronized and clustered states, by using linear filters that generate
appropriate common noisy signals from given noise. The optimal linear filter can be determined
from the linear phase response property of the oscillators and the power spectrum of the given
noise. The validity of the proposed method is confirmed by numerical simulations.

1.2.2 Synchronization by Strong Forcing (Chap. 4)

Chapter 4 proposes a generalized phase reduction method that enables us to theoretically explore
a broader class of strongly perturbed limit-cycle oscillators. The phase reduction method for
limit-cycle oscillators subjected to weak perturbations has significantly contributed to theoretical
investigations of rhythmic phenomena. We here propose a generalized phase reduction method that
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is also applicable to strongly perturbed limit-cycle oscillators. The key contribution of this chapter
is to introduce a generalized phase and to derive a generalized phase equation by a perturbation
approximation in two small parameters. The fundamental assumption of our method is that the
perturbations to the oscillator I(t) can be decomposed into a large-amplitude component q(εt)
varying slowly as compared to the amplitude relaxation time and remaining weak fluctuations
σp(t):

I(t) = q(εt) + σp(t), (1.3)

where ε and σ are sufficiently small parameters satisfying

ε

λ(q(εt))2
� 1,

σ

λ(q(εt))
� 1, (1.4)

and λ(q(εt)) is the second largest Floquet exponent (see Chapter 4). Under this assumption, we
introduce a generalized phase parameterized by the slowly varying large-amplitude component
q(εt) and derive a closed equation for the generalized phase describing the oscillator dynamics by
a perturbation approximation in ε and σ. In contrast to the conventional phase equation derived
by the first-order perturbation approximation in σ only, the generalized phase equation is valid to
the first order in ε and σ, so it robustly works even for relatively strong inputs as compared to the
conventional equation. The proposed method enables us to explore a broader class of rhythmic
phenomena, in which the shape and frequency of the oscillation may vary largely because of the
perturbations. We illustrate our method by analyzing the synchronization dynamics of limit-cycle
oscillators driven by strong periodic signals. It is shown that the proposed method accurately
predicts the synchronization properties of the oscillators, while the conventional method does
not.

8



Chapter 2

Synchronization Induced by

Common Colored Noise

2.1 Introduction

In this section, we propose a quantitative theory for characterizing and predicting the statistical
property of synchronization induced by common colored noise. When driven by common noise,
many nonlinear dynamical systems can synchronize. This phenomenon is called noise-induced syn-
chronization, which is observed in various kinds of the nonlinear dynamical systems, for example,
neural networks [23, 27], electric circuits [29], electronic devices [30], microbial cells [31] and lasers
[32]. It has been theoretically proven that limit cycle oscillators can synchronize driven by com-
mon noise [20]. Many studies have investigated the synchronization property in case of various
types of drive noises, for example, Gaussian white noise [36, 46, 47] and Poisson impulses [48]. In
ref. [36], using a formulation of limit cycle oscillators driven by common and independent Gaussian
white noises, Nakao et al. analytically obtained the probability density function (PDF) of phase
differences between two oscillators, which enables us to effectively characterize the synchronization
property. However, although there are some numerical studies [49, 50], analytical conventional
studies are limited to the case that drive signals are white noise (temporally uncorrelated noise).
If we can assume that the drive signal is white noise, we can use the Fokker-Planck approximation
[51] to explore statistical properties of oscillator ensembles. However, such an ideal condition is
rare in the real world. For example, in neural circuits, it is known that colored noise with negative
autocorrelation plays a key role to propagate synchronous activities [37]. However, it still remains
unclear how the oscillators behave if they are driven by common colored noise.

Recently, it has been clarified how a limit cycle oscillator behaves if it is driven by colored
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non-Gaussian noise [21, 42, 22]. In this section, utilizing effective white-noise Langevin description
proposed in ref. [42], we extend the formulation in ref. [36] to colored noise that has an arbitrary
power spectrum. We then analytically derive the PDF of the phase difference between the os-
cillators if these oscillators are driven by common colored noise. We also conducted numerical
simulations to verify our analytical results. The results show that the PDF of the phase difference
explicitly depends on the power spectrum of the drive noise.

2.2 Model

We used the following system that consists of N identical limit cycle oscillators subject to common
and independent multiplicative colored noises. The dynamics of the jth oscillator is described by

Ẋ(j) = F (X(j)) +
√
DG(X(j))ξ(t) +

√
εH(X(j))η(j)(t), (2.1)

for j = 1, . . . , N , where X(j) ∈ Rn is the n-dimensional state variable of the jth oscillator;
F (X(j)) ∈ Rn is an unperturbed vector field that has a stable T -periodic limit cycle orbit S(t);
ξ(t) ∈ Rm is the common noise, which drives all of the oscillators; η(j)(t) ∈ Rm (j = 1, . . . , N)
is the independent noise, which is received independently by each oscillator; G(X(j)) ∈ Rn×m

and H(X(j)) ∈ Rn×m represent how the oscillators are coupled to the common and independent
noises; D and ε are parameters to control the intensities of the common and independent noises.
We introduced the following three assumptions:

1. ξ(t) ∈ Rm and η(j)(t) ∈ Rm are independent, identically distributed zero-mean colored
noises, namely,

〈ξ(t)〉 = 0, 〈η(j)(t)〉 = 0, (2.2)

〈ξ(t)η(j)(s)>〉 = O, 〈η(j)(t)η(k)(s)>〉 = O,

where > denotes the transpose.

2. ξ(t) and η(j)(t) can be approximated as the convolution of an arbitrary filter function and
white noise.

3. ξ(t) and η(j)(t) have correlation times shorter than the time scale of the phase diffusion
(∼ O(D− 1

2 , ε−
1
2 )).

To characterize the statistical properties of the drive noises ξ(t) and η(j)(t), we define correlation
matrices Cξ(τ) ∈ Rm×m and Cη(τ) ∈ Rm×m as

Cξ(τ) = 〈ξ(t)ξ(t− τ)>〉t, (2.3)

10



and

Cη(τ) = 〈η(j)(t)η(j)(t− τ)>〉t, (2.4)

for j = 1, . . . , N), where 〈·〉t represents
∫ +∞
−∞ dt · . For the sake of simplicity, we assumed that

all independent noises η(j)(t) have the same statistical property characterized by Cη(τ). The (i,
j)th element of Cξ(τ) is the cross correlation function of the ith and jth elements of the common
noise ξ(t). The diagonal elements of Cξ(τ) are autocorrelation functions. In the same way, we can
characterize the statistical property of η(j)(t) by using Cη(τ).

2.3 Phase Reduction

Under the assumption that the noise intensity is sufficiently weak (D � 1 and ε � 1), we can
apply the phase reduction method [2, 22] to Eq. (2.1). By introducing a phase variable φ(j), eq.
(2.1) is reduced to the following phase equation:

φ̇(j) = ω +
√
DZG(φ(j)) · ξ(t) +

√
εZH(φ(j)) · η(j)(t) +O(D, ε), (2.5)

where φ(j)(t) ∈ [−π,+π] is a phase variable that corresponds to the state of the jth oscillator
X(j), ω (= 2πT−1) is the natural frequency, and ZG(φ(j)) and ZH(φ(j)) are the phase sensitivity
functions that represent the linear response of the phase variable φ(j) to the drive noises [2, 22].
The phase sensitivity functions ZG(φ(j)) and ZH(φ(j)) are defined as follows:

ZG(φ(j)) = ∇Xφ
(j)|X=S(φ(j)) · G(S(φ(j))), (2.6)

ZH(φ(j)) = ∇Xφ
(j)|X=S(φ(j)) · H(S(φ(j))). (2.7)

As discussed in Ref. [22], the O(D, ε) term is necessary to describe the exact phase dynamics, while
the phase diffusion is not affected by the O(D, ε) term. As we will focus on the phase diffusion in
the following sections, we do not take this term into account.

2.4 Effective Langevin Description

To quantify the synchronization property without loss of generality, we consider the relationship
of only two oscillators, that is, the two-body problem of φ(1)(t) and φ(2)(t), and define the phase
difference θ (:= φ(1) − φ(2)). As we focus on the stochastic dynamics of θ, we define f(θ, t) as the
PDF of the phase difference θ. Utilizing the effective white-noise Langevin description [42], the
evolution of f(θ, t) is described by the following effective Fokker-Planck equation:

∂f

∂t
+

∂

∂θ
v(1)(θ)f − 1

2
· ∂

2

∂θ2
v(2)(θ)f = 0, (2.8)
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where v(1)(θ) and v(2)(θ) are effective drift and diffusion coefficients. We have the drift coefficient
v(1)(θ) = 0 because 〈θ̇〉 = 〈φ̇(1) − φ̇(2)〉 = 0. Meanwhile, the diffusion coefficient v(2)(θ) is obtained
as

v(2)(θ) =
∫ +∞

−∞
dτ
〈[
θ̇(t) − 〈θ̇〉

][
θ̇(t− τ) − 〈θ̇〉

]〉
=

∫ +∞

−∞
dτ
〈[
φ̇(1)(t) − φ̇(2)(t)

][
φ̇(1)(t− τ) − φ̇(2)(t− τ)

]〉
(2.9)

where 〈·〉 represents the temporal average. For simplicity of notation, we define djk as

djk =
∫ +∞

−∞
dτ
〈
[φ̇(j)(t) − ω][φ̇(k)(t− τ) − ω]

〉
. (2.10)

Then, we obtain

v(2)(θ) = d11 + d22 − d12 − d21 = 2d11 − 2d12. (2.11)

The phase variable φ(j)(t) can be expanded as

φ(j)(t) = φ
(j)
0 (t) +

√
Dφ

(j)
D,1(t) +

√
εφ

(j)
ε,1(t) +Dφ

(j)
D,2(t) + εφ

(j)
ε,2(t) + · · · (2.12)

by using
√
D and

√
ε as expansion parameters, where φ(j)

0 (t), φ(j)
D,k(t) and φ(j)

ε,k(t) (k = 1, 2, . . .) are
approximate perturbed solutions of φ(j)(t). We have

φ
(j)
0 (t) = φ

(j)
0 (0) + ωt, (2.13)

φ̇
(j)
D,1(t) = ZG(φ(j)

0 (t)) · ξ(t), (2.14)

φ̇
(j)
ε,1(t) = ZH(φ(j)

0 (t)) · η(j)(t). (2.15)

Using these perturbed solutions, eq. (2.5) can be written as

φ̇(j) = ω +
√
Dφ̇

(j)
D,1 +

√
εφ̇

(j)
ε,1 +O(D, ε). (2.16)

Using this approximation and the fact that 〈φ(j)
D,1(t)φ

(k)
ε,1 (t− τ)〉 = 0 and 〈φ(j)

ε,1(t)φ
(k)
D,1(t− τ)〉 = 0,

we obtain

djk = D

∫ +∞

−∞
dτ
〈
φ̇

(j)
D,1(t)φ̇

(k)
D,1(t− τ)

〉
+ε
∫ +∞

−∞
dτ
〈
φ̇

(j)
ε,1(t)φ̇

(k)
ε,1 (t− τ)

〉
+O(D

3
2 , ε

3
2 ). (2.17)
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Thus, using Eq. (2.17), we can calculate d11 as follows:

d11 =
D

2π

∫ +∞

−∞
dτ

∫ +π

−π

dφZG(φ)>Cξ(τ)ZG(φ− ωτ)

+
ε

2π

∫ +∞

−∞
dτ

∫ +π

−π

dφZH(φ)>Cη(τ)ZH(φ− ωτ) +O(D
3
2 , ε

3
2 ). (2.18)

In the same way, d12 is given by

d12 =
D

2π

∫ +∞

−∞
dτ

∫ +π

−π

dφZG(φ)>Cξ(τ)ZG(φ− θ − ωτ) +O(D
3
2 , ε

3
2 ). (2.19)

The detailed derivations of Eqs. (2.18) and (2.19) are shown in Appendix (section A.1).
Finally, from Eqs. (2.11), (2.18) and (2.19), we have the efficient diffusion coefficient v(2)(θ):

v(2)(θ) = 2D
[
g(0) − g(θ)

]
+ 2εh(0), (2.20)

where g(θ) and h(θ) are correlation functions defined as

g(θ) =
1
2π

∫ +∞

−∞
dτ

∫ +π

−π

dφZG(φ)>Cξ(τ)ZG(φ− θ − ωτ), (2.21)

h(θ) =
1
2π

∫ +∞

−∞
dτ

∫ +π

−π

dφZH(φ)>Cη(τ)ZH(φ− θ − ωτ). (2.22)

If we assume that the drive noise is white, namely, Cξ(τ) = Cη(τ) = δ(τ)Em, eqs. (2.21) and
(2.22) are exactly equivalent to eq. (6) in Ref. [36], where Em is an m ×m identity matrix. The
results show that Eqs. (2.21) and (2.22) are a natural generalization of Eq. (6) in Ref. [36].

We obtain the explicit form of the Fokker-Planck equation of Eq. (2.8) from Eqs. (2.20)–(2.22).
The stationary distribution of the phase difference f0(θ) is given as the stationary solution of Eq.
(2.8). Then, if we put ∂f/∂t = 0 in Eq. (2.8), we obtain

f0(θ) =
ν

v(2)(θ)
=

ν′

D
[
g(0) − g(θ)

]
+ εh(0)

, (2.23)

where ν and ν′ (= ν/2) are normalization constants.

2.5 Fourier Representation

To understand the results obtained in the previous section, we rewrite the correlation functions
defined in Eqs. (2.21) and (2.22) by using the Fourier representation. We introduced the Fourier
series expansion of the phase sensitivity functions ZG(φ) and ZH(φ) as

ZG(φ) =
+∞∑

l=−∞

YG,le
ilφ, (2.24)

13



and

ZH(φ) =
+∞∑

l=−∞

YH,le
ilφ, (2.25)

where i denotes the imaginary unit and YG,l ∈ Cm (= 1
2π

∫ +π

−π
dφZG(φ)e−ilφ) and YH,l ∈ Cm

(= 1
2π

∫ +π

−π
dφZH(φ)e−ilφ) are Fourier coefficients (l = −∞, . . . ,∞).

Subsequently, we define Pξ(Ω) ∈ Cm×m and Pη(Ω) ∈ Cm×m as the Fourier transforms of Cξ(τ)
and Cη(τ), that is,

Pξ(Ω) =
∫ +∞

−∞
dtCξ(t)e−iΩt, (2.26)

and

Pη(Ω) =
∫ +∞

−∞
dtCη(t)e−iΩt. (2.27)

Let us note that Pξ(Ω) and Pη(Ω) are Hermitian matrices, namely, Pξ(Ω) = Pξ(Ω)† and Pη(Ω) =
Pη(Ω)† because Cξ(τ) = Cξ(−τ)> and Cη(τ) = Cη(−τ)> from their definitions, where † denotes
the adjoint. The (i, j)th elements of Pξ(Ω) and Pη(Ω) represent the cross spectra of the ith and
jth elements of ξ(t) and η(j)(t). In particular, the diagonal elements of Pξ(Ω) and Pη(Ω) represent
the power spectra.

Using the Fourier representations defined above, we can obtain the Fourier representations of
the correlation functions g(θ) and h(θ):

g(θ) =
+∞∑

l=−∞

gle
ilθ, h(θ) =

+∞∑
l=−∞

hle
ilθ, (2.28)

where

gl := Y †
G,lPξ(lω)YG,l, (2.29)

and

hl := Y †
H,lPη(lω)YH,l, (2.30)

are Fourier coefficients (l = −∞, . . . ,∞). The derivations of gl and hl will be shown in Appendix
(section A.2).

