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Abstract

In 1989, Grötschel and Wakabayashi [38] introduced a fundamental combi-
natorial optimization problem, called the clique partitioning problem (CPP)
with a large number of real world applications related to clustering such as
qualitative data analysis [14, 76, 88], group technology [72, 87], flight-gate
scheduling [27], and community detection [2, 5, 30, 64].

In spite of its rich applications, the size of the standard integer pro-
gramming (IP) formulation of CPP is known to be huge even for small-sized
instances, which prevents us from efficient computation and limits the ap-
plication range of CPP in practice [14].

In order to overcome this drawback, in this thesis, we develop method-
ologies for reducing the problem size of CPP. To this end, we focus on a
redundancy in the standard IP formulation. More specifically, we aim at
reducing the formulation size by efficiently and effectively removing redun-
dancies in advance. The instances of reduced size can be solved efficiently
by recent powerful optimization softwares.

First, we study on a preprocessing algorithm for detecting a redundancy
in the decision variables, which rewrites a given instance of CPP into, of-
ten substantially, smaller but equivalent new one. The basic strategy is to
strengthen a classical technique called the pegging test [67] by utilizing an
underlying property of CPP.

Next, motivated by a recent work by Dinh and Thai [30], in a theoretical
manner, we reveal a redundancy in the numerous constraints of the standard
IP formulation, which yields a new formulation of CPP. Our reformulation
enables us to easily reduce the number of the constraints required, often
significantly, as well as computation time by the softwares.
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Chapter 1

Introduction

1.1 Introduction

1.1.1 Backgrounds

Clustering is a fundamental problem to find an appropriate grouping of
a given set of items into similar groups, called clusters, which appears in
diverse fields including engineering, biology, physics, sociology, medical sci-
ence, and so on. Therefore, algorithms for clustering have been studied
extensively drawing upon the methodologies in statistics, mathematics, and
computer science [43].

With respect to the type of data we deal with, clustering could be divided
into two cases: quantitative data clustering and qualitative data clustering.
However, the algorithms for clustering proposed so far are mainly designed
for quantitative data from its ease of use.

As pointed out by Brusco and Köhn [14], on the other hand, we have
few algorithms for qualitative data clustering. However, there are strong
demands for appropriate and effective algorithms for qualitative data clus-
tering from several areas of social science including economics, sociology,
psychology, and zoology, as we frequently encounter qualitative data such
as “blood-type”, “religion”, “feeling”, “shape of ears”, and so on, in these
application area.

In 1965, Régnier [76] proposed an algorithm for qualitative data clus-
tering, based on a combinatorial optimization problem, which is referred to
as the Régnier’s problem, or the consensus clustering (median partitioning)
problem [31, 41].

In contrast to the existing approaches for qualitative data clustering,
in Régnier [76]’s model, we can avoid an inappropriate conversion of the
given qualitative data into some quantitative data. This is the most attrac-
tive point of Régnier’s model. It should be noted that Régnier’s model is
still regarded as one of the most promising approaches for qualitative data
clustering [14, 88].
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The key idea is to assume that each attribute defines an equivalence
relation on the target items. For instance, an attribute “feeling” can be
cosidered to define an equivalence relation on the target items whose equiv-
alence classes correspond to “happy”, “sad”, “nothing”, and so on. As a
result, we obtain a set of equivalence relations associated with the set of
qualitative attributes.

Régnier [76] considers to “aggregate” such equivalence relations into one
equivalence relation, where we need to solve some NP-hard [86] optimization
problem, Régnier’s problem.

In 1989, Grötschel and Wakabayashi [38] refined Régnier’s problem to
introduce a combinatorial optimization problem, which is referred to as the
clique partitioning problem (CPP). Therefore, Régnier’s problem is a special
case of CPP, which implies that CPP is also NP-hard in general. It is known
that CPP provides a general framework for many and diverse clustering
algorithms based on an optimization approach.

As a matter of fact, in addition to Régnier’s problem, CPP has been
applied to many real world problems including flight-gate scheduling [27],
microarray analysis [52], group technology problem [72, 87], and community
detection [2, 5, 30, 64], known as the modularity maximization [70], to list
a few, in the literature.

1.1.2 Motivation

On the other hand, in recent years, using optimization softwares is widely
recognized as a promising strategy for solving real world problems. Regard-
less of commercial or non-commercial, we now have may powerful softwares
such as CPLEX Optimizer, Gurobi Optimizer, and Xpress Optimization.
With the substantial development of algorithms for solving optimization
problems, the performance of these softwares also has been dramatically
improved in the last decades.

The above optimization softwares are mainly designed for solving integer
programming (IP) problems, or its generalization, mixed integer program-
ming (MIP) problems. It is widely known that IP and MIP can describe
many and diverse real world problems as they can model fundamental com-
binatorial structures including partition, order, route, subset, and so on, by
its “integrality” [69].

As demonstrated by Grötschel and Wakabayashi [38], CPP can be for-
mulated as a simple IP problem. Due to its simplicity, various algorithms
have been proposed based on this standard IP formulation in the litera-
ture [2, 38, 44, 64, 72]. However, this standard IP formulation is known
to suffer from numerous constraints as well as numerous decision variables
even for relatively small instances of CPP, which prevents us from an effi-
cient computation via the recent powerful optimization softwares mentioned
above.
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Furthermore, as a matter of fact, the instances solved to optimality in
the literature are relatively small [28, 38, 72, 73], more specifically, up to
n = 158 items. For instance, even when n = 300, there are already about
44 thousand decision variables and 13 million constraints in this standard
IP formulation. Therefore, even for such middle-sized instances, preparing
computational resources for describing the whole formulation would be hard
in ordinary computational environments.

This drawback has already been pointed out by Kochenberger et al. [52,
87]. Due to the difficulties arising from this size issue of CPP, heuristic
methods, which can not guarantee the optimality of the obtained solutions,
have been extensively studied in the literature [6, 14, 19, 51, 52, 80, 87].

1.1.3 Focus

However, it is empirically known that optimization problems include a re-
dundancy. For several decision variables, one may easily decide its values at
optimal solutions. Then, such redundant decision variables can be regarded
as constant terms in the model as we aim at finding a optimal solution.
In a similar manner, there might be several redundant constraints. As we
optimize the given objective function,

Furthermore, removing the redundancy often significantly shortens com-
putation time as well as saves computational resources required, especially
for problems arising from real world. According to a recent report by Achter-
berg et al. [1], preprocessing, also called the “presolve”, is a very important
process in order to achieve an efficient computation in their software, Gurobi
Optimizer.

In preprocessing, we aim at detecting and removing the redundant parts,
that is, redundant decision variables and constraints. For the basic but so-
phisticated techniques for general IP or MIP problems, see [7, 13, 42] for
instance. Also, reformulation is becoming an important keyword as the
computation time by the softwares depends on the formulation to some ex-
tent. Here, reformulation refers to an alternative formulation. Of course,
reformulation should be more attractive in a sense, compared to the conven-
tional one. In practice, we aim at finding a new formulation which is more
excellent with the softwares.

With the substantial improvement of the performance of the optimiza-
tion softwares in the last decades, methodologies for utilizing these softwares,
including preprocessing and reformulation mentioned above, is becoming one
of the important study topics in practice, as well as in theory.

1.1.4 Object

In order to make the CPP model applicable for larger, middle-sized, in-
stances, in practice, in this thesis, we study on methodologies for reducing
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the problem size of CPP. To this end, we focus on a redundancy in the
standard IP formulation. Namely, we aim at reducing the problem size of
CPP by removing a kind of redundancy based on a preprocessing and a
reformulation mentioned above.

More specifically, we aim at developing an efficient algorithm, which
detects and removes a redundancy for making the instances of CPP smaller
as a preprocessing. The instances of reduced size can be solved efficiently by
the recent powerful optimization softwares.

On the other hand, we also aim at revealing a redundancy in the standard
IP formulation of CPP in a theoretical manner. Recall that the standard
IP formulation has about 44 thousand decision variables and 13 million con-
straints when n = 300. Intuitively, the number of constraints is much larger
than that of the decision variables. In this study, we give a simple suffi-
cient condition for the redundant constraints, which yields a reformulation
of CPP.

In contrast to existing studies [1, 7, 13, 42] focusing on a general setting,
we utilize an underlying structure of CPP, “transitivity”, for our purpose.
Recall that CPP associated with clustering, and that a result of clustering
can be seen as an equivalence relation. Therefore, in any solution of CPP,
we encounter a transitivity: if i and j in the same cluster, and j and k in
the same cluster, then, of course, i and k in the same cluster.

Also, in order to understand the limitation of our approach, we also
address the linear ordering problem (LOP). LOP is an optimization problem
on linear (or total) orders, which also satisfy a transitivity: if i is ordered
higher than j, and j is ordered higher than k, then, of course, i is ordered
higher than k. As a matter of fact, a natural and standard IP formulation of
LOP introduced by Grötschel et al. [36, 63] has a similar structure as that
of the standard IP formulation of CPP.

1.1.5 Results

We first develop a preprocessing algorithm for detecting redundant deci-
sion variables, which can be used as a preprocessing for the optimization
softwares.

In this study, redundant decision variables refer to decision variables
whose values at optimal are determined. Thus, the redundant variables are
no longer “variables”, and can be treated as constant terms in the prob-
lem. Therefore, our preprocessing algorithm can make the instances of CPP
smaller by replacing the redundant variables with constant terms.

It the main part of the algorithm, we employ a classical technique called
the pegging test with the Lagrangian relaxation [32, 34]. The pegging test is a
powerful tool for detecting redundant variables, especially for problems with
a simple structure such as the knapsack problem and its special variants [67,
68, 79, 89, 90]. In this study, we conceptually and experimentally show that
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the pegging test is excellent with the transitivity in CPP.
Then, we address a reformulation. Our reformulation is based on the

standard IP formulation of CPP. We give a theoretical characterization of
the redundant constraints in the formulation.

In this study, redundant constraints refer to constraints such that re-
moving them does not change the optimal solution set. Therefore, even if
we disregard the redundant constraints, we can obtain an optimal solution
of the original problem. Interestingly, we could confirm that a relatively
large class of the constraints is easily revealed to be redundant. Moreover,
the redundant constraints we found are characterized by a simple condition.
Therefore, one can easily reduce the number of the constraints required,
before we start to solve the problem.

1.1.6 Outline of Research

In what follows, we will briefly explain how we obtain the above results.
To this end, several important existing studies related to our results will be
explained.

On preprocessing

As mentioned above, the pegging test is known as an effective preprocess-
ing, especially for the knapsack problem as demonstrated by Nauss [67]. As
the name suggests, it can “peg” the values of several 0-1 variables at op-
timal. The usefulness of the pegging test has been confirmed for combina-
torial optimization problems with simple structures, such as a capacitated
facility location problem [68], and the knapsack problems with additional
constraints [79, 90, 89].

On the other hand, we observe that the pegging test is also excellent
with the transitivity in CPP. If we apply the pegging test to the standard
IP formulation of CPP, we can find a pair of items {i, j} such that i and
j must be in the same cluster (clique) at any optimal solution. Now, sup-
pose that we could show that the pair {i, j} and the pair {j, k} are in the
same cluster (clique) at any optimal solution, respectively. Then, in or-
der to meet the transitivity, we can conclude that the same thing holds for
the pair {i, k}. Based on this simple observation, we develop an effective
preprocessing algorithm for CPP.

In order to apply the pegging test, we need to solve some relaxation
problem. In our algorithm, we employ the well-known method called the
Lagrangian relaxation [32, 34]. The Lagrangian relaxation method is easy-
to-implement, and is known to be excellent with the pegging test.

In the conventional and ordinary Lagrangian relaxation method, we need
to deal with multipliers, called the Lagrangian multipliers, associated with
the constraints of the original problem. Therefore, directly applying the
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Lagrangian relaxation method to the standard IP formulation of CPP is
prohibitive even for relatively small instances as it has numerous constraints.
As a matter of fact, Charon and Hudry [20] encountered the same difficulty
for LOP whose number of the constraints is too large, and failed to solve
middle-sized instances.

Then, in order to make the Lagrangian relaxation method applicable
for middle sized instances of LOP, Sukegawa et al. [84] proposed to simply
modify an approach for the multipliers. A large part of multipliers are
disregarded basically, but some of them will be added if needed. By this
simple modification, they succeeded to solve middle-sized instances of LOP.
Therefore, we employ their approach in our algorithm for CPP.

Our preliminary numerical experiments confirmed that the approach of
Sukegawa et al. [84] is also effective for CPP. Especially, for the benchmark
instances of Régnier’s problem, our preprocessing algorithm efficiently re-
duces the problems size. The reduced problems can be solved by a powerful
optimization software, Gurobi Optimizer, in seconds on an ordinary PC.

On reformulation

Our reformulation is motivated by a recent result in Dinh and Thai [30].
Dinh and Thai [30] dealt with the modularity maximization problem (MMP).
As a matter of fact, MMP is known to be formulated as CPP. Therefore,
several researchers tried to solve MMP via the standard IP formulation of
CPP [2, 30, 64, 83].

Using a property of MMP in the objective function, Dinh and Thai [30]
revealed a certain class of redundant constraints in the standard IP formu-
lation of CPP, in a theoretical manner. Interestingly, in Dinh and Thai [30],
the redundant constraints are characterized by a simple sufficient condition.
Therefore, the number of the constraints can easily be reduced in advance.
Moreover, their preliminary numerical experiments showed that this rewrit-
ing shortens computation time by a software, as well as saves computational
resources required.

We address a generalization of the above result in Dinh and Thai [30].
Simplifying their analysis, we obtain a sufficient condition for the redun-
dant constraints in the standard IP formulation of CPP, for any objective
function. Our generalization enables us to use the approach of Dinh and
Thai [30] for other important subclasses of CPP, such as Régnier’s problem.
Also, interestingly, we observe that our sufficient condition is slightly better
than that of Dinh and Thai [30], even when the instances are limited to
those of MMP.

Also, it should be noted that our and Dinh and Thai’s approach is quite
different from the existing studies. For problems with a large number of
constraints, using the cutting plane method would be the most common
approach. As a matter of fact, the exact algorithms proposed so far for

6



CPP [38, 72] are based on a cutting plane method.
In the cutting plane methods, basically, we aim at finding a set of

“needed” constraints for solving the problem. In general, we solve many
auxiliary problems, called the relaxation problems, in order to find the de-
sired constraints. If an optimal solution for a relaxation problem is feasible
at the original problem, then, we are done, that is, the current solution is
optimal at the original problem. Otherwise, we need to find a new constraint
which cuts off the current (infeasible) solution. Then, we again solve a new
relaxation problem obtained from the previous one by adding several new
constraints.

In contrast, our approach aims at theoretically characterizing “never
needed”, that is, redundant constraints using a problem structure. There-
fore, the number of constraints treated in the algorithms can easily be re-
duced, without solving a large number of auxiliary problems like the cutting
plane methods. This property is the biggest advantage of our approach.

1.2 Organization

The remainder of this thesis is organized as follows.
In Chapter 2, we introduce the clique partitioning problem (CPP) and

its standard IP formulation, which is the main focus of this study. In order
to show the utility of CPP, we show how Régnier’s problem [76] reduces to
CPP. The main contributions of this thesis are summarized in Chapter 3
and Chapter 4, respectively.

Chapter 3 summarizes our result on a preprocessing algorithm for CPP.
First, we explain our basic idea. Then, we introduce the pegging test and
the Lagrangian relaxation, which are the main parts of our algorithm. By
this procedure, redundant decision variables are detected. After that, we
introduce our reduction procedure. This reduction procedure rewrites the
given instances into smaller but equivalent ones, based on the redundant
variables. In order to see its performance, we conducted preliminary numer-
ical experiments on several benchmark instances form real world, as well as
randomly generated instances.

