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Preface

This thesis is based on two chapters:

Chapter 1. ”Some examples of self-similar solutions and translating solitons for La-

grangian mean curvature flow”,

Chapter 2. ”Mean curvature flow in submanifolds”.

A revised version of the author’s master thesis is written in Chapter 1 and a new re-

sult of his research is in Chapter 2. The former constructs new self-similar solutions and

translating solitons for the Lagrangian mean curvature flow. One of these constructions

has a relationship with the result of Lotay and Neves [11] which says that Lagrangian

self-expanders with zero Maslov class in Cn which are asymptotic to a pair of planes

transversely intersecting are locally unique or unique, where a Lagrangian self-expander

is a Lagrangian submanifold L, to be defined below, of which the mean curvature vector

in Cn is equal to αF⊥ for some α > 0 and F⊥ is the projection of the position vector F

in Cn to the normal bundle of L. Our construction shows that without the smoothness

assumption of the Lagrangian submanifolds the uniqueness does not hold, where a La-

grangian submanifold is a real n-dimensional submanifold in Cn on which the standard

symplectic form
∑n

j=1 dxj ∧ dyj vanishes. The latter gives some explicit mean curvature

flows on the inside of some Lagrangian submanifolds which are explained in the next page

of this preface.

The author was very lucky to find his study of the mean curvature flow, to be explained

later. He began to investigate the mean curvature flow, the Lagrangian mean curvature

flow, of which name is based on the fact that the mean curvature flow preserves the

Lagrangian condition defined above, and their self-similar solutions about four years ago

by an introduce of his supervisor. The author thought that this topic is natural and it is

worth investigating it. He has read many articles and books and has learned many things

of it and its neighborhood since then.

For example, he studied Joyce’s constructions of special Lagrangian submanifolds [6]

and found that Medoš and Wang discovered the following fantastic result [13]. If a sym-

plectomorphism f of CPn has a pinched condition then the Lagrangian mean curvature

flow of the graph {Σt}t in (CPn×CPn, π∗
1ωFS −π∗

2ωFS) converges smoothly to a graph of

a biholomorphic isometry as t→ ∞, where π1 and π2 are the projections to the first and

second factors and ωFS is the Fubuni-Study metric. Wang studied the mean curvature

flow of graphs of maps between riemaniann manifolds and he found many theorems [16].

Huisken also showed wonderful theorems that if a hypersurface in Rn has some convex
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condition then it’s mean curvature flow converges to a single point and a rescaling limit

at the point is a sphere [3], and any central blow-up of finite time singularity of the

mean curvature flow is a self-similar solution [4]. Joyce, Lee and Tsui construct explicit

self-similar solutions and traslating solitons in Cn, which are Lagrangian submanifolds, in

[8] by the method improving Joyce’s construction of special Lagrangian submanifolds [6].

Lee and Wang gave constructions of noncompact eternal solutions for Brakke flow {Vt}t∈R
that is a generalization of the mean curvature flow in [10] by using that kind of self-similar

solutions. In fact, self-similar solutions are classified as self-shrinkers and self-expanders.

The former ones are the solutions of the mean curvature flow which are shrinking under

preserving a condition of similar figures. The later ones are also the solutions of the flow

which are expanding under the condition. Their eternal solutions for Brakke flow {Vt}t∈R
glue self-shrinkers {Vt}t<0 and self-expanders {Vt}t>0 together at t = 0. Since mean curva-

ture flow is a volume decreasing flow, we can see that V0 which is a Schoen-Wolfson cone is

not area-minimizing [9]. This result has analogies to the Feldman-Ilmanen-Knopf gluing

construction for the Kähler-Ricci flows [2]. (We often contrast mean curvature flow with

Ricci flow.) Neves and Tian showed the important theorems that translating solutions to

the Lagrangian mean curvature flow with an L2 bound on the mean curvature are planes

and almost calibrated translating solutions to the flow which are static are also planes

in [14]. Moreover the work of Joyce, Lee and Tsui [8] shows that these conditions are

optimal.

There are many examples of self-similar solutions and translating solitons in the Eu-

clidean space. Many facts of the mean curvature flow and their proofs are given in [1].

In this thesis, we always consider submanifolds of the Euclidean space. Mean curvature

flow is the smoothly moving submanifolds which goes to the direction of those mean

curvature vectors. This is the most important flow in all flows of submanifolds. It is

known that mean curvature flow appeared from the study of annealing metals in physics.

So mean curvature flow has strong relationship with physics.

Now we start to consider the following submanifold L. Let Σ be a hypersurface on Rn

and φs a one-parameter family of immersions form Rn to Cn, where s ∈ R. So we can

write Σ ⊂ Rn and φs : Rn → Cn. We define the submanifold L in Cn by

L =
∪
s

φs(Σ).

This is a submanifold constructed by sweeping Σ out in Cn by φs. Since (n− 1) + 1 = n,

we get a real n-dimensional submanifold in Cn. It is difficult to compute the necessary

and sufficient condition of the submanifold being Lagrangian. Joyce considered the family

of linear or affine maps for φs and completed some special Lagrangians which is minimal

Lagrangian submanifolds in [6]. For a very simple case, we put Σ = Sn−1 ⊂ Rn which is
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the round sphere of radius one with origin 0 ∈ Rn and

(1) φs =


w(s) 0 · · · 0

0 w(s) · · · 0

0 0
. . . 0

0 0 · · · w(s)

 ,

where w is a function from an interval I to C \ {0}. Then

L =
∪
s∈I

φs(Σ) = {φs(x) ∈ Cn; s ∈ I, x = (x1, · · · xn) ∈ Rn,

n∑
j=1

x2j = 1}

= {(x1w(s), . . . , xnw(s)) ∈ Cn; s ∈ I, x1, · · · xn ∈ R,
n∑
j=1

x2j = 1}.

This submanifold L is Lagrangian for any smooth function w : I → C \ {0} such that

ẇ(s) ̸= 0 for all s ∈ I. General settings of this example are considered in Chapter 1 and

this example appears in Chapter 2. Next we consider one-parameter family of immersions

ψs, s ∈ R, from Rn−1 to Cn rather than φs : Rn → Cn and a hypersurface Σ. Then we

also obtain some real n-dimensional submanifolds

L′ =
∪
s

ψs(Rn−1).