These expressions clearly suggest that the correlation functions g(θ) and h(θ) only depend on
Pξ(±lω) and Pη(±lω) (l = 0, 1, 2, . . .), that is, the other frequency components can be neglected. In
the next section, we will demonstrate that colored noise induces various synchronized and clustered
states, which are clearly explained by Eq. (2.28).
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Figure 2.1: Simulation results of the Stuart-Landau oscillator (crosses) and the corresponding
phase oscillator (open circles). (a) Power spectra of the common noises are shown for ω0 = 1, 3
and 5. The PDFs of θ show the frequency dependency of the synchronization property for (b)
ω0 = 1, (c) ω0 = 3 (= ω), and (d) ω0 = 5.
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2.6 Numerical Simulations

To demonstrate the validity of our results, we perform numerical experiments for two types of limit
cycle oscillators. The first example is the Stuart-Landau oscillator, which takes the normal form
of the supercritical Hopf bifurcation [2]:

ẋ = x− c0y − (x2 + y2)(x− c2y), (2.31)

ẏ = y + c0x− (x2 + y2)(y + c2x), (2.32)

where X = [x, y]> is a state variable and c0 and c2 are parameters. In the simulation, we fixed
c0 = 1, c2 = −2, G = H = diag(1, 1), D = 0.0095 and ε = 0.0005, where diag(λ1, . . . , λm) denotes
an m×m diagonal matrix that has the diagonal elements λ1, . . . , λm. This model is reduced to the
phase equation that has the natural frequency ω = c0 − c2 = 3 and the phase sensitivity function
Z(φ) =

√
2[sin(φ+ 3π/4), sin(φ+ π/4)]>.

In the simulation, we use a two-dimensional drive noise that has the correlation matrix Cex(τ) ∈
R2×2 defined as

Cex(τ) = diag(Cex(τ), Cex(τ)), (2.33)

Cex(τ) =
γ

2
e−γ|τ | cosω0τ, (2.34)

where ω0 and γ are parameters that represent the peak frequency and the characteristic decay
time. We define Pex(Ω), the Fourier transform of Cex(τ), as Pex(Ω) = γ2

2 {[γ2 + (Ω + ω0)2]−1 +
[γ2 + (Ω− ω0)2]−1}. A drive noise characterized by Cex(τ) can be generated by the damped noisy
harmonic oscillator (See Eqs. (43)–(49) in Ref. [42] for details).

We use the common noises with (ω0, γ) = (1, 1), (3, 1) and (5, 1) and the independent noise
with (ω0, γ) = (0, 3). The power spectra of these common noises are shown in Fig. 2.1 (a). From
Eq. (2.28), the correlation functions g(θ) and h(θ) are given by

g(θ) =
[

1
1 + (ω0 + 3)2

+
1

1 + (ω0 − 3)2

]
cos θ, (2.35)

h(θ) = cos θ, (2.36)

for ω0 = 1, 3 and 5, which correspond to the three types of the common noise. The derivations of
g(θ) and h(θ) will be shown in Appendix (section A.3).

The correlation function g(θ) calculated above indicate that the effective intensity of the com-
mon noise depends on the peak frequency ω0 and is maximal at ω0 = ω. It means that the
synchronous degree is maximized at ω0 = ω. In Fig. 2.1 (b)–(d), we compared the results of the
direct numerical simulation using the Stuart-Landau oscillator and its corresponding phase oscil-
lator with the analytical results. All PDFs are well fitted by the theoretical curves. Our theory
clearly predicts that the highest synchronous degree is realized at ω0 = ω.
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Figure 2.2: Simulation results of the FitzHugh-Nagumo oscillator. (a) Power spectra of the common
noises are shown for ω0 = ω and 3ω. For these drive noises, (b) g(θ) (= h(θ)) is shown. The PDFs
of θ for (c) ω0 = ω (synchronized state) and for (d) ω0 = 3ω (3-cluster state) are shown.
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The second example is the FitzHugh-Nagumo oscillator [52, 53]:

v̇ = v − v3

3
− u+ I0, (2.37)

u̇ = µ(v + a− bu), (2.38)

where X = [v, u]> is a state variable and a, b, µ and I0 are parameters. In the simulation, we fixed
a = 0.7, b = 0.8, µ = 0.08, I0 = 0.875, G = H = diag(1, 0), D = 0.045 and ε = 0.005. For these
parameters, this oscillator has the natural frequency ω ' 0.1725. This oscillator models bursting
behavior of a neuron, and only the first variable v, which corresponds to the membrane potential
of a neuron, is subject to noise.

In the simulation, we use the one-dimensional noise that has the correlation function Cex(τ).
Unlike the first example, we use the same parameters (ω0, γ) for both the common and independent
noises. We used two parameter sets (ω0, γ) = (ω, 0.1) and (3ω, 0.1). The power spectra of these
drive noises are shown in Fig. 2.2 (a). We obtain the correlation function g(θ) (= h(θ)) numerically
as shown in Fig. 2.2 (b).

In Fig. 2.2 (c) and (d), we compared the results of the direct numerical simulation with the
analytical results. The numerical results are in good agreement with the theoretical results. As
theoretically predicted, a 3-cluster state is realized as shown in Fig. 2.2 (d). If oscillators are driven
by white noise, clustered states are induced only by multiplicative noise [36]. However, in case of
colored noise, clustered states are induced not only by multiplicative noise but also by additive
noise.

In the third example, we used the Hodgkin-Huxley oscillator [54], which enables us to demon-
strate whether the theory is applicable to higher-dimensional limit cycle systems. We use two types
of drive noise: chaotic noise generated by the Lorenz model [55] and high-pass noise generated by
applying a high-pass filter to white noise. These power spectra are shown in Fig. 2.3 (a). Un-
like the periodic noise characterized by Cex(τ), chaotic noise does not have a characteristic decay
time, and high-pass noise has a vanishing spectrum as Ω → 0. In the simulation, for the sake of
simplicity, we used the same type of drive noise for the common and independent noises, and we
set (D, ε) = (0.02, 0.01) and (0.0002, 0.0001) for the chaotic and high-pass noises, respectively. For
the Lorenz model, we use the same parameters and normalization as in ref. [42]. Fig. 2.3 (b)–(d)
compare the theoretical and numerical results, which show that our theory is also valid for these
cases.

2.7 Summary and Discussions

In this section, we extended a formulation to analyze various synchronized and clustered states
of uncoupled limit cycle oscillators driven by common and independent colored noises. Using this
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high-pass noise (red). (a) Power spectra of the drive noises. The PDFs of θ obtained by the theory
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19



formulation, we derived the probability density function of the phase difference and rewrote it
by the Fourier representation. The obtained expressions clearly show that the synchronization
property depends on the power spectrum of the drive noises. Such dependency has already been
reported experimentally. For example, in ref. [38], the reliability, or synchronization across trials,
is explored in neuronal responses to periodic drive inputs with various frequencies. The reliability
is maximized at a certain frequency, which is similar to our results shown in Fig. 2.1. Our results
in this section supports the results in ref. [38] theoretically, because a neuron in a oscillatory state
can be regarded as a noisy limit cycle oscillator.

Generally, noise in the real world often has a non-flat and characteristic power spectrum. In this
sense, our formulation is a useful tool to estimate the synchronization property for both theoretical
and practical aspects. Namely, the results obtained in this section can be applied to a wide range
of purposes from mathematical modelings to technological problems.
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Chapter 3

Design and Control of

Noise-Induced Synchronization

Patterns

3.1 Introduction

Various nonlinear dynamical systems tend to synchronize when driven by a common noisy input.
This phenomenon, called noise-induced synchronization, is observed in many systems, for exam-
ple, in neurons [23, 25, 27, 28], electric circuits [29], electronic devices [30], microbial cells [31],
lasers [32], and chaotic dynamical systems [33, 34]. It has been clarified that noise-induced synchro-
nization has quite a different mechanism from phase locking to periodic forcing, i.e., the oscillators
are not entrained by the input but still exhibit mutual synchronization, characterized by coherent
distributions of the phase differences. Analytical investigations of this phenomenon for limit-cycle
oscillators can be performed by using the phase reduction method [2], and its properties have been
widely studied in the last decade [20, 22, 36, 46, 48, 50, 56, 57, 58, 59, 60, 61, 62].

In contrast to phase locking that requires periodic forcing whose frequency is close to rational
multiples of the natural frequency of the oscillators, noise-induced synchronization can occur even
for white noise [20, 22, 36, 46, 48, 56, 57, 58, 59, 60, 61, 62]. Thus, noise-induced synchronization
may more easily be realized than phase locking, because common environmental noise is ubiqui-
tous in nature. Indeed, it is conjectured that some plants utilize common environmental noise
for synchronization to realize biological functions [43, 44]. In such biological systems, some kind
of filtering mechanisms for the environmental noise may also exist to improve noise-induced syn-
chronization. Such filtering mechanisms, if any, would also be useful in practical applications such

21



as noise-induced synchronization of sensor networks [45]. The aim of this chapter is to provide a
theoretical basis for optimizing noise-induced synchronization by filtering the given noise.

In our previous works [36, 59], we developed quantitative theories that predict global statistical
properties of the noise-induced synchronization, such as formation of various synchronization pat-
terns and fluctuations around these patterns, not only whether the oscillators synchronize with the
others. The synchronization patterns are characterized by the probability density function (PDF)
of the phase differences between the oscillators, which can be calculated from the phase response
property of the oscillators and the statistical properties of the noisy inputs.

In this chapter, on the basis of ref. [59], we propose a method for designing and controlling
various noise-induced synchronization patterns of limit-cycle oscillators, including the fully syn-
chronized and clustered states. Since the synchronization pattern of the oscillators depends on the
statistical properties of the noisy input, we can design the synchronization pattern by optimizing
the noisy input so that some objective function, e.g., the degree of synchronization, is maximized.
We develop an optimization method for the noisy input, namely, for a linear filter that transforms
given noise into an appropriate noisy input so that the desired synchronization pattern is realized.
The validity of the proposed method is confirmed by numerical simulations.

3.2 Model

We consider an ensemble of N uncoupled identical limit-cycle oscillators subjected to correlated
noise and independent noise, described by the following Langevin equations:

Ẋj(t) = F (Xj) + εG(Xj)[Ij(t) + ζj(t)], (3.1)

for j = 1, . . . , N . Here, Xj(t) ∈ Rn is the state of the oscillator j at time t, F (Xj) ∈ Rn is a vector
field representing the oscillator dynamics, G(Xj) ∈ Rn represents the coupling of the oscillator to
the noisy inputs, Ij(t) ∈ R is the correlated noise, ζj(t) ∈ R is the independent noise that drives
each oscillator independently, and ε (� 1) is a small parameter that controls the strength of the
noisy inputs. We assume that Eqs. (3.1) possesses a stable limit-cycle orbit X0(t) with period T

and frequency ω := 2π/T when ε = 0. The correlated noise is generated from two given noisy
signals by a linear filter as Ij(t) = f ∗ (ξ(t) + ηj(t)), where the noise ξ(t) ∈ R is common to all
oscillators, ηj(t) ∈ R is independently applied to each oscillator, f(τ) ∈ R is a filter function that
transforms the given noise to appropriate noise for realizing desired synchronization patterns, and
the star (∗) denotes convolution f ∗ α(t) =

∫ +∞
−∞ f(τ)α(t− τ)dτ . We introduced two independent

noise terms ηj(t) and ζj(t) to take into account the effect of external disturbances before and after
filtering.

For example, the oscillators described by Eqs. (3.1) can be regarded as spiking neurons receiving
artificial injection currents as in ref. [27]. In this case, the filtered noise Ij(t) represents the injected
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current to each neuron, and we may suppose ηj(t) = 0. The filter f(τ) is used for generating an
appropriate injection current, and ζj(t) is independent noise inherent in each neuron, e.g., channel
or synaptic noise. In the situation of ref. [45] where noise-induced synchronization of wireless
sensor networks is considered, each oscillator described by Eqs. (3.1) corresponds to each sensor
node. The sensor node measures a noisy environmental signal ξ(t) + ηj(t), and the filter f(τ)
implemented on each sensor node transforms the signal into an appropriate noisy input Ij(t) that
induces synchronization of the sensor nodes. We may suppose ζj(t) = 0 in this case.

We assume that ξ(t), ηj(t), and ζj(t) are mutually independent zero-mean Gaussian noise,
i.e., 〈ξ(t)〉 = 〈ηj(t)〉 = 〈ζj(t)〉 = 0 and 〈ξ(t)ηj(t − τ)〉 = 〈ξ(t)ζj(t − τ)〉 = 〈ηj(t)ηk(t − τ)〉 =
〈ζj(t)ζk(t− τ)〉 = 〈ηk(t)ζ`(t− τ)〉 = 0 for any j, k, and ` (j 6= k), where 〈·〉 denotes the ensemble
average over realizations of ξ(t), ηj(t), and ζj(t). For simplicity, we assume that the statistical
properties of ηj(t) and ζj(t) do not depend on the oscillator index j. Their power spectra are given
by Pξ(Ω) :=

∫ +∞
−∞ e−iΩτ 〈ξ(t)ξ(t − τ)〉dτ , Pη(Ω) :=

∫ +∞
−∞ e−iΩτ 〈ηj(t)ηj(t − τ)〉dτ , and Pζ(Ω) :=∫ +∞

−∞ e−iΩτ 〈ζj(t)ζj(t− τ)〉dτ . We also define the amplitude response of the filter f(τ) as A(Ω) :=
|
∫ +∞
−∞ e−iΩτf(τ)dτ |.
By the phase reduction method [2], we can reduce the high-dimensional oscillator dynamics

described by Eqs. (3.1) to a one-dimensional phase equation for small ε,

θ̇j = ω + εZ(θj)[f ∗ (ξj(t) + ηj(t)) + ζj(t)]

+ ε2ν(θj) +O(ε3), (3.2)

where θj(t) ∈ [0, 2π) is the phase of the oscillator j, Z(θj) is a sensitivity function that characterizes
the response of the oscillator phase to noisy inputs, and ν(θj) represents the effect of amplitude
relaxation dynamics of stochastic limit-cycle oscillators [22, 66, 67] (this term eventually vanishes
and does not play a role in the following argument). The sensitivity function Z(θ) is given as Z(θ) =
G>(X)∇Xθ(X)|X=X0(θ/ω), where θ(X) is the isochron of the limit cycle and ∇Xθ(X)|X=X0(θ/ω)

represents its gradient on the limit-cycle orbit at phase θ [2].

3.3 Characterization of Synchronization Patterns

As discussed in refs. [36, 59], the phase difference between two oscillators φj,k := θj − θk charac-
terizes the noise-induced synchronized state. Since statistical properties of ηj(t) and ζj(t) do not
depend on the oscillator index j, the PDF of the phase difference φj,k does not depend on the
indices j and k. Thus, in the following, we denote the phase difference by φ without the oscillator
indices.