Chapter 4 summarizes our result on a reformulation of CPP. First, we
introduce the recent result by Dinh and Thai [30], which is the motiva-
tion of our study. Then, we give a sufficient condition for the redundant
constraints in the standard IP formulation of CPP, by generalizing and sim-
plifying their analysis. Next, we consider to apply our analysis to the linear
ordering problem (LOP). To this end, we explain LOP and its standard IP
formulation. Then, we give several sufficient conditions for the redundant
constraints in the formulation. In order to see how much we can detect the
redundancy from real world instances, preliminary numerical experiments
are conducted.
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In Chapter 5, from a theoretical viewpoint of computational complexity,
we show that an important subclass of CPP is intractable in theory, that
is, NP-hard. The aim is to simply correct the proof in the recent work by
Punnen and Zhang [75].

Finally, in Chapter 6, we summarize this thesis, and mention the future
works, especially, focusing on a relationship with the new and active topic
in the area of the combinatorial optimization [48].
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Chapter 2

Problem

In this chapter, we introduce the clique partitioning problem (CPP). First,
we give the formal definition of CPP. Then, we explain the standard inte-
ger programming (IP) formulation, which is the main focus of this study.
In order to illustrate the usefulness of CPP, we also show how Régnier’s
problem [76] can be formulated as CPP.

2.1 Clique Partitioning Problem (CPP)

In this section, we define the clique partitioning problem. For simplicity, we
define CPP as an optimization problem on graphs.

We denote an undirected graph G with vertex set V and edge set E by
G = (V,E). An edge e ∈ E with endnodes u, v ∈ V is denoted by {u, v}.
For a subset S ⊆ V of vertices, we denote the set of edges in G with both
endnodes in S by E(s), that is,

E(s) = {{u, v} ∈ E | u, v ∈ S}.

For a set of subsets S1, S2, . . . , Sk ⊆ V of vertices, let

E(S1, S2, . . . , Sk) :=

k∪
i=1

E(Si).

A graph is called complete if every pair of its vertices is connected by an
edge. A clique is a complete subgraph. We say that Γ = {W1,W2, . . . ,Wk}
is a partition of V if

Wi ∩Wj = ∅ (i, j with 1 ≤ i < j ≤ k),

V = W1 ∪W2 ∪ · · · ∪Wk, and

Wi ̸= ∅ (1 ≤ i ≤ k).
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A set A of edges in a graph G = (V,E) is called a clique partitioning of
G if there is a partition Γ = {W1,W2, . . . ,Wk} of V such that

A = E(W1,W2, . . . ,Wk)

and the subgraph (Wi, E(Wi)) induced by Wi is a clique for 1 ≤ i ≤ k. Note
that k is not fixed. When G is complete, we observe that every partition
of V induces a clique partitioning. In Figure 2.1, we show two examples of
clique partitioning.

The clique partitioning problem (CPP) is formally defined as follows [38].
Given a complete graph K = (V,E) with weights ce ∈ R for all e ∈ E, find
a clique partitioning A ⊆ E such that

c(A) :=
∑
e∈A

ce

is as large as possible.
In what follows, without loss of generality, we only focus on the cases

when G is complete. When G is not complete, assigning a large negative
weight ce for each e /∈ E, we could obtain an equivalent instance whose
associated graph is complete.

Interpretation and advantage

It should be noted that the edge weights ce (e ∈ E) can take both negative
and positive value. When applied to clustering tasks, the vertex set cor-
responds to the set of target items, and the edge weight ce of e = {u, v}
simulates a “similarity” of item u and item v. Then, cliques are used to
model “clusters”, and hence we often call a clique cluster. We note that
cluster does not necessarily means clique in general.

If ce takes a large positive value, u and v are similar, while they are not
similar if ce takes a large negative value. Roughly speaking, in CPP, we
want to take edges with large positive weights as much as possible within
the cliques.

As we see from Figure 2.1, A clique partitioning corresponds to an equiv-
alence relation, as each component, clique, can be regarded as representing
an equivalence class. This is the reason why Régnier’s problem, aggrega-
tion problem of equivalence relations, can be formulated as CPP, as we will
confirm later.

Also, we observe that the number k of cliques, that is, clusters is not
fixed in the definition of the clique partitioning. It is said that this property
is useful in practice because we do not need to bother about the number of
clusters in advance, and an appropriate number of clusters is automatically
determined as we solved the problem.

10



A1 ⊆ E A2 ⊆ E

- A1: corresponds to a partition of V into 5 cliques

- A2: corresponds to a partition of V into 4 cliques

- Dotted lines: edges not included in the clique partitioning

Figure 2.1: Two examples of clique partitioning A1 and A2 in an undirected
graph G = (V,E) with |V | = 12 vertices and |E| = 23 edges.

2.2 Integer Programming (IP) Formulation

In this section, we introduce the conventional integer programming (IP)
formulation discussed in Grötschel and Wakabayashi [38], which is the focus
of our study. For notational convenience, in what follows, let

V := {1, 2, . . . , n},
V 2
̸= := {(i, j) | i, j ∈ V, i ̸= j},

V 3
̸= := {(i, j, k) | i, j, k ∈ V, i ̸= j, j ̸= k, k ̸= i}.

For a given clique partitioning A induced by Γ = {W1,W2, . . . ,Wk}, let
xij be a 0-1 decision variable defined as

xij =

{
1 (i, j ∈ Wl for some l ∈ {1, 2, . . . , k}),
0 (otherwise)

((i, j) ∈ V 2
̸=),

then CPP is formulated as

maximize
1

2

∑
(i,j)∈V 2

̸=

cijxij

subject to xij ∈ {0, 1} ((i, j) ∈ V 2
̸=) (binary),

xij − xji = 0 ((i, j) ∈ V 2
̸=) (symmetry),

xij + xjk − xik ≤ 1 ((i, j) ∈ V 3
̸=) (transitivity).

Of course, the value of xij must coincide with that of xji. This is guaranteed
by the symmetry constraint. Also, by the definition of the clique partition-
ing, if vertices i and j are in the same clique, and vertices j and k are in
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the same clique, then vertices i and k must be in the same clique. In other
words,

{i, j} ∈ A ∧ {j, k} ∈ A ⇒ {i, k} ∈ A.

This is guaranteed by the third constraints, called the transitivity constraint,
as xij = xjk = 1 implies xik = 1 from xij + xjk − xik ≤ 1.

We say that a solution x = (xij)(i,j)∈V 2
̸=
is feasible if it satisfies all the

constraints. Also, a feasible solution x is said to be optimal if it attains the
maximum of the problem.

Halving the decision variables

Preparing both of xij and xji is unnecessary as they always take the same
value. Therefore, in general, we substitute xij for xji for all i, j ∈ V with
i < j, and consider the following equivalent problem [38]:

(PCPP) :

maximize
∑

(i,j)∈V 2
<

cijxij

subject to xij ∈ {0, 1} ((i, j) ∈ V 2
<), (binary),

xij + xjk − xik ≤ 1 ((i, j, k) ∈ V 3
<) (type U),

xij − xjk + xik ≤ 1 ((i, j, k) ∈ V 3
<) (type V ),

−xij + xjk + xik ≤ 1 ((i, j, k) ∈ V 3
<) (type W ).

where
V 2
< := {(i, j) | i, j ∈ V, i < j}, and

V 3
< := {(i, j, k) | i, j, k ∈ V, i < j < k}.

We observe that the symmetry constraints vanished, and the number of the
decision variables is halved. On the other hand, the inequality constraints
separated into three types. We call them (type U), (type V ), and (type W )
respectively.

Existing studies

Grötschel and Wakabayashi [38] proposed a cutting plane algorithm based
on their polyhedral study [39] on the clique partitioning polytope, which is the
convex hull of the feasible region of (PCPP). More specifically, they studied
the facial structure of the clique partitioning polytope, and found several
useful facet defining inequalities of the polytope. Facet defining inequalities
are powerful constraints for cutting off the infeasible solutions generated by
the cutting plane algorithms.

As a matter of fact, the transitivity constraint of (PCPP) is known to be a
fundamental facet defining inequality of the clique partitioning polytope [39].
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Grötschel and Wakabayashi [38] confirmed that considering only a small
fraction of the transitivity constraints often suffices to solve the instances of
CPP from real world, which implies that there exists a great “redundancy”
in the constraints in the formulation (PCPP). For subsequent researches on
exact methods for CPP, see [28, 73].

However, as pointed out by Oosten et al. [72], the transitivity constraints
do not suffice to solve the instances of the group technology problem, an
important subclass of CPP. Then, they addressed a better understanding
of the facial structure of the clique partitioning polytope, and developed a
sophisticated algorithm for efficiently solving relatively small instances of
the group technology problem.

In light of the above difficulties, heuristic methods, which can not guar-
antee the optimality of the final solution, have been extensively studied in
the literature [6, 14, 19, 51, 52, 80, 87].

Our motivation

The point is that the standard IP formulation (PCPP) above has n(n−1)/2 =
O(n2) binary decision variables, and n(n − 1)(n − 2)/2 = O(n3) inequality
constraints, all of which grow very rapidly as n grows.

As pointed out by Kochenberger et al. [52, 87], a main drawback of the
existing algorithms is on that they employed the standard IP formulation
(PCPP). However, intuitively, (PCPP) may generally contain some redundant
constraints. In other words, some constraints may be satisfied automatically
as the objective function is maximized.

As a matter of fact, as mentioned above, Grötschel and Wakabayashi [38]
experimentally confirmed that, for many relatively small instances arising
from qualitative data analysis, their cutting plane algorithm terminates
when only a small fraction of transitivity constraints are added. In other
words, there might be a great redundancy in the transitivity constraints of
the formulation (PCPP).

In a similar manner, for some decision variables xij with a large positive
or negative weight cij , we may easily estimate the value of xij at optimal.
If we could find such variables, we may reduce the problem size as such
redundant variables are no longer variables. The results obtained in this
study are motivated by these simple intuitions.

2.3 Example: Régnier’s problem

In this section, we explain Régnier’s problem, an important special case of
CPP, and show how it can be formulated as an instance of CPP. In our pre-
liminary numerical experiments, several benchmark instances of Régnier’s
problem are employed.
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Table 2.1: 6 wild cats characterized by 3 qualitative attributes [38].

Qualitative Attributes

Name Pelt Fur Ears

Lion uniform short round

Tigre stripe short round

Jaguar spots short round

Leopard spots short round

Once spots long round

Serval spots short pointed

Suppose that we are given Table 2.1, which is a part of the table “Classi-
fication of wild cats” in Grötschel and Wakabayashi [38], and also that now
we want to classify the wild cats into several similar groups, that is, clus-
ters. The idea of Régnier [77] is to assume that each “qualitative” attribute
defines an equivalence relation on the set of the target items

V = {Lion,Tigre, . . . , Serval}.

For instance, one could say that the qualitative attribute “Pelt” defines three
equivalence classes, “uniform”, “stripe”, and “spots”, that is, the following
partition of V ,

{{Lion}, {Tigre}, {Jaguar,Leopard,Once,Serval}}.

Then, we could obtain three equivalence relations, ∼Pelt, ∼Fur, and ∼Ears

corresponding to these qualitative attributes.

Formulation as CPP

As mentioned above, Régnier [77] proposes to aggregate the set of equiva-
lence relations into one equivalence relation. Now, suppose that we are given
q equivalence relations ∼1,∼2, . . . ,∼q on V = {1, 2, . . . , n}, in general.

Régnier [77] defines a distance d(∼s,∼t) of two equivalence relations ∼s

and ∼t as their total number of disagreements, that is,

d(∼s,∼t) := |{{i, j} | (i ∼s j ∧ i ̸∼t j) ∨ (i ̸∼s j ∧ i ∼t j)}|.

If we express equivalence relations ∼1,∼2, . . . ,∼q and a solution ∼X as
binary vectors as follows

rkij =

{
1 (i ∼k j),

0 (otherwise)
(k ∈ {1, 2, . . . , q}),
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and

xij =

{
1 (i ∼X j),

0 (otherwise),

for each (i, j) ∈ V 2
<, then we have

d(∼k,∼X) =
∑

(i,j)∈V 2
<

(
rkij − xij

)2
=

∑
(i,j)∈V 2

<

rkij +
(
1− 2rkij

)
xij .

Recall that V 2
< := {(i, j) | i, j ∈ V, i < j}.

The Régnier’s problem [77] aims at finding an equivalence relation ∼X

that minimizes the total distance form the given equivalence relations ∼1

,∼2, . . . ,∼q, which can be simplified to

q∑
k=1

d(∼k,∼X) = c+
∑

(i,j)∈V 2
<

(
q∑

k=1

(1− 2rkij)

)
xij = c+

∑
(i,j)∈V 2

<

c̃ijxij

where c is a constant term depending only on ∼1,∼2, . . . ,∼q. In order to be
an equivalence relation, (xij)(i,j)∈V 2

<
must satisfy the constraints of (PCPP).

Therefore, setting cij = −c̃ij , we observe that the instances of Régnier’s
problem reduce to an instances of (PCPP). This implies that Régnier’s prob-
lem is a special case of CPP.

The values cij can be regarded as “similarity” of the two items i and j.
For instance, in Table 2.1, this similarity for “Jaguar” and “Leopard” is 3,
while that of “Once” and “Serval” is −1. All the values can be summarized
as the following symmetric matrix:

– 1 1 1 −1 −1

– 1 1 −1 −1

– 3 1 1

– 1 1

– −1

–

 .

Finally, we note that Régnier’s problem [77] is referred to as Zahn’s
problem [91] when the number of given equivalence relations, that is, q = 1,
and the given relation is not necessarily an equivalence relation. It is not
difficult to see that Zahn’s problem is also formulated as an instance of CPP.
For the details, see de Amorim et al. [6] for instance.
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Chapter 3

Preprocessing

As we observed in the previous chapter, the standard IP formulation (PCPP)
suffers from numerous constraints as well as decision variables. This chapter
discusses a methodology for detecting and removing a redundancy from
decision variables, which leads to a problem size reduction.

Recall that redundant decision variables refer to decision variables whose
values at optimal solutions are determined, in this study. Therefore, redun-
dant decision variables can be treated as constant terms, which leads to a
problem size reduction.

Contents

More specifically, in this chapter, we propose a specific preprocessing algo-
rithm for reducing the problem size of CPP. Our preprocessing algorithm
consists of two parts.

The first is an algorithm for detecting redundant decision variables. We
call this algorithm basic algorithm. The second is a reduction procedure for
rewriting a given instance into a smaller but equivalent one, based on the
redundant variables detected by the basic algorithm.

Organization

First, we explain the basic idea for detecting the redundant decision vari-
ables. After that, the Lagrangian relaxation and the pegging test are in-
troduced as specific tools for realizing the idea. So far, we do not use any
structure of CPP.

Next, utilizing the structure of CPP, that is, transitivity, we propose a
way for strengthening the conventional pegging test in our basic algorithm.
Then, we explain our simple reduction procedure. Finally, to see its ef-
fectiveness, we report on our preliminary numerical experiments on several
benchmark instances of Régnier’s problem as well as randomly generated
instances.
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3.1 Basic Idea

In this section, we first explain the basic idea for finding redundant decision
variables. After that, the Lagrangian relaxation and the pegging test are
introduced as specific tools for realizing the idea.

Let (P ) be some optimization (maximization) problem, and denote by
ω(P ) its optimal value. Suppose that there is a binary decision variable
named xi in (P ). We denote by (P | xi = ξ) the subproblem obtained from
P by setting xi = ξ ∈ {0, 1}. Then, if we have

ω(P | xi = ξ) < ω(P ), (3.1.1)

we can conclude that there is no optimal solution satisfying xi = ξ. In other
words, to solve (P ), we can fix the value of xi at 1− ξ. Therefore, we could
reduce the number of the decision variables by one.

