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Abstract

Automated planning is used for constructing strategies of intelligent agents.

To achieve the given goal a planning agent automatically computes a plan

based on knowledge of its abilities and of environments in which it par-

ticipates. Planning is one of the most important tasks related to artificial

intelligence. Research of automated planning has been contributing to the

progress of both theory and practice of not only planning research but also

other fields of artificial intelligence research.

A class of planning problems corresponds to a model to define the prop-

erties of the world and the task of an agent. In this doctoral dissertation,

two new algorithms are proposed for a class of planning problems called

STRIPS planning.

The STRIPS planning class is one of the most classical and famous

classes of planning problems. Although STRIPS planning is the smallest

and easiest class, it is however known that even deciding whether an in-

stance of the model of STRIPS planning tasks has a feasible plan to achieve

the given goal or not is PSPACE-complete. This is caused by the high

expressiveness of the model of the STRIPS planning class, and it is one

of the reasons that researchers have still been improving STRIPS planning

algorithms.

In recent years algorithms based on the reduction to a pathfinding prob-

lem on a weighted directed graph have been one of the central methods to

solve STRIPS planning problems. It is known that the sizes of the weighted

directed graphs are usually exponentially large compared with the original

instances of STRIPS planning problems. Classical brute force pathfind-

ing algorithms cannot solve the problems in permissible time, and hence,

researchers have been trying to develop efficient heuristic pathfinding algo-

rithms visiting only a small part of the entire graph. A heuristic pathfinding

algorithm is mainly composed of two key elements called a heuristic function

and a heuristic search algorithm. A heuristic function estimates the cost to

go from a vertex to an end vertex based on information of the instance of the

original problem before the reduction to a pathfinding problem. A heuristic

search algorithm seeks an end vertex and a path to that end vertex while
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0. ABSTRACT

speculating costs from vertices to an end vertex by heuristic functions.

In this dissertation a new heuristic search algorithm, for finding a feasible

plan for the satisficing STRIPS planning problem, is proposed. This disser-

tation also proposes a new heuristic function for estimating lower bounds

of the optimal costs from vertices to an end vertex, for the cost-optimal

STRIPS planning problem.

For the satisficing STRIPS planning problem, whereas some previous

heuristic search algorithms blindly trust heuristic functions, the proposed

search algorithm stochastically goes towards various directions by proba-

bilities computed from estimations of a heuristic function. The algorithm

is designed to avoid misleading by heuristic functions, and as a result, the

algorithm tends to find a feasible plan faster than other heuristic search al-

gorithms. Experimental evaluations compared the proposed algorithm with

several search algorithms and some practical planning algorithms in terms

of the number of solved benchmark instances, running time, the number of

visited vertices, and plan quality. The proposed search algorithm outper-

forms the previous search algorithms and is competitive with the practical

planning algorithms.

For the cost-optimal STRIPS planning problem, tightening the lower

bound estimations of heuristic functions is one of the central issues. In this

dissertation, a new integer linear programming model of a relaxation prob-

lem, called the delete relaxation, is proposed. In addition, some enhance-

ments for the model such as variable elimination technique are proposed

by incorporating with previous work. The proposed enhancements reduce

the size of instances of the proposed model and tighten the optimal cost of

the linear programming relaxation of the instances. Experimental results

show that the lower bound estimation of the linear programming relaxation

of the enhanced model is much tighter than lower bound estimations of

heuristic functions in some previous work. Moreover, a heuristic function

to compute the optimal cost of the linear programming relaxation of the

enhanced model decreases on a large scale the number of visited vertices

by heuristic search algorithms. A* search based pathfinding algorithm with

the proposed heuristic function is competitive to some state-of-the-art algo-

rithms in terms of the number of solved standard benchmark instances, and

outperforms them in terms of number of vertex evaluations.

In the first chapter an overview of automated planning and the contri-

bution are given. The STRIPS planning class and some basic pathfinding

algorithms are defined in the second chapter, and in the third chapter re-

cent related work is explained. In the fourth chapter the proposed heuristic

search algorithm for the satisficing STRIPS planning problem is defined,

and its experimental evaluations are given. The proposed heuristic function
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for the cost-optimal STRIPS planning problem and its experimental evalu-

ations are shown in the fifth chapter. In the last chapter the conclusion and

future work are discussed.
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Chapter 1

Introduction

1.1 Automated Planning

Automated planning, or planning in short, is reasoning activities of intelligent

agents. To achieve the given goal a planning agent automatically computes

a plan based on knowledge of its abilities and of environments in which it

participates. Planning is one of the most important tasks related to artificial

intelligence. Research of automated planning has been contributing to the

progress of both theory and practice of not only planning research but also

other fields of artificial intelligence research.

It seems that one of the most famous examples of planning problems,

or problems related to artificial intelligence, is the blocks world problem

[89, 40, 42]. In this problem an agent has one hand to grab one block at

a time. Given some blocks, the goal of the agent is to stack blocks in a

particular order. For example blocks are initially located on the table as

the left side of Figure 1.1, and the goal is to stack blocks as described by

the right side of the figure. Sometimes an instance of the blocks world

A B C C 
B 
A 

Figure 1.1: A typical example of planning problems. The left side is the
initial state of the world, and the right side is the goal.

problem is also an example of tasks of recognizing blocks from the images or

of understanding a command described by natural language, and planning

1



1. INTRODUCTION

takes charge of reasoning to find an order of moving blocks.

Planning is not only to reason action of an artificial agent like a robot.

We can enumerate a number of other examples of automated planning. A

lot of combinatorial optimization problems such as logistics and scheduling,

puzzles such as sliding puzzle, Rubik’s cube, and Sokoban, and even rein-

forcement learning tasks can also be considered as planning problems. In

addition to this, even though we can develop an individual algorithm to solve

an individual planning problem, researchers of automated planning aim to

develop a generic agent capable of solving a variety of planning problems by

only itself. This property of a planning agent is called domain independence

of the agent. Developing such kind of agents is a challenge to create an

intelligent being that is, at least partially, as wise as a human being. It is

one of the ultimate goals of artificial intelligence research.

Of course researchers still have not created such intelligent planning

agents yet, albeit researchers have studied automated planning since the

dawn of artificial intelligence research [79]. However, planning research has

brought a variety of progress on practical and fundamental research about

artificial intelligence.

On the practical side, a number of automated agents or systems are de-

veloped based on planning research. For example, Lipovetzky, Burt, Pearce

and Stuckey developed a schedule planner for daily open-pit mining in Aus-

tralia [74]. Benaskeur, Kabanza, Beaudry, and Beaudoin developed a com-

bat power management planner for military naval operations while coop-

erating with the Department of National Defence in Canada [8, 7]. Many

model checking tools based on planning have been developed recently (e.g.,

[41], [101], and [102]). A number of teleoperated or autonomous spacecraft

reasons activities helped by planning algorithms (e.g., [34], [92], and [62]).

These examples are just a small part of the application. Many other systems

were developed in planning research.

In addition planning research contributes to developing and improving

fundamental algorithms. As shown later, the most basic class of planning

problems can be solved by reducing to pathfinding problems, and many

heuristic pathfinding algorithms have been proposed in recent years (e.g.,

[28] and [88]). In connection with research of domain independence, planning

researchers generalized some techniques and algorithms in specific domains.

For example, Edelkamp imported and generalized a cost estimating method

called pattern database heuristic that is originally proposed for puzzles [26].

In contrast to generalizations, Helmert analyzed computational complexities

of many combinatorial problems as subclasses of planning problems [50, 51].

A number of multi-agent algorithms have been proposed (e.g., [99], [100],

and [93]) that have much application such as transportation, military af-

2
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fairs, and computer games. Probabilistic models such as Markov decision

processes have also been energetically studied. They can handle uncertainty

and partial observability of environments. According to Russell and Norvig

[89], Koenig first associated Markov decision process with artificial intelli-

gence [69]. After that, a number of research about probabilistic models (e.g.,

[103]) and partial observing models (e.g., [49]) have been studied.

Of course this doctoral dissertation has not achieved the ultimate goal

of planning research yet. However, this dissertation contributes to progress

of planning research by proposing two improved fundamental algorithms to

solve a certain class of planning problems. In the next section, research of

the planning problem class is surveyed.

1.2 Background of Classical Planning and STRIPS

Planning

To create domain independent agents, researchers define large classes of

planning problems, and then they develop solvers for the classes. A class

of planning problems generally corresponds to a model of planning tasks. A

planning task corresponds to a directive for an agent, and a planning task

contains the goal of the agent, the properties of the world, and so forth.

Notice that a planning task corresponds to the input string of an instance of a

planning problem. Some instances of different planning problems sometimes

share the same planning task1.

This doctoral dissertation focuses on a subclass of classical planning

called STRIPS planning. According to Ghallab, Nau and Traverso [40], the

classical planning class has some assumptions on the properties of the agent

and the world in which the agent participates, i.e., some assumptions on the

model of the planning tasks. In the classical planning class the following

properties are assumed:

1. The states of the world are finite and discrete, and the state of the

world changes whenever the agent executes an action.

2. Changes of states can be fully observable i.e., the agent has complete

knowledge about the states of the world and the actions.

3. Changes of states are deterministic.

1In the literature, a planning problem, an instance of a planning problem, and a plan-
ning task are not distinguished sometimes. This dissertation distinguishes them as pre-
cisely as possible.

3



1. INTRODUCTION

4. The world is static, i.e., the states of the world do not change at all

unless the agent executes an action.

5. A plan2 is a finite ordered sequence of actions.

6. The purpose of the planning problem is merely to transform the cur-

rent state into a goal state. In other words, there is no restriction on

the trajectory of a plan such as mutual exclusion of actions.

7. All the actions have no duration.

8. The planning phase is an offline process, i.e., the agent assumes that

the model of the world does not change at all while it is reasoning.

A planning class without the above assumptions is called a non-classical

planning class [89].

STRIPS was originally an abbreviation of a planner3 called STanford Re-

search Institute Problem Solver [29]. An instance of planning tasks that can

be handled by the STRIPS solver had been called a STRIPS planning task.

In recent years, instead of the tasks of the original model, an instance of a

simplified model is called a STRIPS planning task (e.g., in [13]). A planning

problem defined on a STRIPS planning task is called a STRIPS planning

problem. A STRIPS planning task is defined based on propositional logic.

Each fact of the states of the world corresponds to a propositional variable,

and actions change the truth-values of the variables. In the next chapter the

formal definition of the STRIPS planning class is presented. In recent years

planning researchers have shared the standard benchmark set of STRIPS

planning tasks. It contains a variety of domains such as logistics with some

constraints (fuel, types of vehicles, or delivery time of packages), puzzles

(free-cell, peg-solitaire, or Sokoban), manufacturing planning (assembling

products or scheduling machines), controlling robots in discrete worlds, and

of course blocks world.

In 1970’s and 1980’s, some relaxations of the above assumptions for clas-

sical planning were studied. Especially the relaxation of the fifth constraint

on the above list, that is called partial-ordered planning, was well studied. In

1975, Sacerdoti proposed NOAH planner [90] and Tate developed NONLIN

planner [94] for partial-ordered planning, for example. Because of the rise

of non-classical planning, and perhaps because of AI winter [89], it seems

that research of the STRIPS planning class decreased during this time.

In the 1990’s, earnest studies of both theoretical analysis and develop-

ment of planning solvers were started.

2The term plan of a task describes a feasible solution to achieve the goal.
3The term planner is used to describe a solver for planning problems.
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On theoretical aspects, Bylander showed that computing an optimal plan

of a STRIPS planning task is PSPACE-hard and even deciding whether a

feasible plan of a STRIPS planning task exists or not is PSPACE-complete

[17, 18]. He also showed the computational complexities of planning prob-

lems in some restricted subclasses of the STRIPS planning class. In addition

to this, Bäckström, Klein, and Nevel analyzed the computational complex-

ities of planning problems in another classical planning class called SAS+

planning [5, 4]. It can be easily known that deciding whether a SAS+ plan-

ning task has a feasible plan or not is also PSPACE-complete since there

exists trivial polynomial time translations between STRIPS planning tasks

and SAS+ planning tasks. However, they thoroughly analyzed a hierarchy

of some restricted subclasses of the SAS+ planning class. A SAS+ planning

task can handle mutual exclusions of facts and properties of the world, and

hence SAS+ planning is used to develop algorithms based on such mutual

exclusions. In the third chapter a detailed explanation of the SAS+ planning

class is given.

The progress of planning solvers in the 90’s seems to have been pro-

voked by the improvements in other fields. Kautz and Selman proposed

a planner called SATPLAN in 1992 [64]. This planner reduces a STRIPS

planning problem to the satisfiability problem (SAT). Blum and Furst devel-

oped a planner called GRAPHPLAN in 1995 [10]. GRAPHPLAN handles

a STRIPS planning problem without the sequential plan constraint, and

this planner reduces the problem to another problem related to network

flow problems. Bylander proposed a planner called LPLAN in 1997 [19].

It reduces a STRIPS planning problem to the integer linear programming

problem. Many current state-of-the-art planning algorithms seem to have

some similarities to these planners. In chapter 3 more detailed explanations

of these planners are shown.

In addition to the above planners in the 90’s, McDermott proposed a

planner called UNPOP in 1996 [76]. This planner reduces a STRIPS plan-

ning problem to a pathfinding problem on a weighted directed graph, and

then it solves the pathfinding problem with a heuristic pathfinding algorithm.

It is known that the sizes of the weighted directed graphs generated by this

reduction are usually exponentially large compared with the sizes of the orig-

inal instances. On the one hand, classical brute force pathfinding algorithms

tend to visit all the vertices of the graph, and hence they cannot solve huge

instances of pathfinding problems in permissible time. On the other hand,

heuristic pathfinding algorithms are developed to solve pathfinding problems

by visiting only a small part of the entire graphs. A heuristic pathfinding

algorithm is mainly composed of two key elements called a heuristic function

and a heuristic search algorithm. A heuristic function estimates the cost to

5



1. INTRODUCTION

go from a vertex to an end vertex based on information of the instance of the

original problem before the reduction to a pathfinding problem. A heuristic

search algorithm seeks an end vertex and a path to that end vertex while

speculating costs to go to an end vertex by heuristic functions. Note that,

in this dissertation, the term “(heuristic) pathfinding algorithm” is used

to denote a complete algorithm for a pathfinding problem, and “(heuris-

tic) search algorithm” to denote a part of pathfinding algorithm to control

search directions4. Although the original STRIPS planner was also based on

the pathfinding reduction, according to Russell and Norvig [89], McDermott

invented a heuristic function based on the delete relaxation first. The delete

relaxation is one of the most popular relaxations in STRIPS planning. Given

a STRIPS planning task, all effects of actions that set false-value to variables

are removed by the delete relaxation, and this increases feasible plans of the

task. Hence, although the delete relaxation is technically a translation of a

STRIPS planning task, the delete relaxation makes an instance of a relaxed

problem. Instances of relaxed problems can be used for heuristic functions.

Note that the term relaxation has two meaning in the literature5. In this

dissertation, a STRIPS planning task made by the delete relaxation for the

original task is called a relaxed task or a delete-free task.

In 1998, Bonet and Geffner proposed another heuristic pathfinding algo-

rithm called Heuristic Search Planner [12], and this started to shed light on

the pathfinding reduction and heuristic pathfinding algorithms. The first in-

ternational competition of planning algorithms called AIPS98 Competition

was held in the same period, and Heuristic Search Planner obtained good

results in the competition. After that, in 2000, Hoffmann proposed another

heuristic pathfinding based planner called Fast Forward planner [57], and it

was the best planner of the fully automatic track of AIPS00. Both Heuristic

Search Planner and Fast Forward also use the delete relaxation of the orig-

inal STRIPS planning problem for cost estimation. In the later chapters,

the delete relaxation is defined more formally, and some important portions

of Heuristic Search Planner and Fast Forward are explained.

The name of the AIPS Competition was changed to International Plan-

ning Competition6, and the eighth International Planning Competition was

held in 2014. Techniques used in the distinguished planners of the competi-

tions often became the central topic of planning research. Fast Downward

4Some classical algorithms such as breadth first search algorithm are classified into
pathfinding algorithms under this definition. However the standard names for these
classical pathfinding algorithms are used instead of using names such as “breadth first
pathfinding algorithm”.

5One meaning is a method to relax an instance of a problem, and the other is an
instance of a problem made by relaxing.

6Now AIPS98 and AIPS00 are called the first and second International Planning Com-
petition.
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planner [53] was one of the distinguished planners of the fourth International

Planning Competition. Fast Downward uses SAS+ planning and heuristics

based on certain graph structures called the causal graph and the domain

transition graphs. LAMA planner [86] was also one of the distinguished

planners of the sixth International Planning Competition. LAMA uses an-

other kind of data structure called landmark. Many algorithms based on

causal graphs, domain transition graphs, or landmarks became important

factors of recent planning research.

Note that researchers use the benchmark planning tasks made for In-

ternational Planning Competitions as a de facto standard benchmark set

for research. As mentioned above, it contains a variety of domains such

as logistics, puzzles, manufacturing planning, and controlling robots. The

benchmark planning tasks are written in a formal language called Planning

Domain Definition Language (PDDL) [75]. PDDL has been extended sev-

eral times, and the current version of PDDL can describe not only STRIPS

planning tasks but also many kinds of non-classical planning tasks. One

instance of planning tasks written in PDDL is the combination of two data

structures called domain and problem. A domain data structure is used to

define kinds of tasks such as logistics and blocks world, and in a domain it

is necessary to define concepts of objects and actions and so on (e.g., the

concepts of blocks or trucks). A problem data structure is used to define

information of a specific instance of tasks7 such as the initial state of the

world. We technically consider a domain of planning tasks as a set of plan-

ning tasks that share the same domain data structure. In the next chapter

a detailed explanation of PDDL is shown.

The sizes of the planning tasks in the benchmark set seem not so large

compared to the sizes of typical benchmark instances for domain dependent

algorithms. Though some planning problems of the benchmark domains are

NP-hard, the number of objects, such as trucks, packages, and blocks, are

less than one hundred for the most. However, yet the number of solved

instances in the benchmark set, i.e., coverage, of some state-of-the-art plan-

ners is not so high. Thus researchers have been improving algorithms, and

two new algorithms are proposed in this dissertation.

1.3 Problems and Contribution

In this doctoral dissertation two new algorithms are proposed for the pathfind-

ing reductions of STRIPS planning problems. More precisely, a new heuristic

7In planning research, researchers sometimes use the term problem to describe an in-
stance of a problem. In addition, researchers sometimes regard a planning task in the
same light as an instance of a planning problem. The name of this data structure follows
this meaning and view.
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search algorithm, for finding a feasible plan of a STRIPS planning task, is

proposed in this dissertation. This dissertation also proposes a new heuristic

function for estimating lower bounds of the optimal cost from vertices to an

end vertex, for finding an optimal plan of a STRIPS planning task. The

heuristic search algorithm was originally proposed in a joint work of the

author and Kishimoto in 2011 [61]. The heuristic function was originally

proposed by the author and Fukunaga in 2014 [60]

One issue of satisficing8 heuristic search algorithm is that errors of es-

timations of heuristic functions lead search directions to unpromising areas

of the graph. Especially greedy best first search blindly decides its search di-

rection by the estimations of a heuristic function. It seems that the greedy

best first search algorithm is one of the most classical and sensitive heuristic

search algorithm, and yet it is a popular algorithm in the satisficing STRIPS

planning problem and is incorporated into high-performance planners. It al-

ways greedily selects a next vertex to visit from the set of candidate vertices

that have the current best evaluation value. However, if the heuristic func-

tions evaluate vertices inaccurately, greedy best first search may be misled

into a useless search direction, thus resulting in performance degradation.

Some improved algorithms such as k best first search [28] and alternation

method [88] were proposed in the middle of the 2000’s, and they still tend

to be influenced by errors of estimations.

A simple but effective randomized algorithm is proposed in this disser-

tation. The algorithm is designed such that it considers diversity of search

directions to avoid the errors of heuristic information. The search algo-

rithm stochastically goes towards various directions by probabilities com-

puted from the estimations of a heuristic function. The proposed algorithm

is named diverse best first search. Experimental evaluations compared the

proposed algorithm with the greedy best first search algorithm, the k best

first search algorithm, and some state-of-the-art algorithms. Table 1.1 com-

pares three heuristic search algorithms in terms of the number of solved

instances in the benchmark set of 1,612 instances of the satisficing STRIPS

planning problem. The FF heuristic [57] is used for their heuristic functions.

30 minutes time limit and 2 GB memory limit are set for each instance. The

greedy best first search algorithm solved 1,209 instances without violating

the time and memory limits. The k best first search algorithm requires an

integer parameter, and we ran the k best first search algorithm with eight

different parameters. We accumulated the results of the different parame-

ters, and k best first search solved 1,288 instances in total. The diverse best

8Satisficing means finding a feasible solution. A satisficing planning problem is a prob-
lem to find a feasible plan, for example.
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first search algorithm solved much larger number of instances compared to

these two search algorithms. In addition to this, the benchmark set con-

tains 32 domains, the diverse best first search algorithm solved the largest

numbers of instances for all the domain. Similar behaviors can be observed

in the experiments with other heuristic functions.

Table 1.1: A summary of the numbers of instances solved by some heuristic
search algorithms with the FF heuristic and without enhancements.

Algorithm GBFS KBFS DBFS
# of solved instances (1612) 1,209 1,288 1,451

In addition, this dissertation also proposes a variant of the diverse best

first search algorithm with an enhancement technique called (use of) pre-

ferred operators [53]. Table 1.2 shows a comparison with some practical

algorithms. The k best first search algorithms with preferred operators and

some different parameters solved 1,382 instances in total, and Fast Down-

ward planner solved 1,458 instances. Fast Downward is based on greedy

best first search and several enhancement techniques. The original diverse

best first search algorithm with the FF heuristic is already competitive to

Fast Downward, and the enhanced version of the proposed algorithm solved

1,481 instances. Other experimental results also show that this approach is

successful.

Table 1.2: The number of instances solved by each enhanced pathfinding
algorithm.

EKBFS FD DBFS2
Total (1612) 1,382 1,458 1,481

For cost-optimal STRIPS planning, a new admissible heuristic function

is proposed. The A* search algorithm [43] is known to be a well-established

algorithm for the cost-optimal pathfinding problem, and it requires an ad-

missible heuristic function that computes a lower bound of the optimal cost

to go to an end vertex for each vertex. It is known that the tighter the

admissible heuristic function is, the smaller the number of visited vertices

is until the A* search algorithm halts. Hence developing a tight (and fast)

admissible heuristic function is one of the central tasks for solving the cost-

optimal pathfinding problem.

This dissertation proposes a new integer linear programming model of the

cost-optimal STRIPS planning problem for delete-free tasks to develop an

9
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Table 1.3: The number of solved instances and the number of visited vertices.
LM-Cut Merge&Shrink Integer Linear

solved visited solved visited solved visited
787 27,091,513 727 180,556,416 785 3,121,322

admissible heuristic function. While it is known that an admissible heuristic

function to compute the costs of optimal plans of relaxed tasks is empirically

tighter than other admissible heuristic functions [9], the cost-optimal delete-

free STRIPS planning problem is known to be NP-hard [17, 18]. However,

although a naive formulation of the cost-optimal planning problem for a

delete-free task as integer linear programming is impractical, the proposed

model incorporates landmarks and relevance based constraints, resulting in

an integer linear programming that can be used to directly solve the cost-

optimal delete-free STRIPS problem. It is shown by experiments that the

proposed integer linear programming model outperforms a previous state-of-

the-art solver for the cost-optimal delete-free STRIPS problem. In addition,

a heuristic function to compute the optimal costs of the linear program-

ming relaxations of the integer linear programming models for relaxed tasks

is also proposed in this dissertation. The A* search algorithm with the

proposed heuristic is competitive with the state-of-the-art heuristic func-

tions for the cost-optimal STRIPS planning problem. Table 1.3 shows the

summary of the results on the set of 1,366 instances of the cost-optimal

STRIPS planning problem. For each instance, the time limit is 30 minutes,

and the memory limit is 2 GB. The experimental evaluations compared the

A* search algorithm with a heuristic function called landmark cut heuristic

[54, 14] and with another heuristic function called bisimulation merge-and-

shrink heuristic [80]. Both pathfinding algorithms are implemented on the

Fast Downward system. The number of solved instances of the proposed

pathfinding algorithm is competitive to the landmark cut heuristic and out-

performs the bisimulation merge-and-shrink heuristic. In addition to this,

the number of evaluated states of the proposed algorithm is much smaller

than the other algorithms.

