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PAPER Special Section on Information Theory and Its Applications

On the Wyner-Ziv Source Coding Problem with Unknown Delay∗

Tetsunao MATSUTA†a), Member and Tomohiko UYEMATSU†b), Fellow

SUMMARY In this paper, we consider the lossy source coding prob-
lem with delayed side information at the decoder. We assume that delay
is unknown but the maximum of delay is known to the encoder and the
decoder, where we allow the maximum of delay to change with the block
length. In this coding problem, we show an upper bound and a lower bound
of the rate-distortion (RD) function, where the RD function is the infimum
of rates of codes in which the distortion between the source sequence and
the reproduction sequence satisfies a certain distortion level. We also clar-
ify that the upper bound coincides with the lower bound when maximums
of delay per block length converge to a constant. Then, we give a necessary
and sufficient condition in which the RD function is equal to that for the
case without delay. Furthermore, we give an example of a source which
does not satisfy this necessary and sufficient condition.
key words: delay, rate-distortion function, side information, source coding

1. Introduction

In multi-terminal information theory, various coding prob-
lems have been considered and analyzed by many re-
searchers (cf., e.g., [1], [2]). One of the most famous and
important coding problems is the Wyner-Ziv source cod-
ing problem introduced by Wyner and Ziv [3]. This is a
lossy source coding problem with side information at the de-
coder. For this coding problem, Wyner and Ziv [3] clarified
the rate-distortion (RD) function for stationary memoryless
sources, where the RD function is the infimum of rates of
codes in which the distortion between the source sequence
and the reproduction sequence satisfies a certain distortion
level.

In the Wyner-Ziv source coding problem, it is assumed
that the decoder can receive a side information symbol cor-
related with the source symbol simultaneously. However, in
many practical situations (e.g., the case where the decoder
is far away from the encoder, the case where it takes a lit-
tle while to generate a sequence of side information, and
the case where the path connecting side information and the
decoder has some delay, etc.), the decoder can not receive
correlated symbols in the beginning of the decoding. More-
over, the delay time to get a correlated symbol at the decoder
may be unknown to the coding system. For example, we can
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consider the following situation: an observatory (encoder)
on an island observes a sequence of wave heights per unit
time (source sequence) caused by an earthquake near there.
The observatory sends this sequence to a weather center (de-
coder) on a coast city distant from there. On the other hand,
the center also can observe a sequence of wave heights (side
information sequence) on the coast of the city. However,
since the wave reaches the coast city later than it reaches
the island, these heights at the same time may not be corre-
lated. Further, the observatory and the weather center do not
know the actual delay of the wave in advance, because there
are many uncertainties such as the point of the earthquake
center, sea breeze, shielding on the sea, etc.

In this paper, we consider the RD function for the above
lossy source coding problem with delayed (noncausal) side
information. Then, we show an upper bound and a lower
bound of the RD function when the delay is unknown but
the maximum of delay is known to the encoder and the de-
coder, where we allow the maximum of delay to change with
the block length. In the above example, the maximum of
delay depends on the distance between the island and the
city, and is known to the observatory and the weather center
because the distance is usually known to them. Since the
wave moves during the encoding process, the maximum de-
lay may be changed with the block length. We also clarify
that the upper bound coincides with the lower bound when
maximums of delay per block length converges to a con-
stant. Then, we give a necessary and sufficient condition in
which the RD function is equal to that for the case without
delay. Furthermore, we give an example of a source which
does not satisfy this necessary and sufficient condition.

There are some related works [4], [5] to our coding
problem. In [4], a lossy source coding problem with delayed
causal side information is considered, while delayed non-
causal side information is considered in our setting. In [5],
the lossy source coding problem with feedforward is con-
sidered, in which the delayed source sequence is available
at the decoder. On the other hand, in our coding problem,
we do not restrict delayed side information to the delayed
source sequence.

The rest of this paper is organized as follows. In Sect. 2,
we provide a precise definition of our coding problem. In
Sect. 3, we show both upper and lower bounds of the RD
function, and clarify the case where the upper bound co-
incides with the lower bound. We also give the necessary
and sufficient condition in which the RD function is equal to
that for the case without delay in this section. In Sect. 4, we
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deal with a source which does not satisfy the necessary and
sufficient condition, and give a numerical result for the RD
function of this source. In Sect. 5, we show the proof for the
upper and lower bounds. In Sect. 6, we conclude the paper.

2. Preliminaries

In this section, we provide notations and a precise definition
of the coding problem dealt in this paper.

We will denote an n-length sequence of sym-
bols (a1, a2, · · · , an) by an, and a sequence of symbols
(al, al+1, · · · , am) by am

l . For sets X and Y, we will denote
the set of all probability mass functions (pmfs) over X by
P(X), and the set of all conditional pmfs from X to Y by
W(Y|X). The pmf of the random variable (RV) X taking a
value of X will be denoted by PX ∈ P(X), and the condi-
tional pmf of the RV Y taking a value of Y given X will be
denoted by PY |X ∈ W(Y|X). For a pair of integers i ≤ j, we
will denote the set {i, i+ 1, · · · , j} as [i : j]. In what follows,
all logarithms are taken to the base 2.

Let X, Y, and X̂ be arbitrary finite sets. A discrete
stationary memoryless source (DMS) (X,Y) is a sequence
{(Xi, Yi)}∞i=−∞ of independent copies of a pair of correlated
RVs (X, Y) ∈ X×Y. For a DMS (X,Y), we consider the fol-
lowing coding problem with an encoder and a decoder: For
an integer Mn > 0, the encoder fn : Xn → [1 : Mn] encodes
a given source sequence Xn ∈ Xn, and sends a codeword
fn(Xn) to the decoder. Then, we define the rate Rn of the en-
coder as Rn � 1

n log Mn. The decoder ϕn : Yn × [1 : Mn] →
X̂n outputs the reproduction sequence X̂n = ϕn(Yn−t

1−t , fn(Xn))
from the codeword and a delayed side information sequence
Yn−t

1−t ∈ Y
n, where t ∈ [0 : un] is a nonnegative integer which

represents a delay, and un is the maximum of delay. We al-
low the maximum to change with the block length n, and
denote the sequence {un}∞n=1 of maximums by u. Without
loss of generality, un ≤ n because for any t ≥ n, Xn is inde-
pendent of Yn−t

1−t . We assume that a delay t is unknown but the
sequence u of maximums of delay is known to the encoder
and the decoder.

The distortion between the source sequence Xn and the
reproduction sequence X̂n is measured by a distortion mea-
sure d : X × X̂ → [0, dmax] as

dn(Xn, X̂n) �
n∑

i=1

d(Xi, X̂i).

We define an (n,Mn, un)-code as a pair of an encoder fn
and a decoder ϕn. Now, we define the RD function.

Definition 1. For a DMS (X,Y) and a sequence u of maxi-
mums of delay, we call R is D-achievable when there exists
a sequence of (n,Mn, un)-codes such that

lim sup
n→∞

Rn ≤ R,

and

lim sup
n→∞

max
t∈[0:un]

1
n

E[dn(Xn, X̂n)|t] ≤ D, (1)

where E[·|t] represents the expectation when the delay is t ∈
[0 : un], i.e.,

E[dn(Xn, X̂n)|t] = E[dn(Xn, ϕn(Yn−t
1−t , fn(Xn)))].