Let ψs be maps defined by

ψs

 x1
...

xn−1

 =


x1w(s)

...

xn−1w(s)

−1/2
∑n−1

k=1 x
2
k +

∫
w(s)ẇ(s)ds

 ,

where w is a function from an interval I to C \ {0}. Then we can easily see that L′ =∪
s∈I ψ(Rn−1) satisfies the Lagrangian condition and can find a function w that gives L′

the property of translating soliton. The submanifold can be found in Chapter 1.

2014,

Hiroshi Nakahara
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SOME EXAMPLES OF
SELF-SIMILAR SOLUTIONS AND TRANSLATING SOLITONS

FOR LAGRANGIAN MEAN CURVATURE FLOW

HIROSHI NAKAHARA

Abstract. We construct examples of self-similar solutions and translating solitons for

Lagrangian mean curvature flow by extending the method of Joyce, Lee and Tsui. Those

examples include examples in which the Lagrangian angle is arbitrarily small as the ex-

amples of Joyce, Lee and Tsui. The examples are non-smooth Lagrangian self-expanders

which are zero-Maslov class and asymptotic to a pair of planes transversely intersecting.

1. Introduction

In recent years the Lagrangian mean curvature flow has been extensively studied,

as it is a key ingredient in the Strominger-Yau-Zaslow Conjecture [18] and Thomas-

Yau Conjecture [19]. Strominger-Yau-Zaslow Conjecture explains Mirror Symmetry of

Calabi-Yau 3-folds. In [8], Joyce, Lee and Tsui constructed many examples of self-similar

solutions and translating solitons for Lagrangian mean curvature flow. Those Lagrangian

submanifolds L are the total space of a 1-parameter family of quadrics Qs, s ∈ I, where

I is an open interval in R. In this paper, we construct examples of those Lagrangian

submanifolds that associate with the examples of Lagrangian submanifolds given in [7],

[8], [9], [10] and so on. To do so we improve theorems in [8] by describing Lagrangian

submanifolds of the forms of [8, Ansatz 3.1 and Ansatz 3.3].

Our ambient space is always the complex Euclidean space Cn with coordinates zj =

xj+ iyj and the standard symplectic form ω =
∑n

j=1 dxj ∧dyj. A Lagrangian submanifold

L is a real n-dimensional submanifold in Cn on which the symplectic form ω vanishes.

On L, we can define Lagrangian angle θ : L→ R or θ : L→ R/2πZ by the relation

dz1 ∧ · · · ∧ dzn|L ≡ eiθvolL,

and the mean curvature vector H by

(2) H = J∇θ,

where ∇ is the gradient on L and J is the standard complex structure in Cn. Equation

(2) implies that a Lagrangian submanifold remains Lagrangian under the mean curvature

flow, as in Smoczyk [17]. The Maslov class on L is defined by the cohomology class

of dθ. Hence L is zero-Maslov class when θ is a single-valued function. A Lagrangian

submanifold L is called Hamiltonian stationary if the Lagrangian angle θ is harmonic,
9
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that is, if ∆θ = 0, and L is called a special Lagrangian submanifold if θ is a constant

function. A Hamiltonian stationary Lagrangian submanifold is a critical point of the

volume functional among all Hamiltonian deformations, and a special Lagrangian is a

volume minimizer in its homology class.

Definition 1.1. Let L ⊂ RN be a submanifold in RN . L is called a self-similar solution

if H ≡ αF⊥ on L for some constant α ∈ R, where F⊥ is the orthogonal projection of the

position vector F in RN to the normal bundle of L, and H is the mean curvature vector

of L in RN . It is called a self-shrinker if α < 0 and a self-expander if α > 0. On the other

hand L ⊂ RN is called a translating soliton if there exists a constant vector T in RN such

that H ≡ T⊥, where T⊥ is the orthogonal projection of the constant vector T in RN to

the normal bundle of L, and we call T a translating vector.

It is well known that if F is a self-similar solution then Ft =
√
2αtF is moved by the

mean curvature flow, and if F is a translating soliton then Ft = F + tT is moved by the

mean curvature flow. By Huisken [4], any central blow-up of a finite-time singularity of

the mean curvature flow is a self-similar solution.

First we consider self-similar solutions.

Theorem 1.2. Let C, λ1, . . . , λn ∈ R \ {0}, α, ψ1, . . . , ψn ∈ R, a1, . . . , an > 0, and

E > 1 be constants. Let I ⊂ R be a connected open neighborhood of 0 ∈ R such that

infs∈I(E{
∏n

k=1(1+ akλks)}eαs− 1) and infs∈I(1/aj + λjs) are positive for any 1 ≤ j ≤ n.

Define r1, . . . , rn : I → R by

(3) rj(s) =

√
1

aj
+ λjs, j = 1, . . . , n,

and ϕ1, . . . , ϕn : I → R by

(4) ϕj(s) = ψj +
λj
2

∫ s

0

dt

(1/aj + λjt)
√
E{
∏n

k=1(1 + akλkt)}eαt − 1
,

j = 1, . . . , n. Then the submanifold L in Cn given by

L = {(x1r1(s)eiϕ1(s), . . . , xnrn(s)eiϕn(s));
n∑
j=1

λjx
2
j = C, xj ∈ R, s ∈ I}

is an immersed Lagrangian submanifold diffeomorphic to Sm−1 × Rn−m+1, where m is

the number of positive λj/C, 1 ≤ j ≤ n, and the mean curvature vector H satisfies

CH ≡ αF⊥ for the position vector F. That is, L is a self-expander when α/C > 0 and a

self-shrinker when α/C < 0. When α = 0 the Lagrangian angle θ is constant, so that L

is special Lagrangian.

The following Theorem 1.3 is slightly generalized from [8, Theorem C].



11

Theorem 1.3. Let a1, . . . , an > 0 , ψ1, . . . , ψn ∈ R,E ≥ 1, and α ≥ 0 be constants.

Define r1, . . . , rn : R → R by

(5) rj(s) =

√
1

aj
+ s2,

and ϕ1, . . . , ϕn : R → R by

(6) ϕj(s) = ψj +

∫ s

0

|t|dt
(1/aj + t2)

√
E{
∏n

k=1(1 + akt2)}eαt2 − 1
.

Then the submanifold L in Cn given by

(7) L = {(x1r1(s)eiϕ1(s), . . . , xnrn(s)eiϕn(s));
n∑
j=1

x2j = 1, xj ∈ R, s ∈ R, s ̸= 0}

is an embedded Lagrangian diffeomorphic to (R \ {0}) × Sn−1, and the mean curvature

vector H satisfies H ≡ αF⊥, where F is the position vector of L. If α > 0, it is a self-

expander, and if α = 0 it is special Lagrangian. When E = 1 the construction reduces to

that of Joyce, Lee and Tsui [8, Theorem C]. So the condition s ̸= 0 on the definition of L

is not necessary if E = 1.