1.4 Outline of This Dissertation

In the next chapter some formal definitions are shown to explain the pro-

posed algorithms and their relation to related work. The definition of the

STRIPS planning class is given in the first section, and then the reduction

from a STRIPS planning problem to a pathfinding problem is defined in

the second section. In the third section, a framework of pathfinding al-

gorithms that can be used to instantiate pathfinding algorithms is shown,
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and some basic pathfinding algorithms that follows the framework are in-

troduced. The delete relaxation of a STRIPS planning task is defined in

detail in the fourth section. PDDL is briefly described in the last section of

the second chapter. Although PDDL is not directly and essentially related

to the proposed algorithms, it was necessary to translate the International

Planning Competition benchmarks written in PDDL to STRIPS planning

tasks for experimental evaluations.

In the third chapter some recent related algorithms are briefly intro-

duced. Some of them are used in the experimental evaluations. In the first

section of this chapter, some non-pathfinding reductions are explained in de-

tail. Although most of them have not been used to directly solve planning

problems recently, they are still important to build recent heuristic functions.

Some heuristic functions developed from the late 90’s are mainly based on

the delete relaxation. Such delete relaxation based heuristic functions are

defined in the second section. In recent years some heuristic functions that

do not use the delete relaxation were proposed. Especially it seems that

most of the previous practical integer linear programming heuristic func-

tions do not use the delete relaxation. In the third section these integer

linear programming heuristic functions are introduced. Some other non-

delete relaxation based heuristic functions are also surveyed in the fourth

section. Finally, some satisficing heuristic search algorithms are introduced

in the last section of this chapter. In addition some improvements of heuris-

tic search algorithms used in some state-of-the-art planning algorithms are

described in the last section of this chapter.

In the fourth chapter the heuristic search algorithm for the satisficing

STRIPS planning problem is proposed. In the first section of this chapter an

example of the case that a heuristic function leads greedy best first search

to an unpromising area of the problem is shown. The proposed algorithm is

defined in the second section, and the results of the experimental evaluations

are shown.

The heuristic function for the cost-optimal STRIPS planning problem is

proposed in the fifth chapter. In the first section, an overview of the integer

linear programming model is briefly given. The integer linear programming

model is defined formally in the second section, and some enhancement

techniques for the model are proposed from the third section to the fifth

section. In the last section of this chapter the experimental evaluations are

shown.

Finally the conclusion is discussed in the last chapter.
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Chapter 2

Preliminaries

In this chapter some preliminaries for the proposed algorithms are given.

In the section 2.1 the model of STRIPS planning tasks is formally de-

fined, and two STRIPS planning problems are defined. Next the reduction

from a STRIPS planning problem to a pathfinding problem is explained

in the section 2.2. A framework for pathfinding algorithms is defined, and

some basic pathfinding algorithms are introduced in the section 2.3. Espe-

cially the greedy best first search algorithm and the A* search algorithm are

deeply related to the contribution in this dissertation. In the section 2.4 the

delete relaxation of a STRIPS planning problem is defined formally. The

delete relaxation is frequently used for cost estimation of heuristic functions.

Finally an explanation and an example of PDDL are given in the section

2.5.

2.1 STRIPS-based Planning Problem

In this section, a formal definition of the model of STRIPS planning tasks is

given. As already stated, the STRIPS planning class is the class of planning

problems that are defined on STRIPS planning tasks. In other words, a

STRIPS planning task corresponds to the input string of an instance of a

STRIPS planning problem.

As mentioned above, the original model of STRIPS planning tasks was a

little complex, and in recent years a task using a model simplified from the

original one is called a STRIPS planning task (e.g., in [13]). In this disser-

tation, a STRIPS planning task T is defined as a 4-tuple T = ⟨P,A, I,G⟩.

• P is a set of propositions. A subset of P is called a state of T .

• A is a set of actions. Each action a ∈ A is composed of three subsets of

P and a non-negative (rational) number ⟨pre(a), add(a), del(a), c(a)⟩.
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These elements are called the preconditions, the add effects, the delete

effects, and the cost of the action a respectively. An action is often

called an operator in the literature.

• I ⊆ P is called the initial state of T .

• G ⊆ P is called the goal of T .

It is assumed that P and A are finite sets (and therefore all the sets are

finite).

Each state S ⊆ P corresponds to a certain possible world related to

the task T . Although it is mentioned in the last chapter for simplicity

that a state is an assignment of truth-values to propositional variables, S

is technically the set of propositions that are true in the world. All other

propositions that are not in S are false in the world. These two definitions

are clearly equivalent.

An action can be applied to a state if the state satisfies a condition, and

applying an action to a state changes some facts and properties of the world

corresponding to the state. More precisely, an action a is applicable to a

state S if and only if it satisfies pre(a) ⊆ S. By applying a to S, the set of

propositions in the world change from S to S(a) = ((S \ del(a)) ∪ add(a)).

For a sequence of actions π = (a0, · · · , an), the notation S(π) is used to

denote ((((S\del(a0))∪add(a0))\del(a1))∪· · · )∪add(an). The sequence π is

applicable to S if and only if S and π satisfies ∀i, pre(ai) ⊆ S((a0, · · · , ai−1)).

The cost c(π) of an action sequence π = (a0, · · · , an) is defined as
∑n

i=0 c(ai).

If a state S ⊆ P satisfies G ⊆ S, then S is a goal state. The purpose of

a STRIPS planning task is to find a sequence of actions to transform I to a

goal state. Formally, a feasible solution, i.e., a plan is a sequence of actions

π = (a0, · · · , an) that satisfies (i) π is applicable to I, and (ii) G ⊆ I(π).

The notation SG to denote the set {S ⊆ P | G ⊆ S}.
Given a STRIPS planning task T , the cost-optimal STRIPS planning

problem on T is a problem to find a minimum cost plan of T . Given a

STRIPS planning task T , the satisficing STRIPS planning task on T is a

problem to find any feasible plan (although to find a cheaper plan is preferred

practically). If there is no plan in the task, then it is required for these two

problems to answer that there is no plan.

Table 2.1 shows an example of a STRIPS planning task. This is an

example of blocks world with only two blocks. A tuple such as (A on table)

describes a proposition. Although a proposition is an atom with no meaning

when a planner runs, propositions in this example are labeled with their

roles. For example, (A on table) describes the fact that the block A is located

on the table, and (clear B) describes the fact that the roof of the block B is

14
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Table 2.1: An example of a STRIPS planning task.
P { (A on B), (A on table), (B on A), (B on table), (clear A), (clear B) }
A { move A table B, move A B table, move B table A, move B A table },

where

move A table B =
⟨{ (A on table), (clear B) }, { (A on B) }, { (A on table), (clear B) }, 1⟩,
move A B table =
⟨{ (A on B) }, { (A on table), (clear B) }, { (A on B) }, 1⟩,
move B table A =
⟨{ (B on table), (clear A) }, { (B on A) }, { (B on table), (clear A) }, 1⟩,
move B A table =
⟨{ (B on A) }, { (B on table), (clear A) }, { (B on A) }, 1⟩.

I { (A on table), (B on table), (clear A), (clear B) }
G { (A on B) }

clear. In the initial state of this example the block A and B are located on the

table, and the goal of this instance is to put the block A onto the block B. An

action move X Y Z moves the block X from Y to Z. For example, the action

move A table B moves the block A from the table onto the block B. It can

be used only when the block A is located on the table and nothing is on the

roof of the block B. The action sequence (move B table A, move B A table,

move A table B) is an example of feasible plans of this task not only under

semantics, but also under the syntactical and formal definition of a STRIPS

planning task. The action sequence (move A table B) with only one action

is a feasible and the cost-optimal solution of this task.

As enumerated in the later chapter, there are many kinds of domains

that are able to describe as STRIPS planning tasks. Tasks related to logis-

tics, controlling space satellite, running robots, assembling products, and so

forth are used in the experiments. The domain independence of a model of

planning tasks is important not only for practical reasons such as reducing

efforts to develop domain dependent algorithms, but also for creating strong

intelligent agents in the future.

Due to domain independence, STRIPS planning problems are really hard

to solve. Although the model of STRIPS planning tasks seems to be one of

the simplest models, it is known that the complexity class of the cost-optimal

STRIPS planning problem is PSPACE-hard, and the existence version of the

satisficing STRIPS planning problem is PSPACE-complete [18]. Even the

cost-optimal blocks world problem is known to be NP-hard in the general

case [42]. Hence it seems correct that there is no polynomial time algorithm
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to solve STRIPS planning problems, and AI researchers continue to make

efforts to develop heuristic algorithms.

2.2 Reduction to Pathfinding Problems onWeighted

Directed Graphs

Both the cost-optimal STRIPS planning problem and the satisficing STRIPS

planning problem can be reduced to pathfinding problems on weighted di-

rected graphs. More precisely, the states and actions of a STRIPS planning

task can be translated to a weighted directed graph that describes transi-

tions of the states, and as a consequence, some STRIPS planning problems

can be reduced to pathfinding problems. Many recent planning algorithms

and the proposed algorithms in this dissertation run on these reductions. In

this section these reductions are formally defined.

A (weighted directed) graph is a well-known mathematical structure. It

is used to describe a network structure such as road maps and computer net-

works and so on. Although there are some equivalent definitions, a weighted

directed graph G is defined as a 3-tuple G = ⟨V,E, c⟩ in this dissertation.

V is a set of vertices. For instance, a vertex could describe a crossing for

road maps or a computer node for computer networks. E is a set of directed

edges. A directed edge, or an edge in short, could for instance describe a

traffic lane for road maps or a cable for computer networks. A directed edge

e corresponds to an ordered pair of two vertices (s(e), e(e)). The vertices

s(e), e(e) ∈ V are the start vertex and end vertex of the edge e respectively.

Note that a directed edge is sometimes called an arc or a directed arc. To

distinguish between the set of actions and the set of arcs symbolically, the

word “edge” is used to describe a relation of a pair of vertices in this dis-

sertation. It is assumed that V and E are finite sets. Finally c : E → Q≥0

is a function from a directed edge to a non-negative rational number. The

function c is called the cost function. For each directed edge e ∈ E, c(e)

is called the cost of the directed edge e. Note that a directed graph is a

weighted directed graph without its cost function.

A directed path, or a path in short, is a sequence of edges (e0, · · · , el−1)

that satisfies

∀i ∈ {1, · · · , l − 1}, e(ei−1) = s(ei).

If a sequence of edges (e0, · · · , el−1) is a directed path, sometimes a sequence

of vertices v0, · · · , vl that satisfies

∀i ∈ {0, · · · , l − 1}, ∃e ∈ E, (vi, vi+1) = (s(e), e(e))
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is also called a directed path. The vertices v0 = s(e0) and vl = e(el−1) are

called the start vertex and end vertex of the path respectively, and the path

is called a directed path from v0 to vl. A vertex v is reachable from another

vertex u if there exists a directed path from u to v. A vertex v that is

reachable from another vertex u is sometimes called a descendant of u. The

number of edges l of a directed path (e0, · · · , el−1) is called the length of the

path. The cost of a directed path (e0, · · · , el−1) is defined as
∑l−1

i=0 c(ei). A

minimum cost path from a vertex u to a vertex v is called an optimal path

from u to v. The cost of an optimal path from u to v is called the optimal

cost (of a path from u to v). If the length of a directed path is zero, or if

the sequence of vertices (v0, · · · , vl) of a directed path with the length l > 0

satisfies ∀i ̸= j, vi ̸= vj , then the path is called a simple directed path.

Given a weighted directed graph G = ⟨V,E, c⟩, a vertex s ∈ V and a

subset of vertices T ⊆ V , the problem to find a directed path from s to any

vertex in T is called a (single-source) pathfinding problem. The vertex s is

called the start vertex of the problem. The set T is called the set of end

vertices of the problem. A path from s to an end vertex t ∈ T is sometimes

called a path from s to T .

In this dissertation, the problem to find such a path with the minimum

cost is called the cost-optimal pathfinding problem1. Similar to the case of a

fixed end vertex, a path from s to a vertex in T with minimum cost is an

optimal path from s to T , and the cost of an optimal path is the optimal cost

from s to T . Note that an optimal path from s to an end vertex t ∈ T is not

an optimal path from s to T if the optimal cost from s to t is larger than

the optimal cost from s to another end vertex t′ ∈ T . If there is no directed

path from s to T , then it is necessary to answer that there is no directed

path. For clarity, a problem to find any path from s to T is sometimes called

a satisficing pathfinding problem in this dissertation even though it seems

unusual. A 3-tuple (G, s, T ) is used to denote an instance of a satisficing

pathfinding problem or a cost-optimal pathfinding problem, where G is a

weighted directed graph, s is the start vertex in G, and T is the set of end

vertices in G.

As a lot of papers and books such as [40] stated, given a STRIPS planning

task T = ⟨P,A, I,G⟩, we can make a weighted directed graph G = ⟨V,E, c⟩
as follows.

• V := 2P .

1A cost-optimal pathfinding problem is sometimes called a shortest path problem. An
optimal path is a shortest length path when the cost function is a unit cost function. In
this dissertation, however, distinction between cost and length is quite important. Thus
the term “shortest path problem” is not used in this dissertation.
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• For each pair of a state S and an action a that is applicable to S, there

exists a corresponding directed edge e that satisfies (i) s(e) = S, (ii)

e(e) = S(a), and (iii) c(e) = c(a).

A feasible plan of T clearly corresponds to a directed path from I to SG.

The cost of a plan is equal to the cost of the corresponding directed path. If

there is no path, then obviously there is no plan. Therefore the satisficing

STRIPS planning problem T can be reduced to the satisficing pathfinding

problem, and the cost-optimal STRIPS planning problem can be reduced

to the cost-optimal pathfinding problem. Note that the weighted directed

graph made from a STRIPS planning task is called the search space [40].

2.3 Framework of Pathfinding Algorithms and Some

Classical Pathfinding Algorithms

The satisficing pathfinding problem can be solved by well-known textbook

algorithms such as the breadth first search algorithm or the depth first search

algorithm. The cost-optimal pathfinding problem can also be solved by well-

known algorithms such as Dijkstra’s algorithm [23] or the Bellman-Ford al-

gorithm [6, 30]. The breadth first search algorithm and the depth first search

algorithm run in linear time of the order of the size of the input graph, i.e.,

the number of vertices plus the number of the directed edges. Dijkstra’s

algorithm and the Bellman-Ford algorithm run in some low-degree polyno-

mial time of the order of the size of the weighted directed graph. However,

the number of vertices of the weighted directed graph made from a STRIPS

planning task T = ⟨P,A, I,G⟩ is always 2|P | under the reduction above.

Although time complexities of these classical pathfinding algorithms can be

tightened by the number of vertices reachable from the start vertex, even the

number of vertices reachable from I is usually an exponential order of |P | in
typical benchmark domains. Hence researchers have been trying to develop

heuristic algorithms that are practically more efficient than the classical

pathfinding algorithms. Note that pathfinding reduction based planning

algorithms and their program implementations do not generate the graph

explicitly before their search. Algorithms and programs run while generating

a part of the search space dynamically when it becomes necessary. Other-

wise generating the entire search space takes an exponential time. However

algorithms below are defined as if the graph is explicitly given since there is

almost no difference for the pseudo code.

Except the Bellman-Ford algorithm, all other classical pathfinding al-

gorithms introduced above can be formulated on the same framework. In

this section, the formal definition of this framework is shown, and strict
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definitions of some classical pathfinding algorithms are introduced along the

framework. Note that the idea of integrating pathfinding algorithms into

one framework is not new. For example, Russell and Norvig defined a sim-

ilar framework for a restricted class of graphs [89], and the framework for

general graphs also seems to be widely used as folklore. However there is no

formal definition of the framework for general graphs and proofs for char-

acteristics of the framework as far as the author knows. Hence here the

framework is formally organized, and lemma 2.1 and 2.3 are proved.

Let ⟨G = ⟨V,E, c⟩ , s, T ⟩ be a satisficing/cost-optimal pathfinding prob-

lem. By starting from the start vertex, the framework repeats to expand

the visited area (i.e., a subgraph of G whose vertices are already visited) by

visiting vertices one by one along the directed edges. When the framework

reached an end vertex first, it returns a directed path from the start vertex

to the found end vertex, and then it halts. Each framework has two data

structures called the closed list and the open list respectively. Intuitively,

the closed list retains the visited area of the graph, and the open list retains

start vertices of candidate edges to pass next. Algorithm 1 shows a pseudo

code of the framework. Note that visiting a vertex is called vertex generation

[89]. Retrieving a vertex from the open list and processing something about

the vertex is called vertex expansion. The end vertex e(e) of a directed edge

e on the line 17 is called a successor of the vertex u.

The Closed List The closed list retains the visited area as a directed tree.

A directed tree is a kind of directed graph. There exists a special vertex

r called the root vertex for each directed tree. A directed tree GT = (VT , ET )

satisfies that:

(i) there does not exist a directed edge e ∈ ET that satisfies e(e) = r,

(ii) for each vertex v ∈ VT except r, |{e ∈ ET | e(e) = v}| = 1 holds, and

(iii) for each vertex v ∈ VT , there exists just one directed path from r.

For each vertex v ∈ VT , if e ∈ ET satisfies e(e) = v, then the vertex s(e)

is called the parent vertex of v. There is no parent of the root vertex. If

u ∈ VT is the parent of v ∈ VT , then v is called a child of u. A vertex with

no children is called a leaf of a directed tree.

In this framework, the directed tree of the visited area is stored by a

hash table, i.e., the closed list is a hash table. Each key on the hash table

is a vertex, and the set of the keys corresponds to the set of vertices on the

directed tree. The value of a key u ∈ VT is a 3-tuple (p, e, c), where p ∈ VT

is the parent vertex of the key u, and e ∈ ET is the edge from p to u. Hence,

the hash table implicitly forms at least a directed graph with the second
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Algorithm 1 The pathfinding framework for (G = ⟨V,E, c⟩, s, T )
1: The closed list C := {(s, (null, null, 0))}; // A hash table.
2: The open list O := {s}; // A data structure that can keep vertices.
3: while O is not empty do
4: Retrieve a vertex u from O; // The priority will be defined later.
5: if u ∈ T then
6: Let p be an empty sequence of edges;
7: c := 0;
8: while u ̸= s do
9: Retrieve the value (v, e, c′) of u from C; // c′ is not used.

10: Add e to the end of p;
11: c := c+ c(e);
12: u := v;
13: end while
14: Return c and the inverse sequence of p and halt;
15: end if
16: Let c be the cost (i.e., the third element of the value) of u in C;
17: for e ∈ E s.t. s(e) = u do
18: if e(e) is not in C then
19: Insert an entry into C with the key e(e) and the value (u, e, c+ c(e));
20: Insert e(e) into O;
21: else
22: Let (v′, e′, c′) be the value of e(e) in C;
23: if c+ c(e) < c′ then
24: Update the value of e(e) in C with (u, e, c+ c(e));
25: Re-insert e(e) into O if it is necessary in the instantiation.
26: end if
27: end if
28: end for
29: end while
30: return “There is no directed path from r to T .” and halt;

condition of a directed tree. Note that the directed tree of the visited area

is sometimes modified on the line 24. If we ignore this line, then the graph

described by the hash table clearly forms a directed tree. A proof is given

later to show that this graph always satisfies all conditions of a directed tree

even if we use updating existing entries. If the hash table forms a directed

tree, then, for each vertex v on the directed tree, the path from r to v on the

directed tree can be easily constructed by going back along directed edges

on the tree. The third element c of an entry is an upper bound of the cost

of the directed path from r to u on the directed tree. This is because the

framework does not update the third elements of all the entries when the

directed tree is modified. Hence, the third elements can be different from

the actual costs. If we ignore updating, then c is the precise cost from r to u

on the directed tree. A proof is shown later for the fact that the third entries
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are always equal to or larger than the actual cost. Below, the third element

of the value of a key u is called the cost of u in the closed list. The actual

costs of the directed paths on the directed tree also can be calculated easily

when the directed path is constructed. At the beginning of the framework,

the closed list has only one entry with the key s and the value (null, null, 0).

The Open List The open list keeps visited vertices that may reach an

unvisited vertex by going along just one directed edge. In some instantia-

tions the open list also keeps visited vertices that may reduce the costs of

some directed paths on the directed tree. Note that a retrieved vertex from

the open list and a vertex already in the open list are sometimes re-inserted

to the open list on the line 25.

To expand the visited area, or, to modify the directed tree, the framework

continues to repeat the following process:

(i) At first it retrieves one vertex u from the open list on the line 4. If

u is an end vertex, then the framework stops looping and generates a

path from s to u. The vertex u must be already in the closed list, and

hence the framework can retrieve the cost c of u from the closed list

on the line 16.

(ii) Then, for each e ∈ E that satisfies s(e) = u,

(ii-1) if the vertex e(e) is not visited, then the framework visits e(e).

Namely, if a key e(e) is not in the closed list, then the framework

saves an entry with the key e(e) and the value (u, e, c+ c(e)) into

the closed list. Then it inserts e(e) into the open list.

(ii-2) if the vertex e(e) is already visited, and changing the parent of

e(e) to u does not seem to decrease the cost to go to e(e), then

the framework ignores the directed edge e now. Namely, if a key

e(e) is already in the closed list, and if c+c(e) is not smaller than

the cost c′ of e(e) in the closed list, then the framework ignores

e(e) now. Since c′ is not always the actual cost of the path to

e(e), it depends on the instantiation whether the actual cost on

the directed tree decreases or not by changing the parent of e(e).

(ii-3) if the vertex e(e) is already visited, and if changing the parent

of e(e) to u seems to decrease the cost to go to e(e), then the

framework changes the parent of e(e) to u. Namely, if a key e(e)

is already in the closed list, and c+ c(e) is smaller than the cost

c′ of e(e) in the closed list, then the framework updates the key

value of e(e) in the closed list with (u, e, c+ c(e)). In addition to

this, the framework re-inserts e(e) into the open list if necessary.

The condition of re-insertion depends on the instantiation.
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At the beginning of the framework, the open list has only the start vertex

s. When an end vertex g ∈ T was retrieved from the open list first, then

the framework halts and builds the directed path from r to g on the current

directed tree. Note that, to find a path from s to T , it suffices to halt when

an end vertex was visited (i.e., an end vertex was inserted into the closed

list). However it does not suffice to find an optimal path.

The ability to always find a directed path from s to T if it exists is

called completeness of a pathfinding algorithm [89]. Moreover, the ability

to always return an optimal path from s to T when it returns a directed

path is called optimality of a pathfinding algorithm. In the framework, a

new visited vertex is always inserted into the open list on the line 20. Hence

the framework always returns a directed path from s to T (1) if there exists

a directed path from s to T , (2) if updating entries does not collapse the

directed tree, and (3) if it halts. It can be proved that the second condition

is always satisfied.

Lemma 2.1. The closed list forms a directed tree at any time during running

the framework.

Proof: The line 24 cannot violate the first condition of a directed tree

since all the costs of edges are nonnegative and the cost of the entry of the

start vertex in the closed list is already zero at the beginning of the frame-

work. The second condition is clearly satisfied by the definition of a directed

tree in the closed list. Hence it suffices to prove that the third condition

of a directed tree is always satisfied. Clearly appending a new entry for an

unvisited vertex does not collapse the directed tree if the conditions of a

directed tree are satisfied before appending. Thus it is sufficient to focus on

updating an entry in the closed list on the line 24.

It can be proved by mathematical induction that (1) the graph formed

by the entries in the closed list is a directed tree and (2) the costs of the

vertices on the directed tree are always monotonically nondecreasing from

the root to leaves. Assume that the framework reached just before the

line 23 and that the induction hypothesis is being satisfied now. Then

the costs of the vertices on the subtree rooted by the vertex e(e) are also

monotonically nondecreasing. The third condition of the definition of a

directed tree is violated only when u is a vertex on the current subtree of

e(e) and the framework updates the entry of e(e) on the line 24. Otherwise

the framework can successfully go back from each vertex to the root vertex

along the relations of parents and children, and hence the third condition is

satisfied. However it is impossible to satisfy the condition on the line 23 if u

is a vertex on the current subtree of e(e) since the costs are monotonically

nondecreasing from the root to leaves. Thus, if the framework updated an
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entry, then the graph is a directed tree immediately after updating. The

cost of the new parent of the vertex e(e) after updating is c, and the new

cost of the vertex e(e) is c + c(e). This new cost is smaller than the old

cost c′, and hence the costs of the children of e(e) are larger than the new

cost. Therefore the costs of the vertices on the new directed tree are also

monotonically nondecreasing from the root to leaves. 2

Here it can be shown that the following lemma holds.