However, in general, computing ω(P | xi = ξ) and ω(P ) would be as
hard as solving the original problem (P ). Therefore, we cannot use the above
discussion directly to a problem size reduction. On the other hand, one could
consider to “indirectly” prove the above inequality (3.1.1) by estimating an
upper and lower bounds of ω(P | xi = ξ) and ω(P ), respectively.

More specifically, if we know a value ω with ω ≤ ω(P ), and a value
ω(P | xi = ξ) with ω(P | xi = ξ) ≤ ω(P | xi = ξ), then we can concluded
that xi must be 1− ξ in any optimal solution if

ω(P | xi = ξ) < ω (3.1.2)

holds. This is the basic idea of the pegging test. Needless to say, the key for
success depends on the qualities of ω(P | xi = ξ) and ω, and the computa-
tional burden for computing these two values.

How to get sharp ω(P | xi = ξ) and ω

To this end, the Lagrangian relaxation has been employed in the litera-
ture [83, 84, 89, 90] to calculate sharp ω(P | xi = ξ) efficiently. The La-
grangian relaxation method is known as an effective method for integer
programming problems including (PCPP) [32, 34, 54].

In the approaches based on the Lagrangian relaxation, in general, we
first obtain an upper bound ω(P ). The strongest point of this approach is
that ω(P | xi = ξ) can easily be computed from ω(P ) by subtracting some
value for each decision variable xi and for each ξ ∈ {0, 1}, as we will confirm
later.

On the other hand, we also need to calculate sharp ω efficiently. To
this end, in our algorithm, we employ the noising method by Charon and
Hudry [19], which is known to be very effective and stable for CPP.
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3.1.1 Lagrangian Relaxation

Then, let us explain the details of the Lagrangian relaxation. Here, we show
how the Lagrangian relaxation method woks for (PCPP).

In the Lagrangian relaxation method, we remove the transitivity con-
straints from the constraints, and add them to the objective function as
a penalty function. More formally, we consider to solve the following La-
grangian relaxation problem:

(LRCPP(u,v,w)) :

maximize
∑

(i,j)∈V 2
<

cijxij +
∑

(i,j,k)∈V 3
<

uijk(1− xij − xjk + xik)

+
∑

(i,j,k)∈V 3
<

vijk(1− xij + xjk − xik)

+
∑

(i,j,k)∈V 3
<

wijk(1 + xij − xjk − xik)

subject to xij ∈ {0, 1} ((i, j) ∈ V 2
<)

where

(u,v,w) =
(
(uijk)(i,j,k)∈V 3

<
, (vijk)(i,j,k)∈V 3

<
, (wijk)(i,j,k)∈V 3

<

)
is a non-negative vector called the Lagrangian multiplier vector.

As the name suggests, the penalty function imposes a penalty for vio-
lating the transitivity constraints. It is not difficult to see that

ω(LRCPP(u,v,w)) ≥ ω(PCPP)

for any (u,v,w) ≥ 0 as any feasible solution x of (PCPP) is also feasible
at (LRCPP(u,v,w)), and the objective value of x in (LRCPP(u,v,w)) is
grater than or equal to that of x in (PCPP).

Let r(u,v,w)ij denote the coefficient of variable xij in the objective
function of (LRCPP(u,v,w)). More specifically, the coefficient r(u,v,w)ij
is given by

cij −
∑

k:(i,j,k)∈V 3
<

uijk −
∑

k:(k,i,j)∈V 3
<

ukij +
∑

k:(i,k,j)∈V 3
<

uikj

−
∑

k:(i,j,k)∈V 3
<

vijk +
∑

k:(k,i,j)∈V 3
<

vkij −
∑

k:(i,k,j)∈V 3
<

vikj

+
∑

k:(i,j,k)∈V 3
<

wijk −
∑

k:(k,i,j)∈V 3
<

wkij −
∑

k:(i,k,j)∈V 3
<

wikj .

We observe that the Lagrangian relaxation problem (LRCPP(u,v,w)) is
easily solved by just checking the signs of the above coefficients. How-
ever, needless to say, the quality of ω(LRCPP(u,v,w)), that is, the close-
ness to ω(PCPP), depends on the choice of the Lagrangian multiplier vector
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(u,v,w). The problem to find a Lagrangian multiplier vector (u,v,w) that
minimizes the corresponding upper bound ω(LRCPP(u,v,w)) is referred to
as the Lagrangian dual problem.

It is well-known that the subgradient method [32, 34, 54] efficiently (ap-
proximately) solves the Lagrangian dual problem. Therefore, we simply
employ the subgradient method in our algorithm. Although there are sev-
eral parameters for the method, we employ a most common approach. See
Umetani and Yagiura [85] for the choice of parameters in the subgradient
method.

A drawback and our approach

Charon and Hudry [20] proposes an algorithm using the Lagrangian relax-
ation method for the linear ordering problem (LOP). However, their algo-
rithm was only applicable to relatively small instances, with up to 100 items,
as we need to deal with numerous multipliers corresponding to the numerous
constraints in its standard formulation.

In order to overcome this difficulty, Sukegawa et al. [84] proposed to
simply modify the Lagrangian relaxation method in such a way that a large
part of the multipliers are disregarded, that is, set to 0. Their algorithm
also uses the pegging test in its main part, and succeeds to solve a real world
problem with 347 items arising from a sports team ranking problem.

Since we also encounter a large number of multipliers in (LRCPP(u,v,w)),
we employ the approach in Sukegawa et al. [84], and make the Lagrangian
relaxation method applicable to middle-sized instances of CPP.

3.1.2 Pegging Test

Suppose that x̄ is an optimal solution of (LRCPP(u,v,w)). Furthermore,
suppose that we have x̄ij = 0 for some (i, j) ∈ V 2

<. Then, the coefficient
r(u,v,w)ij of xij in (LRCPP(u,v,w)) must be non-positive.

In this case, we have

ω(LRCPP(u,v,w) | xij = 1) = ω(LRCPP(u,v,w)) + r(u,v,w)ij .

On the other hand, we observe that the left hand side ω(LRCPP(u,v,w) |
xij = 1) is an upper bound of the optimal value ω(PCPP | xij = 1) of the
subproblem (PCPP | xij = 1). Therefore, if we have

ω > ω(LRCPP(u,v,w)) + r(u,v,w)ij

for some lower bound ω on the optimal value ω(PCPP) of the original problem
(PCPP), we can conclude that there is no optimal solution x∗ with x∗ij = 1.
In other words, we can fix the value of the decision variable xij at 0 without
loss of optimality, which reduces the number of decision variables.
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A similar argument holds for the case with x̄ij = 1. More formally, we
have the following simple proposition.

Proposition 1. Let x̄ be an optimal solution of the Lagrangian relaxation
problem (LRCPP(u,v,w)). If

ω(LRCPP(u,v,w))− ω < |r(u,v,w)ij | (3.1.3)

holds, then x∗ij = x̄ij for any optimal solution x∗ of (PCPP).

We say that a decision variable xij is pegged at x̄ij if the inequality (3.1.3)
in Proposition 1 holds for some Lagrangian multiplier vector (u,v,w). We
observe that it is very easy to decide whether the above inequality holds or
not, for each decision variables, once we solved the Lagrangian relaxation
problem (LRCPP(u,v,w)).

3.2 Algorithm

In this section, we explain our preprocessing algorithm for detecting the
redundant decision variables in (PCPP). As already mentioned, our pre-
processing algorithm consists of two parts: basic algorithm and reduction
procedure. We show how the transitivity of CPP can be utilized in the basic
algorithm as well as the reduction procedure.

3.2.1 Basic Algorithm

Basically, we first obtain an (nearly) optimal Lagrangian multiplier vector
(ū, v̄, w̄) by the subgradient method, and then, apply the pegging test for
this vector (ū, v̄, w̄), that is, check the inequality (3.1.3) in Proposition 1 for
each decision variable. The pegged variables are treated as constant terms
in our algorithm. This is the basic procedure frequently employed in our
algorithm.

However, as mentioned above, in order to make our algorithm applicable
for middle-sized instances, we need to avoid for dealing with a large number
of multipliers. To this end, like Sukegawa et al. [84], we consider to disregard
a large part of the multipliers by fixing the values of the multipliers to zero.
To this end, we introduce U, V,W ⊆ V 3

< as sets of indices of the multipliers
under consideration, for the transitivity constraints (type U), (type V ), and
(type W ), respectively.

We start with (U, V,W ) such that its number, |U |+|V |+|W |, is manage-
able size, and gradually make (U, V,W ) larger. Once (U, V,W ) is updated,
we again apply the basic procedure, that is, the subgradient method and
the pegging test, mentioned above.
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(P0, P1): original (P0, P
′
1): Rule A (P ′

0, P
′
1): Rule B

- Solid lines: a set of variables pegged at 1

- Dotted lines: a set of variables pegged at 0

Figure 3.1: Application of Rule A and Rule B for a graph G with (P0, P1).

Utilizing the transitivity for detecting more redundancy

Let P0 ⊆ E (resp. P1 ⊆ E) be a set of edges corresponding to the decision
variables pegged at 0 (resp. 1) by our algorithm. In order for a problem size
reduction, we want to peg as many decision variables as possible. Namely,
we want to make P0 and P1 as large as possible.

The point is how to utilize the structure of CPP for the pegged vari-
ables. We observe that P0 and P1 can be enlarged by the following simple
two procedures, which are illustrated in Figure 3.1.

Rule A (enlargement of P1):
Suppose that we have some variable, say xij , pegged at 1. In other words,
now, we know that vertex i and j must be in the same clique in the optimal
solutions. Furthermore, suppose that the same holds for j and k. Then,
even if {i, k} /∈ P1, we could update P ′

1 as P1 ∪ {{i, k}} due to the transi-
tivity constraint xij + xjk − xik ≤ 1. Such a procedure can easily be done
systematically by applying the depth-first search on a graph (V, P1).

Rule B (enlargement of P0):
Suppose that the graph (V, P ′

1) is divided into several connected components

{(V 1, P 1
1 ), (V

2, P 2
1 ), . . . , (V

l, P l
1)}.

Now, by the above procedure Rule A, any edge e connecting a pair of vertices
in the same component satisfy e ∈ P1. Suppose that e = {i, j} ∈ P0 for some
i ∈ V s and j ∈ V t with s ̸= t. Then, to meet the transitivity constraints,
e′ = {i′, j′} ∈ P0 for each i′ ∈ V s and j′ ∈ V t. Therefore, we can update P0

to P ′
0 based on this simple fact.
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Table 3.1: Formal description of the basic algorithm.

Basic Algorithm:

Input: an undirected complete graph G = (V,E) and an edge weight func-
tion c : E → R.

Output: a pair (P0, P1) ⊆ E × E corresponding to the decision variables
pegged at 0 and 1, respectively.

Step 0 (Initialization): Let (U, V,W ) be some small set. Compute ω by
the noising method [19]. Below, disregard the multipliers whose cor-
responding indices are not in (U, V,W ), that is, fix them at 0.

Step 1 (Lagrangian relaxation and pegging test): Apply the subgra-
dient method [32, 34, 54] to obtain an (nearly) optimal Lagrangian
multiplier vector (ū, v̄, w̄) for the current (U, V,W ). Perform the peg-
ging test for (ū, v̄, w̄) to obtain (P0, P1).

Step 3 (enlargement of (P0, P1) and termination): By Rule A and
Rule B, obtain enlarged (P ′

0, P
′
1). If the improvement of the upper

bound becomes sufficiently small, stop.

Step 4 (update of (U, V,W )): Find transitivity constraints violated by
an optimal solution of (LRCPP(ū, v̄, w̄)) at hand, and go to Step 1
by adding the corresponding indices to the current (U, V,W ).

In Table 3.1, we show the formal description of the basic algorithm. In
Step 4 (update of (U, V,W )), for large n, adding all the violated transitivity
constraints may run out of the computational resources immediately. There-
fore, we impose a limit on the number of constraints added in each Rule As
in Grötschel and Wakabayashi [38].

Finally, we note that the pegging test can easily be strengthened when
P0 or P1 is non-empty. Suppose that xst is not pegged yet, while we know
subsets S and T of V such that i ∈ S implies {i, s} ∈ P1 and j ∈ T implies
{j, t} ∈ P1. Now, assume that there is an optimal solution x∗ with x∗st = 1.
Then, by the definition of P1, we have x∗ij = 1 for each i ∈ S and for each
j ∈ T . Therefore, we can conclude that

ω(LRCPP(u,v,w) | xst = 1, xab = ξ (∀{a, b} ∈ Pξ),

xij = 1 (∀i ∈ S,∀j ∈ T ))
(3.2.1)

is an upper bound of the subproblem with xst = 1, while the naive pegging
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test in Proposition 1 estimate it by

ω(LRCPP(u,v,w) | xst = 1, xab = ξ (∀{a, b} ∈ Pξ)) (3.2.2)

which is larger, that is, worse than (3.2.1) as (3.2.1) has more constraints
than that of (3.2.2), in general. In sum, more formally, we have the following.

Theorem 1 (Sukegawa et al. [83]). Let x̄ be an optimal solution of the
Lagrangian relaxation problem (LRCPP(u,v,w)). If

ω(LRCPP(u,v,w))− ω <
∑

(i,j)∈Rξ

|r(u,v,w)ij | (3.2.3)

holds for some ξ ∈ {0, 1}, then we have x∗st = 1− ξ for any optimal solution
x∗ of the original problem, where

Rξ = {(i, j) ∈ ST= | x̄ij = ξ} ∪ {(i, j) | {i, j} ∈ P(1−ξ)}

and ST= is a set of indices corresponding to the edges connecting S and T .

Therefore, in the basic algorithm shown in Table 3.1, we employ the inequal-
ity (3.2.3) in place of (3.2.2) when P0 or P1 is non-empty. Our preliminary
numerical experiments confirmed that (3.2.3) is considerably superior to
(3.2.2) for finding redundant variables.

3.2.2 Reduction Procedure

Next, we consider to reduce the problem size based on (P0, P1) obtained
from the basic algorithm in Table 3.1 as follows.

Rule A’ (utilizing P1):
We first apply a simple operator “shrink” to the vertices for utilizing P1.
Suppose that {u1, u2} ∈ P1. In other words, we now know that vertex u1
and u2 must be in the same clique at any optimal solution. Then, we shrink
these two vertices into a single vertex u without loss of optimality.

More specifically, we obtain a smaller but equivalent new instance (G′ =
(V ′, E′), c′) of CPP from the original one (G = (V,E), c) as follows. Let
V ′ = V ∪ {u} \ {u1, u2}, E′ = { {i, j} | i, j ∈ V ′, i ̸= j }, and

c′e =

{
c{i,j} (i ̸= u and j ̸= u)

c{u1,j} + c{u2,j} (i = u and j ̸= u)
(∀e = {i, j} ∈ E′).

The optimal values of these two instances differ by a constant cu1,u2. It is
not difficult to see that the following argument is easily generalized for the
shrinking of any number of vertices.
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Table 3.2: Formal description of the reduction procedure.

Reduction Procedure:

Input: Output of the basic algorithm, that is, a pair (P0, P1) ⊆ E × E
corresponding to the decision variables pegged at 0 and 1, respectively.

Output: an undirected complete graph G′ = (V ′, E′) and an edge weight
function c′ : E → R, and P ′

0 ⊆ E corresponding to the decision vari-
ables pegged at 0 in the reduced instance (G′ = (V ′, E′), c′).

Step 0 (utilization of P1): Obtain (G′ = (V ′, E′), c′) by Rule A’.

Step 1 (utilization of P0): By Rule B’, obtain P ′
0 from P0.

Rule B’ (utilizing P0):
Let (G′ = (V ′, E′), c′) be the reduced instance obtained from the original
one (G = (V,E), c) by Rule A’. Suppose that {s′, t′} is a pair of vertices
of V ′ obtained by shrinking a set of vertices S and T of the original graph
G = (V,E), respectively.

