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Abstract
This paper proposes an automatic prosodic labeling technique
for constructing speech database used for speech synthesis. In
the corpus-based Japanese speech synthesis, it is essential to
use annotated speech data with prosodic information such as
phrase boundaries and accent types. However, manual anno-
tation is generally time-consuming and expensive. To over-
come this problem, we propose an estimation technique of ac-
cent types and phrase boundaries from speech waveform and its
transcribed text using both language and acoustic models. We
use conditional random field (CRF) for the language model, and
HMM for the acoustic model which has shown to be effective in
prosody modeling in speech synthesis. By introducing HMM,
continuously changing features of F0 contours are modeled well
and this results in higher estimation accuracy than conventional
techniques that use simple polygonal line approximation of F0
contours.
Index Terms: prosody, accent type, accent phrase boundary,
HMM, CRF

1. Introduction
Prosodic labeling is an essential process for statistical prosody
modeling in the corpus-based speech synthesis framework. Al-
though an increasing amount of well-annotated speech data en-
hances the naturalness of synthetic speech, this leads to a prob-
lem of requiring manual prosodic labeling, which is generally
time-consuming and expensive. Manual labeling has another
problem that annotation performance depends on transcribers
[1]. One of the approaches to overcome these problems is to
prepare pre-annotated transcription and ask speakers to follow
this transcription. However, this would force speakers to make
utterances with unusual prosody that might be unnatural for the
speakers. Therefore, it is important to develop automatic label-
ing of prosodic information.

For Japanese speech, which is a pitch accent language, pre-
dominant prosodic attributes are an accent type and its phrase
boundary. There have been several approaches to estimating
those attributes [2–4]. In [4], Suzuki et al., proposed prediction
of accent type and phrase boundaries from an input text using
conditional random field (CRF), where input features include
part of speech (POS) and word frequency. Although this tech-
nique is promising for TTS systems, it is not sufficient to adopt
the technique to prosodic labeling, because prosody varies with
speakers and speaking situations even if an input text is the
same.

In this context, there are techniques that take fundamen-
tal frequency (F0) information into account. Accent type es-
timation was performed by CRF in [2], where F0 contours of
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Figure 1: Example of accent type and phrase.

accent phrases were represented by a five-point approximation
and clustered into a specific number of classes, and then the ob-
tained cluster index was used as an input feature of the CRF.
Accent phrase boundaries were estimated in [3], where F0 con-
tours of short segments around word boundaries were repre-
sented by a three-point approximation and modeled by Gaus-
sian models. Although these methods showed that incorporat-
ing F0 features enhances the estimation accuracy, F0 approxi-
mation with a few points stands for the risk of making actual F0
information too simple.

In this study, we propose a new approach to simultane-
ous estimation of the accent types and phrase boundaries for
prosodic labeling of Japanese. Specifically, we incorporate
hidden Markov models (HMMs) to modeling of acoustic fea-
tures including F0 and CRF to linguistic features such as accent
type and phrase boundary. In the proposed approach, N -best
candidates of accent type and phrase boundary sequences are
predicted from an input transcription using language models.
Then the probability of acoustic features extracted from an in-
put speech signal is calculated using acoustic models for each
N -best candidate. The optimal sequence is estimated using the
probabilities obtained from the language and acoustic models.
Compared with the conventional methods using F0 approxima-
tion, HMM can model continuously changing F0 contours ef-
fectively as shown in prosody modeling in HMM-based speech
synthesis [5].

2. Accent of Japanese
Japanese is known to have a pitch accent and usually described
by high/low (H/L) pitch level in mora unit. An example of ac-
cent types and phrases is shown in Fig. 1. Accent in Japanese is
a lexical property and the meaning of a word is changed when
an accent type is altered. Accent phrase is a simple prosodic
phrase and typically corresponds to break index level “2” in J-
ToBI labeling scheme [6]. In Tokyo dialect, which we treat



in this study, every N -mora phrase is classified into one of N
accent types that are denoted by type-0, type-1, · · · , and type-
N − 1. The number shows the position of the accent nucleus
in which mora F0 falls rapidly. Type-0 implies the phrase does
not have the accent nucleus.