Lemma 2.2. At any time during running the framework, for each vertex v

on the directed tree in the closed list, the cost of v in the closed list is an

upper bound of the actual cost of the directed path from s to v on the directed

tree.

Proof: Similar to the previous lemma, this lemma can also be proved by

mathematical induction. In addition to this, appending a new entry for an

unvisited vertex does not collapse the relations of the costs in the closed list

and the actual costs. Thus it is sufficient to focus on updating an entry.

Let C(v) be the actual cost of the directed path from s to a vertex v on

the directed tree. Assume that the framework reached just before the line

23 and that the statement of this lemma is satisfied so far. After the entry

of the vertex e(e) is modified, the new cost c + c(e) of e(e) in the closed

list is an upper bound of the actual cost of the path from s to e(e). This is

because c is an upper bound of C(u), and the actual cost C(e(e)) from s to

e(e) satisfies C(e(e)) = C(u) + c(e) ≤ c+ c(e). In addition to this, for each

child v of the vertex e(e), it can be shown that the cost of v in the closed

list is also an upper bound of C(v). Let cv be the cost of v in the closed list,

and ev be the edge from e(e) to v on the directed edge. The difference of the

costs of e(e) and v in the closed list was exactly c(e) when v was connected

to e(e). After v was connected to e(e), the cost of v never changed, and

the cost of e(e) never increased. Hence cv − c′ ≥ c(ev) is satisfied, and we

have C(v) = C(e(e)) + c(ev) ≤ c + c(e) + c(ev) ≤ c′ + cv − c′ = cv. Similar

inequality is satisfied for each vertex on the subtree of e(e). 2

In addition to this, if the input weighted directed graph is finite, then the

algorithm always halts (hence it has completeness) even if it re-inserts ver-

tices.

Lemma 2.3. The framework always halts if the input graph is finite.

Proof: If the number of re-insertions is finite for each vertex, then the

framework clearly halts.

The costs of directed edges are rational numbers. Hence we can create

an equivalent pathfinding problem with integer costs. When a vertex v is re-
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inserted, the cost of v in the closed list strictly decreases for each re-insertion

because of the condition on the line 23. Hence the number of the re-insertion

of a vertex v on the integer-cost pathfinding problem is at most the first cost

of v. When the original cost function used, the framework clearly works in

the same way as the case of the integer cost function. Therefore the number

of re-insertion for each vertex is finite. 2

Optimality depends on instantiations.

When we ignore the time and space complexity of the implementation of

the open list, this framework requires memory in proportion to the maximum

size of the open list and the closed list. The number of entries in the closed

list is proportional to the number of visited vertices. The number of entries

in the open list is bounded by the number of visited vertices. Hence the

memory requirement is an order of the number of visited vertices until the

framework finds an end vertex, and it is an order of the size of the input

graph in the worst case. Estimating time complexity is a little difficult for

this framework without an implementation of the open list and re-insertions.

However, the number of iterations of the while loop is in proportion to the

number of vertex retrievals until the framework halts. Note that the number

of vertex retrievals is different from the number of retrieved vertices until

the framework halts.

The differences among the instantiated algorithms based on this frame-

work are (1) the priorities of entries in the open list, and (2) the condition of

re-insertion. For example, the open list of the breadth first search algorithm

is a normal FIFO queue, and it never re-inserts a vertex. The breadth first

search algorithm does not have optimality. For another example, the open

list of Dijkstra’s algorithm is a priority queue, and it always re-inserts a

vertex. Dijkstra’s algorithm has optimality. Below, some pathfinding algo-

rithms are explained in detail.

The Breadth First Search Algorithm Russell and Norvig stated that

the breadth first search algorithm was originally developed by Moore in

1959 [77] to solve maze problems [89]. In these days the word “breadth first

search” is not just the name of an algorithm. Some researchers used breadth

first search as the name of a manner of graph traversal or the names of some

graph algorithms with such a traversal manner.

As already mentioned above, the open list of the standard the breadth

first search algorithm is a normal FIFO queue. The breadth first search al-

gorithm does not re-insert a vertex. It can be easily proved by mathematical

induction that the breadth first search algorithm visits vertices that have

paths with shorter length from the start vertex earlier. Hence the directed
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path that is the output of the breadth first search algorithm is a directed

path from s to T with the shortest length l. In addition, the breadth first

search algorithm needs to visit all the vertices that have a directed path

from s with shorter length than l before it halts. When the cost function is

a unit cost function, the breadth first search algorithm returns an optimal

path. Otherwise there is no guarantee of optimality.

Since the breadth first search algorithm never re-inserts a vertex into

the open list, the number of iterations on the line 3 is at most |V |, and the

number of iterations on the line 17 is at most |E| in total of all the outer

loop. Hence it runs in linear time of the order of the size of the weighted

directed graph.

The Depth First Search Algorithm Cormen, Leiserson, Rivest and

Stein [21] mentioned that Hopcroft and Tarjan recognized importance of

the depth first search algorithm first. Depth first search is also the name

of a kind of graph algorithms, and there mainly exists two variants of the

depth first search algorithm. One variant requires the linear time and lin-

ear memory of the size of the input graph. It never re-inserts a vertex

into the open list. The other variant sometimes re-inserts a vertex since it

sometimes throws some entries in the closed list away. Thus it is memory-

efficient, however it does not have the guarantee to work in linear time in

the general case. Although the latter variant is the important prototype of

some advanced memory efficient pathfinding algorithms such as the IDA*

search algorithm [70], it is out of the framework above, and hence the latter

is not explained anymore.

The open list of (the former of) the depth first search algorithm is a

normal FILO stack. The actual running time of the depth first search al-

gorithm heavily depends on tiebreak of successors on the line 17. If the

tiebreaks worked extremely well, then the algorithm visits only the vertices

on an optimal path from s to T and returns the optimal path. In contrast,

the depth first search algorithm visits all the vertices on the input graph

and returns a non-optimal path in the worst case. Hence worst-case time

complexity of the depth first search algorithm is the order of the size of the

weighted directed graph.

Dijkstra’s Algorithm As its name suggests, Dijkstra ’s algorithm was

proposed by Dijkstra in 1959 [23].

The open list of Dijkstra’s algorithm is a priority queue on the cost value

c + c(e) of the vertex e(e), where c is the cost of s(e) defined on the line

16. As is the case with the cost in the closed list, the priority of each vertex

is not dynamically updated when the directed tree is modified. However,
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Dijkstra’s algorithm always re-inserts a vertex when it reaches the line 25.

If the vertex is already in the open list when it re-inserts the vertex, then

the cheaper cost c + c(e) is adopted for the priority of the vertex. In other

words, the old entry is thrown away, and the new entry is used. Hence the

cost of a vertex in the closed list and its priority in the open list are always

the same (if it exists in the open list). It can be proved by mathematical

induction that, when a vertex is retrieved from the open list on the line 4,

its cost in the closed list is the optimal cost from s to it. Thus each vertex

is retrieved at most once. In addition to this, the order of retrieved vertices

is the order of the optimal cost from s. Finally, it needs to visit all the

vertices that have cheaper optimal cost from s than the optimal cost from s

to T until it halts. Therefore Dijkstra’s algorithm always returns an optimal

path from s to T if it exists. Dijkstra’s algorithm is considered as a special

case of the A* search algorithm. Proofs of these propositions are given as

a corollary of lemmas about some properties of the A* search algorithm,

hence here the proof is omitted.

The worst case time complexity of Dijkstra’s algorithm depends on the

actual implementation of the open list. Dijkstra did not give a detail of

the priority queue in his paper. If the time complexity to retrieve a vertex

from the priority queue is R, and if the time complexity to insert a ver-

tex to the priority queue is I, then the time complexity of the Dijkstra’s

algorithm is O(|V | × R + |E| × I). Hence, if a brute force search is used

to simulate the priority queue, the time complexity of Dijkstra’s algorithm

is O(|V |2 + |E|). If a binary heap is used for the priority queue, the time

complexity is O((|V |+ |E|) log |V |). Finally, if a Fibonacci heap is used, the

time complexity is O(|V | log |V |+ |E|) in amortized time [32].

So far three pathfinding algorithms have been explained in detail. Al-

though there are some other pathfinding algorithms proposed in previous

work, all classical algorithms seem to need to visit a large area of the input

directed graph as long as the first input is the directed graph. However,

if an instance of a pathfinding problem is made by reducing from another

kind of a problem as is the case with the reduction from a STRIPS planning

problem, then information about the original problem can be used to solve

the instance of the pathfinding problem. For example, when we are solving

an instance of a pathfinding problem reduced from an instance of a navi-

gation problem to go from Tokyo to Kyoto, then clearly we do not need to

consider a path to go to New York. Thus we can prune or give a very low

priority for an edge to go to New York. A pathfinding algorithm that uses

information of the original problem is called heuristic pathfinding algorithm

or informed pathfinding algorithm [89].
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A heuristic pathfinding algorithm is mainly composed of a heuristic func-

tion and a heuristic search algorithm. The word “heuristic” is used in many

ways. For pathfinding problems, a heuristic function is a function mapping

from a vertex v to an estimation of the optimal cost from v to T . For exam-

ple, assume that a navigation problem is reduced to a pathfinding problem

as similar to the above. A vertex corresponds to a point such as a crossroad.

An edge corresponds to a way between two points such as a lane of a road

from a crossroad to a crossroad. Finally the cost of a directed edge is the

real distance of the way. The destination of the instance of the problem is

(a point of) Kyoto denoted by t, and the purpose of the problem is to get a

path to t with a distance as small as possible. Then, for a point u, we can

define a function that computes the Euclidean distance between u and t as

a heuristic function. An estimation of this heuristic function is known to

be a lower bound of a distance along actual ways, and even the Euclidean

distance between New York and Kyoto is very large. Hence, according to

this heuristic function, the estimation of the cost to go from New York to

Kyoto is very high. Usually, the higher a heuristic function gives a esti-

mated cost to a vertex, the lower priority a heuristic search algorithm gives

to the vertex. Hence, heuristic search algorithms avoid to visit New York

and descendants of New York.

However, note that the technical meaning of “estimation” actually de-

pends on heuristic search algorithms. Sometimes there exists strict condi-

tions, and sometimes there is no condition. Anyhow it is empirically known

that running time and memory usage depend on accuracy of a heuristic

function.

The greedy best first search algorithm, the A* search algorithm [43], and

the weighted A* search algorithm [81] are three classical and important

heuristic search algorithms.

The Greedy Best First Search Algorithm Let h be a heuristic func-

tion. The open list of the greedy best first search algorithm is a priority

queue on h(v) for a vertex v. Intuitively the algorithm continues to visit

greedily the nearest vertex to T in the open list according to the heuris-

tic function h. Although tiebreak for the same estimations is not mentioned

clearly in pseudo codes in most of related work, it seems that FIFO is mostly

used in the implementations. Greedy best first search does not re-insert a

vertex to the open list.

In the greedy best first search algorithm, there is no strict condition for

estimated costs. If h(v) returns the true optimal costs from v to T , then

greedy best first search visits only the vertices that are parts on optimal

paths from s to T (although the number of such vertices is a linear order of
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the number of all vertices in some problems). Otherwise there is no theoret-

ical guarantee for running time and optimality. However, it is empirically

known that, if h is almost precise, greedy best first search halts quickly and

returns a directed path with the approximately optimal cost.

Of course there is no guarantee that h returns even approximate estima-

tions in the general cases. It is empirically and experimentally known that

heuristic functions for the satisficing STRIPS planning problem are quite

inaccurate. However some state-of-the-art satisficing STRIPS planning al-

gorithms are developed on top of the greedy best first search algorithm

and those heuristic functions. In the later chapter, a case study about a

behavior of greedy best first search is given with a heuristic function for

the satisficing STRIPS planning problem. The reason why greedy best first

search consumes time to explore unpromising area of the graph is also given.

To overcome this problem, a new heuristic search algorithm is proposed in

chapter 4.

A* Search Algorithm the A* search algorithm was proposed first by

Hart Nilsson, and Raphael in 1968 [43]. Colson pointed out that some

conditions for using the A* search algorithms were actually not used. Hence

Hart et al. revised and extended the detail of the algorithm in 1972 [44].

Let h be a heuristic function. The open list of the A* search algorithm

is a priority queue with the priority h(v)+ g(v) for a vertex v, where g(v) is

the cost of v in the closed list just before the insertion (i.e., c+ c(e), where c

is defined on the line 16). As is the case with greedy best first search, FIFO

is mostly used for tiebreak in implementations. It always needs to re-insert

a vertex to the open list for the following important property. The priority

of each vertex is not dynamically updated when the directed tree is modified

as the same as Dijkstra’s algorithm. When a vertex is re-inserted, the old

entry in the open list is thrown away, and the new entry is used. Hence the

priority of a vertex is always equal to the sum of its estimation and the cost

of a vertex in the closed list if it exists in the open list.

Let h∗ be the function that returns the true optimal cost from each

vertex to T . If a vertex v does not have a directed path to T , then h∗(v)

is defined as infinity. If a heuristic function h satisfies h(v) ≤ h∗(v) for

each vertex v, then h is called an admissible heuristic function. In addition

to this, the A* search algorithm with an admissible heuristic function has

optimality. It is proven by the following two lemmas. Note that lemma 2.4

is a generalization of the lemma 1 in [43], and lemma 2.5 is another proof of

theorem 1 in [43] along the definition of the pathfinding framework in this

dissertation2.

2The other lemmas for the A* search algorithm in this section are also generalizations
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Lemma 2.4. Given a cost-optimal pathfinding problem ⟨G = ⟨V,E, c⟩ , s, T ⟩,
let h be an admissible heuristic function for the problem. For each vertex v

that has a directed path from s, and for each simple directed path P from

s to v, one of the following conditions is satisfied at the beginning of every

iteration of the while loop of the A* search algorithm (i.e., the line 3 of the

framework). The notation cP (x) is used to denote the cost of the directed

path from s to x along P .

1. All vertices on the path P are already visited, and are not in the open

list. In addition to this the cost of each vertex u in the closed list is

equal to or smaller than cP (u).

2. There exists a vertex v on the path P in the open list, and the priority

of v in the open list is equal to or smaller than h(v) + cP (v).

Proof: According to the definition of the framework, it is obviously im-

possible that all vertices on the path P are not in the open list and at least

one vertex on P is not in the closed list. Hence it is sufficient to consider

the following two cases: (1) all vertices on P are in the closed list and are

not in the open list, or (2) at least one vertex on P is in the open list.

First assume that, the algorithm is at the beginning of an iteration of

the while loop, all the vertices on a directed path P are already visited, and

they are not in the open list. In this case, it can be proved that, for each

vertex u on the path P , the cost of u in the closed list is equal to or smaller

than cP (u). To show a contradiction, assume that there exists a vertex u

on P and the cost of u in the closed list is larger than cP (u). Let w be the

first such vertex on P . The start vertex s cannot be w. This is because

the cost of s in the closed list is zero at the beginning of the algorithm, and

the algorithm does not increase the costs of entries in the closed list. Hence

there exists a vertex x before w along P . In addition, since w is the first

vertex with a larger cost than cP (w) along P according to the definition of

w, the cost of x in the closed list is equal to or smaller than cP (x). Since

the vertices x is visited and is not in the open list on the current iteration, x

was already retrieved at least one time. Let cx be the cost of x in the closed

list at the last retrieving of x before this iteration. If x was re-inserted after

the last retrieving, it contradicts the assumption that all vertices on P are

not in the open list. Hence cx is the current cost of x in the closed list, and

thus it is equal to or smaller than cP (x). Let e be the directed edge between

or modifications of some previous work and folklore for adjusting the above framework.
The properties of the A* search algorithm shown by these lemmas are deeply related
to the proposed heuristic function. Not only the proofs of these lemmas but also some
proofs for other pathfinding algorithms are sometimes folklore and are sometimes wrong
(e.g., Akagi, Kishimoto, and Fukunaga showed and corrected an error of the IDA* search
algorithm [1]). Hence the proofs of these lemmas are shown in this dissertation.
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x and w along P . At the last retrieving of x, the algorithm updated the

cost of w in the closed list with the cost cx + c(e) unless the cost of w was

already equal to or smaller than cx + c(e). This contradicts the assumption

since cx + c(e) ≤ cP (x) + c(e) = cP (w) holds.

If a vertex on a directed path P is in the open list at the beginning of

an iteration of the while loop, let v be the first vertex in the open list along

P . Then it can be proved that, for each vertex u on the directed path from

s to v along P , the cost of u in the closed list is equal to or smaller than

cP (u) by a similar argument. To show a contradiction, assume that there

exists a vertex u between s and v, and assume the cost of u in the closed

list is larger than cP (u). Let w be the first such vertex from s to v along

P . The vertex w cannot be s, and there exists a vertex x before w along P .

According to the definition of v and w, the vertex x was retrieved at least

one time, and the cost cx of x in the closed list at the last retrieving is equal

to or smaller than cP (x). Hence the algorithm tried to update the cost of w

in the closed list with the cost cx + c(e), where e is the edge between x and

w along P . This contradicts that the cost of w in the closed list is larger

than cP (w). Therefore the cost of v in the closed list is equal to or smaller

than cP (v), and the priority of v in the open list is equal to or smaller than

h(v) + cP (v). 2

Lemma 2.5. the A* search algorithm with an admissible heuristic function

has optimality.

Proof: Assume the A* search algorithm with an admissible heuristic

function returned a non-optimal path P from s to t ∈ T . Let C∗ be the

optimal cost from s to T , and let C > C∗ be the cost of P . Finally let P ∗

be an optimal path from s to T .

According to lemma 2.4, P ∗ satisfies either the conditions of lemma 2.4

at every beginning of an iteration of the while loop. If the first condition

is satisfied for P ∗ at the beginning of the last iteration (i.e., the iteration

when the A* search algorithm returned P ), the algorithm must have been

already stopped. Hence the second condition of lemma 2.4 is satisfied for

P ∗ at the beginning of the last iteration. Let u be a vertex satisfying the

second condition of lemma 2.4 for P ∗. The priority of u at the beginning of

the last iteration is equal to or smaller than h(u) + cP ∗(u), and this value

is equal to or smaller than C∗ since the heuristic function is admissible. On

the other hand, the priority h(t) + g(t) of t is equal to or larger than C.

This is because h(t) = 0 since h is admissible and g(t) is the cost of t in the

closed list, i.e., g(t) is an upper bound of P . Therefore it contradicts the

fact that t is retrieved from the priority queue at the last iteration. 2
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By similar arguments with lemma 2.5, the following two lemmas can be

proved. These lemmas are generalizations of lemma 3 in [43] and lemma 4

in [44], and these are also already known as folklore.

Lemma 2.6. Let h be an admissible heuristic function. Let C∗ be the opti-

mal cost. For each vertex v, let g∗(v) be the optimal cost from s to v. If a

vertex satisfies that h(v) + g∗(v) > C∗, then the A* search algorithm with h

never retrieves v. In addition to this, if it is satisfied that h(u)+g∗(u) > C∗

for each vertex u that has a directed edge to v, then the A* search algorithm

with h never visits v.

Proof: As is the case with the previous lemma, the end vertex of an

optimal path is retrieved before a vertex satisfying the condition h(v) +

g∗(v) > C∗ is retrieved. In addition, if it is satisfied that h(u) + g∗(u) > C∗

for each vertex u that has a directed edge to v, then all such vertices are not

retrieved before the A* search algorithm halts. Therefore v is not visited.

2

Lemma 2.7. Let h be an admissible heuristic function. Let C∗ be the op-

timal cost. For each vertex v, if there exists a directed path P from s to

v, and if h(u) + cP (u) < C∗ is satisfied for each vertex u between s and

v along P , then the A* search algorithm visits and retrieves v at least one

time respectively.

Proof: Let v and P be a vertex and a path satisfying the above condition.

As is the case with lemma 2.5, before the end vertex of an optimal path is

retrieved with the cost C∗, all the vertices on the path P including v are

visited and retrieved. 2

Whether the A* search algorithm retrieves (or visits) a vertex u satisfying

h(u) + g∗(u) = C∗ or not depends on tiebreak for vertices of the same

priority. The number of vertex retrievals and vertex re-insertions for vertices

satisfying the condition of lemma 2.7 depends on an admissible heuristic

function in the case of general. However, if a heuristic function is consistent,

then a vertex satisfying the condition of lemma 2.7 is retrieved at most

one time. A heuristic function h is consistent if it satisfies (1) h(s(e)) ≤
c(e) + h(e(e)) for each directed edge e ∈ E, and (2) h(t) = 0 for each

end vertex t ∈ T . Although no non-trivial consistent heuristic function is

introduced in this dissertation, the following lemmas can be proved.

Lemma 2.8. A consistent heuristic function is admissible.

Proof: Let h be the consistent heuristic function. Let v be a vertex

that has a directed path to T . Let P ∗ = (e0, · · · , el−1) be an optimal path
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from v to T , and let v = v0, v1, · · · , vl be the vertices on P ∗. Then we

have h(vi) ≤ c(ei) + h(vi+1) for each i ∈ {0, · · · , l − 1}. By substituting

h(vi) ≤ c(ei) + h(vi+1) for the right-hand side of h(vi−1) ≤ c(ei−1) + h(vi),

we have h(v) = h(v0) ≤ c(e0) + h(v1) ≤ · · · ≤
∑l−1

i=0 c(ei). The right-most

side is equal to the cost of P ∗. Hence h is admissible. 2

Lemma 2.9. The A* search algorithm with a consistent heuristic function

retrieves each vertex at most one time until the A* search algorithm halts.

In addition to this, after a vertex is retrieved, the vertex is never re-inserted

into the open list.

Proof: Let h be a consistent heuristic function used by the A* search

algorithm. If the latter statement is true, then the former is clearly true.

Assume the A* search algorithm reached at the beginning of an iteration

of the while loop, and vertex v is retrieved from the open list. The priority

of v before the retrieving is h(v) + g(v). In this iteration, for each directed

edge e which satisfies s(e) = v, we have h(v)+g(v) ≤ h(e(e))+c(e)+g(v) =

h(e(e)) + g(e(e)) since h is consistent. Hence the minimum priority of the

open list does not decrease.

This situation continues every iteration. Assume that, after a vertex

u is retrieved, another vertex v is retrieved in the current iteration of the

while loop, and there exists an edge e satisfying s(e) = u and e(e) = v. Let

pu, pv be the priority of u and v when u and v are retrieved respectively. Let

cu, cv be the cost of u and v in the closed list when u and v are retrieved

respectively. Since pu ≤ pv holds, we have cv + c(e) + h(u) ≥ cv + h(v) =

pv ≥ pu. Thus cv + c(e) ≥ pu − h(u) = cu is satisfied, and therefore u is not

inserted into the open list. 2

Dijkstra’s algorithm is a special case of A∗ search algorithm with a zero

heuristic function h ≡ 0. A zero heuristic function is clearly consistent.

Hence the following proposition holds.

Corollary 2.10. (1) Dijkstra’s algorithm halts and returns an optimal path

if there exists a directed path from s to T . (2) Dijkstra’s algorithm never

retrieves a vertex whose optimal cost is larger than the optimal cost of the

problem. (3) Dijkstra’s algorithm needs to visit every vertex whose optimal

cost is smaller than the optimal cost of the problem. In addition to this, the

algorithm retrieves those vertices only one time.

Let h1 and h2 be (inconsistent) admissible heuristic functions. If h1(v) ≥
h2(v) is satisfied for each vertex v, h1 dominates h2. If h1 dominates h2,

and if we ignore tiebreak on the optimal cost, the numbers of visited ver-

tices and retrieved vertices of the A* search algorithm with h1 are always
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equal to or smaller than the numbers with h2 respectively. This is because

the number of the vertices satisfying the condition of lemma 2.7 does not

increase by using h1 instead of h2. The number of vertex retrievals some-

times increases by using h1 even if h1 dominates h2. However, although we

do not have specific bounds, it is empirically known that more accurate ad-

missible heuristic function tends to make fewer number of vertex retrievals.

Therefore it is necessary to develop a tight and fast admissible heuristic

function to reduce the numbers of visited vertices, retrieved vertices, and

vertex retrievals of cost-optimal pathfinding algorithm. Note that making

an only tight admissible heuristic function is not difficult at all because the

optimal cost from a vertex v to T itself is an ultimately tight cost estimation

for v. Hence Dijkstra’s algorithm itself can be a tight admissible heuristic

function. However, solving many instances of the cost-optimal pathfinding

problem to solve another instance is clearly too expensive to compute, and

the running time may become too long. Therefore it is necessary to develop

a well-balanced admissible heuristic function in terms of running time and

tightness of estimations.