Then, for a nonnegative constant D ≥ 0, the RD function
Ru(D) is defined as

Ru(D) � inf{R : R is D-achievable}.

3. Upper and Lower Bounds of the RD Function

In this section, we show upper and lower bounds of the RD
function. We also clarify the case where the upper bound
coincides with the lower bound, and give a necessary and
sufficient condition in which the RD function is equal to that
for the case without delay.

When un = 0 for all n > 0, i.e., a delay does not occur,
it is known [3] that the RD function can be represented as

Ru(D) = min I(X; V |Y) � Rwz(D),

where the minimum is taken over all conditional pmfs
PV |X ∈ W(V|X) and functions g : Y ×V → X̂ such that

|V| ≤ |X| + 1,

Y ↔ X ↔ V,

E[d(X, g(Y,V))] ≤ D,

where | · | denotes the cardinality of the set, and Y ↔ X ↔ V
represent that the RVs (Y, X,V) form a Markov chain in this
order.

When for a DMS (X,Y), X is independent of Y , it is
known [6] that the RD function can be represented as

Ru(D) = min I(X; X̂) � R(D),

where the minimum is taken over all conditional pmfs
PX̂|X ∈ W(X̂|X) such that E[d(X, X̂)] ≤ D.

Rwz(D) and R(D) have the following properties (cf.,
e.g., [2]):

Property 1. Rwz(D) ≤ R(D) for any D ≥ 0.

Property 2. Rwz(D) and R(D) are monotone nonincreasing,
convex, and continuous functions.

For a given sequence u, we define Δu and Δu as

Δu � lim inf
n→∞

un

n

and

Δu � lim sup
n→∞

un

n
,

respectively. Then, we have the next two theorems which
show lower and upper bounds of the RD function.

Theorem 1. For a DMS (X,Y) and a sequence u,
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Ru(D) ≥ min
(D1,D2)∈Du

{
(1 − Δu)Rwz(D1) + ΔuR(D2)

}
,

where

Du� {(D1,D2)∈ [0, dmax]2 : D≥ (1−Δu)D1+ΔuD2}.

Remark 1. The lower bound of the RD function in the
above theorem is the minimum of a convex function over
a simple convex set. Thus, if closed-forms of Rwz(D) and
R(D) are given, one can easily compute the bound. On the
other hand, as shown in Remark 5, it also can be bounded
by the following rather complex formula involving an opti-
mization over a set of infinite sequences.

Ru(D) ≥ inf
{(D(n)

1 ,D
(n)
2 }
∞
n=1:

D≥lim supn→∞{(1−Δn)D(n)
1 +Δn D(n)

2 }

lim sup
n→∞

{(1 − Δn)Rwz(D(n)
1 )

+ ΔnR(D(n)
2 )}, (2)

where Δn �
un

n . According to this bound, we have

Ru(D)
(a)
≥ inf

{(D(n)
1 ,D

(n)
2 }
∞
n=1:

D≥lim supn→∞{(1−Δn)D(n)
1 +Δn D(n)

2 }

lim sup
n→∞

{(1 − Δn)Rwz(D(n)
1 )

+ ΔnRwz(D(n)
2 )}

(b)
≥ inf

{(D(n)
1 ,D

(n)
2 }
∞
n=1:

D≥lim supn→∞{(1−Δn)D(n)
1 +Δn D(n)

2 }

× lim sup
n→∞

{Rwz((1 − Δn)D(n)
1 + ΔnD(n)

2 )}

(c)
≥Rwz(D). (3)

where (a) comes from Property 1, (b) comes from Property
2, and (c) comes from the fact that lim supn→∞ Rwz(an) ≥
Rwz(lim supn→∞ an). This bound is tighter than the bound in
Theorem 1. In fact, for D ∈ [0, dmax], (X,Y) and u such that
Rwz(D) > 0, Δu = 1 and Δu = 0, we have Ru(D) ≥ 0 from
the bound in Theorem 1, while we have Ru(D) ≥ Rwz(D)(>
0) from the bound (2).

Theorem 2. If a sequence u satisfies Δu = 0 or 0 < Δu ≤
Δu < 1, then for a DMS (X,Y),

Ru(D) ≤ min
(D1,D2)∈Du

{
(1 − Δu)Rwz(D1) + ΔuR(D2)

}
,

where

Du� {(D1,D2)∈ [0, dmax]2 : D≥ (1−Δu)D1+ΔuD2}.

If the sequence u does not satisfy the above condition, it
holds that Ru(D) ≤ R(D).

Remark 2. Just like the lower bound, the upper bound of
the RD function in the above theorem is also the minimum
of a convex function over a simple convex set. On the other
hand, if a sequence u satisfies Δu = 0 or 0 < Δu ≤ Δu <
1, it also can be bounded by the following rather complex
formula as shown in Remark 7.

Ru(D) ≤ inf
(D1 ,D2)∈[0,dmax]2:

D≥lim supn→∞{(1−Δn)D1+Δn D2 }

lim sup
n→∞

{(1 − Δn)Rwz(D1)

+ ΔnR(D2)}.

According to this bound, we have

Ru(D) ≤ lim sup
n→∞

{(1 − Δn)Rwz(D) + ΔnR(D)}

≤ lim sup
n→∞

{(1 − Δn)R(D) + ΔnR(D)}

=R(D), (4)

where the second inequality comes from Property 1. This
bound is also tighter than the bound in Theorem 2. In fact,
for a sufficiently small δ > 0, D ∈ [0, dmax], (X,Y) and u
such that Rwz(D) > 0, Δu = 1 − δ and Δu = δ, the upper
bound in Theorem 2 is bounded as

min
(D1,D2)∈Du

{
(1 − Δu)Rwz(D1) + ΔuR(D2)

}

= min
(D1 ,D2)∈[0,dmax]2:

D/(1−δ)−D1≥D2

{
(1 − δ)Rwz(D1) + (1 − δ)R(D2)

}

≥ min
D1∈[0,dmax]

{
(1 − δ)Rwz(D1)

+ (1 − δ)R(D/(1 − δ) − D1)
}

>R(D),

where the last inequality follows from the fact that

min
D1∈[0,dmax]

{
Rwz(D1) + R(D − D1)

}
> R(D),

since δ is sufficiently small.

We postpone the proof of Theorem 1 and Theorem 2 to
Sect. 5.

Especially, when the sequence {un/n}∞n=1 converges to a
constant as n→ ∞, we have the next corollary.

Corollary 1. For a DMS (X,Y) and a sequence u such that
{un/n}∞n=1 converges to a constant as n→ ∞, it holds that

Ru(D) = min
(D1,D2)∈Du

{
(1 − Δu)Rwz(D1) + ΔuR(D2)

}
,

where

Δu � lim
n→∞

un

n
,

and

Du� {(D1,D2)∈ [0, dmax]2 : D ≥ (1−Δu)D1+ΔuD2}.

According to Corollary 1, we have the next theorem.