If there is a pair of vertices s ∈ S and t ∈ T such that the corresponding
variables are pegged at 0, that is, (s, t) ∈ P0 or (t, s) ∈ P0, then we can
conclude that s′ and t′ cannot be in the same clique at any optimal solution
of the reduced instance (G′ = (V ′, E′), c′). In this way, we could obtain a set
P ′
0 of indices corresponding to the decision variables which can be pegged

at 0 in the reduced instance (G′ = (V ′, E′), c′).

One may consider to apply the above reduction procedure in the basic
algorithm. However, frequently performing such a rewriting may cause a
computational burden. Therefore, we propose to apply this reduction pro-
cedure only once after the application of the basic algorithm. In Table 3.2,
we show the formal description of the reduction procedure.

3.3 Preliminary Numerical Experiments

In this subsection, we report on the preliminary numerical experiments of
our preprocessing algorithm. We coded the preprocessing algorithm in Java,
and run it on anWindows-based PC with an Intel Core 2, 1.79 GHz processor
and 2.99 GB RAM.

In what follows, we briefly summarize this preliminary numerical exper-
iments.
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We first show the detailed results on the basic algorithm for the real world
benchmark instances of Régnier’s problem shown in Table 3.3. Then, in
order to see its performance for larger, middle-sized instances, we introduce
several randomly generated instances shown in Table 3.5, which imitates the
real world instances in Table 3.4, and show the detailed results of the basic
algorithm on these instances in Table 3.6.

Although the basic algorithm is not designed to solve the instances to
optimality, but to reduce the problem size, we confirmed that it solves several
instances we tested to optimality, see Table 3.4 and Table 3.6 for the details.
For the instances which can not be solved by the basic algorithm, we apply
the reduction procedure to obtain small reduced instances. The results are
summarize in Table 3.7.

Finally, we show the results on the comparison of our approach with
the naive one directly applying an optimization software. To this end, we
employ the Gurobi Optimizer. More specifically, for each instance, we show
the sum of the computation time for our preprocessing algorithm and that
for solving the reduced instances (by Gurobi Optimizer) to optimality, and
compare it by that for directly applying Gurobi Optimizer to the instance.
See Table 3.8 for the details.

3.3.1 On Basic Algorithm

In order to evaluate the performance of the basic algorithm, we basically
employ the following three criteria.

– # Redundant Variables (%): the percentage of the redundant variables
detected by the basic algorithm, that is, 100(|P0| + |P1|)/|V 2

<|, where
the symbol “–” means that the basic algorithm solves the instance to
optimality before finding any redundant variables.

– Comput. Time (s): the computation time in seconds required for the
basic algorithm.

– Status: Solved (solved to optimality by using only the basic algo-
rithm), Reduced (several redundant variables are found), or Unchanged
(No redundant variables are found).

Benchmark instances

In Table 3.3, we show the details of the benchmark instance of Régnier’s
problem we tested. All of these instances are obtained from Grötschel and
Wakabayashi [38] or Brusco and Köhn [14]. In Table 3.4, we show the results
of our basic algorithm for these instances.

We observe that all the instances but Workers are solved to optimality
by the basic algorithm. Although the basic algorithm is not designed to
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Table 3.3: The benchmark instances of Régnier’s problem.

Name Source # Vertices # Relations Correlatedness

Wildcats [38] 30 14 0.76

Cars [38] 33 13 0.78

Workers [38] 34 13 0.73

Cetacea [38] 36 15 –

Micro [38] 40 14 0.71

Soybean [14] 47 21 0.71

UNO [38] 54 3 0.69

UNO1b [38] 139 3 0.93

UNO2b [38] 145 15 0.86

UNO1a [38] 158 3 0.91

UNO2a [38] 158 15 0.86

Table 3.4: Results of the basic algorithm for the instances in Table 3.3.

Instance Results of Basic Algorithm

# Redundant Comput.

Name # Vertices Variables (%) Time (s) Status

Wildcats 30 89.1 0.02 Solved

Cars 33 – 0.07 Solved

Workers 34 92.3 0.12 Reduced

Cetacea 36 – 0.01 Solved

Micro 40 82.9 0.17 Solved

Soybean 47 – 0.03 Solved

UNO 54 – 0.01 Solved

UNO1b 139 – 0.12 Solved

UNO2b 145 98.6 0.63 Solved

UNO1a 158 – 0.18 Solved

UNO2a 158 99.9 0.60 Solved

solve the instance to optimality, interestingly, for these real world instances,
the upper found by the basic algorithm successfully coincide with the lower
bound. We observe that the basic algorithm succeeds to solve several in-
stances before the pegging test finds the redundant variables, which are
indicated as “–” in the column “# Redundant Variables (%)”.

It should be noted that fast computation for the instances with more
than 100 vertices is due to our modification of the subgradient method.
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We confirmed that only a small fraction of the transitivity constraints are
needed, which yields a high performance for these middle sized instances.
The results in Table 3.4 show a potential applicability of our basic algorithm
for larger, middle-sized instances of CPP. Then, we address larger, middle-
sized instances, later.

As we will see later, the instance Workers, the only instance which cannot
be solved by the basic algorithm, is reduced to a very small problem by our
reduction procedure as 92.3% of the variables are pegged at either 0 or 1.
The optimal solution of the reduced instance is immediately (within only
0.02 seconds) found by Gurobi Optimizer.

Randomly generated instances

Although the instances in Table 3.4 are benchmark instances of CPP, one
may think that these are relatively easy. In addition to this, since the aim of
our study is on the problem size reduction, we should address larger, middle-
sized, instances of CPP. To this aim, we deal with randomly generated
instances.

However, truly randomly generated instances have no structure for the
items to be clustered appropriately, and the results for these instances do not
offer an insight for real world applications of our preprocessing algorithm.
Therefore, we propose to use instances shown in Table 3.5 which imitate the
ones in Table 3.4 obtained from real world.

We observed that a set of equivalence relations appear in the benchmark
instances of Régnier’s problem shown in Table 3.4 are somewhat correlated.
In order to confirm this in a mathematical manner, we define a correlated-
ness as follows. We first measure the cosign similarity of two equivalence
relations for each pair of the given equivalence relations. The cosign similar-
ity takes a value 1 if the two equivalence relations are the same, and takes 0
if they are totally different. Next, we calculate the geometric mean of these
cosine similarities. One could say that this criteria captures how the given
equivalence relations are correlated.

As a matter of fact, the instances in Table 3.4 have high correlatedness
as we see from Table 3.3. Here, as the instance Cetacea has missing val-
ues, we omit its correlatedness. From Table 3.4, one could observe that
correlatedness captures an easiness of the instances.

In Table 3.6, we show our results for the instances shown in Table 3.5.
In Table 3.5, each instance Rp.n.q stands for an instance with n vertices,
q equivalence relations, and parameter p for controlling the correlatedness.
For the details of the parameter p and the procedure for generating these
correlated instances, see [83].

From Table 3.6, we observe that the basic algorithm works very well
for these randomly generated but slightly correlated instances. Especially,
for the R7 type instances, the basic algorithm still efficiently and effectively
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Table 3.5: The randomly generated instances of Régnier’s problem.

Name # Vertices # Relations Correlatedness

R6.200.5 200 5 0.70

R6.200.10 10 0.66

R6.200.15 15 0.65

R6.500.5 500 5 0.69

R6.500.10 10 0.67

R6.500.15 15 0.65

R7.500.5 500 5 0.75

R7.500.10 10 0.72

R7.500.15 15 0.72

R7.1000.5 1000 5 0.74

R7.1000.10 10 0.72

R7.1000.15 15 0.71

Table 3.6: Results of the basic algorithm for the instances in Table 3.5.

Instance Results of Basic Algorithm

# Redundant Comput.

Name # Vertices Variables (%) Time (s) Status

R6.200.5 200 – 4.49 Solved

R6.200.10 93.6 10.96 Reduced

R6.200.15 99.2 5.41 Reduced

R6.500.5 500 99.3 1503.63 Reduced

R6.500.10 99.9 611.13 Reduced

R6.500.15 98.6 618.54 Reduced

R7.500.5 500 – 311.42 Solved

R7.500.10 0.1 205.91 Solved

R7.500.15 89.0 137.16 Solved

R7.1000.5 1000 0.0 > 1 hour Unchanged

R7.1000.10 99.6 2437.27 Reduced

R7.1000.15 99.9 975.93 Solved

reduces the problem size, even for the instances with n ≥ 500, and succeeds
to solve several instances to optimality. On the other hand, we observe that
the basic algorithm fails to solve (or even reduce) R7.1000.5 within one
hour and there still remains about 2% relative duality gap.

However, one could say that results in Table 3.6 show a potential of
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Table 3.7: Results of the reduction procedure for the instances in Table 3.3
and Table 3.5.

Instance Results of Reduction Procedure

# Vertices # Vertices Reduction Comput.

Name [Original] [Reduced] Ratio (%) Time (s)

Workers 34 7 79.4 0.09

R6.200.10 200 31 84.5 0.99

R6.200.15 21 89.5 1.02

R6.500.5 500 32 93.6 5.84

R6.500.10 21 95.8 9.79

R6.500.15 45 91.0 12.56

R7.1000.10 1000 28 97.2 40.77

the basic algorithm for efficiently solving or effectively reducing middle-
sized instances of CPP. It should be noted that the standard formulation
(PCPP) has five hundred million constraints when n = 1000. As we will
see in the next subsection, the instance R7.1000.10 can be rewritten into a
substantially smaller instance by the reduction procedure.

3.3.2 On reduction procedure

In this subsection, for the instances in Table 3.4 and Table 3.6, we will show
how much our reduction procedure reduces the problem size based on the
information (P0, P1) obtained from the basic algorithm.

In Table 3.7, the results of our reduction procedure are summarized,
where we omit the results for the instances with status “Solved” or “Un-
changed” by the basic algorithm as (P0, P1) is empty for these instances.

In order to evaluate the performance of the reduction procedure, we
employ the following three criteria.

– # Vertices [Reduced]: the number of vertices in the reduced graph
(G′ = (V ′, E′), c′), that is, n′ = |V ′|.

– Reduction Ratio (%): the ratio of the reduction on the number of
vertices in percentage, that is, 100(n−n′)/n, where n (resp. n′) is the
number of vertices in the original graph G (resp. the reduced graph
G′). If this value is high, the corresponding instance is reduced to a
substantially smaller one.

– Comput. Time (s): the computation time required for constructing the
reduced instance (G′ = (V ′, E′), c′) and P ′

0 from the original instance
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(G = (V,E), c) using the information (P0, P1) obtained from the basic
algorithm.

We observe that the size of the instances is reduced often considerably
by our reduction procedure. Although R7.1000.15 is already solved to
optimality by the basic algorithm, we confirmed that the basic algorithm
implicitly transformed R7.1000.15 into a much smaller instance, one with
only 14 vertices, which may contributes to the efficient computation in the
basic algorithm.

As we will confirm in the next subsection, our preprocessing algorithm
enables us to solve middle-sized instances such as R6.500.5, R6.500.10,
R6.500.15, and R7.1000.10 to optimality, because they are rewritten into
significantly smaller instances by our reduction procedure, which are easy
solved by powerful softwares including Gurobi Optimizer. In the the next
subsection, we compare our approach with the one directly applying Gurobi
Optimizer, in terms of their computation time.

3.3.3 Comparison with optimization software

Finally, we verify the validity of our approach in terms of its computation
time, through a comparison with an approach that directly apply an opti-
mization software, Gurobi Optimizer. More specifically, for each instance
we tested, we show the sum of the computation time for our preprocessing
algorithm and that for solving the reduced instance by Gurobi Optimizer to
optimality, and compare it by that for directly applying Gurobi Optimizer
to the instance.

The results are summarized in Table 3.8. The values in the three columns
are as follows.

– Ours: the sum of the computation time required for our preprocessing
algorithm, and that for solving the reduced instance by Gurobi Op-
timizer to optimality. In the column “Solving Time (s)”, we omit its
value if the corresponding instance is already solved to optimality by
the basic algorithm.

– Naive: the computation time required for a naive approach that di-
rectly solving the instance (without our preprocessing algorithm) by
Gurobi Optimizer, where “OM” means “over memory” due to numer-
ous constraints.

– Reduction Ratio (%): the reduction in its computation time (in per-
centage) by using our approach, that is, 100(a− b)/a where a denotes
the computation time for directly solving the instances by Gurobi Op-
timizer, and b denotes that for our approach.
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Table 3.8: Comparison of our approach with a naive one.

Ours Naive

Prepro. Solving Total Total Reduction

Instance Time (s) Time (s) Time (s) Time (s) Ratio (%)

Wildcats 0.02 – 0.02 0.34 94.1

Cars 0.07 – 0.07 0.52 86.5

Workers 0.21 0.02 0.23 0.66 65.2

Cetacea 0.01 – 0.01 0.61 98.4

Micro 0.17 – 0.17 0.94 81.9

Soybean 0.03 – 0.03 1.58 98.1

UNO 0.01 – 0.01 2.5 99.6

UNO1b 0.12 – 0.12 69.13 99.8

UNO2b 0.63 – 0.63 81.22 99.2

UNO1a 0.18 – 0.18 114.07 99.8

UNO2a 0.6 – 0.6 114.27 99.5

R6.200.5 4.49 – 4.49 139.3 96.8

R6.200.10 11.95 0.72 12.67 137.83 90.8

R6.200.15 6.43 0.17 6.6 137.96 95.2

R6.500.5 1509.47 0.83 1510.3 OM –

R6.500.10 620.92 0.18 621.1 OM –

R6.500.15 631.19 2.71 633.9 OM –

R7.500.5 311.42 – 311.42 OM –

R7.500.10 205.91 – 205.91 OM –

R7.500.15 137.16 – 137.16 OM –

R7.1000.10 2478.03 0.52 2478.55 OM –

R7.1000.15 975.93 – 975.93 OM –

Average 93.2

Here, we omit the results of the approach using only Gurobi Optimizer
for the instances with n ≥ 500 as numerous constraints run out of the compu-
tational resources we employed. We observe that there is a clear advantage
of our approach. More formally, for the instances solved by Gurobi directly,
the improvement, that is, the reduction ratio, is about 93.2% on average.

3.3.4 Outlook

The techniques employed in our algorithm, the pegging test and the La-
grangian relaxation, are known as classical but effective tools for integer
programming problems [67, 32, 34]. In this chapter, taking advantage of
the underlying structure of CPP, transitivity, we made an improvement on
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the ordinary pegging test, which was experimentally confirmed to peg more
variables than the naive one.

Advantages

Our preliminary numerical experiments showed that the preprocessing al-
gorithm works well for middle-sized instances of Régnier’s problem, which
is one of the most important subclass of CPP. When the instances are not
randomly generated ones, that is, the equivalence relations are correlated
like the instances from real world in Table 3.4, our basic algorithm has a
potential for efficiently solving them with up to n = 1000 items.

Furthermore, even if the basic algorithm could not solve an instance to
optimality, we could obtain an equivalent but substantially smaller instance
by our reduction procedure, when several redundant variables are found,
that is, P0 or P1 is non-empty. One could say that our algorithm has con-
siderably broaden the application area of CPP.

Although we omit the detailed results here, we confirmed that our pre-
processing algorithm works well for the benchmark instances proposed in
Amorim et al. [6]. More specifically, we confirmed that our algorithm solves
the instances with up to n = 1000 items to optimality within only 300
seconds, by pegging about 75% of the decision variables [83].

Drawbacks and future works

However, on the other hand, it should be noted that there are several hard
instances for our preprocessing algorithm. These instances are from the
group technology problem [18, 50, 53, 58, 62, 72, 78, 87]. As demonstrated
in Oosten et al. [72], several benchmark instances of the group technology
problem cannot be solved to optimality if we only consider the transitivity
constraints.

