
論文 / 著書情報
Article / Book Information

題目(和文) モデル低次元化に基づく大規模動的ネットワークの制御理論

Title(English) Control theory for large-scale dynamical network systems based on
model reduction techniques

著者(和文) 定本知徳

Author(English) Tomonori Sadamoto

出典(和文)  学位:博士（工学）,
 学位授与機関:東京工業大学,
 報告番号:甲第9887号,
 授与年月日:2015年3月26日,
 学位の種別:課程博士,
 審査員:井村　順一,天谷　賢治,早川　朋久,中尾　裕也,山北　昌毅

Citation(English)  Degree:,
 Conferring organization: Tokyo Institute of Technology,
 Report number:甲第9887号,
 Conferred date:2015/3/26,
 Degree Type:Course doctor,
 Examiner:,,,,

学位種別(和文)  博士論文

Type(English)  Doctoral Thesis

Powered by T2R2 (Science Tokyo Research Repository)

http://t2r2.star.titech.ac.jp/


Tokyo Institute of Technology

Doctoral Thesis

Control theory for large-scale dynamical network
systems based on model reduction techniques

Author:

Tomonori Sadamoto

Supervisor:

Dr. Jun-ichi Imura

Graduate School of Information Science and Engineering

February 2015

http://www.university.com
http://www.johnsmith.com
http://www.jamessmith.com
Department or School Web Site URL Here (include http://)


Abstract

This thesis provides a line of work for development of control theory for large-scale

dynamical network systems such as distributed parameter systems and electric power

networks. An observer and a controller for a large-scale network system are necessarily

required to be low-dimensional compared with systems of interest and to guarantee an

a priori performance of the whole network system. We consider constructing observers

and controllers not only satisfying the above two requirements, but also having addi-

tional properties suitable for large-scale network systems. More specifically, we propose

a novel low-dimensional observer to estimate average behavior of network systems from a

macroscopic point of view where a set of states capturing the average behavior is system-

atically determined. Furthermore, we propose low-dimensional hierarchical distributed

control where compositional controllers can be designed in a distributed manner. In

contrast to existing distributed controller design methods where all compositional con-

trollers have to be designed simultaneously, the distributed design property enables us

to implement a control system in particular for a large-scale network system involving a

number of subsystems. These proposed observers/controllers are expected to be useful

for applications in various research fields, e.g., weather prediction and data-assimilation

in meteorological engineering, and supply-demand balancing of power systems in electric

power engineering.
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Notations

R set of real numbers

R+(R−) set of nonnegative (nonpositive) real numbers

C set of complex numbers

In unit matrix of size n× n
0m×n (0n) zero matrix of size m× n (n× n)

1n n-dimensional one vector, i.e., 1n := [1, . . . , 1]T ∈ Rn

eni the ith column of In

enI enI := [eni1 , . . . , e
n
im

] for i ∈ I := {i1, . . . , im}
|I| the cardinality of a set I
M ≺ 0n (M � 0n) negative (positive) definiteness of a symmetric matrix

M ∈ Rn×n

M � 0n (M � 0n) negative (positive) semidefiniteness of a symmetric matrix

M ∈ Rn×n

im(M) range space spanned by the column vectors of a matrix M

tr(M) trace of a matrix M

dg(Mi)i∈N the block-diagonal matrix having matrices M1, . . . ,MN on

its diagonal blocks for N = {1, . . . , N}
M 1

2
Cholesky factor of semipositive matrixM � 0n, i.e., M 1

2
0n

such that M = MT
1
2

M 1
2

‖M‖F the Frobenius norm of a matrix M

‖M‖ the induced 2-norm of a matrix M

‖v(t)‖L2 the L2-norm of a square integrable function v(t) ∈ Rn,

i.e., ‖v(t)‖L2 :=
(∫∞

0 vT(t)v(t)dt
) 1

2

‖G(s)‖H∞ the H∞-norm of a stable proper transfer matrix G, i.e.,

‖G(s)‖H∞ := sup
ω∈R
‖G(jω)‖

‖G(s)‖H2 the H2-norm of a stable strictly proper transfer matrix G,

i.e, ‖G(s)‖H2 :=
(

1
2π

∫∞
−∞ tr(G(jω)GT(−jω))dω

) 1
2

viii



Chapter 1

Introduction

1.1 Background

As technology advances, systems to be dealt with become more complex and larger

in scale. For example in meteorological engineering [1, 2, 3, 4, 5, 6], we use system

models constructed by spatial discretization [7] of distributed parameter systems such

as thermal diffusion systems [8] and Navier-Stokes equations [7, 9]. For prediction and

data-assimilation with satisfactory accuracy, these systems necessarily contain hundreds

of thousands of equations. In addition, in electric power engineering [10, 11, 12, 13, 14],

we are required to maintain supply-demand balance of power network systems involving

more than one million consumers and a number of power plants towards efficient use

of renewable energy resources. In view of this, observers and controllers for large-scale

network systems tend to play important roles in various research field. Throughout this

thesis, we call network systems as dynamical systems evolving on networks, e.g., electric

power networks, spatially discretized systems and gene regulatory networks [15, 16].

In this thesis, we consider the following problem: What is a desirable observer and

controller suitable for handling large-scale network systems? Necessary requirements for

observers/controllers for large-scale network systems include:

(i) lower-dimensionality compared to systems of interest, and

(ii) existence of an a priori performance evaluation.

The requirement (i) is natural and indispensable from the viewpoint of computational

costs for implementation [17, 18]. The significance of the requirement (ii) is as follows:

One naive approach to construct a low-dimensional observer/controller is to design a

observer/controller for a low-dimensional model that approximates the behavior of the

1
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system of interest in an appropriate sense; see e.g., [4, 19] for observer design. To

construct such approximate model, model reduction techniques are available developed

in literature; see, e.g., [17, 18, 20]. However, in this approach, it is difficult to construct

low-dimensional observers/controllers achieving a prescribed performance, e.g., the L2-

norm of estimation error and the convergence rate. This is because the relation between

the approximation error and the performance is not explicitly taken into account. In

view of this, the theoretical guarantee of performances (i.e., the requirement (ii)) is

needed for observers/controllers.

Now, are the above two requirements sufficient for observers/controllers for large-scale

network systems? To consider this, we review several existing design methods satisfying

the two requirements. These methods can be categorized into two groups: those de-

signing a centralized low-dimensional observer/controller and those designing multiple

decentralized/distributed observers and controllers.

As related works for the former methods, [21, 22, 23] provide low-dimensional controller

design based on numerical optimization. However, the optimization problem is not com-

putationally friendly in general because that is non-convex due to rank constraints. In

literature, e.g. [24, 25, 26, 27], low-dimensional controller design based on model re-

duction techniques, which are computationally tractable, is proposed. For example, [24]

has shown that low-dimensional controller design via controller reduction where a low-

dimensional controller approximates an original controller for the system of interest can

be solved by frequency weighted model reduction techniques such as weighted-balanced

truncation [28] or weighted-optimal Hankel norm approximation [29]. See, e.g., [25] for

fundamentals. For low-dimensional observer design, to the best of our knowledge, there

are no methods with explicit consideration of influences of the approximation error on

the estimation error. Furthermore, since it is difficult to exactly estimate all of sys-

tem states by using low-dimensional observers in general, it is significant to determine

a few estimation signals that are suitable for capturing behavior of large-scale network

systems.

Next, let us quickly review decentralized/distributed estimation and control where indi-

vidual components are low-dimensional while they achieve some performances of whole

large-scale network systems. In [30], decentralized observer has been proposed in a sys-

tematic fashion, yet the resultant observers are often conservative from the viewpoint

of estimation performance. This is due to the fact that the interaction among subsys-

tems is not dealt with quantitatively. See, e.g.,[31] for survey. Furthermore, in [32] for

example, the authors have developed a method synthesizing a distributed dynamic out-

put feedback controller achieving H∞ performance for network systems on the basis of

dissipativity theory [33]. The optimal distributed controller can be obtained by solving
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a couple of LMIs simultaneously. In addition, [34] characterizes a class of convex prob-

lems in decentralized optimal control. See, e.g. [35, 36] for applications and surveys.

However, these methods require us to design distributed observers/controllers in a cen-

tralized manner. Thus, in particular for large-scale network systems (i.e., that involves

a number of subsystems), these methods do not fully fit for practical applications.

1.2 Contributions and Organization

Against the background mentioned in the previous subsection, in chapter 2, we propose

a design method of low-dimensional linear functional observers to estimate a given set of

states via observer reduction approach where a low-dimensional observer approximates

a given original observer for systems of interest. We first clarify that we have to take

into account not only an initial state estimation error but also external input signals.

Furthermore, analyzing the approximation error arising from the above two error factors

by means of model reduction techniques, in particular, structured model reduction in

[37], we clarify the relation between the approximation error and the L2-performance

of the estimation error. Moreover, we devise a systematic low-dimensional observer

construction algorithm satisfying a prescribed L2-performance of the estimation error.

This type of observer is useful for estimation of a limited number of states such as load

power in a particular area of electric power network systems. However, for example

in electric power network systems involving a number of consumers and various power

plants, we are required to estimate the load power of overall power network systems ( not

in a particular area) with small computational costs. This is because the power network

system becomes possibly unstable due to installation of a large amount of renewable

energy resources. However, it is difficult to exactly estimate all of system states by

using low-dimensional observers in general.

In view of this, in Chapter 3, we propose a novel framework of low-dimensional observers

called average state observer. The observer estimates averaged states, which represents

average behavior of systems from a macroscopic point of view, instead of estimating all

of system states. To explain this idea, let us consider the following example: From a

microscopic point of view, the behavior of fluid arises from complex interaction among

a huge number of molecules. On the other hand, from a macroscopic point of view,

we observe only a kind of average behavior of molecules. This fact implies that the

estimation of average behavior is essential to capture the fluid behavior (i.e., large-scale

network systems) from a macroscopic point of view. Since it is nontrivial to find a set

of states capturing average behavior in general, we cannot determine a signal to be esti-

mated in advance. To overcome this difficulty, we utilize the concept of clustered model
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reduction developed in [38, 39]. Furthermore, deriving a tractable representation of the

error system, we provide a design procedure for average state observers with systematic

determination of a set of states capturing average behavior of systems. Moreover, we

show a theoretical L2-error bound of estimation error by average state observers. The

average state observer is suitable for large-scale network systems in the sense that it not

only satisfies the requirements (i) and (ii) in the previous subsection, but also estimates

nontrivial average behavior of systems from a macroscopic point of view.

In Chapter 4, we propose hierarchical distributed control for network systems. The hi-

erarchical distributed control system consists of several layers in which subsystems and

hierarchically clustered subsystems are controlled by distributed controllers. The pro-

posed method enables us to construct each compositional distributed controller without

taking into account the other distributed controllers and the overall network system.

A notion of distributed design is introduced in [40], where a performance limitation

of controllers that are designed in a distributed manner is discussed by confining the

class of systems to handle. In addition, a distributed design method in terms of the

L1-induced norm has been developed for positive linear systems [41]. However, since

this method fully utilizes a specific property of positive systems, generalization to a

broader class of systems is not straightforward. In contrast, our proposed method is

applicable for general linear systems and has an advantage that an L2-performance of

the closed-loop system improves as improving a performance of distributed controllers

that stabilize disjoint subsystems individually. Towards systematic design, we utilize

state-space expansion that enables us to deal with the state variables associated with

disjoint subsystems and those associated with interference among hierarchically clus-

tered subsystems in a tractable manner. Moreover, by the integration of a hierarchical

distributed observer having good compatibility with the structured controller, we build

a framework to implement an observer-based hierarchical distributed control.

The proposed hierarchical distributed observers/controllers satisfies the requirement (ii)

in the previous subsection and has a property allowing us distributed design. However,

the designed hierarchical distributed (observer-based) controller in each layer necessarily

have the same dimension as that of the system to be controlled. Thus, the designed

hierarchical distributed controllers do not fully comply with practical application for

large-scale systems from a viewpoint of computational costs for implementation (i.e.,

requirement (i) is not satisfied).

In Chapter 5, we propose a design method of low-dimensional hierarchical distributed

controllers for large-scale network systems via a controller reduction approach. Sup-

posing that a hierarchical distributed controller is given by the method in the previous

chapter, we find a low-dimensional hierarchical distributed controller approximating the
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original one for any sets of locally stabilizing distributed controllers. Since the existing

controller reduction techniques, e.g., [24, 25], cannot explicitly take into account the in-

terconnection structure among controllers, this controller reduction problem cannot be

solved by the straightforward use of those techniques. Thus, we explicitly utilize the hi-

erarchical distributed structure of the closed-loop system. More specifically, taking into

account the inherent hierarchy of information transmission which can be represented

as the block-triangular structure of a coordinate transformed closed-loop system, we

show that the approximation error of compositional controllers in upper layers does not

affect those in lower layers. Next, using biorthogonal projection [17], we clarify the rela-

tion between the approximation error of compositional controllers and the performance

degradation of the closed-loop system.

Finally, in Chapter 6, as a first step towards low-dimensional observers/controllers design

for nonlinear large-scale network systems, we show the importance and necessity of

nonlinear low-dimensional modelling through an example of a real industrial application.

More specifically, we first construct a nonlinear thermal-diffusion network model of the

plasticization cylinder, which is an important component in plasticization process, while

taking into account the temperature-dependent properties of heaters (which makes the

model nonlinear). However, the network system, which is spatially discretized model,

becomes an inevitably high-dimensional nonlinear system. Thus, in the second half of

this chapter, we reduce the dimension of nonlinear network systems. More specifically,

utilizing particular structures of the nonlinear network system arising from radiation

to the air of heaters, we show that the reduced nonlinear network system preserves the

stability with an a priori approximation error bound. The nonlinear reduced order model

is expected to be useful for quality management and improvement of plastic products.

1.3 Organization

In Chapter 2, we propose a design method of low-dimensional linear functional observers

on the basis of model reduction techniques. This method can not only preserves stability

of the low-dimensional observer but also guarantee an a priori estimation error bound.

Moreover, owing to the indipendency of the original observer design from observer reduc-

tion, the method is compatible with the standard feedback gain determination methods,

such as pole placement techniques. The efficiency of the proposed method is shown

through a numerical example of electric power network systems.

In Chapter 3, we propose a novel framework of low-dimensional observers called average

state observer, which estimates averaged states instead of estimating all of system states.

First, we give a mathematical formulation of the average state observer. Furthermore, we
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derive the error system clarifying that not only an initial state estimation error but also

the initial value response of systems and the input signal are relevant to the observation

error. On the basis of this error analysis, we devise a systematic design procedure for

average state observers with determination of a set of system states capturing average

behavior. The efficiency of the proposed average state observers is shown through a

numerical example for a reaction-diffusion system evolving over a complex network.

In Chapter 4, we propose a design method of hierarchical distributed controllers for

network systems. The hierarchical distributed controller has an advantage that an L2-

performance of the closed-loop system is guaranteed for all sets of locally stabilizing dis-

tributed controllers. Towards systematic design, we first introduce state-space expansion

to independently deal with the state variables associated with disjoint subsystems and

those associated with the interference among hierarchically clustered subsystems. By

the hierarchical distributed controller, whose compositional controllers can be designed

individually, it is shown that an L2-performance of closed-loop systems improves as just

improving an L2-performance of local controllers. Moreover, by the integration of a hi-

erarchical distributed observer having good compatibility with the structured controller,

we build a framework to implement an observer-based hierarchical distributed control.

The efficiency of the proposed control system is shown through an example of power

network systems.

In Chapter 5, we propose a design method of low-dimensional hierarchical distributed

controllers for large-scale network systems. Towards systematic design, we solve a con-

troller reduction problem where the low-dimensional controller approximates the given

hierarchical distributed controller in the previous chapter for any sets of locally stabiliz-

ing distributed controllers while preserving the same hierarchical distributed structure

as that of the original controller. Finally, we demonstrate the efficiency of the proposed

method through a numerical example of power network systems.

In Chapter 6, as a first step towards low-dimensional observers/controllers design for

nonlinear large-scale network systems, we construct a low-dimensional nonlinear model

of the plasticization cylinder that has a spatially distributed nonlinear dynamics. First,

we derive nonlinear distributed parameter models of the plasticization cylinder on the

basis of the physical first principles. Next, we reduce the model complexity by utiliz-

ing the particular structures of the nonlinearity arising from temperature-dependency

of radiation of heaters. Whereas the original nonlinear model is an 808-dimensional

spatially discretized model, we obtain an 28-dimensional model while guaranteeing a

practically satisfactory accuracy. Furthermore, we show the validity of the resultant

model by experiment and numerical simulation.



Chapter 2

Low-Dimensional Functional

Observer Design

2.1 Introduction

In this chapter, we propose a novel method of designing low-dimensional observer that

satisfies a specified estimation error precision. The proposed method is based on ob-

server reduction approach where a low-dimensional observer approximates an observer

for the system of interest. We first clarify that we have to take into account not only

an initial state estimation error but also external input signals in low-dimensional ob-

server design problems in general. In view of this, we define an evaluation function as

weighted sum of estimation errors with respect to the initial state error and the input

signal. This evaluation function represents estimation performance degradation arising

from approximation of the original observer. Analyzing this evaluation function based

on model reduction techniques, in particular, structured model reduction in [37], we

clarify the relation between the approximation error and the estimation performance.

Furthermore, we derive an a priori L2-error bound on the performance degradation with

a systematic design procedure. The proposed method has an advantage that existing

observer design methods, e.g., pole placement, can be employed to design original ob-

servers because the original observer can be designed independently of its reduction.

Finally, we show the efficiency of the proposed method through a numerical example of

electric power network systems.

This chapter is organized as follows: In Section 2.2, we formulate a design problem of

low-dimensional functional observers via an observer reduction approach. In Section

2.3, we devise a design method of low-dimensional observers by biorthogonal projection.

Furthermore, we show an a priori L2-error bound on the performance degradation. In

7
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Section 2.4, we show the efficiency of the proposed method through a numerical example

of power network systems. Finally, Section 2.5 concludes this chapter.

2.2 Problem Formulation

2.2.1 Design Problem of Low-dimensional Observers

In this chapter, we consider n-dimensional linear systems described by

Σ :


ẋ = Ax+Bu

y = Cx+Du

z = Sx

(2.1)

where x(0) = x0 ∈ Rn, A ∈ Rn×n, B ∈ Rn×mu , C ∈ Rmy×n, D ∈ Rmy×mu , S ∈ Rmz×n

and y ∈ Rmy is an measurement output, z ∈ Rmz is a signal to be estimated. We first

describe the problem formulation and the main result for stable Σ. The extension to

unstable systems is described in Remark 2.5 in Section 2.3.1. In addition, we assume

that the observability matrix [CT, (CA)T, . . . , (CAn−1)T]T is of full rank.

For Σ in (2.1), we consider a minimal dimensional observer in [42] given by

Σo :

{
ξ̇ = Fξ +Hu+Gy

zo = Lξ +My
(2.2)

where no := n − my, F ∈ Rno×no , H ∈ Rno×mu , G ∈ Rno×my , L ∈ Rmz×no and

M ∈ Rmz×my . For simplicity, we assume that ξ(0) = 0.

Let us review properties of observers Σo. The signal z(t) of Σ depends on an initial state

x0 and an input signal u(t). In this sense, we describe the signal z as z(t;x0, u). Similarly

to this, the measurement output y can be described as y(t;x0, u). Since y(t;x0, u) and

u(t) are applied into the observer Σo, the estimated signal zo in (2.2) depends on x0

and u, which implies that zo can be described as zo(t;x0, u). It is known in [43] that

the transfer function of Σ from u to zo coincides with that of Σo from u to z. In other

words, the estimation error of z(t;x0, u) by zo(t;x0, u) does not depend on u, i.e.,

ez(t;x0) := z(t;x0, u)− zo(t;x0, u) (2.3)

and this estimation error ez(t;x0) converges to zero if F,H,G,L and M are designed in

a suitable sense. Thus, we can see that the observer Σo exactly cancels the influence of

u on the estimation error ez while Σo makes the estimation error small depending on

the initial state of systems x0.
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Next, for Σ in (2.1), we consider n̂o-dimensional observers described by

Σ̂o :

{ ˙̂
ξ = F̂ ξ̂ + Ĥu+ Ĝy

ẑo = L̂ξ̂ + M̂y
(2.4)

where ξ̂(0) = 0, F̂ ∈ Rn̂o×n̂o , Ĥ ∈ Rn̂o×mu , Ĝ ∈ Rn̂o×my , L̂ ∈ Rmz×n̂o and M̂ ∈ Rmz×my .

Without loss of generality, we assume that n̂o ≤ no. In what follows, Σ̂o is called a

low-dimensional functional observer because the estimated signal ẑo is a function of the

state ξ̂.

Similarly to the case of Σo, let us consider the estimation error by Σ̂o. We can describe

ẑo(t) as ẑo(t;x0, u) because the estimated signal ẑo by the low-dimensional functional

observer Σ̂o depends on x0 and u. The transfer function of Σ̂o from u to ẑo differs from

that of Σ from u to z in general. Thus, the estimation error z − ẑo depends not only on

x0 but also u, i.e.,

êz(t;x0, u) := z(t;x0, u)− ẑo(t;x0, u). (2.5)

This fact implies that we should take into account not only x0 but also u in low-

dimensional observer design.