In chapter 5, a new admissible heuristic function is proposed. It is based

on an integer linear programming model for computing the optimal cost of

a delete-free task. The cost-optimal delete-free STRIPS planning problem

is known to be NP-hard [18]. Hence the heuristic function computes the

optimal costs of the linear programming relaxations of the models. Although

the proposed heuristic function is more expensive compared to some previous

admissible heuristic functions, the heuristic function is much tighter than the

competitors. The A* search algorithm with the proposed heuristic function

is competitive to some state-of-the-art planning algorithms. The formal

definition of the delete relaxation is given in the next section.

The Weighted A* Search Algorithm Pohl proposed the weighted A*

search algorithm in 1970 [81].

The weighted A* search algorithm is an extension of the A* search al-

gorithm. The weighted A* search algorithm requires a parameter w ≥ 1.

Instead of the priority h(v)+ g(v) for a vertex v, the weighted A* search al-

gorithm uses wh(v)+ g(v) as the priority. If w = 1 holds, then the weighted

A* search algorithm is completely same as the A* search algorithm.

Although the weighted A* search algorithm does not have optimality

when w > 1, it has an important property about the cost of the output.

By proofs similar to the A* search algorithm, the following lemma can be

proved.

Lemma 2.11. Given a feasible instance of the cost-optimal pathfinding prob-

lem, the weighted A* search algorithm with an admissible heuristic function
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and a weight w returns a directed path whose cost is equal to or smaller than

wC∗, where C∗ is the optimal cost of the instance.

Proof Sketch: The proof is similar to the proof of lemma 2.4. For any

vertex v and for any directed path P from s to v, it can be proved that

either of the followings is satisfied:

(1) for each vertex u on P , u is in the closed list and is not in the open

list. In addition, the cost of u in the closed list is equal to or smaller

than cP (u), or

(2) there exists a vertex u on P in the open list and the priority of u in

the open list is equal to or smaller than wh(u) + cP (u).

In addition to this, for each vertex v on an optimal path P , wh(v)+cP (u) ≤
wC∗ holds. Hence, contradiction occurs if the cost of the output is larger

than wC∗. 2

2.4 The Delete Relaxation of a STRIPS Planning

Task

Not only for constructing an admissible heuristic function for pathfinding

problems, but also for getting a lower bound of the optimal cost of an in-

stance of an optimization problem, the relaxation of an instance is commonly

used.

This dissertation focuses on the instances of minimization problems.

Given an instance O of a minimization problem and another instance R

of possibly another minimization problem, let XO and XR be the set of

feasible solutions of O and R respectively. In addition let cO and cR be

the cost function of XO and XR respectively. If XR ⊇ XO holds, and if

cR(x) ≤ cO(x) holds for any x ∈ XO, then the instance R is a relaxation

of the instance O. A relaxation is usually made by modifying the original

instance or removing some constraints of the original problem.

For the STRIPS planning class, the delete relaxation is well studied in

the literature [89]. The delete relaxation is technically a simplification of

a STRIPS planning task, and as a consequence of the delete relaxation,

instances of the satisficing and cost-optimal STRIPS planning problems are

relaxed.

Given a STRIPS planning task T = ⟨P,A, I,G⟩, the delete relaxation

makes another STRIPS planning task T + = ⟨P,A+, I, G⟩, where A+ is a set

of delete-free actions defined as A+ = {⟨pre(a), add(a), ∅, c(a)⟩ | a ∈ A}. As

mentioned above, the task T + is called a relaxed task or a delete-free task
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in this dissertation. The term delete-free task and the notation T+ is also

used to denote a task that has no delete effect before the delete relaxation.

According to the definition of an applicable action sequence, any plan of

T is a feasible plan of T +. Clearly the cost of a plan is the same. Hence

the instance of the satisficing STRIPS planning problem defined by T + is a

proper relaxation of the instance of the satisficing STRIPS planning problem

defined by T . An instance of the cost-optimal STRIPS planning problem

can be relaxed similarly. Note that a plan of a relaxed task is sometimes

called a relaxed plan.

Table 2.2 shows an example of the delete relaxation of the task on Table

2.1. For example, if the action move B table A is applied to a state { (A on

Table 2.2: An example of the delete relaxation of a STRIPS planning task.
P { (A on B), (A on table), (B on A), (B on table), (clear A), (clear B) }
A { move A table B, move A B table, move B table A, move B A table },

where

move A table B = ⟨{ (A on table), (clear B) }, { (A on B) }, ∅, 1⟩,
move A B table = ⟨{ (A on B) }, { (A on table), (clear B) }, ∅, 1⟩,
move B table A = ⟨{ (B on table), (clear A) }, { (B on A) }, ∅, 1⟩,
move B A table = ⟨{ (B on A) }, { (B on table), (clear A) }, ∅, 1⟩.

I { (A on table), (B on table), (clear A), (clear B) }
G { (A on B) }

table), (B on table), (clear A), (clear B) }, then the successor state is the

state { (A on table), (B on table), (clear A), (clear B), (B on A) }.
Given a STRIPS planning task T = ⟨P,A, I,G⟩, the heuristic function

to compute the optimal cost of ⟨P,A+, S,G⟩ for a state S ⊆ P is denoted

as h+ in the literature (e.g., [9]). This is the heuristic function to compute

the optimal costs of relaxed tasks. Note that it technically computes the

optimal cost of a task made by the delete relaxation of ⟨P,A, S,G⟩. Be-

low ⟨P,A+, S,G⟩ is called the relaxed task of S. It seems that the first use

of h+ inside a cost-optimal planning algorithm was by Betz and Helmert

[9], who implemented domain-specific implementations of h+ for several do-

mains. They experimentally showed that h+ is much tighter than some

other heuristic functions. In addition to this, they showed that the running

time of the A* search algorithm with domain specific h+ is faster than some

other heuristic functions in some domain.

Unfortunately it is known that the complexity class of the cost-optimal

delete-free STRIPS planning problem is NP-hard in the general case [18].

We can equate the cost-optimal delete-free STRIPS planning problem with
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the cost-optimal pathfinding problem on a weighted directed hypergraph. Of

course the latter is also known as a NP-hard problem [2]. Hence researchers

developed some admissible heuristic functions to compute a lower bound of

h+ in polynomial time in some previous work. Themax heuristic [12, 13] and

the landmark cut heuristic [14] are such examples. In addition to this, there

are some heuristic functions based on the delete relaxation for satisficing

STRIPS planning problems such as the additive heuristic [12, 13] and the

FF heuristic [57, 59]. These heuristic functions compute feasible plans of

relaxed tasks and return those costs. These four heuristic functions are

explained in detail in the next chapter.

As mentioned above, an integer linear programming model of the cost-

optimal delete-free STRIPS planning problem is proposed in the fifth chap-

ter. Although the complexity class of the integer linear programming prob-

lem is known to be NP-hard, we can easily make a relaxation in the com-

plexity class P by linear programming relaxation.

To be more precise, note that some heuristic functions compute the

cost of a partial-ordered plan of a delete-free task. Although a plan is a

sequence of actions in classical planning, a plan is the combination of a

set of actions and their total-ordered in other word. However, for instance,

if both (a1, a2, a3) and (a1, a3, a2) are feasible plan of a task, then it is

sufficient for us to have a set of actions {a1, a2, a3} and a set of orders {(a1 →
a2), (a1 → a3)}. In general, A partial-ordered plan is the combination of a

set of actions and their partial-ordered. Although a partial-ordered plan

can be easily serializable, precisely speaking, the additive heuristic, the FF

heuristic, and the proposed integer-linear programming model compute a

partial-ordered plan. In the following, if the term “plan” is just used, then

it means a total-ordered plan.

2.5 Planning Domain Definition Language

Planning Domain Definition Language, or PDDL in short, is the de facto

standard of formal languages to formulate planning tasks. PDDL is used to

describe benchmark instances of AIPS98 [75], and whenever a competition is

held, PDDL is extended to describe more and more wider classes of planning

tasks [3, 31, 27, 38, 39]. The latest version of PDDL is version 3.1 in 2014.

Now PDDL can describe not only a STRIPS planning task, but also PDDL

can handle fragments of general classical planning and non-classical planning

such as negations, disjunctive clauses, universal and existential quantifiers,

numeric propositions, durative actions, and so on. PDDL is not directly

related to the proposed algorithms. However, STRIPS planning tasks made

for the International Planning Competitions are used for the experimental
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evaluations in this dissertation, and these tasks are written in PDDL. Hence

a part of the definition of PDDL is briefly explained in this section.

In PDDL, a planning task is defined by two data structures called domain

and problem respectively. A domain is semantically a subset of planning

tasks such as a set of tasks of blocks world. We need to describe the common

structures and properties of a domain such as kinds of objects and actions

into a domain data structure. Information of an individual task such as

the initial state or the goal is written in a problem data structure. In the

International Planning Competitions, a domain file is used to describe a

domain, and a problem file is used to describe a problem. We can share and

reuse a domain file in planning tasks on one domain.

PDDL is defined based on list structures like LISP language. Figure 2.1

shows an example of domain files of the blocks world domain. This domain

(define (domain blocks-world)

(:requirements :strips)

(:predicates (on ?x ?y) (ontable ?x) (clear ?x)

(handempty) (holding ?x))

(:action pick-up

:parameters (?x)

:precondition (and (clear ?x) (ontable ?x) (handempty))

:effect (and (not (ontable ?x)) (not (clear ?x))

(not (handempty)) (holding ?x)))

(:action put-down

:parameters (?x)

:precondition (holding ?x)

:effect (and (not (holding ?x)) (clear ?x)

(handempty) (ontable ?x)))

(:action stack

:parameters (?x ?y)

:precondition (and (holding ?x) (clear ?y))

:effect (and (not (holding ?x)) (not (clear ?y))

(clear ?x) (handempty) (on ?x ?y)))

(:action unstack

:parameters (?x ?y)

:precondition (and (on ?x ?y) (clear ?x) (handempty))

:effect (and (holding ?x) (clear ?y) (not (clear ?x))

(not (handempty)) (not (on ?x ?y)))))

Figure 2.1: A domain file of the blocks world domain
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data structure is given for the benchmark set of the International Planning

Competitions. The tuple :requirements describes the requirements of the

ability of planners to handle the planning tasks on this domain, and the

requirement :strips states that the tasks on this domain are based on the

model of STRIPS planning tasks. Although the implementations of the

proposed algorithms accept the requirements :typing and :action-costs,

explanations about those requirements are omitted here. Essential factors of

a domain data structure for STRIPS planning tasks are predicates and action

schemata. A predicate of PDDL is a parameterized proposition. In Figure

2.1, five predicates named on, ontable, clear, handempty, and holding are

defined. We can get actual propositions by substituting objects defined in a

problem file to arguments of predicates. In this definition, propositions to

describe holding a block are used in addition to the example on the Table

2.1. Similarly an action schema is a parameterized action, and four action

schemata named pick-up, put-down, stack, and unstack are defined in the

figure. The tuple :precondition describes the precondition of the action

schema. The tuple :effect describes the combination of the add effect and

delete effect of the action schema. The tuple (not X) in the effect tuple

describes the proposition X is an element of the delete effect, and otherwise

the proposition is an element of the add effect.

Figure 2.2 shows an example of a problem file of an instance of plan-

ning tasks of the blocks world domain. This problem data structure is

(define (problem blocks-world-4-0)

(:domain blocks-world)

(:objects A B C D)

(:init (clear A) (clear B) (clear C) (clear D)

(ontable A) (ontable B) (ontable C) (ontable D)

(handempty))

(:goal (and (on D C) (on C B) (on B A))))

Figure 2.2: A domain file of the blocks world domain

also quoted from the International Planning Competition benchmarks. In

this figure four objects A, B, C, and D are defined, and as mentioned above,

propositions and actions are implicitly defined by substituting these objects

to predicates and action schemata. Note that planners sometimes generate

nonsense propositions or actions since they do not understand the meanings

of predicates and action schemata. For example, the proposition (on A A)

or the action stack(B B) can be generated. Sometimes we can automati-

cally remove such nonsense elements by using the initial state and the goal.
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The tuple :init describes the initial state, and the tuple :goal describes

the goal. In this task four blocks are initially located on the table, and the

goal is to stack all blocks by the order D, C, B, and A from the top.

Note that, since PDDL is used to describe a planning task, there is

no distinction of domain files and problem files between the cost-optimal

STRIPS planning problem and the satisficing STRIPS planning problem.

Requirement of optimality is decided by users or solvers.
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Chapter 3

Related Work

In this chapter, some previous work related to the proposed algorithms is

presented. Some algorithms below are used for the experimental evaluations.

Related work is described mostly chronologically.

In section 3.1, some kinds of non-pathfinding reductions are introduced.

The non-pathfinding reductions in the section 3.1 are proposed in 1990’s.

Although most of them are not used to directly solve planning problems

recently, they are still important to build recent heuristic functions.

After McDermott proposed an algorithm based on heuristic search in

1996, researchers started to study heuristic search algorithms studiously.

Some heuristic functions developed from the late 1990 ’s are mainly based

on the delete relaxation. The max heuristic, the additive heuristic, the FF

heuristic, and the landmark cut heuristic are explained in section 3.2. All of

the four heuristic functions are based on the delete relaxation.

In recent years some heuristic functions based on outside of the delete

relaxation are proposed. In addition to this, it seems that most of the

previous practical integer linear programming heuristic functions are based

on non-delete relaxation. In section 3.3, these integer linear programming

heuristic functions are introduced. Some other non-delete relaxation based

heuristic functions are also surveyed in section 3.4.

Finally, some satisficing heuristic search algorithms are explained in sec-

tion 3.5. In addition some improvements for heuristic search algorithms are

also described in the last section. Those improvements are used in some

state-of-the-art planning algorithms.

3.1 Non-Pathfinding Reduction

Affected by the improvements of computers and combinatorial algorithms,

reductions from a planning problem to other combinatorial problems blos-

som in 1990’s. Although proposed algorithms are based on the pathfind-
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ing reduction, the integer linear programming heuristic function is closely

related to non-pathfinding reductions. This section explains some related

work with non-pathfinding reductions such as a reduction to the satisfiabil-

ity problem, a reduction to a problem related to network flow problems, and

a direct reduction to the integer linear programming problem.

Kautz and Selman proposed a translation from an instance of a planning

problem to a series of instances of the satisfiability problem in 1992 [64].

An encoded instance of the satisfiability problem decides the existence of

a feasible plan of a fixed length. Given an integer for the fixed length l,

each proposition p on a planning problem is encoded to (l+1) propositional

variables p0, · · · , pl. A true assignment of the problem corresponds to a

feasible plan of length l, and pi = true holds if and only if the proposition

p is true on the i-th step on the plan. Their planner, called SATPLAN,

searches a plan with the shortest length (i.e., an optimal plan when the

cost function is a unit cost function) by solving the encoded problems from

l = 1, 2, · · · . Although they used GSAT [91] to solve encoded instances in

their approach, of course now we can use any satisfiability problem solver

to benefit from advances of research of the satisfiability problem. In recent

years satisfiability based planners still have been being improved (e.g., [71,

24]). They still form a portion of the state-of-the-art planning algorithms.

In 1995, Blum and Furst developed a reduction from a partial-ordered

STRIPS-like planning problem to a problem to construct a data structure

called planning graph [10]. They stated that a plan in a planning graph

is essentially a flow in the network flow sense. A planning graph has two

kinds of alternative layers composed of proposition nodes and action nodes

respectively. Each proposition node corresponds to a proposition of the task.

Each action node corresponds to an action of the task. Hence a layer can

be considered as a set of propositions or actions. In addition a planning

graph has some links between nodes in a same layer. A link describes the

mutual exclusion between two propositions or two actions related to nodes.

The first layer of a planning graph is a proposition layer with the nodes

that correspond to propositions in the initial state. A new action layer is

constructed based on the previous proposition layer, and a new proposition

layer is constructed based on the previous action layer. If a proposition layer

contains the nodes of all goal propositions, and if every pair of the goal nodes

does not have a mutual exclusion each other, then the construction of the

planning graph finishes. After construction finished, a plan can be extracted

by backtracking from the last layer of the planning graph. Although the

exact definition of a planning graph and its construction is not explained

here, the relaxed planning graph of a STRIPS planning task is defined as

follows. The relaxed planning graph of a STRIPS planning task is the
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planning graph of the relaxed task of the original task made by the delete

relaxation. Relax planning graphs are often used for heuristic functions

based on the delete relaxation. The first layer of a relaxed planning graph

is also a proposition layer composed of the proposition nodes in the initial

state. Then i-th action layer is the set of relaxed actions that are applicable

to the state with all the propositions appearing on the i-th proposition

layer. The (i + 1)-th proposition layer is the logical disjunction of the i-th

proposition layer and all add effects of the actions in the i-th action layer.

The construction stops when i-th and (i + 1)-th proposition layers are the

same. A relaxed planning graph does not have any mutual exclusion links.

The last proposition layer includes the goal if and only if the delete relaxation

has a feasible plan. If the last proposition layer includes the goal, then the

combination of the set of all actions appearing in the relaxed planning graph

and the partial-order of actions according to the layers is a partial-ordered

plan of the delete relaxation.

It seems that the earliest use of integer linear programming in STRIPS

planning was by Bylander in 1997, who used a linear programming encoding

of unit-cost STRIPS planning problems as heuristic functions [19]. He pro-

posed integer linear programming models for both of the total-ordered satis-

ficing STRIPS planning problem and the partial-ordered satisficing STRIPS

planning problem. His encodings also require a positive integer l. One can

decide the existence of a total-ordered plan with a fixed length l, and another

can decide the existence of a partial-ordered plan with a fixed makespan l.

Generally speaking, given an integer for the fixed length l, each proposi-

tion p is encoded to (l + 1) zero-one integer variables p0, · · · , pl. As similar

to SATPLAN, a feasible solution of the integer linear programming corre-

sponds to a feasible plan of length l, and pi = 1 holds if and only if the

proposition p is true on the i-th step on the plan. Each action a is also

encoded to zero-one integer variables a0, · · · , al−1. To associate the original

instance of STRIPS planning problems and its integer linear programming

encoding, some constraints are defined based on the definition of STRIPS

planning. For example, an inequality pi ≥ ai need to be satisfied for each

i ∈ {0, · · · , l − 1}, a proposition p ∈ P , and an action a ∈ A that satisfies

p ∈ pre(a). The objective is to maximize the objective function
∑

p∈G pl.

There is no feasible plan with length l if there exists no feasible solution on

the (integer) linear programming problem. Therefore a heuristic function

that searches the minimum length of the feasible encodings is admissible.

In 1999, Vossen, Ball, Lotem and Nau defined another integer linear

programming encoding similar to Bylander’s. The main difference is that

Vossen et al. introduced some auxiliary variables, and the objective of their

encoding is to minimize the summation of the costs of used actions [98]. In
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2005 Briel and Kambhampati proposed a variable elimination technique for

the encoding of Vossen et al. [97]. Their algorithm constructs the relaxed

planning graph of the task, and it substitutes zero to useless variables based

on the relaxed planning graph.

3.2 Heuristic Functions Based on the Delete Re-

laxation

According to Russell and Norvig [89], after McDermott proposed the first

heuristic search algorithm based on the delete relaxation in 1996 [76], Bonet

and Geffner developed the first practical planning algorithm in 1998 [12, 13].

Bonet and Geffner proposed the additive heuristic and themax heuristic, and

they experimentally evaluated the additive heuristic with the hill-climbing

search algorithm that is explained later. Hoffmann proposed another sat-

isficing STRIPS planning algorithm called Fast Forward planner [57, 59].

Fast Forward planner is composed of the FF heuristic and the enforced hill-

climbing search algorithm. It was one of the best planning algorithms of

the competition in Artificial Intelligence Planning and Scheduling 2000 [89].

Moreover, the FF heuristic and some other fragments of Fast Forward plan-

ner are still used in the current state-of-the-art planning algorithms (e.g.,

Fast Downward planner [53]). Finally, in contrast to the three heuristics

above, the landmark cut heuristic is a quite new heuristic function origi-

nally proposed in 2009 [54, 14] and also plays an important role in recent

planning research.

The Max Heuristic As mentioned above, Bonet and Geffner proposed

the max heuristic in 1998. They just expressed that the max heuristic com-

putes an approximation of the optimal cost of the relaxed task of the given

state [12]. However, according to Betz and Helmert [9], the max heuristic

computes the optimal makespan of partial-ordered plans for the relaxed task

of the given state when we regard the cost of an action as the execution time

of the action. Hence the cost estimation of the max heuristic is clearly a

lower bound of h+, and the max heuristic is an admissible heuristic function.

The optimal makespan c(p) to achieve a proposition p is naturally defined

as min{c(a)+maxp′∈pre(a) c(p
′) | ∃a ∈ A, p ∈ add(a)} if p is not a member of

the initial state. Otherwise c(p) is set to zero. The optimal makespan of the

relaxed task is defined as maxp∈G c(p). These makespans can be computed

by the algorithm proposed by Knuth [67]. It runs in low-degree polynomial

time of the order of the size of the relaxed task of the given state.

It seems that the max heuristic is one of the fastest and loosest non-

trivial admissible heuristic functions. It is empirically and experimentally
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known that there is a large gap between the max heuristic and h+ (and

hence the optimal cost from the given state to the goal states) [9].

The Additive Heuristic The additive heuristic computes the cost of a

feasible plan of the delete relaxation though we can have several views of

the additive heuristic as with the max heuristic. As Betz and Helmert have

mentioned in their paper [9], the additive heuristic computes the cost of an

optimal plan for the relaxed task of the given state under the pessimistic

assumption that there are no interactions between the goals and between

action preconditions. For example, assume the goal G is defined as G =

{p1, p2}. If any plan to achieve p1 never achieves both of p2 and preconditions

of any plan to achieve p2, and vice versa, then an optimal plan to achieve G

is the concatenation of an optimal plan to achieve p1 and an optimal plan

to achieve p2.

In general, for each proposition p, the additive heuristic computes the

cost c(p) to achieve p under the above assumption. The cost c(p) is defined

as min{c(a) +
∑

p′∈pre(a) c(p
′) | ∃a ∈ A, p ∈ add(a)} if p ̸∈ I. Otherwise c(p)

is set to zero for p ∈ I. Then the additive heuristic returns
∑

g∈G c(g) that is

equal to the optimal cost to achieve G under the assumption. The additive

heuristic can be defined by replacing max operator of the max heuristic by∑
. Also as is the case with the max heuristic, these costs can be computed

in low-degree polynomial time of the order of the size of the delete relaxation

by Knuth’s algorithm.

The plan computed by the additive heuristic is a feasible plan for the

relaxed task of the given state without the assumption. Hence the cost

estimation of the additive heuristic is always equal to or larger than the

optimal cost of the relaxed task. In addition to this, it sometimes larger

than the optimal cost of the original task of the given state, hence it is not

an admissible heuristic function.

The FF Heuristic The FF heuristic also computes the cost of a feasible

plan for the relaxed task of the given state. First it constructs the relaxed

planning graph of the task of the given state, and after that, it extracts a

cheap feasible plan instead of the trivial feasible plan, i.e., all the actions

appearing in the relaxed planning graph. Although some variants are pro-

posed for handling non-unit cost [33] or numerical state [58] and so on, the

original FF heuristic is defined on the satisficing STRIPS planning problem

with a unit cost function. Here only the original version is explained.

Let l(p) be the first layer that the proposition p appears on the relaxed

planning graph. Then the algorithm recursively appends actions into the

output taking interactions of actions of into account. To be more precise,
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the FF heuristic defines the sets Gi = {g ∈ G | l(g) = i} before extracting.

These sets control interactions of the actions. The extracting algorithm

proceeds down from the maximum layer to the layer zero. The goal is to

make all Gi empty. If a proposition p is in the current Gi, the algorithm

selects an action a that satisfies p ∈ add(a). Then the algorithm removes

all the propositions in add(a) from Gi, inserts each proposition q ∈ pre(a)

into Gl(q), and continues to repeat this process until all Gi become empty.

The plan computed by the FF heuristic is obviously a feasible plan for

the relaxed task of the given state. However, there is no guarantee to be an

optimal plan. Hence the FF heuristic is not an admissible heuristic function.

The Landmark Cut Heuristic In recent years a landmark plays an im-

portant role in planning research community [63, 54, 86, 65]. The landmark

cut heuristic, proposed by Helmert and Domshlak in 2009 [54], is a variant

of landmark based heuristic functions.

