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ABSTRACT 

Work sharing has received a lot of interest whether in literature or application. The 

benefits that are derived from its applications since it came up in Japanese production system 

(Toyota Production System) encourage the researchers and practitioners to invent ways to apply 

it as suitable. One of the famous methods is Dynamic Line Balancing (DLB). DLB has an ability 

to manage the work sharing in the conventional serial line where workers are assigned to their 

own stations and no movement is allowed. The job has two types of task to be completed, fixed 

tasks done by unique workers and shared tasks done by the adjacent workers. To manage the 

work sharing in DLB, information about the system status is needed and it is usually done by a 

control rule. The worker after finishing his fixed task needs to make a decision to keep 

processing the shared task or send it to downstream buffer. In this sense, the size of fixed tasks 

or fixed workload can affect severely the performance as the shared task is managed by DLB. 

The most of interest was on the shared part of DLB research than other parts. Therefore, we 

explored the fixed workload, as it cannot be tackled after the process design is set. 

The Toyota Production System is still the father of the most new work sharing initiatives. 

Our research has started by studying a divisional cell as a resembling example to DLB model. 

We introduced a helping zone concept to this cell. It is correspondent to the shared task in DLB.  

We investigated the effect of buffer on the cell performance where pioneer companies in cell 

manufacturing have begun inserting it after it was an absolute evil. The cases where it is useful 

or not have been specified. 

To   uncover the effect of workload, the experiments were done on a two-station line 

with a variety of workload configurations. To do the analysis, a workload measure has been 
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made up. The outcomes showed a special pattern of workload performance. This pattern 

changes as the number of jobs in the line changes.  Moving to the factors affecting the 

performance in the environment, the pattern has a diversity of changes in term of value and 

trend. 

Several factors have been subjected to experimenting and analysis. The factors are 

Information Accuracy, Granularity of shared task and Variability. Two levels of information 

accuracy have been tackled. The low level requires information about the downstream available 

work in the buffer while the high one needs besides to that the undone work at downstream 

stations. For granularity, the order of resulting subtasks and workload were tested. We also 

unveiled the variability’s influence of both fixed and shared tasks unlike the previous papers 

which focused only on the shared work.  The results highlight the areas where the improvement 

can give more revenue if it conducts firstly on these areas.  

After the analysis of workload effect, we sought to consider the workload in the control 

rules that govern the work sharing in DLB. The rules where the available workload is used to 

find out the cutoff value are our target. The workload can be involved easily in these kinds of 

rules. Among these rules we chose a rule with the highest performance based on previous 

researches, which is HFB (Half Full Buffer). The ratio of fixed workload is inserted and a new 

rule is derived. We called it WFB (Workload-full-Buffer). In WFB, the available workload is 

divided by the fixed workload ratio instead of 2 as in HFB. In general, WFB showed a 

remarkably better performance among the rules used in this research which are the most near-

optimal rules. 
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CHAPTER 1   

INTRODUCTION  

 

Overview 

This chapter presents the previous researches around the points tackled by this research and 

states the objectives this dissertation will treat with in the subsequent chapters. It also briefly 

clarifies the structure of this work.  

 

1.1 Background 

Work sharing has a lot of interest in recent decades whether in practical or academic 

environments. The advantages of work sharing include both operational and human-related. In 

the operational viewpoint, it helps to reduce the buffer size between stations, increases 

throughput and enhances the efficient utilization of capacity. For the human-related viewpoint, 

it alleviates the effects of repetitive work, combats boredom and raises the worker moral 

towards the work.  

Applying work sharing needs cross-trained workers to do the shared work. There are 

three levels of cross training; no cross training, partially cross training and fully cross training. 

In the case of no cross training, each worker is assigned to a specific task or can attend a unique 

station and the work sharing is not allowed. This type can be found in the traditional serial lines. 

The other extreme case is full cross training where the worker can do any task of the job in 

collaborative or non-collaborative way [1]. This level gives a dramatic improvement in the 



2 
 

performance but the layout of line and the implementation mechanism must be considered well 

to achieve that improvement. On the other side, it is difficult to achieve and time- and cost-

consuming. Such kind of cross training is applied in Japanese cell manufacturing (which is 

different from western cellular manufacturing in many aspects according to [2]) in a type of 

cells called yatai cell or single-worker cell where one worker completes the whole job [3].  

