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Preface

This thesis is based on two chapters:

Chapter 1. ”Some examples of self-similar solutions and translating solitons for La-
grangian mean curvature flow”,

Chapter 2. "Mean curvature flow in submanifolds”.

A revised version of the author’s master thesis is written in Chapter 1 and a new re-
sult of his research is in Chapter 2. The former constructs new self-similar solutions and
translating solitons for the Lagrangian mean curvature flow. One of these constructions
has a relationship with the result of Lotay and Neves [11] which says that Lagrangian
self-expanders with zero Maslov class in C" which are asymptotic to a pair of planes
transversely intersecting are locally unique or unique, where a Lagrangian self-expander
is a Lagrangian submanifold L, to be defined below, of which the mean curvature vector
in C" is equal to aF'* for some o > 0 and F* is the projection of the position vector F
in C" to the normal bundle of L. Our construction shows that without the smoothness
assumption of the Lagrangian submanifolds the uniqueness does not hold, where a La-
grangian submanifold is a real n-dimensional submanifold in C"® on which the standard
symplectic form Z?Zl dx; N\ dy; vanishes. The latter gives some explicit mean curvature
flows on the inside of some Lagrangian submanifolds which are explained in the next page
of this preface.

The author was very lucky to find his study of the mean curvature flow, to be explained
later. He began to investigate the mean curvature flow, the Lagrangian mean curvature
flow, of which name is based on the fact that the mean curvature flow preserves the
Lagrangian condition defined above, and their self-similar solutions about four years ago
by an introduce of his supervisor. The author thought that this topic is natural and it is
worth investigating it. He has read many articles and books and has learned many things
of it and its neighborhood since then.

For example, he studied Joyce’s constructions of special Lagrangian submanifolds [6]
and found that Medo$ and Wang discovered the following fantastic result [13]. If a sym-
plectomorphism f of CP" has a pinched condition then the Lagrangian mean curvature
flow of the graph {¥,}, in (CP" x CP", mfwps — mywrs) converges smoothly to a graph of
a biholomorphic isometry as t — co, where m; and 7, are the projections to the first and
second factors and wpg is the Fubuni-Study metric. Wang studied the mean curvature
flow of graphs of maps between riemaniann manifolds and he found many theorems [16].
Huisken also showed wonderful theorems that if a hypersurface in R™ has some convex
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condition then it’s mean curvature flow converges to a single point and a rescaling limit
at the point is a sphere [3], and any central blow-up of finite time singularity of the
mean curvature flow is a self-similar solution [4]. Joyce, Lee and Tsui construct explicit
self-similar solutions and traslating solitons in C”, which are Lagrangian submanifolds, in
[8] by the method improving Joyce’s construction of special Lagrangian submanifolds [6].
Lee and Wang gave constructions of noncompact eternal solutions for Brakke flow {V} };cr
that is a generalization of the mean curvature flow in [10] by using that kind of self-similar
solutions. In fact, self-similar solutions are classified as self-shrinkers and self-expanders.
The former ones are the solutions of the mean curvature flow which are shrinking under
preserving a condition of similar figures. The later ones are also the solutions of the flow
which are expanding under the condition. Their eternal solutions for Brakke flow {V;}icr
glue self-shrinkers {V;},-o and self-expanders {V, };,~o together at ¢ = 0. Since mean curva-
ture flow is a volume decreasing flow, we can see that V{, which is a Schoen-Wolfson cone is
not area-minimizing [9]. This result has analogies to the Feldman-Ilmanen-Knopf gluing
construction for the Kéhler-Ricci flows [2]. (We often contrast mean curvature flow with
Ricci flow.) Neves and Tian showed the important theorems that translating solutions to
the Lagrangian mean curvature flow with an L? bound on the mean curvature are planes
and almost calibrated translating solutions to the flow which are static are also planes
in [14]. Moreover the work of Joyce, Lee and Tsui [8] shows that these conditions are
optimal.

There are many examples of self-similar solutions and translating solitons in the Eu-
clidean space. Many facts of the mean curvature flow and their proofs are given in [1].

In this thesis, we always consider submanifolds of the Euclidean space. Mean curvature
flow is the smoothly moving submanifolds which goes to the direction of those mean
curvature vectors. This is the most important flow in all flows of submanifolds. It is
known that mean curvature flow appeared from the study of annealing metals in physics.
So mean curvature flow has strong relationship with physics.

Now we start to consider the following submanifold L. Let ¥ be a hypersurface on R"
and ¢, a one-parameter family of immersions form R"™ to C”, where s € R. So we can
write ¥ C R" and ¢ : R" — C". We define the submanifold L in C" by

L={Jwes(®).

This is a submanifold constructed by sweeping 3 out in C" by ¢,. Since (n — 1) +1 =n,
we get a real n-dimensional submanifold in C". It is difficult to compute the necessary
and sufficient condition of the submanifold being Lagrangian. Joyce considered the family
of linear or affine maps for ¢, and completed some special Lagrangians which is minimal

Lagrangian submanifolds in [6]. For a very simple case, we put ¥ = §"~! C R" which is



the round sphere of radius one with origin 0 € R™ and

w(s) 0 0
0 w(s) -0
0 0 - w(s)

where w is a function from an interval I to C\ {0}. Then

n

L=|Je2) ={pu(z) eClis €L, x= (21, --x,) ER", Y a? =1}

sel j=1

= {(n1w(s),...,zw(s)) e Cs €1, x1, -z, €R, Zx? =1}
j=1

This submanifold L is Lagrangian for any smooth function w : I — C\ {0} such that
w(s) # 0 for all s € I. General settings of this example are considered in Chapter 1 and
this example appears in Chapter 2. Next we consider one-parameter family of immersions
s, s € R, from R"! to C" rather than ¢, : R® — C" and a hypersurface ¥. Then we

also obtain some real n-dimensional submanifolds
L= Juv.@®").