In planning, a landmark is something that is always required, used, or

achieved in every feasible plan. For example, to pick up the block A is an

action landmark in Figure 1.1. We cannot reach the goal unless moving

the block A. A disjunctive action landmark is a set of actions in which

every feasible plan contains at least one element. It is known that deciding

whether an action set L is a disjunctive action landmark or not in general

STRIPS planning tasks is PSPACE-hard [84]. However we can easily decide

for delete-free STRIPS planning tasks in linear time since deciding plan

existence can be solved in linear time. Finding a disjunctive action landmark

is also not so difficult for delete-free tasks.

The landmark cut heuristic iteratively finds disjunctive action landmarks

by using the max heuristic as a subroutine. It returns the summation of the

minimum costs of actions of each disjunctive action landmark. Roughly

speaking, the landmark cut heuristic divides and distributes the cost of an

action to the disjunctive action landmarks if the action is contained in more

than one disjunctive action landmarks. Hence the estimation is always equal

to or lower than the optimal cost of the relaxed task of the given state, and

therefore the landmark cut heuristic is an admissible heuristic function.

3.3 Heuristic Functions Based on the Integer Lin-

ear Programming Encodings

In this section, recent advances in integer linear programming heuristic func-

tions are explained.

Although integer linear programming models in the section 3.1 can also

be used to admissible heuristic functions, the first practical admissible heuris-
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tic function for optimal planning seems to be proposed by van den Briel,

Benton, Kambhampati, and Vossen in 2007 [96]. All of the previous models

require the parameter of the plan length. This parameter produces too large

instances of the integer linear programming problem to use as a heuristic

function. In addition to this, we need to know the length of an optimal plan

before computation, or we need to minimize the costs computed from all

different parameters. It seems that van den Briel et al. proposed the first

compact model. Subsequent researches also followed this kind of compact

encodings.

The model proposed by van den Briel et al. is based on a SAS+ planning

task [5]. Unlike a STRIPS planning task, each state of a SAS+ planning task

is assignments of multi-valued variables, and the effect of an action is defined

as new assignments of variables. For example, in a logistic problem described

as SAS+ planning, the state is composed of variables for the positions of

vehicles, packages, and drivers. An action to move a truck t from a position

p1 to another position p2 changes the assignment of the variable vt from

vt = p1 to vt = p2. The value of the variable vt cannot be p1 and p2
simultaneously. In other words, multi-valued variables naturally describe

mutual exclusions of values.

In general, a SAS+ planning task is defined by a 5-tuple ⟨V, d,A, sI , sG⟩.
V is the set of multi-valued variables, and d is the mapping from a variable

to the range of the variable. A function s that assigns a value from d(v)∪{⊥}
for each variable v is called a partial assignment, and a function from v to

a value in d(v) is called a total assignment or a state. The special value ⊥
means undefined. The total assignment sI is the initial state. The partial

assignment sG is the goal. Each action a is a 3-tuple (p(a), e(a), c(a)). The

partial assignments p(a) and e(a) are called the precondition and the effect

of the action a, and c(a) is the cost of a. An action a is applicable to a state

s if and only if p(a)(v) = s(v) or p(a)(v) = ⊥ holds for each variable v, and

the new state s′ is defined as s′(v) = e(a)(v) if e(a)(v) ̸= ⊥ and otherwise

s′(v) = s(v) for each variable v. A plan and its cost are defined as same as

a STRIPS planning task.

We can also reduce a SAS+ planning problem to a pathfinding problem

on a weighted directed graph. There exists trivial polynomial time trans-

lations between STRIPS planning tasks and SAS+ planning tasks. Hence

the complexity class of the plan existence problem of SAS+ planning tasks

is also PSPACE-complete. Searching a compact reduction is a practical and

challenging problem. For instance, Helmert proposed an efficient translation

from a STRIPS planning task to a SAS+ planning task with taking mutual

exclusions of propositions into account [52].
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Van den Briel et al. defined an integer variable xa for the number of

occurrence of an action a. The objective is to minimize
∑

a∈A c(a)xa. They

defined constraints like network flow such as
∑

b∈Ai(v,f)
xb =

∑
a∈Ao(v,f)

xa
for each value f of a variable v, where Ai(v, f) is the set of actions that

change the value of the variable v from another value to f , and Ao(v, f) is the

opposite1. They call this kind of constraints effect implication constraints.

Van den Briel et al. also proposed some other constraints based on domain

transition graphs of the variables. The domain transition graph of a variable

v is a directed graph ⟨V,E⟩, where V is the set of the values of v, i.e., V =

d(v). There exists a directed edge e with s(e) = vs ∈ V and e(e) = ve ∈ V

if there exists an action a and it satisfies p(a)(v) = vs and e(a)(v) = ve.

The details of those constraints are omitted here. We can perceive the effect

implication constraints as flow constraints on the domain transition graphs.

In 2013 Bonet proposed another integer linear programming based ad-

missible heuristic function called state equation heuristic [11]. He proposed

a transformation from a SAS+ planning task to a Petri Net, and formalized

a linear programming encoding of the Petri net. Bonet’s constraints are

sometimes called net change constraints [83]. The net change constraints

have some similarity to the effect implication constraints. Recently Bonet

and van den Briel proposed another heuristic function made by combining

and improving these two constraints [15].

Pommerening, Röger, Helmert, and Bonet [83] formalized and combined

some linear programming constraints and other techniques as a general-

ized framework called operator-counting constraints. They experimentally

showed the performances of admissible heuristic functions based on some

combinations of the operator-counting constraints with the A* search algo-

rithm. Especially the combination of the net change constraints and the con-

straints made from disjunctive action landmarks computed from the same

algorithm with the landmark cut heuristic [14] is competitive to a state-of-

the-art algorithm.

3.4 Other Heuristic Functions

Here heuristic functions related to neither the delete relaxation nor integer

linear programming are briefly introduced.

The Causal Graph Heuristic and The Context Enhanced Additive

Heuristic Helmert proposed the causal graph heuristic in 2004 [52, 53].

1This equation is simplified from the original one for a brief explanation.
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The causal graph heuristic is defined on a SAS+ planning task, and it com-

putes its estimation by the domain transition graphs of the variables and

the causal graph [66] of the task.

The causal graph of a SAS+ planning task is a directed graph ⟨V,E⟩,
where V is the set of the variables of the task. There exists a directed

edge e with s(e) = v1 and e(e) = v2 if and only if there exists an action a

that satisfies (1) p(a)(v1) ̸= ⊥ and e(a)(v2) ̸= ⊥, or (2) e(a)(v1) ̸= ⊥ and

e(a)(v2) ̸= ⊥. Intuitively the causal graph describes the dependencies of the

variables.

The causal graph also plays an important role in planning not only to

develop heuristic functions, but also to determine tractable subclasses of

planning problems. For example, if the causal graph of a SAS+ planning

task is a directed tree and satisfies some other conditions, a feasible plan

of the SAS+ planning task can be computed in polynomial time [16]. On

the other hand, if the causal graph is a complex cyclic graph, then even

determining the existence of a feasible plan is PSPACE-complete. The causal

graph heuristic modifies and relaxes the given SAS+ planning task based

on its causal graph and domain transition graphs, and then it computes the

optimal cost of the modified planning task in polynomial time. It does not

have any guarantee to be an admissible heuristic function.

In 2008 Helmert and Geffner reformulated the causal graph heuristic

as the additive heuristic with context, i.e., interactions between subgoals

[55]. In addition they proposed another heuristic function based on additive

heuristic with another context called context enhanced additive heuristic.

The context enhanced additive heuristic experimentally outperformed both

additive heuristic and the causal graph heuristic in terms of the coverage of

benchmark instances, search time, and the number of vertex expansions, i.e,

the number of vertex retrievals.

Pattern Database Heuristic The pattern database heuristic is an ad-

missible heuristic function originally proposed for puzzles in 90’s [35, 22].

Imagine that some tiles on a sliding puzzle are painted with black. You

cannot see the number on a black tile. In the initialization phase before

the search, the pattern database heuristic computes and stores the numbers

of moves of optimal solutions for all the states of the black-painted puzzle.

Since the pattern database heuristic does not distinguish the black tiles, the

number of states of the black-painted puzzle is much smaller than the num-

ber of states of the original puzzle. Moreover, a brute force algorithm such

as the breadth first search algorithm can incrementally compute the optimal

costs for all the states. Given a state of the original puzzle for estimation,

the pattern database heuristic paints the same tiles of the state by black
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as the initialization phase. Then it searches the black-painted state from

the database and just returns the optimal cost from the black-painted state

to the goal. The black-painted puzzle is clearly a relaxation of the original

instance. Hence the pattern database heuristic is an admissible heuristic

function.

The pattern database heuristic was introduced to planning community

by Edelkamp in 2001 [26]. Although the detailed definition of pattern

database for planning is not explained here, there are some variants of the

pattern database heuristic for planning such as [47] since there are many

possibilities of abstractions. All the pattern database heuristics for plan-

ning are admissible as far as the author knows.

Merge-and-Shrink Heuristic The merge-and-shrink heuristic computes

the optimal cost of another abstracted planning problem [56]. Given a SAS+

planning task, we can generate another equivalent SAS+ planning task by

merging some variables of the original task by the Cartesian product method.

When the number of variables becomes one by repeating merging, the do-

main transition graph of the variable is completely isomorphic to the search

space of the original SAS+ planning task. On the other hand, a variable

shrinks by contracting two values, i.e., vertices, of the domain transition

graph of the variable. By repeating merging variables and shrinking vari-

ables, we can have a smaller instance of the cost-optimal pathfinding problem

with a lower optimal cost. The optimal cost of this instance can be used for

an admissible heuristic function for the original instance.

Some variants of merging and shrinking strategies are proposed. The

bisimulation merge-and-shrink heuristic [80] is one of the state-of-the-art

heuristic functions.

3.5 Satisficing Search Algorithms

In this section, some heuristic search algorithms and some enhancements

for heuristic search algorithms for the satisficing pathfinding problem are

explained.

As shown in detail later, the greedy best first search algorithm has a

problem that it consumes large amount of its running time to explore useless

area because of inaccuracy of heuristic functions. Some of the following

algorithms were proposed to conquer this problem. The common idea of the

following algorithms and the proposed search algorithm of this dissertation

is to diversify search directions. The experimental evaluations compared

the proposed search algorithm with such previous algorithms in the next

chapter.
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Some other algorithms converge search directions to reduce the number

of estimations in contrast to the algorithms above. Some of the others were

proposed to reduce the number of cost estimations for states (i.e., vertices)

since estimations of planning heuristic functions are normally expensive.

Anytime search algorithms are developed to handle time-quality trade off

for problems such as real time planning problems. To find a better solution

in a given time limit, they repeat non-optimal search after a solution is

found.

The k Best First Search Algorithm The k best first search algorithm

with an integer parameter k is a generalization of the greedy best first search

algorithm [28]. This algorithm was proposed by Felner, Kraus, and Korf

in 2003. This algorithm uses an open list defined as same as the greedy

best first search algorithm. Intuitively the k best first search algorithm

simultaneously expands the k best vertices in the open list at a time, and

then inserts all the successors of the k vertices into the open list. It repeats

this process until finding an end vertex or detecting that there is no solution.

We can also implement the k best first search algorithm on the framework

in the previous chapter.

The k best first search algorithm and an extended version were applied to

STRIPS planning by Linares López and Borrajo in 2010 [73]. The enhanced

version incorporates two enhancements called goal agenda [68] and helpful

actions [59]. Helpful actions are explained later. Lopez et. al. [73] concluded

that in solving hard problems both the k best first search algorithm and the

enhanced version outperform the greedy best first search algorithm and the

enforced hill-climbing search algorithm that is also explained later.

The k best first search algorithm partially avoids search plateaus caused

by misleading heuristic estimates. However, if the heuristic values of all

the k best vertices are erroneously underestimated, it results in searching

useless areas. Although increasing k can reduce the possibility of occurring

this drawback, the k best first search algorithm tends to behave similarly to

the breadth first search algorithm. Thus increasing k loses the benefit from

the heuristic information.

Using More Than One Heuristic Function The alternation method

uses more than one heuristic function for a search algorithm. Röger and

Helmert investigated experimental performances of some multiple heuristic

methods in 2010 [88] although alternation itself was already used in Fast

Downward planner [53].

In the original definition, it manages an open list for each heuristic func-

tion, and selects one of the open lists in a round-robin manner in each vertex
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retrieval. Successors of the retrieved vertex are inserted to all the open lists

with their own estimations. We can also implement alternation method on

the previous framework a little forcibly. Alternation diversifies search direc-

tions by expecting at least one of heuristic functions evaluates each vertex

precisely. However, if all of the heuristic functions inaccurately evaluate

unpromising vertices as promising, it suffers from an excessive overhead of

expanding valueless vertices.

Dovetailing method is based on a more general idea than alternation.

This was proposed also in 2010 by Valenzano, Sturtevant, Schaeffer, Buro

and Kishimoto [95]. Dovetailing method independently runs different search

algorithms such as the weighted A* search algorithm with various weights.

Although it is easily parallelizable, dovetailing runs those algorithms on a

single processor. On one step, it selects a search algorithm in a round-

robin manner, then the selected algorithm expands one vertex based on its

own open list and closed list (and its other data structure). After that,

dovetailing selects another search algorithm. It repeats this process until

one of the search algorithms finds an end vertex.

Originally Valenzano et al. proposed dovetailing for automatic param-

eter tuning. They experimentally showed that dovetailing on the weighted

A* search algorithm with some parameters outperforms the weighted A*

search algorithm with one single best weight on a puzzle domain. Namely,

just running simultaneously some algorithms with undeliberated parame-

ters outperforms an algorithm with a tuned parameter. However, it can

be used to combine some search algorithms with different heuristics, and it

essentially has a similar dilemma to alternation.

Random walk One of other approaches for adding diversity to search

algorithms is using random walks. While the following examples of this ap-

proach can avoid visiting unpromising area caused by misleading of heuris-

tic estimations, they may suffer from duplicate search effort such as re-

expanding the same vertices via different paths many times.

Coles, Fox, and Smith proposed a planner called Identidem in 2007 [20].

They introduced for Identidem a heuristic search algorithm exploring graphs

by stochastic local search, i.e., random walk. Local search is a kind of search

manner. In local search, a vertex for expanding next is selected from the

successors of the vertex expanded in the current iteration. The search al-

gorithm of Identidem runs some local searches from the start vertex. If a

vertex with a strictly lower estimation than the start vertex is found, then

the search algorithm runs another set of local searches from the found ver-

tex. The search algorithm repeats this process until it finds an end vertex.

In local searches, the search algorithm probabilistically selects one of suc-
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cessors of the current vertex. The search algorithm uses a heuristic function

for determining probabilities of the successor vertices. This search algorithm

does not have completeness.

Nakhost and Müller proposed a planner called ARVAND in 2009 [78].

ARVAND also uses local search for their heuristic search algorithm. Al-

though the search algorithm of ARVAND is similar to the search algorithm

of Identidem, one difference is that a new start vertex of local searches is

selected after all the current local searches finish. In addition, a new start

vertex is selected only from the end vertices of local searches that have

the lowest heuristic estimation. The other difference is that the search al-

gorithm of ARVAND does not use heuristic estimations in the middle of

local searches. One variant of ARVAND uses Monte Carlo random walk

for local searches, i.e., a selection of a next vertex is uniformly at random.

Another variant of ARVAND uses for a selection preferred operators that

are explained in the following subsection. Nakhost et al. concluded that

“the method is robust in presence of misleading heuristic estimates, it ob-

tains more information from the local neighborhood”. However, this search

algorithm also does not have completeness.

The Hill-climbing Search Algorithm The Hill-climbing search algo-

rithm, in the broad sense of the word, is another framework of a kind of

local search-based heuristic search algorithm. After the hill-climbing search

algorithm visits a vertex v, the candidates to expand next are the successors

of v that (1) have the smaller estimated cost than h(v) and (2) have the

smallest estimated cost among the successors. If there exists no candidate

on the step, then some instantiations restart new search from the start ver-

tex with randomized tiebreak, or some others restart from the next most

promising vertex in the current successors or in the previous search. Some-

times the algorithm without the first condition of candidates is also called

hill-climbing search algorithm.

In planning, Bonet and Geffner used hill-climbing search algorithm with

additive heuristic function for Heuristic Search Planner, although they used

the greedy best first search algorithm for Heuristic Search Planner 2 [13]. It

does not use the first condition of candidates. However it counts the number

of the moves without decrease of estimations, and it restarts if the number

exceeds a predefined limit. It restarts new search from an unexpanded vertex

found during the search. Ties are broken at random.

Hoffmann and Nebel used an algorithm called the enforced hill-climbing

search algorithm for the Fast Forward planner [59]. The enforced hill-

climbing search algorithm repeats breadth first search algorithm with cost

estimations by a heuristic function (the FF heuristic for the Fast Forward
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planner). It first runs breadth first search algorithm from the start vertex.

If a vertex with a lower cost than the start vertex is found, then it selects the

vertex as a new start vertex and runs another breadth first search algorithm

from the new start vertex. The enforced hill-climbing search algorithm is

similar to the search algorithm of Identidem. This search algorithm uses the

breadth first search algorithm instead of random walks.

If the enforced hill-climbing search algorithm has visited all the vertices

that can be reached from the current start vertex, and an end vertex is not

found yet, then the Fast Forward planner throws everything away and starts

the greedy best first search algorithm with the FF heuristic.

Preferred Operators A preferred operator for a state S is an action (i.e.,

an operator) that can be applied to the state S and is deemed promising

to reach goal states. Although it seems that there is no technical defini-

tion what a preferred operator is as same as heuristic estimations, Helmert

defined how to use preferred operators for his Fast Downward planner [53].

Preferred operator technique originates from the use of helpful actions that

are proposed for the Fast Forward planner [59]. Helmert proposed a helpful

transition, and he used helpful actions and helpful transitions as preferred

operators for Fast Downward. The set of helpful actions of a state S is the

intersection of applicable actions to S and the relaxed plan computed by the

FF heuristic for the cost evaluation of S. Similarly, helpful transitions of S

is the intersection of applicable actions to S and the relaxed plan computed

by the causal graph heuristic for the cost evaluation of S.

The use of preferred operators in Fast Downward is similar to the al-

ternation method. The search algorithm of Fast Downward maintains two

open lists for a heuristic function. One is the all successor open list, and

another is the preferred successor open list. When a state S is expanded,

a preferred successor (a successor of S that can be reached by a preferred

operator of S) is inserted into only the preferred successor open list. A

normal successor is inserted into both open lists. Given a parameter b for

state expansions, the search algorithm of Fast Downward deterministically

selects the normal open list at a rate of one time per b times of selections

of the preferred open list. When use of preferred operators and alternation

method for some (say, m) heuristic functions are combined, Fast Downward

maintains 2m open lists and handles them with the parameter b as similar

to the case of one heuristic function. The experiments in the chapter 4 and

many other experiments in previous work indicate that the use of preferred

operators has a heavy impact to the performances of algorithms even if b is

equal to one.

On the one hand, helpful actions and helpful transitions of a state S
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are computed when the state S is evaluated. On the other hand, preferred

operators of S are necessary when S is retrieved. However it is not necessary

to pay extra cost to store preferred operators when we use deferred evaluation

that is explained in the next subsection.

Deferred Evaluation Deferred evaluation is also proposed as one frag-

ment of Fast Downward planner. Let h be a heuristic function. Instead of

estimating the costs of all the successors of a state S for the expansion of

S, deferred evaluation uses h(S) as the evaluations of all the (unevaluated)

successors of S. This technique reduces the number and the time of cost

estimations per one state expansion, however it is empirically known that

deferred evaluation increases the number of state expansions. Richter and

Helmert investigated effects of deferred evaluation experimentally [85]. They

concluded the numbers of solved instances are not so different in algorithms

with/out deferred evaluation, however use of deferred evaluation find a little

more expensive solution faster compared to disuse of deferred evaluation.

Deferred evaluation has synergy with helpful actions and helpful transi-

tions since computing h(S) for the estimations of the successors of S detects

helpful actions and helpful transitions at the same time.

Anytime Search Algorithm Anytime search algorithms are developed

to handle time-quality trade-off for problems such as real time planning

problems.

Although we do not have a clear separation of the complexity classes

between general satisficing planning and cost-optimal planning, it is em-

pirically known that the running time of a cost-optimal algorithm is much

slower than a satisficing algorithm even for the same planning task. In ad-

dition to this, it is also empirically known that parametric algorithms with

approximation performance guarantee such as the weighted A* search al-

gorithm have trade-offs between the quality of solutions and running time.

Anytime search algorithm is a general kind of algorithm that finds a solution

as quickly as possible first and then repeats another search to improve the

quality of the solution until end of the time limit.

There are some anytime search algorithms in literature (e.g., [72]). Al-

though the details of these algorithms are not explained here, note that

LAMA planner also adopts an anytime search algorithm. LAMA shares

some fragments with Fast Downward planner and is implemented on the

Fast Downward system [86]. After the first feasible plan is found by an

algorithm similar to Fast Downward (the greedy best first search algorithm

with alternation of the FF heuristic and landmark count heuristic, preferred

operators, and deferred evaluation), LAMA clears vertices in the open list
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and closed list, and then starts another search by the weighted A* search

algorithm with alternation, preferred operators, and preferred operators. If

the search found the second solution, then LAMA runs another search with

a smaller weight and repeats this process until the time limit. There is no

theoretical guarantee of the approximation performance of the weighted A*

based algorithm because of some enhancements. However, the experimental

evaluations in [86] showed that LAMA found better solutions in the weighted

A* based search phases.
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Chapter 4

Diverse Best First Search

The greedy best first search algorithm is a popular and effective algorithm

in satisficing planning and is incorporated into high-performance planners.

However, if a heuristic function evaluates states inaccurately, greedy best

first search may be misled into a valueless search direction, thus resulting

in performance degradation. In the first section of this chapter an exam-

ple of the case that a heuristic function leads greedy best first search to

an unpromising area of the search space is shown. In the second section, a

new heuristic search algorithm is proposed. It considers diversity of search

directions to avoid unpromising area misled by the errors of heuristic in-

formation. The experimental results in the third section show that the

proposed approach is successful.

4.1 Greedy Best First Search with an Inaccurate

Heuristic Function

In satisficing planning, many planning algorithms employ heuristic search

strategies including greedy best first search (e.g., [13, 53]). Let h be a

heuristic function that estimates the optimal cost from a state to a goal

state. As defined in the previous chapters, for each iteration of the loop,

the greedy best first search algorithm retrieves the best state S with the

smallest h(S) in the open list. It then generates successors of S, and inserts

these successors into the open list and into the closed list, unless they have

been previously visited. The greedy best first search algorithm continues to

repeat this process until finding a goal state or visiting all the states that

can be reached from the initial state.

A heuristic function plays an important role in drastically improving

performance of the greedy best first search algorithm. While heuristic

functions (e.g., [59, 53]) enable state-of-the-art satisficing planners to solve
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complicated instances of the satisficing STRIPS planning problem including

benchmark instances in the International Planning Competitions, accurate

evaluations of states still remain as a challenging task.

Although the greedy best first search algorithm is a fundamental and

powerful heuristic search algorithm in STRIPS planning, it has an essential

drawback when the heuristic function returns inaccurate cost estimations.

Assume that a heuristic function underestimates the difficulties of unpromis-

ing states. Then, the greedy best first search algorithm spends much running

time in searching only unpromising areas, and it delays moving to promis-

ing parts of the search space. This is caused by the greediness of the greedy

best first search algorithm, i.e., it has to expand states with small heuristic

values first.

Figure 4.1 illustrates a typical transition of the priorities of states selected

for expansions (i.e., a transition of the estimations of retrieved states). The

FF heuristic is used for the estimations. The STRIPS planning task is

an instance of the optical-telegraphs domain of the International Planning

Competition. The horizontal axis indicates each expansion of the best state
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Figure 4.1: A transition of heuristic values in solving optical-telegraphs #02
in fourth International Planning Competition

S in the open list. The vertical axis represents S’s corresponding heuristic

value for that expansion (i.e., the evaluation of S by the FF heuristic).
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Circles, the triangle, and the diamond represent expanded states that are

on the feasible plan found by the algorithm. This transition indicates that

until retrieving a state D marked by the diamond, the greedy best first

search algorithm keeps expanding many useless states erroneously evaluated

as more promising than D by the heuristic function, after expanding a state

T marked by the triangle. According to the figure, these useless states never

contribute to finding the goal state. Noteworthily all these useless states are

successors or descendants of the state T since it contradicts greediness of

the algorithm if they were members in the open list before D was expanded.

In addition D is also a successor of T since D is the successor of T on the

output plan. Hence the greedy best first search algorithm did not search the

useless area if the FF heuristic evaluated the successors of T other than D

as unpromising.