Between these two extremes, partially cross training is the more reasonable and applicable 

solution. The worker here can do two types of tasks, fixed (unshared) and shared tasks.  

Many academic researchers in recent years tackled the case with partially cross training. 

The best example is the divisional cell where each worker runs a set of stations or machines but 

here there is no work sharing between the adjacent workers [4], [5]. Cherry picking, two-skill 

chain and partial skill chain are three strategies considering work sharing to support the 

bottleneck station [6]. In cherry picking, all workers can helps the high-utilization stations 

directly. Meanwhile, in two-skill chain and partial chain, each worker can do his task and the 

task of his downstream station but in partial chain some workers can do only his own task. Two-

skill complete chain is robust and efficient for implementing workforce agility in serial 

production lines [6], [7], [8].  Parvin et al. [9] introduced a new model of worker cross training, 

called a Fixed Task Zone chain (FTZC). This model is intended to employ in U-shaped Constant 

Work In Process lines. Each worker in this system is responsible for a set of stations and can 

share the work in two overlapping stations; one upstream of his zone and another downstream. 

They ended that FTZC can nearly reach the performance of a fully cross-trained system when 

it is designed using the ZonA algorithm.  Among other ways of applying work sharing with 

partially cross training, Dynamic Line Balancing (DLB) policy [10] is one of the famous 

strategies.  In DLB, the workers will stay at their stations and there is no movement between 
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stations. Each worker is assigned to fixed tasks of a job that can be done only by him or her and 

can help the upstream and downstream workers in shared tasks after finishing the fixed ones.  

In work-sharing with limited cross-training, the decision when to do the shared task 

needs to be specified. In other words, when the worker has to pass on a job with the shared task 

undone or complete the shared task. There are two policies; the optimal policy and near optimal 

heuristic policy. The optimal policy has a complicated structure and it is difficult to apply in 

the [6], [11]. The near optimal heuristic policy mainly bases on threshold rules and it is easy to 

obtain and apply [10], [12], [13], (we adopted this type of policies).  Ostolaza et al. [10] found 

that by using DLB with a half-full buffer (HFB) control rule, the Work-In-Process (WIP) 

inventory can be reduced and the efficiency can be improved. McClain et al. [12] demonstrated 

that DLB could increase the efficiency even with no buffer. They used a new model called 

subtask model where the tasks of a job are divided into k equal subtasks and they employed 

Erlang-k distribution to represents the task times. 

The work sharing attacks the two types of workload imbalance. The first one is the 

imbalance resulting from the differences in the size of workload allocated for each work center. 

The second one is the imbalance resulting from the variability.  So even if a line is balanced in 

related to the average load, it remains significantly unbalanced in the short term due to the 

variability [11]. The work sharing provides capacity buffering and variability buffering. As a 

result, it cuts the size of inventory required to keep the line flow smoothly and reach the targeted 

throughput. Reducing the inventory is considered the important goal for the companies as it has 

a group of serious negative effects in term of wasting the resources and hiding the chronic or 

temporary problems and others. In the Japanese mindset of manufacturing and quality 

practitioners, it is an absolute evil [14]. This idea has changed with some tolerance regarded 
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with accepting a small amount of inventory. This change comes because of the flood of diverse 

products with short cycle life.  Therefore, the training for a wide range of skills is not feasible. 

Even though in short term, the high degree of work imbalance requires a high level of work 

[15], [16]. In the light of this situation, the compromise is done with a narrower scope of skills 

and as less as necessary of the inventory.    

1.2 Purpose of This Dissertation 

The focus of this research is on dynamic line balancing DLB as a mechanism of 

application the work sharing. The research papers in DLB have dealt with the workload 

imbalance as follows. Some concentrated on the variability-buffering role of work sharing and 

assume the workload is balanced and with some examples of an imbalanced line to show the 

capability of DLB in term of improving the performance [13]. Others counted the workload 

imbalance as a factor to generalize their resulting insights and treated in brief [11].   

