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Abstract
Structured overlay network algorithms are routing algorithms that con-

struct routing tables whose entries are selected on the basis of logical posi-
tions defined in advance. Existing structured overlay algorithms construct
desirable routing tables by restricting routing table candidates on the basis
of logical positions. The restriction reduces flexibility to cope with a wide
range of nodes and a varying number of routing table entries. Moreover, it
restricts the ability to extend algorithms because routing tables that can be
constructed on the basis of a metric other than logical positions are limited.

I propose flexible routing tables (FRT), an algorithm design framework for
structured overlay routing algorithms that is designed to achieve the follow-
ing desirable features: dynamic and arbitrary routing table size and network
size adaptability without restricting the candidates for routing tables. FRT-
based algorithms are characterized by constructing and maintaining routing
tables using two procedures: entry learning and entry filtering. An entry
learning procedure adds an entry corresponding to a node to be learned to
its routing table. An entry filtering procedure evicts an entry from the rout-
ing table according to an order on the routing table space and a sticky entry
function. Using these procedures, FRT-based algorithms can construct and
maintain routing tables and achieve the desirable features.

I propose FRT-Chord, which is an FRT-based algorithm designed to
demonstrate that concrete algorithms can be designed on the basis of FRT.
Analyses and experimental results show that FRT-Chord performs as the
design of FRT intended. Furthermore, FRT-Chord achieves desirable fea-
tures derived from FRT such as dynamic and arbitrary routing table size
and network size adaptability without restricting routing table candidates.
As a result, FRT-Chord can seamlessly transition between the O(1)-hop
and multi-hop routing, and its performance is optimized according to the
size of routing tables. FRT-Chord repeatedly improves routing tables by
the entry learning procedure and the entry filtering procedure, and I prove
that the converged routing tables achieve O(log |N |) path length with high
probability.

I also propose Grouped FRT-Chord (GFRT-Chord), which is an FRT-



based algorithm that extends FRT-Chord to construct routing tables that
consider node groups as well as logical positions. GFRT-Chord achieves the
reduction of inter-group hops while maintaining short path length derived
from FRT-Chord and inherits dynamic and arbitrary routing table size and
network size adaptability. This implies that an FRT-based algorithm can
be extended to construct routing tables that consider metrics other than
logical positions. This ability of FRT-based algorithms is important for real
applications where the physical environment must be considered. I prove
some desirable properties that result from assigning appropriate priority to
node groups. Experimental results show that the path length and the inter-
group path length are stably shortened with various patterns of algorithm
and network parameters. This means that GFRT-Chord achieves a balance
between logical position considerations and node group considerations.

In addition to FRT, I propose mergeable-FRT, an algorithm design frame-
work for real applications that can consider two or more metrics in ad-
dition to path length by improving algorithm modularity and reusability.
Mergeable-FRT offers a method to merge parts of extensions to mergeable-
FRT-based algorithms. This method produces new algorithms that consider
multiple metrics, i.e., those considered by the original algorithms (Note that
this does not mean that the new algorithms automatically inherit all char-
acteristics of the original algorithms). A mergeable-FRT-based algorithm
supports the method to merge with other mergeable-FRT-based algorithms
by defining an entry filtering procedure using the sequence of functions.
I propose two merged algorithms—PGFRT-Chord and GPFRT-Chord—
by reusing implementations of a mergeable-FRT-based GFRT-Chord and
PFRT-Chord. Experimental result show that these algorithms reflects the
features of the original algorithms.

By proposing these concrete algorithms, I demonstrate the features and
abilities derived from FRT. I believe that the FRT frameworks allow us
to design new algorithms that are based on various ideas and lead to a
systematical design methodology for structured overlay algorithms.
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Chapter 1

Introduction
Structured overlay network algorithms (structured overlays) are dis-

tributed algorithms that can deploy a messaging overlay network on top
of an existing network with numerous computers such as the Internet. A
structured overlay network offers a message routing function that is based
on logical positions. Each node in the system has an assigned logical po-
sition∗ that is independent of the physical or geographical position of the
node. As a result, nodes can send messages to these logical positions rather
than IP or other address. Each node forwards the message hop by hop to
deliver it to the destination node for the message. The destination node is
defined based on logical positions.

Numerous structured overlays have been proposed, and actively researched
over the last decade[1, 10, 12, 15, 18, 25, 26, 28–30, 41, 42, 47, 49, 55]. Struc-
tured overlay routing algorithms provide scalability, fault tolerance, and reli-
ability to applications. Existing algorithms construct logical-position-based
routing tables by restricting candidates for the routing table or limiting the
ways by which entries can be learned.

I focus on two features that are lacking in the routing algorithms of ex-
isting structured overlays due to such routing table construction methods.

The first is dynamic and arbitrary routing table size. Many previ-
ously proposed algorithms fix the routing table size to O(log |N |) in |N |-node
networks[1, 8, 30, 41, 47, 55]. Other algorithms[15, 16, 20, 25, 44, 49, 54]
limit routing table size to less than O(logN) such as O(1). In contrast to al-
gorithms with small routing table sizes, other algorithms[9, 17, 18, 24, 33, 48]
adopt a large routing table, e.g., O(|N |); thus, there are various routing table
sizes. However, all of these algorithms construct routing tables under fixed
or limited routing table size constraints. In actual applications, a suitable

∗ Generally referred to as “node ID.” However, I refer to this as “logical position” due to
its meanings in this thesis.
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routing table size is determined by various parameters such as the number
of nodes, stability of nodes, resources, and the popularity of the application.
As a result, it is difficult to predetermine appropriate routing table sizes for
each application. Therefore, a dynamic and arbitrary routing table size is
desirable for structured overlay algorithms.

The second feature is restriction-free logical position consideration.
To construct routing tables, existing algorithms consider logical positions
by restricting routing table candidates to a small subset of routing tables
with some desirable properties, such as O(log |N |)-hop lookup performance
in an |N |-node network. For example, Chord[47] restricts the logical po-
sitions in a routing table at a node s to nodes that most closely follow
s + 2i. Kademlia[30] restricts the number of nodes whose logical positions
are [2i, 2i+1) from s based on XOR metrics to be less than a constant k. Such
restrictions are comprehensible and make data structures and construction
processes simple, and they are suitable for considering only logical positions.
However, such restrictions cause problems by which routing tables do not
include all nodes in the system despite the small number of nodes. Ad-
ditionally, they constrict opportunities to reflect factors other than logical
positions and make designing extensions to the routing algorithm problem-
atic.

Algorithm extension is a promising approach to overcoming inherent prob-
lems in structured overlay algorithms such as inadequate routing paths in
terms of network proximity. In this thesis, extending a structured over-
lay algorithm means modifying the algorithm to consider additional factors
other than logical positions. For example, LPRS-Chord[51] and Coral[11]
construct routing tables with consideration of network latency, and Dimin-
ished Chord[21] and GTap[53] construct routing tables with consideration
of node groups. Extensibility is a key property of structured overlays that
determines what extensions can be designed and what applications can be
implemented. However, as mentioned above, the existing method to con-
sider logical positions interferes with constructing routing tables that are
desirable in terms of such factors. The restriction on routing table candi-
dates poses a difficulty in considering factors other than logical positions. It
is difficult to achieve a balance between logical position considerations and
other factors. A scheme to reflect logical positions without such restrictions
is important for future applications.

To address these problems, I propose flexible routing tables[34] (FRT),
which is an algorithm design framework for structured overlay algorithms
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with desirable features such as dynamic and arbitrary routing table size and
network size adaptability, without restricting routing table candidates.

FRT-based algorithms are characterized by constructing and maintaining
routing tables using two procedures, entry learning and entry filtering. The
entry learning procedure adds an entry to its own routing table, whereas
the entry filtering procedure evicts an entry from the routing table accord-
ing to a sticky entry function StickyEntry(E) and routing table order ≤RT.
The sticky entry function is designed to guarantee message reachability and
extend the algorithm. The routing table order is defined for routing tables
as an indicator of the relative merits between logical position combinations
in a routing table. Each node continuously refines its own routing table in
accordance with the order using entry learning and entry filtering proce-
dures. As a result, the algorithm can change routing table size dynamically
and can consider logical positions in a routing table without restrictions on
routing table candidates.

FRT has the following features.

Dynamic and Arbitrary Routing Table Size: An FRT-based algo-
rithm can resize its routing table dynamically to be based on, for example,
the number of nodes, node lifespan, node availability, and performance re-
quirements.

Network Size Adaptability: A node can forward a message in O(1)
hops if the number of nodes is less than the capacity of entries in a single
routing table. Otherwise, the algorithm forwards a message as multi-hop
lookups. Moreover, the algorithm can seamlessly transition between those
lookup styles without knowledge of the number of nodes.

Effective Utilization of Entry Information: In existing structured
overlay algorithms, only entries required for the best routing table are added
to routing tables; entries that are not required for the best routing table are
ignored. An FRT-based algorithm does not ignore any entries, and thus it
can construct routing tables by evaluating all node information.

Improved Extensibility: FRT offers a concrete extension point for con-
sidering factors other than logical positions and supports simultaneous con-
sideration of logical positions and other factors. Improved extensibility is
effectively utilized in GFRT-Chord (Chapter 6), PFRT-Chord (Section 7.4)
and mergeable-FRT-based algorithms (Chapter 8).

In this thesis, I propose and describe the following FRT-based algorithms:
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FRT-Chord[34], GFRT-Chord[35], FRT-2-Chord[2], FRT-Chord#[32], FFRT-
Chord[3], and PFRT-Chord[31]. These algorithms are designed utilizing the
FRT framework, and each algorithm demonstrates diverse features in addi-
tion to the desirable features and abilities derived from FRT.

FRT-Chord: An FRT-based algorithm, wherein nodes repeatedly im-
prove routing tables using the entry learning and entry filtering procedures.
It is proved that the converged routing tables achieve O(log |N |) path length
with high probability. Experimental results show that the path length of
FRT-Chord is approximately equal to Chord, and its performance is opti-
mized according to the size of the routing tables. FRT-Chord achieves the
desirable features derived from FRT, such as dynamic and arbitrary routing
table size and network size adaptability with restriction-free routing table
candidates. Thus, FRT-Chord can seamlessly transition between O(1)-hop
routing and O(log |N |)-hop routing. This feature is also achieved by all of
the following algorithms.

GFRT-Chord (Grouped FRT-Chord): GFRT-Chord extends FRT-Chord
to reflect node groups in addition to logical positions. GFRT-Chord reduces
inter-group hops while maintaining short path length derived from FRT-
Chord. I prove some desirable features are achieved as a result of giving
priority to node groups appropriately. Experimental results show that path
length and inter-group path length are stably shortened with various pa-
rameter patterns.

FRT-2-Chord: FRT-2-Chord adopts symmetric distance on logical po-
sitions. By adopting symmetric distance, FRT-2-Chord achieves symmetry
of routing tables; when the routing table of node n1 contains node n2, the
routing table of node n2 tends to contain node n1. Note that this property
is lacking in FRT-Chord. This property reduces the cost of routing table
maintenance and improves the efficiency of learning entries.

FRT-Chord#: FRT-Chord# is characterized by routing table order on
the basis of entries in neighbors’ routing tables rather than logical positions.
FRT-Chord# supports non-uniform node logical position distributions and
enables applications to support range queries while maintaining the desirable
features derived from FRT.

FFRT-Chord (Flow-based FRT-Chord): FFRT-Chord demonstrates that
nodes can construct efficient routing tables based solely on query flows.
Thus, its routing table order is defined on the basis of the history of re-
ceived and relayed queries. FFRT-Chord does not assume logical positions
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of nodes and query targets are distributed uniformly. This is a practical
merit that supports range queries. In contrast to FRT-Chord#, each node
does not need to refer to the routing tables of other nodes in its routing
table. Then, FFRT-Chord saves bandwidth.

PFRT-Chord (Proximity-aware FRT-Chord): PFRT-Chord extends FRT-
Chord to reflect both logical positions and network proximities to routing
tables. PFRT-Chord reduces routing latencies while maintaining the advan-
tageous features of FRT.

In addition to FRT, I propose mergeable-FRT[36], another algorithm de-
sign framework to improve algorithm modularity. A mergeable FRT-based
algorithm supports merging with other mergeable FRT-based algorithms by
defining the entry filtering procedure using a sequence of functions (Note
that this does not mean that the new algorithm automatically inherits all
characteristics of the original algorithms). A merged algorithm can be de-
fined by merging this sequences. I propose two merged algorithms, PGFRT-
Chord and GPFRT-Chord that reuse implementations of mergeable FRT-
based GFRT-Chord and PFRT-Chord. Experimental results show that these
algorithms reflect the features of the original algorithms.

1.1. Composition of Thesis

In Chapter 2, structured overlay routing algorithms are introduced.

In Chapter 3, existing algorithms, i.e., Chord[47], Symphony[29], and
Accordion[26] are discussed. These algorithms employ different routing table
construction methodologies.

In Chapter 4, FRT[34], a framework for designing structured overlay rout-
ing algorithms, is described.

FRT-Chord[34] is discussed in Chapter 5.

In Chapter 6, GFRT-Chord[35], which considers node groups, is described.

In Chapter 7, other FRT-based algorithms, i.e., FRT-2-Chord[2] (Sec-
tion 7.1), FRT-Chord#[32] (Section 7.2), FFRT-Chord[3] (Section 7.3), and
PFRT-Chord[31] (Section 7.4), are introduced.

In Chapter 8, I propose the mergeable FRT framework[36], PGFRT-
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Chord, and GPFRT-Chord. Note that PGFRT-Chord, and GPFRT-Chord
are designed on the basis of the mergeable FRT framework.

Chapter dependencies are illustrated in Figure 1.1.
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Chapter 2

Structured Overlay Routing
Structured overlay routing algorithms (structured overlays) are dis-

tributed autonomous algorithms that deploy a messaging overlay network on
the top of an underlay network, such as a TCP/IP network, that guarantees
reachability to and from all nodes to all nodes.

Here, I introduce the basic common architecture of structured overlay
routing algorithms.

2.1. Overview

Structured overlays are characterized by routing tables that are con-
structed on the basis of logical positions.

2.1.1. Logical Position and Forwarding

In structured overlays, each node in the system has a structured-overlay-
specific address called a logical position assigned autonomously. Note that
this is commonly independent of physical or geographical node position.
Each message is sent to a target logical position, which is repeatedly trans-
ferred from a node to another according to the logical positions of both the
destination and neighbors until the message reaches the destination node
for the target logical position. For example, a message is transferred to the
neighbor closest to its target on the basis of the remaining distance defined
by logical positions (Figure 2.1).
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Figure 2.1: Message forwarding on the basis of the remaining distance de-
fined by logical positions.