In our previous work [59], we obtained the stationary PDF U(φ) of the phase difference φ by
employing effective white-noise approximation of the phase equations (3.2) subjected to correlated
colored noise and by deriving an averaged Fokker-Planck equation for φ from the multivariate
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Fokker-Planck equation for the phase variables {θj}. It turns out that the correlation functions of
the noise play an important role, and U(φ) is explicitly given by

U(φ) =
1
ū
· 1
g(0) − g(φ) + h(0)

, (3.3)

where ū ∈ R is a normalization constant determined by
∫ +π

−π
U(φ)dφ = 1, and g(φ) ∈ R and

h(φ) ∈ R are correlation functions of the noise terms in Eqs. (3.2), defined as g(φ) =
∫ +∞
−∞ 〈Z(θ(t))f∗

ξ(t)Z(θ(t−τ)+φ)f ∗ξ(t−τ)〉dτ and h(φ) =
∫ +∞
−∞ 〈Z(θ(t))[f ∗ηj(t)+ζj(t)]Z(θ(t−τ)+φ)[f ∗ηj(t)+

ζj(t − τ)]〉dτ . In Fourier representation, these functions can be written as g(φ) =
∑+∞

`=−∞ g`e
i`φ

and h(φ) =
∑+∞

`=−∞ h`e
i`φ, where the Fourier coefficients g`, h` ∈ R are given by

g` = |z`|2|A(`ω)|2Pξ(`ω),

h` = |z`|2|A(`ω)|2Pη(`ω) + |z`|2Pζ(`ω), (3.4)

and z` := 1
2π

∫ +π

−π
e−i`θZ(θ)dθ is the Fourier coefficient of Z(θ). From Eqs. (3.3), we see that the

PDF U(φ) is symmetric about φ = 0 and has a maximum at φ = 0. For example, a PDF U(φ)
with a single peak at φ = 0 represents the synchronized state of the oscillators, and U(φ) with k

peaks represents the k-clustered state. Thus, when the amplitude response A(Ω) of the filter f(τ)
enhances the k-th mode of the correlation function g(φ) in Eqs. (3.4), k-clustered distribution is
emphasized in the PDF U(φ).

3.4 Design of Synchronization Patterns

Equation (3.3) indicates that we can design the stationary PDF of the phase difference U(φ),
i.e., the synchronization pattern, by varying the correlation function g(φ). Therefore, given the
power spectra Pξ(Ω), Pη(Ω), Pζ(Ω), and the sensitivity function Z(θ), we can try to find an
optimal filter f(τ) that gives g(φ). In this study, rather than explicitly specifying the precise PDF
of the oscillators as the target, we aim to maximize its statistical property, e.g., the degree of
synchronization or clustering. This is because such macroscopic properties, rather than precise
functional forms of U(φ), are relevant in practical applications. Note also that we cannot generate
arbitrary PDFs but only optimize the PDF given in the form of Eqs. (3.3).

To design the optimal filter f(τ), we introduce the following objective functional R{f} of f(τ)
characterizing the statistical property of U(φ) as a measure for choosing an optimal synchronization
pattern:

R{f} =
∫ +π

−π

U(φ; f)q(φ)dφ, (3.5)

where we explicitly show the dependence of U(φ; f) on f . The function q(φ) determines what
statistical property we focus on. We try to design synchronization patterns with desired statistical
properties by choosing appropriate q(φ).
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In the numerical simulations given below, we will use the following functions for designing
the synchronization patterns: q1(φ) = cosφ, q2(φ) = δ(φ), q3(φ) = cos 3φ, and q4(φ) = cos 2φ,
where δ(·) denotes the Dirac delta function. When we use q1(φ), the objective functional R{f}
corresponds to the order parameter introduced in ref. [58], which characterizes the degree of noise-
induced synchronization. When we use q2(φ), the objective functional R{f} corresponds to the
maximum of the PDF U(φ) at φ = 0, which also characterizes the degree of synchronization, but
in a more strict way, i.e., it counts only the oscillator pairs with exactly zero phase difference.
When we use q3(φ), the objective functional R{f} characterizes three-clustered states, in which
three synchronized subgroups of oscillators are formed. Similarly, q4(φ) characterizes two-clustered
states.

In the following, we represent q(φ) as a Fourier series, q(φ) = q̃0 + 2
∑∞

`=1 q̃` cos `φ, where the
coefficient q̃` ∈ R represents the weight of the `-th Fourier mode. Expanding U(φ) as U(φ) =
1
2π +

∑∞
`=1 ũ` cos `φ, Eqs. (3.5) can be written as R{f} =

∑∞
`=1 q̃`ũ`. By finding optimal ũ` for

given q̃`, we can obtain a PDF U(φ) and a filter f(τ) that maximizes the objective functional
R{f}.

3.5 Optimization of Filters

By maximizing the objective functional R{f}, we seek for the optimal filter f(τ). However, uncon-
strained maximization of R{f} often leads to divergent f(τ). We also need to take into account
that our present theory is not valid for strong noisy inputs, because the phase reduction method
requires the input given to the oscillators to be sufficiently weak [2]. Thus, we should introduce
some constraint on the filter function f(τ).

In this study, we formulate the constrained optimization problem of the objective functional
R{f} as follows:

maximize
f

R{f}, (3.6)

subject to σ2 := 〈Ij(t)2〉 = C, (3.7)

where the condition Eqs. (3.7) constrains the variance σ2 of the filtered noise Ij(t) to be a constant
C. Using the power spectra Pξ(Ω) and Pη(Ω) and the amplitude response A(Ω) of the filter f(τ),
the variance σ2 can be written as

σ2 =
∫ +∞

−∞
|A(Ω)|2[Pξ(Ω) + Pη(Ω)]dΩ. (3.8)

By solving the optimization problem described by Eqs. (3.6) and (3.7), we can, in principle, obtain
the optimal filter f(τ) for maximizing the objective functional R{f}.
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Actually, we should also take into account that the optimal solution of Eqs. (3.6) and (3.7)
may not be implemented in practice. The optimal amplitude response A(Ω) obtained as above
often has delta peaks at Ω = `ω (` ∈ Z), i.e., |A(Ω)|2 = a0δ(Ω) +

∑∞
`=1 a`[δ(Ω − `ω) + δ(Ω + `ω)]

(a` is some coefficient and ω is the natural frequency of the oscillator), because the PDF U(φ)
depends only on the harmonic components Pξ(0), Pξ(ω), Pξ(2ω), . . . and Pη(0), Pη(ω), Pη(2ω), . . .
of the noise (see Eqs. (3.3) and (3.4)). Such a delta-peaked amplitude response A(Ω) corresponds
to a physically unrealistic filter that extracts only purely harmonic components from the noise,
which leads to phase locking rather than noise-induced synchronization of the oscillators. Besides,
such singular A(Ω) cannot be realized in practical implementation of the linear filter f(τ).

To overcome this problem, we restrict the class of A(Ω) and further assume that the square of
the amplitude response is expressed as a finite sum of narrow-band basis functions as

|Ã(Ω)|2 :=
m∑

`=−m

c|`|W (Ω − `ω), (3.9)

where c` (` = 0, 1, 2, . . .) is a weight coefficient, W (Ω) represents a narrow-band basis function
prespecified before the optimization process, e.g., a Gaussian function, and m is the maximum
wavenumber of the filter. We assume that the basis function W (Ω) is localized in the range
|Ω| < ω, i.e., W (Ω) ≈ 0 holds for |Ω| ≥ ω. The parameter m should be sufficiently large to
obtain a good filter. The restricted amplitude response Ã(Ω) is experimentally feasible, because
W (Ω − `ω) in Eqs. (3.9) can be implemented by a band-pass filter that passes frequencies around
Ω = `ω.

We introduce a new parameter β = [β0, β1, . . . , βm]> ∈ Rm+1 as β0 =
√
|b0c0| and β` =√

2|b`c`| for ` = 1, . . . ,m, where b` (` = 0, 1, 2, . . .) is defined as b` =
∫ +∞
−∞ W (Ω − `ω)[Pξ(Ω) +

Pη(Ω)]dΩ. The optimization problem (3.6) and (3.7) with the above restriction can then be ex-
pressed as

maximize
β

R̃(β) :=
∫ +π

−π

Ũ(φ; β)q(φ)dφ, (3.10)

subject to σ2 ≈ ||β||2 =
m−1∑
l=0

|β`|2 = C, (3.11)

where Ũ(φ; β) is the PDF of the phase difference φ obtained by plugging Eqs. (3.9) into Eqs. (3.4),
and Eqs. (3.11) follows from Eqs. (3.8) and (3.9) and the definition of β. Thus, we can employ β

as a design parameter of the optimization problem described by Eqs. (3.10) and (3.11).

3.6 Optimization Algorithm

To solve the optimization problem given by Eqs. (3.10) and (3.11), we use the gradient descent
algorithm. We randomly choose an initial value β(0) and iteratively calculate β(j) for j ≥ 1, where
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β(j) is the design parameter β at j-th iteration. At each iteration, we update β(j) as

β̃(j+1) = β(j) + α∇βR̃(β(j)) (3.12)

and normalize it as β(j+1) =
√
Cβ̃(j+1)/||β̃(j+1)||, so that β(j) satisfies the constraint (3.11). Here,

α is a constant that controls the step size, and ∇βR̃(β) ∈ Rm+1 represents the gradient of R̃(β)
with respect to β, i.e., ∇βR̃(β) = [∂R̃(β)

∂β0
, . . . , ∂R̃(β)

∂βm
]>.

For simplicity of notation, we define u(φ) := 1/[g(0)−g(φ)+h(0)]. The normalization constant
is given by ū =

∫ +π

−π
u(φ)dφ. Then, the gradient ∂R̃(β(j))

∂β`
in Eqs. (3.12) can be expressed as

∂R̃(β)
∂β`

=
∫ +π

−π
1
ū2 [∂u(φ)

∂β`
ū − u(φ) ∂ū

∂β`
]q(φ)dφ, and the gradients (∂u(φ)/∂β`) and (∂ū/∂β`) can be

calculated from Eqs. (3.3), (3.4) and (3.9) and the definition of β as ∂u(φ)
∂β`

= 2u2(φ)
∑m−1

k=0 W (kω−
`ω)β`|zk|2

b`
[Pξ(kω)(cos kφ− 1) − Pη(kω)], ∂ū

∂β`
=
∫ +π

−π
∂u(φ)
∂β`

dφ.

Because W (Ω) is localized in the range |Ω| < ω, the above expression can be simplified as fol-
lows: ∂u(φ)

∂β`
= 2u2(φ)W (0)β`|z`|2

b`
[Pξ(`ω)(cos `φ− 1) − Pη(`ω)] , which reduces the computational

cost of the optimization process. Using the optimized β, we can obtain the optimal ampli-
tude response Ã(Ω) as the square root of Eqs. (3.9), whose coefficients c0, . . . , cm are given by
c0 = |β0|2

b0
, c` = |β`|2

2b`
, for ` = 1, 2, . . . ,m. Thus, using, e.g., the least-squares method [68], we can

calculate the optimal filter f(τ) from the amplitude response Ã(Ω).

3.7 Numerical Simulations

To confirm the validity of our method, we performed numerical simulations using several examples
of the objective functionals. In the first example, we use the FitzHugh-Nagumo (FHN) model of
a periodically firing neuron. This model has a two-dimensional state variable (u, v), which obeys
v̇(t) = v− v3/3−u+ I0 + I(t) and u̇(t) = µ(v+ c−du), µ = 0.08, c = 0.7, d = 0.8, and I0 = 0.875.
The frequency of the oscillation is approximately ω = 0.173 and the noisy input Ij(t) is given to
v(t). The sensitivity function Z(θ) to I(t) and its Fourier coefficients are shown in figs. 3.1 (a) and
(b).

As the noisy inputs, we use the Ornstein-Uhlenbeck noise, whose power spectra are given
by Pξ(Ω) = P̃OU(Ω; 0.5), Pη(Ω) = Pζ(Ω) = 0.1 · P̃OU(Ω; 0.5), with P̃OU(Ω; γ) := γ2/(γ2 + Ω2)
[fig. 3.1 (c)]. As the basis function W (Ω), we employ a rectangular function, W (Ω) = 1 (|Ω| <
ω/2), 0 (otherwise). The other parameters are set as follows: the coupling strength to the noise
is ε = 0.01, the variance of the filtered noise is C = 10, and the maximum wavenumber of the
filter is m = 5 (because |z`| is small when ` ≥ 6). The parameter α used for the gradient descent
is α = 0.5. Note that the gradient descent algorithm finds only a local optimum and does not
guarantee global optimality. In order to obtain the global optimum, the algorithm should be
repeated from sufficiently many initial states β(0).
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Figure 3.2 shows the numerical results for the FHN model. For the functions q1(φ) and q2(φ)
defined previously, synchronized states are successfully formed [figs. 3.2 (b) and (d)]. For the
sinusoidal q1(φ), we obtain a filter that emphasizes only the first Fourier mode [fig. 3.2 (a)] (see
Eqs. (3.4)), which results in a bell-shaped PDF U(φ) [fig. 3.2 (b)]. For the delta-shaped q2(φ),
in contrast, we obtain a nontrivial filter that consists of multiple modes [fig. 3.2 (c)]. In this
case, the PDF U(φ) has a sharper peak than that for q1(φ) [fig. 3.2 (d)] and a more precisely
synchronized state is realized. Note that the high-frequency components of Ã(Ω) in fig. 3.2 (c),
which are stronger than the low-frequency components, do not significantly affect the statistical
property of Ij(t), because P (`ω) is sufficiently small for large `. Therefore, we can safely neglect
the high-frequency components of Ã(Ω) whose wavenumbers are larger than m. For the function
q3(φ), we obtain a filter that emphasizes only the third Fourier mode [fig. 3.2 (e)], which yields a
three-clustered state as expected [fig. 3.2 (f)]. Note that we cannot form a two-clustered state in
the FHN model, because the phase response property of this model has odd symmmetry, i.e., the
second Fourier coefficient |z2| of Z(θ) is vanishingly small as shown in fig. 3.1 (b).

In the second experiment, we use the Hodgkin-Huxley (HH) model [54]. It also models periodic
firing of a neuron, but it has more realistic, higher-dimensional dynamics without odd symmetry, in
contrast to the FHN model. We apply the noisy input Ij(t) as well as a constant input I0 = 10 to the
V variable (i.e., membrane potential) of the HH model. The oscillation frequency is approximately
ω = 0.438, and the sensitivity function and its Fourier coefficients are shown in figs. 3.3 (a) and
(b). In addition to q1(φ) and q2(φ), we use q4(φ) for optimization with the aim of forming two-
clustered states. The power spectra Pξ(Ω), Pη(Ω) and Pζ(Ω), the parameters C and α, and the
basis function W (Ω) are the same as before. The noise intensity is ε = 0.1 and the maximum
wavenumber of the filter is m = 4 (because |z`| almost vanishes at ` = 5).

Figure 3.4 shows the numerical results for the HH model. Synchronized states are successfully
formed for q1(φ) and q2(φ) as shown in figs. 3.4 (b) and (d). When we use the delta-shaped q2(φ),
we obtain a nontrivial filter consisting of multiple modes [figs. 3.4 (c)] and the PDF U(φ) has a
sharper peak than the case with the sinusoidal q1(φ) [figs. 3.4 (d)]. In contrast to the FHN model,
we can realize a two-clustered state as shown in figs. 3.4 (f), because Z(θ) of the HH model has
a sufficiently large second Fourier component as shown in fig. 3.3 (b). Note that the realizability
of a particular state is determined by the sensitivity function Z(θ) that characterizes the phase
response property of the driven oscillator, rather than by the dimensionality or complexity of the
oscillator model.

3.8 Summary and Discussion

We have proposed a method for designing and controlling various noise-induced synchronization
patterns by filtering the input noise, including the synchronized and clustered states. By numerical
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Figure 3.1: FitzHugh-Nagumo model. (a) Sensitivity function Z(θ), (b) Fourier coefficients |z`|,
and (c) power spectra of the noisy inputs Pξ(Ω), Pη(Ω) and Pζ(Ω).
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Figure 3.2: FitzHugh-Nagumo model. [(a), (c) and (e)] Amplitude response A(Ω) of the optimal
filter designed by the proposed method and [(b), (d) and (f)] probability density function U(φ)
of the phase difference φ for [(a) and (b)] q1(φ), [(c) and (d)] q2(φ), and [(e) and (f)] q3(φ). The
insets display snapshots of the oscillators in the v–u plane.
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Figure 3.3: Hodgkin-Huxley model. (a) Sensitivity function Z(θ) and (b) Fourier coefficients.

simulations, the validity of the method has been confirmed for two types of limit-cycle oscillators.
These results will provide a theoretical basis for optimizing noise-induced synchronization by fil-
tering the input noise.