Theorem 3. For a constant D ∈ [0, dmax], a DMS (X,Y),
and a sequence u such that {un/n}∞n=1 converges to a constant
as n→ ∞, let

(D∗1,D
∗
2) = argmin

(D1,D2)∈Du

{
(1 − Δu)Rwz(D1) + ΔuR(D2)

}
.

Then,
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Ru(D) = Rwz(D),

if and only if (X,Y) and u satisfy the following two condi-
tions:

1). ΔuR(D∗2) = ΔuRwz(D∗2).
2). (1−Δu)Rwz(D∗1)+ΔuRwz(D∗2) = Rwz

(
(1−Δu)D∗1+ΔuD∗2

)
.

To prove this theorem, we use the next lemma which
shows an alternative formula of the RD function.

Lemma 1. For a constant D ∈ [0, dmax], a DMS (X,Y), and
a sequence u such that {un/n}∞n=1 converges to a constant as
n→ ∞, it holds that

Ru(D) = min
(D1,D2)∈D′u

{
(1 − Δu)Rwz(D1) + ΔuR(D2)

}
,

where

D′u� {(D1,D2)∈ [0, dmax]2 : D= (1−Δu)D1+ΔuD2}.

Proof. For any D ∈ [0, dmax] and (D1,D2) ∈ Du, there exists
a pair of constants (D′1,D

′
2) ∈ [0, dmax]2 such that D′1 ≥ D1,

D′2 ≥ D2 and

D = (1 − Δu)D′1 + ΔuD′2.

Then, according to Property 2, we have

(1 − Δu)Rwz(D1) + ΔuR(D2)

≥ (1 − Δu)Rwz(D′1) + ΔuR(D′2).

Hence, by using Corollary 1, we have

Ru(D) = min
(D1,D2)∈Du

{
(1 − Δu)Rwz(D1) + ΔuR(D2)

}

≥ min
(D1 ,D2)∈[0,dmax]2:
D=(1−Δu)D1+Δu D2

{
(1 − Δu)Rwz(D1) + ΔuR(D2)

}
.

Since the inequality in the opposite direction is trivial, this
completes the proof. �

Remark 3. By using this lemma, one can easily delete the
variable D2 as

Ru(D) = min
max{0, D−dmaxΔu

1−Δu
}≤D1≤min{dmax,

D
1−Δu
}

{
(1 − Δu)Rwz(D1)

+ ΔuR
(
(D − (1 − Δu)D1)/Δu

)}
.

This alternative formula is little bit complicated, but it is
convenient for the numerical calculation.

Proof of Theorem 3. For an optimal pair (D∗1,D
∗
2), we have

Ru(D) = (1 − Δu)Rwz(D∗1) + ΔuR(D∗2)
(a)
≥ (1 − Δu)Rwz(D∗1) + ΔuRwz(D∗2)
(b)
≥ Rwz

(
(1 − Δu)D∗1 + ΔuD∗2)

(c)
= Rwz(D), (5)

where (a) comes from Property 1, (b) comes from Property

2, and (c) comes from Lemma 1. According to the above
inequality,

Ru(D) = Rwz(D),

if and only if inequalities at (a) and (b) are equality. Since
the inequality at (a) is equality if and only if ΔuRwz(D∗2) =
ΔuR(D∗2), and the inequality at (b) is equality if and only if
(1 − Δu)Rwz(D∗1) + ΔuRwz(D∗2) = Rwz

(
(1 − Δu)D1 + ΔuD2

)
,

we have the conditions in the theorem. �

A sequence u satisfying un = o(n) satisfies conditions
1) and 2) because Δu = 0. Hence, according to Theorem 3,
we have

Ru(D) = Rwz(D).

On the other hand, according to Theorem 3, when a
DMS (X,Y) and a sequence u do not satisfy one or two of
conditions 1) and 2), we have

Ru(D) > Rwz(D),

i.e., the RD function is strictly larger than that for the case
without delay. In the next section, we give an example of
this case.

According to Corollary 1, we also have some properties
of the RD function as shown in the next theorem.

Theorem 4. For a DMS (X,Y) and a sequence u such that
{un/n}∞n=1 converges to a constant as n→ ∞, it holds that

Rwz(D) ≤ Ru(D) ≤ R(D), (6)

and for any u and u′ such that Δu′ ≤ Δu, it holds that

Ru′(D) ≤ Ru(D). (7)

Proof. The first inequality in (6) comes from (5), and the
second inequality in (6) follows since

Ru(D) ≤ (1 − Δu)Rwz(D) + ΔuR(D)

≤ (1 − Δu)R(D) + ΔuR(D)

= R(D),

where the second inequality comes from Property 1.
To prove the inequality (7), let

(D∗1,D
∗
2) = argmin

(D1,D2)∈Du

{
(1 − Δu)Rwz(D1) + ΔuR(D2)

}
,

and we consider the case where D∗1 ≤ D∗2. According to
Lemma 1, we have

D = (1 − Δu)D∗1 + ΔuD∗2
= (1 − Δu′)D

∗
1 + Δu′D

∗
2 + (Δu − Δu′)(D

∗
2 − D∗1).

Since (Δu − Δu′)(D∗2 − D∗1) ≥ 0, there exists a constant D′1 ≥
D∗1 such that

(1 − Δu)D∗1 + ΔuD∗2 = (1 − Δu′)D
′
1 + Δu′D

∗
2.
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Fig. 1 Lines l1 and l2.

Then, by noting that Rwz(D) is a convex function, the line l1
between the point (D∗1,Rwz(D∗1)) and the point (D∗2,R(D∗2))
is above the line l2 between the point (D′1,Rwz(D′1)) and the
point (D∗2,R(D∗2)) on the interval [0,D∗2] (see Fig. 1). On the
other hand, the point (D, (1 − Δu)Rwz(D∗1) + ΔuR(D∗2)) is on
the line l1, and the point (D, (1−Δu′)Rwz(D′1)+Δu′R(D∗2)) is
on the line l2. Hence, we have

Ru(D) = (1 − Δu)Rwz(D∗1) + ΔuR(D∗2)

≥ (1 − Δu′)Rwz(D′1) + Δu′R(D∗2)

≥ Ru′(D),

where the last inequality comes from the fact that D = (1 −
Δu′)D′1 + Δu′D∗2. Since the case where D∗2 ≤ D∗1 can be
proved in a similar way to the case where D∗1 ≤ D∗2, we omit
the proof. �

Remark 4. Inequalities (6) hold even if {un/n}∞n=1 does not
converge to a constant as n→ ∞. Indeed, these inequalities
are straightforward from (3) and (4).

4. Example: Doubly Symmetric Binary Source

In this section, we give an example of a source which does
not satisfy the necessary and sufficient condition in Theorem
3. In other words, we give an example of the RD function
which is strictly larger than that for the case without delay.

Let the distortion measure d be the Hamming distortion
measure, i.e.,

d(x, x̂) =

⎧⎪⎪⎨⎪⎪⎩
1 if x � x̂,

0 if x = x̂.