Accents are not always determined uniquely from the in-
put text. One of the reasons is that accents accompanied by
multiple words are uttered in more than one way. The way of
producing utterance generally varies depending on the speak-
ers and speaking situations. Another reason is because of word
concatenation. Word concatenation causes the change of accent
nucleus, which is known as word accent sandhi formulated by
Sagisaka et al. [7, 8]. However, the presence of word accent
sandhi also varies in different speakers and situations.

3. Related work
There are similar but non-simultaneous approaches to accent
type and accent phrase boundary estimation [2,3]. These meth-
ods use polygonal line approximation of F0 contours for F0
modeling. In [2], each F0 contour of accent phrase was rep-
resented by a five-point approximation and clustered into a cer-
tain number of classes. Accent type sequence is modeled by
CRF, where the clustered indexes of F0 contour C and linguis-
tic features such as POS and the result of accent sandhi rules are
used as the input feature of CRF. Thus, the optimal accent type
sequence L̃ is determined by the following equation

L̃ = arg max p(L|C, B, W ) (1)

where B and W correspond to accent phrase boundary se-
quence and word feature sequence, respectively.

In [3], F0 contours of short speech segments of about
300ms neighboring word boundary are represented by two lines
by a three-point approximation. The lines’ features for bound-
ary and non-boundary are modeled by a single Gaussian, re-
spectively. Let F be the approximated F0 features and the opti-
mal accent phrase boundary sequence B̃ is estimated by

B̃ = arg max p(F |B, W )βp(B|W ) (2)

where β is a weight for adjusting the effect of the F0 features,
p(F |B, W ) and p(B|W ) are the probabilities modeled by
Gaussians and CRF, respectively.

Another approach is to incorporate HMMs into prosodic
phrase boundary estimation for Mandarin speech synthesis
[9, 10]. In this method, the likelihood of acoustic features ob-
tained by context dependent HMMs are used for estimating
phrase boundaries. Although this approach is similar to our ap-
proach, they ignore the probability of language model, which is
expected to be important for Japanese accent type estimation.

4. Methods
4.1. Model outline

When we perform prosodic labeling manually, we usually put
accent phrase boundaries and accent types simultaneously be-
cause both depend on each other. For example, if there are two
accent nuclei in a segment, the segment must have at least one
phrase segment. Therefore, we propose a unified framework of
simultaneous estimation of accent type and phrase boundary.

Assuming that speech waveform and a set of information
about corresponding pronunciations, POSs, and pauses is pro-
vided. Let

B = (b1, b2, . . . , bN−1) (3)

Table 1: Features for the construction of the language models.
Accent type model
# of moras,
# of words,
POS of the first word,
predicted accent type by word accent sandhi rule,

for preceding/current/succeeding accent phrase
Accent phrase boundary model
# of moras,
POS

for current/succeeding word,

be an accent phrase boundary sequence of a sentence, where N
is the number of words in the sentence. bi(i = 1, . . . , N − 1)
is a binary-valued variable that represents whether an accent
phrase boundary exists or not between the i- and i+1-th words.
In other words, there is an accent phrase boundary when bi = 1,
but not when bi = 0. Moreover, let

L = (l1, l2, · · · , lK) (K ≤ N) (4)

denote an accent type sequence of a sentence, where K is the
number of accent phrases in the sentence. The variable lk has
a categorical value represented by 0, . . . , Mk − 1 where Mk

is the number of moras included in the k-th accent phrase. In
addition, we define W = (w1, w2, . . . , wN ) as a word fea-
ture sequence, where wi consists of POS and the number of
moras, and O = (o1, o2, . . . , oT ) as an acoustic feature se-
quence which has T frames.