Though some previous works [64, 65] proposed optimization methods for the phase response
property of the oscillator to enhance noise-induced synchronization, those works considered only
the Lyapunov exponent of the phase (i.e., the exponential decay rate of the small phase difference
between two oscillators), so that they could not fully characterize the synchronized states and
could not be used to design various synchronization patterns as described in this chapter. More
importantly, in contrast to previous works [64, 65] that gave the optimal phase response property
of the oscillator, our present study provides a method to generate optimal noisy inputs to the os-
cillator, which can be implemented much more easily than designing the oscillator response. Thus,
our method can be useful in various real-world applications, e.g., energy-efficient synchronization
control in wireless sensor networks [45].

Finally, though we have not considered the effect of differences in the natural frequency of the
oscillators [46, 60, 62] in this chapter, it is often significant in practical applications. Extension of
the present method to non-identical oscillators will be an important future work.
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Figure 3.4: Hodgkin-Huxley model. [(a), (c) and (e)] Amplitude response A(Ω) of the optimal
filter designed by the proposed method and [(b), (d) and (f)] probability density function U(φ) of
the phase difference φ for [(a) and (b)] q1(φ), [(c) and (d)] q2(φ) and [(e) and (f)] q4(φ). The insets
display snapshots of the oscillators in the V –m plane, where m is a channel variable [54].
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Chapter 4

Generalized Phase Reduction

Method for Strong External

Forcing

4.1 Intorduction

Rhythmic phenomena are ubiquitous in nature and of great interest in many fields of science and
technology, including chemical reactions, neural networks, genetic circuits, lasers, and structural
vibrations [1, 2, 3, 4, 70, 39, 5, 69]. These rhythmic phenomena often result from complex in-
teractions among individual rhythmic elements, typically modeled as limit-cycle oscillators. In
analyzing such systems, the phase reduction method [1, 2, 3, 4, 5, 69] has been widely used and
considered an essential tool. It systematically approximates the high-dimensional dynamical equa-
tion of a perturbed limit-cycle oscillator by a one-dimensional reduced phase equation, with just a
single phase variable θ representing the oscillator state.

A fundamental assumption of the conventional phase reduction method is that the applied
perturbation is sufficiently weak; hence, the shape and frequency of the limit-cycle orbit remain
almost unchanged. However, this assumption hinders the applications of the method to strongly
perturbed oscillators because the shapes and frequencies of their orbits can significantly differ
from those in the unperturbed cases. Indeed, strong coupling can destabilize synchronized states
of oscillators that are stable in the weak coupling limit [40]. The effect of strong coupling can
further lead to nontrivial collective dynamics such as quorum-sensing transition [39], amplitude
death and bistability [40], and collective chaos [41]. Although not all of these collective phenomena
are the subject of discussion in this study, our formulation will give an insight into a certain class
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of them, e.g., bistability between phase-locked and drifting states [40]. The assumption of weak
perturbations can also be an obstacle to modeling real-world systems, which are often subjected
to strong perturbations.

Although the phase reduction method has recently been extended to stochastic [71], delay-
induced [72], and collective oscillations [73], these extensions are still limited to the weakly per-
turbed regime. To analyze a broader class of synchronization phenomena exhibited by strongly
driven or interacting oscillators, the conventional theory should be extended. This chapter pro-
poses an extension of the phase reduction method to strongly perturbed limit-cycle oscillators,
which enables us to derive a simple generalized phase equation that quantitatively describes their
dynamics. We use it to analyze the synchronization dynamics of limit-cycle oscillators subjected
to strong periodic forcing, which cannot be treated appropriately by the conventional method.

4.2 Model and Assumptions

We consider a limit-cycle oscillator whose dynamics depends on a time-varying parameter I(t) =
[I1(t), . . . , Im(t)]> ∈ Rm representing general perturbations, described by

Ẋ(t) = F (X(t), I(t)), (4.1)

where X(t) = [X1(t), . . . , Xn(t)]> ∈ Rn is the oscillator state and F (X, I) = [F1(X, I), . . . ,
Fn(X, I)]> ∈ Rn is an I-dependent vector field representing the oscillator dynamics. For example,
X and I can represent the state of a periodically firing neuron and the injected current, respectively
[4, 69]. In this chapter, we introduce a generalized phase θ, which depends on the parameter I(t), of
the oscillator. In defining the phase θ, we require that the oscillator state X(t) can be accurately
approximated by using θ(t) with sufficiently small error, and that θ(t) increases at a constant
frequency when the parameter I(t) remains constant. The former requirement is a necessary
condition for the phase reduction, i.e., for deriving a closed equation for the generalized phase, and
the latter enables us to derive an analytically tractable phase equation.

To define such θ, we suppose that I is constant until further notice. We assume that Eq. (A.12)
possesses a family of stable limit-cycle solutions with period T (I) and frequency ω(I) := 2π/T (I)
for I ∈ A, where A is an open subset of Rm (e.g., an interval between two bifurcation points).
An oscillator state on the limit cycle with parameter I can be parameterized by a phase θ ∈
[0, 2π) as X0(θ, I) = [X0,1(θ, I), . . . , X0,n(θ, I)]>. Generalizing the conventional phase reduction
method [1, 2, 3, 4, 5], we define the phase θ such that, as the oscillator state X(t) = X0(θ(t), I)
evolves along the limit cycle, the corresponding phase θ(t) increases at a constant frequency ω(I)
as θ̇(t) = ω(I) for each I ∈ A. We assume that X0(θ, I) is continuously differentiable with respect
to θ ∈ [0, 2π) and I ∈ A.

We consider an extended phase space Rn × A, as depicted schematically in Fig. 4.1 (a). We
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define C as a cylinder formed by the family of limit cycles (X0(θ, I), I) for θ ∈ [0, 2π) and I ∈ A,
and define U ⊂ Rn × A as a neighborhood of C. For each I, we assume that any orbit starting
from an arbitrary point (X, I) in U asymptotically converges to the limit cycle X0(θ, I) on C. We
can then extend the definition of the phase into U , as in the conventional method [1, 2, 3, 4, 5],
by introducing the asymptotic phase and isochrons around the limit cycle for each I. Namely,
we can define a generalized phase function Θ(X, I) ∈ [0, 2π) of (X, I) ∈ U such that Θ(X, I) is
continuously differentiable with respect to X and I, and ∂Θ(X,I)

∂X ·F (X, I) = ω(I) holds everywhere
in U , where ∂Θ

∂X = [ ∂Θ
∂X1

, . . . , ∂Θ
∂Xn

]> ∈ Rn is the gradient of Θ(X, I) with respect to X and the dot
(·) denotes an inner product. This Θ(X, I) is a straightforward generalization of the conventional
asymptotic phase [1, 2, 3, 4, 5] and guarantees that the phase of any orbit X(t) in U always
increases with a constant frequency as Θ̇(X(t), I) = ω(I) at each I. For any oscillator state on
C, Θ(X0(θ, I), I) = θ holds. In general, the origin of the phase can be arbitrarily defined for each
I as long as it is continuously differentiable with respect to I. The assumptions that X0(θ, I)
and Θ(X, I) are continuously differentiable can be further relaxed for a certain class of oscillators,
such as those considered in [74].

Now suppose that the parameter I(t) varies with time. To define θ that approximates the
oscillator state with sufficiently small error, we assume that I(t) can be decomposed into a slowly
varying component q(εt) ∈ A and remaining weak fluctuations σp(t) ∈ Rm as

I(t) = q(εt) + σp(t). (4.2)

Here, the parameters ε and σ are assumed to be sufficiently small so that q(εt) varies slowly as
compared to the relaxation time of a perturbed orbit to the cylinder C of the limit cycles, which
we assume to be O(1) without loss of generality, and the oscillator state X(t) always remains in a
close neighborhood of X0(θ, q(εt)) on C, i.e., X(t) = X0(θ(t), q(εt)) +O(ε, σ) holds (see Sec. A.4
(Appendix)). We also assume that q(εt) is continuously differentiable with respect to t ∈ R. Note
that the slow component q(εt) itself does not need to be small. Using the second largest Floquet
exponent of the oscillator, we can derive the optimal decomposition of I(t) (see Sec. A.9 for a
discussion).

4.3 Derivation of Phase Equation

Using the phase function Θ(X, I), we introduce a generalized phase θ(t) of the limit-cycle oscilla-
tor (A.12) as θ(t) = Θ(X(t), q(εt)). This definition guarantees that θ(t) increases at a constant fre-
quency when I(t) remains constant, and leads to a closed equation for θ(t). Expanding Eq. (A.12)
in σ as

Ẋ(t) = F (X, q(εt)) + σG(X, q(εt))p(t) +O(σ2), (4.3)
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Figure 4.1: Phase dynamics of a modified Stuart-Landau oscillator. (a) A schematic diagram of
the extended phase space Rn × A with n = 2 and m = 1. (b) Frequency ω(I). (c) I-dependent
stable limit-cycle solutions X0(θ, I). (d), (e) Sensitivity functions ζ(θ, I) and ξ(θ, I).
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Figure 4.2: Phase dynamics of a modified Stuart-Landau oscillator. (f), (g) Time series of the
phase θ(t) of the oscillator driven by (f) a periodically varying parameter I(1)(t) or (g) a chaotically
varying parameter I(2)(t). For each of these cases, results of the conventional (top panel) and pro-
posed (middle panel) methods are shown. Evolution of the conventional phase θ̃(t) = Θ(X(t), qc)
and the generalized phase θ(t) = Θ(X(t), q(εt)) measured from the original system (lines) is
compared with that of the conventional and generalized phase equations (circles). Time series
of the state variable x(t) (red) and time-varying parameter I(t) (blue) are also depicted (bot-
tom panel). The periodically varying parameter is given by I(1)(t) = q(1)(εt) + σp(1)(t) with
q(1)(εt) = 0.05 sin(0.5t)+0.02 sin(t) and σp(1)(t) = 0.02 sin(3t), and the chaotically varying param-
eter is given by I(2)(t) = q(2)(εt)+σp(2)(t) with q(2)(εt) = 0.007L1(0.3t) and σp(2)(t) = 0.001L2(t),
where L1(t) and L2(t) are independently generated time series of the variable x of the chaotic
Lorenz equation [3], ẋ = 10(y − x), ẏ = x(28 − z) − y, and ż = xy − 8z/3.
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and using the chain rule, we can derive

θ̇(t) = ω(q(εt)) + σ
∂Θ(X, I)
∂X

|(X(t),q(εt)) · G(X, q(εt))p(t)

+ ε
∂Θ(X, I)

∂I
|(X(t),q(εt)) · q̇(εt) +O(σ2), (4.4)

where G(X, I) ∈ Rn×m is a matrix whose (i, j)-th element is given by ∂Fi(X,I)
∂Ij

, ∂Θ
∂I = [ ∂Θ

∂I1
, . . . ,

∂Θ
∂Im

]> ∈ Rm is the gradient of Θ(X, I) with respect to I, and q̇(εt) denotes dq(εt)
d(εt) .

To obtain a closed equation for θ, we use the lowest-order approximation in σ and ε, i.e.,
X(t) = X0(θ(t), q(εt)) +O(ε, σ). Then, by defining a phase sensitivity function

Z(θ, I) :=
∂Θ(X, I)
∂X

|(X0(θ,I),I) ∈ Rn, (4.5)

and two other sensitivity functions

ζ(θ, I) := G>(X0(θ, I), I)Z(θ, I) ∈ Rm, (4.6)

and

ξ(θ, I) :=
∂Θ(X, I)

∂I
|(X0(θ,I),I) ∈ Rm, (4.7)

we can obtain a closed equation for the oscillator phase θ(t) as

θ̇(t) = ω(q(εt)) + σζ(θ, q(εt)) · p(t) + εξ(θ, q(εt)) · q̇(εt) +O(σ2, ε2, σε), (4.8)

which is a generalized phase equation that we propose in this study. The first three terms in
the right-hand side of Eq. (4.8) represent the instantaneous frequency of the oscillator, the phase
response to the weak fluctuations σp(t), and the phase response to deformation of the limit-cycle
orbit caused by the slow variation in q(εt), respectively, all of which depend on the slowly varying
component q(εt).

To address the validity of Eq. (4.8) more precisely, let λ(I) (> 0) denote the absolute value
of the second largest Floquet exponent of the oscillator for a fixed I, which characterizes the
amplitude relaxation timescale of the oscillator (≈ 1/λ(I)). As argued in Appendix, we can show
that the error terms in Eq. (4.8) remain sufficiently small when

σ/λ(q(εt)) � 1, (4.9)

and

ε/λ(q(εt))2 � 1, (4.10)

namely, when the orbit of the oscillator relaxes to the cylinder C sufficiently faster than the
variations in q(εt).
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Note that if we define the phase variable as θ̃(t) = Θ(X(t), qc) with some constant qc instead
of θ(t) = Θ(X(t), q(εt)), θ̃(t) gives the conventional phase. Then, we obtain the conventional
phase equation ˙̃

θ(t) = ωc + σζc(θ̃) · p(t) + O(σ2) with q(εt) = qc and σp(t) = I(t) − qc. Here,
ωc := ω(qc) is a natural frequency, ζc(θ̃) = ζ(θ̃, qc) = G(X0(θ̃, qc), qc)>Z(θ̃, qc), and Z(θ̃, qc)
is the conventional phase sensitivity function at I = qc [2]. This equation is valid only when
σ/λ(qc) � 1 (i.e., ||I(t) − qc||/λ(qc) � 1). By using the near-identity transformation [75], we
can show that the conventional equation is actually a low-order approximation of the generalized
equation (4.8) (see Sec. A.6 (Appendix)).

4.4 Sensitivity Functions

In practice, we need to calculate ζ(θ, I) and ξ(θ, I) numerically from mathematical models or
estimate them through experiments. We can show that the following relations hold (See Sec. A.5
for the derivation):

ξ(θ, I) = −∂X0(θ, I)
∂I

>
Z(θ, I), (4.11)

ξ(θ, I) = ξ(θ0, I) − 1
ω(I)

∫ θ

θ0

[ζ(θ′, I) − ζ̄(I)]dθ′, (4.12)

ζ̄(I) :=
1
2π

∫ 2π

0

ζ(θ, I)dθ =
dω(I)
dI

, (4.13)

where ∂X0(θ,I)
∂I ∈ Rn×m is a matrix whose (i, j)-th element is given by ∂X0,i(θ,I)

∂Ij
, θ0 ∈ [0, 2π) is

a constant, and ζ̄(I) is the average of ξ(θ, I) with respect to θ over one period of oscillation.
From mathematical models of limit-cycle oscillators, Z(θ, I) can be obtained numerically by the
adjoint method for each I [5, 69], and then ζ(θ, I) and ξ(θ, I) can be computed from ζ(θ, I) =
G>(X0(θ, I), I)Z(θ, I) and Eqs. (4.11) and (4.12). Experimentally, Z(θ, I) and ζ(θ, I) can be
measured by applying small impulsive perturbations to I, while ξ(θ, I) can be obtained by applying
small stepwise perturbations to I.