Let 15 be maps defined by

rrw(s)

Tp_qw(s)
~1/2 3507w+ [w(s)w(s)ds

where w is a function from an interval I to C\ {0}. Then we can easily see that L' =

Tp—1

U,e; ¥(R"1) satisfies the Lagrangian condition and can find a function w that gives L'
the property of translating soliton. The submanifold can be found in Chapter 1.

2014,
Hiroshi Nakahara
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SOME EXAMPLES OF
SELF-SIMILAR SOLUTIONS AND TRANSLATING SOLITONS
FOR LAGRANGIAN MEAN CURVATURE FLOW

HIROSHI NAKAHARA

ABSTRACT. We construct examples of self-similar solutions and translating solitons for
Lagrangian mean curvature flow by extending the method of Joyce, Lee and Tsui. Those
examples include examples in which the Lagrangian angle is arbitrarily small as the ex-
amples of Joyce, Lee and Tsui. The examples are non-smooth Lagrangian self-expanders

which are zero-Maslov class and asymptotic to a pair of planes transversely intersecting.

1. INTRODUCTION

In recent years the Lagrangian mean curvature flow has been extensively studied,
as it is a key ingredient in the Strominger-Yau-Zaslow Conjecture [18] and Thomas-
Yau Conjecture [19]. Strominger-Yau-Zaslow Conjecture explains Mirror Symmetry of
Calabi-Yau 3-folds. In [8], Joyce, Lee and Tsui constructed many examples of self-similar
solutions and translating solitons for Lagrangian mean curvature flow. Those Lagrangian
submanifolds L are the total space of a 1-parameter family of quadrics Q)s, s € I, where
I is an open interval in R. In this paper, we construct examples of those Lagrangian
submanifolds that associate with the examples of Lagrangian submanifolds given in [7],
8], [9], [10] and so on. To do so we improve theorems in [8] by describing Lagrangian
submanifolds of the forms of [8, Ansatz 3.1 and Ansatz 3.3].

Our ambient space is always the complex Euclidean space C" with coordinates z; =
x; +1y; and the standard symplectic form w = E?Zl dxj; Ndy;. A Lagrangian submanifold
L is a real n-dimensional submanifold in C" on which the symplectic form w vanishes.
On L, we can define Lagrangian angle 0 : L — R or 6 : L — R/277Z by the relation

dzy N+ Ndzp|p = evoly,
and the mean curvature vector H by
(2) H=JV§,

where V is the gradient on L and J is the standard complex structure in C". Equation
(2) implies that a Lagrangian submanifold remains Lagrangian under the mean curvature
flow, as in Smoczyk [17]. The Maslov class on L is defined by the cohomology class
of df. Hence L is zero-Maslov class when 6 is a single-valued function. A Lagrangian

submanifold L is called Hamiltonian stationary if the Lagrangian angle 6 is harmonic,
9
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that is, if A0 = 0, and L is called a special Lagrangian submanifold if 6 is a constant
function. A Hamiltonian stationary Lagrangian submanifold is a critical point of the
volume functional among all Hamiltonian deformations, and a special Lagrangian is a

volume minimizer in its homology class.

DEFINITION 1.1. Let L C R¥ be a submanifold in RY. L is called a self-similar solution
if H = oF* on L for some constant o € R, where F* is the orthogonal projection of the
position vector F'in RY to the normal bundle of L, and H is the mean curvature vector
of L in RY. Tt is called a self-shrinker if o < 0 and a self-ezpander if o > 0. On the other
hand L C RY is called a translating soliton if there exists a constant vector T’ in RY such
that H = T+, where T is the orthogonal projection of the constant vector T in R to
the normal bundle of L, and we call T" a translating vector.

It is well known that if F is a self-similar solution then F, = v/2atF is moved by the
mean curvature flow, and if F' is a translating soliton then F; = F' 4 tT is moved by the
mean curvature flow. By Huisken [4], any central blow-up of a finite-time singularity of
the mean curvature flow is a self-similar solution.

First we consider self-similar solutions.

THEOREM 1.2. Let C,Ay,..., A\, € R\ {0}, a,¢1,...,¢, € R, ay,...,a, > 0, and
E > 1 be constants. Let I C R be a connected open neighborhood of 0 € R such that
infer(E{[ [, (1 + arps)}e® — 1) and infyer(1/a; + A;s) are positive for any 1 < j < n.
Define ry,...,r, : I - R by

1
(3) ri(s)=4/—+Ns, j=1,...,n,
\/ a;

and ¢1,...,¢0, : I — R by

N[ dt
@) Gl =wity /0 (1/a; + Aty BT (L + aca) e — 1

j=1,...,n. Then the submanifold L in C" given by

L= {(z1m1(s)e’®) . xpr,(s)ei®®); Z Nai=C,z;eR, s e}
j=1
is an immersed Lagrangian submanifold diffeomorphic to S™™!' x R where m is
the number of positive \;/C, 1 < j < n, and the mean curvature vector H satisfies
CH = aF* for the position vector F. That is, L is a self-expander when o/C > 0 and a
self-shrinker when a/C < 0. When o = 0 the Lagrangian angle 6 is constant, so that L

15 special Lagrangian.