As a matter of fact, although our preprocessing algorithm finds optimal
solutions of the half of the benchmark instances of the group technology
problem efficiently, we could not peg the decision variables at all for the
other half of the instances. See Sukegawa et al. [83] for the details. In order
to make our algorithm stronger for these instances, we need to introduce
several knowledge from the polyhedral study [39, 72]. This is one of the
future works of this study.

32



Chapter 4

Reformulation

In the previous chapter, we experimentally confirmed that a large part of
the transitivity constraints are unneeded, that is, redundant in our prepro-
cessing. This chapter discusses a methodology for detecting and removing
a redundancy in the transitivity constraints, in a theoretical manner. Re-
call that redundant constraints refer to constraints such that removing them
does not change the optimal solution set, in this study.

Contents

More specifically, in this chapter, we give a simple sufficient condition for
the redundant transitivity constraints in the IP formulation (PCPP) of CPP.
By just checking our condition, the number of the transitivity constraints
handled in algorithms can easily be reduced, in advance. Therefore, our
result could be regarded as a reformulation.

Organization

This chapter is organized as follows. First, we mention a recent work by
Dinh and Thai [30], which is the motivation of our study. Then, we give
a sufficient condition for the redundant transitivity constraints, and discuss
its relationship to the results in Dinh and Thai [30]. In order to simply see
the impact of our result, we conducted preliminary numerical experiments
on the benchmark instances of Régnier’s problem.

Also, in order to understand the limitation of our approach for redun-
dant constraints, we also address the linear ordering problem (LOP) whose
IP formulation has a structure very similar to that of CPP. To this end,
we briefly explain LOP and its standard IP formulation, and give several
sufficient conditions for the redundant transitivity constraints in LOP.
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4.1 Motivation

Our results are motivated by a recent work by Dinh and Thai [30]. Dinh
and Thai [30] deals with an optimization problem called the modularity
maximization problem (MMP), which provides one of the most promising
approaches for the community detection [70] in networks such as the social
network.

The input of MMP is an undirected (not necessarily complete) graph
G = (V,E) with |V | = n vertices and |E| = m edges, where V simulates a
set of persons and E simulates the relationship such as “friend” in practice.
The aim of MMP is to find a grouping, that is, communities based on the
relationship expressed by E. MMP is known to be formulated as CPP by
setting

cij = Aij −
didj
2m

(i, j with i ̸= j) (4.1.1)

whereAij is a constant term which takes 1 if {i, j} ∈ E and takes 0 otherwise,
and di is the degree of vertex i in G, that is, the number of edges adjacent
to vertex i in this case. For the details, see [30, 64] for instance.

By the above definition (4.1.1), we observe that {i, j} /∈ E implies cij < 0
as Aij = 0 and di, dj , and m are positive. If di = 0 holds for some vertex i,
we could remove it from the model without loss of generality. On the other
hand, even if {i, j} ∈ E, cij can be negative when di and dj are sufficiently
large.

Recall that the standard IP formulation of CPP is as follows.

(PCPP) :

maximize
∑

(i,j)∈V 2
<

cijxij

subject to xij ∈ {0, 1} ((i, j) ∈ V 2
<), (binary),

xij + xjk − xik ≤ 1 ((i, j, k) ∈ V 3
<) (type U),

xij − xjk + xik ≤ 1 ((i, j, k) ∈ V 3
<) (type V ),

−xij + xjk + xik ≤ 1 ((i, j, k) ∈ V 3
<) (type W ).

For the instances of MMP, using the properties associated with (4.1.1) in
the objective function of the standard IP formulation (PCPP) of CPP, Dinh
and Thai [30] proved that

{i, j}, {j, k} /∈ E ⇒ xij + xjk − xik ≤ 1 is redundant (type U)

{i, j}, {i, k} /∈ E ⇒ xij − xjk + xik ≤ 1 is redundant (type V )

{j, k}, {i, k} /∈ E ⇒ −xij + xjk + xik ≤ 1 is redundant (type W )
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and showed that their sufficient condition above satisfied by a large number
of transitivity constraints in the instances of MMP, especially for the in-
stances arising from the so-called scale-free network. See Dinh and Thai [30]
for the details.

Moreover, interestingly, they experimentally confirmed that removing
these redundant constraints shortens computation time as well as saves com-
putational resources required.

Their analysis seems to utilize the structure of the given undirected graph
G = (V,E) as well as the property of MMP. However, once the instances of
MMP are formulated as an instance of CPP, the information on G = (V,E)
and MMP has been lost partially.

Therefore, it would be natural to question whether we could extend
their result for general instances of CPP, that is, we could obtain a similar
result by just depending on, for instance, the sign pattern of the edge weight
function (cij)(i,j)∈V 2

<
. This is the motivation of our study.

4.2 Redundant Constraints in CPP

In this section, we give a sufficient condition for the transitivity constraints
in the standard IP formulation (PCPP) of CPP, for any objective function.
As we will see later, this result can be seen as a generalization and an
improvement of the result in Dinh and Thai [30].

4.2.1 Result

In this study, we theoretically show the existence of the redundant con-
straints in the standard IP formulation (PCPP) of CPP, as well as its linear
programming relaxation.

Integer Programming

We first prove that

cij , cjk < 0 ⇒ xij + xjk − xik ≤ 1 is redundant (type U)

cij , cik < 0 ⇒ xij − xjk + xik ≤ 1 is redundant (type V )

cjk, cik < 0 ⇒ −xij + xjk + xik ≤ 1 is redundant (type W )

holds for the standard IP formulation (PCPP) of CPP. Recall that {i, j} /∈ E
implies cij < 0 in MMP, and also that cij can be negative even if {i, j} /∈ E.
Therefore, our result overrides the result in Dinh and Thai [30].

Roughly speaking, our sufficient condition can detect many redundant
constraints when there are many negative edge weights, in other words, there
are many clusters in the optimal solution.
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By this generalization, we could make the idea of Dinh and Thai [30]
applicable for other important subclasses of CPP such as Régnier’s prob-
lem, and the special variants of MMP including the bipartite modularity
maximization problem [9]. Moreover, as we only focus on the sign pattern
of the edge weight function (cij)(i,j)∈V 2

<
in the objective function, the proof

can further be simplified.
In order to prove our result, we introduce an IP problem (RPCPP) ob-

tained from (PCPP) by deleting the transitivity constraints satisfying the
above our sufficient conditions. More formally, (RPCPP) is as follows.

(RPCPP) :

maximize
∑

(i,j)∈V 2
<

cijxij

subject to xij ∈ {0, 1} ((i, j) ∈ V 2
<),

xij + xjk − xik ≤ 1 ((i, j, k) ∈ V 3
<, cij ≥ 0 ∨ cij ≥ 0),

xij − xjk + xik ≤ 1 ((i, j, k) ∈ V 3
<, cij ≥ 0 ∨ cik ≥ 0),

−xij + xjk + xik ≤ 1 ((i, j, k) ∈ V 3
<, cjk ≥ 0 ∨ cik ≥ 0).

Recall that redundant constraints refer to constraints such that removing
them does not change the optimal solution set. Therefore, to prove our
result formally, it suffices to show that (PCPP) and (RPCPP) have the same
set of optimal solutions.

Theorem 2. (PCPP) and (RPCPP) have the same set of optimal solutions.

Proof. The basic idea is as follows. Recall that basically, we want to set
as many decision variables xij with cij ≥ 0 to 1 as possible, in (PCPP).
Therefore, in any optimal solution x∗ of (RPCPP), we observe that there
are many decision variables x∗ij such that x∗ij = 1 and cij ≥ 0.

Then, for each distinct pair of vertices, we could find a specific undirected
“path” consisting of these decision variables, which plays an important role
in our proof. More specifically, along with this path, we could show that
the transitivity constraints not appearing in (RPCPP) are automatically
satisfied by the constraints appearing in (RPCPP). See Appendix A.1 for
the complete proof.

Linear Programming Relaxation

The simplest way to utilize our result in practice is to use (RPCPP) in place
of (PCPP) in the softwares. However, in almost all the softwares, we need
to frequently solve a relaxation problem but the original problem. To this
end, the linear programming (LP) relaxation problem is employed in many
softwares.
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In general, the redundant constraints in an IP formulation are not nec-
essarily also redundant in its LP relaxation problem. Therefore, it would
be natural to ask whether the redundant constraints in Theorem 2 is also
redundant in its LP relaxation problem.

In this study, we prove that the redundant constraints we revealed for
(PCPP) are also redundant in its LP relaxation problem. Let (PCPP) and
(RPCPP) denote the linear programming relaxations which are derived by
replacing the set of constraints xij ∈ {0, 1} by xij ∈ [0, 1] in (PCPP) and
(RPCPP), respectively. Then we have the following.

Theorem 3. (PCPP) and (RPCPP) have the same set of optimal solutions.

Proof. See Appendix A.2 for the complete proof.

It should be noted that Dinh and Thai [30] proved a similar result on the
LP relaxation problem. As in Theorem 2, Theorem 3 overrides their result
on the LP relaxation. Also, it should be noted that this result can be used
when developing algorithms based on the LP relaxation for CPP, like the
ones in [2, 30, 64].

4.2.2 Preliminary Numerical Experiments

In this section, we report on the preliminary numerical experiments of our
reformulation (RPCPP).

In Table 4.1, we show the results of the computation time by (PCPP)
and (RPCPP) using Gurobi Optimizer (Gurobi 5.6.0) for the benchmark
instances of Régnier’s problem used in the previous chapter. Here, we newly
add a middle sized instance Human from benchmark instances in UCI Irvine
Machine Learning Repository [10].

– Solving Time (s): the computation time required for solving the in-
stance through the given formulation.

– # Redundant Constr. (%): the percentage of the redundant tran-
sitivity constraints which satisfies our sufficient condition. Namely,
(100 - (this value)) % of the transitivity constraints in the original
formulation (PCPP) appear in the formulation (RPCPP).

– Reduction Ratio (%): the improvement with respect to its compu-
tation time in percentage, that is, 100(a − b)/a where a denotes the
computation time for (PCPP) and b denotes that for (RPCPP).

We observe that our sufficient condition could reveal about 30% of the
constraints to be redundant on average, which also contributes the improve-
ment on the computation time, about 30% on average. Also, We observe
that the computation time of (RPCPP) is always less than those by (PCPP).
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Table 4.1: Comparison of our reformulation (RPCPP) with the original for-
mulation (PCPP).

Original Ours

Solving # Redundant Solving Reduction

Name Time (s) Constr. (%) Time (s) Ratio (%)

Wildcats 0.34 17.6 0.31 8.82

Cars 0.52 10.2 0.47 9.62

Workers 0.66 17.1 0.58 12.12

Cetacea 0.61 55.2 0.31 49.18

Micro 0.94 25.1 0.73 22.34

Soybean 1.58 35.9 1.00 36.71

UNO 2.50 38.6 1.59 36.40

Human 4618.19 59.9 1242.36 73.09

UNO1b 69.13 30.7 46.33 32.98

UNO2b 81.22 12.3 71.98 11.38

UNO1a 114.07 39.9 62.87 44.88

UNO2a 114.27 20.3 90.24 21.03

Average 30.2 29.88

Especially for the instances Cetacea and Human, more than 50% of the
constraints are revealed to be redundant, which contributes the reduction
in computation time. For instance, for Human, 59.9% of the transitivity
constraints are removed by our reformulation, and the improvement on the
computation time by the optimization software, Gurobi Optimizer, is about
73.09%. Here, the instance Human is a newly added instance which can be
obtained from UCI Machine Learning Repository [10].

4.2.3 Outlook

The analysis used in our proof is motivated by that of Dinh and Thai [30]
for MMP, which is a special case of CPP. Although the essential approach is
the same, we could simplify their proof to obtain a (slightly) better sufficient
condition for the redundant constraints in CPP. Namely, our contribution
is on the point that we made the approach in Dinh and Thai [30] applicable
for more general cases.

Advantage

We note that the strong point of our approach is its simplicity. We could
reduce the number of constraints as well as the computation time by a simple
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Table 4.2: Comparison of our reformulation (RPCPP) with the original for-
mulation (PCPP) for the benchmark instances of the modularity maximiza-
tion problem (MMP) reported in Dinh and Thai [30].

Original Ours

Solving # Redundant Solving Reduction

ID # Vertices Time (s) Constr. (%) Time (s) Ratio (%)

1 34 0.21 91.9 0.02 90.4

2 62 3.85 94.9 0.11 97.1

3 77 13.43 97.1 0.08 99.4

4 105 60.4 94.6 1.76 97.1

5 115 106.27 91.1 13.98 86.8

6 332 OM 98.7 197.03 –

7 512 OM 99.5 53.18 –

8 1589 OM 99.9 2.94 –

Average 96.0 94.2

operation in advance. Compared to the implementation of the sophisticated
algorithms, using our result is much simpler, and hence would be more
attractive especially for the users of CPP model in practice.

Discussion

For a comparison, in Table 4.2, we simply show the results reported in Dinh
and Thai [30] for the modularity maximization problem (MMP). See Dinh
and Thai [30] for the further details on the computational environment.
They dealt with 8 well-known benchmark instances of MMP, and showed
how many constraints are revealed to be redundant by their condition. We
observe that the instances in Table 4.2 have many redundant constraints,
compared to the benchmark instances of Régnier’s problem we tested.

One could observe that this difference is caused by the number of edges
with negative weights because our sufficient condition is satisfied by many
transitivity constraints when there are many negative edge weights. For in-
stance, in UNO2a in Table 4.1, only 35.5% of the edges have negative weights,
which makes it difficult to detect the redundant constraints. On the other
hand, in the instance 8 in Table 4.2, surprisingly, about 99.8% of the edges
have negative weights.

In sum, our results seem to have an impact for the instances of CPP
with a large number of “negative” edge weights, including MMP and the
special variants of MMP including the bipartite modularity maximization
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c1 c2

- Solid lines: edges with non-negative weights

- Dotted lines: edges with negative weights

Figure 4.1: Images of c1 and c2.

problem [9]. As a matter of fact, for the instances shown in Table 4.1, the
coefficient of correlation between the number of edges with negative weights
and the number of redundant constraints detected by our sufficient condition
is about 0.96.

Here we simply note that the configuration of the edges with negative
weights also affects the number of redundant constraints detected by our
condition. For instance, see the two edge weights c1 and c2 shown in Fig-
ure 4.1. We observe that the number of redundant constraints detected by
our condition is 2 for c1 and 3 for c2 respectively,

Finally, for the instances with a large number of positive edge weights,
we propose to apply the preprocessing algorithm in advance. Then, one
would expect to obtain a reduced graph with many negative edge weights as
the edges with positive edge weights may be pegged at 1 and deleted by the
shrinking in our reduction procedure. As a matter of fact, we could confirm
that a large number of the edges in the instances of reduced size in Table 3.7
have negative weights.

Future works

We think that there are two future directions. The first direction is to
strengthen our results, that is, to derive a larger class of redundant con-
straints. For instance, we believe that

cij + cjk < 0 ⇒ xij + xjk − xik ≤ 1 is redundant (type U)

cij + cik < 0 ⇒ xij − xjk + xik ≤ 1 is redundant (type V )

cjk + cik < 0 ⇒ −xij + xjk + xik ≤ 1 is redundant (type W )

are true as we could not find a counterexample in our preliminary numerical
experiments.
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The second future direction is to apply our analysis to IP formulations of
other optimization problems. There are a large number of problems which
are formulated by using transitivity constraints. Then, is it possible to derive
a class of redundant constraints in such formulations by similar analysis? In
order to answer this question partially, in what follows, we address the linear
ordering problem (LOP).