To test the validity of the generalized phase equation (4.8), we introduce an analytically
tractable model, a modified Stuart-Landau (MSL) oscillator The modified Stuart-Landau oscil-
lator has a two-dimensional state variable X(t) = [x(t), y(t)]> and a vector field

F (X, I) =

(
e2I(x− y − I) − ((x− I)2 + y2)(x− I)
e2I(x+ y − I) − ((x− I)2 + y2)y

)
, (4.14)

with Θ(X, I) = tan−1[y/(x−I)], ω(I) = e2I , X0(θ, I) = [I+eI cos θ, eI sin θ]>, ξ(θ, I) = e−I sin θ,
and ζ(θ, I) = 2e2I − eI cos θ (see Fig. 4.1 for details). We numerically predict the phase θ(t)
of a strongly perturbed MSL oscillator by both conventional and generalized phase equations,
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and compare them with direct numerical simulations of the original system. In applying the
conventional phase reduction, we set qc = 〈I(t)〉t, where 〈·〉t denotes the time average. In Fig. 4.2,
we can confirm that the generalized phase equation (4.8) accurately predicts the generalized phase
Θ(X(t), q(εt)) of the original system, while the conventional phase equation does not well predict
the conventional phase Θ(X(t), qc) because of large variations in I(t).

4.5 Analysis of Phase Locking

As an application of the generalized phase equation (4.8), we analyze k : l phase locking [76] of
the system (A.12) to a periodically varying parameter I(t) with period TI and frequency ωI , in
which the frequency tuning (l〈θ̇〉t = kωI) occurs. Although the averaging approximation [77] for
the phase difference ψ̃(t) = lθ(t) − kωI is generally used to analyze the phase locking [2, 76], we
cannot directly apply it in the present case because the frequency ω(q(εt)) can vary largely with
time. Thus, generalizing the conventional definition, we introduce the phase difference as

ψ(t) = lθ(t) − kωIt− lh(t) (4.15)

with an additional term −lh(t) to remove the large periodic variations in ψ(t) due to ω(q(εt)),
where h(t) is a TI -periodic function defined as

h(t) =
∫ t

0

[ω(q(εt′)) − T−1
I

∫ TI

0

ω(q(εt))dt]dt′. (4.16)

By virtue of this term, temporal variations in ψ̇ remain of the order O(ε, σ), i.e., |ψ̇| � 1, which
enables us to apply the averaging approximation to ψ.

Introducing a small parameter ν representing the magnitude of variations in ψ, one can derive
a dynamical equation for ψ as

ψ̇(t) = νf(ψ, t), (4.17)

where νf(ψ, t) = lg(ψ/l+ kωIt/l+ h(t), t)− kωI − lḣ(t) and g(θ, t) denotes the right-hand side of
Eq. (4.8). Using first- and second-order averaging [77], we can introduce slightly deformed phase
differences ψ1,2 satisfying ψ1,2(t) = ψ(t) + O(ν) and obtain the first- and second-order averaged
equations,

ψ̇1(t) = νf̄1(ψ1) +O(ν2), (4.18)

ψ̇2(t) = νf̄1(ψ2) + ν2f̄2(ψ2) +O(ν3), (4.19)
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where f̄1(ψ) and f̄2(ψ) are given by

f̄1(ψ) =
1
lTI

∫ lTI

0

f(ψ, t)dt, (4.20)

f̄2(ψ) =
1
lTI

∫ lTI

0

[
∂f(ψ, t)
∂ψ

u(ψ, t) − f̄1(ψ)
∂u(ψ, t)
∂ψ

]
dt, (4.21)

u(ψ, t) =
∫ t

0

[f(ψ, t′) − f̄1(ψ)]dt′. (4.22)

These averaged equations can be considered autonomous by neglecting the O(ν2) and O(ν3) terms,
respectively. Averaged equations for the conventional phase equation can be derived similarly.
Thus, if the averaged equation has a stable fixed point, k : l phase locking is expected to occur. As
demonstrated below, the first-order averaging of the generalized phase equation already predicts
qualitative features of the phase-locking dynamics, while the second-order averaging gives more
precise results when the parameter I(t) varies significantly.

As an example, we use the MSL oscillator and investigate their phase locking to periodic
forcing. Figures A.1 and A.2 shows the results of the numerical simulations. We apply four
types of periodically varying parameters and predict if the oscillator exhibits either 1 : 1 or 1 : 2
phase locking to the periodically varying parameter q(εt) (small fluctuation σp(t) is also added
for completeness). We derive averaged equations for the phase differences ψ1,2 using the proposed
and conventional methods, and compare the results with direct numerical simulations of the MSL
oscillator. We find that our new method correctly predicts the stable phase-locking point already
at first-order averaging, while the conventional method does not. In particular, the conventional
method can fail to predict whether phase locking takes place or not, as shown in Figs. A.2 (g)
and (h), even after the second-order averaging. In this case, the exponential dependence of the
frequency ω(I) on the parameter I is the main cause of the breakdown of the conventional method
(see Sec. A.6 for a discussion). Typical trajectories of [x(t), y(t), q(εt)]> are plotted on the cylinder
C of limit cycles in the extended phase space [x, y, I]>, which shows that the oscillator state
migrates over C synchronously with the periodic forcing. The trajectories are closed when phase
locking occurs.

4.6 Summary and Discussions

In summary, we proposed a generalized phase reduction method that enables us to theoretically
explore a broader class of strongly perturbed limit-cycle oscillators. Although still limited to
slowly varying perturbations with weak fluctuations, our method avoids the assumption of weak
perturbations, which has been a major obstacle in applying the conventional phase reduction
method to real-world phenomena. It will therefore facilitate further theoretical investigations of
nontrivial synchronization phenomena of strongly perturbed limit-cycle oscillators [40, 41]. As a
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Figure 4.3: Phase locking of the modified Stuart-Landau oscillator. Four types of periodically
varying parameters I(j) (j = 3, 4) are applied, which lead to 1 : 1 phase locking to I(3)(t) [(a),
(e), and (i)] and 1 : 1 phase locking to I(4)(t) [(b), (f), and (j)]. (a), (b) Time series of the state
variable x(t) of a periodically driven oscillator (red) and periodic external forcing (blue). (e), (f)
Dynamics of the phase difference ψ1,2 with an arrow representing a stable fixed point (top panel)
and time series of ψ1,2 with 20 different initial states (bottom panel). (i), (j) Orbits of a periodically
driven oscillator (blue) on the cylinder of the limit cycles (light blue) plotted in the extended phase
space. The parameter I(j)(t) is given by I(j)(t) = q(j)(εt) + σp(j)(t), q(j)(εt) = α(j) sin(ω(j)

I t) and
σp(j)(t) = 0.02 sin(5ω(j)

I t) with α(3,4) = 0.1, 0.3, and ω(3,4)
I = 1.05, 1.10.
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Figure 4.4: Phase locking of the modified Stuart-Landau oscillator. Four types of periodically
varying parameters I(j) (j = 5, 6) are applied, which lead to 1 : 2 phase locking to I(5)(t) [(c),
(g), and (k)] and and failure of phase locking to I(6)(t) [(d), (h), and (l)]. (c), (d) Time series
of the state variable x(t) of a periodically driven oscillator (red) and periodic external forcing
(blue). (g), (h) Dynamics of the phase difference ψ1,2 with an arrow representing a stable fixed
point (top panel) and time series of ψ1,2 with 20 different initial states (bottom panel). (k), (l)
Orbits of a periodically driven oscillator (blue) on the cylinder of the limit cycles (light blue)
plotted in the extended phase space. The parameter I(j)(t) is given by I(j)(t) = q(j)(εt)+σp(j)(t),
q(j)(εt) = α(j) sin(ω(j)

I t) and σp(j)(t) = 0.02 sin(5ω(j)
I t) with α(5,6) = 0.4, 0.4, and ω

(5,6)
I = 0.57,

0.51.
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final remark, we point out that a phase equation similar to Eq. (4.8) has been postulated in a
completely different context, to analyze the geometric phase in dissipative dynamical systems [78].
This formal similarity may provide an interesting possibility of understanding synchronization
dynamics of strongly perturbed oscillators from a geometrical viewpoint.
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Chapter 5

Conclusion

5.1 Summary of the Results

In Chapter 2, we proposed a quantitative theory for theoretically predicting the statistical prop-
erties of synchronization in an ensemble of uncoupled oscillators driven by common colored noise
with an arbitrary power spectrum. In order to derive the probability density function of phase
differences between two oscillators in the ensemble, we extended the white-noise approximation
method for a single oscillator [42] into a two-oscillator system, so we can theoretically analyze
stochastic dynamics of two uncoupled oscillators driven by common colored noise. This analytical
result theoretically predicts various synchronized and clustered states induced by colored noise,
which clearly showed find that these phenomena have a quite different synchronization mechanism
from the case of white noise. We confirmed the validity of our theory through numerical simula-
tions using the FitzHugh-Nagumo and Hodgkin-Huxley oscillators and common noise with various
types of power spectrum.

In Chapter 3, we proposed a method for controlling synchronization patterns of limit-cycle
oscillators by common noisy inputs, i.e., by utilizing noise-induced synchronization. We proposed
a theoretical basis useful for optimizing noise-induced synchronization in practical applications, i.e.,
an optimization method for linear filters that process common noisy signals based on an objective
function defined for each application. In this method, we can realize various synchronization
patterns, including fully synchronized and clustered states, by using linear filters that generate
appropriate common noisy signals from given noise. The optimal linear filter can be determined
from the linear phase response property of the oscillators and the power spectrum of the given noise.
The validity of the proposed method is confirmed by numerical simulations using the FitzHugh-
Nagumo and Hodgkin-Huxley oscillators.

Chapter 4 proposed a generalized phase reduction method that is valid for strongly perturbed

45



limit-cycle oscillators. In order to derive the generalized phase equation, we introduced a general-
ized phase and conducted a perturbation approximation in two small parameters. The fundamental
assumption of our method is that the perturbations to the oscillator I(t) can be decomposed into
a large-amplitude component q(εt) varying slowly as compared to the amplitude relaxation time
and remaining weak fluctuations σp(t). Although the external forcing is still limited to a class of
signals consisting of a slowly varying component and remaining weak fluctuations, the generalized
phase reduction method considerably widens the applicability of theoretical synchronization analy-
sis. We illustrated our method by analyzing the synchronization dynamics of limit-cycle oscillators
driven by strong periodic signals. It was shown that the proposed method accurately predicts the
synchronization properties of the oscillators, while the conventional method does not.

5.2 Future Works

This thesis extended the class of external forcing with which we can deal with in synchronization
analysis. In particular, the extension of the phase reduction method to the case of strong forcing
has great possibility of future works. In order to extend the theoretical methods for analyzing
synchronization, we will be able to apply the generalized phase reduction to the following purposes:

1. A theoretical method for analyzing mutual synchronization via strong coupling between os-
cillators.

2. A theoretical method for analyzing the dynamics of oscillators driven by strong stochastic
forcing, particularly, synchronization induced by strong common stochastic forcing.

In addition, as real-world applications of the generalized phase reduction, we will develop the
following practical methods:

1. A system identification method for modeling an oscillatory system (e.g., neuron) from input-
output data.

2. A system identification method for modeling a network system (e.g., neural network) com-
posed by interacting oscillators from time series data.

3. A robust design method for oscillation circuits.
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Chapter

Appendices

A.1 Derivations of Eqs. (2.18) and (2.19)

Substituting φ̇(j)
D,1 = ZG(φ(j)

0 (t)) · ξ(t) and φ̇(j)
ε,1 = ZH(φ(1)

0 (t)) · η(1)(t) into Eq. (2.17), we obtain

d11 = D

∫ +∞

−∞
dτ
〈
[ZG(φ(1)

0 (t))>ξ(t)][ZG(φ(1)
0 (t− τ))>ξ(t− τ)]

〉
+ε
∫ +∞

−∞
dτ
〈
[ZH(φ(1)

0 (t))>η(1)(t)][ZH(φ(1)
0 (t− τ))>η(1)(t− τ)]

〉
+O(D

3
2 , ε

3
2 ) (A.1)

= D

∫ +∞

−∞
dτ
〈
ZG(φ(1)

0 (t))>ξ(t)ξ(t− τ)>ZG(φ(1)
0 (t− τ))

〉
+ε
∫ +∞

−∞
dτ
〈
ZH(φ(1)

0 (t))>η(1)(t)η(1)(t− τ)>ZH(φ(1)
0 (t− τ))

〉
+O(D

3
2 , ε

3
2 ). (A.2)

We rewrite ZG(φ), ZH(φ), ξ(t) and η(1)(t) by using their elements and obtain

d11 = D

∫ +∞

−∞
dτ

m∑
k=1

m∑
l=1

〈
ZH,k(φ(1)

0 (t))ξk(t)ξl(t− τ)ZH,l(φ
(1)
0 (t− τ))

〉
+ε
∫ +∞

−∞
dτ

m∑
k=1

m∑
l=1

〈
ZH,k(φ(1)

0 (t))η(1)
k (t)η(1)

l (t− τ)ZH,l(φ
(1)
0 (t− τ))

〉
+O(D

3
2 , ε

3
2 ), (A.3)

where ZG,l(φ) and ZH,l(φ) are the lth elements of ZG(φ) and ZH(φ), and ξl(t) and η(1)
l (t) are the

lth elements of ξ(t) and η(1)(t).
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We assume that the phase variable φ(1) and the drive noises ξ(t) and η(1)(t) are approximately
independent. Under this assumption, the temporal average 〈·〉 can be divided into two parts; 〈·〉φ
(:= (2π)−1

∫ +π

−π
dφ · ) and 〈·〉t (:= lims→∞(2s)−1

∫ +s

−s
dt · ). Thus, we obtain

d11 = D

∫ +∞

−∞
dτ

m∑
k=1

m∑
l=1

〈
ZG,k(φ(1)

0 (t))ZG,l(φ
(1)
0 (t− τ))

〉
φ

〈
ξk(t)ξl(t− τ)

〉
t

+ε
∫ +∞

−∞
dτ

m∑
k=1

m∑
l=1

〈
ZH,k(φ(1)

0 (t))ZH,l(φ
(1)
0 (t− τ))

〉
φ

〈
η
(1)
k (t)η(1)

l (t− τ)
〉

t

+O(D
3
2 , ε

3
2 )

=
D

2π

∫ +∞

−∞
dτ

∫ +π

−π

dφ
m∑

k=1

m∑
l=1

ZG,k(φ)ZG,l(φ− ωτ)Cξ,kl(τ)

+
ε

2π

∫ +∞

−∞
dτ

∫ +π

−π

dφ
m∑

k=1

m∑
l=1

ZH,k(φ)ZH,l(φ− ωτ)Cη,kl(τ)

+O(D
3
2 , ε

3
2 ), (A.4)

where Cξ,kl and Cη,kl are the (k, l)th elements of Cξ(φ) and Cη(φ). Finally, we rewrite Eq. (A.4)
by using ZG(φ), ZH(φ), Cξ(τ) and Cη(τ) and obtain

d11 =
D

2π

∫ +∞

−∞
dτ

∫ +π

−π

dφZG(φ)>Cξ(τ)ZG(φ− ωτ)

+
ε

2π

∫ +∞

−∞
dτ

∫ +π

−π

dφZH(φ)>Cη(τ)ZH(φ− ωτ)

+O(D
3
2 , ε

3
2 ). (A.5)

In the same way, one can calculate d12 as follows. We use the fact that 〈φ(1)
ε,1(t)φ(2)

ε,1(t− τ)〉 = 0

and eliminate the phase variable of the second oscillator φ(2)
0 by substituting φ(2)

0 = φ
(1)
0 − θ into

φ
(2)
0 , and then, we obtain

d12 = D

∫ +∞

−∞
dτ
〈
[ZG(φ(1)

0 (t))>ξ(t)][ZG(φ(2)
0 (t− τ))>ξ(t− τ)]

〉
+O(D

3
2 , ε

3
2 )

= D

∫ +∞

−∞
dτ
〈
ZG(φ(1)

0 (t))>ξ(t)ξ(t− τ)>ZG(φ(2)
0 (t− τ))

〉
+O(D

3
2 , ε

3
2 )

=
D

2π

∫ +∞

−∞
dτ

∫ +π

−π

dφZG(φ)>Cξ(τ)ZG(φ− θ − ωτ)

+O(D
3
2 , ε

3
2 ). (A.6)
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A.2 Derivation of Eq. (2.28)

From Eq. (2.21), one can calculate the Fourier coefficient gl as follows. We introduce a new variable
χ (:= φ− θ − ωτ) and use the fact that Pξ(Ω) is a Hermitian matrix. Then, we obtain

gl =
1
2π

∫ +π

−π

dθg(θ)e−ilθ

=
1
2π

∫ +π

−π

dθ
1
2π

∫ +∞

−∞
dτ

∫ +π

−π

dφZG(φ)>Cξ(τ)ZG(φ− θ − ωτ)e−ilθ

=
(

1
2π

∫ +π

−π

dφZG(φ)>e−ilφ

)(∫ +∞

−∞
dτCξ(τ)eilωτ

)(
1
2π

∫ +π

−π

dχZG(χ)eilχ

)
= Y >

G,lPξ(lω)YG,l = Y †
G,lPξ(lω)†YG,l

= Y †
G,lPξ(lω)YG,l, (A.7)

where · denotes the complex conjugate. From Eq. (2.22), hl can be derived likewise.