2.2.2 Problem Formulation via Observer Reduction

In this section, we formulate the problem to design a low-dimensional functional observer

Σ̂o in (2.4) as a problem approximating an observer Σo in (2.2). More specifically, using

biorthogonal projection [17], we give design parameters in Σ̂o by

F̂ = PFP †, Ĥ = PH, Ĝ = PG, L̂ = LP †, M̂ = M (2.6)

where P ∈ Rn̂o×no and P † ∈ Rno×n̂o satisfying PP † = In̂o , and F,H,G,L and M are

given such that ez in (2.3) converges with a desirable convergence rate.

We first define an approximation error of Σo by Σ̂o as

∆(t;x0, u) := ez(t;x0)− êz(t;x0, u) (2.7)

Note that ∆ depends on not only u but also the initial state of Σ x0 because the

transfer function of Σo from y(t;x0, u) depending on x0 to zo differs from that of Σ̂o

from y(t;x0, u) to ẑo in general. Since the response of linear systems coincides with sum

of the initial response and the input response, we define the approximation error arising

from u as

∆u(t) := ∆(t; 0, u) (2.8)
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and that arising from x0 as

∆x0(t) := ∆(t;x0, 0). (2.9)

Without loss of generality, we assume that ‖x0‖ = 1 because ∆(t; cx0, 0) ≡ c∆x0(t) holds

for any c ∈ R+. To take into account both error factors of ∆u and ∆x0 , let us consider

an evaluation function as

J(∆x0 ,∆u) :=
√
wx0‖∆x0(t)‖2L2 + wu‖∆u(t)‖2L2 (2.10)

where wx0 ∈ R+ and wu ∈ R+ satisfying wx0 +wu = 1 are design parameters to tune the

weight of approximation error factors ∆x0 and ∆u. For example, J with wx0 = 1 (resp.

wu = 1) evaluates the approximation error arising from an initial state x0 (resp. an

input u). In this sense, the function J represents performance degradation to evaluate

the approximation error of ẑo by zo.

In this setting, let us formulate an observer reduction problem to design Σ̂o which makes

J in (2.10) small. For simplicity, we formulate a problem for unit impulse input signals

u, i.e., u(t) = u0δ(t) for any u0 ∈ Rmu such that ‖u0‖ = 1.

Problem 2.1. For a given Σ in (2.1), give Σo in (2.2) such that ez(t;x0) in (2.3)

converges with a desirable convergence rate. Define J in (2.10) for given wx0 ∈ R+ and

wu ∈ R+. Then, find n̂o and a low-dimensional functional observer Σ̂o in (2.4), (2.6)

such that

J(∆x0 ,∆u) ≤ ε (2.11)

for a given ε > 0 and any u(t) = u0δ(t) where u0 ∈ Rmu satisfying ‖u0‖ = 1.

Remark 2.1. In the line of work [42, 43, 44, 45, 46, 47], full or partial state observers can

be designed from the view point of exactly canceling the effect of external input signals

with respect to state estimation error. However, it is difficult to design low-dimensional

observers based on the above design methods in general because the state-space of

observers must include states having even little influence on state estimation. In contrast,

our approach introduce the notion of approximation to observer design. In other words,

truncating approximately uncontrollable state-space, we consider constructing a further

low-dimensional functional observer.

Note that Problem 2.1 turns out to be a problem to find biorthogonal projection ma-

trices P and P † in (2.6) satisfying (2.11) while determining n̂o on the assumption that

F,H,G,L and M are given in a suitable sense.
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2.3 Low-dimensional Functional Observer Design

2.3.1 Error Analysis of Low-dimensional Functional Observers

In this subsection, we investigate the relation between the performance degradation

function J(∆x0 ,∆u) in (2.10) and the choice of the biorthogonal projection defined by

P and P †. First, we show the following lemma that will be needed for an error analysis

below.

Lemma 2.2. For a given stable Σo in (2.2), let V � 0no be given such that

FTV + V F ≺ 0no . (2.12)

Then, there exists γ ∈ (0,∞) satisfying

Sγ(F,L, V ) ≺ 0n+no (2.13)

where

Sγ(F,L, V ) :=

[
FTV + V F + γ−1LTL V F

FTV −γV

]
. (2.14)

Furthermore, let P = WV 1
2

and P † = V −1
1
2

WT where W ∈ Rn̂o×no such that WWT =

In̂o. Then, it follows that∥∥∥∥LP †(sIn̂o − PFP †)−1PFV −1
1
2

∥∥∥∥
H∞

< γ (2.15)

for any W .

Proof. First, we prove the existence of γ ∈ (0,∞) satisfying (2.13). Note that (2.13) is

equivalent to

FTV + V F + γ−1(LTL+ V FV ) ≺ 0no . (2.16)

From (2.12), there exists β > 0 such that FTV + V F ≺ −βIno . Hence, for any positive

η

γ =
1

β

(
λmax(LTL+ V FV ) + η

)
satisfies (2.16) where λmax(X) denotes the largest eigenvalue of semipositive matrix

X = XT � 0no . Thus, the existence of γ > 0 satisfying (2.13) is proven. Next, we

show (2.15) by the Bounded Real Lemma in [48]. More specifically, on the basis of the

structured model reduction techniques in [37], we show

Fγ(PFP †, PFV −1
1
2

, LP †; In̂o) ≺ 0n+n̂o (2.17)
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holds with a storage function V (ξ̂) = ξ̂Tξ̂ where

Fγ(A,B,C;V ) :=

[
ATV + V A+ γ−1CTC V B

BTV −γImu

]
.

Note that Sγ(F,L, V ) can be written as

Ṽ TSγ(V 1
2
FV −1

1
2

, LV −1
1
2

, Ino)Ṽ

where Ṽ := dg(V 1
2
, V 1

2
). Hence, (2.13) is equivalent to

Sγ(V 1
2
FV −1

1
2

, LV −1
1
2

, Ino) ≺ 0n+no . (2.18)

Furthermore

Fγ(PFP †, PFV −1
1
2

, LP †; In̂o)

can be rewritten as

W̃Sγ(V 1
2
FV −1

1
2

, LV −1
1
2

, Ino)W̃T

where W̃ := dg(W, In). Note that W is of full row rank. Thus, (2.18) yields (2.17).

Lemma 2.2 shows that there always exist a positive-definite matrix V and bounded γ > 0.

Furthermore, it follows for any W that PFP † is stable and a projection-based reduced

model admits the H∞-bound shown in (2.15). This H∞-bound plays an important role

for the error analysis in the following theorem, which gives a solution to the observer

reduction problem defined in Section 2.2.2.

Theorem 2.3. Consider Problem 2.1. Let

A :=

[
F GC

0 A

]
, B :=

[
GD +H

B

]
(2.19)

and K � 0n+no be given such that

AK +KAT + wuBBT + wx0dg(0, In) = 0. (2.20)

Let V � 0no and γ > 0 such that

Sγ(F,L, V ) ≺ 0n+no (2.21)
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where Sγ in (2.14). Furthermore, for a given θ ∈ R+, suppose that W ∈ Rn̂o×no satisfies

WWT = In̂o and

im

(
(LV −1

1
2

)T
)
⊆ im(WT),

√
tr(Φ)− tr(WΦWT) ≤ θ (2.22)

where

Φ := V 1
2
K1:noV

T
1
2

∈ Rno×no (2.23)

and K1:no ∈ Rno×no denotes the principal submatrix of K corresponding to the first n

rows and columns. Then, Σ̂o with P = WV 1
2

and P † = V −1
1
2

WT in (2.6) satisfies

J(∆x0 ,∆u) ≤ γθ (2.24)

for any unit impulse input u and x0 ∈ Rn such that ‖x0‖ = 1.

Proof. Define S := [−L, S −MC], X0 := [0, xT0 ]T and

P := dg(P, In), P† := dg(P †, In).

Letting X := [ξT, xT]T, we have

Σez :

{
Ẋ = AX + Bu
ez = SX −MDu

with X (0) = X0. Similarly to this, letting X̂ := [ξ̂T, xT]T, we have

Σ̂êz :

{ ˙̂X = PAP†X̂ + PBu
êz = SP†X̂ −MDu

with X̂ (0) = PX0. Consider the similarity transformation of the error system defined

by Σez and Σ̂êz with

T =

[
−P In+n̂o

In+no 0

]
, T−1 =

[
0 In+no

In+n̂o P

]
.

Then, we have

Tdg(A,PAP†)T−1 =

[
PAP† −PAP†P

0 A

]
, T

[
B
PB

]
=

[
0

B

]
, T

[
X0

PX0

]
=

[
0

X0

]
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and [S, −SP†]T−1 = [−SP†, SP†P] where

P :=
[
WV 1

2
, 0
]
, P† :=

[
WV −T1

2

, 0

]T
for W ∈ R(n−n̂o)×n such that [WT,W

T
]T ∈ Rn×n is unitary. Note that

P†P = JP†P, J := dg(Ino , 0)

holds from the block structure of P†P. Thus, it follows for any u0 ∈ Rmu satisfying

‖u0‖ = 1 that

‖∆u(t)‖L2 ≤ ‖Θ(s)JP†P(sIn+no −A)−1B‖H2

where

Θ(s) := SP†(sIn+n̂o − PAP†)−1PA+ S.

Since LV −1
1
2

W
T

= 0 follows from (2.22), we have

Θ(s)JP†P =

[
−θ(s)V −1

1
2

, 0

]
dg(W

T
WV 1

2
, 0)

where

θ(s) := LP †(sIn̂o − PFP †)−1PF.

Hence, it follows that

‖∆u(t)‖2L2 ≤ ‖θ(s)V
−1
1
2

‖2H∞ ‖[WV 1
2
, 0](sIn+no −A)−1B‖2H2

.

Furthermore, from simple calculation, we have

X0XT
0 � dg(0, In)

for any x0 ∈ Rn satisfying ‖x0‖ = 1. Thus, it follows that

‖∆x(t)‖2L2 ≤ ‖θ(s)V
−1
1
2

‖2H∞ ‖[WV 1
2
, 0](sIn+no −A)−1[0, In]T‖2H2

.

Hence, we have

J(∆x0 ,∆u) ≤ γ
√

tr(WV 1
2
(K(1)

1:n +K(2)
1:n)V T

1
2

W
T

)

where K(1) and K(2) are the solutions of Lyapunov equations described as

AK(1) +K(1)AT + wx0dg(0, In) = 0

AK(2) +K(2)AT + wuBBT = 0
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respectively. Note that from Lyapunov theorem in [49] there always exist semipositive

definite solutions K(1) and K(2) because A is stable. Furthermore, the uniqueness of the

Lyapunov equation solution yields

K = K(1) +K(2).

In addition, it follows from (2.22) that√
tr(WΦW

T
) =

√
tr(WV 1

2
K1:noV

T
1
2

W
T

) ≤ θ.

Noting that ‖θ(s)V −1
1
2

‖H∞ < γ follows from Lemma 2.2, we have

J(∆x,∆u) ≤ γ
√

tr(WΦW
T

) ≤ γθ.

Hence, the claim follows.

Theorem 2.3 provides an appropriate biorthogonal projection to approximate the min-

imal dimensional observer Σo in (2.2). This result is novel in the sense that, the per-

formance degradation is evaluated as (2.24) while explicitly taking into account the

dynamics of Σ in (2.1) and Σo in (2.2). Note that θ in (2.24) can be used as a design cri-

terion to regulate the approximating quality of the resultant low-dimensional functional

observer.

Remark 2.4. To find n̂o and W ∈ Rn̂o×no such that WWT = In̂o and (2.22) for a given

θ, we can use the following procedure: First, we find the set {(λi, vi)}i∈{1,...,no} of all

eigenpairs of Φ in (2.23). Note that we assume that λi ≥ λi+1 and ‖vi‖ = 1 without loss

of generality. Next, we find the smallest m ∈ {1, . . . , no} such that

θ2 ≥ λm+1 + · · ·+ λno (2.25)

and construct Vm = [v1, . . . , vm] ∈ Rno×m. Finally, by the Gram-Schmidt process, we

derive W such that

im(WT) = im([Vm, (LV
−1
1
2

)T]).

Then, the dimension of the low-dimensional functional observer turns out to be n̂o =

rank([Vm, (LV
−1
1
2

)T]). Moreover, the resultant W satisfies WWT = In̂o and (2.22).

Remark 2.5. We can extend Theorem 2.3 for unstable Σ as follows: Let ns be the number

of stable poles of A and

U ∈ Rns×(n+no), U ∈ R(n+no−ns)×(n+no) (2.26)
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be given such that UAUT ∈ Rns×ns is stable and

UAUT
= 0, UTU + U

T
U = In+no .

In additiion, let KU � 0ns be given such that

sym(UAUTKU ) + wuUBBTUT + wx0Udg(0, In)UT = 0

where sym(X) := X +XT and define K as K := UTKUU . If W satisfies (2.22) and

im([V 1
2
, 0]U

T
) ⊆ im(WT) (2.27)

then, the result same as in Theorem 2.3 is assured. This is proven as follows:

First, U satisfies

UAUT =

[
UAUT

UAUT

0 UAUT

]
, U :=

[
U

U.

]

Hence, taking the similarity transformation by U , it follows from (2.27) that

‖WV(sIn+no −A)−1B‖H2 =

√
tr(WVK(1)VTWT

)

where V := [V 1
2
, 0] ∈ Rno×(n+no) and K(1) is given by K(1) := UTK(1)

U U with K(1)
U � Ons

satisfying

sym(UAUTK(1)
U ) + wuUBBTUT = 0.

Note that there always exists a unique semipositive definite solution K(1)
U because UAUT

is stable. Similarly to this, defiine K(2) as K(2) := UTK(2)
U U where K(2)

U is the solution of

sym(UAUTK(2)
U ) + wx0Udg(0, In)UT = 0.

Then, K = K(1) +K(2) follows.

2.3.2 Design Algorithm of Low-dimensional Functional Observers

In this subsection, we propose a procedure to construct a low-dimensional functional

observer Σ̂o in (2.4) being a solution of Problem 2.1. More specifically, a procedure to

solve Problem 2.1 is summarized as follows:

(a) For Σ in (2.1), construct Σo in (2.2) such that ez ∈ Rmz in (2.3) converges with

a desirable convergence rate.
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(b) Find U and U such that (2.26) and UAUT is stable.

(c) Find γ ∈ R+ such that (2.21) by using V satisfying (2.12).

(d) For a given ε > 0, let θ = ε/γ.

(e) For given wx0 ∈ R+ and wu ∈ R+ and θ, find W ∈ Rn̂o×no satisfying WWT =

In̂o , (2.22) and (2.27). More specifically, giving Vm by the procedure shown in

Remark 2.4, we construct W satisfying

im(WT) = im([Vm, (LV
−1
1
2

)T, [V 1
2
, 0]U

T
])

by the Gram-Schmidt process.

(f) Construct biorthogonal projection matrices P = WV 1
2

and P † = V −1
1
2

WT.

(g) Construct Σ̂o by (2.4) and (2.6).

The designed observer Σ̂o, which is a further reduced observer than the original minimal

dimensional observer Σo, guarantees the estimation performance given by (2.10). The

efficiency of this design procedure is demonstrated through a numerical example in the

following section.

2.4 Numerical Simulation

2.4.1 Power Network Systems

In this section, we deal with a power network system in [10, 11, 50] composed of gener-

ators and loads. Let N be the number of generators. For i ∈ {1, . . . , N}, we describe

the dynamics of the i-th generator by

Σg
i :

 φ̇i = Ãiφi + 1
Mi
b̃pgi + b̆ui

δgi = c̃φi
(2.28)

with

Ãi :=

[
Afi

−1
Mi
bc

kibb
T Aci

]
, b̃ :=

[
b

02×1

]
, b̆ := c̃T, c̃ :=

[
c 01×2

]
and

Afi :=

[
0 1

0 −Di
Mi

]
, Aci :=

[
− 1
Ti

1
Ti

0 −kiRi

]
, b :=

[
0

1

]
, c :=

[
1 0

]
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where Mi, Di, Ti, ki and Ri are positive constants that represent inertia constant, damp-

ing coefficient, turbine time constant, governor time constant, and velocity tuning rate,

respectively and φi ∈ R4 denotes the state of a prime mover and a governor respectively,

pgi ∈ R denotes the output electric power difference of a generator, δgi ∈ R denotes the

phase angle difference of a generator, ui ∈ R denotes the desired value of phase angle

difference. The generator Σg
i in (2.28) has a structure that the governor described by

(Aci , b, c) and the prime mover described by (Afi , b, c) are feedback interconnected.

Next, let L be the number of loads. In this thesis, we model loads as rotational spring-

mass-damper systems in [10]. More specifically, for i ∈ {1, . . . , L}, we give the dynamics

of the ith load by

Σl
i :

 ψ̇i = Afi ψi + 1
Mi
bpli

δli = cψi
(2.29)

where ψi ∈ R2 denotes phase angle difference and angular velocity difference, pli ∈ R de-

notes injected electric power difference, δli denotes phase angle difference. Furthermore,

the interconnection among generators and loads is given by

p = −Y δ (2.30)

where

p := [pg1, . . . , p
g
N , p

l
1, . . . , p

l
L]T, δ := [δg1 , . . . , δ

g
N , δ

l
1, . . . , δ

l
L]T

and Y ∈ R(N+L)×(N+L) denotes an admittance matrix, which is a graph Laplacian

matrix in [15] because the injected electric power p depends on the difference of phase

angle δ among interconnected generators and loads. Define a state variable as

x := [φT1 , . . . , φ
T
N , ψ

T
1 , . . . , ψ

T
L ]T ∈ Rn (2.31)

where n := 4N + 2L. In addition, we take an measurement output y and z in (2.1) as

the phase angle and the angular velocity of all generators, and the angle of the first to

the Lzth loads, respectively, i.e.,

y := dg([I2, 02×2], . . . , [I2, 02×2])[φT1 , . . . , φ
T
N ]T ∈ R2N

z := dg(c, . . . , c)[ψT
1 , . . . , ψ

T
Lz

]T ∈ RLz
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Figure 2.1: Order of resulting models versus values of ε.

Finally, Σ in (2.1) can be described as follows:

A = dg(Ã1, . . . , ÃN , A
f
1 , . . . A

f
L)− B̃Y C̃

B̃ = dg
(

1
M1
, . . . , 1

MN
, 1
M1
, . . . , 1

ML

)
dg(IN⊗b̃, IL⊗b), C̃ = dg(IN ⊗ c̃, IL ⊗ c)

B =

[
1N ⊗ b̆
02L×1

]
, C = [dg([I2, 02×2], . . . , [I2, 02×2]) 02N×2L] , D = 02N×1,

S =
[
0Lz×4N dg(c, . . . , c) 0Lz×2(L−Lz)

]
It should be noted that the dynamics of this power network system is invariant with

respect to the bias of electric power angles, i.e.,

Av = 0, v := [1T
N ⊗ c̃ 1T

L ⊗ c]T ∈ Rn (2.32)

holds because Y in (2.30) is a graph Laplacian matrix. Thus, at least one eigenvalue of

A is on the imaginary axis, which yields that Σ is semi-stable.

2.4.2 Low-dimensional Functional Observer Design for Power Network

Systems

In this subsection, we demonstrate the efficiency of the proposed method to construct

low-dimensional functional observers. In what follows, we deal with an electric power

network system composed of N = 50 generators and L = 400 loads, which yields n =

1000. In addition, we take a signal to be estimated z ∈ R100 as the phase angles

of the first to Lz = 100 loads. Let parameters of Σ are given as follows: For all i,
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Figure 2.2: Performance function versus n̂o.
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Figure 2.3: ‖∆u(s)‖H∞ versus n̂o.

we take ki = 0.01, Ri = 0.05, Di = 1.5, Ti = 0.2 and Mi = 10. In addition, the

admittance matrix Y in (2.30) is given as the graph Laplacian of a complex network

model called Holme-Kim in [51] and nonzero values in off-diagonal elements of Y are

randomly chosen from [0, 1]. Then, A in (2.1) has one eigenvalue on the imaginary axis

and the corresponding eigenvector is denoted by v in (2.32). The other eigenvalues of A

are located in the left half open complex plane.

Taking design parameters wx0 and wu in (2.10) as wx0 = 0.1, wu = 0.9, we first design

a set of low-dimensional functional observers Σ̂o in (2.4) by the procedure shown in

Section 2.3.2 for several given values of ε in (2.11). More specifically, let U in (2.26) be
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0 10 20 30 400
1
2
3
4
5
6
7

Time[s]

A
n
g
le

Figure 2.5: Initial value responses of angle of the first load.

v in (2.32). In the step (c), we find V by solving (2.12) and find γ > 0 satisfying (2.21).

Next, design Σ̂o along with steps (d)-(g) for several given values of ε.

In FIGURE. 2.1, we plot the resultant dimension of low-dimensional functional observers

n̂o versus the values of ε. From this figure, we can see that n̂o is decreasing as ε is

increasing. This is because θ in (2.25) is given by θ = ε/γ with a constant value of γ

depending on Σo. Thus, the smallest m satisfying (2.25) decreases as ε increases.

Furthermore, we plot in FIGURE. 2.2 the resultant performance degradation J(∆x0 ,∆u)

in (2.10) with respect to n̂o. From this figure, we can see that the estimation performance

improves as taking a smaller value of ε. These results show that there is a tradeoff
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Figure 2.7: Comparison of the first element of z, ẑo with that of response of designed
observer by existing approach.

between the low-dimensionality and performances. Furthermore, the design parameter

ε can regulate the tradeoff.