For p ∈ [0, 1/2], let (X, Y) ∈ {0, 1}×{0, 1} be a pair of binary
RVs such that

PXY (0, 0) = PXY (1, 1) =
1 − p

2
,

PXY (0, 1) = PXY (1, 0) =
p
2
,

and (X,Y) be a DMS characterized by (X, Y). This type
of source is called the doubly symmetric binary source
(DSBS). Wyner and Ziv [3] evaluated the RD function for
the DSBS, and showed that

Rwz(D) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
g(D) for 0 ≤ D ≤ Dc,

(D − p)g′(Dc) for Dc ≤ D ≤ p,

0 for p ≤ D,

(8)

where

g(D) � h(p ∗ D) − h(D),

h(x) � −x log x − (1 − x) log(1 − x),

x ∗ y � (1 − x)y + x(1 − y),

g′(D) is the derivative of g(D) with respect to D, and Dc is
the solution of the equation

g(Dc)
(Dc − p)

= g′(Dc).

On the other hand, since PX(0) = 1/2, we have (see [1,
Theorem 10.3.1])

R(D) = h(1/2) − h(D) = 1 − h(D). (9)

In this case, for any p ∈ [0, 1/2) and any D ∈ [0, 1/2),
we have

R(D) > Rwz(D).

Thus, for any p ∈ [0, 1/2), any D ∈ [0, (1 − Δu)p + Δu/2),
and any sequence u such that Δu > 0 and D∗2 � 1/2, the
condition 1) in Theorem 3 is not satisfied.

On the other hand, if D∗2 = 1/2, D∗1 must satisfy that
D∗1 < p and D∗1 < D. Since p < 1/2, D < 1/2, and
Rwz(D) = 0 for all D ≥ p, the line l1 between the point
(D∗1,Rwz(D∗1)) and the point (D∗2,Rwz(D∗2)) = (1/2, 0) is
strictly above the line l2 between the point (D∗1,Rwz(D∗1))
and the point (D,Rwz(D)) on the interval (D∗1, 1/2]. On the
other hand, the point (D, (1−Δu)Rwz(D∗1)+ΔuRwz(D∗2)) is on
the line l1, and the point (D,Rwz(D)) is on the line l2. Thus,
we have

(1 − Δu)Rwz(D∗1) + ΔuRwz(D∗2)

> Rwz(D)

= Rwz
(
(1 − Δu)D∗1 + ΔuD∗2

)
.

Thus, for any p ∈ [0, 1/2), any D ∈ [0, (1 − Δu)p + Δu/2),
and any sequence u such that Δu > 0 and D∗2 = 1/2, the
condition 2) in Theorem 3 is not satisfied.

Consequently, for any p ∈ [0, 1/2), any D ∈ [0, (1 −
Δu)p + Δu/2), and any sequence u such that Δu > 0, we
have

Ru(D) > Rwz(D).
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Fig. 2 RD functions for the DSBS.

On the other hand, according to (8), (9), and Corollary
1, for any D ≥ (1 − Δu)p + Δu/2, we have

Ru(D) = 0.

These facts also be confirmed by the numerical cal-
culation as shown in Fig. 2. In Fig. 2, we set p = 0.25,
and plot RD functions R(D), Rwz(D), R0.2(D), and R0.6(D),
where R0.2(D) and R0.6(D) are the RD functions Ru(D) in
the case where Δu = 0.2 and Δu = 0.6 , respectively. It can
be seen that Rwz(D) < R0.6(D) on the interval [0, 0.4), and
Rwz(D) < R0.2(D) on the interval [0, 0.3) as shown in the
above. It also can be seen that R0.2(D) ≤ R0.6(D) ≤ R(D) as
shown in Theorem 4.

5. Proof of Theorems

In this section, we prove Theorem 1 and Theorem 2.

Proof of Theorem 1. For any (n,Mn, un)-code and any t ∈
[0 : un], by letting Fn = fn(Xn), we have

log Mn ≥H(Fn)

≥H(Fn|Yn−t
1−t )

=I(Xn; Fn|Yn−t
1−t )

=

n−t∑
i=1

I(Xi; Fn|Yn−t
1−t , X

i−1)

+

n∑
i=n−t+1

I(Xi; Fn|Yn−t
1−t , X

i−1)

(a)
=

n−t∑
i=1

I(Xi; Fn, Y
i−1
1−t , Y

n−t
i+1 , X

i−1|Yi)

+

n∑
i=n−t+1

I(Xi; Fn|Yn−t
1−t , X

i−1), (10)

where (a) follows since (Xi, Yi) is independent of
(Yi−1

1−t , Y
n−t
i+1 , X

i−1). The first term in the right-hand side (RHS)

of (10) can be lower bounded as

n−t∑
i=1

I(Xi; Fn, Y
i−1
1−t , Y

n−t
i+1 , X

i−1|Yi)

≥
n−t∑
i=1

I(Xi; Vi|Yi)

(a)
≥

n−t∑
i=1

Rwz
(
E[d(Xi, X̂i)|t]

)

(b)
≥(n − t)Rwz

( 1
n − t

n−t∑
i=1

E[d(Xi, X̂i)|t]
)
, (11)

where Vi = (Fn, Yi−1
1−t , Y

n−t
i+1 ), X̂i is the i-th element of the se-

quence X̂n = ϕn(Yn−t
1−t , Fn), (a) comes from the definition of

Rwz(D) and the fact that Yi ↔ Xi ↔ Vi (because Fn is a func-
tion of Xn and not Yn), and (b) follows from the convexity
of the function Rwz(D).

The second term in the RHS of (10) can be lower
bounded as

n∑
i=n−t+1

I(Xi; Fn|Yn−t
1−t , X

i−1)

(a)
=

n∑
i=n−t+1

I(Xi; Fn, Y
n−t
1−t , X

i−1)

≥
n∑

i=n−t+1

I(Xi; Fn, Y
n−t
1−t )

(b)
≥

n∑
i=n−t+1

I(Xi; X̂i)

(c)
≥

n∑
i=n−t+1

R
(
E[d(Xi, X̂i)|t]

)

(d)
≥ tR
(1

t

n∑
i=n−t+1

E[d(Xi, X̂i)|t]
)
, (12)
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where (a) follows since Xi is independent of (Yn−t
1−t , X

i−1) for
any i ≥ n − t + 1, (b) follows from Xi ↔ (Fn, Yn−t

1−t ) ↔
X̂i and the data processing inequality [7, Lemma 3.11], (c)
comes from the definition of R(D), and (d) follows from the
convexity of the function R(D).