2.1.2. Routing Table and Forwarding

Each node builds its own routing table. Each entry of the routing table
has at least two node properties, logical position and underlay network
address, e.g., an IP address with a port number. When node s has an entry
for node n with logical position n.lp and underlay address n.ua, node s can
forward a message to another node whose logical position is n.lp by sending
the message to n.ua using the underlay network. Each routing table entry
represents a neighbor in the network topology of the structured overlay
network.

In structured overlays, it is essential to build a routing table that will ac-
curately reflect the topology of the overlay on the basis of logical positions.
Since topology construction algorithms for structured overlays are so pow-
erful, forwarding target selection algorithms can be simple and straightfor-
ward, which differs from routing algorithms that require prior advertisement
of a node to the whole network (Figure 2.2).
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Figure 2.2: Node that chooses the closest node from two routing table entries
on the basis of logical positions.

2.2. Logical Position

Each node n ∈ N has logical position n.lp ∈ P and n.ua (n.lp is denoted
simply as n). For example, many algorithms adopt an m-bit number as the
universal set P .

Each node autonomously determines its logical position from P . Thus, a
logical position is not a value assigned by a central server or an administra-
tor. Thus, there is generally no node or central server that knows all of the
logical node positions.

2.2.1. Routing and Responsible Node

Structured overlays offer a function to send a message to a logical posi-
tion. A message is passed through one or more nodes. Then, the message
reaches the node responsible for the logical position of the destination. Each
algorithm defines which node is responsible for logical position t ∈ P in a
system with nodes N .
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Definition 2.2.1: Responsible Node for Message

A responsible node resN (t) for a message is a node n ∈ N where the
message for logical position t terminates in the system with nodes N .

A responsible domain DomN (n) is a set of logical positions defined as
follows (Figure 2.3):

Definition 2.2.2: Responsible Domain

DomN (n)
def⇔ {t ∈ P | resN (t) = n} (2.1)

Figure 2.3: resN (t) and DomN (n) in progressive structured overlays
(Section 2.4).

A typical application utilizing structured overlays is a distributed hash
table (DHT), which constructs a hash table on given nodes N and offers
functions to put and obtain key-value pairs. For example, it can be imple-
mented by storing a key-value pair (key, value) at node resN (ϕ(key)), where
ϕ is a hash function that maps the key space to the logical position space P .
The DHT’s put and get methods can be implemented on top of a structured
overlay message routing function.
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2.3. Routing Table

A routing table is a set of candidates for an entry to which a mes-
sage is forwarded. Thus, node s, which received a message for logical
position t, selects another node e = fwdEs

s (t) from its own routing table
Es = {esi}i=0,...,|Es|−1

∗. Note s then forwards the message to the selected
node e.

Note that a next hop selection function fwdEs (t) is defined; therefore,
message flows are determined only by routing tables. In structured overlay,
the topology (i.e., the routing tables) constructed by nodes is critical. There
are two important features of network topologies, i.e., message reachability
and the ability to shorten path length.

2.3.1. Routing Table Entry

Each routing table entry e has at least two columns, an address in
the structured overlay layer (i.e., logical position e.lp) and an underlay
network address e.ua (e.g., IP address with port number). Message for-
warding from node s to a node whose logical position is e.lp is processed
by sending the message to e.ua in the underlay network (Figure 2.4). In
structured overlays, node e is considered a neighbor and a routing table is
a list of neighbors. Thus, all routing tables comprise the network topology
of the overlay network.

∗ Note that in this thesis, s’s routing table Es includes an entry corresponding to s as e0,
and the routing table Es = {esi}i=0,...,|Es|−1 could be simply denoted E = {ei}
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Figure 2.4: Message forwarding on the logical position space using a underlay
network.

2.4. Progressive Structured Overlay

Progressive structured overlay is a structured overlay whereby each
node forwards a message for a target logical position to reduce the remain-
ing distance to the target logical position for each forwarding.
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2.4.1. Remaining Distance

A progressive structured algorithm defines remaining distance∗ d(x, y)
from logical positions x to y.

2.4.2. Responsible Node

In a progressive structured overlay with remaining distance function d(x, y),
a responsible node resN (t) is defined by the remaining distance as follows:

Definition 2.4.1: Responsible Node in Progressive Structured Overlay

resN (t) = argmin
n∈N

d(n, t). (2.2)

This strategy means that the responsible node for t is assigned to the node
closest to t among all nodes N .

2.4.3. Next Hop Selection

In a progressive structured overlay, node s with a routing table E forwards
a message for t to node fwdEs (t), which is required to satisfy the following
condition:

Definition 2.4.2: Progressive Routing

e = fwdEs (t) s.t. d(e, t) < d(s, t). (2.3)

This means that s selects an entry e ∈ E that is closer to t than s. This
strategy is called progressive routing.

∗ Generally referred to as simply “distance”. Although it is named “distance,” the func-
tion does not always satisfy distance metric conditions such as symmetry and triangle
inequality.
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When the following condition is satisfied, such a strategy is called greedy
routing.

Definition 2.4.3: Greedy Routing

fwdEs (t) = argmin
e∈E

d(e, t). (2.4)

This means selecting the closest entry e ∈ E to t (Figure 2.5).

Figure 2.5: Message forwarding in greedy routing algorithms.

2.5. Conclusion

In this chapter, I have introduced the basic structure of routing algorithms
for structured overlays.

In structured overlays, each node builds its own routing table. A message
is forwarded according to logical positions to reach its responsible node.
Because the entry to which each node forwards a message is defined by the
next hop function fwdEs (t), message flows are determined by routing tables
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E. Therefore, routing table construction is a critical part of structured
overlays. Note that I focus on this construction method in this thesis.

Progressive routing is a routing strategy to reduce the remaining distance
to a target logical position every forwarding, and greedy routing is a special
case of progressive routing strategy where each node forwards a message to
the closest node in its routing table. In this thesis, I primarily focus on
structured overlay with greedy routing.

In the next chapter, I describe methods to build routing tables with typical
examples.





Chapter 3

Existing Structured Overlays
In this chapter, I introduce concrete existing structure overlay algorithms,

i.e., Chord, Symphony, and Accordion.

These algorithms are characterized by their own routing table construction
methodologies. The routing table construction of Chord takes a typical
approach. Each node of Chord constructs a routing table by collecting
entries rigidly. However, Symphony and Accordion relax the restriction of
routing table candidates by a probabilistic and a biased learning approach.
However, Symphony cannot enlarge routing table size while maintaining the
efficiency of routing tables. Moreover, Symphony has no space to consider
factors other than logical positions. In contrast to Symphony, Accordion
can increase the routing table size. However, Accordion limits its learning
method and the behavior of its applications, and lacks extensibility.

In either approach, the desirable features described in Chapter 1 are not
achieved.

3.1. Chord

Chord[47] is a protocol and algorithm for a DHT using a structured overlay
network.

3.1.1. Remaining Distance

Chord performs progressive routing with logical position space P =
{0, . . . , 2m − 1} like a ring and clockwise distance dchord denoted dchord:
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Definition 3.1.1: Remaining distance in Chord

n, t ∈ P,

dchord(n, t)
def
= t− n mod 2m =

{
t− n, (n < t)
t− n+ 2m, (t ≤ n)

(3.1)

This logical position space is referred to as the Chord ring (Figure 3.1).

Figure 3.1: Chrod ring.

3.1.2. Responsible Node

The responsible node resN (t)∗ for a message for target logical position
t in a network with nodes N is the closest node n to t, i.e., the node is a
preceding node of t in the clockwise direction on the Chord ring.

∗ In Chord DHT, a value for key t is stored in the succeeding node of t. However, in this
thesis, it is considered that message forwarding terminates in the node that follows t, and
the initiator determines the succeeding node and stores the value in that node.
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Definition 3.1.2: Predecessor Node

predN (t) = argmin
n∈N

d(n, t). (3.2)

Node n is referred to as a predecessor node predN (t) for logical position
t in a system with nodes N .

Figure 3.2: Predecessor node predN (t).

Definition 3.1.3: Responsible Node in Chord

resN (t) = predN (t). (3.3)
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3.1.3. Routing Table

Chord has two routing tables, successor entry (Section 3.1.4) and finger
table (Section 3.1.5). These routing table entries are maintained by periodic
procedures.

An example of these entries is briefly illustrated in Figure 3.3.

Figure 3.3: Successor entry (Section 3.1.4), predecessor entry (Section 3.1.6)
and finger table entries (Section 3.1.5).

3.1.4. Successor Entry

A successor entry esucc is an entry that satisfies the following con-
straints:

Definition 3.1.4: Successor Entry

esucc = succ(s), (3.4)

where a successor succ(s) of s is defined as follows:
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Definition 3.1.5: Successor Node

succN (t) = argmin
n∈N

d(t, n). (3.5)

Figure 3.4: Successor node succN (t).

To obtain and maintain the successor entry, each node maintains an ad-
ditional predecessor entry epred.

Definition 3.1.6: Predecessor Entry

epred = predN (s), (3.6)

When joining the system, each node s looks up its own logical position
s using the current network. Subsequently, s knows the responsible node
resN (s) for s and sets the predecessor entry of resN (s) to the successor entry
of s.
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Each node periodically processes a procedure called stabilization to up-
date the successor entry. The outline of the stabilization procedure as fol-
lows:

Procedure 3.1.1: Stabilization

1. Ask a current successor entry e′ = esucc of s for a predecessor
entry e′pred of e′.

2. Update esucc with e′pred if d(s, e′pred) < d(s, e′) and e′ ̸= s.

∗In Step 1, before sending a reply, e′ substitutes s to e′pred if s is closer to e′ than
e′pred

3.1.5. Finger Table

An i-th entry efingers[i] of a finger table of node s satisfies the following
constraint:

Definition 3.1.7: Finger Table

efingers[i] = succ(s+ 2i mod 2m). (3.7)

To update each entry in the finger table, s looks up the responsible node
resN (s+2i mod 2m) for a logical position s+2i mod 2m and updates the i-th
finger table entry efingers[i] with the successor entry of resN (s+ 2i mod 2m).

3.1.6. Performance

The performance of Chord can be summarized as follows.
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Routing Table Size

The number of entries in Chord’s routing tables is O(log |N |). Although
the number of finger table entries is m, all entries that are closer than the
successor entry correspond to the successor entry.

Path Length

The path length is O(log |N |) with high probability because the remain-
ing distance to the target logical position is shortened by half or more by
forwarding due to the finger table entries.

Routing Table Flexibility

In Chord, each routing table entry is determined only for given nodes N .
Thus, there is only one candidate for the routing table. Therefore, routing
tables are rigidly restricted in Chord. Each node does not allow the addition
of arbitrary entries.

3.2. Symphony

Symphony[29] is a structured overlay algorithm that adopts a ring logical
position space from 0 to 1 and a clockwise remaining distance similar to
Chord. Symphony is characterized by a scheme to gather routing table
entries called long distance links that correspond to finger table entries in
Chord.

Symphony maintains two types of routing table entries, a short distance
link (SDL) and long distance links (LDL). An SDL is an entry that guar-
antees message reachability, which is the same as the successor entry in
Chord. Conversely, LDLs are entries that reduce routing path length, which
correspond to the finger table entry in Chord. Symphony performs greedy
routing using these links.

Symphony guarantees message reachability by obtaining and updating
the short distance link entries eSDL in the same way as the successor entries
in Chord. In contrast, each node determines each LDL by a method that
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differs from Chord, i.e., LDL determination is based on the small world
phenomenon[23]. In Chord, the i-th finger table entry is determined as
the succeeding node of a logical position x = s + 2i. In Symphony, each
LDL is determined as the succeeding node of a logical position x randomly
chosen from 1/|N | to 1 on the basis of the probability distribution function
p(x) = 1/(x ln |N |). Symphony achieves O( 1k log

2 |N | expected path length
with k = O(1) LDLs gathered by such a probabilistic approach.

Symphony does not limit the patterns of routing table entries. However,
because each entry is determined and fixed on the basis of the logical po-
sition generated by the probability distribution function, Symphony cannot
reflect factors other than logical positions in future extensions. Moreover,
symphony cannot arbitrarily increase the size of routing tables while main-
taining the efficiency of routing tables because it takes a proactive routing
table construction approach and discards node information learned by ordi-
nary lookups.

3.3. Accordion

Accordion[26] also adopts the same logical position space and remaining
distance as Chord. In Accordion, each node maintains routing table entries
by entry learning and entry eviction. The entry eviction process selects en-
tries on the basis of entry freshness, and Accordion considers logical positions
by controlling which nodes are learned.

Each node receives entries from another node and adds these entries to
its own routing table. By adopting recursive routing whereby intermediate
nodes forward a message directly to the next hop, each node tends to commu-
nicate with closer nodes more frequently and with more distant nodes less
frequently. By forcing applications to adopt recursive routing, Accordion
limits communicating nodes to bias learning nodes so that routing tables
learn entries with desirable distribution.

Accordion does not limit the patterns of routing table entries and can
increase the size of routing tables; however, Accordion does limit the way
entries are learned; i.e., a set of entries to be learned, and it limits applica-
tions. Accordion lacks extensibility because it considers logical positions by
limiting communicating node during lookups.
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3.4. Conclusion

I have introduced three approaches to constructing routing tables in Chord,
Symphony, and Accordion. Symphony and Accordion relax the restrictions
of routing table candidates by probabilistic and biased learning approaches.
However, Symphony cannot increase the size of routing tables while main-
taining the efficiency of routing tables and has no space to consider factors
other than logical positions. Accordion can increase the size of routing ta-
bles. However, it limits the method by which entries are learned and the
behavior of its applications. Note that Accordion also lacks extensibility.

In Chapter 4, I propose FRT to solve these problems by offering dynamic
and arbitrary routing table size and network size adaptability without re-
stricting routing table candidates and the use of routing tables in applica-
tions.





Chapter 4

Flexible Routing Tables
I propose flexible routing tables (FRT) [34], which is an algorithm de-

sign framework for structured overlay routing algorithms that is designed
to achieve the desirable features described in Chapter 1, i.e., dynamic and
arbitrary routing table size and network size adaptability without restricting
routing table candidates.