The workload is a dominant element on the performance even under application the 

work sharing. Of course, the moderate level of work sharing or partially cross training is applied 

here since it is more viable. Moreover, allocating the workload in equal portions between the 

work centers is not an easy mission in many cases due to technical or quality related issues. In 

the light of what mentioned above, this work investigates the workload effect in a serial 

production line with applying DLB policy as a work sharing mechanism. This also includes the 

interactions with other structural factors affecting the performance. Moreover, this research 

seeks to improve the performance resulting from DLB policy based on the above investigation. 
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1.3 Structure of This Dissertation 

This dissertation has six chapters as follows. 

Chapter 1 explores the previous researches done in the scope of this research. It states 

and clarifies the purpose of this work that tackles the important idea missed in the previous 

works.   

Chapter 2 introduces DLB from Japanese Cell Manufacturing’s viewpoint by inserting 

a buffer in a divisional cell. Then, it elucidates the role of buffer between stations on the 

performance. The analysis done under several factors ends to the cases where the buffer is 

needed to get a better performance. 

Chapter 3 describes in more details the used work sharing policy (DLB). It illustrates 

the fundamental model that the whole research relies on with some deviations according to the 

investigated point. It shows the effect of workload imbalance on the performance and its trends. 

Chapter 4 investigates several factors that influence the performance trend or even 

value of the assumed workload configurations. These factors are; Information Accuracy, 

Granularity of shared task and Variability. 

Chapter 5 introduces a suggestion to improve the performance. It considers the 

workload imbalance studied in the previous chapters in modifying a famous control rule HFB.    

Chapter 6 sums up the findings and contribution of this research. In addition, it 

highlights the important implications that can be extracted from the outcomes.  
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CHAPTER 2 

HELPING ZONE AND BUFFER STATIONS 

 

Overview 

We introduce DLB the policy used in this research from the Japanese cell manufacturing’s gate. 

DLB is almost a divisional cell with helping zones. Unlike cell manufacturing, DLB allows to 

have a buffer between stations. However, this idea is changing and cell manufacturing has 

started to be more tolerant with the buffer. The influence of buffer between stations is treated 

in this chapter. We clarify the complementary role of buffer on the performance under DLB 

(i.e. an divisional cell with helping zone and a buffer). Considering some structural factors of 

the line, the results display the favorite cases where the buffer boosts the performance and where 

it has no effect to add. 

 

2.1 Introduction 

The inventory between stations has generally a bad reputation among the practitioners 

and researchers of production and operations management. It has many disadvantages that 

touches several aspects of the production processes. Excessive inventory might cover the 

quality problems since there is not any warning sign to draw the attention like stopping the line. 

It also consumes a considerable area. From the financial view, it comprises a wasted asset and 

what is so-called the opportunity cost. It also prolongs the lead-time, which results a bad 

performance [1]. 

Therefore, the quest has been intensive to reduce it or even eliminate it. The best 
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production system which focuses on the elimination and achieves that successfully is the Toyota 

production system. And this represents the biggest difference between the Japanese production 

system and the European and American ones. While the Japanese system considers the 

inventory as an absolute evil, the others accept it as a necessary evil since it makes production 

runs smoothly. In this sense, the Japanese strategy is to avoid and remove all factors that 

necessitate the inventory [2].  One of the most crucial concept is cross-training. As much as the 

workers are cross-trained, the performance gets higher (of course, with considering the 

mechanism of applying ). The cross-training offsets the benefits of inventory.   Many initiatives 

have been adopted and effectively applied in this area example, cell manufacturing.  

Recently, this idea has been changing a bit under the effects of many factors like the 

fast-changing products, small quantities with many types and so on. This requests a huge 

amount of restless training that consuming the time and money. As a result, many Japanese 

pioneers in cell manufacturing have started to accept a small amount of inventory. 

The current concept is to mix between the cross-training and the capacity of buffer and 

try to make a best combination of both. It becomes reasonable to find a manufacturing cell with 

limited size of buffer. 