The following Theorem 1.3 is slightly generalized from [8, Theorem C].
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THEOREM 1.3. Let ay,...,a, >0, ¥1,...,¢, € R, E > 1, and a > 0 be constants.
Definery,...,r, : R —= R by

(5) ri(s) = o s?,

PR t]dt
(6) Pils) =95 +/0 (1a; + )BT (L + ax®)}e® — 1

Then the submanifold L in C" given by

n

(7) L= {(z1r1(5)e’®) . apr,(s)e’®®); Zﬁ =1z, eR,seR, s#0}

J

j=1
is an embedded Lagrangian diffeomorphic to (R \ {0}) x 8", and the mean curvature
vector H satisfies H = aF*, where F is the position vector of L. If a« > 0, it is a self-
expander, and if o = 0 it is special Lagrangian. When E =1 the construction reduces to
that of Joyce, Lee and Tsui [8, Theorem C]. So the condition s # 0 on the definition of L

1s not necessary if £ = 1.

Remark 1.3.1. In the situation of Theorem 1.3, define ¢1, ..., o, > 0 by

o > |t|dt
g /o (1/a; + )/ E{l [y (1 + axt?) et —

We put a > 0 and £ > 0. From (15), the third equation of (14) and the proof of Theorem
1.3, the Lagrangian angle 6 satisfies

||
N Z¢a + arg( S_I—Z\/E{Hk o] ) and

—als|
VE{IT (1 + aps?)fer” =1

It follows that 6 is strictly decreasing. We define the submanifolds L; and Ly of L so

0(s) =

that s > 0 on L;, and s < 0 on Lo, respectively. Therefore we have L = L; U Lo.
We rewrite 0y, 6, as the Lagrangian angle of Ly, Ly, respectively. Then lim, . 01(s) <
01(s) < limg,4001(s) and limg, 0s(s) < Oa(s) < limg, o 65(s) hold. So from the
first equation of (8) we have

Z¢J+Z¢]<01 Z@D]than \/% and

(9)

ij+7r—tanl\/E1_<€2 Z%—l—ﬂ Z(bj
J
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Therefore we can make the oscillations of the Lagrangian angles of L; and Ly arbitrarily
small by taking F close to oo and hence tan™!(1/v/E — 1) close to 0. Furthermore, we
can prove that the map

1 . 1
. n —1 n. —1
®:(0,00)" = {(y1,---,yn) € (0, tan \/Tl) ;0 < E_ y; < tan \/Tl}

j=1
defined by ®(ay,...,a,) = (¢1,...,¢,) gives a diffeomorphism similarly to the proof of
in [8, Theorem D]. Therefore we also can make the oscillations of the Lagrangian angles
of Ly and Ly arbitrarily small by taking Zj ¢; close to tan*(1/vE — 1).

For understanding Theorem 1.3, we compute

o =(z1(r1 + ir1¢1)e I y T (T + T )€ ¢")

= xlei‘f’l 5 i E )
( (wl/aﬁs“ VU + BT (1 ash}ees —1] )

T,eon 5 i E ))
o <¢1/“n+32 W+ AT+ e — 1]

(o |s] . T T, e 0n
( : \/E{HZ:1(1+ak82)}e“2—1}> (wl/awsf”"w/awsz)'

Then we have

1 x?
— | = |S 1+ n 2 ' ’ *
i1y BT, (1 o) e = 2 Va5 9

So we obtain

lim —1 ~d—F— ! — LVE 1
so+0|dF/ds| ds — \ \/I+1/(E - 1) ¢1+1/ —1) \/z a;12

(xlewl\/_l,.. L2l Jay)

and
Lo L dF ~1 - 1VE 1
s——0 |dF'/ds| ds VI1+1/(E \/1_|_1/ —1) \/Z a1 72
- (x1€" ¢1\/_1, e T @)
Thus we get

lim #d—F;& lim ;d—F

s—+0 |dF'/ds| ds ' s—-0|dF/ds| ds

Therefore, if we remove the condition s # 0 from the definition of L, it is not smooth at
any point s = 0. In [11], Lotay and Neves proved that if Lagrangian self-expanders in C"

are smooth, zero-Maslov class and asymptotic to a pair of planes transversely intersecting,
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then those are locally unique when n > 2 and unique when n = 2. It is easy to check that
L is zero-Maslov class and asymptotic to a pair of planes intersecting transversely. By
[8, Theorem C], we can construct a smooth Lagrangian self-expander asymptotic to any
pair of Lagrangian planes in C™ which transversely intersect at the origin and have sum
of characteristic angles less than 7, where the characteristic angle is defined in Lawlor
[15]. So Theorem 1.3 shows that, without the smoothness assumption, the uniqueness
statement does not hold.

Remark 1.3.2. In the situation of Theorem 1.3, if we put £ = 1 and o = 0, then changing
0 — —oo in the integral of (6) gives Joyce’s example [7, Example 6.11].

Remark 1.3.3. In the situation of Theorem 1.2, if we take C' = A\ = --- = X\, = 1 and
a > 0, then the construction of L reduces to that of Theorem 1.3 where s > 0.

Next we turn to translating solitons.