FRT-based algorithms are characterized by maintaining routing tables
using two procedures, entry learning and entry filtering. The entry learning
procedure adds an entry corresponding to a node to be learned to the routing
table. The entry filtering procedure evicts an entry from the routing table
according to an order on the routing table space and a sticky entry function.
Using these procedures, FRT-based algorithms can construct and maintain
routing tables and achieve the desirable features.

In this Chapter, I introduce only the framework. I introduce its applica-
tions in Chapters 5, 6, 7, and 8.

4.1. Logical Positions and Remaining Distance

An FRT-based algorithm is a structured overlay algorithm that performs
greedy routing with a logical position space P and a remaining distance
function d(x, y).

In FRT, each node s has a single routing table E = {ei}. Each entry ei
represents a candidate to which s forwards messages. Thus, E does not in-
clude entries for nodes not used as a forwarding target such as a predecessor
in Chord. Each entry ei has two properties, a logical position e.lp ∈ P and
an underlay network address e.ua (e.g., IP address with port number).
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4.2. Entry Learning Procedure

FRT offers two procedures, entry learning and entry filtering.

The entry learning procedure has one argument enew that can be used
as a candidate for a forwarding target. The procedure simply adds the
argument to the current routing table (4.2).

Figure 4.1: Evicts one entry in the entry filtering procedure.

Thus, it can be considered a “plus one” procedure. The entry filtering
procedure is as follows:

Procedure 4.2.1: Entry Learning

[Step 1] LET E = E+enew ,

where E+e = E ∪ {e}.

4.2.1. Execution Timing

The entry learning procedure is executed by various cues such as, but not
limited to, the followings.
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• Ordinary lookups∗ invoked by applications

• Active lookup at joining

• Active lookup to stabilize network

• Active lookup to increase routing table size

• Copy a routing table from a close node

Note that an argument entry is not added to a routing table if the routing
table includes an entry that corresponds to the argument.

4.3. Entry Filtering Procedure

The entry filtering procedure has no arguments. It evicts a single
entry from the current routing table E (Figure 4.2).

Figure 4.2: Evicts one entry in the entry filtering procedure.

Thus, it can be considered a “minus one” procedure.

The entry to be evicted is selected with routing table consideration based
on a sticky entry function (Section 4.3.3) and a routing table order
(Section 4.3.4).

∗ When a node looks up a node responsible to t, communications proceed around nodes
on its forwarding path, and the nodes send or receive messages from unknown nodes,
which are arguments of the entry filtering procedure.
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4.3.1. Arbitrary Execution Timing

Each node can execute an entry filtering procedure whenever the node
wants to reduce the number of entries in the routing table. FRT-based
algorithms can achieve dynamic and arbitrary routing table sizes using the
entry filtering procedure with the following three strategies to resize routing
tables.

1. Reduce: For example, a routing table that includes excessive entries
can be reduced using this procedure.

2. Enlarge: In contrast, in stable networks that allow large routing ta-
bles, nodes can increase the size of their routing table by not executing
entry filtering.

3. Maintain: Nodes can also maintain the size of routing tables by ex-
ecuting entry filtering after entry learning.

Due to the arbitrary timing of the execution of the entry filtering proce-
dure, FRT-based algorithms achieve network size adaptability. If the num-
ber of nodes is large, FRT-based algorithms repeatedly invoke entry filtering
procedures to keep routing tables small and achieve short path length. On
the other hand, even if the number of nodes in the system is smaller than
the maximum number of routing table entries, routing table can keep infor-
mation for all nodes.

4.3.2. Internal Structure

The entry filtering procedure is defined by the following steps using a
sticky entry function StickyEntry(E) and a routing table order ≤s

RT, which
will be introduced in the following sections.
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Procedure 4.3.1: Entry Filtering

[Step 1] LET C = E.

[Step 2] LET C = (C \ StickyEntry(E)).

[Step 3] REMOVE argmin
c∈C

(E−c,≤RT) FROM E.

Here, E−e = E \ {e}, and the function argmin is defined as follows:

Definition 4.3.1: argmin with ≤s
RT

argmin
e∈E

(E−e,≤s
RT) = e∗

(
s.t. ∀e ∈ E,E−e∗ ≤s

RT E−e
)
. (4.1)

This definition splits the consideration of path length and others into
routing table order and a sticky entry function.

The behavior of entry filtering procedure is illustrated in Figure 4.3.
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Figure 4.3: Sample behavior of entry filtering with 4 entries.
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4.3.3. Sticky Entry Function

In the entry filtering procedure, the sticky entry function performs an
important role. Algorithm designers can define a sticky entry function to
specify entries that should not be evicted from routing tables (Procedure
4.3.1). By appropriately defining a sticky entry function, the entry filtering
procedure maintains message reachability. A sticky entry function can also
be designed to facilitate the extension of an existing algorithm. Note that
the sticky entry function StickyEntry(E) must return a subset of E.

4.3.4. Routing Table Order

An entry filtering procedure selects an entry to be removed according to
a statically predefined routing table order ≤s

RT (Procedure 4.3.1). The
routing table order can compare two routing tables. In this thesis, the
direction of ≤s

RT is considered that smaller table is better; i.e., an inequality
E1 ≤s

RT E2 means that E1 is better for node s than E2. Algorithm designers
can define a routing table order that represents how routing tables can reduce
path lengths more effectively.

This internal structure of entry filtering facilitates variable and effective
structured overlay algorithms such as FRT-Chord, GFRT-Chord, and FRT-
2-Chord. These algorithms achieve the desirable features derived from FRT
such as dynamic and arbitrary routing table size and network size adapt-
ability without restricting routing table candidates.

Thus, by redefining the sticky entry function, algorithm designers can de-
sign extensions without considering logical positions to shorten path length.
This feature is utilized in the definition of extensions such as GFRT-Chord
and PFRT-Chord. Moreover, using this feature, mergeable-FRT, which is an
algorithm design framework, improves algorithm modularity by separating
extensions from the entry filtering procedure.

4.3.5. Restriction-free Routing Table Candidates

As mentioned above, FRT is characterized by the entry filtering procedure
to consider the logical positions of entries in routing tables.

In Accordion[26], the learning-eviction structure also achieves dynamic
and arbitrary routing table size. However, Accordion considers the logical



50 CHAPTER 4. FLEXIBLE ROUTING TABLES

positions when learning entries. This structure limits the way entries are
learned, i.e., the lookup process. Nodes are not allowed to perform lookup in
an the iterative routing manner. More over, the structure limits the entries
to be learned.

In contrast to Accordion, FRT-based algorithms do not need to limit the
entries to be learned by considering logical positions in the eviction process
rather than the learning process, i.e., the entry filtering procedure. Thus,
FRT does not limit the design space of applications and does not limit the
ability to learn entries.

Moreover, by defining the sticky entry function, FRT-based algorithms can
maintain desirable entries in the routing tables independent of routing table
order. Thus, FRT-based algorithms can achieve network size adaptability
and restriction-free routing table candidates.

4.4. Reachability Guarantee Procedures

If the sticky entry function is appropriately defined, the entry filtering
and entry learning procedures maintain routing tables such that message
reachability of the current routing tables is not lost. However, because
new nodes may join the network and some nodes may leave, each node
must perform additional communications to maintain reachability. In FRT,
such behaviors are referred to as reachability guarantee procedures,
which are defined by algorithm designers. For example, obtaining a successor
and stabilization in Chord are typical procedures classified as reachability
guarantee procedures.

4.5. Conclusion

In this chapter, I have proposed FRT, which is an algorithm design frame-
work for structured overlay routing algorithms, that is designed to achieve
the desirable features described in Chapter 1, i.e., dynamic and arbitrary
routing table size and network size adaptability without restricting routing
table candidates.

FRT includes two procedures, entry learning and entry filtering. The entry
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learning procedure adds an entry corresponding to a node to be learned to
the routing table. FRT is characterized by considering logical positions in
the entry filtering procedure. The entry filtering procedure evicts an entry
from the routing table according to the order on the routing table space and
a sticky entry function. Thus, FRT achieves dynamic and arbitrary routing
table size and network size adaptability.

Note that, in this chapter, I have introduced only the framework. In the
remaining chapters, I will introduce concrete algorithms designed based on
FRT that achieve the advantageous features that existing algorithms lack.

In Chapter 5, I introduce FRT-Chord, a concrete FRT-based algorithm
that achieves short path length and functions according to FRT design. In
Chapter 6, I introduce GFRT-Chord, a concrete extension of an FRT-based
algorithm that considers logical positions and node groups. In Chapter 7,
I introduce other FRT-based algorithms. Each algorithm is designed to
achieve a different goal. In Chapter 8, I introduce mergeable-FRT, which is
another framework based on FRT. Mergeable-FRT is designed to produce
algorithms that consider two or more metrics other than path length.





Chapter 5

FRT-Chord
In Chapter 4, I introduced the structure of the FRT framework. However,

FRT is only a framework; thus it is unclear whether concrete algorithms can
be designed on the basis of the FRT framework. In this chapter, I present
the design and implementation of an FRT-based algorithm named FRT-
Chord[34], which adopts the remaining distance of Chord. Analyses and
experimental results show that FRT-Chord works according to FRT design.
Moreover, FRT-Chord achieves desirable features derived from FRT such
as dynamic and arbitrary routing table size and network size adaptability
without restricting routing table candidates.

In FRT-Chord, nodes improve routing tables repeatedly by invoking the
entry learning and entry filtering procedures. I prove that the converged
routing tables achieve O(log |N |) path length with high probability.

FRT-Chord is the basis of other FRT-based algorithms introduced in later
chapters.

5.1. Sticky Entry Function

In FRT-Chord, let routing table E = {ei} of node s be aligned in a
clockwise direction from s = e0. Then, a sticky entry function FRT-Chord::
StickyEntry(E) is defined as follows:

Definition 5.1.1: Sticky Entry of FRT-Chord

FRT-Chord::StickyEntry(E) = {e0, e1}. (5.1)
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In this definition, entry e1 corresponds to a successor entry in Chord.

The sticky entry function can be defined to give redundancy to the suc-
cessor entry as follows:

FRT-Chord::StickyEntry(E) = {e0, e1, . . . , ek}. (5.2)

The sticky entry function can be defined to maintain predecessor entry in
the routing table as follows:

FRT-Chord::StickyEntry(E) = {e0, e1, . . . , ek, e|E|−1}. (5.3)

In this case, since the predecessor entry may not have joined the system,
a node selects the predecessor as the next hop entry with caution. In this
thesis, for simplicity, let k be 1 and assume that the predecessor is excluded
from the routing table.

5.2. Routing Table Order

In FRT-Chord, a routing table order is defined according to the reduc-
tion ratio, a ratio that represents how much the remaining distance can be
reduced by a single forwarding.
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Definition 5.2.1: Reduction ratio

A reduction ratio for forwarding a message for logical position t from
node s to node ei is defined as follows:

d(ei, t)

d(s , t)
. (5.4)

Figure 5.1: Reduction ratio.

This definition corresponds to the remaining distance after forwarding
divided by the remaining distance prior to forwarding.

FRT-Chord utilizes the worst-case reduction ratio rEi . This worst-case
reduction ratio of each entry is defined as the maximum reduction ratio of
a forwarding to that entry. In the distance of Chord, rEi can be calculated
as follows.
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Definition 5.2.2: Worst-case Reduction Ratio

The worst-case reduction ratio rEi for entry ei in routing table E =
{ei}i=0,...,|E|−1 is defined as follows:

rEi (= rE(ei)) =
d(ei, ei+1)

d(s , ei+1)
, (i = 1, . . . , |E| − 1, e|E| = s). (5.5)

Figure 5.2: Worst-case reduction ratio.

Definition 5.2.3: Routing Table Order in FRT-Chord

Let
(
rE(i)

)
i=1,...,|E|−1

be the worst-case reduction ratio sequence arranged

in descending order of {ri(E)}i=1,...,|E|−1. Subsequently, the routing
table order in FRT-Chord ≤FRT-Chord is defined as follows:

E1 ≤FRT-Chord E2

def⇔
(
rE1

(i)

)
i=1,...,|E1|−1

≤dic

(
rE2

(i)

)
i=1,...,|E2|−1

, (5.6)

where ≤dic is a lexicographical order.

This routing table order compares the worst-case reduction ratios of en-
tries in the two routing tables. Here, ≤FRT-Chord is designed to mean that E1

can shorten the remaining distance more than E2 when E1 ≤FRT-Chord E2.
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5.3. Entry Filtering Procedure

The entry filtering procedure of FRT-Chord is defined as follows when the
order is defined as above.

Procedure 5.3.1: Entry Filtering in FRT-Chord

[Step 1] LET C = E.

[Step 2] LET C = C \ {e0, e1}.

[Step 3] REMOVE argmin
c∈C

(E−c,≤FRT-Chord) FROM E.

∗C is a temporary variable.

This is just an entry filtering procedure to which ≤FRT-Chord and the sticky
entry function FRT-Chord::StickyEntry(E) are applied.

When [Step 3] is implemented in this entry filtering procedure, the def-
inition must be converted to some concrete algorithm. Note that naive
algorithms could be adopted for this task, such as calculating all worst-case
reduction ratios for every Ec and sorting them. However, FRT-Chord adopts
a more effective algorithm.

5.4. Entry Filtering Procedure for Implemen-
tation

The canonical spacing SE
i of entry ei in routing table E = {ei}i=0,...,|E|−1

is defined as follows:
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Definition 5.4.1: Canonical Spacing

SE
i = SE(ei) = log

d(s, ei+1)

d(s, ei)
, (i = 0, . . . , |E| − 1, e|E| = s). (5.7)
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Figure 5.3: Canonical spacing SE
i .

This is the spacing between the entry and its succeeding entry on the
logarithmic axis.

This canonical spacing satisfies the following equation:

Lemma 5.4.1: Canonical Spacings

rEi = 1− 2−SE
i . (5.8)

Since 1− 2−x is a monotonic function, Lemma 5.4.2 holds.
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Lemma 5.4.2: Routing Table Order Based on Canonical Spacings

Letting
(
SE
(i)

)
i=0,...,|E|−1

be the sequence arranged in descending order

of
{
SE
i

}
i=0,...,|E|−1

,

E1 ≤FRT-Chord E2 ⇔
(
SE1

(i)

)
i=0,...,|E1|−1

≤dictionary

(
SE2

(i)

)
i=0,...,|E2|−1

.(5.9)

The routing table order defined with the reduction ratio is represented
by a formula with canonical spacing. Here, I introduce a new canonical
spacing ŠE

i , which is defined as follows.