In the previous section, for unit impulse input u, we have analyzed the approximation

error and devised a design procedure based on the error analysis. Next, we examine the

resultant low-dimensional functional observer makes the approximation error small for

other input signals u(t). In FIGURE. 2.3, we plot ‖∆u(s)‖H∞ , which is the H∞-norm

of the transfer function of ∆(t) from u, with respect to n̂o. FIGURE. 2.3 shows that

‖∆u(s)‖H∞ is decreasing as the dimension n̂o is increasing. This result implies that the

proposed design method is effective for any square-integrable input signals u.
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Furthermore, we compare the low-dimensional functional observer Σ̂o with the minimal

dimensional observer Σo by comparing the resultant trajectories of ẑo and zo. Note that

the dimension of Σo is n̂o = 900. We plot the first element of z, zo and ẑo in (2.1),

(2.2) and (2.4) in FIGURE. 2.4 where we give x0 ∈ R1000 randomly and u(t) = 0.02 +

sin(0.1t) cos(0.1t) sin(0.05t) containing multiple frequencies. We omit the other elements

because they behave similarly to the first elements. We can see from FIGURE. 2.4 that

the trajectories of ẑo(t) depicted as the dotted lines with circles are getting closer to

zo(t) of Σo as the dimension of Σ̂o is increasing.

Furthermore, taking n̂o = 190, we show a result for several values of wx0 and wu in

J(∆x0,∆u) in (2.10). In FIGURE. 2.5 (resp. FIGURE. 2.6), we plot initial responses and

(resp. input responses) of the first element of z, zo and ẑo in (2.1), (2.2) and (2.4).

We take x0 and u as the same above. From these figures, the estimation performance

of initial responses (resp. input responses) improves when the weight for initial states

wx0 (resp. that for inputs wu) gets larger. This result implies that we can tune the

estimation performance by regulating weight wx0 and wu in (2.10) without changing the

dimension of low-dimensional functional observers.

Finally, we compare the proposed method with an existing method in [19]. Let the

dimension of low-dimensional functional observer by proposed method be n̂o = 190.

The design procedure in [19] is summarized as follows: First, we construct a reduced

order model approximating the transfer function of Σ in (2.1) from u to y by the balanced

truncation [17]. Then, the resultant model is 190-dimensional system and the H∞-norm

of the model reduction error results in 1× 10−14. Next, we construct a Luenberger-type

observer for this approximant with an estimated signal compatible with z.

In FIGURE. 2.7, the glay dotted line, the black solid line with white circles and that

with black circles depict the first element of z, ẑo and the estimated signal of the low-

dimensional observer designed by the above method, respectively. We can see from this

figure that estimated signal by the low-dimensional observer designed by the existing

method is fluctuated even though the model reduction error is sufficiently small. This is

because the low-dimensional observer designed by the existing method does not take into

account the influence of x0 on estimated signals. This result implies that as mentioned

in Section 2.2, we have to take into account both error factors arising from u and x0 in

low-dimensional observer design problems.
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2.5 Chapter Summary

In this chapter, we have proposed a method of designing low-dimensional functional

observers that satisfy a prescribed estimation performance. The proposed method is

based on an observer reduction approach where a low-dimensional observer approximates

an observer for the system of interest. We have clarified that we have to take into account

not only an initial state estimation error but also external input signals. In view of

this, we define an evaluation function which deals with both error factors arising from

an initial state estimation error and external input signals. Analyzing this evaluation

function based on model reduction techniques, we have derived an a priori L2-error

bound on the evaluation function with a systematic design procedure. The proposed

method has an advantage that existing observer design methods can be employed to

design original observers because original observer can be designed independently of its

reduction. Finally, we have shown the efficiency of the proposed method through an

numerical example of electric power network systems.
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Average State Observers

3.1 Introduction

In this chapter, we propose a novel framework of low-dimensional observers called aver-

age state observer, which estimates averaged states (i.e., average behavior of the target

network system from a macroscopic point of view) instead of estimating all of the system

states. Since it is nontrivial to find a set of states capturing average behavior in gen-

eral, we cannot determine the estimation signal capturing average behavior of systems

in advance. To overcome this difficulty, we utilize the clustered model reduction tech-

nique developed in [38, 39]. Furthermore, deriving a tractable representation of the error

system, we provide a design procedure for average state observers with systematic deter-

mination of a set of states capturing average behavior of the system. Moreover, we show

a theoretical L2-error bound of the estimation error by an average state observer. The

efficiency of the proposed average state observer is shown through a numerical example

for a reaction-diffusion system evolving over a directed complex network.

The organization of this chapter is as follows: In Section 3.2, we first formulate average

state observers. Furthermore, deriving a tractable representation of the error system, we

clarify differences between the design of classical linear functional state observers and

that of average state observers. In Section 3.3.1, we show a road map for systematic

design of average state observers. Then, in Section 3.3.3, we devise a design proce-

dure of average state observers that can estimate average behavior of the system from a

macroscopic point of view. In Section 3.4, we show the efficiency of the proposed meth-

ods through a numerical example of a reaction-diffusion system on a directed network.

Finally, concluding remarks are described in Section 3.5.

25
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3.2 Fundamentals of Average State Observers

3.2.1 Review of Functional State Observers

In this chapter, we deal with the n-dimensional linear system described by

Σ :

{
ẋ = Ax+Bu,

y = Cx+Du,
x(0) = x0, (3.1)

where A ∈ Rn×n, B ∈ Rn×mu , C ∈ Rmy×n, and D ∈ Rmy×mu . To simplify the ar-

guments, we first show results for stable systems Σ. The extension to unstable Σ is

provided in Section 3.3.2. In Σ described by (3.1), y ∈ Rmy denotes a measurement

output signal. Furthermore, we give a signal to be estimated by

z = Sx (3.2)

where S ∈ Rmz×n. In general, we do not know a set of states capturing average behavior

of Σ in advance. In view of this, we suppose that S in (3.2) is not given in advance.

In this notation, let us consider the n-dimensional observer, which is a Luenberger-type

observer, described by

O :

 ˙̂x = Ax̂+Bu+H(y − ŷ),

ŷ = Cx̂+Du,
x̂(0) = x̂0, (3.3)

where the observer gain H ∈ Rn×my is a design parameter. Similarly to (3.2), we define

the estimation signal of z by

ẑ = Sx̂. (3.4)

In what follows, O is referred to as a functional state observer [43, 47] because z and ẑ

are defined as functions of x and x̂.

Define the state error by e := x − x̂. It is well-known that the error system with this

functional state observer can be described by

E :

 ė = (A−HC)e,

∆ = Se,
e(0) = e0 (3.5)

where

∆ := z − ẑ, e0 := x0 − x̂0
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denote the estimation error and the initial state error, respectively. Note that the

estimation error turns out to be a function of e0, i.e.,

∆ = ∆(t; e0). (3.6)

Usually, we design the observer gain H such that this error system has a desirable

behavior. To regulate a convergence rate of estimation errors, for a given constant

δ ∈ R+, one can design H such that

sup
e0 6=0

‖∆(t; e0)‖L2
‖e0‖

≤ δ. (3.7)

In the next subsection, we define a lower-dimensional functional observer as a general-

ization of this n-dimensional functional state observer.

3.2.2 Error Analysis of Average State Observers

In this subsection, for Σ in (3.1), we define an n̂-dimensional functional state observer as

a generalized one of O in (3.3). More specifically, on the basis of the notion of orthogonal

projection [17], we give an n̂-dimensional functional state observer by

OP :

 ˙̂x = PAPTx̂+ PBu+H(y − ŷ),

ŷ = CPTx̂+Du,
x̂(0) = x̂0 (3.8)

where the observer gain H ∈ Rn̂×my and P ∈ Rn̂×n satisfying PPT = In̂ are design

parameters. We suppose n̂ ≤ n without loss of generality. Similarly to (3.4), we define

the estimation signal of z in (3.2) by

ẑ = SPTx̂. (3.9)

In this chapter, we call this functional state observer OP as an average state observer.

Moreover, we define the estimation error of z in (3.2) by ẑ as

∆P := z − ẑ. (3.10)

To analyze this estimation error for the average state observer, we derive a tractable

representation of the error system as follows:
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Theorem 3.1. Let Σ in (3.1) be given. Consider z in (3.2), OP in (3.8) and ẑ in (3.9).

Then, ∆P defined by (3.10) obeys

EP :

{
ξ̇ = Aξ + Bu,

∆P = Sξ,
ξ(0) =

[
e0

x0

]
(3.11)

where

e0 := Px0 − x̂0 (3.12)

and

A :=

[
PAPT −HCPT (PA−HC)(In − PTP )

0 A

]

B :=

[
0

B

]
, S :=

[
SPT S(In − PTP )

]
.

Proof. Taking a state as X̂ := [x̂T xT]T, we have{ ˙̂X = ÂX̂ + B̂u
∆P = ŜX̂

, X̂ (0) =

[
x̂0

x0

]

where

Â :=

[
PAPT −HCPT HC

0 A

]
, B̂ :=

[
PB

B

]
, Ŝ := [−SPT S].

Define

T :=

[
−In̂ P

In

]
= T−1.

From the similarity transformation of T ÂT−1, T B̂ and ŜT−1, the claim follows.

In Theorem 3.1, we can see that EP in (3.11) corresponds to a generalized representation

of the error system E in (3.5). This is because, if P = In, we have

A =

[
A−HC 0

0 A

]
, B =

[
0

B

]
, S =

[
S 0

]
and

ξ(0) =

[
e0

x0

]
, e0 = x0 − x̂0.
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Moreover, we can see that ∆P in (3.10) is a function of not only e0 but also x0 and u,

i.e.,

∆P = ∆P (t; e0, x0, u). (3.13)

This is clearly contrasted with ∆ in (3.6) for the traditional functional state observer.

An intuitive explanation on these three error factors is as follows:

(i) the error arising from the initial state error e0 in (3.12),

(ii) the error amplified by the initial state response of Σ, i.e., y = CeAtx0, and

(iii) the error amplified by the dynamical discrepancy of Σ and OP with respect to the

external input u.

We conclude that we have to take into account the error factors (i), (ii) and (iii) for the

design of average state observers.

3.3 Design of Average State Observers

3.3.1 A Road Map for Systematic Design

In what follows, we aim to design P and H in (3.8) that suppress the estimation error

due to (i), (ii) and (iii) as much as possible. Since the dynamics of the error system is

linear, we can represent individual error factors as

∆P (t; e0, 0, 0), ∆P (t; 0, x0, 0), ∆P (t; 0, 0, u).

For the first one, similarly to (3.7), we consider regulating the convergence rate of the

initial state error by introducing the criterion of

sup
e0 6=0

‖∆P (t; e0, 0, 0)‖L2
‖e0‖

≤ δ (3.14)

with a given constant δ ∈ R+.

To see the influence of x0 and u on ∆P more explicitly, supposing that e0 = 0, we derive

the Laplace domain representation of the estimation error arising from the second and

third factors as

∆̂P (s;x0, u) := ΞP,H(s)XP (s;x0, u) (3.15)

where

ΞP,H(s) := CΞ(sIn̂ −AΞ)−1BΞ +DΞ (3.16)
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with

AΞ := PAPT −HCPT, BΞ := (PA−HC)P
T
, CΞ := SPT, DΞ := SP

T

and

XP (s;x0, u) := P (sIn −A)−1[x0 +Bu(s)] (3.17)

with an orthogonal complement P ∈ R(n−n̂)×n of P ∈ Rn̂×n such that

PTP + P
T
P = In. (3.18)

From (3.15), the estimation error arising from the second and third error factors is

expected to be small if the norms of ΞP,H and XP are sufficiently small.

However, simultaneous design of P and H is difficult because ΞP,H involves the design

parameters in a nonlinear fashion. To overcome this difficulty, we utilize the following

facts:

• The parameter H appears in the system ΞP,H , but not in XP .

• The system XP involves the parameter P (or equivalently P ), but not H.

• By a suitable choice of P , we can achieve DΞ = 0 in (3.16), which may directly

decrease the norm of ΞP,H .

On the basis of these facts, we first find P that minimizes the norm of XP while making

DΞ = 0, and then find H that minimizes the norm of ΞP,H . Taking this road map for

the average state observer design, we give the following theorem:

Theorem 3.2. Let Σ in (3.1) be given. Let z in (3.2). For a constant α ∈ R+, define

Φ � 0n such that

AΦ + ΦAT +BBT + αIn = 0. (3.19)

Furthermore, take P ∈ Rn̂×n satisfying

im(ST) ⊆ im(PT), PPT = In̂ (3.20)

and

tr(Φ)− tr(PΦPT) ≤ ε. (3.21)

If there exist

γ > 0, X � 0n̂, Y ∈ Rn̂×my
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such that X ≺ δ2In̂ and[
sym(XPAPT − Y CPT) + PSTSPT ∗

PATPTX − PCTY T −γIn−n̂

]
≺ 0n (3.22)

where sym(M) := M +MT and P ∈ R(n−n̂)×n satisfys (3.18), then OP in (3.8) with

H = X−1Y (3.23)

satisfies (3.14) for any x0 ∈ Rn and x̂0 ∈ Rn̂, and

‖∆P (t; 0, 0, u)‖2L2 + α‖∆P (t; 0, x0, 0)‖2L2 ≤ γε (3.24)

for any x̂(0), unit impulse inputs u and any x0 ∈ Rn such that ‖x0‖ = 1, where e0 and

∆P are defined as in (3.12) and (3.13).

Proof. First, we evaluate ‖∆P (t; 0, 0, u)‖2L2 for any unit impulse input u, i.e., u(t) =

u0δ(t) for any u0 ∈ Rmu . Based on the error system in (3.15), we have

‖∆P (t; 0, 0, u)‖2L2 ≤ ‖ΞP,H(s)‖2H∞‖P (sI −A)−1B‖2H2

where ΞP,H in (3.16). Substituting (3.23) into (3.22), we have[
sym(XPAPT −XHCPT) + PSTSPT ∗

PATPTX − PCTHTX −γIn−n̂

]
≺ 0n. (3.25)

It yields from the first condition in (3.20) that

DΞ = SP
T

= 0.

Thus, from the bounded-real lemma [52], (3.25) yields

‖ΞP,H(s)‖H∞ < γ.

Note that there always exists a unique Φ(1) � 0n satisfying

AΦ(1) + Φ(1)AT +BBT = 0

for the stable system Σ. Utilizing

‖P (sI −A)−1B‖2H2
= tr(PΦ(1)P

T
),
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we have

‖∆P (t; 0, 0, u)‖2L2 ≤ γtr(PΦ(1)P
T

).

Next, we evaluate ‖∆P (t; 0, x0, 0)‖2L2 . Note that there always exists Φ(2) � 0n satisfying

AΦ(2) + Φ(2)AT + In = 0.

Thus, using

x0x
T
0 � In (3.26)

for any x0 ∈ Rn such that ‖x0‖ = 1, we have

‖P (sI −A)−1x0‖2H2
≤ tr(PΦ(2)P

T
).

Therefore

‖∆P (t; 0, 0, u)‖2L2 + α‖∆P (t; 0, x0, 0)‖2L2 ≤ γtr
(
P (Φ(1) + αΦ(2))P

T
)
.

From the Lyapunov theorem [49], Φ given in (3.19) satisfies Φ = Φ(1) + αΦ(2). In

addition, the condition in (3.21) yields

tr
(
P (Φ(1) + αΦ(2))P

T
)
≤ ε.

Thus, (3.24) follows. Finally, we show (3.14). To describe the time evolution of η(t) :=

∆P (t; e0, 0, 0), we consider the system given by{
ė = (PAPT −HCPT)e

η = SPTe
, e(0) = e0.

From (1, 1) block of the left-hand equation in (3.22), this system has a Lyapunov function

V (e) := eTXe such that

V̇ (e(t)) < −ηT(t)η(t).

Integrating this inequality over [0,∞) and utilizing V (e(∞)) = 0, we have

‖η(t)‖2L2 < V (e(0)) ≤ ‖e0‖2‖X‖2

for any e0 ∈ Rn̂. Hence, (3.14) follows from X ≺ δ2In̂.

Remark 3.3. As shown in the proof of this theorem, we measure the effect of u in terms

of the H2-norm, with similar results available for the case of the H∞-norm. One possible

approach to find P in the H∞-norm evaluation is available on the basis of Hessenberg

transformation; see [53] for details.
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Figure 3.1: Illustrative example: Thermal diffusion system evolving on 2D lattice
network.

In Theorem 3.2, we show an explicit error bound for average state observers. Next,

to make the signal z represent averaged states, we introduce the following notion of

clustering in [38, 39]:

Definition 3.4. The family of an index set {I[l]}l∈L for L := {1, . . . , L} is called a

cluster set, whose element is referred to as a cluster, if each element I[l] is a disjoint

subset of {1, . . . , n} and it satisfies

⋃
l∈L
I[l] = {1, . . . , n}.

Then, an aggregation matrix compatible with {I[l]}l∈L is defined by

P := dg(p[1], . . . , p[L])Π ∈ RL×n (3.27)

with the permutation matrix

Π := [enI[1] , . . . , e
n
I[L]

]T ∈ Rn×n, enI[l] ∈ Rn×|I[l]| (3.28)

and p[l] ∈ R1×|I[l]| such that ‖p[l]‖ = 1.

Note that n̂ = L. Furthermore, we give S in (3.2) by

S = P. (3.29)

In this setting, the condition in (3.20) is automatically satisfied. Furthermore, z and ẑ

in (3.2) and (3.9) are clearly given by

z = Px, ẑ = x̂.

Note that, if P has the specific structure shown in (3.27), then, the estimated signal ẑ

can be interpreted as a weighted average of states of Σ. In particular, if p[l] is in the
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form of

p[l] =
[1, . . . , 1]

‖[1, . . . , 1]‖
∈ R1×|I[l]|, (3.30)

then ẑ corresponds to an average state in the sense that

zl =
1√
|I[l]|

∑
i∈I[l]

xi, l ∈ L (3.31)

where zl (resp. xi) is the lth element of z (resp. the ith element of x). Owing to

the block-diagonal structure of P , signal to be estimated z has physical (i.e., intuitive)

meaning. For example, we consider Σ in (3.8) representing a thermal diffusion network

system

ẋi = ai,ixi +
∑
j 6=i

ai,j(xi − xj) + biu, i ∈ {1, . . . , n} (3.32)

evolving on 2D lattices shown in FIGURE. 3.1 where ai,i is a reaction diffusive coefficient

and ai,j is a nonzero diffusion coefficient if the ith and jth nodes are connected. In

addition, xi ∈ R denotes the temperature of the ith node. Furthermore, suppose that

a cluster set {I[l]}l∈L is given as shown in FIGURE. 3.1. Then, a signal zl in (3.31)

represents an average temperature of the nodes belonging to I[l].

A method to achieve usual averaging, i.e., normalized by |I[l]| not by
√
|I[l]|, is described

in Remark 3.6. In what follows, for simplicity, we only consider the case of (3.30). For

systematic construction of a cluster set, we introduce the following lemma:

Lemma 3.5. Let Σ in (3.1) be given, and define Φ � 0n such that (3.19) for a constant

α ∈ R+. Let θ ≥ 0 be given. For each l ∈ L, if there exists a row vector φ[l] ∈ R1×n such

that ∥∥∥(enI[l])
TΦ 1

2
− pT[l]φ[l]

∥∥∥
F
≤ |I[l]|

1
2 θ (3.33)

where p[l] ∈ R1×|I[l]| satisfying ‖p[l]‖ = 1, then it follows that

tr(Φ)− tr(PΦPT) ≤ θ2
(∑L

l=1|I[l]|(|I[l]| − 1)
)

(3.34)

where P is defined by (3.27).

Proof. See [39].

This lemma shows that, if we find a cluster set {I[l]}l∈L satisfying (3.33), then ε in

Theorem 3.2 can be taken as

ε = θ2
(∑L

l=1|I[l]|(|I[l]| − 1)
)
.
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Remark 3.6. The estimated signal z given by S and P in (3.29) and (3.27) with (3.30)

implies an average state in the sense of (3.31). Instead of S in (3.29), if we take

S = DP, D := dg

(
1√
|I1|

, . . . ,
1√
|IL|

)
∈ RL×L (3.35)

then z implies an average state in the sense of

zl =
1

|I[l]|
∑
i∈I[l]

xi, l ∈ L. (3.36)

3.3.2 Extension to Unstable Systems

In this subsection, we consider designing an average state observer OP in (3.8) for

unstable Σ in (3.1). Suppose that A in (3.1) has nu unstable eigenvalues. To estimate

states diverging dependently on unstable modes of Σ, average state observers necessarily

have the same unstable modes. Let

V ∈ Rnu×n, V ∈ R(n−nu)×n

be given such that all of nu eigenvalues of V AV T is unstable and

V AV T = 0, V TV + V
T
V = In. (3.37)

Instead of P in (3.27), we take

P :=
[
dg
(
p[1], . . . , p[L]

)
Π, V T

]
∈ Rn̂×n (3.38)

where n̂ = L+ nu, p[l] ∈ R1×|I[l]| in (3.30) and Π in (3.28). In this setting, we have the

following lemma as an extented one of Lemma 3.5:

Lemma 3.7. Let unstable Σ in (3.1) be given. Define V and V in (3.37). Let ΦV �
0n−nu be given such that

(V AV
T

)ΦV + ΦV (V AV
T

)T + V BBTV
T

= 0 (3.39)

and define Φ ∈ Rn×n such that Φ = V
T

ΦV V . Suppose that there exists a row vector

φ[l] ∈ R1×n such that (3.33). Then, P in (3.38) satisfies (3.34).
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Proof. It follows from (3.37) that

VAVT =

[
V AV T V AV

T

0 V AV
T

]
, V :=

[
V

V

]
. (3.40)

Taking a similarity transformation by V, we have

‖XP (s)‖H2 = ‖PV T
(sIn−nu − V AV

T
)V B‖H2= ‖PΦV ‖F

where XP (s) in (3.17) and P ∈ R(n−n̂)×n is given satisfying (3.18). Note that the

solution ΦV in (3.39) exists because V AV
T

is stable. We omit the rest of this proof

because it is the same as that of Lemma 3.5.