THEOREM 1.4. Fizn > 2. Let \,...,\p-1 € R\ {0}, F > 1, a4,...,a,1 > 0, and
o, Y1, ..., 1 € R be constants. Let I C R be a connected open neighborhood of 0 € R
such that inf e (E{]T}— (1 + aphps)}e® — 1) and infoer(1/a; + \;s) are positive for any
1<j5<n. Definery,...,rn_1:1—R by

1
(10) ri(s) =4/—+Ns, j=1,...,n—1,
a;
and ¢1,...,¢n_1:1 —R by
[0 dt
o) = v+ % [ ,
O (1fay A0 BT (1 et et —

j=1,...,n—1. Then the submanifold L in C" given by

L= {(z1r1(s)e"®) . ap 171 (5)en2), Z Aj x + —I—

/ dt
VEITC (0 + aghet) et — 1

1s an immersed Lagrangian submanifold diffeomorphic to R™, and the mean curvature
vector H satisfies H = T+, where T = (0,...,0,a) € C". When a = 0 it is special
Lagrangian.

); &1, .., Tpq ER s €T}

The following Theorem 1.5 is slightly generalized from [8, Corollary IJ.

THEOREM 1.5. Fixn > 2. Let ay,...,ap_1 >0, U1,...,0, 1 €E R, E>1, and a > 0
be constants. Define r,...,r,_1: R — R by

1
(12) ri(s)=4/—+s% j=1,...,n—1,
\/ aj
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and ¢1,...,¢0n_1 R — R by
s It|dt
%U=%+/ | ,
O (1fay + £2)/ E{TTL (1 + ant?) oot —

(13)

j=1,....,n—1. Then the submanifold L in C" given by

L = {(xlrl(S)@iﬁi)l(S)’ .. 733'”717-”71( Z¢>n 1(5 Z 72 + _'_

It|dt

/ )?xl---axn—léR,SER,S%O}
\/E{H (14 apt?)}eot* —

is an embedded Lagrangian submanifold diffeomorphic to (R\ {0}) x R"™! and the mean
curvature vector H satisfies H = T+, where T = (0,...,0,a) € C*. When o = 0 it is
special Lagrangian. When E =1 and Yy = --- = 1,1 = 0, the construction reduces to
that of [8, Corollary I]. So the condition s # 0 on the definition of L is not necessary if
E=1.

Remark 1.5.1. In the situation of Theorem 1.5, we define the submanifolds L; and Ly of
L so that s > 0 on Ly, and s < 0 on Lo, respectively. Similarly to Remark 1.3.1 if we fix
a > 0, then we can make the oscillations of the Lagrangian angles of L; and Ly arbitrarily
small.

Remark 1.5.2. In the situation of Theorem 1.4, if we put Ay =---=X,_1 =1and a > 0,
then the construction of L reduces to that of Theorem 1.5 where s > 0.

Acknowledgments. The author would like to thank the supervisor Akito Futaki. He
also wishes to thank Masataka Shibata, Yuji Terashima, Mitutaka Murayama and Kota
Hattori for useful conversations. Kota Hattori gives him helpful comments concerning
Lemmas 2.1 and 3.1.

2. PROOFS FOR SELF-SIMILAR SOLUTIONS

In order to prove Theorems 1.2 and 1.3, we use the following Lemma 2.1 that is gener-
alized from [8, Theorem B]. The submanifolds in the following Lemma 2.1 are immersed
Lagrangian self-similar solutions diffeomorphic to S™ 1 x R*™*! where 1 < m < n.

LEMMA 2.1. Let I be an open interval in R and D a domain in R"*2. Let a €
R, A1, ..., A, C € R\ {0} and ay,...,a, > 0 be constants, and f : I x D — C\
{0} a smooth function. Let u,¢q,...,¢n,0 : I — R be smooth functions such that
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{(s,u(s), d1(s), ..., 0n(s),0(s));s € I} C I x D. Suppose that

( ill_z:2Re(f(57u,¢1,...,¢n70>>7
do; _ AIm(f(s, w0 6n,0) o
(14) ds 1/a; + \ju(s) ST
db
\ %:—aIm(f(s,u,(Zh,---7<Z5n>9))7

hold in I. We also suppose that
1n§(1/a] +Au(s)) >0, j=1,...,n,
se

and
(15) Zd)] +arg (S)a¢l(3)>'"7¢n(5)a9(8)))

hold in I. Then the submanifold L in C™ given by

(16) L = {(x11/1/ar + Mu(s)e’*® . x,\/1/an + Au(s)e® ™)

ZAja:?:C,xj eR,sel}

is an immersed Lagrangian submanifold diffeomorphic to S™1 x R"™™T1 where m is the

number of positive \;/C, 1 < j <n, with Lagrangian angle 0(s) at

(.Tl 1/(11 + >\1U( ) Z¢1(S ZEn\/l/Gn + )\nu( ) i¢n(8)) € L’

and the mean curvature vector H satisfies CH = aF*, where I is the position vector
of L. Note that 6(s) is a function depending only on s, and L is a self-expander when
a/C > 0 and a self-shrinker when o/C < 0. When o = 0 the Lagrangian angle 0 is

constant, so that L is special Lagrangian.