Definition 5.4.2: New Canonical Spacing

ŠE
i (= ŠE(ei)) = SE

i−1 + SE
i , (i = 1, . . . , |E| − 1) (5.10)

ŠE
i represents the size of a spacing that is newly generated around ei when

ei is removed from E. When ei is removed from E, the sequence of canonical

spacings
(
SE
i

)
i=1,...,|E|−1

changes to
(
SE−ei

i

)
i=1,...,|E−ei |−1

by adding a new

canonical spacing ŠE
i and removing two spacings, i.e., SE

i−1 and SE
i . Since

these three spacings satisfy ŠE
i > SE

i−1 and ŠE
i > SE

i , the new canonical
spacing ŠE

i is a dominant value relative to lexicographical order. Thus,
Lemma 5.4.3 holds.

Lemma 5.4.3: Routing Table Order Based on New Canonical Spacings

E−ei ≤FRT-Chord E−ej ⇔ ŠE
i < ŠE

j (5.11)

This means that, after removing different entries from the same routing
table, routing tables can be compared using the values of ŠE

i for a current
routing table without reference to lexicographical order. Thus, [Step 3] in
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the entry filtering procedure can be defined using the following equation:

Theorem 5.4.1

argmin
c∈C

(E−c,≤FRT-Chord) = argmax
c∈C

ŠE(c) (5.12)

Using this theorem, the minimum value in [Step 3] can be easily searched
by maintaining the sorted sequence (ŠE(ei))i=1,...,|E|−1, and entry filtering
corresponds to the following procedure:

Procedure 5.4.1: Entry Filtering in FRT-Chord for Implementation

[Step 1] LET C = E.

[Step 2] LET C = C \ {e0, e1}.

[Step 3] REMOVE argmax
c∈C

ŠE(c) FROM E.

When an entry is added or removed, the sorted sequence (ŠE(ei))i=1,...,|E|−1

is updated by adding, removing, or modifying at most O(1) new canonical
spacings.

5.4.1. Analysis of Entry Filtering

A routing table E is improved by the entry filtering procedure following
the entry learning procedure. The sequence of these procedures is referred to
as a routing table improvement process, and E.Improve(n) is referred
to as the improved routing table by learning an entry n. Here, such a process
becomes stuck at a local minimum. A convergent routing table is defined
as follows:
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Definition 5.4.3: Convergent Routing Table

E is a convergent routing table
def⇔ ∀n ∈ N,E.Improve(n) = E, (5.13)

Figure 5.4: Convergent routing table.

To avoid such a local minimum, algorithms should generally adopt appro-
priate techniques such as simulated annealing [22]. However, Theorem 5.4.2
about the local minimum holds:

Theorem 5.4.2: O(log |N |) Path Length

With high probability, assuming that all nodes have the convergent
routing table withO(log |N |) entries in anN -node network, path lengths
are O(log |N |).

Proof. Let J be a set of i, where a node exists in a range from ei
to ei+1, and K be a set of i otherwise (i = 1, . . . , |E|−1, e|E| = s).
Due to the definition of convergent routing tables, for any j ∈ J ,
when an entry is inserted between ej and ej+1, that entry will be
removed, and the following inequality holds.
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SE
j ≤ SE

i−1 + SE
i , (j ∈ J, i = 2, . . . , |E| − 1) (5.14)

Thus, by aggregating Equation (5.14),

SE
j ≤

Σ
|E|−1
i=2 (SE

i−1 + SE
i )

|E| − 2

≤
2Σ

|E|−1
i=1 (SE

i )

|E| − 2
= log

(
d(s, e|E|)

d(s, e1)

) 2
|E|−2

. (5.15)

With high probability, the distance between two generic con-
secutive nodes is at least 2m/N2[6], namely

d(s, e1) >
2m

N2
. (5.16)

According to the definitions of rEj and SE
j ,

rEj < 1−
(

1

N

) 4
|E|−2

. (5.17)

When I consider the upper limit of path lengths needed to re-
duce the remaining distance to 2m/N or less, I have only to focus
on the case where each node forwards to ej(j ∈ J), because there
is no node between ek and ek+1(k ∈ K) and the query forwarding
will stop if the query is forwarded to ek.

For |E| = 2 + 4 logN , the path length needed to reduce the
remaining distance to 2m/N or less is at most

logrEi
1

N
< logN. (5.18)

The path length is therefore O(logN). When the remaining
distance is at most 2m/N , the number of logical positions landing
in a range of this size is, with high probability, O(logN).
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Thus the query reaches the target logical position t within
another O(logN) steps, meaning that the entire path length is
O(logN).

Therefore, even if the routing table improvement process stagnates at any
local minimum, the path length is sufficiently short and is equivalent to the
path length in Chord.

5.5. Experimental Results

I implemented FRT-Chord on Overlay Weaver [45, 46] and performed
experiments[34].

5.5.1. Routing Table Improvement

After |N | nodes join an FRT-Chord system, I repeat sending a query 50|N |
times, where each query is sent to a randomly chosen key by a randomly
chosen node. This means the average number of queries sent by a node is
50. I vary the number of nodes |N | and the routing table size L and I set
the length of the successor list as 4.

Figure 5.5 indicates the average path lengths for every |N | queries. This
figure shows that repeating lookups shortens the average path lengths. The
number of lookups shortens the path lengths at almost the same range for
every node, regardless of the number of nodes in the system. This means
that FRT-Chords can adapt the size of the network.
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Figure 5.5: Change in average path length with the number of queries per
node.
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5.5.2. Path length

I varied |N | and the maximum routing table size L, and measured how
path lengths change. Figure 5.6 plot the average and the 99th percentile of
path lengths. These figures show that FRT-Chord achieves O(log |N |)-hop
lookup performance, as described by Theorem 5.4.2. These figures also show
that the trade-off between L and path lengths can be tuned, and FRT-Chord
maintains efficient routing tables with arbitrary routing table size L. When
especially L > N such as N = 102, L = 160, routing tables have all nodes
in the system and FRT-Chord achieves O(1)-hop lookup performance like
existing O(1)-hop algorithms[9, 33].
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Figure 5.6: Correlation between routing table size and path length.
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5.6. FRT-based algorithms based on other log-
ical position space

FRT-Chord is an FRT-based algorithm that adopts the same logical po-
sition space and the same distance function as that of Chord. Almost all
FRT-based algorithms introduced in the following chapters also adopt the
same logical position space. However, this does not mean that FRT can
adopt only the logical position space and the distance function of Chord.
Note that FRT does not prevent one from designing FRT-based algorithms
based on various logical position spaces and various distance functions. I
have designed and implemented FRT-Kademlia, which adopts the XOR met-
ric used in Kademlia[30].

5.7. Conclusion

I have proposed FRT-Chord, which is an FRT-based algorithm that uses
the same logical position space as Chord to demonstrate that concrete al-
gorithms can be designed based on FRT.

FRT-Chord defines a routing table order according to the worst-case re-
duction ratios, and FRT-Chord defines entries for the same role as that of
the sticky entry in Chord using the sticky entry function of FRT. With
such definitions, nodes of FRT-Chord can maintain message reachability
and repeatedly improve routing tables by entry learning and entry filtering
procedures. I have shown that the routing table improvement process based
on the routing table order achieves O(log |N |) path length with high proba-
bility. Experimental results show that FRT-Chord achieves other desirable
features derived from FRT such as dynamic and arbitrary routing table size
and network size adaptability.
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GFRT-Chord
For real applications, it is important that structured overlays consider

other metrics in addition to logical positions, i.e., path length because
nodes should construct routing tables with considerations of the physical
environment[5, 27, 38, 39, 55].

In Chapter 5, it was shown that a concrete algorithm (i.e., FRT-Chord)
that work as intended and achieve short path lengths can be designed based
on the FRT framework. However, it is unclear whether FRT-based algo-
rithms can be designed to consider other metrics in addition to logical
positions with the same desirable features of FRT such as dynamic and
arbitrary routing table size and network size adaptability. Thus, in this
chapter, I show the design and implementation of an FRT-based algorithm
named GFRT-Chord[35], which considers node groups and shortens inter-
group path length.

GFRT-Chord is a structured overlay algorithm that extends FRT-Chord
to construct routing tables with consideration of node groups in addition to
logical positions. GFRT-Chord achieves reduction of inter-group hops while
maintaining short path length derived from FRT-Chord. GFRT-Chord also
inherits dynamic and arbitrary routing table size and network size adapt-
ability. This means that FRT-based algorithms can be extended to construct
routing tables with consideration of other metrics in addition to logical po-
sitions. I prove some desirable properties are made available as a result of
assigning appropriate priority to node groups. Experimental results show
that the path lengths and the inter-group path lengths are shortened stably
with various algorithms and network parameters. This means that GFRT-
Chord achieves a balance between logical position considerations and node
group considerations.
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6.1. Background

Structured overlay algorithms that only consider logical positions aim to
minimize path length. Consequently, inefficient forwarding sometimes oc-
curs because nodes forward messages independent of the physical environ-
ment. Care must be taken to ensure that routing tables reflect the physi-
cal environment for improvements various metrics such as performance and
robustness[39].

For example, if such structured overlays are used in data centers, commu-
nication via network switches increases, and the load becomes concentrated
on the switches. If such structured overlays are used on the Internet, com-
munication across internet service providers (ISP) or countries increases,
which leads to network issues and increased cost.

By assuming that nodes on the same server rack or with the same au-
tonomous system (AS) number or country identifier belong to the same
node group, the aforementioned issues are considered a problem that can be
solved by reducing communication across node groups. Routing methods
that reduce communication between node groups can assist various applica-
tions. To date, various algorithms[11, 19, 28, 42, 53] that divide all nodes
into node groups or node clusters and reduce transmission between them
have been proposed. However, these structured overlay algorithms assume
a network setup with many nodes; as a result, there are commonly many
nodes in each group. Moreover, existing algorithms do not support dynamic
and arbitrary routing table size.

Structured overlays are unsuitable for applications that assign a small
number of machines, such as a single server rack, to a node group.

Moreover, the best structured overlay algorithms must be able to use
small routing tables for large networks. Such algorithms are unsuitable for
applications that can increase the number of entries in a routing table; for
example, in HPC clusters such as OneHop[9], D1HT[33], or 1h-Calot[48].

I propose GFRT-Chord[35], a structured overlay algorithm that makes
routing more efficient and reduces the need for communication across groups.
GFRT-Chord demonstrates desirable features derived from FRT such as dy-
namic and arbitrary routing tables, network size adaptability, and effective
utilization of entry information.
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6.2. Node Groups

GFRT-Chord performs greedy routing with the same logical position space
and the same remaining distance d(n, t) as that of Chord. In GFRT-Chrod,
each node n has a node group identifier n.group in addition to a logical posi-
tion n.lp and an underlay address n.ua. For example, node group identifier
represents the AS number, server rack number, country code, or data center
name. Then, GFRT-Chord regards nodes that have common node group
identifiers as belonging to the same group, and constructs routing tables by
considering node group identifiers in addition to logical positions.

Let Gi = {nj}j=1,...,|Gi| be each node group, and G = {Gi}i=1,...,|G| be a
set of all groups, where nj is a node.

6.3. Routing Table Order

GFRT-Chord adopts the same routing table order ≤FRT-Chord as FRT-
Chord (Definition 5.2.3). GFRT-Chord considers node groups in its own
sticky entry function. Thus, GFRT-Chord can be implemented by utilizing
an entry filtering implementation of FRT-Chord.

6.4. Sticky Entry Function

Four types of entry subsets, G(E) = {gi}i=0,...,|G(E)|−1(i < j ⇒ d(s, gi) <

d(s, gj)), G(E), Far(E), Leap(E), and a subset of nodes in the system Gs

are defined as follows:
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Definition 6.4.1

G(E)
def
= {e ∈ E | e.group = s.group} (6.1)

G(E)
def
= {e ∈ E | e.group ̸= s.group} (6.2)

Far(E)
def
= {e ∈ E | d(s, g1) ≤ d(s, e) } (6.3)

Leap(E)
def
= Far(E) ∩G(E) (6.4)

Gs = Gs(N)
def
= {n ∈ N | n.group = s.group} (6.5)

Figure 6.1: G(E), G(E), Far(E) and Leap(E) in
a routing table of a node s.

Figure 6.2: Gs: The same group nodes as that of
a node s in the system.
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Thus, the sticky entry function of GFRT-Chord is defined as follows:

Definition 6.4.2: Sticky Entry Function of GFRT-Chord

GFRT-Chord::StickyEntry(E)

def
=

{
{e0, e1, g1} (Leap(E) = ∅)
{e0, e1, g1} ∪G(E) (Leap(E) ̸= ∅). (6.6)

6.5. Entry Learning Procedure

The entry learning procedure in GFRT-Chord is the same as that in FRT-
Chord.

6.6. Entry Filtering Procedure

According to the entry filtering procedure of FRT-Chord, the entry filter-
ing procedure of GFRT-Chord is summarized as follows:

Procedure 6.6.1: Entry Filtering of GFRT-Chord for Implementation

[Step 1] LET C = E.

[Step 2] LET C = C \GFRT-Chord::StickyEntry(E).

[Step 3] REMOVE argmax
c∈C

ŠE(c) FROM E.

The routing table order of GFRT-Chord is the same as that of FRT-
Chord. Thus, the implementation of [Step 3] in FRT-Chord can be reused
in GFRT-Chord. This is achieved by the structure of FRT. This means that
separating consideration of routing table order and other factors in FRT
facilitates the modularity of algorithms.
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The difference between GFRT-Chord and FRT-Chord is in a small part
of these sticky entry function. This compact definition of extension is a
characteristic of FRT-based algorithms. Such definitions are achieved by two
characteristics of FRT, unrestricted routing table candidates and the ability
to reflect logical positions to routing tables in the routing table order. Note
that FRT does not prevent addition of entries that the new algorithms want
to possess. Thus, to shorten path lengths, FRT automatically considers the
combination of logical positions in the current routing table that includes
such entries.

6.7. Reachability Guarantee Procedures

GFRT-Chord performs the same reachability guarantee procedures as
Chord as well as two additional procedures. The group join and group
stabilize procedures build and maintain a group successor g1 and en-
sure message reachability within each node group, respectively. The basic
behaviors of the group join and stabilize procedures are the same as FRT-
Chord and Chord. The only difference is that the two group procedures
are executed using only nodes that belong to a single node group. Thus, a
join procedure (including group join procedures) and a stabilize procedure
(including group stabilize procedures) are defined as followings:

Procedure 6.7.1: Join Procedure in GFRT-Chord

[Step 1] Perform the join procedure in FRT-Chord.