This lemma allows us to construct P for unstable Σ. Furthermore, by taking

S = dg
(
p[1], . . . , p[L]

)
Π,

a signal to be estimated z = Sx results in average state defined as (3.31). Thus, OP

in (3.8) with H in (3.23) satisfies (3.24) for any x̂(0), unit impulse inputs u and any

x0 ∈ Rn such that ‖x0‖ = 1.

3.3.3 Design Algorithm of Average State Observers

In this subsection, we propose a procedure to construct an average state observer that

estimates average behavior of the system Σ.

First, we describe a cluster construction procedure. On the premise that θ ≥ 0 is given

and Φ 1
2

is obtained, we can find such a cluster set in the following manner: Suppose

that a set of clusters {I[1], . . . , I[l]} are already constructed and let

J := {1, . . . , n}\{I[1], . . . , I[l]}.

Next, we consider constructing a new cluster I[l+1]. We first choose an index j ∈ J , and

take I[l+1] such that

I[l+1] = {i ∈ J \{j} | ‖φi − φj‖ ≤ θ} (3.41)

where φi ∈ R1×n denotes the ith row vector of Φ 1
2
. Then, we can straightforwardly

verify that this newly constructed cluster satisfies (3.33).

On the basis of this procedure, for a given design parameter ρ ∈ R+, we summarize a

systematic design procedure of n̂-dimensional average state observer OP in (3.8) such
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that (3.14) and

‖∆P (t; 0, 0, u)‖2L2 + α‖∆P (t; 0, x0, 0)‖2L2 ≤ ρ (3.42)

as follows:

1. Find V and V such that (3.37). These matrices can be computed by the Real-Schur

Decomposition.

2. Give θ ∈ R+.

3. Find {I[l]}l∈L and φ[l] ∈ R1×n such that (3.33) with p[l] in (3.30).

4. Construct P ∈ Rn̂×n such that (3.38) along with the above procedure.

5. For a given δ ∈ R+, solve (3.22) while minimizing γ.

6. If (3.22) is infeasible or (3.42) does not hold, then take larger δ and smaller θ and

back to 2).

7. Compute H by (3.23) and construct an average state observer OP in (3.8).

Finally, it should be noted that since the number of decision variables of LMI given by

(3.22) is 1
2 n̂(n̂ − 1) + n̂my, this design procedure is computationally tractable if n̂ is

small.

Remark 3.8. If we do not know the direction of x0 in advance, then we can not evaluate

‖∆P (t; 0, x0, 0)‖2L2 by explicit use of the information of x0. In view of this, in The-

orem 3.2, ‖∆P (t; 0, x0, 0)‖2L2 is evaluated by using a conservative bound as in (3.26),

which is satisfied for any x0 ∈ Rn satisfying ‖x0‖ = 1. Thus, if we take a larger α,

then the performance of designed observers based on such evaluation tends to become

conservative compared with the case of explicit use of the information of x0.

3.4 Numerical Simulation

In this section, we show the efficiency of the proposed average state observer through a

numerical example. We deal with a 1000-dimensional reaction-diffusion system evolving

over a complex network model, called the Dorogovtsev model [54]. This complex net-

work model is a directed graph given as a generalization of the Barabashi-Albert model

(bidirected graph) having small-world and scale-free properties. The reaction-diffusion

system on this directed graph is shown in FIGURE. 3.2.

The parameters of the reaction-diffusion system are given as follows: The dynamics of

this system is described as (3.32) where the diffusion terms ai,j are randomly chosen from
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Figure 3.2: Dynamical system evolving over the Dorogovtsev model

[−1, 1] if the ith node is directed from the jth node, otherwise 0, and the reaction terms

ai,i are randomly chosen from [−1, 0]. Using these variables, we take A ∈ R1000×1000 in

(3.1) as

Aij =

{
−ai,j i 6= j

ai,i +
∑

k 6=i ai,k i = j

Let the input signal u ∈ R5 be applied to the states of some five nodes, and the mea-

surement output signal y ∈ R10 is obtained as the states of some 10 nodes.

We show a design result of average state observers. Taking α = 0, δ = 5.0 and ρ = 4.3,

an average state observer is constructed by the procedure shown in Section 3.3.3. In

addition, S is constructed by (3.35), which implies that z estimates an average state in

the sense of (3.36). The resultant dimension of the obtained observer is n̂ = 5, which

implies that the resultant number of clusters is L = 5. We plot all trajectories of x

and ẑ in FIGURE. 3.3 where we take an input signal u randomly. The indications are

as follows: the trajectory of ẑ = [ẑ1, . . . , ẑ5]T is depicted by the dotted lines with circles

where ẑl is color-coded for each l ∈ {1, . . . , 5}. In addition, xi for each i ∈ I[l] is also

color-coded according to its cluster index l ∈ {1, . . . , 5}. From this figure, we can see

that each trajectory of five elements of ẑ is around the center of colored trajectory

sets of x. Furthermore, the resultant estimation error turns out to be ‖z − ẑ‖2L2 =

1.3×10−2, which implies that ẑ estimates an average state in the sense of (3.36) efficiently.

As demonstrated in this numerical example, the proposed average state observer can

efficiently find and estimate the average behavior of network systems.
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Figure 3.3: Trajectories of ẑ and x.

3.5 Chapter Summary

In this chapter, we have proposed a novel framework of low-dimensional functional state

observers called average state observers, which estimates average behavior of systems

from a macroscopic point of view. By the proposed method, we can construct a per-

formance guaranteed average state observer with systematic determination of a set of

states capturing average behavior of systems. Towards systematic design of average

state observers as well as determination of a set of states capturing average behavior,

we have first derived a tractable representation of the error system. Then, we have

clarified differences between the design of classical functional state observers and that of

average state observers and shown a theoretical L2-error bound of estimation error. The

efficiency of the proposed average state observers has been shown through a numerical

example of a reaction-diffusion system evolving over a directed complex network.



Chapter 4

Hierarchical Distributed Control

4.1 Introduction

In this chapter, we propose a design method of hierarchical distributed controllers for

general linear network systems. The hierarchical distributed controller has an advantage

that an L2-performance of the closed-loop system is guaranteed for all sets of locally

stabilizing controllers. Towards systematic distributed design, we first introduce state-

space expansion, similar to one in [55], to independently deal with the state variables

associated with disjoint subsystems and those associated with the interference among

hierarchically clustered subsystems. This state-space expansion enables us to construct

a hierarchically structured controller that attenuates the negative interference not only

among hierarchically clustered subsystems but also among locally stabilizing controllers.

By the hierarchical distributed controller, whose compositional units can be designed

individually, it is shown that an L2-performance of closed-loop systems improves as

just improving an L2-performance of local controllers. Moreover, by the integration of

a hierarchical distributed observer proposed in [56] having good compatibility with the

hierarchical distributed controller, we build a framework to implement an observer-based

hierarchical distributed control. The efficiency of the proposed control is shown through

a numerical example for power networks.

The organization of this chapter is as follows: In Section 4.2, providing a mathematical

formulation of hierarchically clustered network systems, we first formulate a design prob-

lem of hierarchical distributed controllers. In Section 4.3.1, on the basis of state-space

expansion which enables us to deal with network systems in a hierarchical fashion, we

give a solution to the hierarchical distributed control design problem. Furthermore, in

Section 4.3.2, we build a framework to implement an observer-based hierarchical dis-

tributed control. In Section 4.4 we demonstrate the efficiency of the proposed control

40
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structure through a numerical example of power network systems. Finally, concluding

remarks are given in Section 4.5.

4.2 Problem Formulation

4.2.1 Review of Decentralized Control

In this chapter, we deal with linear network systems composed of N subsystems. For

i ∈ N := {1, . . . , N}, we give the dynamics of the ith subsystem as follows:

Σi :

{
ẋi = Aixi +

∑N
j 6=iAi,jxj +Biu

yi = Cixi
(4.1)

where Ai ∈ Rni×ni , Ai,j ∈ Rni×nj , Bi ∈ Rni×mi , and Ci ∈ Rpi×ni . In this notation, we

consider a family of local controllers that stabilizes each Σi by an input signal ui and

an measurement output yi. The local controller associated with Σi is described by

κi :

{
ξ̇i = Kiξi +Hiyi

ui = Miξi
(4.2)

where Ki ∈ Rri×ri , Hi ∈ Rri×pi , and Mi ∈ Rmi×ri .

Let us consider the disjoint subsystem with the local controller described by[
ẋi

ξ̇i

]
=

[
Ai BiMi

HiCi Ki

][
xi

ξi

]
, i ∈ N . (4.3)

For a given constant θi ∈ R+, we suppose that (4.3) satisfies

‖xi(t)‖L2 ≤ θi

for all xi(0) ∈ Rni such that ‖x(0)‖ = 1 where x := [xT1 , . . . , x
T
N ]T. Clearly, if all

subsystems are disjoint, then the closed-loop system ({Σi}i∈N , {κi}i∈N ) achieves the

L2-performance such that

‖x(t)‖L2 ≤ ‖θ‖ (4.4)

where θ := [θ1, . . . , θN ]T. In what follows, we denote a set of local controllers achieving

the L2-performance in (4.4) for disjoint subsystems, i.e., Σi in (4.1) with Ai,j = 0 for all

j ∈ N\{i}, as

Kθ := {{κi}i∈N : satisfying (4.4)} (4.5)
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However, if Ai,j 6= 0, i.e., if subsystems are connected, the L2-performance of disjoint

closed-loop systems does not provide any guarantee for the overall closed-loop system

in general. To make matters worse, the overall closed-loop system possibly becomes

unstable even though disjoint closed-loop systems are stable. In this chapter, we consider

constructing a hierarchical distributed controller that attenuates negative interference

among subsystems.

4.2.2 Hierarchical Distributed Control Problem

In what follows, we use the notation of

n :=
N∑
i=1

ni, m :=
N∑
i=1

mi, p :=
N∑
i=1

pi r :=
N∑
i=1

ri

and

A :=


A1 · · · A1,N

...
. . .

...

AN,1 · · · AN

 ∈ Rn×n. (4.6)

We consider introducing a hierarchical structure into network systems. Let L := {1, . . . , L}
with an integer L that represents the number of system layers. We define a family of

index sets {N (l)}l∈L satisfying

N ≥ |N (1)| ≥ · · · ≥ |N (L)| = 1, N (l) = {1, . . . , |N (l)|}. (4.7)

Moreover, for each l ∈ {0, . . . , L − 1}, we define a set of cluster sets {C(l)
i }i∈N (l+1)

satisfying ⋃
i∈N (l+1)

C(l)
i = N (l), C(l)

i ∩ C
(l)
j = ∅, i 6= j, (4.8)

where N (0) is regarded as N .

Let A
(l)
i ∈ Rn

(l)
i ×n

(l)
i be the principal submatrix of A compatible with C(l−1)

i . Note that

we have ∑
i∈N (l)

n
(l)
i = n, l ∈ L,

and A(L) = A. In what follows, we regard A
(0)
i as Ai for all i ∈ N .

We give the dynamics of the overall network system as

Σ :

{
ẋ = Ax+ dg(Bi)u+

∑L
l=1 dg(B

(l)
i )u(l)

y = dg(Ci)x
(4.9)
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where the input signal u := [uT1 , . . . , u
T
N ]T ∈ Rm and the measurement output signal

y := [yT1 , . . . , y
T
N ]T ∈ Rp are used for the interconnection of local controllers, and u(l)

represents an additional input signal from a hierarchical distributed controller described

below. In what follows, the pair (A
(l)
i , B

(l)
i ), which is defined as being compatible with

the hierarchical structure of network systems, is supposed to be stabilizable for any

i ∈ N (l) and l ∈ L. Similarly, for ξ := [ξT1 , . . . , ξ
T
N ]T ∈ Rr, we give the dynamics of local

controllers by

{κi}i∈N :

{
ξ̇ = dg(Ki)ξ + dg(Hi)(y + z)

u = dg(Mi)ξ
(4.10)

where the term of z expresses an additional input signal as well.

To construct appropriate additional input signals {u(l)}l∈L and z, we consider designing

a hierarchical distributed controller given by

Φ(l) :

{
φ̇(l) = dg(E

(l)
i )φ(l) + G(l)x+

∑L
k=l dg(B

(k)
i )u(k)

u(l) = dg(F
(l)
i )(φ(l) − φ(l+1))

(4.11)

where φ(L+1) is regarded as zero, and

E
(l)
i ∈ Rn

(l)
i ×n

(l)
i , F

(l)
i ∈ Rm

(l)
i ×n

(l)
i , B

(l)
i ∈ Rn

(l)
i ×m

(l)
i , G(l) ∈ Rn×n

are design parameters. Furthermore, the additional input to local controllers is generated

as

z = dg(Hi)φ
(1)

where Hi ∈ Rpi×ni is another design parameter. For simplicity, we assume that ξ(0) = 0

and φ(l)(0) = 0 for all l ∈ L. Moreover, {Φ(l)}l∈L denotes the hierarchical distributed

controller. In this setting, we address the following control problem for the closed-loop

system (Σ, {Φ(l)}l∈L, {κi}i∈N ):

Problem 4.1. Given {N (l)}l∈L and {C(l)
i }i∈N (l+1) such that (4.7) and (4.8), consider

Σ in (4.9) with {κi}i∈N in (4.10). Then, for a given constant ε > 0, find {Φ(l)}l∈L in

(4.11) satisfying

‖x(t)‖L2 ≤ ‖θ‖+ ε (4.12)

for all x(0) ∈ Rn such that ‖x(0)‖ = 1 and for all {κi}i∈N ∈ Kθ.

In Problem 4.1, we formulate a problem to find a hierarchical distributed controller

achieving an L2-performance of the closed-loop system, which necessarily implies the

stability of the closed-loop system, is guaranteed for all sets of local controllers in a class

Kθ in (4.5). In FIGURE. 4.1, we provide an example of hierarchical distributed control
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Figure 4.1: Hierarchical distributed control systems with L = 2 and N = 4.

systems (Σ, {Φ(l)}l∈L, {κi}i∈N ) with L = 2 and N = 4. In this example, the number of

controllers in each layer is given by

|N (1)| = 2, |N (2)| = 1

and the family of cluster sets is given by

C(0)
1 = {1, 2}, C(0)

2 = {3, 4}, C(1)
1 = {1, 2},

which satisfy C(0)
1 ∪ C(0)

2 = N and C(1)
1 = N (1).

Remark 4.1. The development (or growth) of local subsystems can be interpreted as

the variation of local controllers. For example, let us consider the case where new

equipment is installed into a networked system. Regarding the additional equipment as

the change of a local controller, we see that the hierarchical distributed controller solving

Problem 4.1 can guarantee the stability of the whole networked systems, as long as the

additional installation does not violate the stability of the local closed-loop system. In

this sense, the hierarchical distributed controller to be designed is robust against the

variation of local subsystems.

4.3 Hierarchical Distributed Control Systems

4.3.1 Design of Hierarchical Distributed Controllers

For systematic design of hierarchical distributed controllers, we consider transforming

the realization of Σ into a tractable one based on the following state-space expansion:
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Lemma 4.2. Given {N (l)}l∈L and {C(l)
i }i∈N (l+1) such that (4.7) and (4.8), consider Σ

in (4.9). For l ∈ L, define{
˙̃x(l) = dg(A

(l)
i )x̃(l) + dg(B

(l)
i )u(l) + Γ(l)

∑l−1
k=0x̃

(k)

˙̃x(0) = dg(Ai)x̃
(0) + dg(Bi)u

(4.13)

where

Γ(l) := dg(A
(l)
i )i∈N (l) − dg(A

(l−1)
i )i∈N (l−1) . (4.14)

If x(0) =
∑L

l=0 x̃l(0), then

x(t) =

L∑
l=0

x̃l(t), t ≥ 0 (4.15)

for any u and {u(l)}l∈L.

Proof. Let x̃ = [(x̃(L))T, . . . , (x̃(1))T, (x̃(0))T]T. The state trajectory of (4.13) is given by

x̃(t) = eÃtx̃(0) +

∫ t

0
eÃ(t−τ)B̃ũ(τ)dτ

where Ã and B̃ are defined as

Ã :=



A(L) Γ(L) · · · Γ(L) Γ(L)

dg(A
(L−1)
i ) · · · Γ(L−1) Γ(L−1)

. . .
...

...

dg(A
(1)
i ) Γ(1)

dg(Ai)



B̃ :=



B(L)

dg(B
(L−1)
i )

. . .

dg(B
(1)
i )

dg(Bi)



(4.16)

Noting that

TÃ = AT, T B̃ =
[
B(L), . . . ,dg(B

(1)
i ),dg(Bi)

]
for T := [In, . . . , In] ∈ Rn×(L+1)n, we have

T x̃(t) = eAtT x̃(0) +

∫ t

0
eA(t−τ)

[
B(L), . . . ,dg(B

(1)
i ),dg(Bi)

]
ũ(τ)dτ.

Hence, the claim follows.
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Lemma 4.2 shows that the summation of all trajectories of state variables of the expanded

system in (4.13), which has a cascade structure shown in (4.16), coincides with the

original trajectory x(t) for any input signals. The cascade structure of (4.16) gives a

clear insight into controlling the original system Σ in (4.9) by using input signals u and

{u(l)}l∈L. On the basis of this lemma, we have the following result:

Theorem 4.3. Given {N (l)}l∈L and {C(l)
i }i∈N (l+1) such that (4.7) and (4.8), consider

Σ in (4.9) with {κi}i∈N in (4.10). Define {Φ(l)}l∈L in (4.11) with

E
(l)
i = dg(A

(l−1)
j )

j∈C(l−1)
i

, F
(l)
i = F

(l)
i , B

(l)
i = B

(l)
i , G(l) =

∑L
k=l Γ

(k), Hi = −Ci
(4.17)

where F
(l)
i satisfies that A

(l)
i +B

(l)
i F

(l)
i is stable, and Γ(l) in (4.14). In addition, define

γ(l) :=

∥∥∥∥(sIn − dg(A
(l)
i +B

(l)
i F

(l)
i )
)−1

Γ(l)

∥∥∥∥
H∞

(4.18)

for each l ∈ L. Then

‖x(t)‖L2 ≤ ‖θ‖
L∏
l=1

(
1 + γ(l)

)
(4.19)

for all x(0) ∈ Rn such that ‖x(0)‖ = 1 and for all {κi}i∈N ∈ Kθ.

Proof. From Lemma 4.2, we consider the state feedback of

u(l) = dg(F
(l)
i )x̃(l), l ∈ L,

and the output feedback described by{
ξ̇ = dg(Ki)ξ + dg(HiCi)x̃

(0)

u = dg(Mi)ξ

for the expanded system in (4.13). Note that this feedback system is stable because

{κi}i∈N ∈ Kθ, and A
(l)
i + B

(l)
i F

(l)
i is stable for all i ∈ N and l ∈ L. Taking the

coordinate transformation as

φ(l) =
L∑
k=l

x̃(k), l ∈ L (4.20)
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with (4.15), we have the autonomous system described by

φ̇(L)

φ̇(L−1)

...

φ̇(1)

ẋ

ξ̇


=



Λ(L) Γ(L)

Θ(L) Λ(L−1) Γ(L−1) + Γ(L)

...
...

. . .
...

Θ(L) Θ(L−1) · · · Λ(1) Γ(1) + · · ·+ Γ(L)

Θ(L) Θ(L−1) · · · Θ(1) A dg(BiMi)

−dg(HiCi) dg(HiCi) dg(Ki)





φ(L)

φ(L−1)

...

φ(1)

x

ξ


(4.21)

where
Λ(l) := dg

(
dg(A

(l−1)
j )

j∈C(l−1)
i

+B
(l)
i F

(l)
i

)
i∈N (l)

Θ(l) := dg
(
B

(l)
i F

(l)
i − dg(B

(l−1)
j F

(l−1)
j )

j∈C(l−1)
i

)
i∈N (l)

with B
(0)
i F

(0)
i = 0. Taking x̃(0)(0) = x(0), we have

‖x̃(0)(t)‖L2 ≤ ‖θ‖.

Thus, (4.19) is proven by (4.15) in conjunction with the triangle inequality of the L2-

norm and the cascade structure in (4.13).