Remark 2.1.1. In the situation of Lemma 2.1, if weset a1 = -+~ =a, =1, a=—> 7 | A\
and

( f(87y17"'7yn+2) :ia

0(s) = —as —|— — = <Z /\k>

then it is easily seen that this setting satisfies the assumptions of Lemma 2.1, and the

construction is Hamiltonian stationary in addition to being self-similar and it reduces
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to that of Lee and Wang [10, Theorem 1.1]. If f is a real valued function, then the
submanifold L is an open subset of the special Lagrangian n-plane

{(e™, . yne® )iy €R, 1< j <m},
where §; € R.
Proof of Lemma 2.1. Write

w;i(s) = \/1/a; + Nu(s) e 1<j<n.

We compute

dw; d (s ¢ i (s
d_:d_( 1/aj+Aju<s>)'6¢’”+ 1ag + Aju(s) - i 2l

_ [ ARe(f(s,u, 01, ., 60, 0)) +Z.)\j1m(f(s,u,¢1,...,(bme)) o500
:)\jf(sau7¢17'--,¢n,0).

wj

Thus we obtain
dwj /\jf(S,U, ¢17"'7¢n70)

_ L , g=1,...,n,
(18) djg wj
o = —alm(f(s,u, 01,00, 0)).

By (15) and (18), we can prove this theorem similarly to the proof of [8, Theorem A].
The details are left to the reader. This finishes the proof of Lemma 2.1. 0
Now we can show Theorems 1.2 and 1.3.
Proof of Theorem 1.2. Define f: I — C\ {0} by
. 1 i

f(s) = 2 + 2\/E{HZ:1(1 + apAgs) pexs —

and f : I x R — C\ {0} by f(s,41,...,Yns2) = f(s). Note that f is a function
depending only on s € I. We also define v : I — R by

u(s) = 2/08 Re(f(t))dt =

(19) Z¢y )+ arg(f(s)).

and 6 : I — R by

Then we get
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and
dg; _ AT (f)
(20> d_S a 1/CLj + )\ju
for any j = 1,...,n. By our assumption we have
12(1/@] + Aju(s)) = ig(l/aj +Ajs) >0, j=1,...,n.
Since
d o d (o)
b~ (w)
(/)
ds Re(f)
-1
< E{] [, (1 + ak}‘ks)}eas - 1)
1
VE{I Do (1 + axdes) fees — 1
_E{szl(l + apAgs) e — 1 ‘ -1
N E{HZ (Tt ardps)ters 2[E{[Tioy (1 + axdps)fees — 1]3/2
{ILiet (I + ardrs) iy o - s
E{Z ! 1+ alk;\ll; e+ E{g(l + arAps) e
B 1 ‘ -1
CE{IT (U ades)Yers 2 /BT, (1 + aghys) jeos — 1
- as - al)\l
. E{g(l  aris)je (lz:; 1+ aiNs * a)
B —1 “ A
_2\/E{HZ:1(1 + agAgs) e — 1 (lzl 1/a; + Nu i a)
- n \
= — Im(f) <;—1/al+)\lu +a> ,
we obtain
(21) A Tm(f) + iarg(f) = —aIm(f).

— 1/a; + Nju ~ ds

From (19), (20) and (21), we get
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Accordingly,

( du
% = 2R€‘(f(57u7 ¢17 s 7¢"’0>)’
d(bj - )‘j Im (f(S,U, (bla' : '7¢n79)) =1
ag; , j=1,...,n,
ds 1/aj + Aju(s)
do

| 5 = —alm(f(s,u,¢1,...,¢n,0)).

Therefore we can apply Lemma 2.1 to the data f,u, ¢;,0 above. This finishes the proof
of Theorem 1.2. O
Proof of Theorem 1.3. We define f : R\ {0} — C\ {0} by

; 5]

f(S) =S+ Z\/E{szl(l T aksz)}easz 1

and f : (R\ {0}) x R"2 — C\ {0} by f(s,41,...,Yns2) = f(s). We also define u :
R\ {0} — C\ {0} by

u(s) = 2 /0 “Re(f(t))dt = 5
and 0 : R\ {0} — R by

(22) 0(s) = Z ¢;(s) + arg(f(s)).

Then we get 7;(s) = \/1/a; + u(s) and

dg; _ Im(f)
ds  1/aj+u

(23)

for any 7 = 1,...,n. It is clear that

inf (1/a; = inf (1/a;+ s%) =1/a; i=1,...,n.
SEIRH\{O}( /aj + u(s)) seln{im}( faj+s7) =1/a; >0, j=1,...,n
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Since
d . d. _ (Im(f)
o, () d (Im(f)
- (1 Fre(fr) ds (Rem)
(1= )
B E{[Tiea (1 + ars?) peos” — 1
A ( s )
ds \ s/ E{][j=i (1 + aps?) beo” —
_B{IL (A as”)}e —1 || d 1
E{ITio (L + axs?) e s ds \ /E{[[_, (1 + axs?) e — 1
_E{ILn (L + aps?)e™ — 1 |s| ~1
E{HZ ((L+as?) e s 2(E{]]i_ (1 4 aps?)feos® — 1]3/2
E{Z {Limy 11_?_—;];? )}2(1;3}6&52 + E{H(l + ays?) 2ase®]
_ ! 1sl B
CE{Ilio (O ars?)}ers® s 2 /B{[[1_ (1 + ars?)}eos* — 1
23E{kl_[1 (1 + ags®) e (Z T a152 a)
—|s|
T VEILL (1t ars?)}ess - 1/az Tt
i) (S e )
we obtain
(29) )y Cang(f) =~