Remark 1.3.1. In the situation of Theorem 1.3, define ϕ̄1, . . . , ϕ̄n > 0 by

ϕ̄j =

∫ ∞

0

|t|dt
(1/aj + t2)

√
E{
∏n

k=1(1 + akt2)}eαt2 − 1
.

We put α > 0 and E > 0. From (15), the third equation of (14) and the proof of Theorem

1.3, the Lagrangian angle θ satisfies

θ(s) =
∑
j

ϕj(s) + arg(s+ i
|s|√

E{
∏n

k=1(1 + aks2)}eαs2 − 1
) and

θ̇(s) =
−α|s|√

E{
∏n

k=1(1 + aks2)}eαs2 − 1
.

(8)

It follows that θ is strictly decreasing. We define the submanifolds L1 and L2 of L so

that s > 0 on L1, and s < 0 on L2, respectively. Therefore we have L = L1 ∪ L2.

We rewrite θ1, θ2 as the Lagrangian angle of L1, L2, respectively. Then lims→+∞ θ1(s) <

θ1(s) < lims→+0 θ1(s) and lims→−0 θ2(s) < θ2(s) < lims→−∞ θ2(s) hold. So from the

first equation of (8) we have∑
j

ψj +
∑
j

ϕ̄j < θ1(s) <
∑
j

ψj + tan−1 1√
E − 1

and

∑
j

ψj + π − tan−1 1√
E − 1

< θ2(s) <
∑
j

ψj + π −
∑
j

ϕ̄j.

(9)
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Therefore we can make the oscillations of the Lagrangian angles of L1 and L2 arbitrarily

small by taking E close to ∞ and hence tan−1(1/
√
E − 1) close to 0. Furthermore, we

can prove that the map

Φ : (0,∞)n → {(y1, . . . , yn) ∈ (0, tan−1 1√
E − 1

)n; 0 <
n∑
j=1

yj < tan−1 1√
E − 1

}

defined by Φ(a1, . . . , an) = (ϕ̄1, . . . , ϕ̄n) gives a diffeomorphism similarly to the proof of

in [8, Theorem D]. Therefore we also can make the oscillations of the Lagrangian angles

of L1 and L2 arbitrarily small by taking
∑

j ϕ̄j close to tan−1(1/
√
E − 1).

For understanding Theorem 1.3, we compute

dF

ds
=(x1(ṙ1 + ir1ϕ̇1)e

iϕ1 , . . . , xn(ṙn + irnϕ̇n)e
iϕn)

=

(
x1e

iϕ1

(
s√

1/a1 + s2
+ i

|s|√
(1/a1 + s2)[E{

∏n
k=1(1 + aks2)}eαs2 − 1]

)
, . . .

, xne
iϕn

(
s√

1/an + s2
+ i

|s|√
(1/an + s2)[E{

∏n
k=1(1 + aks2)}eαs2 − 1]

))

=

(
s+ i

|s|√
E{
∏n

k=1(1 + aks2)}eαs2 − 1}

)
·

(
x1e

iϕ1√
1/a1 + s2

, . . . ,
xne

iϕn√
1/an + s2

)
.

Then we have∣∣∣dF
ds

∣∣∣ = |s|

√√√√(1 + 1

E{
∏n

k=1(1 + aks2)}eαs2 − 1

)
·
∑
j

x2j
1/aj + s2

.

So we obtain

lim
s→+0

1

|dF/ds|
· dF
ds

=

(
1√

1 + 1/(E − 1)
+ i

1/
√
E − 1√

1 + 1/(E − 1)

)
1√∑
j ajx

2
j

· (x1eiψ1
√
a1, . . . , xne

iψn
√
an)

and

lim
s→−0

1

|dF/ds|
· dF
ds

=

(
−1√

1 + 1/(E − 1)
+ i

1/
√
E − 1√

1 + 1/(E − 1)

)
1√∑
j ajx

2
j

· (x1eiψ1
√
a1, . . . , xne

iψn
√
an).

Thus we get

lim
s→+0

1

|dF/ds|
· dF
ds

̸= lim
s→−0

1

|dF/ds|
· dF
ds
.

Therefore, if we remove the condition s ̸= 0 from the definition of L, it is not smooth at

any point s = 0. In [11], Lotay and Neves proved that if Lagrangian self-expanders in Cn

are smooth, zero-Maslov class and asymptotic to a pair of planes transversely intersecting,
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then those are locally unique when n > 2 and unique when n = 2. It is easy to check that

L is zero-Maslov class and asymptotic to a pair of planes intersecting transversely. By

[8, Theorem C], we can construct a smooth Lagrangian self-expander asymptotic to any

pair of Lagrangian planes in Cn which transversely intersect at the origin and have sum

of characteristic angles less than π, where the characteristic angle is defined in Lawlor

[15]. So Theorem 1.3 shows that, without the smoothness assumption, the uniqueness

statement does not hold.

Remark 1.3.2. In the situation of Theorem 1.3, if we put E = 1 and α = 0, then changing

0 7→ −∞ in the integral of (6) gives Joyce’s example [7, Example 6.11].

Remark 1.3.3. In the situation of Theorem 1.2, if we take C = λ1 = · · · = λn = 1 and

α ≥ 0, then the construction of L reduces to that of Theorem 1.3 where s > 0.

Next we turn to translating solitons.

Theorem 1.4. Fix n ≥ 2. Let λ1, . . . , λn−1 ∈ R \ {0}, E > 1, a1, . . . , an−1 > 0, and

α, ψ1, . . . , ψn−1 ∈ R be constants. Let I ⊂ R be a connected open neighborhood of 0 ∈ R
such that infs∈I(E{

∏n−1
k=1(1 + akλks)}eαs − 1) and infs∈I(1/aj + λjs) are positive for any

1 ≤ j ≤ n. Define r1, . . . , rn−1 : I → R by

(10) rj(s) =

√
1

aj
+ λjs, j = 1, . . . , n− 1,

and ϕ1, . . . , ϕn−1 : I → R by

(11) ϕj(s) = ψj +
λj
2

∫ s

0

dt

(1/aj + λjt)
√
E{
∏n−1

k=1(1 + akλkt)}eαt − 1
,

j = 1, . . . , n− 1. Then the submanifold L in Cn given by

L = {(x1r1(s)eiϕ1(s), . . . , xn−1rn−1(s)e
iϕn−1(s),−1

2

n−1∑
j=1

λjx
2
j +

s

2
+

i

2

∫ s

0

dt√
E{
∏n−1

k=1(1 + akλkt)}eαt − 1
); x1, . . . , xn−1 ∈ R, s ∈ I}

is an immersed Lagrangian submanifold diffeomorphic to Rn, and the mean curvature

vector H satisfies H ≡ T⊥, where T = (0, . . . , 0, α) ∈ Cn. When α = 0 it is special

Lagrangian.