A.3 Derivations of Correlation Functions

For the Stuart-Landau oscillator we used in the simulations, we can calculate the Fourier coefficients
YG,l and YH,l as

YG,±1 = YH,±1 =
1
2
[1 ± i, 1 ∓ i]>, (A.8)

YG,l = YH,l = 0 (l 6= ±1). (A.9)

Thus, from Eq. (2.28), the Fourier coefficient gl is given by

g±1 = Y †
G,±1YG,±1Pex(ω)|γ=1 =

1
2

[
1

1 + (ω0 + 3)2
+

1
1 + (ω0 − 3)2

]
, (A.10)

and

gl = 0 (l 6= ±1) (A.11)

where ω0 is a parameter. In the same way, the Fourier coefficient hl is given by h±1 = Y †
H,±l

YH,±lPex(ω)|ω0=0,γ=3 = 1
2 and hl = 0 (l 6= ±1). Substituting gl and hl to Eq. (2.28), we can

obtain the explicit forms of g(θ) and h(θ).

A.4 Derivation of the Generalized Phase Equation

In this section, we give a detailed derivation of the generalized phase equation (4.8) in the main
article, which takes into account the effect of amplitude relaxation of the oscillator state to the
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cylinder of limit cycles C. Our aim is to evaluate the order of error terms in the generalized phase
equation (4.8). Our argument here is based on a formulation similar to Ref. [22] by Goldobin
et al., in which the effect of colored noise on limit-cycle oscillators is analyzed and an effective
phase equation that accurately describes the oscillator state is derived by incorporating the effect
of amplitude relaxation of the oscillator state to the unperturbed limit-cycle orbit.

As in the main article, we consider a limit-cycle oscillator whose dynamics depends on a time-
varying parameter I(t) representing general perturbations, described by

Ẋ(t) = F (X(t), I(t)). (A.12)

For simplicity, we assume that the state variable X(t) is two-dimensional (n = 2), but the formu-
lation can be straightforwardly extended to higher-dimensional cases.

Suppose that the parameter I is constant for the moment. As explained in the main article,
we introduce an extended phase space Rn ×A and define a generalized phase θ and amplitude r as
functions of (X, I) in U . Here, r gives the distance of the oscillator state X from the unperturbed
stable limit cycle X0(θ, I). For each constant value of I ∈ A, as argued in the Supplementary
Information of Ref. [22], we can define a phase θ = Θ(X, I) and an amplitude r = R(X, I) such
that

∂Θ(X, I)
∂X

· F (X, I) = ω(I), (A.13)

∂R(X, I)
∂X

· F (X, I) = −λ(I)R(X, I), (A.14)

where λ(I) is the absolute value of the second Floquet exponent of Eq. (A.12) for each I. We
further assume that Θ(X, I) and R(X, I) are continuously differentiable with respect to X and
I. Equations (A.13) and (A.14) guarantee that

θ̇ = ω(I), ṙ = −λ(I)r (A.15)

always hold for each I. In the absence of perturbations, the amplitude r = R(X, I) decays to 0
exponentially, and the phase θ = Θ(X, I) increases constantly.

Now we suppose that the parameter I(t) can vary with time. As explained in the main article,
we decompose the parameter I(t) into a slowly varying component q(εt) and remaining weak
fluctuations σp(t) as I(t) = q(εt) + σp(t). We define a phase θ(t) and an amplitude r(t) of the
oscillator as follows:

θ(t) = Θ(X(t), q(εt)), (A.16)

r(t) = R(X(t), q(εt)). (A.17)

Since Θ(X, I) and R(X, I) are continuously differentiable with respect to X and I, we can derive
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the dynamical equations for θ(t) and r(t) as

θ̇ =
∂Θ(X, I)
∂X

∣∣∣∣
(X,q(εt))

· dX(t)
dt

+
∂Θ(X, I)

∂I

∣∣∣∣
(X,q(εt))

· dq(εt)
dt

, (A.18)

ṙ =
∂R(X, I)
∂X

∣∣∣∣
(X,q(εt))

· dX(t)
dt

+
∂R(X, I)

∂I

∣∣∣∣
(X,q(εt))

· dq(εt)
dt

. (A.19)

Plugging I(t) = q(εt) + σp(t) into Eq. (A.12) and expanding it to the first order in σ, we can
derive

Ẋ = F (X, q(εt)) + σG(X, q(εt))p(t) +O(σ2), (A.20)

where the matrix G is defined in the main article. Substituting Eqs. (A.13), (A.14), and (A.20)
into Eqs. (A.18) and (A.19), we can obtain

θ̇ = ω(q(εt)) + σ
∂Θ(X, I)
∂X

∣∣∣∣
(X,q(εt))

· G(X, q(εt))p(t)

+ ε
∂Θ(X, I)

∂I

∣∣∣∣
(X,q(εt))

· q̇(εt) +O(σ2), (A.21)

ṙ = −λ(q(εt))r + σ
∂R(X, I)
∂X

∣∣∣∣
(X,q(εt))

· G(X, q(εt))p(t)

+ ε
∂R(X, I)

∂I

∣∣∣∣
(X,q(εt))

· q̇(εt) +O(σ2), (A.22)

where q̇(εt) denotes dq(εt)/d(εt). For simplicity of notation, we define ζθ(θ, r, I) ∈ Rm, ζr(θ, r, I) ∈
Rm, ξθ(θ, r, I) ∈ Rm and ξr(θ, r, I) ∈ Rm, respectively, as

ζθ(θ, r, I) = G(X, I)>
∂Θ(X, I)
∂X

∣∣∣∣
X=X(θ,r,I)

, (A.23)

ζr(θ, r, I) = G(X, I)>
∂R(X, I)
∂X

∣∣∣∣
X=X(θ,r,I)

, (A.24)

ξθ(θ, r, I) =
∂Θ(X, I)

∂I

∣∣∣∣
X=X(θ,r,I)

, (A.25)

ξr(θ, r, I) =
∂R(X, I)

∂I

∣∣∣∣
X=X(θ,r,I)

, (A.26)

where X(θ, r, I) ∈ R2 represents an oscillator state with θ = Θ(X, I), r = R(X, I), and parameter
I. Using Eqs. (A.23), (A.24), (A.25), and (A.26), we can rewrite Eqs. (A.21) and (A.22) as

θ̇ = ω(q(εt)) + σζθ(θ, r, I) · p(t) + εξθ(θ, r, I) · q̇(εt) +O(σ2), (A.27)

ṙ = −λ(q(εt))r + σζr(θ, r, I) · p(t) + εξr(θ, r, I) · q̇(εt) +O(σ2). (A.28)
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Note that ζθ(θ, 0, I) and ξθ(θ, 0, I) are equivalent to the sensitivity functions ζ(θ, I) and ξ(θ, I)
defined in the main article. The functions ζr(θ, r, I) and ξr(θ, r, I) represent sensitivities of the
amplitude to the small fluctuations and to the slowly varying component of the applied pertur-
bations, respectively. In the main article, we also assumed that q(εt) varies sufficiently slowly as
compared to the relaxation time of perturbed orbits to C. By using the absolute value of the
Floquet exponent λ(I) and the slowly varying component q(εt), this assumption can be written as

ε� λ(q(εt)), or
ε

λ(q(εt))
� 1. (A.29)

Now, we show that the following relation between the sensitivity functions for the amplitude
holds:

ξr(θ, 0, I) = − 1
ω(I)

∫ ∞

0

e−λ(I)φ/ω(I)ζr(θ − φ, 0, I)dφ (A.30)

= − 1
λ(I)

∫ ∞

0

e−sζr(θ − ω(I)s/λ(I), 0, I)ds, (A.31)

where we defined s = λ(I)φ/ω(I) in the second line. From Eq. (A.14),

∂R(X, I)
∂X

· F (X, I) = −λ(I)R(X, I) (A.32)

holds. We differentiate Eq. (A.32) with respect to I and plug in X = X0(θ, I). Then, from the
left-hand side of Eq. (A.32), we obtain

∂

∂I

[
∂R(X, I)
∂X

· F (X, I)
]∣∣∣∣

X=X0(θ,I)

=
[
∂

∂I

(
∂R(X, I)
∂X

)]>
F (X, I)

∣∣∣∣∣
X=X0(θ,I)

+
∂F (X, I)

∂I

>
∂R(X, I)
∂X

∣∣∣∣∣
X=X0(θ,I)

=
[
∂

∂X

(
∂R(X, I)

∂I

)]
F (X, I)

∣∣∣∣
X=X0(θ,I)

+ ζr(θ, 0, I),

(A.33)

where ∂/∂I denotes a differential operator defined as (∂/∂I)f(I) = [∂f(I)/∂I1, . . . , ∂f(I)/∂Im]>

∈ Rm for a scalar function f(I), ∂
∂I (∂R(X,I)

∂X ) is a matrix whose (i, j)-th element is given by
∂2R(X,I)
∂Xi∂Ij

, and ∂
∂X (∂R(X,I)

∂I ) is the transpose of ∂
∂I (∂R(X,I)

∂X ). Here, the first term of the right-hand
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side of Eq. (A.33) can be written as[
∂

∂X

(
∂R(X, I)

∂I

)]
F (X, I)

∣∣∣∣
X=X0(θ,I)

=
[
∂

∂X

(
∂R(X, I)

∂I

)]∣∣∣∣
X=X0(θ,I)

dX0(ω(I)t, I)
dt

∣∣∣∣
t=θ/ω(I)

= ω(I)
[
∂

∂X

(
∂R(X, I)

∂I

)]∣∣∣∣
X=X0(θ,I)

∂X0(θ, I)
∂θ

= ω(I)
∂

∂θ

(
∂R(X, I)

∂I

)∣∣∣∣
X=X0(θ,I)

= ω(I)
∂ξr(θ, 0, I)

∂θ
. (A.34)

Furthermore, differentiating the right-hand side of Eq. (A.32), we can derive

∂

∂I
[−λ(I)R(X, I)]

∣∣∣∣
X=X0(θ,I)

= −
[
dλ(I)
dI

R(X, I) + λ(I)
∂R(X, I)

∂I

]∣∣∣∣
X=X0(θ,I)

= −λ(I)ξr(θ, 0, I), (A.35)

where we used R(X0(θ, I), I) = 0. Thus, from Eqs. (A.32)–(A.35), we can obtain

ω(I)
∂ξr(θ, 0, I)

∂θ
+ ζr(θ, 0, I) = −λ(I)ξr(θ, 0, I) (A.36)

Since Eq. (A.36) is a linear first-order ordinary differential equation for ξr(θ, 0, I), this equation
can be solved as follows:

ξr(θ, 0, I) = − 1
ω(I)

∫ θ

−∞
eλ(I)(θ′−θ)/ω(I)ζr(θ′, 0, I)dθ′, (A.37)

which leads to Eqs. (A.30) and (A.31).
Using the derived Eq. (A.31), we can estimate the order of ξr(θ, 0, q(εt)) as

ξr(θ, 0, q(εt)) =
1

λ(I)

∫ ∞

0

e−sζr(θ − ω(I)s/λ(I), 0, I)ds
∣∣∣∣
I=q(εt)

=
1

λ(I)

∫ ∞

0

e−sζr(θ, 0, I)ds
∣∣∣∣
I=q(εt)

+O

(
1

λ(q(εt))2

)
= O

(
1

λ(q(εt))

)
, (A.38)

where we expanded ζr(θ, r, I) in θ in the second line. For simplicity of notation, we introduce
ξ̃r(θ, I) as follows:

ξ̃r(θ, I) = λ(I)ξr(θ, 0, I) =
∫ ∞

0

e−sζr(θ − ω(I)s/λ(I), 0, I)ds. (A.39)

Note that ξ̃r(θ, I) is of the order O(1).
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To evaluate the order of r(t), we approximate the solution to Eq. (A.28) describing the oscillator
amplitude in a small neighborhood of t = t′. We introduce a small parameter ε̃ := ε/λ(q(εt′)),
which is sufficiently small (� 1) by the assumption that ε � λ(q(εt)). Then, using the small
parameters σ and ε̃, we expand the solutions to Eqs. (A.27) and (A.28) as follows:

θ(t) = θ0(t) + σθσ,1(t) + ε̃θε,1(t) + · · · , (A.40)

r(t) = r0(t) + σrσ,1(t) + ε̃rε,1(t) + · · · , (A.41)

where θ0(t) and r0(t) are the lowest order solutions and θσ,j(t), rσ,j(t), θε,j(t), and rε,j(t) are jth
order perturbations. The lowest order solutions are given by θ0(t) = θ(t′) + ω(q(εt′))(t − t′) and
r0(t) = 0 in the neighborhood of t = t′. By introducing a rescaled time s = Φ(t) :=

∫ t

0
λ(q(εt′))dt′

(i.e., ds = λ(q(εt))dt), we can rewrite Eq. (A.28) as

dr

ds
= −r +

σζr(θ, r, q(εt))
λ(q(εt))

· p(t) +
εξr(θ, r, q(εt))
λ(q(εt))

· q̇(εt). (A.42)

We also expand q(εt) around t = t′ (s = Φ(t′)) as q(εt) = q(εt′) + εq′(εt′)(t− t′) + · · · . Plugging
θ(t) = θ0(t) + O(σ, ε̃), r(t) = r0(t) + O(σ, ε̃) and q(εt) = q(εt′) + O(ε) into Eq. (A.42), we can
derive

dr

ds
= −r + σ

ζr(θ0(t) +O(σ, ε̃), 0 +O(σ, ε̃), q(εt′) +O(ε))
λ(q(εt′) +O(ε))

· p(t)

+ε
ξr(θ0(t) +O(σ, ε̃), 0 +O(σ, ε̃), q(εt′) +O(ε))

λ(q(εt′) +O(ε))
· q̇(εt)

= −r + σ(1 +O(ε))
ζr(θ0(t) +O(σ, ε̃), 0 +O(σ, ε̃), q(εt′) +O(ε))