From (22), (23) and (24), we have df/ds = —a Im(f(s)). Thus

( (jlu = 2Re(f(5,u,gz§1 ----- ¢n70)>7
de; Im (f(s,u, o1, ..., bn, 0)) 1
ds 1/a; + u(s) T ’
do

\ % - _aIm(f<Sau7¢17 s 7¢n70))
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So we can apply Lemma 2.1 to the data \; = --- = A, = 1 and f,u, ¢;, 0 above. That L is
embedded follows from the same argument as the proof of [8, Theorem C]. This completes
the proof of Theorem 1.3. O

3. PROOFS FOR TRANSLATING SOLITONS

This section is analogous to Section 2. In order to prove Theorems 1.4 and 1.5, we use
the following Lemma 3.1 that is generalized from [8, Corollary H]. The following Lemma
3.1 sets up the ordinary differential equations for immersed Lagrangian translating soliton
diffeomorphic to R™.

LEMMA 3.1. Fizn > 2. Let I be an open interval in R and D a domain in R x C. Let
a€R A, ..., 21, C € R\{0} and ay, ..., a,—1 > 0 be constants, and f : I xD — C\{0}
a smooth function. Let u,pq,...,¢n_1, 0 : I — R and B : I — C be smooth functions

such that
{(s,u(s),d1(8), ..., Pn-1(5),0(s),B(s));s € I} C I x D. Suppose that
( Z—Z = 2Re(f (5, b1, - b1, 0, B)),

% _ )‘j Im (f(37u7¢17 .. -,¢n—1,9>ﬁ))
ds 1/a; + Aju(s) ’

(25) 20
i —aIm(f(s,u, ¢1,...,0n-1,0,0)),
d
\ d_f :f(s’uagbl""?qb”—l’@’ﬁ)'

hold in 1. We also suppose that
in?(l/aj +Au(s) >0, j=1,....,n—1,
se

and

(26) z 65(5) + arg(f(5,u(s), 61(5), ..., b1 (), 8(5), B(5)))

hold in I. Then the submam’fold L in C™ given by

n—1
. . 1
L ={(z1m1(s)e’®) . xp_17n_q(5)en1) —3 E Ajxd + B(s));
i=1

T1,..., T 1 €ER, s €T}

is an immersed Lagrangian submanifold diffeomorphic to R™ with Lagrangian angle 0(s)

at

(2171(8)€ O, w11 (s)eiPn1 1/22)\ 2+ B(s)) €
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and the mean curvature vector H satisfies H = T+, where T = (0,...,0,a). When a =0

it 1s special Lagrangian.
Remark 3.1.1. In the situation of Lemma 3.1, if we set « = — 3, a;\x and

( f(svyh'"ayn-i-lﬂz) :'L.a
u(s) =0,
(bj(s):aj)\j‘g? 1§]§n_17

™ ™
0(s) = —as+ 5= (Z ak)\k> 5+ 5

(27)

then it is easy to check that this setting satisfies the assumptions of Lemma 3.1, and the
construction is Hamiltonian stationary in addition to being translating solition. If f is a
real valued function, then the submanifold L is an open subset of the special Lagrangian
n-plane

{(pe®, .y y)iyy €R, 1< 5 <},
where § e R, 1 <1 <n—1.

Proof of Lemma 3.1. Write

w;i(s) = \/1/a; + Mu(s) e 1<j<n—1.

We compute

dw;j _d Y i (s) Y 993 io (9
= ( 1/a, +)\]u(s)> e + 4/ 1/a; + Nju(s) - ds ©
_ )\jRe(f(Sau7 ¢1a S 7¢n—17075)) + i)\jlm(f<87ua ¢17 ct ¢n_1’97ﬁ)> Gid)j(s)
1/a; + Mju(s) 1/a; + Aju(s)
= Ajf(S,U,¢1,.--,¢n—17975)
Wj .
Accordingly,
( dwj _ )\jf(s7u>¢17;'a¢n*1797ﬁ)’ ] _ 1’“.’n_ 1’
ds w;
93 do
( ) \ % :_aIm(f(Svu7¢17"'7¢n—17075))7
d
\ d_f :f(87u7¢17"'7¢n—1’076)'

By (26) and (28), we can prove this theorem similarly to the proof of [8, Theorem GJ.
This finishes the proof, the detailed verification being left to the reader. O
Now we can show Theorems 1.4 and 1.5.
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Proof of Theorem 1.4. Define f : I — C\ {0} by
- 1 1

f(s) =
2\/E{Hk Y1+ apgs) teos — 1
and f: I x R"™ x C — C\ {0} by f(s,91,--,Yns1,2) = f(s) We also define

u(s) = 2/08 Re(f(t))dt =

Z% +arg(f(s)),

and
dt

s):/f(t)dtzg—l-%/ =
0 0 JE{ITC (1 + axdet) et —
Then we get 7,(s) = \/1/a; + A\ju(s) and
dg; _ A Im(f)
ds  1/a; + \ju
for any j = 1,...,n — 1. By our assumption we have

in?(l/aj + A\ju(s)) = in?(l/aj +A;js)>0, j=1,...,n—1.
se s

We can check df/ds = —aIm(f) similarly to the proof of Theorem 1.2. Thus we obtain