Theorem 4.3 shows that the hierarchical distributed controller {Φ(l)}l∈L given by (4.17),

whose compositional units can be designed independently of designing local controllers,

achieves the L2-performance in (4.19). Thus, we solve Problem 4.1 by constructing the

feedback gains F
(l)
i that make the values of γ(l) in (4.18) sufficiently small. We can see

from (4.19) that the L2-performance of the overall closed-loop system improves as just

improving the L2-performance of local controllers in (4.4).

We see from the structure of the transfer matrix in (4.18) that the function of the

controller Φ(l) is to attenuate negative interference among clustered subsystems, and

the magnitude of interference attenuation is measured by γ(l). Furthermore, G(l) in

(4.17) shows that the lth layer controller Φ(l) uses

w(l) :=

L∑
k=l

Γ(k)x (4.22)

as its input signal. Note that Γ(l) in (4.14) represents the interconnection among clusters

in the (l − 1)th layer. Thus, the signal w(l) have the information on the interaction

among clustered subsystems. In the following Sections 4.3.2 and 4.3.3, we consider the

availability of {w(l)}l∈L.
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4.3.2 Integration with Hierarchical Distributed Observers

In Section 4.3.1, we have proposed a hierarchical distributed controller that can guaran-

tee an L2-performance of closed-loop systems for all sets of locally stabilizing controllers.

The proposed hierarchical distributed controller has an advantage that each composi-

tional unit can be individually designed.

The hierarchical distributed controller {Φ(l)}l∈L given by (4.17) requires us to mea-

sure {w(l)}l∈L in (4.22). In view of this, a number of sensors are possibly required to

implement this hierarchical distributed controller for large-scale network systems. For

example, to implement Φ(1) in the first layer, we need to measure w(1) that contains the

information on the interaction among all subsystems Σi.

In view of this, we consider estimating w(l) for lower layer controllers from other sensor

signals by utilizing a hierarchical distributed observer [56] having good compatibility

with the hierarchical structure of control systems. To this end, for L̂ := {1, . . . , L̂} with

an integer L̂ < L, we assume that

y(l) := dg(C
(l)
i )x, l ∈ L̂

v(l) := Γ(l)x, l ∈ L\L̂
(4.23)

are available as sensor signals from clustered subsystems. In addition, the pair (A
(l)
i , C

(l)
i )

is supposed to be detectable for any i ∈ N (l) and l ∈ L̂. Note that the availability of

{v(l)}l∈L\L̂ is equal to that of {w(l)}l∈L\L̂. In this setting, we show that the following

observer-based hierarchical distributed control is available:

Theorem 4.4. Given {N (l)}l∈L and {C(l)
i }i∈N (l+1) such that (4.7) and (4.8), consider

Σ in (4.9) with {κi}i∈N in (4.10). For y(l) in (4.23) with H
(l)
i such that A

(l)
i −H

(l)
i C

(l)
i

is stable, define {o(l)}l∈L̂ by

o(l) : ˙̂x(l) = dg(A
(l)
i −H

(l)
i C

(l)
i )x̂(l) + dg(Bi)u+

∑L
k=1 dg(B

(k)
i )u(k) + dg(H

(l)
i )y(l) + ŵ(l+1)

v̂(l) = Γ(l)x̂(l)

(4.24)

with

ŵ(l) :=


∑L̂

k=l v̂
(k) + w(L̂+1), l ∈ L̂,

w(l), l ∈ L\L̂,
(4.25)

where w(l) is defined as in (4.22). Furthermore, by replacing w(l) with ŵ(l), define

{Φ(l)}l∈L in (4.11) with (4.17). Then (Σ, {Φ(l)}l∈L, {κi}i∈N ) with {o(l)}l∈L̂ is stable for

all {κi}i∈N ∈ Kθ.
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Proof. Define e(l) := x− x̂(l) for l ∈ L̂. Since ŵ(l) for l ∈ L̂ can be rewritten as

ŵ(l) = w(l) −
L̂∑
k=l

Γ(k)e(k),

we see that the closed-loop system is stable as long as e(l) = 0 for all l ∈ L̂. Thus, what

remains to be shown is limt→∞ e
(l)(t) = 0. Noting that

A = dg(A
(l)
i )i∈N (l) +

L∑
k=l+1

Γ(k),

we can express the dynamics of e(l) by

ė(l) = dg(A
(l)
i −H

(l)
i C

(l)
i )i∈N (l)e(l) +

L̂∑
k=l+1

Γ(k)e(k),

where the last term is replaced with zero if l = L̂. Hence, the claim follows from the

stability of A
(l)
i −H

(l)
i C

(l)
i .

The hierarchical distributed observer {o(l)}l∈L̂ in (4.24) gives the estimate {ŵ(l)}l∈L̂,

which represent the interference among clustered subsystems, by the available measure-

ment sensor signals in (4.23). Even though the hierarchical distributed observer needs

to use the input signals u and {u(l)}l∈L, each local observer only needs to obtain a part

of input signals produced by its supervisor and subordinate controllers, owing to the

hierarchical structure of control systems.

Remark 4.5. In Theorem 4.4, to simplify the arguments, we only provide a result on the

stability of the observer-based hierarchical distributed control systems. A result on an

L2-performance, similar to Theorem 4.3, is available also for the observer-based control,

based on the separation principle for controller and observer design, which has been used

to prove Theorem 4.4.

4.3.3 Discussion on Hierarchical Clustering and Sensor and Actuator

Allocation Towards Scalable Implementation

In Sections 4.3.1 and 4.3.2, we have addressed a design problem of hierarchical dis-

tributed control systems assuming that the hierarchical clusters of networked systems,

i.e., {N (l)}l∈L and {C(l)
i }i∈N (l+1) , are given in advance. In what follows, we discuss how

hierarchical clustering should be determined to implement the hierarchical distributed

control systems in a desirable manner.
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We notice that the low-rankness of Γ(l) for l ∈ L\L̂ has a direct relationship with the

number of sensors to obtain {w(l)}l∈L\L̂. Note that Γ(l) becomes a lower-rank matrix

if the interconnection among the corresponding clusters is sparser. Thus, a sparser

interconnection structure among upper layer clusters is more desirable to reduce the

number of required sensors.

Furthermore, recall that the function of Φ(l) is to attenuate negative interference among

clustered subsystems, and the degree of interference attenuation is measured by γ(l)

in (4.18). Inspecting the structure of the transfer matrix in (4.18), we see that the

magnitude of γ(l) can be efficiently reduced if

(i) the rank of Γ(l) is low enough, and

(ii) the input signal given by B
(l)
i can effectively attenuate the interference signal in-

jected through Γ(l).

Thus, we can expect that a suitable determination of hierarchical clustering as well

as the allocation of actuators effectively contribute to improve the L2-performance of

hierarchical distributed control systems.

Such a suitable determination of hierarchical clustering and actuator allocation can also

contribute to make practical dimension of upper layer controllers lower. The meaning of

practical dimension is explained as follows: Let us consider the topmost layer controller

Φ(L), for instance. By definition, the state-space of Φ(L) necessarily has the dimension

comparable with the whole networked system. On the other hand, if the items (i) and

(ii) above are satisfied, the decay rate of the Hankel singular values of Φ(L) tends to be

fast [57]. This implies that the Hankel matrix associated with Φ(L), whose rank is equal

to its McMillan degree, turns out to be low-rank or near low-rank. Thus, the topmost

layer controller can potentially be implemented as a lower-dimensional model as long as

the items (i) and (ii) are satisfied; see Section 4.4.2 below for a numerical demonstration.

The rapid decay of the Hankel singular values has a deep connection with the possibility

to finely approximate a dynamical system by a low-dimensional model. Indeed, the

magnitude of them is closely related to the approximation error via the Hankel norm

approximation as well as the balanced truncation/residualization [17]. In conclusion,

we see that sparse interconnection among upper layer clusters is desirable to reduce the

number of required sensors as well as that of actuators to attenuate negative interference

among clustered subsystems.
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4.4 Numerical Example

4.4.1 Power Network Model

In this section, we demonstrate the proposed hierarchical distributed control through

an example of electric power network systems. We deal with a power network model

[11] composed of N subnetworks (subsystems), where the ith subsystem includes nG
i

generators and nL
i loads.

For k ∈ NG
i := {1, . . . , nG

i }, the model of the kth generator is given by

ΣG
[i]k :

 ζ̇[i]k = AG
[i]kζ[i]k + 1

MG
[i]k

bGθG
[i]k + 1

TG
[i]k

bu[i]k

δG
[i]k = cGζ[i]k

(4.26)

where each element of ζ[i]k ∈ R3 represents a phase angle difference, an angular velocity

difference and a mechanical input difference, and θG
[i]k ∈ R, δG

[i]k ∈ R, and u[i]k ∈ R
represent an electric output difference, a phase angle difference, and a valve position

difference, respectively. In addition, we give the system matrices in (4.26) by

AG
[i]k :=


0 1 0

0 −DG
[i]k/M

G
[i]k −1/MG

[i]k

0 0 −1/TG
[i]k

 , bG := e3
2, cG := (e3

1)T, b := e3
3

where MG
[i]k, D

G
[i]k and TG

[i]k represent a mechanical inertia, a damping coefficient and a

turbine time constant, respectively.

In a similar fashion, for i ∈ N L
[i] := {1, . . . , nL

[i]}, we give the model of the ith load by

ΣL
[i]k :

 ψ̇[i]k = AL
[i]kψ[i]k + 1

ML
[i]k

bLθL
[i]k

δL
[i]k = cLψ[i]k

(4.27)

where each state of ψ[i]k ∈ R2 represents a phase angle difference and an angular velocity

difference, and θL
[i]k ∈ R and δL

[i]k ∈ R represent an electric output difference and a phase

angle difference, respectively. Then, we give the system matrices in (4.27) by

AL
[i]k :=

[
0 1

0 −DL
[i]k/M

L
[i]k

]
, bL := e2

2, cL := (e2
1)T

where ML
[i]k and DL

[i]k represent an inertia constant and a damping coefficient, respec-

tively.
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The interconnection structure among generators and loads are given by

θ = −Y δ, θ :=



θG
1

θL
1
...

θG
N

θL
N


, δ :=



δG
1

δL
1
...

δG
N

δL
N


(4.28)

where Y ∈ RNY ×NY represents an admittance matrix satisfying

Y = Y T, Y 1NY
= 0, NY :=

N∑
i=1

nG
i + nL

i ,

and

θ?i :=


θ?[i]1

...

θ?[i]n?
i

 , δ?i :=


δ?[i]1

...

δ?[i]n?
i

 , ? ∈ {G,L}.

We define a state variable as x := [ζT1 , ψ
T
1 , . . . , ζ

T
N , ψ

T
N ]T where

ζi :=


ζ[i]1

...

ζ[i]nG
i

 , ψi :=


ψ[i]1

...

ψ[i]nL
i

 .
Furthermore, we define the input u in (4.9) by

u :=


u[1]

...

u[N ]

 , u[i] :=


u[i]1

...

u[i]nG
i

 (4.29)

and the output y by

y :=


ζ1:2

[1]
...

ζ1:2
[N ]

 , ζ1:2
[i] :=


ζ1:2

[i]1
...

ζ1:2
[i]nG

i

 (4.30)

where ζ1:2
[i]k ∈ R2 denotes the first and second elements of ζ[i]k ∈ R3. In this notation, for

Σ in (4.9), the system matrices of the whole power network is given by
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Figure 4.2: Initial value responses of power network model.

A = dg
(

dg(AG
[i]k), dg(AL

[i]k)
)
i∈N

−dg

(
dg( 1

MG
[i]k

bG), dg( 1
ML

[i]k

bL)

)
i∈N

Y dg
(

dg(cG)k∈NG
i
, dg(cL)k∈NL

i

)
i∈N

Bi =

 dg( 1
TG
[i]k

b)

02nL
i ×nG

i

 , Ci =
[
InG

i
⊗ [I2 02×1] 02nG

i ×2nL
i

] (4.31)

where ⊗ denote the Kronecker product.

Finally, we consider giving additional input ports used by a hierarchical distributed

controller. Assuming that several generators have the ports for controllers in the lth

layer, we give B(l) in (4.9) as a matrix composed of a part of columns of dg(Bi)i∈N .

Similarly to this, we give the additional output y(l) in (4.23) for observers in the lth

layer as a part of y in (4.30).

4.4.2 Hierarchical Distributed Control of Power Networks

We design a hierarchical distributed controller for a power network system composed of

five subsystems, i.e., N = 5. The interconnection structure among generators and loads

is shown in FIGURE. 4.3 where generators and loads are denoted by circles and diamonds,

respectively. The blue and red circles represent the generators having additional input

ports for a hierarchical distributed controller Φ(1) and Φ(2), respectively. In addition,
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(1)

(2) (5)

(3) (4)

: Generator : Load

Figure 4.3: Interconnection structure among generators and loads.

thick circles denotes the generators equipped with sensors to be used for a hierarchical

distributed observer.

This power network system involves 20 generators and 24 loads, which yields that the

overall network system is 108-dimensional, i.e., n = 108. For generators and loads,

the parameters MG
[i]k, D

G
[i]k, T

G
[i]k, M

G
[i]k and DG

[i]k are randomly chosen from {10, 90},
{0.1, 0.4}, {3.0, 10}, {5, 10, 30} and {0.1, 0.3, 0.5}, respectively. We give the elements

of Y in (4.28) compatible with interconnection among subsystems as 1. In addition,

those compatible with interconnection inside the subsystems are randomly chosen from

[0.1, 1.0]. In what follows, to simulate a situation where the frequency of the power sys-

tem suddenly varies, we give nonzero initial values for the angular velocity of generators,

i.e., δ̇G
[i]k(0) 6= 0.

First, we design a set of locally stabilizing controllers {κi}i∈N in (4.10) by the LQR design

techniques. Changing the weighting parameters for the LQR design, we obtain three sets

of {κi}i∈N . The resultant values of ‖θ‖ in (4.19) are 1388, 423 and 126, respectively.

To see the behavior of the closed-loop system, we show its initial value responses of

the angular velocities of all generators and loads in the upper half of FIGURE. 5.1 (a)-

(c). In this figure, we plot the trajectories of disjoint subsystems, i.e., xi in (4.3), by

the red lines, and those of subsystems with interconnection by the blue lines. Even

though the convergence rate of the system without subsystem interconnection becomes

higher as improving the L2-performance of local controllers, we see from this figure

that the instability of the closed-loop system is induced by negative interference among

subsystems.

Next, using a hierarchical distributed controller and observer, we consider improving the

L2-performance of the overall closed-loop system. Let L = 2 and L̂ = 1 in (4.23). We
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give a family of cluster sets by

C(0)
1 = {1, 2}, C(0)

2 = {3, 4, 5}, C(1)
1 = {1, 2}, (4.32)

where each of C(0)
1 and C(0)

2 includes 10 generators and 12 loads.

We design each controller Φ(l) by minimizing γ(l) in (4.18). From the structure of hier-

archical distributed observers in (4.24), we design the observer gain H
(l)
i by minimizing

the H∞-norm of the transfer matrix compatible with the pair (dg(A
(l)
i −H

(l)
i C

(l)
i ),Γ(l)).

Then, we implement the hierarchical distributed controller and observer. In the lower

half of FIGURE. 5.1 (a)-(c), we show the initial value responses of the hierarchical dis-

tributed control system. For each case of (a)-(c), the resultant value of ‖x‖L2 turns out

to be 1189, 491 and 234, respectively. We see from this result that the L2-performance

of the closed-loop system improves as improving the performance of local controllers,

owing to the attenuation of interference among subsystems. This application demon-

strates that the hierarchical distributed controller can be a new frequency controller

(post-LFC) of power systems.

4.5 Chapter Summary

In this chapter, we have proposed a design method of hierarchical distributed controllers

for linear network systems. For systematic design, we have used state-space expansion

that enables us to construct a hierarchically structured controller that attenuates neg-

ative interference among hierarchically clustered subsystems as well as among locally

stabilizing controllers. On the basis of this state-space expansion, we have devised a

design method to construct a hierarchical distributed controller whose compositional

units can be designed individually. Furthermore, the hierarchical distributed controller

has an advantage that an L2-performance of the closed-loop system improves as just

improving an L2-performance of local controllers that stabilizes disjoint subsystems in-

dividually. Moreover, we have built a framework to implement an observer-based hierar-

chical distributed control by integrating a hierarchical distributed observer having good

compatibility with the hierarchical distributed controller. Finally, the efficiency of the

proposed method has been shown through an illustrative example of power networks.

The proposed method has a potential to robustly control large-scale power systems

against modification of local controllers.



Chapter 5

Low-dimensional Hierarchical

Distributed Controller Design

5.1 Introduction

In Chapter 4, we have proposed a distributed design method of hierarchical distributed

controllers for general linear systems. The hierarchical distributed controller has an

advantage that an L2-performance of the closed-loop system is guaranteed for any sets

of locally stabilizing controllers. However, the dimension of designed hierarchical dis-

tributed controller Φ(l) in (5.5) coincides with n, which is the dimension of the system to

be controlled. Thus, the designed hierarchical distributed controllers do not fully com-

ply with practical application for large-scale systems from a viewpoint of computational

costs for implementation.

In this chapter, we propose a design method of low-dimensional hierarchical distributed

controllers having an L2-performance of the closed-loop system for any sets of locally

stabilizing controllers. We take a controller reduction approach to theoretically evaluate

a performance of low-dimensional hierarchical distributed controllers for the closed-loop

system. More specifically, supposing that a hierarchical distributed controller is given

by the method in the previous chapter, we find a low-dimensional controller such that

• the trajectory of the system state controlled by the low-dimensional controller

needs to be close to that controlled by the original controller for any locally stabi-

lizing controllers, and

• the low-dimensional controller needs to have the same hierarchical distributed

structure as that of the original controller.

56
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Since the existing controller reduction techniques, e.g., [24, 25], cannot explicitly take

into account the interconnection structure among controllers, this controller reduction

problem cannot be solved by the straightforward use of those techniques. Thus, we

explicitly utilize the hierarchical distributed structure of the closed-loop system, which

has compositional units of the controller in upper layers and those in lower layers. More

specifically, taking into account the inherent hierarchy of information transmission which

can be represented as the block-triangular structure of a coordinate transformed closed-

loop system, it is shown that the approximation error of compositional units in upper

layers does not affect those in lower layers. Next, using biorthogonal projection [17],

we clarify the relation between approximation errors of the compositional units and

the performance degradation of the closed-loop system. Finally, we demonstrate the

proposed method is demonstrated through a numerical example of power networks.

The organization of this chapter is as follows: In Section 5.2, we formulate a controller

reduction problem to design low-dimensional hierarchical distributed controllers. In

Section 5.3, we first show that the approximation error of the closed-loop system can

be independently evaluated by using that of a system associated with the controllers in

the upper layer. On the basis of this result, we provide an approximation error bound

of the closed-loop system with a construction procedure of low-dimensional hierarchical

distributed controllers. In Section 5.4, we demonstrate the efficiency of the proposed

method through an example of power networks.

5.2 Problem Formulation

In this chapter, we deal with linear network systems similar to that in the previous

chapter. In the first half of this section, we summarize some different settings.

For each i ∈ N := {1, . . . , N}, we give the dynamics of the ith subsystem as follows:

Σi :


ẋi = Aixi +Biui +

∑
j∈Ji Ji,jwj

yi = Cixi

wi = Sixi

(5.1)

where Ai ∈ Rni×ni , Bi ∈ Rni×mi , Ji,j ∈ Rni×qj , Ci ∈ Rpi×ni and Si ∈ Rqi×ni , and

Ji ⊆ N denotes a set of indices of the subsystems connected to the ith subsystem. In

addition, let us consider a set of local controllers {κi}i∈N in (4.10). In what follows, we
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use the notation of q :=
∑N

i=1 qi and

J :=


0 J1,2 · · · J1,N

J2,1 0
. . .

...
...

. . .
. . . JN−1,N

JN,1 · · · JN,N−1 0

 ∈ Rn×p (5.2)

where Ji,j = 0 if the ith and jth subsystems are disjoint. In addition, we define

A := dg(Ai) + Jdg(Si) ∈ Rn×n. (5.3)

Let L := {1, . . . , L} with an integer L that represents the number of system layers.

Define {N (l)}l∈L and {C(l)
i }i∈N (l+1) such that (4.7) and (4.8). Let J

(l)
i ∈ Rn

(l)
i ×p

(l)
i be the

principal submatrices of J compatible with C(l−1)
i , respectively. By definition, it follows

that ∑
i∈N (l)

q
(l)
i = q

for each l ∈ L, and J (L) = J .

We give the dynamics of the whole networked system as

Σ :


ẋ = Ax+ dg(Bi)u+

∑L
l=1 dg(B

(l)
i )u(l)

y = dg(Ci)x

w = dg(Si)x

(5.4)

where the input signal u := [uT1 , . . . , u
T
N ]T ∈ Rm and the measurement output sig-

nal y := [yT1 , . . . , y
T
N ]T ∈ Rp are used for the interconnection to local controllers, and

u(l) ∈ Rm(l)
expresses an additional input signal from a hierarchical distributed con-

troller to be explained below. In addition, w := [wT
1 , . . . , w

T
N ]T ∈ Rq is used for not

only the interconnection among the subsystems Σi, but also the interconnection to the

hierarchical distributed controller. Furthermore, we consider designing a hierarchical

distributed controller given by

Φ(l) :

{
φ̇(l) = dg(E

(l)
i )φ(l) + Γ(l)y +

∑L
k=l dg(Λ

(k)
i )u(k)

u(l) = dg(F
(l)
i )φ(l) +G(l+1)φ(l+1)

(5.5)

and

z = dg(Ui)φ
(1)
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where G(L+1) and φ(L+1) are regarded as zero, and

E
(l)
i ∈ Rn

(l)
i ×n

(l)
i , Γ(l) ∈ Rn×q, Λ

(l)
i ∈ Rn

(l)
i ×m

(l)
i

F
(l)
i ∈ Rm

(l)
i ×n

(l)
i , G(l+1) ∈ Rm(l)×n, Ui ∈ Rpi×n

(1)
i

(5.6)

are design parameters. It should be noted that Φ(l) is composed of |N (l)| units such

that the ith unit is an n
(l)
i -dimensional system. In what follows, we take φ(l)(0) = 0 for

simplicity. Furthermore, we denote the hierarchical distributed controller by {Φ(l)}l∈L.