[Step 2] Perform the join procedure in FRT-Chord limited to the
same group nodes (group join procedure).
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Procedure 6.7.2: Stabilize Procedure in GFRT-Chord

[Step 1] Perform the stabilize procedure in FRT-Chord.

[Step 2] Perform the stabilize procedure in FRT-Chord limited to
the same group nodes (group stabilize procedure).

The join procedure in GFRT-Chord obtains two entries to guarantee
reachability, and the stabilize procedure periodically updates these entries.

6.8. Analysis

Here, I analyze the performance of GFRT-Chord.

6.8.1. Group Localized Routing Table

I analyze routing paths with the concept of group localized routing
table defined as follows:
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Definition 6.8.1: Group Localized Routing Table

Where E is the routing table of node s, a group localized routing
table is defined as follows:

E is a group localized routing table

def⇔ ∀t ∈ I,

(
fwdEs (t) ∈ Gs(N)

∨ ∀g ∈ Gs(N),d(fwdEs (t), t) ≤ d(g, t).

)

Figure 6.3: Message forwarding at a node s for the destination t with a
group localized routing table when fwdEs (t) ̸∈ Gs(N).

Lemma 6.8.1 about networks with group localized routing tables holds.
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Lemma 6.8.1

For any path V = {vi} from an initiator node v1 to a destination node
vn, when all the nodes in the path have a group localized routing table,

1 ≤ ∀i < ∀j < ∀k ≤ |V |,
(vi.group = vk.group) ⇒ (vi.group = vj .group). (6.7)

Figure 6.4: A node vj belongs to the same group because of Lemma
6.8.1.

Proof. Assume that vi.group = vk.group and that there is a node
vj in the path s.t. vi.group = vj−1.group ̸= vj .group. vj−1 has a
group localized routing table Ej−1; therefore,

∀g ∈ Gvj−1 ,d(fwd
Ej−1
s (t), t) ≤ d(g, t) (6.8)

,where t is the target logical position of the message. Thus,
vk ∈ Gvj−1 and vj−1 forwards messages to vj ; therefore, d(vj , t) ≤
d(vk, t). However, this contradicts the property of greedy routing;
i.e., d(vj , t) > d(vk, t).
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Theorem 6.8.1: Message Don’t Come Back to Group

In a GFRT-Chord network wherein nodes have group localized routing
tables, after a message leaves a node group Gpassed, it will never be
forwarded to any other node that belongs to Gpassed.

Figure 6.5: A message will not come back to the group Gpassed

Proof. If a message returns to node group Gpassed after
having passed through it; i.e., if there is a path V =
{. . . , vi, vi+1, . . . , vk, . . . }, where vi, vk ∈ Gpassed and vi+1 ∈
Ganother, then behavior contradicts Lemma 6.8.1.

Let VG = {Gi} be a group path, which is a path in units of groups rather
than nodes, and the group path length is |VG| − 1.

GFRT-Chord has the following group path length features.
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Lemma 6.8.2: Group Path Length

In a network that comprises |G| node groups and all nodes have group
localized routing tables, the group path length is at most |G| − 1.

Proof. From Theorem 6.8.1, the group path length cannot be
greater than |G| − 1.

Lemma 6.8.3: The Number of Group Hops

In a network that comprises |G| groups and all nodes have group local-
ized routing tables, the group path length is O(|G|) independent of the
number of nodes |N |.

Proof. This can be clearly derived from Lemma 6.8.2.

Therefore, if the number of groups is constant, the group path length is
O(1), even when the number of nodes |N | increases.

I will explain stronger features of group path length.

6.8.2. Group Localized Routing Table in GFRT-Chord

Lemmas 6.8.4 and 6.8.5 describe the conditions by which routing tables
are group localized routings.
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Lemma 6.8.4: Gs(N) ⊂ E

If E is a routing table of node s, E is a group localized routing table if
Gs(N) ⊂ E.

Figure 6.6: A routing table when Gs(N) ⊂ E and Gs(N) = 4.

Proof. GFRT-Chord performs greedy routing; therefore,

∀t ∈ I, ∀e ∈ E, d(fwdEs (t), t) ≤ d(e, t). (6.9)

Because Gs(N) ⊂ E,

∀t ∈ I, ∀e ∈ Gs(N), d(fwdEs (t), t) ≤ d(e, t). (6.10)
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Lemma 6.8.5: Leap(E) = ∅

If E is a routing table of a node s, E is a group localized routing table
if Leap(E) = ∅.

Figure 6.7: A routing table when Leap(E) = ∅.

Proof. Let s be a node that belongs to node group Gs and
DomG(s) be a responsible domain of s in Gs, i.e., DomG(s) =
{t ∈ I | ∀g ∈ Gs, d(s, t) ≤ d(g, t)}.

1. If t ̸∈ DomG(s),
∀t, fwdsE(t) ∈ Gs(N) because Leap(E) = ∅.

2. If t ∈ DomG(s),
∀g ∈ Gs, d(s, t) < d(g, t) because t ∈ DomG(s). In this
case, d(fwdEs (t), t) < d(s, t) because GFRT-Chord performs
greedy routing, so ∀g ∈ Gs(N),d(fwdEs (t), t) < d(g, t).

Theorem 6.8.2 about convergent routing tables in GFRT-Chord holds.
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Theorem 6.8.2: Convergent Routing Table in GFRT-Chord

A convergent routing table Econv is a group localized routing table.

Proof.

1. If Gs(N) ⊂ E, due to Lemma 6.8.5, E is a group-localized
routing table.

2. If Gs(N) ̸⊂ E, ∀g ∈ Gs(N), g ̸∈ E ⇒ E.Improve(g) = E
because E is convergent. This means that g is removed
from E.Learn(g) and g is not a sticky entry, so Leap(E) =
∅. Therefore, due to Lemma 6.8.5, E is a group-localized
routing table.

This means that a routing table becomes a group localized routing table
after a sufficient number of routing table improvement processes.

6.8.3. Path Length in Two Growth Model

Here, I analyze path lengths for the GFRT-Chord algorithm in the sys-
tem with two different network-growth models: group-increasing model and
member-increasing model (Figure 6.8).
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Figure 6.8: Two network-growth models.

Theorem 6.8.3 governs the selection of nodes to be removed in the entry
filtering procedure.

Theorem 6.8.3

Let E = {ei} be a routing table and E∗ = E−ei∗ be a routing table
from which ei∗ has been removed as part of the entry filtering, where ei
is not a sticky entry for E. Thus, the following is obtained:

E−ei∗ ≤FRT-Chord E−ei . (6.11)
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Definition 6.8.2: O(log |N |)-hop

O(log |N |)-hop is a class of hops performed at most O(log |N |) times
prior to arriving at the node that is responsible for a message.

For example, when an algorithm performs only O(log |N |)-hops, its path
length is O(log |N |).

Definition 6.8.3: Degree of Freedom

Degree of freedom of a convergent routing table E is the minimum
number of non-sticky entries in E.

Theorem 6.8.4: FRT-Chord and Degree of Freedom

In an FRT-based Chord algorithm (including GFRT-Chord) network
with |N | nodes, a hop to ei is an O(log |N |)-hop with high probability
when a node eadd exists in (ei, ei+1) such that the degree of freedom of
E+eadd is greater than 4 log |N |.

Proof. E is convergent; therefore, for all entries efree ∈ E that
are not sticky entries of E+eadd :

E+eadd−eadd ≤FRTChord E+eadd−efree . (6.12)

Let ej be efree; thus, Si ≤ Sj−1 + Sj . By adding both sides for
all j, I obtain the following:

Si =
Σj∈JSi

|J |
≤ 2

|J |
Σj∈E−sSj = log

(
2m

d(s, e1)

) 2
|J|

. (6.13)

Since any distance d(s, e1) > 2m/|N |2, the following equation
holds with high probability when |N | is sufficiently large:

ri(E) ≤ 1− (1/|N |)
4
|J| . (6.14)
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Thus, since |J | equals the degree of freedom of E+eadd , |J | is
4 log |N |. Therefore, the number of times such forwarding is per-
formed by the time the remaining distance becomes smaller than
2m/|N | is expressed as follows:

logri(E) (1/|N |) ≤ log |N |. (6.15)

Therefore, the hop is O(log |N |)-hop.

Here, I focus on two network-growth models. Various applications can be
classified into one of these two models (Figure 6.8).

The first model is a group-increasing model. In such networks, the
number of groups increases but the number of nodes in each group does
not increase significantly. For example, groups represent network switches,
network routers, or server racks. In such a network, there is a constant C,
which is not less than the number of nodes belonging to each group |Gi|.

Theorem 6.8.5: Path length in Group-Increasing Model

In a GFRT-Chord network that comprises |G| groups with a capacity
of C nodes, the path length is O(log |N |) with high probability when
all nodes have convergent routing tables with O(log |N |) entries.

Proof. I prove that a hop from s to ei is an O(log |N |)-hop. Let
|E| be |Gs|+ 4 log |N |; thus, the following holds.

1. When ei.group ̸= Gs, the hop is from one group to another.

(a) When Leap(E) = ∅, ei is in (s, gi). Thus, there are no
nodes that belong to Gs in (ei, ei+1).

i. When there are no nodes in (ei, ei+1), this hop is
the last hop.

ii. When there is a node eadd(̸∈ Gs), the degree of
freedom of E+eadd is larger than 4 log |N |.

(b) When Leap(E) ̸= ∅, all nodes belong to Gs in E. Thus,
there are no nodes that belong to Gs in (ei, ei+1).
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i. When there are no nodes in (ei, ei+1), this hop is
the last hop.

ii. When there is a node eadd(̸∈ Gs), the degree of
freedom of E+eadd is 4 log |N |.

Therefore, given Theorem 6.8.4, hops over groups are per-
formed O(log |N |) times.

2. When ei.group = Gs, such hops are performed at most |Gi|
times in each group Gi on a routing path. Hops over groups
are performed O(log |N |) times; thus, messages are routed
through O(log |N |) groups. As a result, hops between nodes
in the same group are performed at most O(C log |N |) =
O(log |N |) times.

Therefore, the number of hops is O(log |N |).

The other network-growth model is a member-increasing model. In
such networks, the number of nodes in each group increases but the number
of groups does not increase significantly. For example, groups can represent
ISPs, countries, or continents. In such a network, there is a constant Gmax

which is the number of groups |G| is not more than.

Theorem 6.8.6: Path length in Member-Increasing Model

In a GFRT-Chord network that comprises |G| node groups, where |G|
is less than Gmax, the path length is O(log |N |) with high probability
when all nodes have convergent routing tables with O(log |N |) entries.

Proof. I prove that a hop from s to ei is O(logN)-hop.

Let the maximum routing table size be 2+4 log |N | because |G|
is less than Gmax; thus, |N | is sufficiently large. Therefore, |Gs|,
i.e., the number of nodes belonging to a group that is the same
as s, is larger than |E|. Thus, there are nodes that belong to Gs

but not in E. Therefore, because E is a convergent routing table,
Leap(E) = ∅.

1. When ei.group ̸= s.group, the hop is from one group to
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another. Given Theorem 6.8.1, such a hop is performed at
most |G| − 1 times.

2. When ei.group = s.group, the hop is an intra-group hop.
Thus, because Leap(E) = ∅, ei is the same node or farther
than g1.

(a) When there are no nodes in (ei, ei+1), the hop is the
last hop.

(b) When there are one or more nodes that do not belong
to Gs in (ei, ei+1), the hop is the last hop. Thus, this
hop is performed only |G| times.

(c) When there are one or more nodes eadd that belong to
Gs in (ei, ei+1), Leap(E

+eadd) remains empty. There-
fore, the degree of freedom of E+eadd is 4 log |N |.

Given Theorem 6.8.4, all hops are O(logN)-hop; thus, the path
length is O(logN).

6.9. Naive Grouped FRT-Chord

GFRT-Chord efficiently builds group localized routing tables and acquires
the outstanding characteristics derived from the routing tables.

I have defined GFRT-Chord simply; however, I can also define naive
grouped FRT-Chord, which is an algorithm by considering node groups more
simply and intuitively as follows:

Definition 6.9.1: Sticky Entry Function of Naive Grouped FRT-Chord

NaiveGroupedFRT-Chord::StickyEntry(E)

= {e0, e1, g1} ∪G(E) (Leap(E) ̸= ∅). (6.16)

This algorithm is based on the idea that G(E) should be protected from
eviction in entry filtering procedure. However, this algorithm accords too



86 CHAPTER 6. GFRT-CHORD

much priority to node groups compared with GFRT-Chord. Thus, the naive
grouped FRT-Chord does not shorten path lengths and may send messages
along a long path.

In GFRT-Chord, the priority of node groups and that of choosing the
shortest paths are effectively balanced. I demonstrate this property by im-
plementing naive grouped FRT-Chord and GFRT-Chord (Section 6.10).

6.10. Experimental Analysis

To quantitatively evaluate the properties of GFRT-Chord, I implemented
Chord, FRT-Chord, naive grouped FRT-Chord, and GFRT-Chord, and ran
simulations.

6.10.1. Path Length and Group Path Length Relative to
|N | and |G|

In our simulations, I implemented the proposed algorithms with the num-
ber of nodes |N | equaling 120, 1280, and 12800 and the number of node
groups |G| equaling 2, 8, 32, and 128. For FRT-Chord, naive grouped FRT-
Chord, and GFRT-Chord, for which the maximum number of entries L can
be set, I set L = 20. Note that each routing table E includes its owner node
s; thus, the number of entries other than s is L−1. Each node looks up 100
logical positions selected randomly to initialize routing tables, and lookups
are repeated 10000 times from randomly selected nodes to randomly selected
logical positions. To evaluate routing characteristics, I measured the average
path length and average group path length (i.e., the number of hops from
one group to another).

Figure 6.9 shows that the average path length of GFRT-Chord is not sig-
nificantly less than FRT-Chord, which does not consider groups. Figure 6.9
also shows that GFRT-Chord reduced the number of inter-group hops effi-
ciently for the various parameters, and that the group path length is kept
smaller even when |G| is large (i.e., group path length is proportional to
log |G|).