Cd
dz = 2Re<f(8,u, (251, R 7¢n71797/8))7
d(b B A-Inl(f(s,u,(bl,.--7¢n—17676)) s —
d_s]_ : 1/a; + Aju(s) ST h
% = _aIm(f(s,u, ¢1, e 7¢n717975))7

dﬁ

- f(S ua(ﬁla-"?(bnfl;e:ﬁ)'

Therefore we can apply Lemma 3.1 to the data f,u, ¢;,0, 8 above. This finishes the proof
of Theorem 1.4. O
Proof of Theorem 1.5. We define f : R\ {0} — C\ {0} by

f(s)=s+i 5
\/E{Hk (1 +ags?)fexs” —1
and f: (R\ {0}) x R"™™ x C — C\ {0} by f(s,y1,- -+ Yns1,2) = f(s) We also define

u(s) = 2/08 Re(f(t))dt = 52,

Zcé] +arg(f(s)),

\
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and

o s :f i s |t|dt .
A= | Fe= i VETZ 0+ aut?) e — 1

Then we have r;(s) = \/1/a; + u(s) and
dg; _ Im (f)
ds  1l/aj+u
forany j =1,...,n — 1. It is clear that

inf (1/a, = inf (1/a;j+s*)=1/a; >0, j=1,...,n—1
b (Ua;+uls)) = nf (1/a;+s7) =1/a; >0, j=1,....n

We can check dfl/ds = —alm(f) similarly to the proof of Theorem 1.3. Thus we obtain

( du
% :2Re(f(3au7¢17"'7¢”’9))7
do; _ Tm (f(s,u,¢1,. ., én,0)) !
S — ) - ,,TL—]_,
ds 1/a; + u(s)
do
% :_OZIm(f<S7uu¢17‘"7¢n70))’
d

\ d_f:f(87u7¢17"'7¢71—17975)'

So we can apply Lemma 3.1 to the data \; = --- = X\,_y = 1 and f,u,¢;,0,3 above.

That L is embedded follows from the same argument as the proof of [8, Theorem C]. This
completes the proof of Theorem 1.5. 0
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MEAN CURVATURE FLOW IN SUBMANIFOLDS

ABSTRACT. We obtain explicit solutions of the mean curvature flow in some subman-
ifolds of the Euclidean space. We give particularly an explicit solution of the mean
curvature flow of the hypersurface {y = constant} in the Lagrangian self-expander L
which is constructed in Joyce, Lee and Tsui [8] for a special case. In addition, we show

that the hypersurface {y = 0} is minimal.

4. Introduction

Mean curvature flow evolves submanifolds of a riemannian manifold in the direction
of their mean curvature vector. It is the steepest descent flow for the area functional
and is described by a parabolic system of partial differential equations for the immersed
map of evolving submanifolds. Put M, to be a hypersurface in R"*' and {M,}1ep,) to
be the solution of mean curvature flow. By the weak maximum principle of it [1], we
can see that if the initial manifold M, is in an open ball B(0,r), where r > 0, then
M, C B(0,v/r%—2nt), for any t € [0,¢). Furthermore, other properties of the mean
curvature flow in RY have been extensively studied. For example, Wang investigates
the mean curvature flow of graphs in [12] and the author constructs explicit self-similar
solutions and translating solitons for the mean curvature flow in C*(= R?") in Chapter 1.
In this paper, however, we consider the mean curvature flow in some submanifolds of RY.

We give explicit solutions of the mean curvature flow in some Lagrangian submanifolds
L of C".

5. Results and Proofs

In order to discuss the mean curvature flow in submanifolds, firstly, we consider the
following well known Proposition.

PROPOSITION 5.1. Let I, L be submanifolds in C™. Suppose that | is a submanifold in
L. Put H to be the mean curvature vector of | in L, and H to be the mean curvature
vector of l in C". Fiz p € l. Then

H( :H ZAL(Cn 6j,€J

where A cn is the second fundamental form of L in C* and {e;}; is an orthonormal basis
of T,l. So we can see that

H(p) = 7TTpL<[:[(p))7

where 77,1, (H(p)) is the orthogonal projection of H(p) to T,L.
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In this paper, if a manifold M is a submanifold in a riemannian manifold N, then
we denote Ay y the second fundamental form of M in N and VY, VM the Levi-Civita
connections on N and M respectively. Hence Ay n € C®°(M,(TN/TM)@T*M QT*M).

Proor. From the definitions of the mean curvature vector and the second fundamental
form we have

H(p) =Y Asleje;) =Y (Vhe; = Vie) = (VE'e; — Apcn(ej,ej) — Vi e))
j

J

= Z(Az,cn(em e;) — Apcn(ej,€;)) = H(p) — Z Arcn(ejs €)).

This finishes the proof. 0

In the following Theorem 5.2, from a direct calculation, the submanifolds L are La-
grangian submanifolds.

THEOREM 5.2. Let I be an interval of R and w : I — C\ {0} be a smooth function.
Suppose that w(s) # 0, for any s € I. Define submanifolds ls, for s € I, in C" by

ls = {(z1w(s), ... ,xnw(s));in =1, x,...,2, € R},
=1

and submanifold L in C™ by

L:UQ

sel
(Clearly, l; C L C C".) Let Hy be the mean curvature vector of ls in L. Then

(n = DRe (w(s)w(s)) &
|w(s)[?|w(s)]? 0s

(29) H(xyw(s), ..., zaw(s)) = —

.....

of the mean curvature flow, if we suppose that f is a solution of the following ordinal

differential equation

dft) _ (n—1DRe(w(f(1)w(f (1))

at [w(fO)Plo(f ()P

then {lyu)}e is a mean curvature flow in L.