λ(q(εt′))
· p(t)

+ε(1 +O(ε))
ξr(θ0(t) +O(σ, ε̃), 0 +O(σ, ε̃), q(εt′) +O(ε))

λ(q(εt′))
· q̇(εt)

= −r + σ(1 +O(ε))
ζr(θ0(t), 0, q(εt′) +O(ε))

λ(q(εt′))
· p(t)

+ε(1 +O(ε))
ξr(θ0(t), 0, q(εt′) +O(ε))

λ(q(εt′))
· q̇(εt) +O(σ2, σε̃, ε̃2). (A.43)

Substituting Eq. (A.39) into the above equation, we obtain

dr

ds
= −r + σ(1 +O(ε))

ζr(θ0(t), 0, q(εt′) +O(ε))
λ(q(εt′))

· p(t)

+ε(1 +O(ε))
ξ̃r(θ0(t), q(εt′) +O(ε))
λ(q(εt′))λ(q(εt′) +O(ε))

· q̇(εt) +O(σ2, σε̃, ε̃2)

= −r + σ(1 +O(ε))
ζr(θ0(t), 0, q(εt′)) +O(ε)

λ(q(εt′))
· p(t)

+ε(1 +O(ε))
ξ̃r(θ0(t), q(εt′)) +O(ε)

λ(q(εt′))2
· q̇(εt) +O(σ2, σε̃, ε̃2)

= −r + σ
ζr

(
θ(t′) + ω(q(εt′))(t− t′), 0, q(εt′)

)
λ(q(εt′))

· p(t)
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+ε
ξ̃r

(
θ(t′) + ω(q(εt′))(t− t′), q(εt′)

)
λ(q(εt′))2

· q̇(εt) +O(σ2, σε̃, ε̃2). (A.44)

By integrating Eq. (A.44), we can estimate the order of r(t′) as

r(t′) =
σ

λ(q(εt′))

∫ Φ(t′)

−∞
es−Φ(t′)ζr

(
θ(t′) + ω(q(εt′))(t− t′), 0, q(εt′)

)
· p(t)

∣∣
t=Φ−1(s)

ds

+
ε

λ(q(εt′))2

∫ Φ(t′)

−∞
es−Φ(t′)ξ̃r

(
θ(t′) + ω(q(εt′))(t− t′), q(εt′)

)
· q̇(εt)

∣∣
t=Φ−1(s)

ds

+O(σ2, σε̃, ε̃2)

= O

(
σ

λ(q(εt′))
,

ε

λ(q(εt′))2

)
. (A.45)

Now, by expanding Eq. (A.21) in r, we can obtain

θ̇ = ω(q(εt)) + σζθ(θ, 0, q(εt)) · p(t) + εξθ(θ, 0, q(εt)) · q̇(εt)

+σr
∂ζθ(θ, 0, q(εt))

∂r
· p(t) + εr

∂ξθ(θ, 0, q(εt))
∂r

· q̇(εt) +O(r2). (A.46)

Substituting Eq. (A.45) into Eq. (A.46) and neglecting higher order terms in r, we can derive the
generalized phase equation (4.8) in the main article,

θ̇ = ω(q(εt)) + σζθ(θ, 0, q(εt)) · p(t) +O

(
σ2

λ(q(εt))
,

σε

λ(q(εt))2

)
+εξθ(θ, 0, q(εt)) · q̇(εt) +O

(
σε

λ(q(εt))
,

ε2

λ(q(εt))2

)
. (A.47)

Equation (A.47) reveals that our phase equation well approximates the exact phase dynamics
under the conditions that

σ2

λ(q(εt))
� σ,

σε

λ(q(εt))2
� σ,

σε

λ(q(εt))
� ε, and

ε2

λ(q(εt))2
� ε. (A.48)

Here, we compared the first two error terms σ2

λ(q(εt)) and σε
λ(q(εt))2 with σ, and the last two σε

λ(q(εt))

and ε2

λ(q(εt))2 with ε, because the first and last two error terms arose when we expanded the
second term σζθ(θ, r, q(εt)) · p(t) (= O(σ)) and the third term εξθ(θ, r, q(εt)) · q̇(εt) (= O(ε)) of
Eq. (A.27) in r, respectively. because the first two terms arise from the expansion of the second
term σζθ(θ, r, q(εt)) · p(t) (= O(σ)) of Eq. (A.27) in r, and the last two terms arise from the third
term εξθ(θ, r, q(εt)) · q̇(εt) (= O(ε)), respectively. These conditions are satisfied when

ε

λ(q(εt))2
� 1 and

σ

λ(q(εt))
� 1, (A.49)
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namely, when (i) the timescale of the slowly varying component q(εt) is much larger than the
relaxation time of perturbed orbits to C, and (ii) the remaining fluctuations σp(t) is sufficiently
weak, as we assumed in the main article.

For limit-cycle oscillators with higher-dimensional state variables (n ≥ 3), we can also derive a
phase equation corresponding to Eq. (A.47). In higher-dimensional cases, the system of Eq. (A.12)
has n (≥ 3) Floquet exponents. Let λj(I) denote the absolute value of the j-th largest Floquet
exponent of the oscillator for a given constant I (λ1(I) = 0 > λ2(I) ≥ · · · ≥ λn(I)). In these
exponents, the second largest exponent λ2(I) dominates the relaxation time of perturbed orbits.
Thus, using the absolute value of the second largest Floquet exponent λ2(q(εt)) instead of λ(q(εt)),
we can obtain the same results as Eq. (A.47); that is, we can obtain the following phase equation
also for the higher-dimensional cases (n ≥ 3):

θ̇ = ω(q(εt)) + σζθ(θ, 0, q(εt)) · p(t) + εξθ(θ, 0, q(εt)) · q̇(εt)

+O
(

ε2

λ2(q(εt))2
,

σε

λ2(q(εt))
,

σ2

λ2(q(εt))

)
. (A.50)

A.5 Relations among Different Sensitivity Functions

This section gives a derivation of Eqs. (4.11)–(4.13) in the main article. These relations are
essentially important in understanding the properties of the sensitivity functions and in developing
methods to calculate and estimate the sensitivity functions. In this section, for simplicity of
notation, the sensitivity functions are denoted by ζ(θ, I) and ξ(θ, I) as in the main article.

A.5.1 Derivation of Eq. (4.11)

As we shown in Eq. (4.11) in the main article, the sensitivity function ξ(θ, I) can be written as

ξ(θ, I) = −∂X0(θ, I)
∂I

>
Z(θ, I). (A.51)

This equation relates the change in the shape of the limit-cycle orbit X0(θ, I) and the phase
sensitivity function Z(θ, I) to the sensitivity function ξ(θ, I). From the definition of Θ(X, I),

Θ(X0(θ, I), I) = θ (A.52)

holds. By differentiating Eq. (A.52) with respect to I, we can obtain

∂

∂I
Θ(X0(θ, I), I) =

∂X0(θ, I)
∂I

>
∂Θ(X, I)
∂X

∣∣∣∣
X=X0(θ,I)

+
∂Θ(X, I)

∂I

∣∣∣∣
X=X0(θ,I)

=
∂X0(θ, I)

∂I

>
Z(θ, I) + ξ(θ, I) = 0, (A.53)

which leads to Eq. (A.51).
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A.5.2 Derivation of Eqs. (4.12) and (4.13)

As we shown in Eqs. (4.12) and (4.13) in the main article, the sensitivity functions ζ(θ, I) and
ξ(θ, I) are mutually related as follows:

ξ(θ, I) = ξ(θ0, I) − 1
ω(I)

∫ θ

θ0

[ζ(φ, I) − ζ̄(I)]dφ, (A.54)

ζ(θ, I) = ζ̄(I) − ω(I)
∂ξ(θ, I)
∂θ

, (A.55)

and

ζ̄(I) :=
1
2π

∫ 2π

0

ζ(θ, I)dθ =
dω(I)
dI

, (A.56)

where θ0 ∈ [0, 2π) is an arbitrary phase and ζ̄(I) is the average of ζ(θ, I) with respect to θ and is a
function of I. Equation (A.54) (or (A.55)) represents the sensitivity function ξ(θ, I) characterizing
the phase response caused by a small constant shift in I as an integral of the phase response to
the instantaneous change in I at each θ, and Eq. (A.56) relates the change in the frequency ω(I)
of the limit-cycle orbit to the average of the sensitivity function ζ(θ, I), i.e., the net phase shift
caused by the a small constant shift in I during one period of oscillation. Using these relations,
we can obtain the sensitivity function ξ(θ, I) for each I. Namely, we can calculate the sensitivity
function ζ(θ, I), e.g., by using the adjoint method, and then integrate ζ(θ, I) with respect to θ to
obtain the sensitivity function ξ(θ, I).

Since we can straightforwardly derive Eq. (A.54) by integrating Eq. (A.55) with respect to θ,
we only describe derivations of Eq. (A.55) and Eq. (A.56). From the definition of Θ(X, I),

∂Θ(X, I)
∂X

· F (X, I) = ω(I) (A.57)

holds. By differentiating Eq. (A.57) with respect to I and plugging in X = X0(θ, I), we can
obtain

∂

∂I

[
∂Θ(X, I)
∂X

· F (X, I)
]∣∣∣∣

X=X0(θ,I)

=
[
∂

∂I

(
∂Θ(X, I)
∂X

)]>
F (X, I)

∣∣∣∣∣
X=X0(θ,I)

+
∂F (X, I)

∂I

>
∂Θ(X, I)
∂X

∣∣∣∣∣
X=X0(θ,I)

=
[
∂

∂X

(
∂Θ(X, I)

∂I

)]
F (X, I)

∣∣∣∣
X=X0(θ,I)

+ ζ(θ, I)

=
dω(I)
dI

, (A.58)
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where ∂
∂I (∂Θ(X,I)

∂X ) is a matrix whose (i, j)-th element is given by ∂2Θ(X,I)
∂Xi∂Ij

, and ∂
∂X (∂Θ(X,I)

∂I ) is

the transpose of ∂
∂I (∂Θ(X,I)

∂X ). Here, the first term of the third line in Eq. (A.58) can be written as[
∂

∂X

(
∂Θ(X, I)

∂I

)]
F (X, I)

∣∣∣∣
X=X0(θ,I)

=
[
∂

∂X

(
∂Θ(X, I)

∂I

)]∣∣∣∣
X=X0(θ,I)

dX0(ω(I)t, I)
dt

∣∣∣∣
t=θ/ω(I)

= ω(I)
[
∂

∂X

(
∂Θ(X, I)

∂I

)]∣∣∣∣
X=X0(θ,I)

∂X0(θ, I)
∂θ

= ω(I)
∂

∂θ

(
∂Θ(X, I)

∂I

)∣∣∣∣
X=X0(θ,I)

= ω(I)
∂ξ(θ, I)
∂θ

. (A.59)

Then, from Eqs. (A.58) and (A.59), we can derive Eq. (A.55) and Eq. (A.56) as

dω(I)
dI

=
1
2π

∫ 2π

0

[
ω(I)

∂ξ(θ, I)
∂θ

+ ζ(θ, I)
]
dθ =

1
2π

∫ 2π

0

ζ(θ, I)dθ, (A.60)

where the first term in the integral vanishes due to 2π-periodicity of ξ(θ, I).

A.6 Relation between Conventional and Generalized Phase

Equations

Here we compare the generalized phase equation with the conventional phase equation using the
near-identity transformation. As stated in the main article, the conventional phase equation can
be written as

˙̃
θ = ω(qc) + σcζ(θ̃, qc) · pc(t) +O(σ2

c ), (A.61)

where qc ∈ A is a constant, pc(t) is an external input defined as σcpc(t) = I(t) − qc, and σc is a
parameter representing the intensity of the external input. We decompose the external input pc(t)
into two terms, p1(t) and p2(t), as

pc(t) = p1(t) + p2(t), (A.62)

and introduce a slightly deformed phase φ(t) as

φ(t) = θ̃(t) + σcξ(θ̃(t), qc) · p1(t). (A.63)

By applying the above near-identity transformation to the phase equation (A.61), we can derive
the following phase equation for φ(t):

φ̇ = ω(qc) + σc
dω(I)
dI

∣∣∣∣
I=qc

· p1(t) + σcζ(φ, qc) · p2(t) + σcξ(φ, qc) · ṗ1(t) +O(σ2
c ). (A.64)

66



Without loss of generality, we can regard the input terms σcp1(t) and σcp2(t) in Eq. (A.64)
as the slowly varying part q(εt) and the weak fluctuations σp(t) in the main article, because
we can choose the decomposition of pc(t) arbitrarily. Then, Eq. (A.64) can be considered an
approximation to the generalized phase equation (2) in the main article. In other words, the first
term of Eq. (A.64) represents the first-order (linear) approximation in q around q = qc to the
first term of the generalized phase equation, while the second and third terms of Eq. (A.64) are
zeroth-order (constant) approximations in q around q = qc to the second and third terms of the
generalized phase equation.

In this sense, the generalized phase equation (2) in the main article can be considered a nonlinear
generalization of the conventional phase equation (A.64). For the modified Stuart-Landau oscillator
defined in the main article, the frequency ω(I) and the sensitivity functions ζ(θ, I) and ξ(θ, I) are
explicitly given by

ω(I) = e2I = 1 + 2I + 2I2 +
4I3

3
+ · · · , (A.65)

ζ(θ, I) = 2e2I − eI cos θ = 1 − cos θ + (4 − cos θ)I +
(

4 − cos θ
2

)
I2 + · · · , (A.66)

ξ(θ, I) = e−I sin θ = sin θ − (sin θ)I +
sin θ

2
I2 + · · · . (A.67)

When the temporal variation in the input I(t) is sufficiently small, we can truncate ω(I) at the
first order, and ζ(θ, I) and ξ(θ, I) at the zeroth order, which is equivalent to using the conventional
phase equation. However, when the input I(t) varies largely with time and the shape of the limit-
cycle orbit is significantly deformed, the above approximation is no longer valid. In such cases, the
conventional phase equation would fail to predict the actual oscillator dynamics and the generalized
phase reduction method should be used.

A.7 Accuracy and Robustness of Generalized Phase Equa-

tion

In the main article, we briefly demonstrated that the generalized phase equation can accurately
predict the time series of the oscillation phase as compared to the conventional phase equation.
Here, we examine the accuracy and robustness of the generalized phase equation in more detail
with numerical simulations. We use a modified Stuart-Landau oscillator defined as

ẋ = e2I(t)(λ0x− y − λ0I(t)) − λ0[(x− I(t))2 + y2](x− I(t)), (A.68)

ẋ = e2I(t)(x+ λ0y − I(t)) − λ0[(x− I(t))2 + y2]y, (A.69)

whose amplitude relaxation rate can explicitly be specified by the parameter λ0. Here, x and y are
state variables representing the oscillator state, I(t) is an external input, and λ0 is a parameter that
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(c) λ0 = 0.046, σ = 0.001
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Figure A.1: Accuracy and robustness of the generalized phase equation. A modified Stuart-Landau
oscillator (Eqs. (A.68) and (A.69)) is driven by a periodically varying parameter I(t) (red lines,
Eq. (A.70)). The time series of the phase θ(t) = Θ(X(t), q(εt)) measured directly from the original
system (black lines) and predicted by the direct numerical simulation of the generalized phase
equation (blue circles) are plotted. The parameter σ is fixed at 0.001 and λ0 is varied between 1
and 0.01.
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(d) λ0 = 1.000, σ = 0.007

Figure A.2: Accuracy and robustness of the generalized phase equation. A modified Stuart-Landau
oscillator (Eqs. (A.68) and (A.69)) is driven by a periodically varying parameter I(t) (red lines,
Eq. (A.70)). The time series of the phase θ(t) = Θ(X(t), q(εt)) measured directly from the
original system (black lines) and predicted by the direct numerical simulation of the generalized
phase equation (blue circles) are plotted. The parameter λ0 is fixed at 1 and σ is varied between
0.001 and 0.007.
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controls the timescale of the amplitude relaxation. For this model, one can explicitly define the
amplitude r =

√
(x− I(t))2 + y2, which decays exponentially as ṙ = −2λ0r. As stated in the main

article, the small parameter ε represents the relative timescale of the slowly varying component
q(εt) to the amplitude relaxation time of the oscillator (which was assumed to be O(1) in the main
article). Thus, by varying the parameter λ0, we can effectively control the parameter ε.