Naive grouped FRT-Chord demonstrates performance that is nearly equiv-
alent to GFRT-Chord if the number of nodes or the number of node groups
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Figure 6.9: Average path length

is small. In these cases, the algorithm seems to be as good as GFRT-Chord.
However, the path length extends remarkably when (|N |, |G|) = (1280, 64)
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Figure 6.10: Average group path length

or (|N |, |G|) = (12800, 128). In these cases, most entries in the routing ta-
bles of s belong to Gs because |N |/|G| = |Gs| > L. Thus, inter-group hops
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are improved by improve procedures, but intra-group hops are not improved
because there are few nodes that belong to other groups. However, this is
not significant problem when |G| is small, because intra-group hops are per-
formed more often than inter-group hops. However, when |G| is large, which
means that |Gs| is small, routing tables cannot be significantly improved by
repeating improve procedures because the number of entry patterns that
belong to Gs is also small.

GFRT-Chord solves this issue by accurately restriction of keeping same
group nodes in its routing tables by the dividing of cases about Leap(E) in
the sticky entry function.

GFRT-Chord performs in the same manner as FRT-Chord in an extreme
situation, wherein the number of forwards across groups cannot be reduced;
i.e., when |N | = |G| or |G| = 1. GFRT-Chord does not excessively extend
path lengths, even though it gives priority to the consideration of node
groups.

6.10.2. Path Length and Group Path Length Relative to
Routing Table Size (L)

GFRT-Chord allows the routing table size (L) to be set freely and dy-
namically. I evaluated path length in various routing table sizes about this
function. We compared GFRT-Chord with FRT-Chord and naive grouped
FRT-Chord, which also allow the routing table size to be set.

In various situations, GFRT-Chord shortened the group path length by
extending the total path length slightly, as is shown in Figure 6.11, Fig-
ure 6.12, Figure 6.13 and Figure 6.14.

In contrast, with naive grouped FRT-Chord, when (|N |, |G|) = (1280, 8),
(12800, 32), etc., the average group path length is constant and independent
of L, and expanding the routing table size provides no improvement because
routing tables have too many entries that belong to their groups and thus
cannot be improved.

A unique improvement to the group path length of naive grouped FRT-
Chord occurs when (|N |, |G|, L) = (1280, 32, 80), as is shown in Figure 6.13
because |N |/|G| = |Gs| = 40 < L = 20. Thus, the routing tables include at
most 20 entries. The remaining capacities of the routing tables is used to
improve inter-group hops.
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Figure 6.11: Average path length (|G| = 8)

In contrast, even in such situations, GFRT-Chord performs acceptably.
GFRT-Chord shortens the average path length and average group path
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Figure 6.12: Average group path length (|G| = 8)

length steadily depending on (|N |, |G|, L). This shows the characteristics
derived from FRT-Chord, which can set L freely and dynamically irrespec-
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Figure 6.13: Average path length (|G| = 32)

tive of |N | or |G|, and whether nodes know |N | or |G|.
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Figure 6.14: Average group path length (|G| = 32)
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6.11. Conclusion of This Chapter

In this chapter, a concrete algorithm, i.e., GFRT-Chord, has been pro-
posed to demonstrate that FRT-based extended algorithms can be designed
to consider metrics other than path length and retain the desirable features
of FRT such as dynamic and arbitrary routing table size and network size
adaptability.

GFRT-Chord, which is based on FRT-Chord, considers node groups in
addition to logical positions and reduces inter-group hops and total path
length.

GFRT-Chord restricts the growth of the entire path length regardless of
whether the number of nodes in the system or the number of nodes that
belong to each node group is extremely small or large. Moreover, GFRT-
Chord does not need to know the number of nodes and groups in advance;
therefore, it can be used when this information cannot be predicted.

I have demonstrated that path length is O(log |N |) in two typical network-
growth models and shown that, after a message leaves a node group, the
message will never be forwarded to any other node that belongs to the
group, i.e., a message does not pass the same group two times.

The features of the proposed routing algorithm were verified in simula-
tions, and the proposed method was compared to existing algorithms and
a simple algorithm that uses node groups. I have designed another naive
grouped FRT-Chord algorithm by extending FRT-Chord that is defined in a
more simple and straightforward manner than the proposed GFRT-Chord.
I have shown that this algorithm experiences problems when network and
algorithm parameters meet certain conditions, and I have demonstrated that
GFRT-Chord consistently performs efficient routings in such cases.



Chapter 7

Other FRT-based Algorithms
Here, in addition to GFRT-Chord in Chapter 6, other FRT-based algo-

rithms are introduced to show the applications of FRT for various targets.
These algorithms utilize the structure of FRT and achieve the desirable fea-
tures derived from FRT, such as dynamic and arbitrary routing table size
and network size adaptability.

To compare these FRT-based algorithms and emphasize the differences
among them, the following elements of FRT are summarized.

• Remaining distance

• Routing table order

• Sticky entry function

• Entry learning procedure

• Entry filtering procedure

• Entry filtering procedure for implementation

• Reachability guarantee procedures

7.1. FRT-2-Chord

FRT-2-Chord[2] is an FRT-based algorithm that is characterized by a
symmetric remaining distance. By adopting symmetric distance, FRT-2-
Chord achieves routing table symmetry; when the routing table of node n1

contains node n2, the routing table of node n2 tends to contain node n1.
This property reduces the cost of routing table maintenance and improves
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the efficiency of learning entries. Symmetric distance is also used in various
algorithms, such as 2-Chord[6], Kademlia[30], and CAN[39].

In the following, I explain how to design an FRT-based algorithm with
symmetric remaining distance.

7.1.1. Remaining Distance

In FRT-2-Chord, each node is assigned a logical position from 0 to 2m−1
like in Chord. FRT-2-Chord adopts symmetric distance from x to y. Here,
d(x, y) is defined as follows:

Definition 7.1.1

d(x, y) = min{|x− y|, 2m − |x− y|} (7.1)

Figure 7.1: Remaining distance function of FRT-2-Chord.

By this definition, d(x, y) = d(y, x) holds for any x and y, i.e., distance
is symmetric. In FRT-2-Chord, routing tables are constructed according to
the total order on the basis of remaining distance. Consequently, routing
tables will be symmetric, i.e., when the routing table of node n1 contains



7.1. FRT-2-CHORD 97

another node n2, the routing table of node n2 tends to contain node n1.

7.1.2. Routing Table Order

To define the routing table order ≤FRT-2-Chord, FRT-2-Chord defines the
worst-case reduction ratio in the same way as Chord.

Let E = {ei}0,...,|E|−1 be the routing table of node s aligned clockwise
from s = e0, where dchord(x, y) is the clockwise remaining distance of Chord.
Then, logical position mi is defined as follows:

Definition 7.1.2

mi = ei + dchord(ei, ei + 1) mod 2m. (7.2)

FRT-2-Chord performs a greedy routing strategy, and the node respon-
sible node for a target logical position t is the closest node to t based on
the remaining distance. In FRT-2-Chord, messages may be forwarded an-
ticlockwise. Assuming clockwise message forwarding to entry ei, the worst-
case reduction ratio rE,cw

i occurs when the target t equals mi. Assuming
anticlockwise message forwarding to an entry ei, the worst-case reduction
ratio rE,acw

i occurs when the target t equals mi−1.

In FRT-2-Chord, a set of the worst-case reduction ratios {rEi } is defined
as follows:

Definition 7.1.3

{rEi } = {rE,cw
i } ∪ {rE,acw

i } (7.3)

Here, routing table order ≤FRT-2-Chord is defined as follows:



98 CHAPTER 7. OTHER FRT-BASED ALGORITHMS

Definition 7.1.4

E1 ≤FRT-2-Chord E2 ⇔ {rE1

(i) } ≤dic {rE2

(i) }, (7.4)

where {rE(i)} is the sequence of reduction ratios arranged in descending
order.

7.1.3. Sticky Entry Function

In FRT-2-Chord, the sticky entry function is defined as follows:

Definition 7.1.5

FRT-2-Chord::StickyEntry(E) = {e0, e1, e|E|−1} (7.5)

This function differs from the sticky entry function in FRT-Chord because
the predecessor entry e|E|−1 is required to guarantee message reachability in
the anticlockwise direction.

7.1.4. Entry Learning Procedure

The entry learning procedure of FRT-2-Chord is the same as that of FRT-
Chord.

7.1.5. Entry Filtering Procedure

The entry filtering procedure of FRT-2-Chord is summarized as follows:
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Procedure 7.1.1: Entry Filtering Procedure in FRT-2-Chord

[Step 1] LET C = E.

[Step 2] LET C = (C \ FRT-2-Chord::StickyEntry(E)).

[Step 3] REMOVE argmin
c∈C

(E−c,≤FRT-2-Chord) FROM E.

This procedure is based entirely on the FRT framework.

7.1.6. Entry Filtering Procedure for Implementation

For simple implementation, FRT-2-Chord uses another form of definition
for its entry filtering procedure.

When ei is removed from E, the updated worst-case reduction ratio
RE

i is defined as follows:

Definition 7.1.6: Updated Worst-Case Reduction Ratio

RE(ei) =


|d(s, ei+1)− d(s, ei−1)|
d(s, ei+1) + d(s, ei−1)

(i ̸= k, i ̸= k + 1)

2m − d(s, ei+1)− d(s, ei−1)

2m − |d(s, ei+1)− d(s, ei−1)|
(i = k, k + 1)

(7.6)

Here, the following entry filtering procedure is the same as Definition
7.1.1.

By sorting RE(ei) in ascending order, the entry to be removed can be
found efficiently, and the following theorem holds:



100 CHAPTER 7. OTHER FRT-BASED ALGORITHMS

Theorem 7.1.1

RE(e∗) ≤ RE(e) ⇔ E−e∗ ≤FRT-2-Chord E−e (7.7)

Thus, the following entry filtering procedure removes the same entry as
Procedure 7.1.1.

Procedure 7.1.2: Entry Filtering in FRT-2-Chord for Implementation

[Step 1] LET C = E.

[Step 2] LET C = (C \ FRT-2-Chord::StickyEntry(E)).

[Step 3] REMOVE argmin
c∈C

RE(c) FROM E.

By updating the sequence of
(
RE(e)

)
e∈E sorted in ascending order, the

entry to be removed can be found efficiently.

7.1.7. Reachability Guarantee Procedures

Due to the two-direction property, the reachability guarantee procedure
has two elements, i.e., a clockwise stabilization, which is the same as that of
FRT-Chord, to update the successor entry and anticlockwise stabilization
to update the predecessor entry.

7.1.8. Analysis

The entry filtering procedure of FRT-2-Chord also achieves the same
O(log |N |) path length as FRT-Chord.

In a network where all nodes have convergent routing tables, the following
Theorem 7.1.2 holds:
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Theorem 7.1.2: O(log |N |) Path Length

With high probability (or under standard hardness assumptions), as-
suming that all nodes have a convergent routing table with O(log |N |)
entries in an |N |-node network, path lengths are O(log |N |).

7.2. FRT-Chord#

FRT-Chord#[32] is an FRT-based algorithm characterized by routing ta-
ble order that is based on entries in neighbor routing tables rather than log-
ical position. Given this characteristic, FRT-Chord# supports non-uniform
logical position node distributions and enables a DHT to support range
queries. Data keys may be biased in a DHT that supports range queries,
and FRT-Chord# routing tables are constructed without the assumption
that the data keys are distributed uniformly.

7.2.1. Remaining Distance

The remaining distance used in FRT-Chord# is the same as that used
in FRT-Chord. FRT-Chord# selects a next hop entry according to this
remaining distance. However, FRT-Chord# does not use a logical-position-
based remaining distance to define routing table order.

7.2.2. Routing Table Order

Let Es = {esi}i=1,...,|E| be the routing table of node s aligned in a clockwise
direction from s (note that s ̸∈ E). Then, Es(x) and ns(x) are defined as
follows:
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Definition 7.2.1

Es(x) = argmin
e∈Es(x)

d(e, s) (7.8)

ns(x) = max{i | d(s, esi ) ≤ d(s,Es(x))}. (7.9)

The entry Es(x) is the entry closest to a logical position x, and the value
ns(x) is the number of entries from s to Es(x).

FRT-Chord# defines fs(x) as follows:

Definition 7.2.2

fs(x) = ns(x)− nEs(x)(x). (7.10)

fs(x) denotes the gap of ns(x) between node s and entry Es(x).

Here, FRT-Chord# defines the worst-case reduction value of the number
of entries gEi forwarded to entry ei as follows:

Definition 7.2.3

gEi = fs(ei+1). (7.11)

Let {gE(i)} be the sequence of {gEi } arranged in descending order. Then,

the routing table order of FRT-Chord# is defined as follows:

Definition 7.2.4

E1 ≤FRT-Chord# E2
def⇔ {g(i)(E2)} ≤dic {g(i)(E1)}. (7.12)
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7.2.3. Sticky Entry Function

The sticky entry function of FRT-Chord# is the same as that of FRT-
Chord.

7.2.4. Entry Learning Procedure

The entry learning procedure of FRT-Chord# is the same as that of FRT-
Chord.

7.2.5. Entry Filtering Procedure

The entry filtering procedure of FRT-Chord# is summarized as follows:

Procedure 7.2.1: Entry Filtering in FRT-Chord#

[Step 1] LET C = E.

[Step 2] LET C = (C \ FRT-Chord::StickyEntry(E)).

[Step 3] REMOVE argmin
c∈C

(E−c,≤FRT-Chord#) FROM E.

7.2.6. Reachability Guarantee Procedures

The reachability guarantee procedures of FRT-Chord# are the same as
that of FRT-Chord.

7.2.7. Performance

FRT-Chord# achieves short path lengths even if the logical positions of
nodes are defined with non-uniform distributions and maintains the previ-
ously mentioned desirable features derived from FRT.
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The design of routing table order enables FRT-Chord# features that
support supporting range queries. Because FRT-Chord# works with non-
uniform logical position distributions, nodes do not require a hash function
to determine individual logical positions. In a DHT that supports range
queries, the distribution of keys is often non-uniform because the sequence
of keys cannot be changed. In FRT-Chord, the logical positions of nodes
must be determined with uniform distributions; thus, node loads are seri-
ously imbalanced. However, in FRT-Chord#, each node can determine its
own logical position arbitrarily; consequently, the system can balance loads.

7.3. FFRT-Chord

FFRT-Chord[3] is an FRT-based algorithm that demonstrates nodes can
construct efficient routing tables solely based on query flows. Each node
records query flows, and constructs its own routing table according to the
target logical position of the queries. FFRT-Chord does not assume that the
logical positions of nodes and query targets are uniformly distributed. This
is a practical advantage that supports range queries. In contrast to FRT-
Chord#, which also supports range queries, each node does not need to
refer to other nodes’ routing tables. Thus, FFRT-Chord reduces bandwidth
consumption.