Regarding to this hierarchical distributed controller, we have the following proposition,

which is Theorem 4.3 in Chapter 4:

Proposition 5.1. Given {N (l)}l∈L and {C(l)
i }i∈N (l+1) such that (4.7) and (4.8), consider

Σ in (5.4) with {κi}i∈N in (4.10). Give {Φ(l)}l∈L in (5.5) with

E
(l)
i = dg(A

(l−1)
j )

j∈C(l−1)
i

, Γ(l) =
∑L

k=l J
(k), Λ

(l)
i = B

(l)
i , G(l+1) = −dg(F

(l)
i ), Ui = −Ci

(5.7)

where F
(l)
i satisfies that A

(l)
i +B

(l)
i F

(l)
i is stable. For each l ∈ L, define

γ(l):=

∥∥∥∥(sI − dg(A
(l)
i +B

(l)
i F

(l)
i )
)−1

dg(J
(l)
i )dg(Si)

∥∥∥∥
H∞

. (5.8)

Then (4.19) follows for all x(0) ∈ Rn such that ‖x(0)‖ = 1 and any {κi}i∈N ∈ Kθ where

Kθ is defined as in (4.5).

Proposition 5.1 shows that the hierarchical distributed controller {Φ(l)}l∈L given by (5.5),

whose compositional units can be designed independently of designing local controllers,

achieves an L2-performance of the closed-loop system for any sets of locally stabilizing

controllers belonging Kθ. However, the n
(l)
i -dimensional compositional unit becomes the

larger in scale in the upper layer. To make matters worse, the topmost controller Φ(L)

is n-dimensional. Thus, this hierarchical distributed controller is not practical for large-

scale network systems due to high computational costs of the compositional units in the

upper layer.

In the rest of this subsection, we consider designing a low-dimensional hierarchical dis-

tributed controller that the L2-performance of the closed-loop system is robustly guar-

anteed for any sets of locally stabilizing controllers in Kθ. To this end, let us consider

Φ̂(l) :

{ ˙̂
φ(l) = dg(Ê

(l)
i )φ̂(l) + Γ̂(l)y +

∑L
k=l dg(Λ̂

(l,k)
i )i∈N (k)u(k)

u(l) = dg(F̂
(l)
i )φ̂(l) + Ĝ(l+1)φ̂(l+1)

(5.9)
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with φ̂(l)(0) = 0 where Ĝ(L+1) and φ̂(L+1) are regarded as zero, and Λ̂
(l,k)
i such that

dg(Λ̂
(l,k)
i )i∈N (k) ∈ Rn̂(l)×m(k)

and

Ê
(l)
i ∈ Rn̂

(l)
i ×n̂

(l)
i , F̂

(l)
i ∈ Rm

(l)
i ×n̂

(l)
i , Γ̂(l) ∈ Rn̂

(l)×p, Ĝ(l+1) ∈ Rm
(l)×n̂(l+1)

are design parameters in conjunction with n̂
(l)
i and n̂(l) satisfying

n̂(l) =
∑
i∈N (l)

n̂
(l)
i .

We deal with the case of n̂
(l)
i ≤ n

(l)
i without loss of generality. Furthermore, the addi-

tional input to local controllers is given by

z = dg(Ûi)φ̂
(1)

where Ûi ∈ Rqi×n̂
(1)
i is another design parameter.

We consider designing {Φ̂(l)}l∈L in (5.9) such that the closed-loop system with {κi}i∈N
and this low-dimensional hierarchical distributed controller, i.e., (Σ, {Φ̂(l)}l∈L, {κi}i∈N ),

achieves a desirable L2-performance for any {κi}i∈N ∈ Kθ by taking a controller reduc-

tion approach. Suppose that {Φ(l)}l∈L given by (5.5) and (5.7) guarantees a desirable

L2-performance of the closed-loop system (Σ, {Φ(l)}l∈L, {κi}i∈N ) for any {κi}i∈N ∈ Kθ,
e.g., for a given δ > 0, {Φ(l)}l∈L is given such that

‖x(t)‖L2 ≤ δ (5.10)

without depending on {κi}i∈N ∈ Kθ. Then, it suffices that {Φ̂(l)}l∈L approximates the

given {Φ(l)}l∈L to make the trajectory of the state variables of Σ in the closed-loop system

(Σ, {Φ̂(l)}l∈L, {κi}i∈N ) close to that in the closed-loop system (Σ, {Φ(l)}l∈L, {κi}i∈N ) for

any {κi}i∈N ∈ Kθ. In view of this, we address the following controller reduction problem:

Problem 5.1. Given {N (l)}l∈L and {C(l)
i }i∈N (l+1) such that (4.7) and (4.8), consider

Σ in (5.4) with {κi}i∈N in (4.10). Give {Φ(l)}l∈L in (5.5) and (5.7) such that it

achieves a desirable L2-performance of the closed-loop system (Σ, {Φ(l)}l∈L, {κi}i∈N )

for any {κi}i∈N ∈ Kθ. Denote x̂ ∈ Rn by the state variables of Σ in the closed-loop

system (Σ, {Φ̂(l)}l∈L, {κi}i∈N ). Then, for a given constant ε > 0, find {Φ̂(l)}l∈L in (5.9)

satisfying

‖x(t)− x̂(t)‖L2 ≤ ε (5.11)

where x(0) = x̂(0) = x0 for all x0 ∈ Rn such that ‖x0‖ = 1 and {κi}i∈N ∈ Kθ.

It should be noted that the difficulties of this problem are that
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• the criterion (5.11) is satisfied for any sets of locally stabilizing controllers in Kθ,
and

• the approximant {Φ̂(l)}l∈L has the hierarchical distributed structure in (5.9).

Since existing controller reduction techniques, e.g., [24, 25], cannot explicitly take into

account the interconnection structure among controllers, Problem 5.1 cannot be solved

by straightforwardly using those techniques. In the next section, we give a solution to

Problem 5.1 by explicitly utilizing a hierarchically distributed structure of the closed-

loop system.

5.3 Main Results

5.3.1 Analysis of Controller Reduction

In the rest of this chapter, for the sake of simple explanation, we focus on the case of

L = 3, which yields L = {1, 2, 3}. Similar results are also availble for general cases. In

addition, we omit the subscript 1 of the matrices associated with Φ(3) and Φ̂(3), e.g.,

E(3) denotes E
(3)
1 .

Note that each compositional unit of Φ(2) and Φ(3), which are an n
(2)
i -dimensional system

and an n-dimensional system respectively, are higher-dimensional than that of Φ(1). In

view of this, we consider reducing Φ(2) and Φ(3). In other words, we take Φ̂(1) as Φ(1),

i.e., the parameters of Φ̂(1) in (5.9) are taken as

Ê
(1)
i = E

(1)
i , F̂

(1)
i = F

(1)
i , Γ̂(1) = Γ(1), Ûi = Ui, Λ̂

(1,k)
i = Λ

(1)
i (5.12)

for each i ∈ N (1) and k ∈ L. Note that Ĝ(2) depends on also Φ̂(2).

Let us consider the following two transfer function matrices associated with {Φ(l)}l∈L
and {Φ̂(l)}l∈L as

g(s) := [0, In](sI −A)−1B, ĝ(s) := [0, In](sI − Â)−1B̂ (5.13)
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where

A :=


E(3) + Λ(3)F (3) 0 Γ(3)dg(Ci)

Λ(3)F (3) + dg(Λ
(2)
i )G(3) dg(E

(2)
i + Λ

(2)
i F

(2)
i ) Γ(2)dg(Ci)

Λ(3)F (3) + dg(Λ
(2)
i )G(3) dg(Λ

(2)
i F

(2)
i ) + dg(Λ

(1)
i )G(2) A+ dg(Λ

(1)
i F

(1)
i )



Â :=


Ê(3) + Λ̂(3,3)F̂(3) 0 Γ̂(3)dg(Ci)

Λ̂(2,3)F̂(3) + dg(Λ̂
(2,2)
i )Ĝ(3) dg(Ê

(2)
i + Λ̂

(2,2)
i F̂

(2)
i ) Γ̂(2)dg(Ci)

Λ(3)F̂(3) + dg(Λ
(2)
i )Ĝ(3) dg(Λ

(2)
i F

(2)
i ) + dg(Λ

(1)
i )Ĝ(2) A+ dg(Λ

(1)
i F

(1)
i )



B :=


Γ(3)dg(Ci)

Γ(2)dg(Ci)

Γ(1)dg(Ci)

 , B̂ :=


Γ(3)dg(Ci)

Γ(2)dg(Ci)

Γ(1)dg(Ci)

 . (5.14)

We can see that g(s) and ĝ(s) do not include any information on local controllers {κi}i∈N .

To guarantee (5.11) for any sets of local controllers in Kθ, it suffices that the approxi-

mation error of the closed-loop systems can be independently evaluated by using these

systems, which do not include any information on local controllers, and a system asso-

ciated with local controllers. Thus, we give the following theorem:

Theorem 5.2. Consider Problem 5.1 and {Φ̂(l)}l∈L in (5.9) and (5.12). Define g(s)

and ĝ(s) in (5.13). If Â is stable, then

‖x(t)− x̂(t)‖L2 ≤ ‖θ‖‖g(s)− ĝ(s)‖H∞ (5.15)

where x(0) = x̂(0) = x0 for all x0 ∈ Rn such that ‖x0‖ = 1 and {κi}i∈N ∈ Kθ.

Proof. Let φ̂ := [(φ̂(3))T, (φ̂(2))T, (φ(1))T]T. By taking a coordinate transformation as

χ̂ = x̂− φ(1), the closed-loop system (Σ, {Φ̂(l)}l∈L, {κi}i∈N ) is transformed into
˙̂
φ

˙̂χ

ξ̇

 =


Â B̂ 0

0 dg(Ai) dg(BiMi)

0 dg(HiCi) dg(Ki)



φ̂

χ̂

ξ

 . (5.16)

Similarly, by taking φ := [(φ(3))T, (φ(2))T, (φ(1))T]T and χ = x− φ(1), we have
φ̇

χ̇

ξ̇

 =


A B 0

0 dg(Ai) dg(BiMi)

0 dg(HiCi) dg(Ki)



φ

χ

ξ

 . (5.17)

Note that χ̂(t) ≡ χ(t) for all t ≥ 0 because χ(0) = χ̂(0) = x0. Thus, we have x − x̂ =

[0, In]φ − [0, In]φ̂. Owing to Lemma 5.1, g(s) is stable. Thus, g(s) − ĝ(s) is also stable
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if Â is stable. Hence, we have

‖x(t)− x̂(t)‖L2 ≤ ‖g(s)− ĝ(s)‖H∞‖χ(t)‖L2 .

By definition, we have ‖χ(t)‖L2 ≤ θ. Thus, the claim follows.

Theorem 5.2 shows that we solve Problem 5.1 by finding Φ̂(2) and Φ̂(3) such that ‖g(s)−
ĝ(s)‖H∞ < ε/θ. On the basis of this theorem, we next clarify the relation between the

approximation error of Φ(l) and Φ̂(l), and that of g(s) and ĝ(s). More specifically, we

take the biorthogonal projection [17], i.e., the parameters in (5.9) are taken as

Ê
(l)
i = P

(l)
i E

(l)
i Q

(l)
i , F̂

(l)
i = F

(l)
i Q

(l)
i , Γ̂(l) = dg(P

(l)
i )Γ(l)

Λ̂
(l,l)
i = P

(l)
i Λ

(l)
i m Ĝ(l) = −dg(F

(l−1)
i )dg(Q

(l)
i ), Λ̂(2,3) = dg(P

(2)
i )Λ(3)

(5.18)

for l ∈ {2, 3} where

P
(l)
i ∈ Rn̂

(l)
i ×n

(l)
i , Q

(l)
i ∈ Rn

(l)
i ×n̂

(l)
i

satisfy P
(l)
i Q

(l)
i = I

n̂
(l)
i

. In this formulation, finding Φ̂(l) coincides with finding the

biorthogonal projection described by P
(l)
i and Q

(l)
i in (5.18). Then, we give the following

theorem:

Theorem 5.3. Consider Problem 5.1 and {Φ̂(l)}l∈L in (5.9), (5.12) and (5.18). Define

σ(l,k) := ‖(I − dg(Q
(l)
i P

(l)
i ))(sI − dg(A

(k)
i +B

(k)
i F

(k)
i ))−1dg(J

(k)
i )dg(Ci)‖H∞ (5.19)

for each k ≥ l and l ∈ {2, 3}. Let A be given by (5.14) and define

P := dg(P (3), dg(P
(2)
i ), In), Q := dg(Q(3), dg(Q

(2)
i ), In). (5.20)

If P
(l)
i and Q

(l)
i satisfy that PAQ is stable, then

‖g(s)− ĝ(s)‖L2 ≤ σµ (5.21)

where g(s) and ĝ(s) are defined in (5.13) and

σ := ((σ(2,3) + σ(3,3))(1 + γ(2)) + σ(2,2))(1 + γ(1))

µ := ‖[0, In](sI − PAQ)−1PA[I2n, 0]T‖H∞
(5.22)

with γ(l) in (5.8).
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Proof. In what follows, we use the notation of

Ξ(l) := dg(Ξ
(l)
i ), Ξ

(l)
i := A

(l)
i +B

(l)
i F

(l)
i , P (l) := dg(P

(l)
i ), Q(l) := dg(Q

(l)
i ). (5.23)

Consider the similarity transformation of the error system g(s)− ĝ(s) by

T =

[
In̂(3)+n̂(2)+n −P

0 I3n

]
, T −1 =

[
In̂(3)+n̂(2)+n P

0 I3n

]
.

Then, we have

T dg(PAQ,A)T −1 =

[
PAQ −PAQP

0 A

]
, T

[
PB
B

]
=

[
0

B

]
[−[0, In]Q, [0, In]] T −1 = [0,−In, 0n×3n]

where 0n×m denotes the n-by-m zero matrix and

P :=
[
dg(P

(3)
, P

(2)
), 0
]
∈ R(2n−n̂(3)−n̂(2))×3n

Q :=
[
dg((Q

(3)
)T, (Q

(2)
)T), 0

]T
∈ R3n×(2n−n̂(3)−n̂(2))

(5.24)

for P
(l) ∈ R(n−n̂(l))×n and Q

(l) ∈ Rn×(n−n̂(l)) such that P
(l)
Q

(l)
= In−n̂(l) . Thus, it

follows that

g(s)− ĝ(s) = [0,−In]Q(sI − PAQ)−1PAQP(sI −A)−1B.

Noting that QP = [I2n, 0]TQP, we have

‖g(s)− ĝ(s)‖H∞ ≤ µ‖QP(sI −A)−1B‖H∞ .

Furthermore, giving

T :=


In 0 0

In In 0

In In In

 ∈ R3n×3n,

we have

QP(sI −A)−1B = QPT (sI − T−1AT )−1T−1B

=


Q

(3)
P

(3)
0 0

Q
(2)
P

(2)
Q

(2)
P

(2)
0

0 0 0


sI −


Ξ(3) J (3)S J (3)S

0 dg(Ξ(2)) J (2)S

0 0 dg(Ξ(1))



−1 

J (3)S

J (2)S

J (1)S


(5.25)
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where

J (l) := dg(J
(l)
i ), S := dg(Si).

Hence, the claim follows.

Theorem 5.3 shows that the approximation error ‖g(s) − ĝ(s)‖H∞ is bounded by σ(l,k)

associated with the approximation error of Φ(l) and Φ̂(l). Therefore, combining Theo-

rem 5.2 and 5.3, we can construct a low-dimensional hierarchical distributed controller

{Φ(l)}l∈L to achieve an L2-performance of the closed-loop system for any sets of locally

stabilizing controllers in Kθ. In Theorem 5.3, we assume that P
(l)
i and Q

(l)
i guarantee the

stability of PAQ. One approach to construct P
(l)
i and Q

(l)
i guaranteeing the stability is

shown in Section 5.3.2 below.

5.3.2 Stability Preservation of Low-dimensional Hierarchical Distributed

Controller

To construct P (l) and Q(l) in (5.18) preserving the stability of the closed-loop system

(Σ, {Φ̂(l)}l∈L, {κi}i∈N ), we first introduce the following lemma:

Lemma 5.4. Consider Problem 5.1 and the autonomous system (5.28) with x̃(0)(0) = x0

and x̃(l)(0) = 0 for l ∈ L. If

im(J (3)) ⊆ im(Q(3)), im([J (2), Q(3)]) ⊆ im(Q(2)) (5.26)

then it follows that

x̂(t) ≡
3∑
l=2

Q(l)x̃(l)(t) +

1∑
l=0

x̃(l)(t). (5.27)

Proof. Note that (5.26) implies

Q(3)P (3)J (3) = J (3), Q(2)P (2)[J (2), Q(3)] = [J (2), Q(3)].

and it follows that

dg(A
(l+1)
i ) = dg(A

(l)
j ) + J (l+1)C

by definition of J (l). By taking a coordinate transformation given by

x̃(l) =

{
−P (l)Q(l+1)φ̂(l+1) + φ̂(l), l ∈ L
x− φ̂(1), l = 0
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where φ̂(4) is regarded as zero, the closed-loop system (Σ, {Φ̂(l)}l∈L, {κi}i∈N ) is trans-

formed into

˙̃x(3)

˙̃x(2)

˙̃x(1)

˙̃x(0)

ξ̇


=



P (3)Ξ(3)Q(3) P (3)J (3)SQ(2) P (3)J (3)S P (3)J (3)S 0

P (2)Q
(3)
P

(3)
Ξ(3)Q(3) P (2)Ξ(2)Q(2) P (2)J (2)S P (2)J (2)S 0

Q
(2)
P

(2)
Ξ(3)Q(3) Q

(2)
P

(2)
Ξ(2)Q(2) Ξ(1) J (1)S 0

0 0 0 dg(Ai) dg(BiMi)

0 0 0 dg(HiCi) dg(Ki)





x̃(3)

x̃(2)

x̃(1)

x̃(0)

ξ


.

(5.28)

In addition, x̂ can be described as (5.27).

In Lemma 5.4, we can see from (5.28) that the state variables x̃(1) depend on the state

variables in the higher layers, i.e., x̃(2) and x̃(3). If we do not reduce Φ(l), i.e., P (l) =

Q(l) = In, then there are no feedback from the variables in the higher layer to that in

the lower layer. Thus, on the basis of small gain theorem [58], we consider constructing

P (l) and Q(l) such that they make the magnitude of the feedback small. In view of this,

we provide the following theorem:

Theorem 5.5. Consider Problem 5.1. Let ρ(3) > 0 and V(3) � On be given such that

Sρ(3)(V
(3); Ξ(3), J (3),Ξ(3)) ≺ 0n (5.29)

where

Sρ(V;A,B,C) := ATV + VA+ ρ−1(VBBTV + CTC). (5.30)

Let V (3) be a Cholesky factor of V(3), i.e., V (3) � 0n such that V(3) = (V (3))TV (3).

Define

P (3) = W (3)V (3), Q(3) = (V (3))−1(W (3))T (5.31)

for W (3) ∈ Rn̂(3)×n such that W (3)(W (3))T = In̂(3) and the first condition in (5.26) holds.

Furthermore, suppose that there exist ρ(2) ∈ R|N (2)| and V(2)
i � 0

n
(2)
i

satisfying

S
ρ
(2)
i

(V(2)
i ; Ξ

(2)
i , Ei(I −Q(3)P (3)), S

(2)
i ) ≺ 0

n
(2)
i

, (5.32)

for i ∈ N (2) and

‖ρ(2)‖ < (ρ(3))−1 (5.33)

where ρ
(2)
i denotes the ith element of ρ(2), Ei ∈ Rn

(2)
i ×n such that [ET

1 , . . . , E
T
|N (2)|]

T = In

and S
(2)
i := dg(dg(Sk)k∈C(0)j

)
j∈C(1)i

. Furthermore, define

P
(2)
i = W

(2)
i V

(2)
i , Q

(2)
i = (V

(2)
i )−1(W

(2)
i )T (5.34)
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where V
(2)
i is a Cholesky factor of V(2)

i and W
(2)
i ∈ Rn̂

(2)
i ×n

(2)
i satisfies W

(2)
i (W

(2)
i )T =

I
n̂
(2)
i

. If P (2) and Q(2) satisfy the second condition in (5.26) and

‖C(sI − Ξ(1))−1(I −Q(2)P (2))‖H∞ < ‖[Ξ(3)Q(3),Ξ(2)Q(2)](sI −X )−1

[
P (3)J (3)

P (2)J (2)

]
‖−1
H∞

(5.35)

where X denotes the principal submatrix of the system matrix in (5.28) corresponding to

the first n̂(3) + n̂(2) rows and columns, then the closed-loop system (Σ, {Φ̂(l)}l∈L, {κi}i∈N )

is stable.