The following Theorem 1.5 is slightly generalized from [8, Corollary I].

Theorem 1.5. Fix n ≥ 2. Let a1, . . . , an−1 > 0, ψ1, . . . , ψn−1 ∈ R, E ≥ 1, and α ≥ 0

be constants. Define r1, . . . , rn−1 : R → R by

(12) rj(s) =

√
1

aj
+ s2, j = 1, . . . , n− 1,
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and ϕ1, . . . , ϕn−1 : R → R by

(13) ϕj(s) = ψj +

∫ s

0

|t|dt

(1/aj + t2)
√
E{
∏n−1

k=1(1 + akt2)}eαt2 − 1
,

j = 1, . . . , n− 1. Then the submanifold L in Cn given by

L = {(x1r1(s)eiϕ1(s), . . . , xn−1rn−1(s)e
iϕn−1(s),−1

2

n−1∑
j=1

x2j +
s2

2
+

i

∫ s

0

|t|dt√
E{
∏n−1

k=1(1 + akt2)}eαt2 − 1
); x1 . . . , xn−1 ∈ R, s ∈ R, s ̸= 0}

is an embedded Lagrangian submanifold diffeomorphic to (R \ {0})×Rn−1, and the mean

curvature vector H satisfies H ≡ T⊥, where T = (0, . . . , 0, α) ∈ Cn. When α = 0 it is

special Lagrangian. When E = 1 and ψ1 = · · · = ψn−1 = 0, the construction reduces to

that of [8, Corollary I]. So the condition s ̸= 0 on the definition of L is not necessary if

E = 1.

Remark 1.5.1. In the situation of Theorem 1.5, we define the submanifolds L1 and L2 of

L so that s > 0 on L1, and s < 0 on L2, respectively. Similarly to Remark 1.3.1 if we fix

α > 0, then we can make the oscillations of the Lagrangian angles of L1 and L2 arbitrarily

small.

Remark 1.5.2. In the situation of Theorem 1.4, if we put λ1 = · · · = λn−1 = 1 and α ≥ 0,

then the construction of L reduces to that of Theorem 1.5 where s > 0.

Acknowledgments. The author would like to thank the supervisor Akito Futaki. He

also wishes to thank Masataka Shibata, Yuji Terashima, Mitutaka Murayama and Kota

Hattori for useful conversations. Kota Hattori gives him helpful comments concerning

Lemmas 2.1 and 3.1.

2. Proofs for self-similar solutions

In order to prove Theorems 1.2 and 1.3, we use the following Lemma 2.1 that is gener-

alized from [8, Theorem B]. The submanifolds in the following Lemma 2.1 are immersed

Lagrangian self-similar solutions diffeomorphic to Sm−1 × Rn−m+1, where 1 ≤ m ≤ n.

Lemma 2.1. Let I be an open interval in R and D a domain in Rn+2. Let α ∈
R, λ1, . . . , λn, C ∈ R \ {0} and a1, . . . , an > 0 be constants, and f : I × D → C \
{0} a smooth function. Let u, ϕ1, . . . , ϕn, θ : I → R be smooth functions such that
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{(s, u(s), ϕ1(s), . . . , ϕn(s), θ(s)); s ∈ I} ⊂ I ×D. Suppose that

(14)



du

ds
= 2Re(f(s, u, ϕ1, . . . , ϕn, θ)),

dϕj
ds

=
λj Im (f(s, u, ϕ1, . . . , ϕn, θ))

1/aj + λju(s)
, j = 1, . . . , n,

dθ

ds
= −α Im(f(s, u, ϕ1, . . . , ϕn, θ)),

hold in I. We also suppose that

inf
s∈I

(1/aj + λju(s)) > 0, j = 1, . . . , n,

and

(15) θ(s) =
n∑
j=1

ϕj(s) + arg(f(s, u(s), ϕ1(s), . . . , ϕn(s), θ(s)))

hold in I. Then the submanifold L in Cn given by

(16) L = {(x1
√
1/a1 + λ1u(s)e

iϕ1(s), . . . , xn
√

1/an + λnu(s)e
iϕn(s));

n∑
j=1

λjx
2
j = C, xj ∈ R, s ∈ I}

is an immersed Lagrangian submanifold diffeomorphic to Sm−1 ×Rn−m+1, where m is the

number of positive λj/C, 1 ≤ j ≤ n, with Lagrangian angle θ(s) at

(x1
√

1/a1 + λ1u(s)e
iϕ1(s), . . . , xn

√
1/an + λnu(s)e

iϕn(s)) ∈ L,

and the mean curvature vector H satisfies CH ≡ αF⊥, where F is the position vector

of L. Note that θ(s) is a function depending only on s, and L is a self-expander when

α/C > 0 and a self-shrinker when α/C < 0. When α = 0 the Lagrangian angle θ is

constant, so that L is special Lagrangian.

Remark 2.1.1. In the situation of Lemma 2.1, if we set a1 = · · · = an = 1, α = −
∑n

k=1 λk
and

(17)



f(s, y1, . . . , yn+2) = i,

u(s) = 0,

ϕj(s) = λjs, 1 ≤ j ≤ n,

θ(s) = −αs+ π

2
=

(
n∑
k=1

λk

)
s+

π

2
,

then it is easily seen that this setting satisfies the assumptions of Lemma 2.1, and the

construction is Hamiltonian stationary in addition to being self-similar and it reduces
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to that of Lee and Wang [10, Theorem 1.1]. If f is a real valued function, then the

submanifold L is an open subset of the special Lagrangian n-plane

{(y1eiξ1 , . . . , yneiξn); yj ∈ R, 1 ≤ j ≤ n},

where ξj ∈ R.

Proof of Lemma 2.1. Write

wj(s) =
√

1/aj + λju(s) e
iϕj(s), 1 ≤ j ≤ n.