As shown in the third chapter, some previous work tackled this issue by

adding diversity to search algorithm,which is an ability in exploring different

parts of the search space to bypass large unpromising area misled by errors of

heuristic functions. For example, several algorithms combined with diversity

such as the k best first search algorithm [28, 73] and the alternation method

[88] are experimentally shown to be superior to the naive greedy best first

search algorithm. However, they still have limited diversity, since they do

not immediately expand states mistakenly evaluated as very unpromising

ones.

This chapter presents a new heuristic search algorithm that incorpo-

rates diversity into search in a different way than previous approaches. The

contribution is summarized as:

1. The diverse best first search algorithm that is robust to large heuris-

tic evaluation errors. This search algorithm stochastically goes to-

wards various directions by probabilities computed from estimations

of a heuristic function. Even if a heuristic function erroneously eval-

uates promising state S as unpromising, the diverse best first search

algorithm can occasionally expand S. The frequency of selecting such

S is controlled by the heuristic value of S and the cost of the plan to

S kept in the closed list.

2. Experimental results clearly showing that the diverse best first search

algorithm is effective in satisficing planning. The diverse best first

search algorithm outperforms the greedy best first search algorithm

and the k best first search algorithm. Additionally, by combining with

several enhancement technique, the diverse best first search algorithm

solves more planning instances than the Fast Downward planner [53]

and an enhanced version of the k best first search algorithm [73].
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4.2 Definition of the Diverse Best First Search Al-

gorithm

The diverse best first search algorithm overcomes issues addressed in the last

section. As similar to the search algorithm of Identidem [20], the diverse

best first search algorithm diversifies search directions by probabilistically

selecting a state that does not have the best heuristic value. As a result,

compared to the k best first search algorithm and the alternation method,

the diverse best first search algorithm has a higher chance of expanding

a state mistakenly estimated to be unpromising. Additionally, unlike the

approaches of Identidem or ARVAND [78], the diverse best first search algo-

rithm performs more systematic search by keeping all the expanded states

in the closed list. It can therefore effectively reuse search results such as the

case of which there are many paths to the same state. Hence, the diverse

best first search algorithm is a complete search algorithm.

Algorithms 2 and 3 show the pseudo code of the diverse best first search

algorithm. Although the algorithm can be defined based on the framework

described in the preliminary chapter a little forcibly, here the proposed al-

gorithm is defined as Algorithm 2 and 3 to understand easily. The main

routine of the diverse best first search algorithm described by Algorithm

2 is quite simple. Until finding a goal state or reaching all the states, it

repeats the procedures of fetching one state S from the global open list

(OL in the pseudo code) and performing greedy best first search rooted at

S with the local open list (LocOL in the pseudo code). The diverse best

first search algorithm optimistically expects greedy best first search to find

a solution for S with the smallest search effort. Thus the number of states

expanded per greedy best first search is therefore limited to h(S), which is

the minimum number of states that must be expanded to find a goal state

with the unit edge cost if h(S) does not overestimate the distance to the

goal. Tied heuristic values are broken randomly in greedy best first search.

Duplicate search effort is eliminated by the shared global closed list. After

greedy best first search expands h(S) states, all the states in the local open

list are inserted to the global open list to make these states as candidates

for a selection in the next state-fetching phase.

Algorithm 3 presents the procedure of fetching a state for greedy best

first search, which is called at line 3 of Algorithm 2. Let g(S) be the cost

of a state S in the global closed list. The costs h(S) and g(S) are called

h-value and g-value respectively. A state S selected to perform greedy best

first search is determined by a probability computed by h(S) and g(S) a

little ad hoc. If more than one state have the same pair of h- and g-values,

one of them is chosen randomly.
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Algorithm 2 Diverse Best First Search
1: insert the initial state into OL;
2: while OL is not empty do
3: s := fetch a state from OL;
4: LocOL := {s};
5: /* Perform greedy best first search rooted at s */
6: for i:=1 to h(s) do
7: retrieve a state m with the smallest h(m) from LocOL;
8: if m is a goal then
9: return plan to m from the root;

10: end if
11: save m into the global closed list;
12: expand m and save the successors of m into LocOL;
13: end for
14: OL: = LocOL ∪ OL;
15: end while
16: return “no solution”;

Algorithm 3 Fetching one state
1: ptotal := 0;
2: (hmin, hmax) := minimum and maximum h-values in OL;
3: (gmin, gmax) := minimum and maximum g-values in OL;
4: if with probability of P then
5: G := select at random from gmin, · · · , gmax;
6: else
7: G := gmax;
8: end if
9: for all h ∈ {hmin, · · · , hmax} do

10: for all g ∈ {gmin, · · · , gmax} do
11: if g > G or OL has no state whose h-value and g-value are h and g

respectively then
12: p[h][g] := 0;
13: else
14: p[h][g] := Th−hmin ;
15: end if
16: ptotal := ptotal + p[h][g];
17: end for
18: end for
19: select a pair of h and g with probability of p[h][g]/ptotal;
20: dequeue a state s with h(s) = h and g(s) = g in OL;
21: return s;
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Parameters P and T (0 ≤ P, T ≤ 1) decide a policy of fetching the next

state. When greedy best first search is used for global search, it tends to

select states with large g-values due to greediness of repeatedly selecting

a successor that appears to be promising. The parameter P enables the

diverse best first search algorithm to restart exploring the search space that

is closer to the initial state, where the diverse best first search algorithm

has not yet exploited enough to find the promising states. The parameter

T controls the frequency of selecting a state s based on the gap between

the current best h-value and h(s). Lower probabilities are assigned to states

with larger h-values to balance exploiting the promising search space and

exploring the unpromising part. On the one hand, heuristic estimates are

completely ignored if T = 1 holds. On the other hand, the diverse best first

search algorithm fetches the same state chosen by greedy best first search if

T = 0 and P = 0 hold.

As mentioned above, if greedy best first search selects an unpromising

state S, and if a lot of descendants of S have smaller h-values than h(S), the

greedy best first search algorithm keeps searching unpromising descendants

of S. However, even if the diverse best first search algorithm fetches S,

it expands h(S) states and then selects another state that may not be a

descendant of S. Only at most b · h(S) states are inserted to OL where

b is the largest number of edges of the h(S) states. This number is much

smaller than that of the greedy best first search algorithm, since the greedy

best first search algorithm must store all the useless descendants.

Combination with some enhancements To compare the proposed

search algorithm to some practical planning algorithms, a variant of the

diverse best first search algorithm is also defined by combining preferred

operators. As similar to the use of preferred operators in the greedy best

first search algorithm in Fast Downward, the variant of the diverse best

first search algorithm uses an additional global open list that is prepared

separately for preferred successors. The variant selects one global open list

uniformly at random for each state-fetching. After the algorithm selects one

global open list, the state-fetching algorithm selects a state by Algorithm

3, and then the algorithm performs greedy best first search rooted at that

state.

4.3 Experimental Evaluations

Setup

The performance of the diverse best first search algorithm was evaluated

by running experiments on solving 1,612 tasks of the satisficing STRIPS
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planning problem in 32 domains from the first through fifth International

Planning Competitions. All the experiments in this chapter were run on a

dual quad-core 2.33 GHz Xeon E5410 machine with 6 MB L2 cache. The

time and memory limits for solving an instance were set to 30 minutes and 2

GB. If an algorithm solved an instance without violating these limits, then

the instance is labeled “solved” by the algorithm. All the implementations

are built on top of the Fast Downward planner [53] to use the causal graph

heuristic and the context enhanced additive heuristic and to compare with

Fast Downward. On Fast Downward, the FF heuristic is also already imple-

mented on the trivial reduction from a SAS+ planning task to a STRIPS

planning task. Fast Downward preprocesses the translation from the PDDL

representation [27] into the SAS+ representation [5]. The translation times

were excluded in the experiments. In the benchmark instances used for these

evaluations, the costs of all actions in the all problem are exactly one. Hence

the cost of a plan is the same as the length of the plan.

Performance Comparisons without Enhancements

The first evaluation analyzes strengths and weaknesses of the diverse best

first search algorithm (DBFS), the greedy best first search algorithm (GBFS),

and the k best first search algorithm (KBFS). Enhancements in Fast Down-

ward (e.g., preferred operators and multiple heuristic functions) were dis-

abled, thus measuring the potential of each search algorithm. The FF heuris-

tic [59], the causal graph heuristic (CG) [53], and the context enhanced

additive heuristic (CEA) [55] are used for the evaluations. These heuris-

tic functions are already implemented in Fast Downward. The best known

random seed for the diverse best first search algorithm was used for each

heuristic function. However, the diverse best first search algorithm solved

all the instances with the same seed and with P = 0.1 and T = 0.5, and did

not exploit the best seed for each instance.

Table 4.1 shows the number of solved instances when all the algorithms

used the FF heuristic. As mentioned above, the k best first search algo-

rithm requires an integer parameter k. In this experiment, the k best first

search algorithm was run with the parameter 2l for all the cases of integer

l satisfying 0 ≤ l ≤ 7. The table shows the best result of the k best first

search algorithm for each domain.
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Table 4.1: The number of instances solved by each algorithm with the FF
heuristic and without enhancements

Domain GBFS KBFS DBFS

Airport (50) 33 44 46
Assembly (30) 18 27 30
Blocks (35) 35 35 35
Depot (22) 16 17 19
Driverlog (20) 18 20 20
Freecell (80) 80 80 80
Grid (5) 5 5 5
Gripper (20) 20 20 20
Logistics 1998 (35) 30 31 33
Logistics 2000 (28) 28 28 28
Miconic (150) 150 150 150
Miconic Full ADL (150) 135 137 139
Miconic Simple ADL (150) 150 150 150
Movie (30) 30 30 30
MPrime (35) 26 27 33
Mystery (30) 16 17 19
Openstacks (30) 28 28 30
Optical Telegraphs (48) 3 3 5
Pathways (30) 9 16 30
Philosophers (48) 48 48 48
Pipesworld Notankage (50) 31 37 44
Pipesworld Tankage (50) 24 25 35
PSR Large (50) 31 31 32
PSR Middle (50) 50 50 50
PSR Small (50) 50 50 50
Rovers (40) 27 28 37
Satellite (36) 25 26 28
Schedule (150) 18 46 129
Storage (30) 19 21 25
TPP (30) 22 23 29
Trucks (30) 14 18 22
Zenotravel (20) 20 20 20

Total (1612) 1,209 1,288 1,451

Table 4.1 clearly indicates the superiority of the diverse best first search

algorithm to the k best first search algorithm and the greedy best first search

algorithm. The diverse best first search algorithm either solved an equal or

larger number of instances than the others in all the domains. In particular,

the diverse best first search algorithm performed much better in the Schedule

domain. Of 150 instances, the diverse best first search algorithm solved 129

problems while the greedy best first search algorithm and the k best first

search algorithm solved only 18 and 46 instances respectively. However,
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even if this domain is excluded, the diverse best first search algorithm was

still able to solve at least 80 additional instances in total compared with the

other approaches. Hence, this results imply the importance of diversifying

search directions.

The k best first search algorithm solved additional instances in several

domains compared to the greedy best first search algorithm such as Airport,

Assembly, Pathways and Schedule. However, the k best first search algo-

rithm usually achieved smaller performance improvements than the diverse

best first search algorithm. Additionally, it is observed that selecting the

best parameter k played an important role in improving its solving ability,

although selecting such k automatically remains an open question. For ex-

ample, in the Philosophers domain, while the k best first search algorithm

with the parameter k = 1 (i.e., identical to the greedy best first search algo-

rithm) solved all 48 instances, the k best first search algorithm with k = 128

was able to solve only 25 instances.

Figure 4.2 compares the number of states expanded by the greedy best

first search algorithm and the diverse best first search algorithm with the

FF heuristic for the instances solved by both. The state expansion of greedy

best first search was plotted on the horizontal axis against the diverse best

first search algorithm on the vertical axis on logarithmic scales. Thus a point

below the linear line indicates that diverse best first search expanded fewer

states than the greedy best first search algorithm in solving one instance.

Figure 4.2 clearly shows that the diverse best first search algorithm outper-

formed the greedy best first search algorithm especially when solving hard

instances. Of 1,208 instances solved by both, it took either the diverse best

first search algorithm or the greedy best first search algorithm at least one

second to solve each of 279 instances. Of these 279 instances, the diverse

best first search algorithm expanded fewer states than the greedy best first

search algorithm in solving 209 instances. This resulted in a large difference

in search time (see Figure 4.3 comparing the search time with the FF heuris-

tic for the instances solved by both). The diverse best first search algorithm

solved 194 instances more quickly and was five times faster than the greedy

best first search algorithm in solving the aforementioned 279 instances. The

overhead of the diverse best first search algorithm fetching a state did not

offset its benefit of achieving drastic reductions of state expansions. In fact,

the state expansion rate per second of the diverse best first search algorithm

was similar to that of the greedy best first search algorithm. The figures

showing performance comparisons between the diverse best first search algo-

rithm and the k best first search algorithm are omitted, since similar results

were obtained.

Figure 4.4 compares the quality of plans (i.e., solution lengths) computed
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Figure 4.2: Comparison of state expansions between the greedy best first
search algorithm and the diverse best first search algorithm with the FF
heuristic

by the diverse best first search algorithm and the greedy best first search al-

gorithm with the FF heuristic. The diverse best first search algorithm often

returned longer solutions than the greedy best first search algorithm, since

the diverse best first search algorithm selected unpromising states that tend

to be on a more redundant path to a goal. This phenomenon was similarly

observed in ARVAND [78], when their planner was compared against Fast

Downward in a few domains. However, since the diverse best first search

algorithm still yielded similar plans in many cases, this is a price to pay for

achieving performance improvements.

Table 4.2: The number of instances solved by each algorithm with the
CG/CEA heuristic and without enhancements

Heuristic GBFS KBFS DBFS

CG 1,170 1,218 1,358

CEA 1,202 1,240 1,388

Table 4.2 shows the total number of solved instances in all domains with

the causal graph heuristic or the context enhanced additive heuristic. The
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Figure 4.3: Search time for instances solved by the diverse best first search
algorithm and the greedy best first search algorithm with the FF heuristic

numbers are calculated in the same way as in Table 4.1. The superiority

of the diverse best first search algorithm was confirmed even with different

heuristics. The diverse best first search algorithm performed worse than the

others only in a few domains.

Performance Comparisons with Various Parameters and Ran-
dom Seeds

Table 4.3: Performance of the diverse best first search algorithm with dif-
ferent parameters

Heuristic Average Minimum Maximum

FF 1,438 1,432 1,451
CG 1,345 1,335 1,361
CEA 1,370 1,358 1,388

Next, parameters P and T are varied in the range of 0.1−0.3 and 0.4−0.6

respectively, in increments of 0.1 (i.e., the nine combinations of parameters

are evaluated for each heuristic function). Table 4.3 shows the average, min-
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Figure 4.4: Comparison of plan lengths for instances solved by the greedy
best first search algorithm and the diverse best first search algorithm with
the FF heuristic

imum, and maximum numbers of solved instances. The same random seed

was used for each pair of parameters. Results show that the diverse best first

search algorithm outperformed both the greedy best first search algorithm

and the k best first search algorithm by a large margin with any of the three

heuristic functions and even with the worst parameter settings. While the

differences between the minimum and maximum numbers of solved instances

were 30 with the context enhanced additive heuristic, the diverse best first

search algorithm was still able to solve most of the instances. While the

best value of T depended on heuristic functions and P , it is observed that

performance tended to deteriorate with a larger value of P . All of the worst

case scenarios shown in Table 4.3 were obtained with P = 0.3.

Table 4.4 shows number of solved instances when either P or T is fixed

to zero and the other parameter is varied to show the behavior of the diverse

best first search algorithm with extremely ineffective parameter settings. No

heuristic information is used to diversify search directions with T = 0, while

only h-values are considered for diversity with P = 0. It is not surprising

to observe performance degradation compared to the case where P and

T are non-zero, since valuable information (i.e., h-values or g-values) is
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Table 4.4: Performance of DBFS with resetting one parameter
Heuristic FF CG CEA

P = 0.1 (and T = 0) 1,366 1,299 1,309
P = 0.2 1,362 1,296 1,306
P = 0.3 1,358 1,278 1,313

T = 0.4 (and P = 0) 1,422 1,338 1,381
T = 0.5 1,432 1,336 1,377
T = 0.6 1,433 1,321 1,364

unused. However, the diverse best first search algorithm still outperformed

the greedy best first search algorithm and the k best first search algorithm

with all experimented parameter settings, clearly indicating the importance

of escaping from search plateaus.

Table 4.5: Performance of the diverse best first search algorithm with dif-
ferent random seeds

Heuristic Average Minimum Maximum

FF 1,447 1,443 1,451
CG 1,353 1,349 1,358
CEA 1,381 1,377 1,388

Table 4.5 shows the performance of the diverse best first search algorithm

with different random seeds for each heuristic. Five random seeds with fixed

parameters P = 0.1 and T = 0.5 are examined in the experiment. This table

clearly shows that the diverse best first search algorithm was robust to the

change of random seeds. Almost all the instances remained solvable even if

the seeds are changed. For example, only 11 instances became unsolvable

when the best seed was changed to the worst one with the context enhanced

additive heuristic.

Performance Comparisons with an Enhancement

Next, the performance of each algorithm was evaluated with turning on en-

hancements. Table 4.6 shows the number of instances solved by the following

algorithms:

EKBFS : The k best first search algorithm with the FF heuristic, enhanced

with preferred operators [53] (a.k.a. helpful actions in [59]). As in the

paper of López et al. [73], this EKBFS implementation first expands

only preferred successors, and then performs the k best first search

for the other successors. However, unlike in [73], goal agenda was

not incorporated, because it was not implemented in Fast Downward.
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Additionally, as it was done in the previous subsection, after running

EKBFS with the parameter 2l for all the cases of integer l satisfying

0 ≤ l ≤ 7, the total number is calculated based on the best result in

each domain.

FD : The state-of-the-art Fast Downward planner with four enhancements

(alternation based on the FF heuristic and the context enhanced addi-

tive heuristic, deferred evaluation, preferred operators with the boost-

ing parameter b = 1000 [53, 85]). In the preliminary experiments, all

combinations of alternation among the FF, context enhanced additive

and causal graph heuristics, and the other three enhancements were

tried, and the configuration with the best solving ability was chosen.

DBFS2 : As defined above, the diverse best first search algorithm enhanced

with preferred operators, and modified as follows: An additional global

open list was prepared separately for preferred successors. After the

algorithm selects one global open list uniformly at random, it fetches

a state by Algorithm 3, and then performs greedy best first search

rooted at that state. DBFS2 uses the FF heuristic, and the parameter

P = 0.1 and T = 0.5 were used.

Table 4.6: The number of instances solved by each algorithm with turning
on enhancements

EKBFS FD DBFS2
Total (1612) 1,382 1,458 1,481

Despite a smaller number of enhancements currently incorporated into

DBFS2 than FD, DBFS2 solved the largest number of instances, showing the

superiority of the proposed approach. The performance difference between

DBFS2 and EKBFS became smaller than in Table 4.1. This was mainly

due to the increased number of instances solved in the Schedule domain.

With the help of preferred operators, EKBFS solved 142 instances in this

domain, while KBFS did only 46 of 150 instances. However, DBFS2 still

outperformed EKBFS by a large margin. It seems to exploit the promising

search space that is orthogonal to preferred operators.

Figure 4.5 compares state expansions solved by both FD and DBFS2.

DBFS2 drastically reduced state expansions compared to FD. Of 1,445 in-

stances solved by both, DBFS2 expanded fewer states than FD in solving

1,106 instances and was 1.5 times faster in solving the 1,445 instances.

Figure 4.6 shows a comparison of plan lengths between FD and DBFS2.

Compared to Figure 4.4, it is observed a smaller difference in the quality of
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Figure 4.5: Comparison of state expansions between FD and DBFS2

plans, because preferred operators contributed to improving the plan quality

of DBFS2 and Fast Downward often returned longer plans than GBFS.

Performance Comparison to LAMA

The LAMA planner is a variant of Fast Downward and returns the bet-

ter quality of plans by first performing greedy best first based search and

then refining plans with a series of weighted A* based search that gradu-

ally decreases weight values until it reaches a time limit [86]. The landmark

count heuristic and the FF heuristic are used in LAMA with various en-

hancements similar to Fast Downward. One way to combine the proposed

approach with LAMA is to replace the first phase of greedy best first based

search by DBFS2.

Since the first search phase determines the solving ability, LAMA with

DBFS2 solved 1,481 instances as in Table 4.6. On the other hand, LAMA

solved 1,445 instances1.

1A main culprit obtaining a smaller number than Fast Downward would be due to a
difference in heuristics between LAMA and Fast Downward (landmark count versus CEA).
Although this number could be increased to 1,458 by replacing the first search phase by
Fast Downward, LAMA with DBFS2 still performed better.
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Figure 4.6: Comparison of plan lengths between FD and DBFS2

Figure 4.7 compares plan lengths for the instances solved by the origi-

nal LAMA and LAMA with DBFS2. The plan quality was mostly similar

between these methods. Of 1,438 instances solved by both, LAMA with

DBFS2 returned plans with the same lengths as LAMA in 1,310 instances.

This indicates that plans can be later refined by LAMA’s weighted A* search

while DBFS2 can improve its solving ability.
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Chapter 5

Integer Programming Model

of the Delete Relaxation

This chapter proposes a new integer linear programming model for the cost-

optimal STRIPS planning problem of delete-free tasks. In the first section,

an overview of the proposed integer linear programming model is briefly

given. The integer programming model is defined formally in the second

section, and some enhancement techniques for the model are proposed from

the third section to the fifth section. In the last section of this chapter the

experimental evaluations are shown.

5.1 Overview

As described in the previous chapters, the relaxed task by the delete relax-

ation of a STRIPS planning task is a modification of a STRIPS planning

task such that all deletions are eliminated from its operators. It is clear that

h+, the heuristic function to compute the optimal cost of the relaxed task

of the given state, is an admissible heuristic function.

In cost-optimal STRIPS planning, h+ is known to be more accurate than

commonly used heuristics such as the merge-and-shrink heuristic [56] or the

landmark cut heuristic [54]. It seems that the first use of h+ inside a cost-

optimal STRIPS planner was by Betz and Helmert [9]. They implemented

domain-specific implementations of h+ that run polynomial times for several

domains. Betz et al. showed that, in several domain, h+ is more accurate

than the merge-and-shrink heuristic and the max heuristic. In addition,

it was also shown that the A* search algorithm with h+ solved a larger

number of instances compared to those two heuristic functions. However,

current planners do not directly use a domain independent implementation

of h+. This is because the extra search efficiency gained from using h+ is
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offset or degenerated by the high cost of computing h+. As mentioned in the

preliminary chapter, it is known that the cost-optimal delete-free STRIPS

planning problem is NP-hard in fact [18]. Haslum evaluated the use of

a domain-independent algorithm for the cost-optimal delete-free STRIPS

planning problem [48] as the heuristic function h+ for the general case of

the cost-optimal STRIPS planning problem. He found that the performance

was relatively poor [45]. In recent years, there have been several advances

in the solvers for the cost-optimal delete-free STRIPS planning problem

[37, 82, 48].

In this chapter, a new integer linear programming approach to computing

h+ is proposed.

While a straightforward proposed model, IP(T+), for the cost-optimal

STRIPS planning problems for delete-free tasks is often intractable and not

useful in practice, an enhanced model, IPe(T+), is also developed. IPe(T+)

incorporates landmark constraints for the delete relaxation, as well as rele-

vance analysis to significantly decrease the number of variables. It is shown

that IPe(T+) allows significantly faster computation compared to the state

of the art.

Then, the use of h+ as a heuristic function for the A* search algorithm

is considered. The integer linear programming model IPe(T+) is further

augmented with constraints that consider some delete effects, resulting in

a new admissible heuristic, IPe(T ), which sometimes dominates h+. Since

IPe(T+) and IPe(T ) are integer linear programming models, their linear

programming relaxations, LPe(T+) and LPe(T ), are also admissible heuris-

tic functions for the cost-optimal STRIPS planning problem. Even though

LPe(T+) and LPe(T ) can be quite expensive, the integer linear program-

ming model can be further relaxed by omitting a subset of its constraints,

resulting in LPe
tr(T

+) and LPe
tr(T ), an linear programming relaxation for a

“relaxed” computation of h+.