On the other hand, if a sequence of (n,Mn, un)-codes
satisfies (1), then for any γ > 0 and all sufficiently large
n > 0, we have

D + γ ≥ max
t∈[0:un]

1
n

E[dn(Xn, X̂n)|t]

≥
1
n

E[dn(Xn, X̂n)|un]

=
n − un

n

( 1
n − un

n−un∑
i=1

E[d(Xi, X̂i)|un]
)

+
un

n

( 1
un

n∑
i=n−un+1

E[d(Xi, X̂i)|un]
)

(13)

≥
(

lim inf
n→∞

n − un

n
− γ
)( 1

n − un

n−un∑
i=1

E[d(Xi, X̂i)|un]
)

+

(
lim inf

n→∞

un

n
− γ
)( 1

un

n∑
i=n−un+1

E[d(Xi, X̂i)|un]
)

≥(1 − Δu)
( 1
n − un

n−un∑
i=1

E[d(Xi, X̂i)|un]
)

+ Δu

( 1
un

n∑
i=n−un+1

E[d(Xi, X̂i)|un]
)
− 2γdmax. (14)

Hence from (10)–(12), by letting t = un, for any D-
achievable rate R, any γ > 0, and all sufficiently large n > 0,
we have

R + γ ≥1
n

log Mn

≥n − un

n
Rwz

( 1
n − un

n−un∑
i=1

E[d(Xi, X̂i)|un]
)

+
un

n
R
( 1
un

n∑
i=n−un+1

E[d(Xi, X̂i)|un]
)

(15)

≥(1 − Δu)Rwz

( 1
n − un

n−un∑
i=1

E[d(Xi, X̂i)|un]
)

+ ΔuR
( 1
un

n∑
i=n−un+1

E[d(Xi, X̂i)|un]
)
− 2γ log |X|

(a)
≥ min
{(D1,D2)∈[0,dmax]2:D+γ≥(1−Δu)D1+ΔuD2−2γdmax}

×
{
(1 − Δu)Rwz(D1) + ΔuR(D2)

}
− 2γ log |X|,

(16)

where (a) comes from (14), and assuming that

D1 =
1

n − un

n−un∑
i=1

E[d(Xi, X̂i)|un],

D2 =
1
un

n∑
i=n−un+1

E[d(Xi, X̂i)|un].

Since (16) holds for any D-achievable rate R and any γ > 0,
by noting that Rwz(D) and R(D) are continuous functions,
we have Theorem 1. �

Remark 5. According to (1) and (13), we have

D ≥ lim sup
n→∞

{
(1 − Δn)

( 1
n − un

n−un∑
i=1

E[d(Xi, X̂i)|un]
)

+ Δn

( 1
un

n∑
i=n−un+1

E[d(Xi, X̂i)|un]
)}
.

Further, according to (15), we have

R ≥ lim sup
n→∞

{
(1 − Δn)Rwz

( 1
n − un

n−un∑
i=1

E[d(Xi, X̂i)|un]
)

+ ΔnR
( 1
un

n∑
i=n−un+1

E[d(Xi, X̂i)|un]
)}
.

Thus, the same argument used to derive the inequality (16),
we have the following bound stated in Remark 1,

Ru(D) ≥ inf
{(D(n)

1 ,D
(n)
2 }
∞
n=1:

D≥lim supn→∞{(1−Δn)D(n)
1 +Δn D(n)

2 }

lim sup
n→∞

{(1 − Δn)Rwz(D(n)
1 )

+ ΔnR(D(n)
2 )}.

In order to prove Theorem 2, we introduce the typical
set and the conditionally typical set as defined below.

Definition 2. For a pair of RVs (X, Y) ∈ X × Y, a constant
ε > 0, and a sequence xk ∈ Xk, we define

T (k)
ε (X)� {xk ∈Xk : |π(x|xk)−PX(x)|≤εPX(x), ∀x ∈ X},
T (k)
ε (Y |xk)� {yk ∈Yk : |π(x, y|xk, yk)−π(x|xk)PY |X(y|x)|

≤ εPY |X(y|x), ∀(x, y) ∈ X × Y},

where π(a|ak) � |{i ∈ [1 : k] : ai = a}|/k.

These sets have some well-known properties shown as
the following lemmas.

Lemma 2 ([7, Lemma 2.12]). For any pair of RVs (X, Y) ∈
X × Y, any ε > 0, any xk ∈ Xk, and the sequence of i.i.d.
RVs (Xk, Yk) ∈ Xk×Yk such that (Xi, Yi) ∼ PXY , there exists
δ(ε) > 0 that tends to zero as ε → 0 such that

Pr{Xk � T (k)
ε (X)} ≤ 2−kδ(ε), (17)

Pr{Yk � T (k)
ε (Y |xk)|Xk = xk} ≤ 2−kδ(ε). (18)

Lemma 3 ([2, Lemma 24.2]). For a sufficiently small ε > 0,
any pair of RVs (X, Y) ∈ X × Y, and the sequence of i.i.d.
RVs {(Xi, Yi)}∞i=−∞ such that (Xi, Yi) ∼ PXY , there exists a
constant γ(ε, PXY ) > 0 such that

Pr{(Xk, Yk+t
1+t ) ∈ T

(k)
ε (X, Y)} ≤ 2−kγ(ε,PXY ), ∀t � 0.
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Lemma 4 ([2, Typical Average Lemma]). For any xk ∈
T (k)
ε (X) and any nonnegative function g : X → R,

1
k

k∑
i=1

g(xi) ≤ (1 + ε)E[g(X)].

Lemma 5 (Packing and Covering Lemma). Let (X, Y) ∈ X×
Y be a pair of RVs, and for each m ∈ [1 : M], Yk(m) ∈ Yk

be a sequence of RVs distributed according to
∏k

i=1 PY (yi).
Then, for any ε > 0, there exists δ(ε) > 0 that tends to zero
as ε → 0 such that

Pr{(Xk, Yk(m)) ∈ T (k)
ε (X, Y),∃m ∈ [1 : M]}

≤ 2−k(I(X;Y)− 1
k log M−δ(ε)). (19)

Furthermore, for sufficiently large k > 0,

Pr{(Xk, Yk(m)) � T (k)
ε (X, Y),∀m ∈ [1 : M]}

≤ 2−kδ(ε) + exp
{
− 2k( 1

k log M−I(X;Y)−δ(ε))}. (20)

Proof of Lemma 5. This lemma is immediately obtained
from the proof of [2, Lemma 3.1], [2, Lemma 3.3], and (17)
in Lemma 2. �

Now, we prove the theorem.

Proof of Theorem 2. If the sequence u does not satisfy that
Δu = 0 or 0 < Δu ≤ Δu < 1, i.e., the sequence u satisfies that
Δu = 1 or 0 = Δu < Δu < 1, the advantage of the correlation
of the source might not be used in the coding system. Hence,
in this case, we employ (n,Mn, un)-codes that do not use side
information. Then, we have Ru(D) ≤ R(D). Thus, in what
follows, we assume that Δu = 0 or 0 < Δu ≤ Δu < 1.

For an arbitrarily fixed (D1,D2) ∈ Du, fix a conditional
pmf PV |X ∈ W(V|X) and a function g : Y × V → X̂ that
attain Rwz

(
D1/(1 + ε)

)
, and fix a conditional pmf PX̂|X ∈

W(X̂|X) that attains R
(
D2/(1 + ε)

)
. Then, we consider the

following random coding scheme:
Codebook generation: Randomly and independently

generate M̃n sequences vn−�
√

n�−un (l) ∈ Vn−�
√

n�−un each ac-

cording to
∏n−�

√
n�−un

i=1 PV (vi(l)), l ∈ [1 : M̃n], where

PV (v) =
∑
x∈X

PX(x)PV |X(v|x), ∀v ∈ V.

Then, partition the set of indices l ∈ [1 : M̃n] into equal-size
M(1)

n bins B(m1), m1 ∈ [1 : M(1)
n ]. If the indices cannot be

partitioned into equal-size bins, assign the indices to each
bin B(m1) in ascending order such that the size of the bin
satisfies |B(m1)| = �M̃n/M

(1)
n �whenever it is possible. In this

case, if some bins are left over, these bins are not used. We
note that the size of a bin is at most �M̃n/M

(1)
n � in each case.