The following Lemma 5.3 is a lemma of Theorem 5.2.

LEMMA 5.3. Let a € C\ {0} be a constant. Define a submanifold S in C" by
S =A{a(zy,...,2,) € C”;Zx? =1,2,...,2, € R}.
=1
Fixpe S. Then

n—1
H(p):—Wp,

where H(p) is the mean curvature vector of S at p.
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PROOF. Let {e1,...,e,-1} be an orthonormal basis of 7,,S. Let V; be the plane which
is generated by e; and Op, where O = (0,...,0) € C". Since the intersection of S and V;
is a circle of radius |a| with center O, we can get curves ¢y, ...,c,—1 : R — S such that

ci(0)=p, ¢0)=e;, é(0)=——7

for any j. We compute

ZAS@ ej, ;) = nz (vc” ) HZ(éj(o))L = nz (—#p) = —n|a—_|21p,

j=1 j=1 j=1
where L is the orthogonal projection to T pLS. This completes the proof. U

Now we prove Theorem 5.2.
proof of Theorem 5.2. We denote by H, the mean curvature vector of I, in C?. Fix
p = (zyw(s),...,r,w(s)) € l;. By Lemma 5.3,

n—1

—W(P)'

ﬁs(])) = |w s
By Proposition 5.1, we have

n—1

H(p) = 7TT,,L(H(IU)) = _|w(s)|2 'WTpL(p)

From a direct calculation, we can see 9/0s L T),l,. Hence we obtain

Hp) = — n—1 p-0/0s 9 (n—1)Re(w(s)i(s)) 9

br= lw(s)|2 0/ds-0/0s 0s lw(s)[?|w(s)|? Js

This finishes the proof. 0
Next we consider the following Remark 5.3.1 and Figure 1. If we put wy = --- = wy

in the construction of the Lagrangian self-expander given in [8, Thorem C], then we can
find a minimal hypersurface in the self-expander.

Remark 5.3.1. Let a > 0 and a > 0 be constants. Define 7 : R — R by r(s) = y/1/a + s?
and ¢ : R =+ R by

/5 |t|dt

o (1/a+12)y/(1+ at?)ree? —1°

¢(s) =
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— —_—

s

|0 (minimal)

FIGURE 1. Remark 5.3.1

In the situation of Theorem 5.2, if we put I = R and w(s) = r(s)e’®, then L is the
Lagrangian self-similar solution constructed in [8, Theorem C]. Then we compute

r(s)2 - |7(s)ei®) +ir(s)p(s)ei?) |2
r9)i(s)
r(s)? - [7(s) +ir(s)o(s)]?
H)its)
r(s)*r(s)? + r(s)*e(s)?

s
T2t s2/((1 + at?)rexs® — 1)
B 1
s+ 5/((14 at?)reas® — 1)
B 1
—s(1 4 as?)meas® /(1 + as?)reos® — 1)

(14 as?)"e*” —1

s(1 4 as?)meos®
(14 as®)» — e
s(1 4 as?)"

Re (@(s)i(s)) Re (r(s)e*"‘“s) (7(s)e ) + @r¢(s)ei¢<s>))
|2

[w(s)Plu(s)?
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By the equation (29) and L’Hopital’s rule, we obtain

Re (0(0)i(0) &
[w(0)[2|w(0)[*  Is
(14+as?)"—e " 9

——(n—1)-4 .2
(n—1) 50 s(1 4 as?)" ds

Hy(z1w(0),...,z,w(0)) =—(n—1) -

_ n(l+as®)" - 2as + 2ase 5,
=—(n—1)-lim C—

s=0 (1 +as?)" +s-n(l+as?)"1-2as 0s
=0.

Therefore, in this case, [y is minimal in L. Secondly, the author is going to prove a general
version of the fact [y is volume-minimizing as well as minimal in his next paper. See
also it. A bit of information is below. We can see 7*(vol;,) is a calibration of L that
is described in the section 4 of [6] and that is a little difficult to prove, and [, is the
calibrated submanifold, where 7 is the projection from L to [y defined by

m(zrwi(s),. .., xawy(s)) = (x1w1(0), ..., z,w,(0))

and vol;, is the volume form of [y with respect to the induced metric of the Euclidean
metric in C". (Note that 7 is well-defined. ) This implies that y is volume-minimizing
as well as minimal. In addition, without the restriction w; = --- = w,, the submanifold
{y = 0} is a calibrated submanifold in the self-expander L [8, Thorem C].

Further we have to compute the following situation.

Remark 5.3.2. Let a > 0, E > 1 and a > 0 be constants. Define r : (0,00) — R by

r(s) =+/1/a+ s? and ¢ : (0,00) — R by

e |t
Pe(s) = /0 (1/a +t2)/E(1 + at?)mea?” — 1

In the situation of Theorem 5.2, if we put I = (0,00) and w(s) = r(s)e’®=(), then L is
the Lagrangian self-similar solution constructed in Theorem 1.3 in Chapter 1. Then we

can see that

T H(eyu(s), . qn(s))

is a non-zero vector. This proof is left to the reader.

6. Discussion

We can also consider the mean curvature flow in product manifolds, for example, cone
manifolds, the paraboloid of revolution and so on, similarly to this paper and can obtain

the solutions.
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