The integer linear programming models and their linear programming

relaxations are experimentally evaluated by embedding them as heuristics

in the A* search algorithm. In addition, a simple method is implemented

for automatically selecting which linear programming formulation among

LPe(T+), LPe(T ), LPe
tr(T

+), and LPe
tr(T ) to use as the heuristic function,

based on a comparison of their values at the initial state. The A* search

algorithm with the automated heuristic selection performs comparably to

the state-of-the-art cost-optimal planners, Fast Downward with the land-

mark cut heuristic [54] and Fast Downward using the hybrid bisimulation

merge-and-shrink heuristic [80].
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5.2 Basic Model

In this section the cost-optimal STRIPS planning problem of a delete free

task T+ = ⟨P,A+, I, G⟩ is formulated as the integer linear program problem.

IP(T+) denotes the integer linear problem derived from T+, and similarly

LP(T+) denotes the linear programming relaxation of IP(T+). As shown

later, we can derive a feasible solution of IP(T+) from any feasible and non-

redundant (i.e., same actions appear only once) plan of T+. In addition to

this, we can also derive a feasible (and non-redundant) plan of T+ from any

feasible solution of IP(T+). A feasible and non-redundant plan of T+ has

the same cost as its corresponding feasible solution of IP(T+).

First, the variables of IP(T+) are defined as Table 5.1. This table shows

a list of the ranges and roles of the variables U(p),U(a), E(a, p), T (p), T (a),

and I(p). Their roles are equivalent to the assignments for deriving a feasible

solution of IP(T+) from a feasible and non-redundant plan π = (a0, · · · , an)
of T+. If a proposition p ∈ P appears more than once in the add effects of

Table 5.1: The definition of the variables

kind range and assignment

lemma
∀p ∈ P,U(p) ∈ {0, 1}.
U(p) = 1 if and only if p ∈ I(π).

action
∀a ∈ A+,U(a) ∈ {0, 1}.
U(a) = 1 if and only if a ∈ π holds.

add effect
∀a ∈ A+, ∀p ∈ add(a), E(a, p) ∈ {0, 1}.
E(a, p) = 1 if and only if a ∈ π holds and a achieves p first.

time (proposition)
∀p ∈ P, T (p) ∈ {0, · · · , |A+|}. T (p) = t when p ∈ I(π) and
p is added by at−1 first. T (p) = 0 otherwise.

time (action)
∀a ∈ A+, T (a) ∈ {0, · · · , |A+| − 1}.
T (a) = t when a = at. T (a) = |A+| − 1 when a ̸∈ π.

initial proposition
∀p ∈ P, I(p) ∈ {0, 1}.
I(p) = 1 if and only if p ∈ I.

the actions of a feasible plan, use the index of the first action that achieves

p for T (p) and E(a, p). Variables I(p) are auxiliary variables for computing

h+. Although they are redundant when solving an instance of the cost-

optimal STRIPS planning problem for a delete-free task only one time, they

are useful to avoid reconstructing constraints for each state when IP(T+) or

LP(T+) are embedded as a heuristic function in a forward-search planner

and called for each state.

The objective function seeks to minimize
∑

a∈A+ c(a)U(a). Because of

this objective function, the cost of a solution is equal to the cost of the

corresponding delete-free plan.
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Finally the following six constraints are defined.

1. ∀p ∈ G, U(p) = 1.

2. ∀a ∈ A+, ∀p ∈ pre(a),U(p) ≥ U(a).

3. ∀a ∈ A+, ∀p ∈ add(a),U(a) ≥ E(a, p).

4. ∀p ∈ P, I(p) +
∑

a∈A+ s.t.p∈add(a) E(a, p) ≥ U(p).

5. ∀a ∈ A+, ∀p ∈ pre(a), T (p) ≤ T (a).

6. ∀a ∈ A+, ∀p ∈ add(a), T (a) + 1 ≤ T (p) + (|A+|+ 1)(1− E(a, p)).

The assignments on the table 5.1 clearly satisfy these constraints. Hence

there always exists a injective mapping from a feasible non-redundant plan

to a feasible solution of IP(T+).

There exists a feasible plan only if IP(T+) has a feasible solution. When

IP(T+) is solved optimally, an optimal plan for T+ is obtained according to

the following lemma. For a variable V of IP(T+), VF describes the assign-

ment of V on a solution F of IP(T+).

Lemma 5.1. Given a feasible solution F for IP(T+), the action sequence

obtained by ordering actions in the set {a | U(a)F = 1} in ascending order

of T (a)F is a feasible plan for T+.

Proof: Let π be the action sequence defined in the statement.

At first it is shown that π satisfies condition (ii) of a feasible plan (i.e.,

G ⊆ I(π)) by proof of contradiction. Assume that there exists a proposition

g ∈ G that satisfies g ̸∈ I(π). There exists no action achieving g in π

according to the assumption. Since F is a solution of IP(T+), U(g)F = 1

holds according constraint 1. Since g ̸∈ I(π) deduces g ̸∈ I, I(g)F =

0. Therefore, to satisfy condition 4, there must exist an action a ∈ A+

that satisfies g ∈ add(a) and E(a, g)F = 1. However, to satisfy constraint

3, U(a)F = 1 has to hold. This means a ∈ π, and this contradicts the

assumption.

Next it is shown that π satisfies condition (i) (i.e., ∀i, pre(ai) ⊆ I((a0, · · · , ai−1))).

For the base case of inductive proof, assume that there exists a proposition

p ∈ P satisfying p ∈ pre(a0) and p ̸∈ I. Since a0 ∈ π, U(a0)F = 1 has to hold,

and U(p)F = 1 has to hold according to the constraint U(p)F ≥ U(a0)F .
Then, similar to the proof of condition (ii), there must exist an action a ∈ A+

that satisfies p ∈ add(a), U(a)F = 1, and E(a, p)F = 1. However, to satisfy

constraint 5, T (p) ≤ T (a0) has to be true, and T (a)+ 1 ≤ T (p) has to hold

to satisfy condition 6. Therefore we have U(a)F = 1 and T (a) < T (a0), but

a0 is the first action of π, a contradiction.
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Similar to the case of i = 0, when i > 0, if pre(ai) ⊆ I((a0, · · · , ai−1)) is

not true, there must exist an action a ̸∈ (a0, · · · , ai−1) that satisfies U(a)F =

1 and T (a) < T (ai), contradicting the fact that ai is the i-th action of the

sequence π. 2

Corollary 5.2. Given a feasible delete-free task T+, the optimal cost of

ILP(T+) is equal to the optimal cost of T+. In addition to this, given an

optimal solution F of ILP(T+), a sequence of actions made by ordering

actions in the set {a | U(a)F = 1} by ascending order of T (a)F is a optimal

plan of T+.

5.3 Enhanced Constraints and Variable Elimina-

tions

In this section, some variable elimination techniques and some modifications

of constraints are introduced. As shown in the experimental results, these

enhancements significantly reduce the time to solve IP(T+) and LP(T+).

Some of the enhancements are adopted into the proposed model from pre-

vious work in planning research. In particular, landmarks, which have been

extensively studied in recent years, play very important role.

Note that while some of the enhancements introduce cuts that render

some solutions of IP(T+) mapped from feasible plans infeasible, at least one

optimal plan will always remain.

Landmark Extraction and Substitution As mentioned in the previous

chapters, a landmark is an element which needs to be used in every feasible

solution. In this dissertation, two kinds of landmarks, that are called fact

landmarks and action landmarks as in [37], are used. Given a STRIPS

planning task ⟨P,A, I,G⟩, a fact landmark of a set of propositions P ′ ⊆ P

is a proposition that becomes true on some state of every feasible plan that

achieves P ′, and an action landmark of P ′ is an action that is included in

every feasible plan to achieve P ′. In the proposed model for a delete-free

task T+, if a proposition p is a fact landmark of G, then the variable U(p)
can be eliminated by substituting U(p) = 1. Similarly, if an action a is an

action landmark of G, then we can substitute U(a) = 1. The landmark

extraction and substitution clearly do not cut any solutions of IP(T+) since

they are landmarks.

The above definitions are intentional definitions. Hence there could exist

a variety of landmark extracting methods. In this dissertation, a set of fact

landmarks of {p} for each proposition p is computed by an iterative method

based on the following Bellman equations of fact landmarks:
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• If p is a member of the initial state, then {p} is the set of fact landmarks

to achieve {p}.

• If p is not a member of the initial state, then the set of fact landmarks

of {p} is {p} ∪
∩

p∈add(a)(add(a) ∪
∪

p′∈pre(a)(fact landmarks of p′)).

In the initialization phase of the iterative method, P is (virtually) set to

the first candidates of fact landmarks of {p} for each proposition p ̸∈ I.

In addition, the set of fact landmarks of {p} for each member p ∈ I is

set to {p}, and p is inserted into a FIFO queue. On the main loop of the

iterative method, a proposition p is retrieved from the FIFO queue, and

the candidate of the set of fact landmarks is updated for each p′ ∈ {∃a ∈
A+, p′ ∈ add(a) | p ∈ pre(a)} based on the second equation. Moreover, p′

is inserted into the FIFO queue if the candidate for p′ is changed from the

previous one and if p′ is not a member of the queue. This process continues

until the queue becomes empty. Updating one candidate always reduces the

number of elements of the candidate. Hence this method always halts. The

correctness of this method is guaranteed by the following lemma.

Lemma 5.3. Given a delete-free STRIPS planning task ⟨P,A+, I, G⟩, as-
sume any proposition of P can be achieved. Let L(p) be the set of fact

landmarks of {p} computed by any landmark extracting method. If

(i) L(p) = {p} for p ∈ I, and

(ii) L(p) = {p} ∪
∩

p∈add(a)(add(a) ∪
∪

p′∈pre(a) L(p
′)) for p ̸∈ I

are satisfied, then all elements of L(p) are fact landmarks of {p}.

Proof: Assume that a proposition q satisfies q ∈ L(p) and q is not a

fact landmark of {p}. From condition (i), (ii) and the definition of a fact

landmark, clearly p ̸= q, p ̸∈ I, and q ̸∈ I hold. Then, according to the

definition of a fact landmark, there exists a (non-empty) feasible plan of a

delete-free task ⟨P,A+, I, {p}⟩ that does not achieve q. Let π = (a0, · · · , an)
be such a plan, and let ai be the action in π that achieves p first.

According to condition (ii), the fact that π does not achieve q, and the

fact that p ̸= q and q ∈ L(p) hold, we have q ∈
∪

p′∈pre(ai) L(p
′). Let p′ be

a member of pre(ai) that satisfies q ∈ L(p′). Because of condition (i) and

the fact that q ̸∈ I holds, we have q ̸= p′ and p′ ̸∈ I. Then there exists at

least one action in (a0, · · · , ai−1) that achieves p
′. Let aj be the first action

of (a0, · · · , ai−1) that achieves p′. Again, according to condition (ii), q ∈∪
p′′∈pre(aj) L(p

′′) is satisfied, and there exists an action ak in (a0, · · · , aj−1)

that satisfies q ∈
∪

p′′′∈pre(ak) L(p
′′′). Repetition of this argument continues

infinitely. However, the length of π is clearly finite. Hence all members of

L(p) are fact landmarks of {p} for each proposition p ∈ P . 2
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In addition to the above fact landmarks, if a proposition p is a fact

landmark of G, and if only one action a can achieves p, then a is used as an

action landmark of G in the proposed algorithm.

Zhu et al. defined a kind of fact landmark called causal landmark [104].

Keyder et al. proposed an AND-OR graph based landmark extracting

method for a kind of landmark generalized from causal landmarks [65]. The

above algorithm in this dissertation is a generalization of the method of

Keyder et al.

Relevance Analysis Backchaining relevance analysis is widely used to

eliminate irrelevant propositions and actions of a task. An action a is rele-

vant if (i) add(a) ∩G ̸= ∅, or (ii) there exists a relevant action a′ satisfying

add(a) ∩ pre(a′) ̸= ∅. A proposition p is relevant if (i) p ∈ G, or (ii) there

exists a relevant action a and p ∈ pre(a) holds. In addition to this, as

Haslum et al. noted, it is sufficient to consider relevance with respect to

only a subset of first achievers of add effect [48]. Although they defined a

first achiever by achievability of a proposition, it is completely equivalent to

the following definition: an action a is a first achiever of a proposition p if

p ∈ add(a) and p is not a fact landmark of pre(a). When the set fadd(a) is

used to denote {p ∈ add(a) | a is a first achiever of p}, it is sufficient to use

fadd instead of add on the above definition of relevance.

If a ∈ A+ or p ∈ P is not relevant, we can eliminate a variable as U(a) = 0

or U(p) = 0. In addition to this, if p ∈ add(a) but a is not a first achiever of

p, we can eliminate a variable as E(a, p) = 0. This variable elimination cuts

some feasible solutions. It however does not cut any optimal solutions.

Dominated Action Elimination On a delete-free task, if two actions

have same add effect, then it is clearly sufficient to use at most one of

two actions. Here a technique that eliminates an useless action (dominated

action) is introduced by extending this idea.

Lemma 5.4. Given a feasible delete-free task T+, there exists an optimal

plan that does not contains a ∈ A+ if there exists an action a′ ∈ A+ satis-

fying following: (i) fadd(a) ⊆ fadd(a′), (ii) for any p ∈ pre(a′), p is a fact

landmark of a or p ∈ I, and (iii) c(a) ≥ c(a′).

Proof: For any plan π = (a0, · · · , ai−1, a, ai+1, · · · , an) of T+, it can be

shown that a sequence of actions π′ = (a0, · · · , ai−1, a
′, ai+1, · · · , an) is also

a feasible plan. Each proposition p of pre(a′) is fact landmarks of a, or p is

a member of the initial state, hence, if pre(a) ⊆ I((a0, · · · , ai−1)), pre(a
′) ⊆

I((a0, · · · , ai−1)) also holds. Since fadd(a) ⊆ fadd(a′), add(a) \ fadd(a) ⊆
I((a0, · · · , ai−1, a)), and add(a′) \ fadd(a′) ⊆ I((a0, · · · , ai−1, a

′)) hold ac-
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cording to the definition of first achievers, we also have I((a0, · · · , ai−1, a)) ⊆
I((a0, · · · , ai−1, a

′). Therefore G ⊆ I(π′) holds.

Finally we have c(π) ≥ c(π′) since c(a) ≥ c(a′) holds. Therefore, if a plan

contains a, it is not optimal, or there exists another optimal plan which does

not contain a. 2

If there exists a dominated action a, we can eliminate a variable as

U(a) = 0. This variable elimination cuts some feasible solutions of IP(T+).

Moreover, it sometimes cuts some optimal solutions if c(a) = c(a′) holds for

the condition (iii). However, at least one optimal solution remains.

Robinson proposed similar constraints for a MaxSAT-based planner, but

his condition is stricter than condition (ii) [87].

Immediate Action Application On a delete-free task T+, applying

some types of actions to the initial state do not hurt optimality. In this

work, an action with cost zero as [36] and an action landmark as [37] are

adopted to use to this enhancement. For a delete-free task T+, if an action

a ∈ A satisfies c(a) = 0 and pre(a) ⊆ I, then a sequence made by connecting

a before an optimal plan of ⟨P,A+ \ {a}, I ∪ add(a), G⟩ is an optimal plan of

T+. Similarly, if an action a is an action landmark of T+ and a is applicable

to I, you can apply a to I immediately.

For IP(T+), variables T (p) for p ∈ I can be eliminated by substituting

zero. Given a sequence of immediate applicable actions (a0, · · · , ak) (it must

be a correct applicable sequence), we can eliminate some variables as follows:

(i) U(ai) = 1, (ii) T (ai) = i, (iii) ∀p ∈ pre(ai),U(p) = 1, and (iv) ∀p ∈
add(ai) \ I((a0, · · · , ai−1)),U(p) = 1, T (p) = i and E(ai, p) = 1.

Iterative Application of Variable Eliminations The variable elimina-

tion techniques described above can interact synergistically with each other

resulting in a cascade of eliminations. For example, landmarks increase non

relevant add effects, which increases dominated actions, which can result in

new landmarks. Therefore, a iterative variable eliminating algorithm which

applies eliminations until quiescence is used in this work.

Inverse action constraints It can be defined the following inverse re-

lationship between a pair of actions for a delete-free task T+. For two

actions a1, a2 ∈ A+, a1 is an inverse action of a2 if it satisfies following: (i)

add(a1) ⊆ pre(a2), and (ii) add(a2) ⊆ pre(a1). By the definition, it is clear

that if a1 is an inverse action of a2, then a2 is an inverse action of a1. Inverse

actions satisfy following fact.

Lemma 5.5. Given a delete-free task T+, let π = (a0, · · · , an) be a feasible

plan. If ai ∈ π is an inverse action of aj ∈ π, and if i < j holds, then
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π′ = (a0, · · · , aj−1, aj+1, · · · , an) is also a feasible plan.

Proof: Since π is a feasible plan of T+, we have pre(ai) ⊆ I((a0, · · · , ai−1)) ⊆
I((a0, · · · , aj−1)). According to the definition of inverse actions, add(aj) ⊆
pre(ai) holds, and we have add(aj) ⊆ pre(ai) ⊆ I((a0, · · · , aj−1)) = I((a0, · · · , aj)).
Hence (aj+1, · · · , an) is applicable to I((a0, · · · , aj−1)), and G ⊆ I(π′) =

I(π). 2

Corollary 5.6. For a delete-free task T+, a feasible solution π = (a0, · · · , an)
is not optimal if ai ∈ π is an inverse action of aj ∈ π and both of ai and aj
have non-zero cost.

Let inv(a, p) denote the set of inverse actions of an action a which have

p as add effect. There are several possible ways to use above proposition

(e.g., U(a)+U(a′) ≤ 1, for all a′ ∈ inv(a)). On IP(T+), due to avoid adding

a huge number of constraints, constraint 2 is modified as follows:

2. ∀a ∈ A+, ∀p ∈ pre(a), U(p)−
∑

a′∈inv(a,p) E(a′, p) ≥ U(a).

The mark e (e.g. LPe(T+)) is used to denote the integer linear pro-

gramming model after all of the reductions that explained so far have been

applied to the original model.

Constraint Relaxation Enhancements for eliminating variables and new

constraints to speed up the computation and to tighten the gap of the linear

programming relaxation have been presented. As shown experimentally in

Section 5.6, computing IPe(T+) or LPe(T+) remains relatively expensive,

even if we use all of the enhancements described above.

Thus, a relaxation for IP(T+) is introduced. IP(T+) without constraints

5 and 6 is calledtime-relaxed IP(T+), denoted IPtr(T
+). Similarly LP(T+)

without same constraints is called time-relaxed LP(T+), denoted LPtr(T
+).

The mark e is also used to denote the enhanced models for IPtr(T
+) and

LPtr(T
+). It can be seen that if the relevance of propositions and actions

has an ordering (i.e. it does not have a cycle) on T+, then the optimal

costs of IP(T+) and LP(T+) are the same as the optimal costs of IPtr(T
+)

and LPtr(T
+) respectively. The experiments in Section 5.6 show that the

relaxation is quite tight (i.e., IP(T+) and IPtr(T
+) often have the same

cost), and that IPtr(T
+) can be computed significantly faster than IP(T+).

LP(T+), LPe(T+), and IPe(T+) have same behavior.

5.4 Counting Constraints

So far, we have concentrated on efficient computation of the cost-optimal

delete-free STRIPS planning problem, and all of the (integer) linear pro-

83



5. INTEGER PROGRAMMING MODEL OF THE DELETE
RELAXATION

gramming models are bounded by the optimal cost of the relaxed task. How-

ever, the proposed integer linear programming model can be extended with

constraints regarding delete effects. By adding variables and constraints re-

lated to delete effects of actions, the model can also calculate lower bounds

on the number of times each action must be applied for the original task in

contrast to the fact that each action appears only once in an optimal plan

of a delete-free task.

New variables are defined as follows:

• ∀a ∈ A,N (a) ∈ {0, 1, · · · } : N (a) = n if and only if a is used n times.

• ∀p ∈ P,G(p) ∈ {0, 1} : G(p) = 1 if and only if p ∈ G.

G(p) is also an auxiliary variable as I(p). New constraints are defined as

follows:

7. ∀a ∈ A,N (a) ≥ U(a).

8. ∀p ∈ P,G(p) +
∑

p∈predel(a)N (a) ≤ I(p) +
∑

p∈add(a)N (a),

where predel(a) = pre(a) ∩ del(a). Finally, the objective function is modi-

fied so as to minimize
∑

a∈A c(a)N (a). Given a STRIPS planning task T ,

IP(T ) is used to denote an integer linear program composed of IP(T+) with

the above modifications. New constraints correspond to the net change con-

straints that were recently proposed in [83], as well as the effect implication

constraints in [96] (both are defined on SAS+ formulations).

Intuitively, the final constraint states that the number of uses of actions

adding p must be equal to or larger than the number of uses of actions

requiring and deleting p at the same time in a feasible plan of T . Any feasible

plan of a STRIPS planning task always satisfies this condition. Hence, for

any task T and any feasible plan π for T , we can clearly derive a feasible

solution of IP(T ) with same cost as π. In addition to this, here a stronger

lemma can be proved for modifications of models by the enhancements in

the previous section.

Lemma 5.7. Given a task T , let IP(T+)
′
be an integer linear program com-

posed of IP(T+) with some variable eliminations and some new constraints.

Let IP(T )′ be an integer linear program made from IP(T+)
′
with new vari-

ables, new objective function, and counting constraints as the above defini-

tion. For any action sequence π of T , let π+ be the relaxed action sequence

corresponding to π. If (1) there exists a subsequence π+′
of π+ that satisfies

IP(T+)
′
by the derivation on Table 5.1, and (2) π satisfies constraint 8 when

N (a) is set to the number of occurrences of a in π for each action a ∈ A,

then there exists a feasible solution of IP(T )′ that has same cost as π.
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Proof: Let π be an action sequence of T that satisfies condition (1) and

(2). Let π+′
be a subsequence of π that satisfies IP(T+)

′
, and F+′

be the

assignment on a feasible solution of IP(T+)
′
corresponding to π+′

.

Define an assignment F for IP(T )′ as:

• VF := VF+′ for each variable V that is defined in Table 5.1, and

• N (a)F := (the number of occurrences of a in π) for each a ∈ A.

Then clearly the variables U(p)F ,U(a)F , E(a, p)F , T (p)F , T (a)F , and I(p)F
satisfy all constraints of IP(T+)

′
. Since π+′

is a subsequence of π+, and

since U(a)F = 1 holds only if a ∈ A+ is a member of π+′
according to the

definition of VF , constraint 7 is satisfied for each action a ∈ A. The variables

N (a)F also satisfy constraint 8 according to condition (2).

From the definition of N (a)F , the cost of the objective function is equal

to the cost of π. 2

By using lemma 5.7, the following can be proved.

Lemma 5.8. Given a task T , let π be an action sequence of T . If π satisfies

condition (1) and (2) of lemma 5.7 for IP(T ) itself, then there exists a

feasible solution with the same cost as π for IP(T ) with any combination of

landmark extraction and substitution, relevance analysis, and inverse action

constraints.

Proof: Let π+′
be a subsequence of π+ that satisfies condition (1) of

lemma 5.7 for IP(T ). Note that π+′
is a feasible plan of T+. Then let π+′′

be the subsequence of π+′
that is made by removing irrelevant actions and

inverse actions. The sequence π+′′
is also a feasible plan of T+, and this

satisfies IP(T+) with variable eliminations computed by landmark extraction

and substitution and relevance analysis, and inverse action constraints. 2

Corollary 5.9. Given a task T , for any feasible plan π of T , there exists a

feasible solution of IP(T ) that has the same cost as the cost of π. In addition

to this, there exists a feasible solution of IP(T ) with any combination of

landmark extraction and substitution, relevance analysis, and inverse action

constraints that has the same cost as the cost of π.

Proof: The subsequence of the relaxed plan π+ that is made by removing

repetitions of actions has its corresponding assignment of IP(T+). In addi-

tion, any feasible plan of a STRIPS planning task always satisfies condition

8 when N (a) is set to the number of occurrences of a in π. 2

Unfortunately the counting constraints conflict with dominated action

elimination and zero cost immediate action application. When counting

constraint is used, it is necessary to disable zero cost immediate action

application and to modify the condition of dominated actions as follows:
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Definition 5.10. Given a feasible task T , an action a is a dominated action

of action a′ if (i) add(a) ⊆ add(a′), (ii) for any p ∈ pre(a′), p is a fact

landmark of a or p ∈ I, (iii) pre(a′) ∩ del(a′) ⊆ pre(a) ∩ del(a).

We cannot use the new dominated actions to make a feasible plan of T

anymore since fact landmarks are sometimes deleted after they are achieved.

However the following lemma can be proved.