In what follows, for the sake of simplicity, we will omit the
notation �·� for

√
n, and denote n −

√
n − un by n1. On the

other hand, randomly and independently generate M(2)
n se-

quences x̂un (m2) ∈ X̂un , each according to
∏un

i=1 PX̂(x̂i(m2)),
m2 ∈ [1 : M(2)

n ], where

PX̂(x̂) =
∑
x∈X

PX(x)PX̂ |X(x̂|x), ∀x̂ ∈ X̂.

Encoding: Let ε > 0 be a sufficiently small constant,
and ε1 be a constant satisfying 0 < ε1 < ε. For a source
sequence xn ∈ Xn, the encoding procedure is described as
follows:

1. For the sequence xn−un√
n+1

, the encoder finds an index l ∈
[1 : M̃n] such that

(xn−un√
n+1
, vn1 (l)) ∈ T (n1)

ε1
(X,V).

If there is more than one such index, it selects one of
them uniformly at random. If there is no such index, it
selects an index from [1 : M̃n] uniformly at random.

2. For the sequence xn
n−un+1, the encoder finds an index

m2 ∈ [1 : M(2)
n ] such that

(xn
n−un+1, x̂

un (m2)) ∈ T (un)
ε (X, X̂)

If there is more than one such index, choose the small-
est one among them. If there is no such index, it sets
m2 = 1.

3. The encoder sends the triple (x
√

n,m1,m2) to the de-
coder, where m1 is the bin index such that l ∈ B(m1).

Thus, the rate of this encoder is

Rn =

√
n

n
log |X| + n1

n
R(1)

n +
un

n
R(2)

n , (21)

where R(1)
n =

1
n1

log M(1)
n , and R(2)

n =
1
un

log M(2)
n .

Decoding: For the triple (x
√

n,m1,m2), the decoding
procedure is described as follows:

1. The decoder finds the unique estimate t̂ ∈ [0 : un] of
the delay such that

(x
√

n, y
√

n+t̂
1+t̂

) ∈ T (
√

n)
ε (X, Y),

otherwise it sets t̂ = 0.
2. For the estimate t̂, the decoder finds the unique index

l̂ ∈ B(m1) such that

(vn1 (l̂), yn−un+t̂√
n+1+t̂

) ∈ T (n1)
ε (V, Y),

otherwise it sets l̂ = 1.
3. The decoder outputs the reconstruction sequence as

x̂n =
(
x̂
√

n, x̂n1 (m1), x̂un (m2)
)

where x̂
√

n ∈ X̂
√

n is an arbitrarily fixed sequence, and

x̂i(m1) = g
(
y√n+i+t̂, vi(l̂)

)
, ∀i ∈ {1, 2, · · · , n1}.

We now analyze the expected distortion for this ran-
dom coding. Let (L,M1,M2) denote the indices found at the
encoder, T̂ be the estimate of the delay, and L̂ be the index
chosen at the decoder. Then, we consider the following error
events:
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E1 =
{
(Vn1 (L̂), Xn−un√

n+1
, Yn−un−t+T̂√

n+1−t+T̂
) � T (n1)

ε (V, X, Y)
}
,

E2 =
{
(Xn

n−un+1, X̂
un (M2)) � T (un)

ε (X, X̂)
}
.

Briefly speaking, if one of these events E1 and E2 occurs, it
can not be guaranteed that the distortion of the random code
is less than the given distortion level D.

We also consider the following events:

E0 = {T̂ � t},

E1,1 =
{
(Vn1 (l), Xn−un√

n+1
) � T (n1)

ε1
(V, X),∀l ∈ [1 : M̃n]

}
,

E1,2 =
{
(Vn1 (L), Xn−un√

n+1
, Yn−un√

n+1
) � T (n1)

ε (V, X, Y)
}
,

E1,3 =
{
(Vn1 (l̃), Yn−un−t+T̂√

n+1−t+T̂
) ∈ T (n1)

ε (V, Y),

∃l̃ ∈ B(M1) s.t. l̃ � L
}
.

Whenever the event Ec
0 ∩ E

c
1,1 ∩E

c
1,2 ∩ E

c
1,3 occurs, the event

Ec
1 occurs. Hence, for a delay t ∈ [0 : un], we have

Pr{Ec
1|t} ≥Pr{Ec

0 ∩ E
c
1,1 ∩ E

c
1,2 ∩ E

c
1,3|t},

and we have

Pr{E1|t} ≤Pr{E0 ∪ E1,1 ∪ E1,2 ∪ E1,3|t}
≤Pr{E0|t} + Pr{E1,1|t} + Pr{Ec

1,1 ∩ E1,2|t}
+ Pr{Ec

0 ∩ E1,3|t}. (22)

The first term in the RHS of (22) is upper bounded as

Pr{E0|t} ≤Pr
{
(X
√

n, Y
√

n) � T (
√

n)
ε (X, Y)

∣∣∣∣t
}

+ Pr
{
(X
√

n, Y
√

n−t+t̂
1−t+t̂

) ∈ T (
√

n)
ε (X, Y),

∃t̂ ∈ [0 : un] s.t. t̂ � t
∣∣∣∣t
}

≤2−
√

nδ(ε) + un2−
√

nγ(ε,PXY ),

where the last inequality comes from the inequality (17) in
Lemma 2, and Lemma 3. Since Δu < 1, we have n1 → ∞
(n→ ∞). Thus, by using (20) in Lemma 5, the second term
in the RHS of (22) is upper bounded for sufficiently large
n > 0 as

Pr{E1,1|t} ≤ 2−n1δ(ε1) + exp{−2n1(R̃n−I(X;V)−δ(ε1))},

where R̃n =
1
n1

log M̃n. The third term in the RHS of (22) is
upper bounded as

Pr{Ec
1,1 ∩ E1,2|t}

≤Pr
{{

(Vn1 (L), Xn−un√
n+1

) ∈ T (n1)
ε1

(V, X)
}

∩
{
(Vn1 (L), Xn−un√

n+1
, Yn−un√

n+1
) � T (n1)

ε (V, X, Y)
}∣∣∣∣t
}

=
∑

(vn1 ,xn1 )∈T (n1)
ε1

(V,X)

∑
yn1 :

(vn1 ,xn1 ,yn1 )�T (n1)
ε (V,X,Y)

× Pr
{
(Vn1 (L), Xn−un√

n+1
, Yn−un√

n+1
) = (vn1 , xn1 , yn1 )

}

=
∑

(vn1 ,xn1 )∈T (n1)
ε1

(V,X)

Pr
{
(Vn1 (L), Xn−un√

n+1
) = (vn1 , xn1 )

}

×
∑
yn1 :

(vn1 ,xn1 ,yn1 )�T (n1)
ε (V,X,Y)

Pr
{
Yn−un√

n+1
= yn1

∣∣∣Xn−un√
n+1
= xn1

}

(a)
=

∑

(vn1 ,xn1 )∈T (n1)
ε1

(V,X)

Pr
{
(Vn1 (L), Xn−un√

n+1
) = (vn1 , xn1 )

}

×
∑
yn1 :