 

2.2 Cell Manufacturing and DLB 

Three types of manufacturing cells are famous in literature and application. These cells 

are single-worker cell or yatai cell, divisional cell and rotating [3], [4], [5], [6]. These cells are 

different in term of the range of tasks that each worker can do, the mechanism of their 

movement, and the number of workers in each cell. 
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Since our focus is on the narrow range of cross-training with effective mechanism to 

manage it, we consider the divisional cell with helping zone. In the divisional cell, a determined 

number of operators perform, usually in a U-line, a specific number of operations according to 

their skills. In this sense, it is applied during the primary phases of the transition from the 

conveyor line to a cell. The total number of operations is divided into the number of operators 

according to their abilities. The workers usually shuttle among several workstations to complete 

all processes assigned to each of them. With helping zone, the cell has several overlapping 

stations between the neighboring workers’ zones as plots in figure 2-1. 

 

 

 

 

 

Figure 2-1 Helping zone in the divisional cell 

DLB [7] has almost the same mechanism to do the job with one exception. That is no 

movement between stations each worker is assigned to one station as in a conventional serial 

production line. Several tasks that can be done at unique stations in the cell can be processed at 

one station in DLB line with ample necessary tools. The shared task in DLB corresponds to the 

helping zone in manufacturing cell. In this sense, the shared task or the helping zone might be 

attended by both adjacent workers at the same time or not in other words collaborative or non- 

collaborative [8].   

W1 W2 

Helping Zone 
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2.3 Decision Points and Control Rule  

How many subtasks the shared task can be divided into and are transferable is significant 

to ease managing the work sharing and increases the performance [9], [10].  Having more 

subtasks will reduce the idle time of next worker. Figure 2-2 demonstrates the idea of 

granularity of shared task. W1 after he finishes his own fixed task should make a decision to 

send the shared task downstream or keep working on. The point at the beginning of each subtask 

of shared task is called decision point or DP. The size of shared subtasks between decision 

points represents by n. 

 

 

 

 

 

 

 

Figure 2-2 Decision Points of Shared Task 

 

In the cell (we study here), W1 would leave the job at some decision point inside the 

helping zone or at extreme at the end of helping zone. As the cell does not assume to have a 

buffer, W1 keeps holding the job even if the shred task is finished. When W2 become idle, the 

1 2 3 4 5 6 7 8 9 10 

Task A done 

By W1 

Task C done By 

W2 

Shared Task B done 

By W1 or W2 

DP1 

DP2 

DP4 

Buffer 
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job will be ready to transfer from W1. Introducing the buffer will eliminate the blockage time. 

To control when the W1 send the job to W2 we employed the following rule displayed in the 

below flowchart figure 2-3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-3 Work mechanism of employed control rule 

 

The chart describes how the rule works from the viewpoints of both workers. When the 

W1 finishes his fixed task he checked if W2 is idle or not. If he is idle the job transfer with shred 
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task undone. In case the W2 is still busy, W1 starts processing the shared task until he arrives to 

the next DP. He rechecks again the status of W2 to send or go ahead to the next shared subtask 

and so on. Sometimes the W1 finishes the whole shared task before W2 gets idle. Then he send 

the job to the buffer between them. On the other hand, when W2 finishes the job under his hand, 

he checks the upstream buffer and takes the job if any. If there is not job in the buffer he keep 

idle till W1 finishes his fixed task or arrive to the next DP if he working on the shared task. 

 

2.4 Settings of experiments 

Simulation is done for a two-station line with two workers. The jobs are always 

available at the buffer before the first station. The time of job transmission between stations is 

negligible. The stations are considered close enough to neglect. The throughput TH is used to 

evaluate the performance. 

The number of subtasks is 40 with 0.25 time unit for each subtask. The investigation is 

performed under the factorial experimental design of three levels for buffer size, three levels 

for the coefficient of variation of subtask time processing, five levels for the task division or 

the sizes of shared task (equal fixed tasks) and three levels of DP. The specific levels of each 

factor is as follows.  

 Buffer (B): 0, 1, 2  

 The number of subtasks of shared task: 0, 8, 16, 24, 32  

ie. The task division: 20-0-20, 16-8-16, 12-16-12, 8-24-8, 4-32-4  

 DP Unit: DP1,  DP2,  DP4  
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 Coefficient of variation 0.25, 0.5, 1.0  

The experiments are conducted using the Visual SLAM (AweSIM ver. 3.02) [11] of 

1.01 million time units for each experimental condition of a total of 3 × 5 × 3 × 3 = 135. The 

warm-up time is 10000 time units. Thus, the result is the same regardless of the initial 

conditions. 