Lemma 5.11. Given a feasible task T , let π = (a0, · · · , an) be an action

sequence that satisfies condition (1) and (2) of lemma 5.7 for IP(T ). If an

action ai ∈ A is dominated by another action a′ ∈ A, and if π contains a

dominated action ai, (a0, · · · , ai−1, a
′, ai+1, · · · , an) also satisfies condition

(1) and (2) of lemma 5.7 for IP(T ).

Proof: Replacing ai to a′ does not hurt condition (2) of lemma 5.7 ac-

cording to condition (i) and (iii) of the new dominated actions. Hence,

if there exists a subsequence of π+ that does not contain a+i and satisfies

condition (1) of lemma 5.7, then the statement is clearly proved.

Assume that only subsequences of π+ that contain a+i satisfy condition

(1) of lemma 5.7. Let π+′
= (a+i0 , · · · , a

+
im
) be such a subsequence of π+,

and a+ij be a+i . Note that π+′
is a feasible solution of T+ since it satis-

fies condition (1) of lemma 5.7. As similar to the case of relaxed tasks,

pre(a+ij ) ⊆ I((a+i0 , · · · , a
+
ij−1

)) holds because of condition (ii). In addition,

I((a+i0 , · · · , a
+
ij
)) ⊆ I((a+i0 , · · · , a

+
ij−1

, a′+)) holds since add(a+i ) ⊆ add(a′+)

holds. Hence an action sequence made by replacing a+i in π+′
to a′+ is also

a feasible solution of T+, namely, it satisfies condition (1) of lemma 5.7. 2

Corollary 5.12. Given a task T , let π be a feasible solution of T . There

exists a feasible solution of IP(T ) with any combination of landmark extrac-

tion and substitution, relevance analysis, inverse action constraints, and the

new dominated action elimination that has cost equal to or less than the cost

of π.

LP and tr are also used as same as corresponding relaxations for IP(T+).

IPe(T ) and LPe(T ) denote the models constructed by applying all of the

valid reductions to IP(T ) and LP(T ) respectively.

Relationship among the ILP bounds Based on the definitions, it can

be trivially shown that: IPtr(T
+) ≤ IPe

tr(T
+) ≤ IP(T+) = IPe(T+) ≤

IP(T ) = IPe(T ). As for the linear programming relaxations, it is satisfied

that LPtr(T
+) ≤ lpT+ ≤ LPe(T+), LPtr(T

+) ≤ LPe
tr(T

+) ≤ LPe(T+),

LPtr(T ) ≤ lpT ≤ LPe(T ), and LPtr(T ) ≤ LPe
tr(T ) ≤ LPe(T ). However,
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LPe(T ) does not always dominate LPe(T+) since sets of eliminated vari-

ables are different because of dominated action elimination and zero-cost

immediate action application. Figure 5.1 illustrates the dominance relation-

ships among the bounds.

LPtr(T
+) 

LPe(T+) IP(T+) = IPe(T+) =aaa IPe(T) LPe(T) 

IPtr(T) LPtr(T) IPtr(T
+) 

LPtr(T
+) IPtr(T

+) 

LP(T+) 

e e e e 

h+ 

Figure 5.1: Dominance relationships. Edge X → Y indicates that X is al-
ways a lower bound of Y . The four highlighted linear programming variants
are used in the A*/autoconf in Tables 5.3-5.4.

5.5 Automatic Heuristic Selection

While LPe
tr(T

+) and LPe
tr(T ) are dominated by LPe(T+) and LPe(T ), re-

spectively, the time-relaxed linear programming models are significantly

cheaper to compute than their non-relaxed counterparts. In addition, al-

though IPe(T ) dominates IPe(T+), it is possible for LPe(T+) to be larger

than LPe(T ). Thus, we have a set of 4 viable linear programming heuris-

tics, none of which dominate the others when considering both accuracy and

time. The “best” choice to optimize this tradeoff between heuristic accuracy

and node expansion rate depends on the problem instance.

In this work, a simple mechanism implemented for automatically select-

ing one of the linear programming heuristics to be used for each planning

task. First, it computes LPe(T+), LPe(T ), LPe
tr(T

+), and LPe
tr(T ) for the

initial state of the given planning tasks. It then selects one based on the

following rule: Choose the heuristic with the highest value. Break ties by

choosing the heuristic that is cheapest to compute. Although the “cheap-

est” heuristic could be identified according to the CPU time to compute

each heuristic, for many instances, the computations are too fast for robust

timing measurements, so it simply breaks ties in order of LPe
tr(T

+), LPe
tr(T ),

LPe(T+), LPe(T ) (because this ordering usually accurately reflects the tim-

ing order). A more sophisticated method for heuristic selection may result

in better performance (c.f. [25]), and is an avenue for future work.
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5.6 Experimental Evaluations

Below, all experiments used the CPLEX 12.6 solver to solve integer linear

programs. All experiments were single-threaded and executed on a Xeon E5-

2650, 2.6GHz. A set of 1,366 IPC benchmark problems (from 1998 to 2011)

distributed with Fast Downward is used. The implementation of the A*

search algorithm with the proposed heuristic functions can currently handle

the subset of PDDL which includes STRIPS, types, and action-costs. The

full list of domains and the numbers of instances per domain is shown in

Table 5.4.

Comparison of ILP Bounds The quality of the integer/linear program-

ming bounds is assessed by evaluating the optimal costs computed for these

bounds.

The first experiment computes the ratio between the optimal cost of

the integer linear program and its linear programming relaxation of the

relaxed tasks of the benchmark set (Figure 5.2). The ceiling of the costs of

the linear programming relaxations are taken because the benchmarks have

integer action costs. As shown in Table 5.2, the gap between the integer

programs and their linear programming relaxations are quite small. In fact,

for the majority of instances, the gap between the rounded-up value of linear

programming relaxation and the value of the original integer linear program

is zero for IPe(T+), IPe(T ), IPe
tr(T

+), IPe
tr(T ), so the linear programming

relaxation is frequently a perfect approximation of h+.

Next, to understand the impact of various sets of constraints in the inte-

ger linear programming formulations, Table 5.2 compares the optimal costs

of pairs of integer linear programs and linear programs. The integer pro-

gram ratio for IP(T+) vs IPe(T+) is always 1 because they both compute

h+. However, on almost every single domain, the value of the linear pro-

gramming relaxation of the extended formulation LPe(T+) is significantly

better (higher) than the basic formulation LP(T+), indicating that variable

elimination and the additional constraints serve to tighten the linear pro-

gramming bound. Thus, the enhancements to the basic model described in

Section 5.3 provide a significant benefit. LPe(T ) tends to be higher than

LPe(T+), indicating that that counting constraints enhances accuracy; note

that in some cases LPe(T+) is higher than LPe(T ). The time-relaxations

LPe
tr(T

+) and LPe
tr(T ) are usually very close to LPe(T+) and LPe(T ), indi-

cating that the time relaxation achieves a good tradeoff between computa-

tion cost and accuracy.

Evaluating ILP for Delete-free planning To evaluate the speed of

solving the proposed models, IPe(T+) is compared with Haslum et al.’s
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Table 5.2: Comparison of bounds: il+ = ILP(T+), ile+ = ILPe(T+), ile =
ILPe(T ), ile+tr = ILPe

tr(T
+), iletr = ILPe

tr(T ).
il+ / ile+ ile / ile+ ile+tr / ile+ iletr / ile

LP IP LP IP LP IP LP IP

airport .53 1.00 .99 1.00 .99 .99 1.00 .99
blocks .92 1.00 .92 .92 1.00 1.00 1.00 1.00
depot .54 1.00 .93 .99 .99 .92 1.00 .99
driverlog .97 1.00 .91 .95 .96 .84 1.00 .96
elevators-opt08 .39 1.00 1.16 .96 .97 .64 1.00 .70
elevators-opt11 .36 1.00 1.17 .96 .96 .62 1.00 .73
floortile-opt11 .99 1.00 .93 .94 1.00 .97 1.00 .98
freecell .48 1.00 1.01 1.00 .97 .92 1.00 .98
grid - - .79 .85 .98 .79 1.00 .88
gripper 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
logistics98 .54 1.00 .89 1.00 .98 .88 1.00 1.00
logistics00 .47 1.00 .99 1.00 .99 .99 1.00 1.00
miconic 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
movie 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
no-mprime .58 1.00 1.10 .97 .88 .66 1.00 .94
no-mystery .58 1.00 1.03 .98 .92 .72 1.00 .96
nomystery-opt11 .97 1.00 .97 .97 1.00 1.00 1.00 1.00
openstacks .38 1.00 1.00 1.00 1.00 1.00 1.00 1.00
openstacks-opt08 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00
openstacks-opt11 - - 1.00 1.00 1.00 1.00 1.00 1.00
parcprinter-08 .99 1.00 .92 .92 1.00 1.00 1.00 1.00
parcprinter-opt11 .99 1.00 .94 .94 1.00 1.00 1.00 1.00
parking-opt11 .90 1.00 .97 .97 .94 .87 .94 .86
pegsol-08 0 1.00 .81 .72 1.00 .68 1.00 .86
pegsol-opt11 0 1.00 .88 .73 1.00 .67 1.00 .86
pipes-notankage .62 1.00 .94 .95 .92 .83 .97 .90
pipes-tankage .62 1.00 .95 .96 .98 .87 1.00 .96
psr-small .87 1.00 .38 .38 1.00 1.00 1.00 1.00
rovers .63 1.00 .86 .77 1.00 1.00 1.00 1.00
satellite .99 1.00 .99 .99 1.00 1.00 1.00 1.00
scanalyzer-08 1.00 1.00 1.00 1.00 1.00 .96 1.00 1.00
scanalyzer-opt11 1.00 1.00 1.00 1.00 1.00 .96 1.00 1.00
sokoban-opt08 .37 1.00 .88 .87 .99 .95 .99 .94
sokoban-opt11 .34 1.00 .90 .88 .99 .97 1.00 .96
storage .55 1.00 .95 .91 1.00 1.00 1.00 1.00
transport-opt08 .26 1.00 3.42 1.00 .99 .36 1.00 .58
transport-opt11 - - - - .99 .43 - -
visitall-opt11 1.00 1.00 .95 .93 .99 .97 .99 .95
woodworking08 .81 1.00 .94 .94 1.00 1.00 1.00 1.00
woodworking11 .80 1.00 .94 .94 1.00 1.00 1.00 1.00
zenotravel .99 1.00 .92 .98 .96 .90 1.00 .99
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Figure 5.2: Ratio between the optimal costs of the IP’s and their LP relax-
ations, categorized into buckets. [x:y) = “% of instances where the LP/IP
ratio is in the range [x:y).

algorithm [48] (“HST”), which is one of the state-of-the art solvers for the

cost-optimal delete-free STRIPS planning problem, of a set of 1,346 IPC

benchmarks from the Fast Downward benchmark suite. Both solvers were

run with a 15-minute time limit on each instance. The most recent version

of HST was configured to use CPLEX to solve the hitting set subproblem,

as suggested by Haslum [46].

The number of delete-free, relaxed instances that are solved by both

planner is 905. HST solved 1,117 instances, and IPe(T+) solved 1,186 in-

stances. IPe(T+) was faster than HST on 575 instances, and HST was

faster than IPe(T+) on 330 instances. Figure 5.3 shows the ratio of run-

times of HST to the ILP solver, sorted in increasing order of the ratio,

time(HST)/time(IPe(T+)). The horizontal axis is the cumulative number

of instances. Overall, IPe(T+) outperform the state-of-the-art delete-free

solver and indicates that direct computation of the optimal cost of a delete-

free task using integer linear programming is a viable approach.
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Table 5.3: IPC benchmark problems: # solved with 5 minute time limit.

Configuration # solved Description

FD/LM-cut 718 the landmark cut heuristic (seq-opt-lmcut)
FD/M&S IPC2011 687 IPC 2011 merge-and-shrink heuristic [80]
FD/hmax 551 the max heuristic
A*/h+ 342 hsp f planner using A* and h+ heuristic [48, 45]

A*/IP(T+) 358 basic IP formulation for h+

A*/LP(T+) 477 LP relaxation of IP(T+)
A*/IP(T+)+land 425 IP(T+) + Landmarks
A*/LP(T+)+land 564 LP relaxation of IP(T+)

A*/IPe(T+) 582 IP(T+) with all enhancements in Sections 5.3-5.3
A*/LPe(T+) 652 LP relaxation of IPe(T+)

A*/IPe(T ) 463 IPe(T+) with counting constraints (Section 5.4)
A*/LPe(T ) 608 LP relaxation of IPe(T )

A*/IPe
tr(T

+) 606 time-relaxation (Section 5.3) of IPe(T+)
A*/LPe

tr(T
+) 674 LP relaxation of IPe

tr(T
+)

A*/IPe
tr(T ) 554 time-relaxation of IPe(T )

A*/LPe
tr(T ) 661 LP relaxation of IPe

tr(T )
A*/autoconf 722 Automated selection of LP at root node(Section 5.5)

Evaluating h+-based heuristics in a cost-optimal planner In the

last experiment, the proposed models are embedded into the A* search al-

gorithm. Various configurations of the proposed model based heuristics are

compared first, as well as several configurations of Fast Downward (FD),

given 5 minutes per an instance and a 2GB memory limit. For Fast Down-

ward with the bisimulation merge-and-shrink heuristic, the IPC2011 hybrid

bisimulation m&s configuration (seq-opt-merge-and-shrink) is used.1 The #

of problems solved by each configuration is shown in Table 5.3.

As shown in Table 5.3, the basic integer linear programming model per-

forms the worst in the proposed models, and is comparable to A*/h+. As

noted in [45], straightforward use of h+ as a heuristic function is unsuc-

cessful (significantly worse than Fast Downward using hmax). However, the

addition of landmark constraints is sufficient to significantly increase the

number of solved problems compared to A*/h+, and A*/IPe(T+) is better

than hmax and can be considered a somewhat useful heuristic function. The

time-relaxation results in significantly increases performance compared to

A*/IPe(T+) and A*/IPe(T ). In addition, for all integer linear programming

models, the A* search algorithm using their corresponding linear program-

ming relaxations as the heuristic functions performs significantly better than

directly using the integer linear programming models as heuristic functions.

A*/LPe(T+), A*/LPe
tr(T

+), and A*/LPe
tr(T ), are all competitive with the

bisimulation merge-and-shrink heuristic. While A*/LPe(T ), does not per-

1While this is tuned for 30 minutes and suboptimal for 5 minutes, we wanted to use
the same configuration as in the 30-minute experiments below.
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form quite as well, there are some instances where A*/LPe(T ) performs

best. Finally, A*/autoconf, which uses automated heuristic selection (Sec-

tion 5.5) performs quite well. A*/autoconfis significantly better than its

4 components (LPe(T+), LPe
tr(T

+), LPe
tr(T ), LP

e(T )), and is competitive

with Fast Downward with the landmark cut heuristic.

Table 5.4 compares the coverage of the following algorithms on the IPC

benchmark suite with 30 minute CPU time limit and 2GB memory limit: (1)

A*/autoconf, which uses the linear programming heuristic selection mecha-

nism described in Section 5.5 to choose among LPe(T+), LPe(T ), LPe
tr(T

+),

LPe
tr(T ), (2) FD using the landmark cut heuristic [54], and (3) FD using the

IPC2011 bisimulation merge-and-shrink configuration (seq-opt-merge-and-shrink)[80].

These results indicate that A*/autoconf is competitive with both Fast

Downward using the landmark cut heuristic, as well as the IPC2011 merge-

and-shrink portfolio configuration. None of these planners dominate the

others, and each planner performs the best on some subset of domains.

Compared to the two other methods, A*/autoconf seems to perform par-

ticularly well on the freecell, parcprinter, rovers, trucks, and woodworking

domains. A*/h+[48] solved 443 problems with a 30-minute time limit, which

is significantly less coverage than the proposed linear programming based

planners with a 5-minute time limit (Table 5.3).

As described in Section 5.5, A*/autoconf selects the linear programming

heuristic function to use for each instance based on a comparison of the

values at the initial state. LPe
tr(T

+) was selected on 755 instances, LPe
tr(T )

on 447 instances, LPe(T+) on 119 instances, and LPe(T ) on 25 instances.

On the remaining 20 instances, A*/autoconf timed out during computations

of the linear programs for the bound selection process at the initial state,

indicating that for some difficult instances, the computation for the linear

programs can be prohibitively expensive.

The right column of each algorithm on Table 5.4 shows the average

number of visited vertices in solved instances of each domain. Obviously

the proposed algorithm solves the benchmark instances with much smaller

numbers of visited vertices compared with the landmark cut heuristic and

the bisimulation merge-and-shrink heuristic. In 699 instances solved by both

Fast Downward with the landmark cut heuristic and the proposed algorithm,

Fast Downward solved 135 instances with smaller numbers of visited ver-

tices than the proposed algorithm, and the proposed algorithm solved 458

instances with smaller numbers. Similarly, of 625 instances, the proposed

algorithm visited fewer numbers of vertices than Fast Downward with the

bisimulation merge-and-shrink heuristic the in solving 517 instances. In ad-

dition, Figure 5.4 and 5.5 show the scatter plots of the numbers of visited

vertices.
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Table 5.4: 30 minutes, 2GB RAM: “evals” is the average number of calls to
heuristic function, i.e., the average number of visited states in the domain.

Fast Downward LM-Cut Fast Downward M&S A*/autoconf

Domain (# problems) solved evals solved evals solved evals
airport(50) 28 13403 23 461855 25 4640
barman-opt11(20) 4 1614605 4 5944586 3 473561
blocks(35) 28 95630 28 880799 29 51523
depot(22) 7 261573 7 1746549 7 34046
driverlog(20) 14 245920 13 4355507 13 56933
elevators-opt08(30) 22 1189951 14 10132421 13 66011
elevators-opt11(20) 18 1196979 12 11811143 10 65695
floortile-opt11(20) 7 2354266 7 10771362 7 152836
freecell(80) 15 180560 19 6291413 45 2177
grid(5) 2 94701 3 11667600 3 14197
gripper(20) 7 1788827 20 3131130 6 404857
logistics98(35) 6 169645 5 6825245 7 143897
logistics00(28) 20 212998 20 3007288 20 212985
miconic(150) 141 16635 77 3872365 141 15087
movie(30) 30 29 30 29 30 31
no-mprime(35) 24 55549 22 1490714 18 7260
no-mystery(30) 16 880031 17 3725239 12 1105
nomystery-opt11(20) 14 20744 19 9951860 14 754
openstacks(30) 7 157100 7 202732 7 4973
openstacks-opt08(30) 19 3254361 21 6347048 11 165070
openstacks-opt11(20) 14 4412937 16 8326670 6 294006
parcprinter-08(30) 19 699592 17 3129238 29 668
parcprinter-opt11(20) 14 949416 13 4091925 20 854
parking-opt11(20) 3 435359 7 8044843 1 2991
pegsol-08(30) 27 224149 29 705639 26 85760
pegsol-opt11(20) 17 370401 19 1092529 16 151110
pipes-notankage(50) 17 234717 17 1777823 13 6021
pipes-tankage(50) 12 361767 16 2447552 7 1926
psr-small(50) 49 178328 50 221152 50 4056
rovers(40) 7 77783 8 3395947 11 209551
satellite(36) 7 155990 7 1890912 10 26897
scanalyzer-08(30) 15 259961 14 6785907 8 4374
scanalyzer-opt11(20) 12 324943 11 8636568 5 6975
sokoban-opt08(30) 30 669669 24 3938226 23 75743
sokoban-opt11(20) 20 173004 19 3338708 19 77681
storage(20) 15 86439 15 1006600 15 21598
transport-opt08(30) 11 16807 11 1158282 10 58616
transport-opt11(20) 6 30550 7 4473292 5 116375
trucks(30) 10 462320 8 8478357 15 61067
visitall-opt11(20) 11 1255455 16 129229 17 20378
woodworking08(30) 17 759825 14 876479 28 767
woodworking11(20) 12 1076372 9 1357935 18 699
zenotravel(20) 13 318142 12 6727643 12 16571
Total (1366) 787 727 785
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Figure 5.4: Comparison of the visited vertices between Fast Downward with
the landmark cut heuristic and the proposed algorithm.
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Figure 5.5: Comparison of the visited vertices between Fast Downward with
the bisimulation merge-and-shrink heuristic and the proposed algorithm.
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Chapter 6

Conclusion

In the last chapter, the results of this dissertation are briefly summarized,

and open problems and future work are discussed.

The fourth chapter described the diverse best first search algorithm.

This heuristic search algorithm is designed for avoiding plateaus of search

caused by misled heuristic estimates. Experimental results showed that the

diverse best first search algorithm outperformed the greedy best first search

algorithm and the k best first search algorithm in satisficing planning. By

incorporating preferred operators, diverse best first search performed better

than the Fast Downward planner and the enhanced k best first search algo-

rithm. Additionally, by combining diverse best first search with the LAMA

planner, the proposed approach not only improved the solving ability of

LAMA but also returned plans with reasonable quality. It is therefore con-

cluded that the diverse best first search algorithm can be a strong candidate

as a new basement of heuristic search algorithms.

There are several ideas to the strengthen diverse best first search algo-

rithm. One is to develop a better state-fetching method by incorporating

state-of-the-art techniques elegantly restarting search such as ARVAND [78].

Another is to combine diverse best first search with some enhancements spe-

cific to satisficing planning. In the current implementation, the diverse best

first search algorithm is combined with only preferred operators. Synthesiz-

ing diverse best first search with other enhancements such as goal agenda

[68], boosting [85], and multiple heuristic functions would exploit the more

promising search space in an orthogonal way to the diverse best first search

algorithm. Additionally, since the diverse best first search algorithm is a

general heuristic search algorithm, it should not be limited to planning in

principle. Applying diverse best first search to other domains is therefore of

interest and value as future work.
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6. CONCLUSION

In the fifth chapter a new integer linear programming formulation of

h+ is proposed for cost-optimal STRIPS planning. The major contribu-

tion of this work is: (1) an enhanced model for h+ using landmarks, rele-

vance analysis, and action elimination is proposed. It outperforms one of

the previous state-of-the-art techniques for computing the optimal costs of

delete-free tasks [48]; (2) It is shown that the linear programming relax-

ations of the proposed models are quite tight; and (3) A A*-based forward

search planner, A*/autoconf, is proposed by embedding the relaxed linear

programs as heuristic functions. It is shown that A* search using LPe(T+),

LPe(T ), LPe
tr(T

+), or LPe
tr(T ) as its heuristic function is competitive with

some state-of-the-art heuristic functions. Using a simple rule to select from

among LPe(T+), LPe(T ), LPe
tr(T

+), and LPe
tr(T ), A*/autoconf is compet-

itive with the landmark cut heuristic. A*/autoconf performs well in some

domains where other planners perform poorly, so the proposed methods are

complementary to previous heuristics.

While it has long been believed that h+ is too expensive to be useful

as a heuristic for forward-search based planning, this work demonstrates

that a linear programming relaxation of h+ can achieve the right tradeoff of

speed and accuracy to be the basis of a new class of heuristics for domain-

independent planning. Integrating additional constraints to derive heuristics

more accurate than h+ (e.g., the inclusion of net change constraints [83] in

Section 5.4) offers many directions for future work.
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[4] Christer Bäckström and Inger Klein. Planning in polynomial time.

In Expert Systems in Engineering Principles and Applications, pages

103–118. Springer, 1990.
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Appendix

Here several figures, showing results of the experiments, are attached. In-

cluding these figures in this dissertation was recommended by the examiners

during the examination.

Figure 1 shows the cumulative numbers of solved instances of the A*

search algorithm with the landmark cut heuristic, the A* search algorithm

with the merge-and-shrink heuristic, and the A* search algorithm with the

automatic configuration of the proposed integer linear programming heuris-

tics. The horizontal axis describes the number of vertex evaluations, and

the vertical axis shows the number of solved instances, when the maximum

number of vertex evaluations is limited by the horizontal axis. As shown

by the figure, the proposed algorithm solved the largest number of instances

when the maximum number of vertex evaluations were less than ten million.

The A* search algorithm with the landmark cut heuristic solved the second

largest number of instances. We can see a similar result for the number of

vertex retrievals in Figure 2.

Figure 3 shows the cumulative numbers of solved instances limited by

the total running time. For each total running time, the A* search algorithm

with the landmark cut heuristic solved the largest number of instances. The

proposed heuristic solved the second largest number of instances whereas

the running time of the proposed heuristic per one vertex expansion is the

slowest among the three heuristic functions.
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Figure 1: Number of visited vertices
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Figure 2: Number of vertex retrievals
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