(vn1 ,xn1 ,yn1 )�T (n1)
ε (V,X,Y)

n1∏
i=1

PY |VX(yi|vi, xi)

(b)
≤

∑

(vn1 ,xn1 )∈T (n1)
ε1

(V,X)

Pr
{
(Vn1 (L), Xn−un√

n+1
) = (vn1 , xn1 )

}

×
∑

yn1�T (n1)
ε′ (Y |vn1 ,xn1 )

n1∏
i=1

PY |VX(yi|vi, xi)

(c)
≤2−n1δ(ε′),

where (a) follows since Y ↔ X ↔ V and

Pr
{
Yn−un√

n+1
= yn1

∣∣∣Xn−un√
n+1
= xn1

}
=

n1∏
i=1

PY |X(yi|xi),

(b) comes from the fact that for (vk, xk) ∈ T (k)
ε1 (V, X), there

exists ε′ ∈ (0, ε) such that

{
yk ∈ Yk : (vk, xk, yk) ∈ T (k)

ε (V, X, Y)
}
⊇ T (k)

ε′ (Y |vk, xk)
(23)

(see Appendix), and (c) comes from (18) in Lemma 2.
The last term in the RHS of (22) is upper bounded as

Pr{Ec
0 ∩ E1,3|t}

≤ Pr
{
(Vn1 (l̃), Yn−un√

n+1
) ∈ T (n1)

ε (V, Y),

∃l̃ ∈ B(M1) s.t. l̃ � L
}

=
∑
(m1,l)

Pr{(M1, L) = (m1, l)}

× Pr
{
(Vn1 (l̃), Yn−un√

n+1
) ∈ T (n1)

ε (V, Y),

∃l̃ ∈ B(m1) s.t. l̃ � l|M1 = m1, L = l
}

(a)
=
∑
(m1,l)

Pr{(M1, L) = (m1, l)}

× Pr
{
(Vn1 (l̃), Yn−un√

n+1
) ∈ T (n1)

ε (V, Y),

∃l̃ ∈ B(m1) s.t. l̃ � l|L = l
}

(b)
≤
∑
(m1,l)

Pr{(M1, L) = (m1, l)}

× Pr
{
(Vn1 (l̃), Yn−un√

n+1
) ∈ T (n1)

ε (V, Y),

∃l̃ ∈ [1 : �M̃n/M
(1)
n � − 1]|L = l

}
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=Pr
{
(Vn1 (l̃), Yn−un√

n+1
) ∈ T (n1)

ε (V, Y),

∃l̃ ∈ [1 : �M̃n/M
(1)
n � − 1]}

(c)
≤2−n1(I(Y;V)−R̃n+R(1)

n −δ(ε)),

where (a) comes from the fact that M1 is a function of L, (b)
follows since Vn1 (l̃) has the same distribution for l̃ � l, and
(c) comes from (19) in Lemma 5. Hence, for sufficiently
large n > 0, we set

I(X; V) + 2δ(ε1) ≤ R̃n ≤ I(X; V) + 3δ(ε1), (24)

R̃n − I(Y; V) + 2δ(ε) ≤ R(1)
n ≤ R̃n − I(Y; V) + 3δ(ε).

(25)

Then, there exists constants γ1,1, γ1,2 > 0 that do not depend
on a delay t such that

Pr{E1|t} ≤ 2−γ1,1
√

n + 2−γ1,2n1 . (26)

On the other hand, when Δu > 0, we have un → ∞
(n → ∞). Thus, by using (20) in Lemma 5, the probability
of the event E2 is upper bounded for sufficiently large n > 0
as

Pr{E2|t} ≤ 2−unδ(ε) + exp{−2un(R(2)
n −I(X;X̂)−δ(ε))}.

Thus, for sufficiently large n > 0, we set

I(X; X̂) + 2δ(ε) ≤ R(2)
n ≤ I(X; X̂) + 3δ(ε). (27)

Then, there exists a constant γ2 > 0 that does not depend on
a delay t such that

Pr{E2|t} ≤ 2−γ2un . (28)

Let C be the RV that denotes the above random coding,
and c be a realization of C, i.e., c denotes an (n,Mn, un)-
code. Then, for a realization c, and a delay t ∈ [0 : un], we
have

E
[
dn(Xn, X̂n)|t, c

]

=E
[
d
√

n(X
√

n, X̂
√

n)|t, c
]
+ E
[
dn1 (Xn−un√

n+1
, X̂n1 (M1))|t, c

]

+ E
[
dun (Xn

n−un+1, X̂
un (M2))|t, c

]
. (29)

The second term in the RHS of (29) is upper bounded as

E
[
dn1 (Xn−un√

n+1
, X̂n1 (M1))|t, c

]

=Pr{Ec
1|t, c}E

[
dn1 (Xn−un√

n+1
, X̂n1 (M1))|t, c,Ec

1
]

+ Pr{E1|t, c}E
[
dn1 (Xn−un√

n+1
, X̂n1 (M1))|t, c,E1

]

=Pr{Ec
1|t, c}

× E
[
dn1 (Xn−un√

n+1
, g(Yn−un−t+T̂√

n+1−t+T̂
,Vn1 (L̂)))|t, c,Ec

1
]

+ Pr{E1|t, c}E
[
dn1 (Xn−un√

n+1
, X̂n1 (M1))|t, c,E1

]
(a)
≤n1(1 + ε)E

[
d(X, g(Y,V))

]
+ Pr{E1|t, c}E

[
dn1 (Xn−un√

n+1
, X̂n1 (M1))|t, c,E1

]

(b)
≤n1D1 + Pr{E1|t, c}n1dmax, (30)

where (a) comes from Lemma 4, and (b) follows since the
conditional pmf PV |X and the function g attain the RD func-
tion Rwz(D1/

(
1 + ε)

)
. The third term in the RHS of (29) is

upper bounded as

E
[
dun (Xn

n−un+1, X̂
un (M2))|t, c

]
=Pr{Ec

2|t, c}E
[
dun (Xn

n−un+1, X̂
un (M2))|t, c,Ec

2
]

+ Pr{E2|t, c}E
[
dun (Xn

n−un+1, X̂
un (M2))|t, c,E2

]
(a)
≤un(1 + ε)E

[
d(X, X̂)

]
+ Pr{E2|t, c}E

[
dun (Xn

n−un+1, X̂
un (M2))|t, c,E2

]
(b)
≤unD2 + Pr{E2|t, c}undmax, (31)

where (a) comes from Lemma 4, and (b) follows since the
conditional pmf PX̂|X attains the RD function R(D2/

(
1+ ε)

)
.