We compute

dwj
ds

=
d

ds

(√
1/aj + λju(s)

)
· eiϕj(s) +

√
1/aj + λju(s) · i

dϕj
ds

eiϕj(s)

=

(
λjRe(f(s, u, ϕ1, . . . , ϕn, θ))√

1/aj + λju(s)
+ i

λjIm(f(s, u, ϕ1, . . . , ϕn, θ))√
1/aj + λju(s)

)
eiϕj(s)

=
λjf(s, u, ϕ1, . . . , ϕn, θ)

wj
.

Thus we obtain

(18)


dwj
ds

=
λjf(s, u, ϕ1, . . . , ϕn, θ)

wj
, j = 1, . . . , n,

dθ

ds
= −α Im(f(s, u, ϕ1, . . . , ϕn, θ)).

By (15) and (18), we can prove this theorem similarly to the proof of [8, Theorem A].

The details are left to the reader. This finishes the proof of Lemma 2.1. �
Now we can show Theorems 1.2 and 1.3.

Proof of Theorem 1.2. Define f̃ : I → C \ {0} by

f̃(s) =
1

2
+

i

2
√
E{
∏n

k=1(1 + akλks)}eαs − 1

and f : I × Rn+2 → C \ {0} by f(s, y1, . . . , yn+2) = f̃(s). Note that f is a function

depending only on s ∈ I. We also define u : I → R by

u(s) = 2

∫ s

0

Re(f̃(t))dt = s,

and θ : I → R by

(19) θ(s) =
n∑
j=1

ϕj(s) + arg(f̃(s)).

Then we get

rj(s) =

√
1

aj
+ λju(s)
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and

(20)
dϕj
ds

=
λj Im (f̃)

1/aj + λju

for any j = 1, . . . , n. By our assumption we have

inf
s∈I

(1/aj + λju(s)) = inf
s∈I

(1/aj + λjs) > 0, j = 1, . . . , n.

Since

d

ds
arg(f̃) =

d

ds
tan−1

(
Im(f̃)

Re(f̃)

)

=

(
1 +

Im(f̃)2

Re(f̃)2

)−1

· d
ds

(
Im(f̃)

Re(f̃)

)

=

(
1 +

1

E{
∏n

k=1(1 + akλks)}eαs − 1

)−1

· d
ds

(
1√

E{
∏n

k=1(1 + akλks)}eαs − 1

)

=
E{
∏n

k=1(1 + akλks)}eαs − 1

E{
∏n

k=1(1 + akλks)}eαs
· −1

2[E{
∏n

k=1(1 + akλks)}eαs − 1]3/2

· [E{
n∑
l=1

{
∏n

k=1(1 + akλks)}alλl
1 + alλls

}eαs + E{
n∏
k=1

(1 + akλks)}αeαs]

=
1

E{
∏n

k=1(1 + akλks)}eαs
· −1

2
√
E{
∏n

k=1(1 + akλks)}eαs − 1

· E{
n∏
k=1

(1 + akλks)}eαs
(

n∑
l=1

alλl
1 + alλls

+ α

)

=
−1

2
√
E{
∏n

k=1(1 + akλks)}eαs − 1

(
n∑
l=1

λl
1/al + λlu

+ α

)

=− Im(f̃)

(
n∑
l=1

λl
1/al + λlu

+ α

)
,

we obtain

(21)
n∑
j=1

λj Im(f̃)

1/aj + λju
+

d

ds
arg(f̃) = −α Im(f̃).

From (19), (20) and (21), we get

dθ

ds
= −α Im(f̃(s)).
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Accordingly,



du

ds
= 2Re(f(s, u, ϕ1, . . . , ϕn, θ)),

dϕj
ds

=
λj Im (f(s, u, ϕ1, . . . , ϕn, θ))

1/aj + λju(s)
, j = 1, . . . , n,

dθ

ds
= −α Im(f(s, u, ϕ1, . . . , ϕn, θ)).

Therefore we can apply Lemma 2.1 to the data f, u, ϕj, θ above. This finishes the proof

of Theorem 1.2. �
Proof of Theorem 1.3. We define f̃ : R \ {0} → C \ {0} by

f̃(s) = s+ i
|s|√

E{
∏n

k=1(1 + aks2)}eαs2 − 1

and f : (R \ {0}) × Rn+2 → C \ {0} by f(s, y1, . . . , yn+2) = f̃(s). We also define u :

R \ {0} → C \ {0} by

u(s) = 2

∫ s

0

Re(f̃(t))dt = s2

and θ : R \ {0} → R by

(22) θ(s) =
n∑
j=1

ϕj(s) + arg(f̃(s)).

Then we get rj(s) =
√

1/aj + u(s) and

(23)
dϕj
ds

=
Im (f̃)

1/aj + u

for any j = 1, . . . , n. It is clear that

inf
s∈R\{0}

(1/aj + u(s)) = inf
s∈R\{0}

(1/aj + s2) = 1/aj > 0, j = 1, . . . , n.
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Since

d

ds
arg(f̃) =

d

ds
tan−1

(
Im(f̃)

Re(f̃)

)

=

(
1 +

Im(f̃)2

Re(f̃)2

)−1

· d
ds

(
Im(f̃)

Re(f̃)

)

=

(
1 +

1

E{
∏n

k=1(1 + aks2)}eαs2 − 1

)−1

· d
ds

(
|s|

s
√
E{
∏n

k=1(1 + aks2)}eαs2 − 1

)

=
E{
∏n

k=1(1 + aks
2)}eαs2 − 1

E{
∏n

k=1(1 + aks2)}eαs2
· |s|
s

d

ds

(
1√

E{
∏n

k=1(1 + aks2)}eαs2 − 1

)

=
E{
∏n

k=1(1 + aks
2)}eαs2 − 1

E{
∏n

k=1(1 + aks2)}eαs2
· |s|
s

· −1

2[E{
∏n

k=1(1 + aks2)}eαs2 − 1]3/2

· [E{
n∑
l=1

{
∏n

k=1(1 + aks
2)}2als

1 + als2
}eαs2 + E{

n∏
k=1

(1 + aks
2)}2αseαs2 ]

=
1

E{
∏n

k=1(1 + aks2)}eαs2
· |s|
s

· −1

2
√
E{
∏n

k=1(1 + aks2)}eαs2 − 1

· 2sE{
n∏
k=1

(1 + aks
2)}eαs2

(
n∑
l=1

al
1 + als2

+ α

)

=
−|s|√

E{
∏n

k=1(1 + aks2)}eαs2 − 1

(
n∑
l=1

1

1/al + u
+ α

)

=− Im(f̃)

(
n∑
l=1

1

1/al + u
+ α

)
,

we obtain

(24)
n∑
j=1

Im(f̃)

1/aj + u
+

d

ds
arg(f̃) = −α Im(f̃).