4.3 Linear Ordering Problem (LOP)

In this section, in order to understand the limitation of our approach for
redundant constraints, we also address the linear ordering problem (LOP)
whose standard IP formulation has a very similar structure as that of the
standard IP formulation (PCPP) of CPP.

As a matter of fact, we will observe that the standard IP formulation of
LOP also has the transitivity constraints like CPP. In what follows, we first
briefly explain the problem and its IP formulation. After that, we get into
the explanation of our sufficient conditions for the redundant transitivity
constraints in LOP.

4.3.1 Problem Description

We define LOP as an optimization problem on a graph. We denote a simple
directed complete graph G with vertex set V and arc set A by G = (V,A).
Namely, A = {(i, j) : i, j ∈ V, i ̸= j}.

A spanning subgraph G[T ] = (V, T ) of G induced by a set T ⊆ A of arcs
is called tournament if either (i, j) ∈ T or (j, i) ∈ T holds, but not both, for
each distinct pair of vertices u, v ∈ V . In addition, if there is no directed
cycle, that is, an ordered sequence of vertices v1, v2, . . . , vl satisfying

(v1, v2), (v2, v3), . . . , (vl−1, vl), (vl, v1) ∈ T,

then we call G[T ] acyclic tournament.
We observe that every acyclic tournament G[T ] uniquely determines a

linear ordering of V , that is, a bijection π : V → {1, 2, . . . , n} satisfying

(i, j) ∈ T ⇔ π(i) < π(j).

For this, we say that i is before j (denoted by i ≻ j) in an acyclic
tournament G[T ] if (i, j) ∈ T . In the linear ordering problem, we are given
an arc weight function w : N → R and seek an acyclic tournament that
maximizes the total weight ∑

(i,j)∈T

wij .

One could say that CPP and LOP are similar in the sense that both of
them can be regarded as an optimization problem on a transitive relation.
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CPP corresponds to an equivalence relation, while LOP corresponds to a
linear order.

4.3.2 Formulations

Next, we introduce the conventional integer programming (IP) formulation
employed in existing algorithms for LOP in the literature [20, 36, 63].

If we let a 0-1 decision variable xij take 1 if (i, j) ∈ T and take 0 oth-
erwise, the LOP is formulated as the following simple integer (linear) pro-
gramming problem:

(PLOP) :

maximize
∑

(i,j)∈A

wijxij

subject to xij ∈ {0, 1} ((i, j) ∈ A) (binary),

xij + xji = 1 ((i, j) ∈ A) (anti-symmetry),

xij + xjk + xki ≤ 2 ((i, j, k) ∈ V 3
̸=) (transitivity)

where
V 3
̸= := {(i, j, k) | i, j, k ∈ V, i ̸= j, j ̸= k, k ̸= i}.

In order to see the correctness of the above formulation, letting

Tx = {(i, j) : xij = 1}

denote a set of arcs corresponding to a given feasible solution x = (xij)(i,j)∈A
of the above formulation, we will check that G[Tx] is an acyclic tournament.

The anti-symmetry constraints ensure that G[Tx] is a tournament. Also,
we observe that the transitivity constraints rule out directed cycles of length
3 in G[Tx]. In other words, they say that if i is before j and j is before k, then
i must be before k in the ordering. For this, these constraints are referred
to as the transitivity constraints. Combining with the equality constraints,
the transitivity constraints can also rule out directed cycles of length k with
k ≥ 4. Hence, G[Tx] is an acyclic tournament.

We observe that the above conventional IP formulation (PLOP) for LOP
has a similar structure as that of CPP, that is, (PCPP), and suffers from nu-
merous constraints as well as decision variables. For instance, if we consider
to order 300 items, then the formulation has about 44 thousand decision
variables and 9 million constraints, which are large but slightly less than
those of CPP.

Also, one could consider to halve the number of the decision variables
using the anti-symmetry constraints, however, for notational ease in our
analysis, we omit this rewriting.

42



Existing Studies

Compared to CPP, LOP has many theoretically attractive properties, espe-
cially, on the associated polytope, which is referred to as the linear ordering
polytope [11, 26, 37, 55, 71], and defined as the convex hull of the feasible
region of (PLOP). These theoretical results are utilized in [36, 63] to develop
exact methods.

LOP is also known to be intractable, in theory, even when the input
instances satisfy a special structure [4], while it has a large number of ap-
plications such as ordering problem of ancestry items [35], ranking method
for sports team [74, 84], analysis of Input-Output matrices [23] originated
by Leontief [56], and a voting system known as the Kemeny’s method [49], a
“relaxed” approach for Arrow’s impossibility theorem [8]. For the detailed
history as well as the conjectures and open problems of LOP, see survey
papers [21, 22, 77].

4.3.3 Example: Kemeny’s method

The linear ordering problem is frequently used as a mathematical framework
for determining an optimal ordering of a set of items based on their pairwise
comparisons. One of the well-known applications of this problem would be
a voting system called the Kemeny method [49].

In this method, we use V to simulate a set of candidates for some election.
Now, suppose that there are several voters who have rankings, that is, linear
orders on V . Then, we could calculate the number wij of voters who agree
with that i should be ranked higher than j. In the Kemeny’s method [49],
we aim at finding a linear order π : V → {1, 2, . . . , n} that maximizes the
sum of the agreements to (wij)(i,j)∈V 2

<
, that is,∑

π(i)<π(j)

wij .

We observe that this can be seen as an instance of LOP.
It is known that Kemeny’s method [49] satisfies the Condorcet criterion,

which is one the desirable criteria for voting systems. Also, one could observe
that Kemeny’s method solves a problem of aggregation of linear orders,
which can be seen as a special variant of Régnier’s problem.

4.4 Redundant Constraints in LOP

In this section, we give sufficient conditions for the redundant constraints in
the standard IP formulation (PLOP) of LOP. The proofs for these sufficient
conditions are motivated by our proof for Theorem 2.
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4.4.1 Result

Given arc weights w, we focus on a set A+ of arcs corresponding to “win”
or “tie”. More formally, A+ = {(u, v) : wuv ≥ wvu}. Using this definition,
let us classify the set of transitivity constraints xuv + xvw + xwu ≤ 2 into 4
classes depending on an integer value

luvw = |{(u, v), (v, w), (w, u)} ∩A+|,

which ranges from 0 to 3 and satisfies luvw = lvwu = lwuv.
One could say that luvw captures the degree of “bothersome” when we

aim at finding an optimal solution. For instance, we observe that a triplet
with luvw = 3 has a relationship like “rock-paper-scissors”, that is, u is
superior to v (wuv ∈ A+), v is superior to w (wvw ∈ A+) but w is superior
to u (wwu ∈ A+).

Our first result states that the transitivity constraints with luvw = 0 are

redundant. For convenience, let us introduce a relaxation problem (RP
[q]
LOP)

obtained from the original formulation (PLOP) by dropping all the transi-
tivity constraints with lijk ≤ q, that is,

(RP
[q]
LOP) :

maximize
∑

(i,j)∈A

wijxij

subject to xij ∈ {0, 1} ((i, j) ∈ A),

xij + xji = 1 ((i, j) ∈ A),

xij + xjk + xki ≤ 2 ((i, j, k) ∈ V 3
̸=, lijk > q).

Then, we have the following.

Theorem 4. (PLOP) and (RP
[0]
LOP) have the same set of optimal solutions.

Proof. The essential idea is the same as that of Theorem 2. Recall that
basically, we want to set as many decision variables xij with (i, j) ∈ A+ to
1 as possible, in (PLOP). Therefore, in any optimal solution x∗ of (RPLOP),
we could observe that there are many decision variables x∗ij such that x∗ij = 1
and (i, j) ∈ A+.

Then, as in the proof of Theorem 2, for each pair of vertices, we could
find a specific directed “path” consisting of these decision variables, which
plays an important role in our proof. The proof for the existence of such a
path is motivated by a lemma used in the proof of Theorem 2. See Appendix
A.3 for the complete proof.

If we make some assumption on the structure of (V,A+) then we have the
following.
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G1 : T1 ⊆ A1 (d = 5) G2 : T2 ⊆ A2 (d = 4)

- Solid lines: A+ with sufficiently large weights, say 100

- Dotted lines: A \A+ with weights 0

- The other arcs which do not appear in the figures have weights 1

Figure 4.2: Figures of T1 and T2.

Theorem 5. Let d be the length of a longest directed cycle in (V,A+). When

d = 4, (RP
[1]
LOP) and (PLOP) have the same set of optimal solutions. When

d = 3, the same thing holds for (RP
[2]
LOP) and (PLOP). Finally, if there is

no directed cycle in (V,A+), the same thing holds for (RP
[3]
LOP) and (PLOP).

Proof. See Appendix A.3 for the complete proof.

As we see from Theorem 4 and Theorem 5, we could show that there is also a
redundancy in the transitivity constraints in (PLOP) like (PCPP). However,
compared to the case for (PCPP), Theorem 4 is not attractive as the number
of the transitivity constraints satisfying lijk = 0 is not that big in general.
Moreover, to show Theorem 5, we need to make several assumption on the
input graphs.

Therefore, it would be natural to ask whether there is a better sufficient
condition for the redundant constraints. However, we observe that the above
sufficient conditions are tight in a sense, as follows.

Remark 1. There is an instance G1 = (V1, A1) such that d = 5 and an

optimal solution T1 of (RP
[1]
LOP) is NOT feasible for the original problem

(PLOP). This means that the formulation (RP
[1]
LOP) does NOT necessarily

gives us an optimal and feasible solution of the original problem (PLOP), in
general, when d ≥ 5. In a similar manner, there is an instance G2 = (V2, A2)

such that d = 4 and an optimal solution T2 of (RP
[2]
LOP) is NOT feasible for

the original problem (PLOP). Figures of T1 and T2 are shown in Figure 4.2.
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Table 4.3: Comparison of our reformulation (RP
[0]
LOP) setting q = 0 with the

original formulation (PLOP).

Original Ours (RP
[0]
LOP)

Solving # Redundant Solving Reduction

Name # Vertices Time (s) Constr. (%) Time (s) Ratio (%)

be75eec 50 0.66 5.0 0.31 52.4

be75np 50 1.81 4.8 1.55 14.6

be75oi 50 0.35 4.5 0.34 4.1

be75tot 50 0.35 5.5 0.32 7.5

stabu70 60 1.40 6.3 1.41 -1.4

stabu74 60 0.92 5.9 0.83 9.6

stabu75 60 0.84 6.2 0.91 -7.6

t59b11xx 44 0.32 2.4 0.29 6.7

t59d11xx 44 0.20 2.2 0.2 -0.3

t59f11xx 44 0.20 2.3 0.19 1.4

Average 4.5 8.7

4.4.2 Preliminary Numerical Experiments

In this section, we briefly verify how often the sufficient conditions are satis-
fied in the real-world instances. To this end, we use the benchmark instances
arising from an analysis of Input/Output matrices which can be obtained in
Linear Ordering library1 for instance. In the analysis of the Input/Output
matrices, the vertex set V simulates a set of sectors in some country, and
each directed arc (i, j) has a weight wij which expresses the amount of fi-
nancial flows from sector i to sector j. Then the LOP model is employed to
assess its degree of maturation based on these weights.

If the optimal value for the given instance is high, then one could say
that the degree of maturation of economics in the country is relatively low,
because the financial flows are in one direction. On the other hand, if the
optimal value is relatively low, we say that the country is developed.

In Table 4.3 and Table 4.4, we summarize the results. Although we
report only on the results for the first 10 instances in the Linear Ordering
library, similar results are obtained for the remaining instances.

From Table 4.3 and Table 4.4, we could observe how the number of
transitivity constraints (%) and the solving time changes as we change the

value q of (RP
[q]
LOP) for q ∈ {0, 1}. We confirmed that the length of the

1http://www.optsicom.es/lolib/
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Table 4.4: Comparison of our reformulation (RP
[1]
LOP) setting q = 1 with the

original formulation (PLOP).

Original Ours (RP
[1]
LOP)

Solving # Redundant Solving Reduction

Name # Vertices Time (s) Constr. (%) Time (s) Ratio (%)

be75eec 50 0.66 50.0 0.15 77.9

be75np 50 1.81 50.0 0.60 66.8

be75oi 50 0.35 50.0 0.17 52.4

be75tot 50 0.35 50.0 0.15 56.7

stabu70 60 1.40 50.0 0.62 55.7

stabu74 60 0.92 50.0 0.40 56.3

stabu75 60 0.84 50.0 0.37 55.8

t59b11xx 44 0.32 50.0 0.16 48.1

t59d11xx 44 0.20 50.0 0.09 53.3

t59f11xx 44 0.20 50.0 0.09 54.1

Average – 50.0 – 57.7

longest cycles, that is, d in Theorem 5, of these instances are equal to the
number of vertices, that is, n. Hence, sufficient conditions in Theorem 5 are
not satisfied for these instances.

From Table 4.3, we observe that only a small fraction of the constraints
are removed when q = 0. More specifically, on average, there are only about
4.5% transitivity constraints satisfying lijk = 0. Therefore, although the

computation time for (RP
[0]
LOP) is smaller than those for (PLOP) on average,

the difference is not that big.
On the other hand, from Table 4.4, we observe that the computation

time is substantially reduced if we use the formulation (RP
[1]
LOP) in place

of (PLOP). It is not difficult to see that exactly half, that is, 50% of the

transitivity constraints are redundant in the formulation (RP
[1]
LOP) when

there is no tie in the given objective function, that is, wij ̸= wji for each i
and j with i ̸= j.

Although our sufficient condition in Theorem 5 is not satisfied for all the

instances we tested, interestingly, we confirmed that (RP
[1]
LOP) always gave

us an optimal solution of the original problem (PLOP) for all the instances we
tested. In sum, in other words, there might be a better sufficient condition.

On the other hand, the optimal solutions of (RP
[2]
LOP) and (RP

[3]
LOP) are

always not feasible.
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4.4.3 Outlook

We could show that the approach for revealing the redundant constraints
for CPP is partially applicable to LOP. As a matter of fact, in the proofs,
we use the same technique, that is, the existence of a specific desired “path”
in the optimal solutions.

However, compared to CPP, the results we obtained for LOP are not

that attractive. Even worse, although we could show that (RP
[0]
LOP) can be

used in place of the original formulation (PLOP) in a theoretical manner,
the computation time by Gurobi Optimizer can not be shortened for many
instances we tested.

On the other hand, we could observe that our results are on the limitation
in a sense, as demonstrated in Remark 1. However, one could say that the
example shown in Figure 4.2, G1 for Remark 1 is “pathological” as it can
be regarded as a chain of triplets with luvw = 3, that is, triplets with a
“rock-paper-scissors” relationship.

Therefore, one would expect that we rarely encounter such a pathological
structure in the instances from real world. As a matter of fact, we confirmed
that instances in Table 4.4 include only a few pathological cycles.

Future work

As a matter of fact, carefully reading our proof in Appendix A.3, one may

notice that (RP
[1]
LOP) and (PLOP) have the same set of optimal solutions if

there exists a desired directed “path” (used in our proof) such that it is
not a part of any pathological cycle. However, for now, we have no good
sufficient condition for ensuring this situation.

We observe that (RP
[1]
LOP) has just half of the transitivity constraints

of (PLOP), and the computation time is also about half of that of (PLOP).
Moreover, as already mentioned in our preliminary numerical experiments,

the optimal solutions of (RP
[1]
LOP) are also optimal at the original problem

(PLOP) for all instances we tested.
Therefore, we think that it would be an interesting future work to find a

better sufficient condition for (RP
[1]
LOP) to share the same optimal solution

set as that of (PLOP). As a promising approach, one can address a limitation
on the arc weights. For instance, if we limit wij ∈ {0, 1} for each (i, j) ∈ A,
the corresponding instance can be regarded as an instance of feedback arc set
problem. One could observe that the “pathological” situation in Figure 4.2
for Remark 1 cannot be happen when wij ∈ {0, 1} for each (i, j) ∈ A.
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Chapter 5

Hardness Results

As already mentioned, CPP is intractable, that is, NP-hard in theory, as its
special case, Régnier’s problem is known to be NP-hard [86]. As CPP has
many applications, for important subclasses of CPP, many researchers tried
to understand the border between the tractable (polynomial time solvability)
and intractable (NP-hard) cases, from a theoretical viewpoint.