We used lognormal distribution to reflect the variability of processing time. In previous 

studies of DLB, exponential distribution is used mostly. Therefore, variation coefficient of 

processing time in that case is fixed at 1. To run experiments with other levels of the coefficient 

of variation (0.5 and 0.25), the lognormal distribution is a right choice. Comparing with Normal 

Distribution, the lognormal distribution avoids the negative values of processing time, as it 

comprises the right skirt of normal distribution (the positive values only as in the exponential 

distribution. 

 

2.5 Results and Discussion 

Table 2-1 shows the pooled analysis of variance, as TH is a respond. The analysis is 

under an error rate α less than 0.01 and high contribution pooling ratio R2=0.996. From the table 

2-1, it is clear that all factors are significant, as well as the two factors interactions and three 

factors interactions and the main ones.  
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Table 2-1 Pooled analysis of Variance (Response is TH) 

 

Source 

Degree 

of 

Freedom 

Sum of 

Squares 

(10-6) 

Mean 

Square 

(10-6) 

F ratio 
Contribution 

Ratio 

Buffer 2 431.58 215.79 69076.0 .189 

Shared Task 4 24.97 6.24 1997.8 .011 

DP 2 488.09 244.05 78120.8 .214 

Coefficient of Variability 2 504.46 252.22 80740.9 .221 

Shared Task x Buffer 8 375.99 47.00 15044.7 .165 

Shared Task x DP 8 128.79 16.10 5153.1 .057 

Buffer x Coefficient of Variability 4 163.29 40.82 13067.3 .072 

Shared Task x Coefficient of Variability 8 107.60 13.45 4305.5 .047 

Buffer x Shared Task x Coefficient of 

Variability 

16 44.69 2.79 894.1 .020 

Error 80 9.65 0.12  .004 

Total 134 2279.12   1.000 

 

 

Figure 2-4 plots the main effects of studied factors. Increasing the buffer from 0 to 1 

causes a big improvement in TH and after that it gets up slightly. The performance worsens, as 

the number of DPs gets small. In other words as many as the shared task get less granular the 

TH deteriorates. Unexpectedly, a line with no shared task or helping zone has the highest 

performance then TH decreases as the shared task gets bigger til 8. It goes up slightly after that 

as the size of shared task increases. For the variability, TH improves as the coefficient of 

variability get less. 
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Figure 2-4 The main effects of studied factors 

     

Now let’s explore the performance for each combination of variability coefficient and 

DP through all levels of buffer size and shared task. Figure 2-5 depicts the results of TH through 

different combinations of studied factor levels. Each column contains the performance 

outcomes with the same variability coefficient and each line has the same number of DPs. 

From figure 2-5 the following observations we can derive which basically depend on 

the variability coefficient.   

1- When the coefficient of variability is small (0.25), there is an effect of the buffer 

only when the work-sharing is not applied. Expanding the buffer capacity by 1 or 2 
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shows a notable same improvement in TH. By introducing the work sharing, its 

effect can be noticed only when the shared task is so granular (DP1) and with no 

buffer.  

2- As the coefficient of variability raises, expanding the capacity of buffer with work 

sharing applied indicates a pronounced raise of TH. This improvement gets bigger 

as the number of DPs decreases. The improvement of TH due to the expansion of 

the scope of shared task becomes distinct even with a buffer of 1 only in one case. 

This case is when the variability is too high and the shared task is so granular (The 

number of DPs is big). 

To conclude, the complementary effect of introducing the buffer on the performance of 

work sharing is not existed as long as the variability is small. On contrary. This effect is obvious 

when the variability is high and the number of DPs is small.      
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Based on the results depicted in figure 2-5 (especially the left column), the following 

question arises. Why does the buffer has no a complementary effect on the performance of work 

sharing of scope (0-8) of shared task (helping zone) when the variability is small? And even its 

effect is negative. To address this point, we conducted experiments of the cases between (0-8) 

size of the shared task with DP1 and balanced fixed workload (the same settings of the leftmost 

chart of the last row of figure 4-5). Since we have already the results of the cases 20-0-20 and 

16-8-16, the additional cases needed to experiment are 19-2-19, 18-4-18, and 17-6-17. 