Proof. From Lemma 5.4, it suffices that we show the stability of the principal submatrix

of the system matrix in (5.28) corresponding to the first n̂3 + n̂2 + n rows and columns.

Let P
(3)

and Q
(3)

be given by

P
(3)

= W
(3)
V (3), Q

(3)
= (V (3))−1(W

(3)
)T

where W
(3) ∈ R(n−n̂(3))×n such that [(W (3))T, (W

(3)
)T]T is unitary. First, we show the

stability of X in Theorem 5.3. From small gain theorem [58], it suffices to show

‖SQ(2)(sI − P (2)Ξ(2)Q(2))−1P (2)Q
(3)
P

(3)
Ξ(3)Q(3)(sI − P (3)Ξ(3)Q(3))−1P (3)J (3)‖H∞<1.

(5.36)

Note that there exist ρ(3) > 0 and V (3) � 0n satisfying (5.29) because Ξ(3) is stable. It

follows from Bounded Real Lemma [48] that (5.29) is equivalent to[
Sρ(3)(V(3); Ξ(3), 0,Ξ(3)) J (3)

∗ −(ρ(3))−1Ip

]
≺ 0n+p. (5.37)

Pre- and Post- multiplication of (5.37) by dg((V (3))−1(W (3))T, Ip) and dg(W (3)(V (3))−1, Ip),

we have [
Sρ(3)(I;P (3)Ξ(3)Q(3), 0,Ξ(3)Q(3)) P (3)J (3)

∗ −(ρ(3))−1Ip

]
≺ 0n̂(3)+p.

Hence, P (3)Ξ(3)Q(3) is stable and

‖Ξ(3)Q(3)(sI − P (3)Ξ(3)Q(3))−1P (3)J (3)‖H∞ < ρ(3) (5.38)

holds for all W (3) satisfying W (3)(W (3))T = In̂(3) . Similarly to this, (5.32) shows that

P
(2)
i Ξ

(2)
i Q

(2)
i is stable and

‖S(2)
i Q

(2)
i (sI − P (2)

i Ξ
(2)
i Q

(2)
i )−1P

(2)
i ET

i Q
(3)
P

(3)‖H∞< ρ
(2)
i (5.39)
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holds for all i ∈ N (2) and all sets of {W (2)
i }i∈N (2) satisfying W

(2)
i (W

(2)
i )T = I

n̂
(2)
i

. Note

that ∥∥∥∥∥
[
G1(s)

G2(s)

]∥∥∥∥∥
2

H∞

≤ ‖G1(s)‖2H∞ + ‖G2(s)‖2H∞

holds for stable proper transfer matrices G1(s) and G2(s). Thus, (5.39) yields

‖SQ(2)(sI − P (2)Ξ(2)Q(2))−1P (2)Q
(3)
P

(3)‖2H∞ ≤ ‖ρ
(2)‖2

Hence, (5.36) follows from (5.33) and (5.38). Thus, it follows from small gain theorem

that X is stable for all sets of {W (2)
i }i∈N (2) satisfying W

(2)
i (W

(2)
i )T = I

n̂
(2)
i

. Therefore,

small gain theorem shows that (5.35) implies the stability of the closed-loop system

(Σ, {Φ̂(l)}l∈L, {κi}i∈N ).

5.3.3 Design Algorithm of Low-dimensional Hierarchical Distributed

Controller

In this subsection, we provide a design procedure of low-dimensional hierarchical dis-

tributed controllers. In general, it is difficult to find a biorthogonal projection to satisfy

a criterion evaluated by the H∞-norm, such as (5.19). Intuitively, the H∞-norm of a

transfer matrix is expected to be small if so is the H2-norm. In view of this, we consider

constructing P
(l)
i and Q

(l)
i for a given n̂

(l)
i to make the H2-norm of the system in the left

side of (5.19) small. The specific procedure is provided in Remark 2.4 in Chapter 3. For

simplicity, we omit a procedure to preserve the stability of the closed-loop system. Note

that, if an approximation error is sufficiently small, then PAQ is expected to be stable.

Thus, we summarize a design procedure of {Φ̂(l)}l∈L being a solution of Problem 5.1 as

follows:

1. Give positive values of ε and θ.

2. For a given system Σ in (5.4) and a hierarchical structure {N (l)}l∈L and {C(l)
i }i∈N (l+1)

for l ∈ {0, 1, 2}, construct {Φ(l)}l∈L in (5.5) and (5.7) such that it achieves a de-

sirable L2-performance of the closed-loop system (Σ, {Φ(l)}l∈L, {κi}i∈N ) for any

{κi}i∈N ∈ Kθ.

3. Find P
(l)
i and Q

(l)
i satisfying P

(l)
i Q

(l)
i = I

n̂
(l)
i

and (5.19) for a given n̂
(l)
i .

4. If ĝ(s) is unstable or ‖g(s) − ĝ(s)‖H∞ > ε/θ, then take a larger value of n̂
(l)
i and

go to the step in 3).

5. Construct {Φ̂(l)}l∈L in (5.9), (5.12) and (5.18).
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Figure 5.1: Initial value responses of a power network model.

5.4 Numerical Example

In this section, we demonstrate the efficiency of the proposed low-dimensional hierarchi-

cal distributed control through an example of power network systems. We deal with a

power network model provided in Section 4.4.1 in the previous chapter. We summarize

the different settings below:

We deal with a power network system composed of N = 50 subsystems and each sub-

system consists of three generators and two loads. Each generator and load are three-

and two-dimensional system, respectively. Thus, each subsystem is 13-dimensional,

i.e., ni = 13 for i ∈ N := {1, . . . , 50}, and the overall power network system is 650-

dimensional, i.e., n = 650. The interconnection structure among generators and loads

in each subsystem is given as a graph Laplacian of complex network model, called the

Wattz-Strogatz(WS) model [59]. For the interconnection among subsystems, the first

generators in individual subsystems are interconnected and the graph Laplacian is given

as WS model.

Furthermore, the elements of the admittance matrix compatible with interconnection

among subsystems (resp. inside the subsystems) are randomly chosen from [0.1, 0.5]

(resp. [0.1, 1.0]).

First, we design a set of locally stabilizing controllers {κi}i∈N in (4.10) by the LQR

design techniques. We obtain three sets of locally stabilizing controllers where the re-

sultant values of ‖θ‖ in (4.5) are 4100, 686 and 415, respectively. In the upper half of

FIGURE. 5.1, we show the initial responses of angular velocities of all generators and
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Figure 5.2: Resultant approximation error ‖g − ĝ‖H∞/‖g‖H∞ versus n̂
(l)
i .

loads in the first subsystem. In this figure, we depict the trajectories of disjoint sub-

systems and those of interconnected subsystems by blue and red lines, respectively. We

can see from this figure that the instability of the closed-loop system is induced as we

get higher-gain local controllers due to negative interference among subsystems.

Next, using a hierarchical distributed controller {Φ(l)}l∈L, we consider improving the

L2-performance of the whole closed-loop system. For the hierarchical structure, we take

N (l) such that

|N (1)| = 10, |N (2)| = 2, |N (3)| = 1

and take cluster sets C(l)
i having the same number of subsystems in each layer, i.e.,

|C(0)
i | = 5, |C(1)

i | = 5, |C(2)
i | = 2

for i ∈ N (l). Thus, we have n
(1)
i = 65, n

(2)
i = 325 and n(3) = 650 for i ∈ N (l). In addition,

let the number of generators having additional input ports compatible with B(l) be m(1)

= 25, m(2) = 17 and m(3) = 13 and take those generators randomly from the first

generators among 50 subsystems. We design individual controllers Φ(l) by minimizing

γ(l) in (5.8).

In the lower half of (a)-(c) in FIGURE. 5.1, we depict the initial value responses of

the closed-loop system with a hierarchical distributed controller {Φ(l)}l∈L by the blue

dotted lines. From this figure, we see that the L2-performance of the closed-loop system

improves as improving the performance of local controllers, owing to the attenuation

of interference among subsystems. However, each compositional unit of the designed

controller Φ(2) and Φ(3) are 325- and 650-dimensional system, respectively. Next, we

aim at reducing these two controllers while preserving a similar quality.
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We design Φ̂(l) along the procedure shown in Section 5.3.3 for several given values of

n̂
(l)
i . Let n̂

(2)
i = 180, 200 and 220 for i ∈ N (2). In FIGURE. 5.2, we plot the resultant

approximation error of {Φ(l)}l∈L and {Φ̂(l)}l∈L, i.e., ‖g(s) − ĝ(s)‖H∞/‖g(s)‖H∞ where

g(s) and ĝ(s) are defined in (5.13), with respect to several n̂(3) for each case of n̂
(2)
i by the

red, blue and green lines, respectively. From this figure, we can see that the performance

of Φ̂(l) appropriately improves as increasing the dimension of Φ̂(2) and Φ̂(3). If we choose

the dimension of Φ̂(l) as n̂
(2)
i = 200 and n̂

(3)
i = 137, the resultant approximation error

turns out to be ‖g(s)− ĝ(s)‖H∞/‖g(s)‖H∞ = 0.017.

Finally, in the lower half of (a)-(c) in FIGURE. 5.1, we plot the initial value responses

of the closed-loop system with {Φ̂(l)}l∈L by the red solid lines. We can see from this

figure that the trajectories compatible with Φ̂(l) is close to that compatible with Φ(l).

Furthermore, for each case of (a)-(c), the resultant value of supx0(‖x‖L2/‖x0‖2) is 3568,

477 and 229, respectively. This result implies that the L2-performance of the closed-loop

system with {Φ̂l}l∈L improves as improving the performance of local controllers.

5.5 Chapter Summary

In this chapter, we have proposed a design method of low-dimensional hierarchical dis-

tributed controllers for large-scale network systems. The problem of designing low-

dimensional hierarchical distributed controllers has been formulated as a structured

controller reduction problem for any sets of locally stabilizing controllers. To solve this

problem, explicitly utilizing a hierarchically distributed structure of the closed-loop sys-

tem, we have shown that the approximation error of the closed-loop system can be

evaluated by that of the system associated with the hierarchical distributed controller

without local controllers. Furthermore, we have derived the relation between the approx-

imation errors of the individual hierarchical controllers and the performance degradation

of the closed-loop system. Finally, we have shown the efficiency of the proposed method

through a numerical example of power network systems.



Chapter 6

Low-dimensional Nonlinear

Modelling of Plasticization

Cylinders

6.1 Introduction

In this chapter, as a first step towards low-dimensional observer/controller design for

nonlinear large-scale network systems, we show the importance and necessity of non-

linear low-dimensional modelling through an example of real industrial applications.

More specifically, we construct a low-dimensional nonlinear model of the plasticization

cylinder that is a key component of plastic injection molding machines. FIGURE. 6.1

shows schematic depiction of the plasticization cylinder that plays an important role in

plasticization process where resin is melted by heat exchange with the internal surface

of a barrel heated by band heaters. The quality of plastic products highly depends

on temperatures in the plastic injection molding process. Thus, towards quality man-

agement and improvement of plastic products, modelling temperature dynamics of the

plasticization cylinders in FIGURE. 6.1 has tremendous potential.

In the first half of this chapter, we construct the nonlinear model of plasticization cylin-

ders including thermal properties of heaters, radiation to a water-cooling cylinder and

outer air while taking into account the temperature-dependent properties of heaters.

Furthermore, we show that the temperature dependency is not negligible and show the

validity of the resultant model by experiment. Due to the high dimensionality of the

resultant model (PDEs or a discretized model), simulation and controller design based

on the model do not become computationally friendly. Thus, in the second half of this

chapter, we consider to reduce the dimension of nonlinear models. More specifically,

72
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Figure 6.2: Schematic of plasticization cylinder models.

utilizing a particular structure of the nonlinear model arising from radiation to the

air, we show that the reduced nonlinear model preserves the stability with an a priori

approximation error bound.

This chapter is organized as follows: We provide a nonlinear model of plasticization

cylinders in Section 6.2. In Section 6.3, we validate the resultant nonlinear model by

experiment. In Section 6.4.1, we provide the theoretical approximation error bound of

reduced order nonlinear models with the provision of systematic reduction procedure.

In Section 6.4.2, we show the validity of the resultant 28-dimensional model (via an 808-

dimensional spatially discretized model) by numerical simulation. Finally, in Section 6.5,

we show concluding remarks.

6.2 Nonlinear Modelling of Plasticization Cylinders

In FIGURE. 6.2, we show the schematic depiction of plasticization model composed of

a barrel, outer air, inner fluid, heaters and a water-cooling cylinder. The inner fluid

represents melted resin inside the barrel in real injection machines. The water-cooling

cylinder has internally a pipe line over the barrel, which cools the barrel by flowing water

from IN to OUT shown in FIGURE. 6.3. In what follows, we describe the detail of the

plasticization cylinder model.
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Figure 6.3: Prototype systems.

6.2.1 Barrel, Outer air, Inner fluid and Water-cooling cylinder

In this subsection, we model a barrel, outer air, inner fluid and a water-cooling cylinder.

In what follows, we denote the time variable by t and spatial variables along the longer

and radial direction by x and r such that

(x, r) ∈ D := [0, X]× [Rf , R]

with the origin shown in FIGURE. 6.2 where X [m] is the length of the barrel, Rf and

R [m] are the internal radius and the external radius of the barrel, respectively. In this

notation, state variables are

• Temperature of barrel [deg]: T (t, x, r)

• Temperature of inner fluid [deg]: T̃ (t, x)

• Temperature of the kth heater [deg]: Hk(t), k ∈ {1, . . . , N}

where N denotes the number of heaters. Note that T̃ (resp. Hk) does not depend on

r (resp. x and r). In addition, preliminary experiment shows that the temperature

of outer air and that of a water-cooling cylinder can be regarded constant. Thus, we

denote the temperature of outer air and that of a water-cooling cylinder by To [deg] and

Tc [deg], respectively.
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First, the heat transfer property of barrels is described by a cylindrical coordinate dif-

fusion equation1 as

∂T

∂t
= α

(
∂2T

∂r2
+

1

r

∂T

∂r
+
∂2T

∂x2

)
, (x, r) ∈ int(D), (6.1)

where α [m2/s] denotes a diffusion coefficient. In addition, the heat budget on the barrel

surface is given by Neumann type boundary conditions

− β∂T
∂n

= h•(T• − T ), (x, r) ∈ S•, • = {o, c} (6.2)

where β [W/(mK)] is the coefficient of thermal conductivity, h• [W/(m2K)] is the co-

efficient of heat transfer and So,Sc ⊂ ∂D are sets of contacts to the outer air and the

water-cooling cylinder, respectively. In addition, the boundary condition on the inner

fluid interface over r = Rf is given by

− β∂T
∂r

= hf(T̃ − T ), r = Rf , x ∈ (0, X), (6.3)

where hf [W/(m2K)] denotes a coefficient of heat transfer. For k ∈ {1, . . . , N}, we

describe the heat budget to the kth heater as

− β∂T
∂r

= hk(Hk − T ), r = R, x ∈ Xk (6.4)

where Xk ⊂ [0, X] is a set of contacts to the kth heater over r = R and hk [W/(m2K)]

is a coefficient of heat transfer at the contact points. Moreover, assuming that the inner

fluid remains stationary, we describe the heat transfer dynamics of the inner fluid as

∂T̃

∂t
= α̃

∂2T̃

∂x2
+ hf(T (x,Rf)− T̃ ), x ∈ (0, X) (6.5)

where α̃ [m2/s] is a coefficient of thermal conductivity of the inner fluid, the second term

in the right-hand side in (6.5), i.e., hf(T (x,Rf) − T̃ ), represents the total thermal flow

from the barrel to the inner fluid. Moreover, we describe heat exchange at x ∈ {0, X}
of the outer air as

− βf
∂T̃

∂x
= ho(To − T̃ ), x ∈ {0, X}. (6.6)

where βf [W/(mK)] is a coefficient of thermal conductivity of the inner fluid. Finally,

for output equations, Yd ∈ RN [deg] and Y ∈ Rl [deg] denote temperatures measured

by N sensors shown in FIGURE. 6.2 (called controlling thermo couples) and by other

sensors (for measurement). The each element of Yd and Y is given by appropriately

spatially-weighted integration of T .

1∂D is the border of D, int(D) is the inside of D, n denotes a normal unit vector to ∂D.
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6.2.2 Modelling heaters

In this subsection, we describe a model of heaters. In general, the coefficient of heat

transfer between heaters and outer air is not static. This is because the rate of heat loss

to the outer air depends on the temperature differences between heaters and the outer

air under natural convection [8]. Toward quality management of plastic products, this

temperature-dependency is not negligible and incorporated explicitly as follows:

Assumption 6.1. For k ∈ {1, . . . , N}, the heat transfer coefficient between the kth

heater and outer air is given by

h̄k(Hk − To) (6.7)

where the smooth function h̄k : R 7→ R+ is non-decreasing in R+ and non-increasing in

R−.

For k ∈ {1, . . . , N}, we describe the model of the kth heater as

Ḣk =
1

ck

(
V 2
k (t)

rk
− h̄k(Hk − To) · ak(Hk − To)− 2πR

∫
Xk

hk(Hk − T (x,R))dx

)
(6.8)

where ck [J/K], rk [ohm] and ak [m2] denote the heat capacity, the impedance and the

outer area of the kth heater, respectively. Then, 2πR|Xk| [m2] coincides with the inner

area of the kth heater and Vk(t) [V] is the signal of input voltage. In the right side of

(6.8), the second and third term represent the total thermal flow rate to outer air and

the barrel, respectively. Note that the other coefficients of heat transfer ho, hc, hf and

hk are constant because the corresponding temperatures are low or the corresponding

area is sufficiently small.

6.2.3 Network System Given by Spatial discretization

In this subsection, spatialy discretizing the overall model described by partial differ-

ential equations(PDEs), we give a finite-dimensional nonlinear error system around an

equilibrium state. More specifically, we discretize (6.1)-(6.6) with steps ∆x and ∆r for x

and r axes by means of the finite element method [7]. Combining the discretized model
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with (6.7) and (6.8), we have the following nonlinear thermal diffusion network system:
˙̄x = Ax̄+Bvv̄ + b̄1

ȳd = Cdx̄

ȳ = Cyx̄

w̄ = Cwx̄+Dwū

(6.9)


˙̄z =


− 1
c1
z̄1ψ1(z̄1)

...

− 1
cN
z̄NψN (z̄N )

+ b̄2 + w̄

v̄ = z̄ + To1N

(6.10)

ψk(z̄k) := akh̄k(z̄k) + 2πR|Xk|hk. (6.11)

The system in (6.9) represents the temperature dynamics of a barrel and inner fluid

while that in (6.10) and (6.11) represents the temperature dynamics of heaters. The

physical meanings of variables are as follows: x̄ ∈ Rn is a vector of spatial discretized

temperature T and T̃ , ȳd ∈ RN denotes partial temperatures of T measured by sensors,

ȳ ∈ Rl denotes partial temperatures of T for evaluation and

z̄ := [H1 − To, . . . ,HN − To]T ∈ RN , v̄ := [H1, . . . ,HN ]T ∈ RN .

Furthermore, w̄ ∈ RN denotes a heat quantity to heaters and ū(t) is input signal such

that

ū(t) = [ū1(t), . . . , ūN (t)]T ∈ RN , ūk(t) := V 2
k (t).

Finally, the first and second term in (6.11) represent radiation to the air and a barrel,

respectively. Thus, ψk represents the coefficient of whole radiation of the kth heater.

The configuration of controller of injection molding machines is as follows: Input to

the kth heater is determined by the compatible with measured temperature yd, i.e.,

the kth element of yd. Thus, operators give the target value of controllers as a desired

output temperature y∗d of yd, which depends on molding products. In general, nonlinear

systems do not necessarily have a unique desired state corresponding to a desired output.

However, the following proposition guarantees that the nonlinear model in (6.9)-(6.11)

has a unique equilibrium points.

Proposition 6.1. Consider a nonlinear system (6.9)-(6.11). If

[
A Bv

Cd 0

]
is non-

singular, then, for any y∗d ∈ RN there exist unique equilibrium states and inputs x̄∗, v̄∗, ū∗

satisfying ȳd(t) ≡ y∗d.
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Proof. Suppose ˙̄x ≡ 0, ȳd ≡ y∗d. It follows from the first and second equations in (6.9)

that [
−b̄1
y∗d

]
=

[
A Bv

Cd 0

][
x̄∗

v̄∗

]
. (6.12)

Note that

[
A Bv

Cd 0

]
is non-singular. Hence, there exist unique x̄∗ and v̄∗ satisfying

(6.12). Let z∗ := v̄∗ − To1N and Dw := dg (1/(c1r1), . . . , 1/(cNrN )). Then, ū∗ is given

by

ū∗ = −D−1
w



−z∗1ψk(z∗1)

...

−z∗Nψk(z∗N )

+ b̄2 + Cwx̄
∗

 .