From (22), (23) and (24), we have dθ/ds = −α Im(f̃(s)). Thus

du

ds
= 2Re(f(s, u, ϕ1, . . . , ϕn, θ)),

dϕj
ds

=
Im (f(s, u, ϕ1, . . . , ϕn, θ))

1/aj + u(s)
, j = 1, . . . , n,

dθ

ds
= −α Im(f(s, u, ϕ1, . . . , ϕn, θ)).
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So we can apply Lemma 2.1 to the data λ1 = · · · = λn = 1 and f, u, ϕj, θ above. That L is

embedded follows from the same argument as the proof of [8, Theorem C]. This completes

the proof of Theorem 1.3. �

3. Proofs for translating solitons

This section is analogous to Section 2. In order to prove Theorems 1.4 and 1.5, we use

the following Lemma 3.1 that is generalized from [8, Corollary H]. The following Lemma

3.1 sets up the ordinary differential equations for immersed Lagrangian translating soliton

diffeomorphic to Rn.

Lemma 3.1. Fix n ≥ 2. Let I be an open interval in R and D a domain in Rn+1×C. Let
α ∈ R, λ1, . . . , λn−1, C ∈ R\{0} and a1, . . . , an−1 > 0 be constants, and f : I×D → C\{0}
a smooth function. Let u, ϕ1, . . . , ϕn−1, θ : I → R and β : I → C be smooth functions

such that

{(s, u(s), ϕ1(s), . . . , ϕn−1(s), θ(s), β(s)); s ∈ I} ⊂ I ×D. Suppose that

(25)



du

ds
= 2Re(f(s, u, ϕ1, . . . , ϕn−1, θ, β)),

dϕj
ds

=
λj Im (f(s, u, ϕ1, . . . , ϕn−1, θ, β))

1/aj + λju(s)
, j = 1, . . . , n− 1,

dθ

ds
= −α Im(f(s, u, ϕ1, . . . , ϕn−1, θ, β)),

dβ

ds
= f(s, u, ϕ1, . . . , ϕn−1, θ, β).

hold in I. We also suppose that

inf
s∈I

(1/aj + λju(s)) > 0, j = 1, . . . , n− 1,

and

(26) θ(s) =
n−1∑
j=1

ϕj(s) + arg(f(s, u(s), ϕ1(s), . . . , ϕn−1(s), θ(s), β(s)))

hold in I. Then the submanifold L in Cn given by

L = {(x1r1(s)eiϕ1(s), . . . , xn−1rn−1(s)e
iϕn−1(s),−1

2

n−1∑
j=1

λjx
2
j + β(s));

x1, . . . , xn−1 ∈ R, s ∈ I}

is an immersed Lagrangian submanifold diffeomorphic to Rn with Lagrangian angle θ(s)

at

(x1r1(s)e
iϕ1(s), . . . , xn−1rn−1(s)e

iϕn−1(s),−1/2
n−1∑
j=1

λjx
2
j + β(s)) ∈ L,
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and the mean curvature vector H satisfies H ≡ T⊥, where T = (0, . . . , 0, α). When α = 0

it is special Lagrangian.

Remark 3.1.1. In the situation of Lemma 3.1, if we set α = −
∑n

k=1 ajλk and

(27)



f(s, y1, . . . , yn+1, z) = i,

u(s) = 0,

ϕj(s) = ajλjs, 1 ≤ j ≤ n− 1,

θ(s) = −αs+ π

2
=

(
n−1∑
k=1

akλk

)
s+

π

2
,

β(s) = is,

then it is easy to check that this setting satisfies the assumptions of Lemma 3.1, and the

construction is Hamiltonian stationary in addition to being translating solition. If f is a

real valued function, then the submanifold L is an open subset of the special Lagrangian

n-plane

{(y1eiξ1 , . . . , yn−1e
iξn−1 , yn); yj ∈ R, 1 ≤ j ≤ n},

where ξl ∈ R, 1 ≤ l ≤ n− 1.

Proof of Lemma 3.1. Write

wj(s) =
√
1/aj + λju(s) e

iϕj(s), 1 ≤ j ≤ n− 1.

We compute

dwj
ds

=
d

ds

(√
1/aj + λju(s)

)
· eiϕj(s) +

√
1/aj + λju(s) · i

dϕj
ds

eiϕj(s)

=

(
λjRe(f(s, u, ϕ1, . . . , ϕn−1, θ, β))√

1/aj + λju(s)
+ i

λjIm(f(s, u, ϕ1, . . . , ϕn−1, θ, β))√
1/aj + λju(s)

)
eiϕj(s)

=
λjf(s, u, ϕ1, . . . , ϕn−1, θ, β)

wj
.

Accordingly,

(28)



dwj
ds

=
λjf(s, u, ϕ1, . . . , ϕn−1, θ, β)

wj
, j = 1, . . . , n− 1,

dθ

ds
= −α Im(f(s, u, ϕ1, . . . , ϕn−1, θ, β)),

dβ

ds
= f(s, u, ϕ1, . . . , ϕn−1, θ, β).

By (26) and (28), we can prove this theorem similarly to the proof of [8, Theorem G].

This finishes the proof, the detailed verification being left to the reader. �
Now we can show Theorems 1.4 and 1.5.
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Proof of Theorem 1.4. Define f̃ : I → C \ {0} by

f̃(s) =
1

2
+

i

2
√
E{
∏n−1

k=1(1 + akλks)}eαs − 1

and f : I × Rn+1 × C → C \ {0} by f(s, y1, . . . , yn+1, z) = f̃(s). We also define

u(s) = 2

∫ s

0

Re(f̃(t))dt = s,

θ(s) =
n−1∑
j=1

ϕj(s) + arg(f̃(s)),

and

β(s) =

∫ s

0

f̃(t)dt =
s

2
+
i

2

∫ s

0

dt√
E{
∏n−1

k=1(1 + akλkt)}eαt − 1
.

Then we get rj(s) =
√

1/aj + λju(s) and

dϕj
ds

=
λj Im (f̃)

1/aj + λju

for any j = 1, . . . , n− 1. By our assumption we have

inf
s∈I

(1/aj + λju(s)) = inf
s∈I

(1/aj + λjs) > 0, j = 1, . . . , n− 1.