One of the most common approaches is to identify whether the problem
is NP-hard or not. NP-hardness is a well known criterion for the difficulty
of optimization problems. Many researchers believe that there is no efficient
(polynomial time) algorithm to solve these NP-hard problems. For this
reason, several important special cases of CPP have been studied from this
viewpoint in the literature.

Contents

In this chapter, we show that an important subclass of CPP is intractable
in theory, that is, NP-hard. This problem is referred to as the maximum
edge clique partitioning problem (Max-ECPP). Max-ECPP is originally in-
troduced by Dessmark et al. [29] as an useful framework for DNA clone
classification, and is discussed from a viewpoint of approximability and in-
approximability in the literature [27, 75].

Although Max-ECPP is announced to be NP-hard in general in a recent
paper by Punnen and Zhang [75], their proof has an error as demonstrated
by Sukegawa and Miyauchi [81]. The aim of this chapter is to give a simple
and correct proof for the NP-hardness of Max-ECPP.

5.1 Related Works

As mentioned above, for important subclasses of CPP, many researchers
tried to identify its theoretical hardness or easiness, that is, NP-hardness or
polynomial time solvability.
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For instance, the problem of aggregation of equivalence relations, the
Régnier’s problem is known to be NP-hard in general as demonstrated by
Wakabayashi [86]. It should be noted that the problem is trivial when the
number q of the given equivalence relations is at most two. However, the
complexity for q = 3 cases is an open problem [31]. Also, a special variant of
Régnier’s problem, Zahn’s problem [91], is also known to be NP-hard. For
the details, see de Amorim et al. [6] for instance.

The modularity maximization problem, which was the focus of Dinh
and Thai [30], is also known to be NP-hard as demonstrated by Brandes
et al. [12]. Zhan et al [92] showed that a special variant of the modular-
ity maximization problem, the bipartite modularity maximization problem
introduced by Barber [9], is NP-hard. However, there is an error in their
proof as pointed out by Costa and Hansen [24, 25]. Recently, Miyauchi and
Sukegawa [65] give a correct proof for the NP-hardness of the problem.

5.2 Maximum Edge CPP and Its Hardness

Max-ECPP is defined as follows. In this problem, we are given undirected
graph G = (V,E). A partition {V1, V2, . . . , Vt} of V is called a clique parti-
tioning if Vi is a clique of G for each i ∈ {1, 2, . . . , t}, where t is not fixed.
Then Max-ECP is to find a clique partitioning that maximizes the number
of edges within the cliques, that is,

t∑
i=1

|{{u, v}|u, v ∈ Vi}|.

We observe that Max-ECP is formulated as CPP by setting cuv = 1 if
{u, v} ∈ E and cuv to a sufficiently large negative value otherwise.

The clique number of G is the number of vertices in a maximum clique of
G and is denoted by ω(G). When ω(G) = 1, the problem is trivial as G has
no edge. When ω(G) = 2, one could observe that Max-ECP can be reduced
to the maximum cardinality matching problem, where we aim at finding a
maximum cardinality set of edges such that no two edges share a common
vertex. The maximum cardinality matching problem is known to be solved
in polynomial time.

Recently, Punnen and Zhang [75] mentioned that a decision version of
Max-ECP (that is, a problems to decide whether there exists a solution
(clique partitioning) which attains some specific value) is NP-complete when
ω(G) = 3, which implies the NP-hardness of Max-ECP when ω(G) = 3. For
more formal definitions, see Garey and Johnson [33].

The proof in Punnen and Zhang [75] uses the 3-dimensional matching
problem (3DM), which is known to be NP-complete. The idea is to show
that Max-ECP can solve 3DM. More specifically, we construct a function f
converting any instance I of 3DM into an instance f(I) of Max-ECP, such
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that the computation time for calculating f(I) is polynomially-bounded by
the size of I, and the answer for I in 3DM is “yes” if and only if the answer
for f(I) in the decision version of Max-ECP is “yes”.

However, as demonstrated by Sukegawa and Miyauchi [81], the “if” part
is incorrect. More specifically, they give a simple counterexample to the “if”
part. See Sukegawa and Miyauchi [81] for the details of their counterexam-
ple.

As we will see below, the proof can easily be corrected by replacing
3DM with the triangle cover problem (TCP). TCP is also known to be NP-
complete even when ω(G) = 3 [33]. In TCP, we are given a simple and
undirected graph G = (V,E) with |V | = 3q for some positive integer q. The
problem is to determine an existence of a clique partitioning {V1, V2, . . . , Vt}
of V such that |Vi| = 3 (triangle) for each i ∈ {1, 2, . . . , q}.

When ω(G) = 3, for any solution, that is, clique partitioning of Max-
ECP, the number of vertices is at most three (triangle) for each clique. Now,
suppose that the optimal value of Max-ECP on G attains 3q. Then, for any
optimal solution {V1, V2, . . . , Vt} of Max-ECP on G, we have |Vi| = 3 for
each i ∈ {1, 2, . . . , t}. This implies that TCP has a solution on G. It is not
difficult to see the reverse of the above argument also holds. In sum, we
have the following.

Theorem 6. The decision version of Max-ECP is NP-complete even when
the input graphs are limited to the cases where ω(G) = 3, which implies the
NP-hardness of Max-ECP in general.

Proof. See Sukegawa and Miyauchi [81] for the details.
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Chapter 6

Conclusion

In this chapter, we summarize this thesis, and mention the outlook.

6.1 Conclusion

In this thesis, we address the clique partitioning problem (CPP) defined
by Grötschel and Wakabayashi [38] in 1989. CPP is a fundamental combi-
natorial optimization problem with a large number applications including
flight-gate scheduling [27], microarray analysis [52], group technology prob-
lem [72, 87], and community detection [2, 5, 30, 64], known as the modularity
maximization [70]. Due to its simplicity, CPP provides a general framework
for diverse clustering tasks from real world. Notably, CPP provides one of
the most promising and attractive approaches for qualitative data clustering,
known as Régnier’s problem [14].

In spite of its rich applications, the conventional and standard integer
programming (IP) formulation of CPP is known to be very large, which
prevents us from efficient computation in practice [52, 87]. However, on
the other hand, it is empirically known that optimization problems include
“redundant” parts, especially for the problems arising from real world.

In this thesis, we develop a methodology for removing a redundancy
from the IP formulation of CPP, which ease the difficulty arising from the
massiveness of the formulation. More specifically, we develop a practical
preprocessing algorithm and a theoretical characterization for removing a
redundancy, both of which lead to a problem size reduction of CPP. Our
result contributes to efficient computation through the recent powerful op-
timization softwares, in practice.

The key of our algorithm and analysis was based on the underlying struc-
ture of CPP, transitivity. Therefore, in order to understand the limitation
of our approach, we also address the linear ordering problem (LOP), which
has a transitivity similar to that of CPP. LOP is also known to suffer from
difficulties arising from the massiveness of its IP formulation. We observed
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that a part of our approach is also applicable to LOP.
Like our study, some authors tried to utilizes a structure common to CPP

and LOP. As a matter of fact, our preprocessing for CPP, was motivated
by a recent work by Sukegawa et al. [84], who utilized the transitivity of
LOP to construct an efficient preprocessing algorithm. Also, Ailon et al. [3]
developed a simple and efficient approximation algorithm for Régnier’s prob-
lem [76] (a special case of CPP) and Kemeny method [49] (a special case of
LOP), based on a structure common to these two problems.

6.2 Outlook

In this study, we focused only on the standard IP formulation (PCPP) dis-
cussed in Grötschel and Wakabayashi [38], and considered to improve it.
However, one could address another formulation, that is, a reformulation.

For instance, Kochenberger et al. [52, 87] pointed out a limitation of
exact approaches in [38, 61, 72] based on the standard IP formulation, and
proposed a reformulation using a quadratic term in the objective function
as follows:

CP[Node] :

maximize
∑

(i,j)∈V 2
<

wij

∑
k∈K

xikxjk

subject to xik ∈ {0, 1} (i ∈ V, k ∈ K),∑
k∈K

xik = 1 (i ∈ V )

where K is a set of clusters. Namely, the decision variable xik takes 1 if
vertex i is assigned to k-th cluster, and takes 0 otherwise.

In the standard IP formulation proposed in Grötschel andWakabayashi [38],
the decision variables are associated with the set of edges. Therefore, Kochen-
berger et al. [52, 87] called the formulation (PCPP) discussed in this thesis,
edge-based formulation, and denoted this by CP[Edge]. In contrast, as they
associate the decision variables with the assignment of vertex (node) to the
clusters, they call the above formulation node-based formulation, denoted by
CP[Node].

The formulation in Kochenberger et al. [52, 87] could be applied for
relatively large instances as the number of decision variables and constraints
are much smaller than those of Grötschel and Wakabayashi [38]. However,
the formulation in Kochenberger et al. [52, 87] is not adequate for solving the
instances of CPP to optimality, due to the quadratic term in its objective
function.

Even worse, we observe that the above formulation in Kochenberger et
al. [52, 87] suffers from a symmetry, that is, there exist a lot of expressions

53



for each solution. This is due to the indistinguishability of the names of the
clusters. As also pointed out by Kaibel et al. [47], such a property is known
to be a great disadvantage when using the ordinary softwares. Therefore,
one could say that the reformulation in Kochenberger et al. [52, 87] also has
a kind of “redundancy”. On the other hand, we observe that the standard
IP formulation of Grötschel and Wakabayashi [38] does not suffer from such
a symmetry.

Recently, interestingly, Matsui et al. [59] demonstrated that nicely mod-
ifying the objective function of the standard IP formulation (PCPP) of CPP
yields an attractive new formulation for the vertex coloring problem (VCP)
whose conventional IP formulation suffers from a great symmetry [57]. More
specifically, they succeeds to count the number of clusters from the decision
variables in (PCPP) via a formula, which can be expressed by a mixed integer
linear programming (MILP) model.

As the standard IP formulation of CPP does not suffer from the symme-
try, our reformulation [59] for VCP also does not suffer from the symmetry.
As a matter of fact, it succeeded to find an optimal solution of a well-known
hard instance, DSJC125.9 from DIMACS Implementation Challenge, within
only one minute, on an ordinary PC by Gurobi Optimizer. It should be
noted that the optimal value of DSJC125.9 was an open problem until very
recently. See [40, 57] for instance.

In addition, we observe that the idea in Matsui et al. [59] enables us to
control the number of clusters in the standard IP formulation of CPP, which
yields a new formulation for a clustering problem with a cluster number
constraint. Such special variants of CPP also have been studied extensively
in the literature [45, 46]. Our preliminary numerical experiments confirmed
that the computation time of this new formulation is much superior to the
conventional and naive one proposed in Johnson et al. [45, 46].

Like the study in Matsui et al [59], there are many studies on refor-
mulation for the vertex coloring problem [15, 16, 17, 51, 60]. In this way,
considering how to formulate a given problem as an IP or MILP problem
would become a more and more important study topic, with the develop-
ment of the usability and the performance of MILP softwares.

6.3 Future Work

On the other hand, the “size” of the formulation has been one of the hottest
topic in the area of oprimizarion, from a theoretical viewpoint. For instance,
there is a study on the formulation size as the linear programming (LP). It is
well known that there exists an efficient, that is, polynomial-time algorithm
for solving LP problems.

Therefore, if we could formulate some problem as an LP problem whose
size is polynomially bounded by the original size, then we could conclude
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that the original problem can be solved in polynomial-time. In sum, there
is an interesting relationship between the size of the formulation and its
theoretical computational complexity.

In this study, we tried to reduce the formulation size of the standard
IP formulation of CPP, focusing on a redundancy. Like our study, recently,
Kaibel and Weltge [48] address the formulation size of the traveling salesman
problem (TSP) as an integer programming problem. TSP is a well-known
example such that its conventional IP formulation becomes huge. The prob-
lem is very simple: Given a set of n cities and a distance for each pair of
the cities, ind a shortest route that starts from some city and back to the
original city.

More specifically, in spite of its simplicity, the size of its standard IP for-
mulation is known to require O(n2) decision variables and O(2n) constraints,
which causes a shortage of computational resources even for relatively small
n. Interestingly, Kaibel and Weltge [48] theoretically demonstrated that any
naive IP formulation for TSP “must” require O(2n) constraints.

However, we observe that their analysis only focus on the system of the
constraints, and does not utilizes the information from the objective func-
tion. In contrast to their approach, in this study, we could reveal a class of
redundant constraints by utilizing the information from the objective func-
tion. Therefore, one could expect that there must be redundant constraints
in the standard IP formulations for TSP. In light of this, we are now inter-
ested in the formulation size of TSP when we take the objective function
into account in the analysis.
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Appendix A

Proofs

A.1 Proof of Theorem 2

We note that the proof below is largely based on our original paper [66].

Preliminaries

We begin by introducing some notations. Let x∗ = (x∗ij)(i,j)∈V 2
<
be an op-

timal solution of (RPCPP). Now, the goal is to show that x∗ is a feasible
solution of the original problem (PCPP).

If this shown, we can conclude that any optimal solution of (RPCPP)
is also feasible and optimal at (PCPP). Conversely, any optimal solution of
(PCPP) is also optimal at (RPCPP) as we observe that the optimal values of
(RPCPP) and (PCPP) coincide in this case. Therefore, in what follows, we
show the feasibility of x∗ at the original problem (PCPP).

For convenience, define

E+ = {{i, j} ∈ E | cij ≥ 0} and E∗ = {{i, j} ∈ E | x∗ij = 1}.

Furthermore, let
{(V1, E

∗
1), (V2, E

∗
2), . . . , (Vp, E

∗
p)}

denote the set of the connected components of (V,E∗). In order to show the
feasibility of x∗ at (PCPP), it suffices to show that each component is clique,
that is,

E∗
r = {{i, j} | i, j ∈ Vr, i ̸= j} (∀r ∈ {1, 2, . . . , p}).

We now present the following lemma.

Lemma 1. (Vl, E
∗
l ∩ E+) is connected for each l ∈ {1, 2, . . . , p}. Namely,

for each distinct pair {u, v} of vertices of Vl, there is a path on E∗
l ∩ E+

from u to v.
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Proof. It suffices to show that for any partition {S, T} of Vl, there exists an
edge in E∗

l ∩E+ whose one endpoint is in S and the other is in T . From the
definition of Vl, there exists at least one edge in E∗

l between S and T . Let
∅ ̸= EST ⊆ E∗

l denote the set of edges between S and T .
Now, suppose that all these edges e ∈ EST are not in E+, that is, the edge

weights we < 0 for all e ∈ EST . Let us focus on a solution x′ = (x′ij)(i,j)∈V 2
<
of

(RPCPP) obtained from x∗ by changing the values of variables corresponding
to e ∈ EST from 1 to 0. Namely,

x′ij =

{
0 (e ∈ EST )

x∗ij (e /∈ EST )
(∀e = {i, j} ∈ E with i < j).

This operation can be seen as a partitioning Vl into S and T . Therefore x′ is
feasible for (RPCPP) as there is no restriction of the number of components
in the solutions of CPP.

Suppose that there is a transitivity constraint, say xij + xjk − xik ≤ 1,
violated by x′, but not violated by x∗. Then, x′ij = x′jk = 1 and x′ik = 0.
however, this cannot happen because x′ik = 0 together with i, j, k ∈ Vl

implies x′ij = 0 or x′jk = 0 by the definition of {S, T}.
On the other hand, we see that the objective value of x′ is strictly greater

than that of x∗ as we have we < 0 for all e ∈ EST . This contradicts the
optimality of x∗ at (RPCPP).