Figure 2-6 presents the average number of work-in-process in the buffer. As soon as the 

shared task (helping zone) is introduced as in figure 2-6 from 2 and so on, the buffer capacity 

is underutilized. Accordingly, the line with work sharing does not benefit from the advantage 

of expanded capacity of buffer.  

 

 

Figure 2-6 The average work-in-progress in the buffer 
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The reason behind this trend is that W2 has to wait when W1 is still working on the shared 

task till next DP to receive the job when it gets idle. If the shared task has one DP1, W2 will 

experience longer waiting time than the case with more DPs. The line without work sharing 

does not suffer from this issue. In this line, W1 will drop the job as soon as he or she finishes 

his own job. As the variability increases this scenario with work sharing happens in less 

frequency. With high variability, the situation is reversed and the complementary effect of 

buffer become remarkable.    

In the above analysis, the fixed workload assigned to each worker is equal. In this case, 

how many DPs the shared task has plays the important role to reduce the long waiting time W2  

would experience. However, having many DP of shared task is sometimes unrealistic or 

undesirable for technical or quality related issues. As an another option, what if  W2 has a bigger 

fixed workload from the beginning. That might shorten the idling time of  W2. To investigate 

this point, we simulated a line with DP1 and coefficient of variability equal to 1. Four task 

divisions are simulated, which are 14-8-18, 10-16-14, 6-24-10, 2-32-16. Table 2-2 displays the 

results as the buffer capacity grows. 

 Table 2-2 TH vs. Buffer Capacity with overloaded station 2 

 

Task division 20-0-20 14-8-18 10-16-14 6-24-10 2-32-6 

Buffer 

Capacity 

0 0.1782 0.1856 0.1892 0.1907 0.1917 

1 0.1931 0.1968 0.1959 0.1959 0.1957 

2 0.1959 0.1970 0.196 0.1957 0.1957 

 

It is obvious form the table 2-2, the imbalance workload with more fixed subtasks for 

W2 support the trend to introducing the buffer between stations. The complementary effect of 



 
 

21 
 

buffer under work sharing applied becomes remarkably important. The performance is better 

even than the balanced case. For example, TH of 14-8-18 for buffer capacity of 1and 2 are   

0.1968, 0.1970 respectively. This performance is better than the case with same shared task and 

balanced workload (16-8-16) where TH is .01937 for buffer capacity of 1, 2. 

We have employed so far a standard rule to manage the work sharing. In this rule, the 

status of  W2 is considered to keep or send the job with undone shared task. In DLB, many rules 

are investigated. HFB (Half-full- Buffer) is the most excellent one among them. In this rule, the 

amount of available downstream work is utilized to check the status of   W2. The available 

downstream work includes the remaining subtasks unfinished at station 2 and the number of 

subtasks in the upstream buffer. This amount is compared with the cutoff value called R. if the 

available downstream work is bigger (smaller) than R, W1 keep the job to do the shared task  till 

next DP and keep check till next other DP and so on till the shared task is done (send the job 

without shared task done). The R in this rule is given as follows 

2
.

2

)(

2

Btttt
R ZZYY 

                                                 (1) 

Where 

 tZ    the number  of subtasks of the shared task 

 tY   the number of subtask assigned to W2 

B   the capacity of buffer 

We did the experiments with DP1 and the coefficient of variability of 1. Figure 2-7 

shows the performance (TH) of the two rules; the standard (solid line) and HFB (dotted line) 

rules. 
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Figure 2-7 The performance of HFB and Standard rules 

 

The performance of HFB get high as much as the buffer capacity increases for the same 

task division. On the opposite side, TH deteriorates for the same capacity of buffer as the shared 

task or helping zone expands. The performance decline gets severe when the line does not have 

a buffer.  

From above, we can come to the following conclusion. In HFB, as the helping zone size 

increases, the effect of buffer becomes much significant on the performance than the standard 

rule. In addition, the big deficiency of HFB is the need for high level of information about the 

work available at station 2 and in the buffer. That is not easily practical in the reality. 

 

2.6 Conclusion 

The effect of introducing a buffer in the cell manufacturing represented by a divisional 
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cell was addressed. The cell with helping zone is simulated using DLB framework to investigate 

the complementary effect of buffer. 