In the remainder of this section, we rewrite (6.9)-(6.11) as an error system from the

desired value. Define errors with respect to each variable, e.g., z := z̄−z∗, y := ȳ−Cyx̄∗.
From simple calculation, we have

z̄ =


−(z1 + z∗1)ψk(z1 + z∗1)

...

−(zN + z∗N )ψk(zN + z∗N )

+ Cwx+Dwu+ b̄2 + Cwx̄
∗ +Dwū

∗.

Thus, we have a nonlinear network system
ẋ = Ax+Bvz

yd = Cdx

y = Cyx

w = Cwx+Dwu

(6.13)

Σnl : ż = Ψ̃(z) + w, v = z (6.14)

where

Ψ̃(z) :=
[
ψ̃k(z1), . . . , ψ̃k(zN )

]T
∈ RN , Ψ̃(0) = 0 (6.15)

ψ̃k(zk) := − ((zk + z∗k)ψk(zk + z∗k)− z∗kψk(z∗k)) (6.16)

and zk denotes the kth element of z for any k ∈ {1, . . . , N}.
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Figure 6.4: Coefficients of heat transfer h̄k.

6.3 Experimental Results

6.3.1 Configuration of Real Systems

In this section, we show the validity of the nonlinear network model in (6.13)-(6.16)

by experiment. We first describe the configurations of the prototype system shown in

FIGURE. 6.3 as follows: The prototype system consists of a barrel, N = 4 heaters and a

water-cooling cylinder. The cylindrical barrel has several thermo couples on the interior

wall of the barrel as well as four implanted several thermo couples (controlling thermo

couples) inside the barrel. In addition, sequential experimental data is sampled by a data

logger during 30 [min] with a sufficiently short sampling interval. The velocity of water

flowing through a water-cooling cylinder is constant because preliminary experiments

show that the velocity does not have influences on variance of barrel temperatures.

Furthermore, the nonlinear function of heat transfer h̄k(z̄k) in (6.7) is determined as

follows: In FIGURE. 6.4, we depict several constant coefficients of the heat transfer

identified by experiment for the first heater as circles. In addition, h̄1(z̄1) for z̄1 ∈ R+ is

determined by the least square method in R+ for the resultant experimental data (black

circles in FIGURE. 6.4). Furthermore, we take h̄1(−z̄1) = h̄1(z̄1) and the resultant h̄1(z̄1)

is plotted by the glay line in FIGURE. 6.4. We take h̄k = h̄1 for k ∈ {2, 3, 4} because

similar experimental results are obtained. The other parameters, e.g., α in (6.1), ho and

hc in (6.2), are referred to [8]. Taking ∆x = ∆r = 5 [mm], we have an 808-dimensional

nonlinear thermal diffusion network system.
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Figure 6.5: Temperature-dependency of heat transfer coefficient.

6.3.2 Model Validation by Experiment

In what follows, we validate the nonlinear network model in (6.13)-(6.16) by comparing

experimental results and simulation results where measured experimental input signals

are used. In FIGURE. 6.5, the black solid line depicts the transient temperature mea-

sured by a controlling thermo couple. In addition, glay solid and dotted line depict the

temperature by simulation of the obtained model (6.13) and (6.14) with h̄ ≡ 11.0 and

h̄ ≡ 8.4. This result show that glay solid (resp. dotted) line is below (resp. above) the

experimental result plotted by the black solid line around t = 1800 (resp. t = 1000).

This is because the low (resp. high) constant value of h̄ expresses small (resp. high) heat

radiation to the outer air. Furthermore, in FIGURE. 6.5, the black dotted line depicts

the temperature by simulation with the nonlinear function of h̄ given in the Section

6.3.1. This figure shows that the temperature-dependency of h̄ is not negligible and the

nonlinear network model in (6.13) and (6.14) has potential to approximate experimental

results.

Next, we validate steady-state characteristics of the nonlinear network model in (6.13)-

(6.16). In FIGURE. 6.6, we plot the steady temperature distribution inside the barrel

obtained by the experiment as circles for the desired temperatures 200 [deg] and 100

[deg], respectively where the two results are plotted in each case. Moreover, the solid

lines are simulation results of x̄∗ in Proposition 6.1. In FIGURE. 6.6, the vertical axis

indicates temperatures and the horizontal axis indicates positions inside the barrel in

FIGURE. 6.2. From this figure, we can see that the obtained nonlinear network model

accurately explains experimental results.



Chapter 6. Low-dimensional nonlinear modelling of plasticization cylinders 81

0 100 200 300 400 500 600
0

50

100

150

200

250

Position inside a barrel[mm]

T
em

p
er

at
u

re
[d

eg
]

 

 

Simulation
Experiment

Figure 6.6: Steady temperature distribution inside barrel.
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Figure 6.7: Transient responses at several measurement points shown in FIGURE. 6.8.

Finally, we show transient responses obtained by the experiment and simulation as the

blue and red lines in FIGURE. 6.7. In addition, the solid and dotted lines depict those for

different controlling configurations. Measurement points are shown in FIGURE. 6.8 as Z1

and P1-P8. These figures show that the derived model accurately explains experimental

results. Therefore, we conclude that an accurate nonlinear model is obtained.
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Figure 6.9: Overall nonlinear system.

6.4 Model Order Reduction of Nonlinear Network System

In the previous section, we have shown the validity of the obtained nonlinear thermal

diffusion network model in (6.13)-(6.16). However, the resultant dimension of the model

is 808. Thus, designing controllers and observers based on this model is not useful. One

naive approach to obtain low-dimensional model is to discretize the PDEs by coarser

spatial step sizes. However, a 409-dimensional model by spatial discretization with

∆x = 10 [mm] does not simulate accurately. Thus, in this section, we reduce the

dimension of the whole nonlinear system while preserving its input-output performance.

Since model reduction of general nonlinear systems is challenging, we utilize a particular

structure: the dimension of the nonlinear system, i.e., N = 4, is lower than that of

the linear system, i.e., 804. In view of this, we reduce the linear system only and

connect the resultant low-dimensional linear system with the original nonlinear system

as FIGURE. 6.9. We describe the linear part of the whole system as

Σlin :


ẋ = Ax+Bvv

y = Cyx

w = Cwx+Dwu

(6.17)

where y denotes an evaluating output in (6.13) and the overall structure of the nonlinear

system Σ := (Σlin,Σnl) is shown in FIGURE. 6.9.
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6.4.1 Error analysis

We first assume that matrix A in (6.17) is stable. This is the case for our model, since

Σlin is a diffusive system. Thus, a reduced nonlinear model must keep stability with a

small approximation error.

As preliminary of main results, we introduce some notations as follows: Let a reduced lin-

ear system be Σ̂lin and an inter-connected reduced nonlinear model be Σ̂ := (Σ̂lin,Σnl).

We denote the H∞-norm of Gij by γij where Gij is a transfer function from i ∈ {y, w}
to j ∈ {u, v} of Σlin. Similarly, γ̂ij is the H∞-norm of Ĝij , that is a transfer function

from i to j when Σ̂lin is stable. We denote the H∞-norm of an error system Gij− Ĝij by

εij . In addition, we assume that Σ̂lin is minimal realization without loss of generality.

Using this notation, we have the following theorem:

Theorem 6.2. Consider Σnl in (6.14) and Σlin in (6.17). Define

µ := max
k=1,...,N

(µk) (6.18)

µk :=
ck
νk

(6.19)

νk := min
z∈RN

ψk(z)(= ψk(0)). (6.20)

Let Σ̂lin be a stable linear system satisfing

γ̂wvµ < 1 (6.21)

then the overall reduced order system Σ̂ = (Σ̂lin,Σnl) is asymptotically stable. Moreover,

for any L2 bounded input signals u, we have

‖y − ŷ‖L2 ≤ ε‖u‖L2 (6.22)

where

ε =
εyvµγwu
1− γwvµ

+
γ̂yvµ

1− γ̂wvµ
εwvµγwu
1− γwvµ

. (6.23)

Proof. To prove this theorem, we first introduce the following notion of incremental

gain:

Definition 6.3. Consider a nonlinear system

ẋ = f(x, u), y = g(x, u) (6.24)
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where x ∈ Rn, u ∈ Rm, y ∈ Rl. Suppose that f(0, 0) = 0, g(0, 0) = 0 and x = 0 are

stable equilibriums. If there exists a bounded function β(p, s) : Rn ×Rn 7→ R such that

β(p, s) ≥ 0, β(0, 0) = 0 and

‖y2 − y1‖2L2 ≤ µ
2‖u2 − u1‖2L2 + β(x1,0, x2,0) (6.25)

for any u1, u2 in the class of m-dimensional L2 bounded signals, then the nonlinear

system (6.24) has a L2-bounded incremental gain µ.

Similarly, an incremental gain for linear system is defined, which results in the H∞-

norm. The following lemma clarifies the relation between the incremental gain of (6.24)

and the dissipativity of systems:

Lemma 6.4. Consider the augmented system of a nonlinear system (6.24) as

Σaux :

{
ẋ1 = f(x1, u1), y1 = g(x1, u1)

ẋ2 = f(x2, u2), y2 = g(x2, u2)
. (6.26)

The nonlinear system (6.24) has incremental gain µ if and only if Σaux is dissipative

with a supply rate

s(y1, u1, y2, u2) = µ2|u2 − u1|2 − |y2 − y1|2. (6.27)

Proof. See [60].

In this setting, we have the following proposition for the nonlinear system having the

structure as FIGURE. 6.9:

Proposition 6.5. Consider a given Σlin in (6.17). Let Σlin be stable and Σ̂lin be a

stable reduced linear system. In addition, suppose that a given Σnl in (6.14) is zero-

state detectable while Σ̂lin and Σnl have incremental gain γ̂ij and µ. If we have

γwvµ < 1 (6.28)

then, Σ = (Σ̂lin,Σnl) has an incremental gain and is asymptotically stable with zero

input. Furthermore, an output error bound ε in (6.22) is given by

ε = εyu +
εyvµγwu
1− γwvµ

+
γ̂yvµ

1− γ̂wvµ

(
εwu +

εwvµγwu
1− γwvµ

)
(6.29)
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Proof. See [61].

Using this proposition, we show that a nonlinear scalar system żk,1 = ψ̃k(zk,1) +

wk,1, vk,1 = zk,1 has an incremental gain µk. To this end, we define a nonlinear system

Σ
(k)
nl : żk =

[
ψ̃k(zk,1)

ψ̃k(zk,2)

]
+ wk, vk = zk

where zk := [zk,1, zk,2]T and wk := [wk,1, wk,2]T. For this system, we have the following

lemma:

Lemma 6.6. Define νk > 0 in (6.20). If assumption 6.1 holds and zk,1 ≥ zk,2 is satisfied

for all zk,1, zk,2 ∈ R, then it follows that

zk,1ψk(zk,1)− zk,2ψk(zk,2) ≥ νk (zk,1 − zk,2) . (6.30)

Proof. It is obviously proven in the case of ψk(zk,1) = νk. In what follows, we consider

the case of ψk(zk,1) 6= νk. Then, zk,1(ψk(zk,1)− νk) ≥ zk,2(ψk(zk,2)− νk) is equivalent to

zk,1 ≥
ψk(zk,2)− νk
ψk(zk,1)− νk

zk,2.

Assumption 6.1 yields that ψk(zk,1) ≥ ψk(zk,2) when zk,1 ≥ zk,2 ≥ 0. Thus, (6.30)

follows. Similarly to this, we have (6.30) when 0 > zk,1 ≥ zk,2. It is obviously proven in

the case of zk,1 ≥ 0 ≥ zk,2. Hence, the claim follows.

From Lemma 6.4, we show that Σ
(k)
nl has a storage function Sk(zk) := µk(zk,1 − zk,2)2

with a supply rate sk(·) = µ2
k|wk,2 − wk,1|2 − |vk,2 − vk,1|2 , i.e., it suffices to show that

Ṡk(zk) ≤ µ2
k|wk,2 − wk,1|2 − |vk,2 − vk,1|2. (6.31)

Lemma 6.6 for zk,1 ≥ zk,2 yields that

Ṡk(zk) = 2µk(zk,1 − zk,2)

(
− 1

ck
((zk,1 + z∗k) ψk(zk,1 + z∗k)− z∗kψk(z∗k)− (zk,2 + z∗k)

ψk(zk,2 + z∗k) + z∗kψk(z
∗
k)) + wk,1 − wk,2)

≤ − 2

ck
µk(zk,1 − zk,2)2νk + 2µk(zk,1 − zk,2)(wk,1 − wk,2).

Similarly to the case of zk,1 < zk,2, we see that the sufficient condition for (6.31) is

− 2µkνk
ck

p2 + 2µkpq − µ2
kq

2 + p2 ≤ 0 (6.32)
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for any p, q ∈ R. Eq. (6.32) is equivalently written as

(
1− 2µkνk

ck

)(
p+

µkck
ck − 2µkνk

q

)2

− µ2
k

(
1 +

ck
ck − 2µkνk

)
q2 ≤ 0. (6.33)

On the other hand, it follows from (6.19) that

ck − 2µkνk ≤ 0, 1 +
ck

ck − 2µkνk
≥ 0.

Thus, (6.32) follows. Hence, the nonlinear scalar system

żk,1 = ψ̃k(zk,1) + wk,1, vk,1 = zk,1

has the incremental gain µk. Second, we show that Σnl has the incremental gain µ :=

maxk(µk). Define

S(z1, . . . , zN ) :=

N∑
k=1

Sk(zk). (6.34)

Then, (6.31) yields that S(·) satisfies

Ṡ(z1, . . . , zN ) ≤ µ2|w:,2 − w:,1|2 − |v:,2 − v:,1|2

where w:,1 := [w1,1, . . . , wN,1]T. Thus Σnl has the incremental gain µ := maxk(µk).

Finally, we show the stability of Σ̂ and the error bound. Eq. (6.14) implies that Σnl is

zero-state detectable. Thus, Proposition 6.5 shows that the overall nonlinear system Σ̂

is asymptotically stable with zero input. Furthermore, since εyu = εwu = 0 holds, the

error bound is given by (6.23).

The parameter µ in (6.18) and µk in (6.19) act as an incremental gain of nonlinear

systems; see the details in the proof. The parameter µk is characterized by the lower

value of the coefficient of radiation ψk. Since ψk dominates the decay rate of energy

of heaters, it implies that (6.23) evaluates an approximation error with the minimum

decay rate. It is reasonable that the error ε becomes larger as ψk gets smaller.

Note that εij ≤ ‖G − Ĝ‖H∞ holds where G and Ĝ are transfer functions of Σlin and

Σ̂lin, respectively. In addition, we define δ satisfying εij ≤ δ, then γ̂ij ≤ γij + δ holds.

In this setting, the reduction procedure using this theorem is summarized as follows:

1. For given Σlin and Σnl, compute γij and µ in (6.18).

2. Find maximum δ > 0 such that the error bound ε in (6.23) is less than a desired

value and (6.21) holds. Note that we can replace εij and γ̂ij by δ and γij + δ as a

priori bounds.
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Figure 6.10: Model reduction of the linear part: Bode diagram of the transfer function
from v1 to y1 for the original (blue) and the reduced order models (green).

3. Find a reduced order model Σ̂lin satisfying ‖G− Ĝ‖H∞ ≤ δ by means of a model

reduction method with preserving the stability of Ĝ, e.g., balanced truncation

[17, 26].

4. Obtain Σ̂ by inter-connecting Σ̂lin and Σnl as shown in FIGURE. 6.9.

6.4.2 Simulation results

In this subsection, we demonstrate the efficiency of the model reduction method de-

scribed in the previous subsection.

For given Σlin and Σnl, we have µ = 30.0, γwu = 1.3 × 10−4, γyv = 1.7 and γwv =

3.2×10−2. In the second step of the procedure given above, taking δ = 3×10−4, we have

ε < 1.5×10−1. Reducing Σlin by means of balanced truncation, we have a further reduced

28-dimensional nonlinear model via the 808-dimensional original nonlinear model. The

obtained model satisfies (6.21) with µγ̂wv = 0.96, which implies that the model is stable.

This model is the smallest one satisfying the condition in (6.21). Moreover, we have

ε = 2.7× 10−2. Taking into account the fact that y(t) and u(t) are O(103) and O(102),

we can see that the resultant low-dimensional model approximates the original 808-

dimensional model accurately.

In FIGURE. 6.10, we show the bode diagram of the original transfer function G from

v1 to y1 and that of Ĝ by blue and green lines, respectively. This figure shows that Ĝ

appropriately approximates G.
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Figure 6.11: Transient trajectory difference between the original (black) and reduced
order (glay) models.

Finally, in FIGURE. 6.11, the blue and red lines depict transient responses of the overall

low-dimensional model (Σ̂lin,Σnl) and the original model (Σlin,Σnl) where the input

signal is the same as that used in Section 6.3. The points Z1, P1-P8 are shown in

FIGURE. 6.8. These figures show that we have obtained the accurate low-dimensional

network system for the spatially distributed nonlinear dynamics.

6.5 Chapter summary

In the first half of this chapter, we have provided the nonlinear model of plasticization

cylinders including nonlinear radiation to outer air. Furthermore, we have shown the ac-

curacy of the spatially discretized nonlinear network system by experiment. In the latter

half of this chapter, we have reduced the order of the nonlinear network system with the

theoretical guarantee about stability as well as the approximation error. The accuracy

of the obtained low-dimensional nonlinear network system has been evaluated by nu-

merical simulation with real data. These results have shown that we have obtained the

appropriate low-dimensional nonlinear network system explaining experimental results.



Chapter 7

Conclusion

7.1 Summary of results

This thesis is summarized as a line of work towards development of systematic control

theory for large-scale dynamical network systems. Summaries in individual chapters are

as follows:

In Chapter 2, we have proposed a method of designing low-dimensional functional ob-

servers to estimate a given set of states via an observer reduction approach. This type

of observer is useful for estimation of a limited number of states such as load power in

a particular area of large-scale electric power network systems. We have clarified that

we have to take into account not only an initial state estimation error but also exter-

nal input signals. Analyzing these estimation error factors based on model reduction

techniques, we have derived an a priori L2-error bound on the performance degradation

with the provision of systematic design.

In Chapter 3, towards estimation of overall dynamical behavior of large-scale network

systems with small computational costs, we have proposed an average state observer that

estimates average behavior of the network system from a macroscopic point of view. In

general, we do not know a set of states capturing average behavior of the network sys-

tem in advance. By the proposed method, we can construct a performance guaranteed

average state observer with systematic determination of a set of states capturing av-

erage behavior of systems. Towards systematic design of average state observers while

determining a set of states capturing average behavior, we have first derived a tractable

representation of the estimation error system by an average state observer. On the basis

of the representation of error systems, we have provided a systematic design procedure

with an a priori L2-error bound of the estimation error.

89
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In Chapter 4, we have proposed hierarchical distributed control for general linear net-

work systems. Towards systematic design, we have introduced state-space expansion

that enables us to independently deal with the state variables associated with disjoint

subsystems and those associated with the interference among hierarchically clustered

subsystems in a tractable manner. On the basis of this state-space expansion, we have

devised a design method to construct a hierarchical distributed controller, whose compo-

sitional units can be designed individually having an advantage that an L2-performance

of the closed-loop system improves as just improving an L2-performance of local con-

trollers that stabilizes disjoint subsystems individually.

However, the hierarchical distributed controller does not fully comply with practical

application for large-scale network systems from a viewpoint of computational costs for

implementation because the dimension of compositional units in upper layers is compa-

rable with that of the system to be controlled. In view of this, in Chapter 5, we have

provided a method of reducing the dimension of hierarchical distributed controllers that

approximates the original hierarchical distributed controller for any sets of locally stabi-

lizing controllers. To solve this problem, explicitly utilizing a hierarchically distributed

structure of the closed-loop system, we have shown that the approximation error of the

closed-loop system can be evaluated by that of the system associated with the hierar-

chical distributed controller without local controllers. Furthermore, we have derived the

relation between the approximation errors of the individual hierarchical controllers and

the performance degradation of the closed-loop system.

As a first step towards development of control theory for nonlinear large-scale network

systems, in Chapter 6, we have shown the importance and necessity of nonlinear low-

dimensional modelling through an example of plasticization cylinders including nonlinear

radiation to outer air. Utilizing a particular structure of the dynamics of plasticization

cylinders, we have provided a nonlinear model reduction method that preserves stability

as well as input-output performances. The accuracy of the obtained low-dimensional

nonlinear network system, which is 28-dimensional model whereas the original model is

808-dimensional nonlinear system, has been evaluated by experiment.

7.2 Future works

The average state observers proposed in Chapter 3 has potential to be useful for practical

applications, e.g., weather prediction and data assimilation [1, 6]. In fact, we have

extended the observer to the case of time-invariant Kalman filter dealing with system

noises and measurement noises in [62]. Further extension to nonlinear and time-variant
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filters is one of the most important study to develop practical tools for large-scale network

systems.

In addition, in Chapters 4, 5, we have proposed hierarchical distributed control with

a given sets of clusters. As discussed in Section 4.3.3, we have to devise a systematic

method of hierarchical clustering and sensor/actuator allocation towards scalable imple-

mentation. Furthermore, the proposed controller has the spatial hierarchy such as local

controllers in particular areas and a hierarchical distributed controller having jurisdic-

tion over the network system of interest. Similarly to this, we can consider hierarchical

controllers having temporal hierarchy based on spectral decomposition for example. This

extension is expected to establish a novel control theory from a spatiotemporal point of

view.
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