Proof of Theorem 2

Then, let us get into the main part of our proof. As already mentioned, it
suffices to show that the optimal solution x∗ of (RPCPP) is also feasible at
(PCPP), which is equivalent to the statement that (Vl, E

∗
l ) is complete, that

is clique, for each l ∈ {1, 2, . . . , p}.
From Lemma 1, for any distinct pair of vertices i, j ∈ Vl, there exists

a path i = u0, u1, . . . , uq = j on E∗
l ∩ E+. Using the definition of E+, we

observe that (RPCPP) can be rewritten as

(RPCPP) :

maximize
∑

(i,j)∈V 2
<

cijxij

subject to xij ∈ {0, 1} ((i, j) ∈ V 2
<),

xij + xjk − xik ≤ 1 ((i, j, k) ∈ V 3
<, {i, j} ∈ E+ ∨ {j, k} ∈ E+),

xij − xjk + xik ≤ 1 ((i, j, k) ∈ V 3
<, {i, j} ∈ E+ ∨ {i, k} ∈ E+),

−xij + xjk + xik ≤ 1 ((i, j, k) ∈ V 3
<, {j, k} ∈ E+ ∨ {i, k} ∈ E+).
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Figure A.1: An image of the procedure used in the proof of Theorem 2

Therefore, since {u0, u1} ∈ E+, the transitivity constraint

xu0u1 + xu1u2 − xu0u2 ≤ 1

is contained in (RPCPP). (Note that in this notation it is necessary that
u0 < u1 < u2 holds, that is, (u0, u1, u2) ∈ V 3

<. If it is not the case, one
should swap the order of the indices of the variables appropriately. In what
follows, we frequently use this argument.) Thus, by substituting

x∗u0u1
= x∗u1u2

= 1

to the above constraint xu0u1 + xu1u2 − xu0u2 ≤ 1, we have x∗u0u2
= 1. In a

similar manner, since {u2, u3} ∈ E+, the transitivity constraint

xu0u2 + xu2u3 − xu0u3 ≤ 1

is also contained in (RPCPP). Thus, by substituting

x∗u0u2
= x∗u2u3

= 1

to the above constraint xu0u2 + xu2u3 − xu0u3 ≤ 1, we have x∗u0u3
= 1.

Repeatedly applying this operation, we derive x∗u0uq
= x∗ij = 1. The above

procedure is illustrated in Figure A.1. This implies that (Vl, E
∗
l ) is complete,

that is, clique, which means that x∗ is feasible at (PCPP).

A.2 Proof of Theorem 3

We note that the proof below is largely based on our original paper [66].
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Preliminaries

We begin by introducing some tools and notations. Let x∗ = (x∗ij)1≤i<j≤n

be an arbitrary optimal solution of (RPCPP). Like the proof of Theorem 2,
the goal is to show the feasibility of x∗ at (PCPP).

For simplicity, we focus on the residual graph of x∗, denoted by d∗.
Namely,

d∗ = (d∗ij)(i,j)∈V 2
<
= 1− x∗.

Then, we see that the transitivity constraints for x∗ in (PCPP) correspond
to the triangle inequalities for d∗. For instance,

x∗ij + x∗jk − x∗ik ≤ 1 ⇔ d∗ik ≤ d∗ij + d∗jk

holds for the first set of transitivity constraints. Here, we set

E
∗
= {{i, j} ∈ E | d∗ij < 1 (⇔ x∗ij > 0)}.

Also, let
{(V1, E

∗
1), (V2, E

∗
2), . . . , (Vp, E

∗
p)}

denote the set of the connected components of (V,E
∗
). Like Lemma 1, we

have the following fact. The proof is omitted as it is essentially the same as
that of Lemma 1.

Lemma 2. (Vl, E
∗
l ∩ E+) is connected for each l ∈ {1, 2, . . . , p}.

Proof of Theorem 3

Then, let us get into the main part of our proof. It suffices to show that any
optimal solution x∗ = (x∗ij)(i,j)∈V 2

<
of (RPCPP) is feasible for (PCPP). As

mentioned above, it is equivalent to the statement that the residual graph
d∗ satisfies all the triangle inequalities corresponding to the transitivity con-
straints in (PCPP).

Then, it suffices to confirm that the triangle inequalities for all triples of
vertices in each connected component of (V,E

∗
) are satisfied. The reason

is that the other inequalities are always satisfied because there are at least
two terms equal to 1 in each inequality. Here we used the fact that we have
d∗ij = 1 for any i, j ∈ V in different connected components by the definition

of (V,E
∗
).

From Lemma 2, for any distinct vertices i, j ∈ Vl, there exists at least
one path on E

∗
l ∩ E+. The shortest one of these paths and its length are

denoted by i = u0, u1, . . . , uq = j and d′ij , respectively.
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Now, repeatedly applying the triangle inequalities, corresponding to the
transitivity constraints in (RPCPP), to d∗ as

d′ij = d∗u0u1
+ d∗u1u2

+ · · ·+ d∗uq−1uq

≥ d∗u0u2
+ d∗u2u3

+ · · ·+ d∗uq−1uq

≥ · · · ≥ d∗u0uq−1
+ d∗uq−1uq

≥ d∗u0uq
= d∗ij ,

we have d′ij ≥ d∗ij . Here, let dij = min{d′ij , 1} and construct d = (dij)(i,j)∈V 2
<

by gathering dij for all i, j ∈ Vl. Clearly, dij ≥ d∗ij as d
∗
ij ≤ 1 by its definition.

Furthermore, we see that d satisfies the triangle inequalities because

dij + djk = min{d′ij , 1}+min{d′jk, 1}
≥ min{d′ij + d′jk, 1}
≥ min{d′ik, 1} = dik.

The first inequality follows from the non-negativity of d′ = (d′ij)(i,j)∈V 2
<
. The

second inequality follows as d′ satisfies the triangle inequalities.
As a matter of fact, dij = d∗ij for all i, j ∈ Vl. If this is shown, then we

see that d∗ satisfies the triangle inequalities in each component, namely, the
proof is completed.

Suppose that there exists a pair of vertices i, j ∈ Vl such that dij ̸= d∗ij .
Recalling that dij ≥ d∗ij , we have dij > d∗ij . Then, since d∗ij < dij ≤ 1, we

obtain {i, j} ∈ E
∗
l .

Now, suppose that {i, j} is also contained in E+. Then, {i, j} is one of
the paths between i and j on E

∗
l ∩E+. Since d

′
ij is the length of the shortest

path, we have
dij ≤ d′ij ≤ d∗ij .

Putting this condition together with dij ≥ d∗ij , we obtain dij = d∗ij . Thus,
under the first assumption dij ̸= d∗ij , we have {i, j} /∈ E+. Now, let us focus
on a solution

x′ =

{
1− dij if i, j ∈ Vl,

x∗ij otherwise,

of (RPCPP). This solution is feasible for (RPCPP) because, as observed
above, d satisfies the triangle inequalities.

By a simple calculation, we can confirm that the objective value of x′

is strictly greater than that of x∗. This contradicts the optimality of x∗ at
(RPCPP).

A.3 Proof of Theorem 4 and 5

We note that the proof below is largely based on our original but unpublished
paper [82].
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Preliminaries

The following simple lemma plays an important role to show the results. We
note that the following can be seen as an analogy of Lemma 1 for CPP.

Lemma 3. Let x be an optimal solution for (RP
[q]
LOP) for some q ∈ {0, 1, 2, 3}

and Tx = {(u, v) | xuv = 1} be a set of arcs corresponding to x . If there is
a directed cycle in (V, Tx), then there also exists one in (V, Tx ∩A+).

Proof. Let s, t be a distinct pair of vertices such that there is a directed path
from s to t in (V, Tx). Here, we show that there also exists a directed path
from s to t in (V, Tx ∩A+). It is easy to see that this observation completes
the proof.

Suppose, to the contrary, that there is no directed path from s to t in
(V, Tx ∩ A+). Let S be a set of vertices which are reachable from s by a
directed path in (V, Tx ∩A+). Furthermore let T = V \ S and

F = {(u, v) | u ∈ S, v ∈ T, xuv = 1}.

Therefore, every arc (u, v) ∈ F must be an element of A \ A+. Now, we
focus on a solution x′ obtained from x by flipping the arcs in F . Namely,

x′uv =


0 ((u, v) ∈ F ),

1 ((v, u) ∈ F ),

xuv (otherwise)

for each (u, v) ∈ A. It is not difficult to see that this operation never violate
the transitivity constraints which are satisfied by x. Hence, x′ is a feasible

solution of (RP
[q]
LOP).

On the other hand, as mentioned above, we have (u, v) ∈ A \ A+, that
is, wuv < wvu for each (u, v) ∈ F . This means that x′ attains a strictly
better objective value that of x. This contradicts to the optimality of x at

(RP
[q]
LOP).

Proof of Theorem 4

Let x̄ be an optimal solution of (RP
[0]
LOP) and Tx̄ be a set of arcs correspond-

ing to x̄. Now, the goal is to show that there is no directed cycle in (V, Tx̄),
which implies the feasibility of x̄ at the original problem (PLOP).

Suppose, to the contrary, that there is a directed cycle in (V, Tx̄). Then,
by Lemma 3, there is a directed cycle v1, v2, . . . , vk in (V, Tx̄ ∩ A+). Since

(v1, v2), (v2, v3) ∈ A+, we have lv1v2v3 ≥ 2 > 0, which means that (RP
[0]
LOP)

has the transitivity constraints

xv1v2 + xv2v3 + xv3v1 ≤ 2.
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Substituting x̄v1v2 = x̄v2v3 = 1 to the above constraint, we have x̄v3v1 = 0,
which implies that

x̄v1v3 = 1

by the anti-symmetry constraint xv1v3 +xv3v1 = 1. Next, let us focus on the
transitivity constraint

xv1v3 + xv3v4 + xv4v1 ≤ 2.

Since at least (v3, v4) ∈ A+, we have lv1v3v4 ≥ 1 > 0, which means that

(RP
[0]
LOP) has this transitivity constraints. Again, substituting x̄v1v3 =

x̄v3v4 = 1 to the above constraint, we have x̄v1v4 = 1.
Applying similar arguments along this directed cycle, we finally have

x̄v1vk = 1, which contradicts to that v1, v2, . . . , vk is a directed cycle in
(V, Tx). One could observe that the above procedure is similar to the one
used in our proof of Theorem 2 illustrated in Figure A.1.

Proof of Theorem 5

Since the last statement in Theorem 5 is clear, we only give proofs of the
first two statements. As in the proof of Theorem 4, letting x̄ be an optimal

solution of (RP
[1]
LOP) or (RP

[2]
LOP) and

Tx̄ = {(u, v) | x̄uv = 1}

be a set of arcs corresponding to this solution, we show that there is no
directed cycle in (V, Tx) under the assumptions d = 4 or d = 3. Suppose,
to the contrary, that there is a directed cycle in (V, Tx̄). Then, again, by
Lemma 3, there is a directed cycle v1, v2, . . . , vk in (V, Tx̄ ∩A+).

Let us consider the case when d = 4. In this case, the length k of the

directed cycle is 3 or 4. Let x̄ be an optimal solution of (RP
[1]
LOP). When

k = 3, since lv1v2v3 = 3 > 1, (RP
[1]
LOP) has the transitivity constraint

xv1v2 + xv2v3 + xv3v1 ≤ 2

ruling out a directed cycle v1, v2, v3 in (V, Tx̄), which yields a contradiction.
When k = 4, since lv1v2v3 ≥ 2 > 1 and lv1v3v4 ≥ 2 > 1, (RP [1]) has both of
the transitivity constraints

xv1v2 + xv2v3 + xv3v1 ≤ 2 and xv1v3 + xv3v4 + xv4v1 ≤ 2.

Substituting x̄v1v2 = x̄v2v3 = 1 to the former constraint, we have x̄v3v1 = 0.
Then, now, in order to meet the anti-symmetry constraint xv1v3 +xv3v1 = 1,
we must have x̄v1v3 = 1. This implies that v1, v3, v4 is a directed cycle in
(V, Tx̄). However this is a contradiction as the directed cycle v1, v3, v4 cannot
occur in (V, Tx̄) due to the transitivity constraint

xv1v3 + xv3v4 + xv4v1 ≤ 2.
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Next, let us consider the case when d = 3. Then, the length k of the

directed cycle is 3. Let x̄ be an optimal solution of (RP
[2]
LOP). As lv1v2v3 =

3 > 2, (RP
[2]
LOP) has the transitivity constraint

xv1v2 + xv2v3 + xv3v1 ≤ 2,

which means that v1, v2, v3 cannot be a directed cycle in (V, Tx̄). This is a
contradiction.
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[17] M. Campêlo, R. C. Corrêa, and Y. Frota: Cliques, holes and the vertex
coloring polytope, Information Processing Letters 89 (2004) 159–164.

[18] H. M. Chan and D. A. Milner: Direct clustering algorithm for group for-
mulation in cellular manufacturing, Journal of Manufacturing Systems
1 (1982) 65–74.

[19] I. Charon and O. Hudry: Noising methods for a clique partitioning
problem, Discrete Applied Mathematics 154 (2006) 754–769.

[20] I. Charon and O. Hudry: A branch-and-bound algorithm to solve
the linear ordering problem for weighted tournaments, Discrete Applied
Mathematics 154 (2006) 2097–2116.

[21] I. Charon and O. Hudry: A survey on the linear ordering problem for
weighted or unweighted tournaments, A Quarterly Journal of Operations
Research 5 (2007) 5–60.

[22] I. Charon and O. Hudry: An updated survey on the linear ordering
problem for weighted or unweighted tournaments, Annals of Operations
Research 175 (2010) 107–158.

[23] H. B. Chenery and T. Watanabe: International comparisons of the
structure of production, Econometrica 26 (1956) 487–521.

65



[24] A. Costa and P. Hansen: Comment on “Evolutionary method for find-
ing communities in bipartite networks,” Physical Review E 84 (2011)
058101.

[25] A. Costa and P. Hansen: A locally optimal hierarchical divisive heuris-
tic for bipartite modularity maximization, Optimization Letters 8 (2014)
903–917.

[26] J. P. Doignon, S. Fiorini, and G. Joret: Facets of the linear ordering
polytope: A unification for the fence family through weighted graphs,
Journal of Mathematical Psychology 50 (2006) 251–262.

[27] U. Dorndorf, F. Jaehn, and E. Pesch: Modeling robust flight-gate
scheduling as a clique partitioning problem, Transportation Science
42 (2008) 292–301.

[28] U. Dorndorf and E. Pesch: Fast clustering algorithms, ORSA Journal
on Computing 6 (1994) 141–153.

[29] A. Dessmark, J. Jansson, A. Lingas, E. M. Lundell, and M. Persson:
On the approximability of maximum and minimum edge clique partition
problems, International Journal of Foundations of Computer Science
18 (2007) 217–226.

[30] T. N. Dinh and M. T. Thai: Towards optimal community detection:
From trees to general weighted networks, Internet Mathematics (ac-
cepted pending revision).

[31] V. Filkov and S. Skiena: Integrating microarray data by consensus clus-
tering, International Journal on Artificial Intelligence Tools 13 (2004)
863–880.

[32] M. L. Fisher: The Lagrangian relaxation method for solving integer
programming problems, Management Science 27 (1981) 1–18.

[33] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness (W. H. Freeman & Co., 1979).

[34] A. M. Geoffrion: Lagrangian relaxation for integer programming, Math-
ematical Programming Study 2 (1974) 82–114.

[35] F. Glover, T. Klastorin, and D. Kongman: Optimal weighted ancestry
relationships, Management Science 20 (1974) 1190–1193.
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