We can check dθ/ds = −αIm(f̃) similarly to the proof of Theorem 1.2. Thus we obtain

du

ds
= 2Re(f(s, u, ϕ1, . . . , ϕn−1, θ, β)),

dϕj
ds

=
λj Im (f(s, u, ϕ1, . . . , ϕn−1, θ, β))

1/aj + λju(s)
, j = 1, . . . , n− 1,

dθ

ds
= −α Im(f(s, u, ϕ1, . . . , ϕn−1, θ, β)),

dβ

ds
= f(s, u, ϕ1, . . . , ϕn−1, θ, β).

Therefore we can apply Lemma 3.1 to the data f, u, ϕj, θ, β above. This finishes the proof

of Theorem 1.4. �
Proof of Theorem 1.5. We define f̃ : R \ {0} → C \ {0} by

f̃(s) = s+ i
|s|√

E{
∏n−1

k=1(1 + aks2)}eαs2 − 1

and f : (R \ {0})× Rn+1 × C → C \ {0} by f(s, y1, . . . , yn+1, z) = f̃(s). We also define

u(s) = 2

∫ s

0

Re(f̃(t))dt = s2,

θ(s) =
n−1∑
j=1

ϕj(s) + arg(f̃(s)),
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and

β(s) =

∫ s

0

f̃(t)dt =
s2

2
+ i

∫ s

0

|t|dt√
E{
∏n−1

k=1(1 + akt2)}eαt2 − 1
.

Then we have rj(s) =
√

1/aj + u(s) and

dϕj
ds

=
Im (f̃)

1/aj + u

for any j = 1, . . . , n− 1. It is clear that

inf
s∈R\{0}

(1/aj + u(s)) = inf
s∈R\{0}

(1/aj + s2) = 1/aj > 0, j = 1, . . . , n− 1.

We can check dθ/ds = −αIm(f̃) similarly to the proof of Theorem 1.3. Thus we obtain

du

ds
= 2Re(f(s, u, ϕ1, . . . , ϕn, θ)),

dϕj
ds

=
Im (f(s, u, ϕ1, . . . , ϕn, θ))

1/aj + u(s)
, j = 1, . . . , n− 1,

dθ

ds
= −α Im(f(s, u, ϕ1, . . . , ϕn, θ)),

dβ

ds
= f(s, u, ϕ1, . . . , ϕn−1, θ, β).

So we can apply Lemma 3.1 to the data λ1 = · · · = λn−1 = 1 and f, u, ϕj, θ, β above.

That L is embedded follows from the same argument as the proof of [8, Theorem C]. This

completes the proof of Theorem 1.5. �
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MEAN CURVATURE FLOW IN SUBMANIFOLDS

Abstract. We obtain explicit solutions of the mean curvature flow in some subman-

ifolds of the Euclidean space. We give particularly an explicit solution of the mean

curvature flow of the hypersurface {y = constant} in the Lagrangian self-expander L

which is constructed in Joyce, Lee and Tsui [8] for a special case. In addition, we show

that the hypersurface {y = 0} is minimal.

4. Introduction

Mean curvature flow evolves submanifolds of a riemannian manifold in the direction

of their mean curvature vector. It is the steepest descent flow for the area functional

and is described by a parabolic system of partial differential equations for the immersed

map of evolving submanifolds. Put M0 to be a hypersurface in Rn+1 and {Mt}t∈[0,ϵ) to
be the solution of mean curvature flow. By the weak maximum principle of it [1], we

can see that if the initial manifold M0 is in an open ball B(0, r), where r > 0, then

Mt ⊂ B(0,
√
r2 − 2nt), for any t ∈ [0, ϵ). Furthermore, other properties of the mean

curvature flow in RN have been extensively studied. For example, Wang investigates

the mean curvature flow of graphs in [12] and the author constructs explicit self-similar

solutions and translating solitons for the mean curvature flow in Cn(= R2n) in Chapter 1.

In this paper, however, we consider the mean curvature flow in some submanifolds of RN .

We give explicit solutions of the mean curvature flow in some Lagrangian submanifolds

L of Cn.

5. Results and Proofs

In order to discuss the mean curvature flow in submanifolds, firstly, we consider the

following well known Proposition.

Proposition 5.1. Let l, L be submanifolds in Cn. Suppose that l is a submanifold in

L. Put H to be the mean curvature vector of l in L, and H̄ to be the mean curvature

vector of l in Cn. Fix p ∈ l. Then

H(p) = H̄(p)−
∑
j

AL,Cn(ej, ej),

where AL,Cn is the second fundamental form of L in Cn and {ej}j is an orthonormal basis

of Tpl. So we can see that

H(p) = πTpL(H̄(p)),

where πTpL(H̄(p)) is the orthogonal projection of H̄(p) to TpL.
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In this paper, if a manifold M is a submanifold in a riemannian manifold N, then

we denote AM,N the second fundamental form of M in N and ∇N ,∇M the Levi-Civita

connections on N and M respectively. Hence AM,N ∈ C∞(M, (TN/TM)⊗T ∗M ⊗T ∗M).

Proof. From the definitions of the mean curvature vector and the second fundamental

form we have

H(p) =
∑
j

Al,L(ej, ej) =
∑
j

(∇L
ej
ej −∇l

ej
ej) =

∑
j

(∇Cn

ej
ej − AL,Cn(ej, ej)−∇l

ej
ej)

=
∑
j

(Al,Cn(ej, ej)− AL,Cn(ej, ej)) = H̄(p)−
∑
j

AL,Cn(ej, ej).

This finishes the proof. �

In the following Theorem 5.2, from a direct calculation, the submanifolds L are La-

grangian submanifolds.

Theorem 5.2. Let I be an interval of R and w : I → C \ {0} be a smooth function.

Suppose that ẇ(s) ̸= 0, for any s ∈ I. Define submanifolds ls, for s ∈ I, in Cn by

ls = {(x1w(s), . . . , xnw(s));
n∑
j=1

x2j = 1, x1, . . . , xn ∈ R},

and submanifold L in Cn by

L =
∪
s∈I

ls.

(Clearly, ls ⊂ L ⊂ Cn.) Let Hs be the mean curvature vector of ls in L. Then

(29) Hs(x1w(s), . . . , xnw(s)) = −(n− 1)Re (w̄(s)ẇ(s))

|w(s)|2|ẇ(s)|2
· ∂
∂s

holds, where ∂/∂s = (x1ẇ(s), . . . , xnẇ(s)) ∈ T(x1w(s),...,xnw(s))L. Thus, by the definition

of the mean curvature flow, if we suppose that f is a solution of the following ordinal

differential equation
df(t)

dt
= −(n− 1)Re (w̄(f(t))ẇ(f(t)))

|w(f(t))|2|ẇ(f(t))|2
,

then {lf(t)}t is a mean curvature flow in L.