Here we consider the problem of estimating the optimal ac-
cent type sequence L̃ and accent phrase boundary sequence B̃
simultaneously by maximizing the following posterior:

(L̃, B̃) = arg max
L,B

p(L, B|O, W ). (5)

This posterior can be reformulated as follows:

(L̃, B̃) = arg max
L,B

p(O, L, B|W )

p(O|W )

= arg max
L,B

p(O|B, L, W )p(L|B, W )p(B|W )

≈ arg max
L,B

p(O|B, L, W )αp(L|B, W )p(B|W )

(6)

where α is a weight for controlling the effect of the acous-
tic feature sequence. Therefore, we can estimate the opti-
mal accent type sequence L̃ and accent phrase boundary se-
quence B̃ by calculating the probabilities of the sequences of
acoustic features, accent types, and accent phrase boundaries,
namely p(O|L, B, W ), p(L|B, W ), and p(B|W ) for all
possible combinations of L and B. We refer to the models for
p(O|L, B, W ) and p(L|B, W )p(B|W ) as the acoustic and
language models, respectively.

4.2. Language model

CRF is a discriminative model that is widely used for the
tasks of annotating labels on input sequences. Let x =
(x1, x2, · · · , xN ) and y = (y1, y2, · · · , yN ) be input and out-
put sequences, respectively. We denote φf (x, y) as the fre-
quency count of a feature f ∈ F . The probability distribution
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Figure 2: Flow of the proposed technique of accent type and
phrase boundary estimation.

of y given by x is defined by

p(y|x) =
exp

P

f∈F θfφf (x, y)
P

y∈Y exp
P

f∈F θfφf (x, y)
(7)

where Y is a set of all possible output sequences, and θf is a
weight for feature f , which is tuned in training for maximizing
p(y|x).

In this study, CRF is used for an accent type model and an
accent phrase boundary model. Table 1 shows the list of input
features used for the language models. The features for the ac-
cent type and phrase boundary model are based on [2] and [3],
respectively. The word accent sandhi rule formulated by [7] is
included in the features. In this study, we use CRF++ [11] for
training and estimation.

4.3. Acoustic model

The acoustic model used in the proposed technique is an HMM-
based one that has been used for HMM-based speech syn-
thesis. Since F0 cannot be observed in unvoiced regions, F0
sequences are modeled by a multi-space probability distribu-
tion HMM (MSD-HMM) [12]. The acoustic feature vector
for HMM includes not only F0 but also spectral features such
as mel-cepstrum so that spectral features support modeling of
state transition in unvoiced regions. As the context, which is
essential in the HMM-based speech synthesis framework, we
use information obtained by the word feature sequence W , ac-
cent phrase boundary sequence B, and accent type sequence
L. HMM parameters are shared by decision trees because the
combination of contextual factors is diverse.

4.4. Estimation procedure

As described in Sect. 4.1, the optimal accent type and phrase
boundary sequence can be chosen by calculating probabilities
for all possible combinations. However, the combination of
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Figure 3: Coverages of correct accent phrase boundaries and
accent types.

prosody is so diverse1 that it is practically inappropriate to com-
pute the probabilities for all possible combinations. Hence,
we use an N -best method to drop some combinations in this
study. The outline of the proposed technique is shown in Fig. 2.
In this procedure, first, POS information is extracted from an
input text. N1-best candidates of accent phrase boundary se-
quences are predicted from POS information using the accent
phrase boundary model. After that, N2-best candidates of ac-
cent type sequences are predicted for each candidate of accent
phrase boundary sequence. Consequently, we have (N1 × N2)
candidates and the probability of the acoustic feature extracted
from an input waveform is calculated for each candidate. Fi-
nally, we choose the optimal candidate using (6).

5. Experiments
5.1. Experimental conditions

We used six male speakers’ speech data included in ATR
Japanese speech database set B [13] for the experiments.
We evaluated the proposed technique under two conditions:
speaker-closed and speaker-open cases. The speaker-closed
means that a certain amount of annotated data has been given
already and additional data is labeled. In the speaker-open case,
we trained the models without any prosodic labels of the target
speaker. 53 sentences of one male speaker (MHT) were used
for evaluation. We used 450 sentences of the target speaker for
model training for the speaker-closed case, and used 2250 utter-
ances of five male speakers for the speaker-open case. The five
male speakers did not include the target speaker. The CRFs and
HMMs are modeled separately.