We now show the existence of a sequence of
(n,Mn, un)-codes with the desired expected distortion for the
following two cases:

The case where 0 < Δu ≤ Δu < 1: Since C does not
depend on a delay t, we have
∑

c

Pr{C = c} max
t∈[0:un]

Pr{E1 ∪ E2|t, c}

≤
∑

c

Pr{C = c}
∑

t∈[0:un]

Pr{E1 ∪ E2|t, c}

=
∑

t∈[0:un]

Pr{E1 ∪ E2|t}

≤(un + 1)
(
2−γ1,1

√
n + 2−γ1,2n1 + 2−γ2un

)
,

where the last inequality comes from (26) and (28). Hence,
there exists a sequence {c̃n}∞n=1 of (n,Mn, un)-codes such that

lim
n→∞

max
t∈[0:un]

Pr{E1 ∪ E2|t, c̃n} = 0. (32)

Thus for this sequence {c̃n}∞n=1, according to (29)–(31), we
have

lim sup
n→∞

max
t∈[0:un]

1
n

E
[
dn(Xn, X̂n)|t, c̃n

]

≤ lim sup
n→∞

n1

n

(
D1 + max

t∈[0:un]
Pr{E1|t, c̃n}dmax

)

+ lim sup
n→∞

un

n

(
D2 + max

t∈[0:un]
Pr{E2|t, c̃n}dmax

)

=(1 − Δu)D1 + ΔuD2

≤D,

where the last inequality comes from the fact that (D1,D2) ∈
Du.

The case where Δu = 0: In the similar way to the
above argument, we can show the existence of a sequence
{ĉn}∞n=1 of (n,Mn, un)-codes such that

lim
n→∞

max
t∈[0:un]

Pr{E1|t, ĉn} = 0.
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Thus for this sequence {ĉn}∞n=1, according to (29)–(31), we
have

lim sup
n→∞

max
t∈[0:un]

1
n

E
[
dn(Xn, X̂n)|t, ĉn

]

≤ lim sup
n→∞

n1

n

(
D1 + max

t∈[0:un]
Pr{E1|t, ĉn}dmax

)

+ lim sup
n→∞

un

n

(
D2 + max

t∈[0:un]
Pr{E2|t, ĉn}dmax

)

=(1 − Δu)D1

≤D.

On the other hand, according to (21), (24), (25), and
(27), rates of these two sequences {c̃n}∞n=1 and {ĉn}∞n=1 of
(n,Mn, un)-codes satisfy

lim sup
n→∞

Rn

≤ lim sup
n→∞

n1

n

(
I(X; V) − I(Y; V) + 3δ(ε) + 3δ(ε1)

)

+ lim sup
n→∞

un

n

(
I(X; X̂) + 3δ(ε)

)

=(1 − Δu)
(
Rwz(D1/(1 + ε)) + 3δ(ε) + 3δ(ε1)

)

+ Δu

(
R(D2/(1 + ε)) + 3δ(ε)

)
.

Thus, by recalling that (D1,D2) ∈ Du is arbitrary, and noting
that Rwz(D) and R(D) are continuous functions, we have

Ru(D) ≤ min
(D1,D2)∈Du

{
(1 − Δu)Rwz(D1) + ΔuR(D2)

}
.

This completes the proof. �

Remark 6. If we use the following three types of coding
for sufficiently small ε > 0, we might be able to remove the
condition Δu = 0 or 0 < Δu ≤ Δu < 1.

• For n > 0 such that 1 − ε ≤ un/n, we use the ordinary
lossy source coding without side information.
• For n > 0 such that un/n ≤ ε, we use the Wyner-Ziv

source coding after estimating the delay by using the
above method.
• For n > 0 such that ε < un/n < 1− ε, we use the source

coding described in the above proof.

However, for the sake of brevity, we do not employ such
method in this paper.

Remark 7. For the sequence {c̃n}∞n=1 (and also {ĉn}∞n=1) of
codes, according to (29)–(32), we have

lim sup
n→∞

max
t∈[0:un]

1
n

E
[
dn(Xn, X̂n)|t, c̃n

]

≤ lim sup
n→∞

{(1 − Δn)D1 + ΔnD2}.

Further, according to (21), (24), (25), and (27), for any δ >
0, we have

lim sup
n→∞

Rn ≤ lim sup
n→∞

{(1 − Δn)Rwz(D1) + ΔnR(D2)} + δ.

Thus, by using an arbitrary fixed (D1,D2) ∈ [0, dmax]2 sat-
isfying D ≥ lim supn→∞{(1 − Δn)D1 + ΔnD2}, and repeating
the same augment of the proof, we have

Ru(D) ≤ inf
(D1 ,D2)∈[0,dmax]2:

D≥lim supn→∞{(1−Δn)D1+Δn D2 }

lim sup
n→∞

{(1 − Δn)Rwz(D1)

+ ΔnR(D2)}.

6. Conclusion

This paper has dealt with the lossy source coding problem
with delayed side information at the decoder, assuming that
a delay is unknown but the sequence u of maximums of de-
lay is known to both the encoder and the decoder. We have
shown upper and lower bounds of the RD function Ru(D).
We also have clarified that the upper bound coincides with
the lower bound when {un/n}∞n=1 converges to a constant as
n → ∞. Further, we have given a necessary and sufficient
condition in which Ru(D) = Rwz(D).
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Appendix

In this appendix we show (23).
For any (vk, xk) ∈ T (k)

ε1 (V, X) and any (v, x, y) ∈ V×X×
Y, we have

{
yk ∈ Yk : |π(v, x, y|vk, xk, yk) − PVXY (v, x, y)|
≤ εPVXY (v, x, y)

}
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(a)
⊇
{
yk ∈ Yk : |π(v, x, y|vk, xk, yk)

− π(v, x|vk, xk)PY |VX(y|v, x)|
+ |π(v, x|vk, xk)PY |VX(y|v, x) − PVXY (v, x, y)|
≤ εPVXY (v, x, y)

}
=
{
yk ∈ Yk : |π(v, x, y|vk, xk, yk)

− π(v, x|vk, xk)PY |VX(y|v, x)|
+ |π(v, x|vk, xk) − PVX(v, x)|PY |VX(y|v, x)

≤ εPVXY (v, x, y)
}

(b)
⊇
{
yk ∈ Yk : |π(v, x, y|vk, xk, yk)

− π(v, x|vk, xk)PY |VX(y|v, x)|
+ ε1PVX(v, x)PY |VX(y|v, x)

≤ εPVXY (v, x, y)
}

⊇
{
yk ∈ Yk : |π(v, x, y|vk, xk, yk)

− π(v, x|vk, xk)PY |VX(y|v, x)|
≤ (ε − ε1)pVX PY |VX(y|v, x)

}
,

where pVX = min{PVX(v, x) : PVX(v, x) > 0}, (a) comes from
the triangle inequality, and (b) comes from the fact that

|π(v, x|vk, xk) − PVX(v, x)| ≤ ε1PVX(v, x),

∀(v, x) ∈ V × X.

Hence, for any (vk, xk) ∈ T (k)
ε1 (V, X), we have

{
yk ∈ Yk : (vk, xk, yk) ∈ T (k)

ε (V, X, Y)
}

=
{
yk ∈ Yk : |π(v, x, y|vk, xk, yk) − PVXY (v, x, y)|
≤ εPVXY (v, x, y),∀(v, x, y) ∈ V × X × Y

}
⊇
{
yk ∈ Yk : |π(v, x, y|vk, xk, yk)

− π(v, x|vk, xk)PY |VX(y|v, x)|
≤ (ε − ε1)pVX PY |VX(y|v, x),∀(v, x, y) ∈ V × X × Y

}
=T (k)

(ε−ε1)pVX
(Y |vk, xk).

Now, by setting ε′ = (ε − ε1)pVX , we have (23).
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