We applied a periodically varying parameter

I(t) = 0.005L1(0.3t) + σL2(t) (A.70)

to the oscillator, where L1(t) and L2(t) are independently generated time series of the variable x
of the chaotic Lorenz model [3], ẋ = 10(y − x), ẏ = x(28 − z) − y, and ż = xy − 8z/3, and σ is a
parameter controlling the intensity of the high-frequency components in I(t). Since the parameters
λ0 and σ play important roles in the proposed phase reduction method, we examine the accuracy
and robustness of the generalized phase equation for varying values of λ0 and σ.

Figures A.1 and A.2 shows the results of numerical simulations, where one of the parameters is
kept fixed and the other is varied. In Figs. A.1 (a)–(d), σ is fixed and λ0 is varied. The accuracy
of the proposed phase reduction method is deteriorated as λ0 is decreased. In this case, when
λ0 > 0.01, the generalized phase equation can predict the temporal evolution of the actual phase
of the oscillator. Similarly, when λ0 is fixed and σ is varied (Figs. A.2 (a)–(d)), the accuracy of the
proposed method becomes worse as σ is increased. In this case, when σ < 0.007, the generalized
phase equation can predict the temporal evolution of the actual phase.

A.8 Phase Locking of Morris-Lecar Model Driven by Peri-

odic Forcing

In the main article, we analyzed the phase locking of a modified Stuart-Landau oscillator to periodic
forcing and demonstrated the usefulness of the proposed phase reduction method. In this section,
we further analyze another type of limit-cycle oscillator, i.e., the Morris-Lecar model [5], which
describes periodic firing of a neuron. We theoretically analyze the phase locking dynamics of the
Morris-Lecar model to periodic external forcing and compare the theoretical predictions with direct
numerical simulations.

A.8.1 Morris-Lecar Model

The Morris-Lecar model [5] of a periodically firing neuron has a two-dimensional state variable
X(t) = [V (t), w(t)]>. The vector field F (X, I) = [F1(V,w, I), F2(V,w, I)]> is given by

CmF1 = gL(VL − V ) + gKw(VK − V ) + gCam∞(VCa − V ) + I, (A.71)

F2 = λw(w∞ − w), (A.72)
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Figure A.3: Dynamical properties of the Morris-Lecar model exhibiting smooth oscillations. (a)
Natural frequency ω(I). (b), (c) Sensitivity functions ζ(θ, I) and ξ(θ, I).

where m∞(V ) = 0.5{1 + tanh[(V − V1)/V2]} and w∞(V ) = 0.5{1 + tanh[(V − V3)/V4]} are the
conductance functions, I is the parameter to which the forcing is applied, and VK, VL, VCa, gK,
gL, gCa, C, V1, V2, V3, V4, and λw are constant parameters. This model exhibits stable limit-cycle
oscillations when the parameter values are chosen appropriately.

A.8.2 Smooth Oscillations

We set the parameters as VK = −84, VL = −60, VCa = 120, gK = 8, gL = 2, gCa = 4, C = 20,
V1 = −1.2, V2 = 18, V3 = 12, V4 = 17, and λw = 0.0667. For these parameters, a stable limit
cycle emerges via a saddle-node on invariant circle (SNIC) bifurcation at I ' 50, and vanishes via
a Hopf bifurcation at I ' 115. The oscillation remains generally smooth for all values of I. The
phase sensitivity function has the type-I shape with a positive lobe near the SNIC bifurcation,
and a sinusoidal type-II shape with both positive and negative lobes near the Hopf bifurcation [5].
Thus, when the external forcing I(t) is time-varying, the shape of the orbit, frequency, and phase
response properties of the oscillator can vary significantly with time.

Numerically calculated ω(I), ζ(θ, I), and ξ(θ, I) are shown in Figs. A.3 (a)–(c), and phase-
locked dynamics of the variable V (t) to the periodic forcing I(t) is shown in Figs. A.4(d)–(f).
Note that the oscillations are significantly deformed due to strong periodic forcing. Figures A.4
(g)–(i) compare the results of the reduced phase equations with those of the direct numerical
simulations. We can confirm that the generalized phase reduction theory nicely predicts the stable
phase differences ψ, while the conventional method does not. The orbits of the oscillator and the
cylinder C of the limit cycles in three-dimensional space (V,w, I) are plotted in Figs. A.4 (j)–(l),
showing synchronous [(j) and (k)] or asynchronous (l) dynamics with the periodic forcing.
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Figure A.4: Phase locking of the Morris-Lecar model exhibiting smooth oscillations. Three sets of
periodically varying parameters, I(j)(t) : q(j)(εt) = 70 + 25 sin(ω(j)

I t) and σp(j)(t) = 2 sin(5ω(j)
I t)

with ω
(1,2,3)
I = 0.12, 0.06, 0.07 are used, which lead to 1 : 1 or 1 : 2 phase locking to q(εt); 1 : 1

phase locking to I(1)(t) [(d), (g), and (j)], 1 : 2 phase locking to I(2)(t) [(e), (h), and (k)], and
failure of phase locking to I(3)(t) [(f), (i), and (l)]. (a) Natural frequency ω(I). (b), (c) Sensitivity
functions ζ(θ, I) and ξ(θ, I). (d)–(f) Time series of the state variable V (t) of a periodically driven
oscillator (red) and the periodic external forcing (blue). (g)–(i) Dynamics of the phase difference ψ.
The averaged dynamics of ψ is shown in the top panel, where the stable phase difference predicted
by the second-order averaging of the generalized phase equation is indicated by an arrow, and
evolution of ψ from 20 different initial states are plotted in the bottom panel. (j)–(l) Orbits of
the periodically driven oscillator (blue) and I-dependent stable limit-cycle solutions (light blue)
plotted in three-dimensional space (V,w, I).
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Figure A.5: Dynamical properties of the Morris-Lecar model exhibiting relaxation oscillations. (a)
Natural frequency ω(I). (b), (c) Sensitivity functions ζ(θ, I) and ξ(θ, I).

A.8.3 Relaxation Oscillations

We set the parameters as VK = −84, VL = −60, VCa = 120, gK = 8, gL = 2, gCa = 4.4, C = 20,
V1 = −1.2, V2 = 18, V3 = 2, V4 = 30, and λw = 0.004. For these parameters, the ML model
exhibits relaxation oscillations consisting of fast and slow dynamics in an appropriate range of
I, and correspondingly the phase sensitivity function takes an impulse-like shape. Numerically
calculated ω(I), ζ(θ, I), and ξ(θ, I) are shown in Figs. A.5 (a)–(c), and the phase-locked dynamics
of V (t) to the periodic forcing I(t) are shown in Figs. A.6 (d)–(f). Figures A.6 (g)–(i) compare
the results of the reduced phase equations with those of the direct numerical simulations. The
parameter I was varied between 140 and 200. In this case, both the conventional and generalized
phase equations seem to nicely predict the stable phase difference. As shown below, however, the
conventional phase equation may actually fail to predict the oscillator dynamics in such cases.

To investigate whether the two phase equations can accurately predict dynamics of the original
limit-cycle oscillator, we further calculate the phase maps [3], corresponding to the numerical
simulations shown in Fig. A.6. The phase map is a one-dimensional map from the phase θ(nTI)
at t = nTI to the phase θ((n + 1)TI) after one period of the external forcing, where n ∈ N is an
integer and TI is the period of external forcing. Figure A.7 compares the phase maps calculated
by direct numerical simulations of the original limit-cycle oscillator with those obtained by the
conventional and generalized phase equations. These results indicate that the generalized phase
equation well captures the dynamics of the oscillator, while the conventional equation does not; it
turns out that the conventional phase equation could not actually predict the oscillator dynamics
in the numerical simulation of Fig. A.6, and the seemingly correct prediction of the stable phase
difference was a coincidence.
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Figure A.6: Phase locking of the Morris-Lecar model (relaxation oscillation). Three types of peri-
odically varying parameters, I(j)(t) : q(j)(εt) = 150+α(j) sin(ωIt)−α(j) sin(2ωIt) and σp(j)(t) = 0
with α(4,5,6) = 10, 15, 20 and ωI = 0.016 are used, which lead to 1 : 1 phase locking to I(4)(t) [(d),
(g), and (j)], I(5)(t) [(e), (h), and (k)], and I(6)(t) [(f), (i), and (l)]. (d)–(f) Time series of the state
variable V (t) of a periodically driven oscillator (red) and periodic external forcing (blue). (g)–(i)
Dynamics of the phase difference ψ with an arrow representing the stable phase difference (top
panel) and evolution of ψ from 20 different initial states (bottom panel). (j)–(l) Orbits of a peri-
odically driven oscillator (blue) and I-dependent stable limit-cycle solutions (light blue) plotted in
three-dimensional space (V,w, I).
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Figure A.7: Phase maps calculated by direct numerical simulations of the original limit-cycle
oscillator (black crosses) and by the conventional (red circles) and generalized (blue circles) phase
equations. Results for the three types of the periodic forcing used in Fig. A.5, i.e., (a) I(4)(t), (b)
I(5)(t), and (c) I(6)(t), are shown.
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A.9 Criterion for Decomposition of External Forcing

When we use the generalized phase reduction method, we need to decompose the input I(t) to the
slowly varying component q(εt) and remaining weak fluctuations σp(t) as follows:

I(t) = q(εt) + σp(t). (A.73)

How to decompose the input I(t) is an important problem, which significantly affects the approx-
imation accuracy of the phase equations.

In this section, we propose a simple criterion for choosing the threshold frequency Ωd that gives
a reasonable decomposition of the input for approximating the dynamics of the oscillator. Here,
we define the decomposition by a linear filter f(τ) as follows:

q(εt) =
∫ +∞

−∞
I(t− τ)f(τ)dτ, (A.74)

σp(t) = I(t) − q(εt), (A.75)

where f(τ) is assumed to be an ideal low-pass filter with the cutoff frequency Ωd, i.e., the amplitude
response A(Ω) (:= |

∫ +∞
−∞ f(τ)e−iΩτdτ |) of f(τ) is given by

A(Ω) =

{
1 (|Ω| < Ωd),
0 (otherwise).

(A.76)

As discussed in Sec. A.4, we can describe the dynamics of a limit-cycle oscillator by phase and
amplitude variables, where the amplitude variable represents the deviation of the oscillator state
from the periodic orbit. If we assume that the state of the oscillator state X(t) is two-dimensional,
it can be fully described by a phase variable θ(t) and an amplitude variable r(t) defined as

r(t) = R(X(t), q(εt)), (A.77)

where the function R(X, I) of X ∈ Rn and I ∈ Rm is defined as

∂R(X, I)
∂X

· F (X, I) = −λ(I)R(X, I). (A.78)

In Sec. A.4, we derived the following dynamical equation of the amplitude variable r(t):

dr(t)
dt

= −λ(q(εt))r + σζr(θ, r, q(εt)) · p(t) + εξr(θ, r, q(εt)) · q̇(εt) +O(σ2), (A.79)

where ζr(θ, r, q) = G(X, q)> ∂R(X,q)
∂X

∣∣
X=X̃(θ,r,q)

, ξr(θ, r, q) = ∂R(X,q)
∂q

∣∣
X=X̃(θ,r,q)

, and X̃(θ, r, q)

is a state point in Rn satisfying Θ(X̃, q) = θ and R(X̃, q) = r.
As discussed in Sec. A.4, the approximation error of the generalized phase equation (??) is of

the order O(r). Thus, we can minimize the approximation error by minimizing the amplitude |r|,
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i.e., the deviation from the periodic orbit. From Eq. (A.38), we can approximate ξr(θ, 0, I) by
ζr(θ, 0, I) as follows:

ξr(θ, 0, I) =
1

λ(I)
ζr(θ, 0, I) +O

(
1

λ(I)2

)
. (A.80)

In addition, the order of r can be evaluated as follows (see Eq. (A.45)):

r = O

(
ε

λ(q(εt))2
,

σ

λ(q(εt))

)
. (A.81)

Thus, by plugging Eqs. (A.80) and (A.81) into Eq. (A.79), we can obtain

dr(t)
dt

= −λ(q(εt))r + ζr(θ, 0, q(εt)) ·
[
σp(t) +

ε

λ(q(εt))
q̇(εt)

]
+O

(
ε2

λ(q(εt))2
,

εσ

λ(q(εt))
,

εσ

λ(q(εt))2
,

σ2

λ(q(εt))
,

ε

λ(q(εt))2
,

)
. (A.82)

This equation indicates that, if λ(q(εt)) can be assumed constant, we can minimize the amplitude
|r| by minimizing the amplitude of

Ĩj(t) := σpj(t) +
ε

λ(q(εt))
q̇j(εt), (A.83)

where j = 1, . . . ,m represents vector components.
As a measure for choosing the threshold value Ωd, we define the variance Vj(Ωd) of Ĩj(t) as

Vj(Ωd) = lim
τ→∞

1
τ

∫ τ

0

[Ĩj(t)]2dt. (A.84)

We assume that the absolute value of the second largest Floquet exponent λ(q(εt)) does not vary
largely and replace λ(q(εt)) by a constant λc defined as

λc := λ

(
lim

τ→∞

1
τ

∫ τ

0

I(t)dt
)
. (A.85)

Under this approximation, Eq. (A.84) can be written as follows:

Vj(Ωd) ≈ 2
∫ Ωd

0

Ω2

λ2
c

Pj(Ω)dΩ + 2
∫ ∞

Ωd

Pj(Ω)dΩ, (A.86)

where Pj(Ω) is the power spectrum of Ij(t).
The optimal threshold frequency Ωd that minimizes this approximate variance Vj(Ωd) can be

obtained as

Ωd = λc, (A.87)
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because this Ωd satisfies

dVj(Ωd)
dΩd

=
(

Ω2
d

λ2
c

− 1
)
Pj(Ωd) = 0, (A.88)

and

d2Vj(Ωd)
dΩ2

d

=
(

Ω2
d

λ2
c

− 1
)
dPj(Ωd)
dΩd

+
2Ωd

λ2
c

Pj(Ωd) > 0. (A.89)

Thus, the optimal timescale for the decomposition of the input to minimize the approximate
variance Vj(Ωd) coincides with the amplitude relaxation time of the oscillator.

We propose Eq. (A.87) as a simple criterion for choosing the value of the threshold frequency
Ωd. It gives an optimal Ωd for predicting the oscillator dynamics when λ(q(εt)) is strictly constant,
and is expected to provide nearly optimal prediction even if λ(q(εt)) slightly varies. Although we
assumed that the state of the oscillator is two-dimensional, our result can be generalized to higher-
dimensional cases by regarding λ(q) as the absolute value of the second largest Floquet exponent
among the n Floquet exponents of the oscillator, because the deviation from the periodic orbit is
dominated by the slowest amplitude mode characterized by the second largest Floquet exponent.

78