In the following subsections, I explain how to design an FRT-based algo-
rithm with query flows.

7.3.1. Remaining Distance

The remaining distance used in FFRT-Chord is the same as that of FRT-
Chord. FFRT-Chord selects a next hop entry according to this function
based on a greedy routing strategy.

7.3.2. Routing Table Order

Each node in FFRT-Chord maintains a query history for received queries
Q with maximum size H. Each record includes the target logical position.
FFRT-Chord defines a routing table order ≤FL based on this query history.
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Query flow fE
e is defined as follows:

Definition 7.3.1

fE
e = |{q ∈ Q | d(e, q) < d(e′, q),∀e′ ∈ E−e}|, (7.13)

where q is a target logical position of the query. Routing table order ≤FL

is defined as follows:

Definition 7.3.2

E1 ≤FL E2
def⇔ V(FE1) ≤ V(FE2), (7.14)

where V(FE1) is the variance of query flows and is defined as follows:

Definition 7.3.3

V(FE1) =
∑
e∈E

(fE
e − ave)2 (7.15)

ave =
|Q|
|E|

(7.16)

7.3.3. Sticky Entry Function

The sticky entry function of FFRT-Chord is the same as that of FRT-
Chord.
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7.3.4. Entry Learning Procedure

The entry learning procedure of FFRT-Chord is the same as that of FRT-
Chord.

7.3.5. Entry Filtering Procedure

The entry filtering procedure of FFRT-Chord is summarized as follows:

Procedure 7.3.1: Entry Filtering in FFRT-Chord

[Step 1] LET C = E.

[Step 2] LET C = (C \ FRT-Chord::StickyEntry(E)).

[Step 3] REMOVE argmin
c∈C

(E−c,≤FL) FROM E.

7.3.6. Entry Filtering Procedure for Implementation

The value vEe is defined as follows:

Definition 7.3.4

vEe = V(FE)−V(FE−e) (7.17)

The following theorem holds:

Theorem 7.3.1

E−e∗ ≤FL E−e ⇔ vEe∗ ≥ vEe . (7.18)
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Thus, the following entry filtering procedure selects the same entry to be
removed as Procedure 7.3.2.

Procedure 7.3.2: Entry Filtering in FFRT-Chord for Implementation

[Step 1] LET C = E.

[Step 2] LET C = (C \ FRT-Chord::StickyEntry(E)).

[Step 3] REMOVE argmax
c∈C

(vEc ) FROM E.

This entry filtering procedure executes quickly by updating sorted se-
quence of

(
vEe

)
e∈E .

7.3.7. Reachability Guarantee Procedures

The reachability guarantee procedures of FFRT-Chord are the same as
that of FRT-Chord.

7.3.8. Performance

By routing tables constructed based solely on query flow, FFRT-Chord
achieves path lengths that are nearly the same as those achieved by FRT-
Chord. FFRT-Chord achieves efficient lookups with applications, e.g., range
queries, even if the logical positions of nodes or queries are distributed non-
uniformly as long as they are not heavily biased.

7.4. PFRT-Chord

Proximity-aware FRT-Chord[31] (PFRT-Chord) is a simple extension of
FRT-Chord to consider both logical positions and network size adaptability.
PFRT-Chord reduces routing latencies while maintaining the advantageous
features of FRT such as dynamic and arbitrary routing table size and a
one-hop property.
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7.4.1. Remaining Distance

The remaining distance of PFRT-Chord is the same as that of FRT-Chord.

7.4.2. Routing Table Order

The routing table order of PFRT-Chord is the same as that of FRT-Chord.

7.4.3. Entry Learning Procedure

The entry learning procedure of PFRT-Chord is similar to that of FRT-
Chord. The difference is that nodes measure the proximity of each entry e.
The proximity is referred to as e.proximity.

PFRT-Chord adopts communication latency as the index of proximity.
Each node n measures the round trip time l(n, e) between n and an entry e
when sending a round-trip message.

7.4.4. Sticky Entry Function

Sticky entry function of PFRT-Chord is defined as follows:

Definition 7.4.1: Sticky Entry Function of PFRT-Chord

PFRT-Chord::StickyEntry(E)
def
= {e0} ∪ {e ∈ E | e.proximity < ea.proximity}, (7.19)

where ea is the latest entry added to the routing table in the entry learning
procedure.

In this sticky entry function, ea is a threshold entry for considering network
proximities.
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7.4.5. Entry Filtering Procedure

The entry filtering procedure of PFRT-Chord is summarized as follows:

Procedure 7.4.1: Entry Filtering in PFRT-Chord

[Step 1] LET C = E

[Step 2] LET C = (C \ PFRT-Chord::StickyEntry(E)).

[Step 3] REMOVE argmin
c∈C

(E−c,≤FRT-Chord) FROM E.

I focus on an entry filtering procedure just after an entry learning proce-
dure. Let Enext be the routing table after the entry filtering procedure and
let Eprev be the routing table prior to the entry learning procedure. thus,
the following theorems hold.

Theorem 7.4.1

Enext ≤FRT-Chord Eprev (7.20)

Theorem 7.4.2

Enext ≤PR Eprev, (7.21)

where ≤PR is defined as follows:

E1 ≤PR E2
def⇔ 1

E1

∑
e∈E1

e.proximity ≤ 1

E2

∑
e∈E2

e.proximity. (7.22)

These two theorems show that PFRT-Chord simultaneously improves two
factors, logical positions and network proximities of entries.
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7.4.6. Reachability Guarantee Procedures

The reachability guarantee procedures of PFRT-Chord are the same as
that of FRT-Chord.

7.4.7. Performance

Experimental results with transit-stub model[50] networks show that PFRT-
Chord achieves less routing latencies than those in Chord and LPRS-Chord[51],
which is an existing proximity-aware routing algorithm. PFRT-Chord main-
tains the desirable features derived from FRT.

7.5. Conclusion

In this chapter, I have introduced FRT-based algorithms to demonstrate
applications of FRT for various targets. These algorithms achieve desirable
features while maintaining the desirable features derived from FRT, such as
dynamic and arbitrary routing table size and network size adaptability.

The features of each algorithm are summarized as follows. FRT-2-Chord
achieves a symmetric routing table using asymmetric remaining distance.
FRT-Chord# supports non-uniform logical position distributions using a
routing table order based on neighbor routing tables. FFRT-Chord supports
non-uniform logical position distributions using a routing table order based
on a unique factor, i.e., query flows. PFRT-Chord reduces routing latency
by a sticky entry function that considers network proximities. Note that
these algorithms are all designed based on the FRT framework. As such,
these algorithms are compact and simple, and their definitions have a lot in
common.

Each algorithm can reuse implementations despite the fact that they offer
different characteristics. This feature is derived from the extensibility of
FRT.

In the next chapter, I introduce a method to merge these different char-
acteristics.
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Mergeable-FRT
In Chapter 6 and Chapter 7, I introduced various types of FRT-based

algorithms. However, no algorithm exists to consider two or more metrics
in addition to path length. In structured overlays for real applications, mul-
tiple metrics (other than path length) should be considered. Thus, in this
chapter, I propose mergeable-FRT[36], an FRT-based framework to design
such structured overlay algorithms. Mergeable-FRT improves the modu-
larity and reusability of the FRT-based extended algorithms that reflect
factors other than logical positions, and mergeable-FRT offers a method to
merge these algorithms and design new algorithms that consider the various
metrics considered by the original algorithms.

Mergeable-FRT has similar structure to that of the FRT framework, and
its entry filtering procedure consists of two parts, sticky entry ([Step 2] in
Figure 8.1) and routing table order ([Step 3] in Figure 8.1). Mergeable-FRT
differs from FRT in that the inner structure of the sticky entry is rede-
fined to support algorithm merging. Specifically, using the merge method
of mergeable-FRT, algorithm designers can merge two or more sticky en-
try parts of different algorithms with the same distance function and same
routing table order. The method produces a new mergeable-FRT-based
algorithm with the sticky entry parts derived from that of the merged algo-
rithms with the same distance function and same routing table order. Note
that this does not mean that the new algorithm automatically inherits all
characteristics of the original algorithms.

In this chapter, I propose the mergeable-FRT framework and two merged
algorithms, i.e., PGFRT-Chord and GPFRT-Chord, by reusing implemen-
tations of mergeable-FRT-based GFRT-Chord and PFRT-Chord. For the
sticky entry part of mergeable-FRT, I also propose the minimum through
parameter to balance path length considerations as well as considerations for
other factors. Experimental results show that PGFRT-Chord and GPFRT-
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Figure 8.1: Entry filtering procedure of mergeable-FRT with three sieve
functions vs. that of FRT.

Chord exhibit merged features of the original algorithms, and that the mini-
mum through parameter supports control of the balance between path length
considerations and other factors considerations.

8.1. Background

In structured overlay networks, it is essential to shorten path length. How-
ever, various metrics other than the number of hops should be considered,
such as the physical network topology[13, 39, 40, 43], network latencies[14]
and throughput[7], node lifespan[4, 37]. As described previously, various
extended algorithms to consider one or some of these metrics other than
logical positions, i.e., path length, have been proposed. However, a real-
world application requires a suitable set of metrics, and the set varies by
application.

I propose mergeable-FRT, a structured overlay algorithm design frame-
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work that supports efficient design of algorithms by improving modularity
and reusability. A mergeable-FRT-based extended algorithm can be de-
signed by merging an existing mergeable-FRT-based extended algorithm
with new metrics.

8.2. Sticky Entry Sieve Function

In mergeable-FRT, a sticky entry sieve function plays the most im-
portant role. A sticky entry sieve function Sieve(C,mt) is a function that
must be designed in accordance with the following definition:

Definition 8.2.1: Sticky Entry Sieve Function

A sticky entry sieve function Sieve(C,mt) must meet the following
requirements.

• C is a set of candidate entries.

• Minimum through mt is a positive integer

• Returns a subset of C

• The number of entries in the returned set is greater than or equal
to mt

For the mergeable-FRT framework, entry filtering is defined using a rout-
ing table order (≤FRT), a sequence of entry filtering sieves (SieveSeq),
and a minimum through parameter (mt).
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Procedure 8.2.1: Entry Filtering in Mergeable-FRT

The entry filtering procedure for mergeable-FRT is defined by a se-
quence of sieves SieveSeq as follows:

[Step 1] LET C = E.

[Step 2] FOR Sieve IN SieveSeq { LET C = Sieve(C,mt) }

[Step 3] REMOVE argmin
c∈C

(E−c,≤FRT) FROM E.

†C is a temporary variable.
††mt is a minimum through parameter.

The deference between the entry filtering procedure of mergeable-FRT
and that of FRT is in Step 3 (Figure 8.1).

8.3. Minimum Through Parameter

[Step 2] of Procedure 8.2.1 applies all sieve functions in a sequence of sieves
SieveSeq to a set of candidates C. However, entry filtering sieve functions
do nothing after the number of entries in C is mt (Definition 8.2.1). This
behavior guarantees that the selection using routing table order ≤RT receives
mt or more entries (Figure 8.2). This behavior solves the problems of FRT
whereby the sequence of sieve functions limits candidates to be removed
extremely rigidly to reduce path lengths in [Step 3].

The minimum through parameter mt adjusts the extent of the influence
that the sequence of sieve functions has on a routing table and the influence
that routing table order has on a routing table. Priority will be given to
the reduction of path lengths when a large minimum through value is used.
This feature will be examined in simulations.

When minimum through parameter mt is O(log |N |), Theorem 8.3.1 holds
regardless of the sequence of sieves.
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Figure 8.2: Role of minimum through parameter mt in mergeable-FRT.

Theorem 8.3.1: Minimum Through

In an FRT-based Chord algorithm network with |N | nodes, the path
length is O(log |N |) with high probability when all nodes have conver-
gent routing tables with L = O(log |N |) entries and mt > L/2.

Proof.

Because E is convergent, for each entry efree ∈ E that belongs
to a set of candidates C in [Step 3] of the entry filtering procedure
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of (E+eadd):

E+eadd−eadd(= E) ≤FRT-Chord E+eadd−efree . (8.1)

Letting ej be efree,

Si ≤ Sj−1 + Sj . (8.2)

By adding both sides for all j,

Si =
Σj∈JSi

|J |
≤ 2

|J |
Σj∈E\{s}Sj = log

(
2m

d(s, e1)

) 2
|J|

. (8.3)

Because any distance d(s, e1) > 2m/|N |2, the following equation
holds with high probability when |N | is suficiently large:

ri(E) ≤ 1− (1/|N |)
4
|J| . (8.4)

Thus, because mt ≤ |J | when L = 8 logN and mt = 4 logN ,
the number of times of such forwarding is performed by the time
the rest distance becomes smaller than 2m/|N | is expressed as
follows:

logri(E) (1/|N |) ≤ log |N |. (8.5)

This theorem shows that the minimum through parameter can guarantee
O(log |N |) path length even if the number of sieves is large by merging. In
Section 8.6, I examine the variance of path length by changing the minimum
through parameter.
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Figure 8.3: Algorithm merging with two mergeable-FRT-based algorithms.

8.4. Algorithm Extension Merging

Mergeable-FRT offers a method to merge the second steps of entry filtering
procedures and to produce a new algorithm, and the new algorithm has
features derived from the entry filtering procedures of original algorithms
Note that this does not mean that the new algorithm automatically inherits
all characteristics of the original algorithms.

An entry filtering procedure of a new algorithm can be designed by sorting
entry filtering sieves selected from those of existing original algorithms with
the same logical distance and same routing table order (Figure 8.3). This is
the merging method of mergeable-FRT.
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8.5. Algorithms based on Mergeable-FRT

In this section, I propose two mergeable-FRT-based algorithms and two
algorithms designed using the algorithm merging method.

8.5.1. Sieve Sequence for FRT-Chord

I redefine FRT-Chord to be compatible with mergeable-FRT. The se-
quence of FRT-Chord is defined by two sieves, i.e., SelfSieve and SuccessorSieve.

SelfSieve is a sieve designed to remove an owner of a routing table from
candidates to be removed.

Definition 8.5.1: Self Sieve

SelfSieve(C,mt) = C \ {e0} (8.6)

SuccessorSieve is a sieve that protects a succeeding node in a clockwise
direction to guarantee message reachability.