The following Lemma 5.3 is a lemma of Theorem 5.2.

Lemma 5.3. Let α ∈ C \ {0} be a constant. Define a submanifold S in Cn by

S = {α(x1, . . . , xn) ∈ Cn;
n∑
j=1

x2j = 1, x1, . . . , xn ∈ R}.

Fix p ∈ S. Then

H(p) = −n− 1

|α|2
p,

where H(p) is the mean curvature vector of S at p.
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Proof. Let {e1, . . . , en−1} be an orthonormal basis of TpS. Let Vj be the plane which

is generated by ej and
−→
Op, where O = (0, . . . , 0) ∈ Cn. Since the intersection of S and Vj

is a circle of radius |α| with center O, we can get curves c1, . . . , cn−1 : R → S such that

cj(0) = p, ċj(0) = ej, c̈j(0) = − 1

|α|2
p,

for any j. We compute

H(p) =
n−1∑
j=1

AS,Cn(ej, ej) =
n−1∑
j=1

(
∇Cn

ej
ej

)⊥
=

n−1∑
j=1

(c̈j(0))
⊥ =

n−1∑
j=1

(
− 1

|α|2
p

)⊥

= −n− 1

|α|2
p,

where ⊥ is the orthogonal projection to T⊥
p S. This completes the proof. �

Now we prove Theorem 5.2.

proof of Theorem 5.2. We denote by H̄s the mean curvature vector of ls in C2. Fix

p = (x1w(s), . . . , xnw(s)) ∈ ls. By Lemma 5.3,

H̄s(p) = − n− 1

|w(s)|2
(p).

By Proposition 5.1, we have

H(p) = πTpL(H̄(p)) = − n− 1

|w(s)|2
· πTpL(p)

From a direct calculation, we can see ∂/∂s ⊥ Tpls. Hence we obtain

H(p) = − n− 1

|w(s)|2
· p · ∂/∂s
∂/∂s · ∂/∂s

· ∂
∂s

= −(n− 1)Re (w̄(s)ẇ(s))

|w(s)|2|ẇ(s)|2
· ∂
∂s
.

This finishes the proof. �
Next we consider the following Remark 5.3.1 and Figure 1. If we put w1 = · · · = w1

in the construction of the Lagrangian self-expander given in [8, Thorem C], then we can

find a minimal hypersurface in the self-expander.

Remark 5.3.1. Let a > 0 and α ≥ 0 be constants. Define r : R → R by r(s) =
√

1/a+ s2

and ϕ : R → R by

ϕ(s) =

∫ s

0

|t|dt
(1/a+ t2)

√
(1 + at2)neαt2 − 1

.
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L
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l0

C

(minimal)

Hs

n

Figure 1. Remark 5.3.1

In the situation of Theorem 5.2, if we put I = R and w(s) = r(s)eiϕ(s), then L is the

Lagrangian self-similar solution constructed in [8, Theorem C]. Then we compute

Re (w̄(s)ẇ(s))

|w(s)|2|ẇ(s)|2
=
Re
(
r(s)e−iϕ(s)(ṙ(s)eiϕ(s) + irϕ̇(s)eiϕ(s))

)
r(s)2 · |ṙ(s)eiϕ(s) + ir(s)ϕ̇(s)eiϕ(s)|2

=
r(s)ṙ(s)

r(s)2 · |ṙ(s) + ir(s)ϕ̇(s)|2

=
r(s)ṙ(s)

r(s)2ṙ(s)2 + r(s)4ϕ̇(s)2

=
s

s2 + s2/((1 + at2)neαs2 − 1)

=
1

s+ s/((1 + at2)neαs2 − 1)

=
1

s(1 + as2)neαs2/((1 + as2)neαs2 − 1)

=
(1 + as2)neαs

2 − 1

s(1 + as2)neαs2

=
(1 + as2)n − e−αs

2

s(1 + as2)n
.
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By the equation (29) and L’Hôpital’s rule, we obtain

H0(x1w(0), . . . , xnw(0)) =− (n− 1) · Re (w̄(0)ẇ(0))
|w(0)|2|ẇ(0)|2

· ∂
∂s

=− (n− 1) · lim
s→0

(1 + as2)n − e−αs
2

s(1 + as2)n
· ∂
∂s

=− (n− 1) · lim
s→0

n(1 + as2)n−1 · 2as+ 2αse−αs
2

(1 + as2)n + s · n(1 + as2)n−1 · 2as
· ∂
∂s

=0.

Therefore, in this case, l0 is minimal in L. Secondly, the author is going to prove a general

version of the fact l0 is volume-minimizing as well as minimal in his next paper. See

also it. A bit of information is below. We can see π∗(voll0) is a calibration of L that

is described in the section 4 of [6] and that is a little difficult to prove, and l0 is the

calibrated submanifold, where π is the projection from L to l0 defined by

π(x1w1(s), . . . , xnwn(s)) = (x1w1(0), . . . , xnwn(0))

and voll0 is the volume form of l0 with respect to the induced metric of the Euclidean

metric in Cn. (Note that π is well-defined. ) This implies that l0 is volume-minimizing

as well as minimal. In addition, without the restriction w1 = · · · = wn, the submanifold

{y = 0} is a calibrated submanifold in the self-expander L [8, Thorem C].

Further we have to compute the following situation.

Remark 5.3.2. Let a > 0, E > 1 and α ≥ 0 be constants. Define r : (0,∞) → R by

r(s) =
√
1/a+ s2 and ϕ : (0,∞) → R by

ϕE(s) =

∫ s

0

|t|dt
(1/a+ t2)

√
E(1 + at2)neαt2 − 1

.

In the situation of Theorem 5.2, if we put I = (0,∞) and w(s) = r(s)eiϕE(s), then L is

the Lagrangian self-similar solution constructed in Theorem 1.3 in Chapter 1. Then we

can see that

lim
s→+0

Hs(x1w(s), . . . , xnw(s))

is a non-zero vector. This proof is left to the reader.

6. Discussion

We can also consider the mean curvature flow in product manifolds, for example, cone

manifolds, the paraboloid of revolution and so on, similarly to this paper and can obtain

the solutions.
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