We used the results of POS information of training and test
data obtained using ChaSen [14] for a morphological parser
with UniDic [15] as a dictionary. The errors by POS extraction
were corrected manually. The acoustic feature vector consisted
of F0, the 0-39th mel-cepstral coefficients, 5-band aperiodic-
ity features, and their delta and delta-delta dynamic features,
which were generally used in HMM-based speech synthesis.
These features were extracted and obtained from 16kHz sam-

1There are 2M−1 possible accent phrase boundary sequences in M -
word sequence. Moreover there exist

QK
k=1 Mk possible accent type

sequences in each phrase boundary sequence where Mk is the number
of moras in k-th accent phrase.
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Figure 4: Results of accent type estimation.

pled speech waveforms. The frame shift of the analysis was
5ms. In order to lessen the speaker dependency for speaker-
open case, we employed speaker adaptive training (SAT) [16]
and shared decision tree context clustering (STC) [17] for the
training of speaker independent HMMs. We compared the pro-
posed technique with accent type estimation proposed in [2] and
accent phrase boundary estimation proposed in [3]. The number
of clusters for the accent type estimation was fixed to 256.

5.2. Coverage of N -best candidates

First we evaluated the effects of the tuning parameters, N1 and
N2, in the speaker-closed case. Figure 3 (a) shows the cover-
age of the annotated accent phrase boundaries in N1-best can-
didates. From the figure, it is seen that the coverage was low
when N1 was smaller than 5 and almost converged when N1

is more than 10. Similarly, Figure 3 (b) shows the coverage of
the annotated accent types in N2-best candidates under the con-
dition that annotated accent phrase boundaries are given. The
coverage was more than 90% when N2 is more than 10. From
these results, we use N1 = 10 and N2 = 50 in the following
experiments.

5.3. Accent type estimation

The results of comparative evaluation of accent type are shown
in Fig. 4. The accuracy in Fig. 4 was measured under the
condition that the annotated phrase boundaries are given. In
these figures, when the weight α is a very small value like
10−4, the scores are almost equivalent to those using only the
language model, because the probability of acoustic feature,
p(O|L, B, W ) in (6), is almost ignored. Similarly, when the
weight α is large e.g. α = 10, the scores can be regarded as
those using only the acoustic model, even though the candidates
were chosen by the language model.

The accuracies of accent estimation of the proposed method
were the highest at α = 2.5× 10−2 for the speaker-closed case
and at α = 6.3 × 10−2 for the speaker-open case. This as-
serts that using both acoustic and language models enhances
the estimation performance as described in the related work. In
addition, the highest scores of the proposed method in speaker-
closed and speaker-open cases were about 6.5% and 7.3%
higher than those of the conventional method, respectively.

5.4. Accent phrase boundary estimation

The results of comparative evaluation of accent phrase bound-
ary are shown in Fig. 5 as a function of weight α for the pro-
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Figure 5: Results of accent phrase boundary estimation.

posed method and β for the conventional one. The F-score F is
given by

R =
(# of correctly estimated boundaries)
(# of estimated phrase boundaries)

(8)

P =
(# of correctly estimated boundaries)
(# of annotated phrase boundaries)

(9)

F =
2PR

P + R
(10)

where R and P correspond to recall and precision, respectively.
As described in the previous section, differences of the scores
at α = 10 and β = 103 are almost equivalent to those of
the performance of acoustic models. Hence, it is seen that the
use of HMM for acoustic model outperformed the conventional
method. In both speaker-closed and speaker-open cases, the F-
scores are highest at α = 10−2 and the scores were 0.949 and
0.932, respectively. As is seen that the proposed methods have
higher performance than the conventional ones when we com-
pare the best scores for each method.

6. Conclusions
In this paper, we have proposed the automatic labeling tech-
nique of accent type and phrase boundaries using CRF for
language models and HMM for acoustic models, respectively.
From the evaluation results of accent type estimation, it is con-
firmed that using both acoustic and language model enhances
the estimation performance and the proposed technique outper-
formed the conventional ones. However, the performances still
depend on the weight that controls the effect of acoustic fea-
tures. Therefore, future work should investigate the method of
choosing an appropriate weight. In addition, future work will
utilize more data for the language model and refine the acoustic
model to improve the accuracy. Furthermore, we should assess
the effectiveness of automatically annotated data for statistical
speech synthesis system.
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