Definition 8.5.2: Successor Sieve

SuccessorSieve(C,mt) = C \ {e1} (8.7)

A sequence of sieves for FRT-Chord is defined as follows:

Definition 8.5.3: Sieve Sequence for FRT-Chord

FRT-Chord::SieveSeq = (SelfSieves,

SuccessorSieve). (8.8)
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The entry filtering procedure of mergeable-FRT-based FRT-Chord is sum-
marized in Figure 8.4.

Figure 8.4: Entry filtering procedure of mergeable-FRT-based FRT-Chord.

FRT-Chord defined based on mergeable-FRT is equivalent to FRT-Chord.

8.5.2. Sieve Sequence for GFRT-Chord

GroupSuccessorSieve and GroupSieve are defined as follows:

Definition 8.5.4: Group Successor Sieve

GroupSuccessorSieve(C,mt) = C \ {g1}, (8.9)
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Definition 8.5.5: Group Sieve

GroupSieve(C,mt) = (8.10){
C, if Leap(E) = ∅ ∨ |C \G(E)| ≤ mt
C \G(E), otherwise.

(8.11)

A sequence of sticky entry sieves for GFRT-Chord is defined as follows.

Definition 8.5.6: Sieve List of GFRT-Chord

GFRT-Chord::SieveSeq = FRT-Chord::SieveSeq (8.12)

|| (GroupSuccessorSieve,

GroupSieve). (8.13)

∗ || is a sequence concatenation operator.

The entry filtering procedure of mergeable-FRT-based GFRT-Chord is
summarized in Figure 8.5.

When mt = 1, mergeable-FRT-based GFRT-Chord is equivalent to GFRT-
Chord.

8.5.3. Sieve Sequence for PFRT-Chord

In PFRT-Chord, for each routing table entry e, e.proximity is a value that
represents network proximity. Here, Dist(C) is defined as follows:
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Figure 8.5: Entry filtering procedure of mergeable-FRT-based GFRT-Chord.

Definition 8.5.7

Dist(C) = {c ∈ C | cadd.proximity < c.proximity}, (8.14)

where cadd is a previously added entry.

Let {ci}i=1,...,|C| represent the sorted elements of C in ascending order of
proximity (c.proximity). Then, ProximitySieve is defined as follows:
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Definition 8.5.8

ProximitySieve(C,mt) ={
Dist(C) (mt ≤ |Dist(C)|)
{ci}i=|C|−mt+1,...,|C| (otherwise).

(8.15)

ProximitySieve protects entries that have a better network proximity
value than an entry eadd that is learned in the previous entry learning.
ProximitySieve is optimized to return mt worst entries when the returned
value is less than mt.

A sequence of sieves for PFRT-Chord is defined as follows:

Definition 8.5.9

PFRT-Chord::SieveSeq = FRT-Chord::SieveSeq

|| (ProximitySieve). (8.16)

The entry filtering procedure of mergeable-FRT-based PFRT-Chord is
summarized in Figure 8.6.

When mt = 1, PFRT-Chord based on mergeable-FRT is equivalent to
PFRT-Chord based on FRT.

PFRT-Chord has a feature whereby the average proximity of a routing
table is refined by each entry improvement procedure.

8.5.4. PGFRT-Chord and GPFRT-Chord

PGFRT-Chord is a merged mergeable-FRT-based algorithm defined as
follows:
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Figure 8.6: Entry filtering procedure of mergeable-FRT-based PFRT-Chord.

Definition 8.5.10

PGFRT-Chord::SieveSeq = FRT-Chord::SieveSeq

|| (GroupSuccessorSieve,

GroupSieve,

ProximitySieve). (8.17)

This merged algorithm reflects both node groups and network proximity in
addition to logical positions using two sieves, GroupSieve and ProximitySieve.
The entry filtering procedure of mergeable-FRT-based PGFRT-Chord is
summarized in Figure 8.7a.

On the other hand, GPFRT-Chord is defined as follows:
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(a) PGFRT-Chord (b) GPFRT-Chord

Figure 8.7: Entry filtering procedures of two merged algorithms.

Definition 8.5.11

GPFRT-Chord::SieveSeq = FRT-Chord::SieveSeq

|| (GroupSuccessorSieve,

ProximitySieve,

GroupSieve). (8.18)
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The entry filtering procedure of mergeable-FRT-based GPFRT-Chord is
summarized in Figure 8.7b.

The order of the sieves differs from PGFRT-Chord. The order of sieves
represents a design parameter for merging algorithms based on mergeable-
FRT.

8.6. Experimental Results

In this section, I compare extended algorithms based on mergeable-FRT
and its merged algorithms PGFRT-Chord and GPFRT-Chord.

I simulate the network latencies between any two nodes using a transit-
stub model[50]. The communication latencies of the inter-transit node links,
stub-transit node links and inter-stub node links were set at 100, 20, and 5
ms, respectively.

I adopt two methods for assigning node groups to nodes: transit group
assignment and random group assignment. The transit group assignment
assigns the same node group to the nodes under the same transit node, and
the random group assignment assigns node groups at random independent
of the transit-stub structure.

The number of node groups |G| is 20, and the number of nodes in each
group is 50 for both the transit group assignment and random group assign-
ment.

In the experiments, the number of nodes |N | is 1000, the routing table
size L is 20 and I adopt an iterative routing style.

After |N | nodes join a system, each node repeats sending a query 100 times
to logical positions chosen randomly to improve routing tables. A query is
sent 10000 times to logical positions chosen randomly, and the forwarding
results are analyzed.

8.6.1. Algorithm Merging

I examine the extent to which the mergeable-FRT-based algorithms, PGFRT-
Chord and GPFRT-Chord, inherit the features of GFRT-Chord and PFRT-
Chord.
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Figure 8.8: Random group assignment.
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Figure 8.9: Transit group assignment.

I adopt mt = 1 such that GFRT-Chord and PFRT-Chord perform as
well as the originals. Figure8.8 and Figure8.9 shows path lengths, group
path lengths and latencies for random group assignment and transit group
assignment respectively.

For random group assignment, the experimental results indicate that
GPFRT-Chord inherits the features GFRT-Chord and PFRT-Chord. In Fig-
ure8.8, GPFRT-Chord performs better than PGFRT-Chord in path lengths,
group path lengths and latencies. This indicates that the sieve order of the
merged algorithms effect their performance.

For transit group assignment shown in Figure8.9, the performance of
GFRT-Chord is similar to the performance of PFRT-Chord because inter-
group communication latencies are likely to be small so that the effect of
GroupSieve and the effect of ProximitySieve are similar. In this case, a per-
formance difference between PGFRT-Chord and GPFRT-Chord is scarcely
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discernible.

8.6.2. Minimum-Through Parameter

Here, I examine the extent to which the minimum through parameter mt
balances the effect of extensions by a sequence of sieves with the effect of
the path length reduction by the routing table order ≤FRT. To this end, I
set mt to 1, 54, 10 and 15 for each algorithm.

For all extended algorithms, path length is shortened so that minimum
through parameter mt (Figure 8.6.2 and Figure 8.6.2）.

When mt is a small value, the effect of extensions is strong in many cases.
Therefore, configuring the minimum through parameter balances the effect
of path length reduction and the effect of extensions.

For PGFRT-Chord and GPFRT-Chord, when mt = 5 and mt = 10, the
group path length and network latency are better than the algorithms for
mt = 1 (Figure 8.6.2, Figure 8.6.2, Figure 8.6.2).

This indicates that path length is extended by setting mt too small and
results in exceeding the recduction effect of the group path length and the
latency. Thus, it is confirmed that the performance of merged algorithms can
be improved by appropriately configuring the minimum through parameter
mt.

8.7. Conclusion

In this Chapter, I have proposed mergeable-FRT, which is an algorithm
design framework to design structured overlay algorithms that consider two
or more metrics in addition to logical positions.

Mergeable-FRT improves algorithm reusability by utilizing extensibility
derived from the FRT framework, and a mergeable-FRT-based algorithm
can be merged with another mergeable-FRT-based algorithm to produce
new algorithms that consider two or more metrics. Note that this does not
mean that the new algorithms automatically inherit all characteristics of the
original algorithms.

Using mergeable-FRT, I have redesigned and implemented GFRT-Chord
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Figure 8.10: Changing minimum through parameter (random group assign-
ment).
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and PFRT-Chord. Furthermore, I have designed and implemented their
merged algorithms, PGFRT-Chord and GPFRT-Chord, which consider both
node groups and network proximities.

Experimental results show that the extended algorithms exhibit merged
features of the original algorithms and that the minimum through parameter
supports control of the balance between logical position considerations and
consideration of other factors.
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Conclusion
In this thesis, I have proposed flexible routing tables (FRT), an algorithm

design framework for structured overlays. Furthermore, I have introduced
concrete FRT-based algorithms that demonstrate desirable features derived
from FRT such as dynamic and arbitrary routing table size and network size
adaptability without restricting routing table candidates.

Existing structured overlays construct desirable routing tables by restrict-
ing the candidates for the routing table or limiting the way in which entries
are learned. As a result, these restrictions constrict adaptability relative to
the number of nodes and the number of routing table entries. As such, they
also constrict the ability to extend such algorithms.

In Chapter 2, I introduced the basic structure of routing algorithms for
structured overlays. In structured overlays, each node builds its own routing
table. A message is forwarded according to logical positions to reach its
responsible node. The entry each node a message is forwarded to is defined
by a next hop function; therefore, message flows are determined by routing
tables. Routing table construction is an essential and vitally important part
of structured overlays, and I have focused on this construction method in
this thesis.

In Chapter 3, I introduced three methodologies to construct routing tables
with example algorithms, i.e., Chord, Symphony, and Accordion. Symphony
and Accordion relax routing table candidate restrictions by a probabilistic
approach and a biased learning approach, respectively. However, Symphony
cannot increase routing table size while maintaining routing table efficiency.
Moreover, Symphony has no space to consider factors other than logical
positions. In contrast, Accordion can increase routing table size. However,
Accordion limits the method by which entries are learned and the behavior
of its applications; thus, Accordion lacks extensibility.
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In Chapter 4, I proposed flexible routing tables (FRT) designed to achieve
the desirable features described in Chapter 1, i.e., dynamic and arbitrary
routing table size and network size adaptability without restricting routing
table candidates. FRT offers two procedures, entry learning and entry filter-
ing. Entry learning adds an entry that corresponds to a node to be learned
to the routing table. FRT is characterized by considering logical positions
in the entry filtering procedure. An entry filtering procedure evicts an entry
from the routing table according to the order of the routing table space and
a sticky entry function. Thus, FRT achieves dynamic and arbitrary routing
table size and network size adaptability.

In Chapter 5, I proposed FRT-Chord to demonstrate that concrete al-
gorithms can be designed based on FRT. FRT-Chord defines routing table
order according to the worst-case reduction ratios, and FRT-Chord defines
entries for the same role as that of the sticky entry in Chord using the sticky
entry function of the FRT framework. With such definitions, the nodes
of FRT-Chord can maintain message reachability and repeatedly improves
routing tables using the entry learning and entry filtering procedures. I have
shown that the routing table improvement process based on routing table
order achieves O(log |N |) path length with high probability. Experimen-
tal results show that FRT-Chord achieves other desirable features derived
from FRT such as dynamic and arbitrary routing table size and network size
adaptability.

In Chapter 6, I showed that FRT-based extended algorithms can be de-
signed to consider other metrics in addition to path length with the same
desirable features of FRT by proposing a concrete algorithm, i.e., GFRT-
Chord. GFRT-Chord considers node groups in addition to logical positions.
GFRT-Chord reduces inter-group hops while reducing entire path lengths.
GFRT-Chord considers group path length and inherits the desirable fea-
tures of FRT-Chord. Thus, GFRT-Chord restricts the growth of the entire
path length regardless of whether the number of nodes in the system or the
number of nodes that belong to each node group is extremely small or large.
Moreover, GFRT-Chord does not need to know the number of nodes and
groups in advance; therefore, it can be used when this information cannot
be predicted. I have shown that path length is O(log |N |) in two typical
network-growth models, and I have also demonstrated that, after a message
leaves a node group, the message will never be forwarded to any other node
that belongs to the same group, i.e., a message does not pass the same group
twice. I have verified the features of the proposed routing algorithm in sim-



133

ulations. The proposed method was compared to existing algorithms and
a simple algorithm that uses node groups. I also designed a naive grouped
FRT-Chord algorithm that is simpler than the proposed GFRT-Chord. I
have shown that this algorithm experiences problems when network and al-
gorithm parameters meet certain conditions, and I also demonstrated that
GFRT-Chord consistently performs efficient routings in such cases.

In Chapter 7, I introduced important FRT-based algorithms to demon-
strate applications of the FRT framework for various targets. These al-
gorithms achieve unique desirable features while maintaining the desirable
features derived from FRT. The features of each algorithm are summarized
as follows. FRT-2-Chord achieves a symmetric routing table using asymmet-
ric remaining distance. FRT-Chord# supports non-uniform logical position
distributions using a routing table order based on neighbor routing tables.
FFRT-Chord supports non-uniform logical position distributions using a
routing table order based on a unique factor, i.e., query flows. PFRT-Chord
reduces routing latencies using a sticky entry function that considers network
proximities. These algorithms are designed based on the FRT framework;
thus, their definitions are simple and compact, and have a lot in common.
Each algorithm can reuse implementations despite the fact that they offer
different characteristics. This feature is derived from the extensibility of the
FRT framework.

In Chapter 8, I proposed mergeable-FRT, an algorithm design framework
to design structured overlay algorithms that consider two or more metrics in
addition to logical positions. Mergeable-FRT improves algorithm reusability
by utilizing the extensibility derived from the FRT framework. A mergeable-
FRT-based can be merged with another mergeable-FRT-based algorithm to
produce algorithms that consider two or more metrics (Note that this does
not mean that the new algorithms automatically inherit all characteristics
of the original algorithms). Using mergeable-FRT, I redesigned and imple-
mented GFRT-Chord and PFRT-Chord. I designed and implemented their
merged algorithms, PGFRT-Chord and GPFRT-Chord, which consider both
node groups and network proximities. Experimental results show that the
extended algorithms exhibit features of the original algorithms and that the
minimum through parameter supports control of the balance between logical
position considerations and consideration of other factors.

By proposing concrete algorithms based on the FRT framework and the
mergeable-FRT framework, I have demonstrated that the desirable features
and abilities extend to FRT-based algorithms. FRT-based algorithms are
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simple and compact, and the FRT framework improves modularity and
reusability. I believe that the FRT frameworks will enable the design of
new algorithms based on various ideas, which may lead to a systematical
design methodology for structured overlay algorithms.
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