Two cases depending on the coefficient of variability have arisen. When the coefficient 

of variability is small, the buffer effect is not observed where the work sharing is applied. To 

benefit from introducing the buffer, either the line should be running without work sharing or 

making the fixed workload of station 2 is bigger than the preceding station. The other case is 

the coefficient of variability is large. The buffer capacity of 1 is enough to improve the 

performance and increasing the buffer to 2 does not raises the value of TH. The effect of buffer 

with applying the work sharing becomes much clearer as the number of DP decreases. 

In cell manufacturing, a line with cross-trained workers and low variability does not 

need a buffer and the work sharing can absorb the variation. On opposite case, if the variation 

is high or the skills of worker are not sufficient, the introduction of buffer can help remarkably 

improving the performance. 

As using the robots in the cell increases, control rules like HFB that requires a high level 

of information accuracy could be a good choice. That urges for additional investigations to find 

out the cases requiring the buffer or not to improve the performance under such a rule.    
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CHAPTER 3  

DYNAMIC LINE BALANCING (DLB) AND FIXED 

WORKLOAD 

 

Overview 

This chapter explains the concept of Balancing Line Balancing DLB and the coordinate rules 

utilized to manage the work sharing. It also illustrates the model we employed in this research 

and the workload measure we made up. The results here show the effect of workload on the 

performance under this basic model at this stage. 

 

3.1 Introduction 

The work-sharing in the serial lines is distinguished from the one in non-serial lines 

(cells). In most cases, the cross-trained worker can do the task that is directly coming after his 

own task or/ and the one directly preceding his own task. 

 From the work-sharing viewpoint, a serial line has two levels of work sharing, no work 

sharing, partially work sharing. For no work sharing, worker 1 sends a job immediately after he 

finishes processing. While in partially work sharing, he might keep the job to do the next task, 

as the next worker is still busy.  

To simplify the idea, suppose a job needs three consecutive tasks to be completed A, B, 

C by two workers. With no work sharing (Figure 3-1), these tasks should be assigned to the 

workers in the following two possibilities; AB-C, A-BC. That is, the task B is assigned to one 
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of these two workers permanently. In this case, worker 2 has to wait until worker 1 finishes all 

his processing to start working if the number of jobs in the line not enough or it should support 

the buffer between the workers with enough semi ready jobs (in these jobs the task of worker 1 

is done). That can be done by letting worker 1 starts processing earlier than worker 2 with 

enough interval or getting a support by adding an additional worker. These countermeasures 

can be applied if the worker 1 is a bottleneck. On the other side, if worker 2 is a bottleneck, 

inserting more jobs in the line to provide the worker 1 with enough work might be the correct 

action. In all above scenarios, the line has to have extra jobs to attain the targeted throughput 

and as a result, many jobs will wait which, prolongs the cycle time. Moreover, quality problems 

are easy to be hidden and difficult to reveal in such lines.  

 

 (a)                                                                      (b) 

Figure 3-1 Tasks assignment with no work sharing 

 

 

 

 

Figure 3-2 Tasks assignment with partially work sharing 

 

With partially work sharing (Figure 3-2), both adjacent workers can do the shared task. 

Worker 1 might keep the shared task after he finishes his own task to process it or send it to the 
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downstream buffer. That depends on the status of the downstream (the mechanism to control 

this decision is explained in modeling background). This approach minimizes the probability 

of having the worker idle and reduces the need for more jobs to achieve the targeted throughput. 

Such kind of this line is easier to control and discover the quality matters.  

3.2 Dynamic Line Balancing 

Dynamic Line Balancing DLB policy, introduced by [1], is one of the famous and 

efficient ways to apply the work sharing. In this technique, the worker will not move between 

stations as for example in the Bucket-Bridge System [2]. Each worker stays at his station and 

does the shared work. Each job has two types of tasks, fixed tasks which can be done only by a 

designated worker. The other type is called shared tasks that can be done by either of an adjacent 

pair of workers.    A worker chooses to pass on a job with the shared task undone or complete 

the shared task depending on the system status.  

The purpose of DLB is to maximize the efficiency by balancing the line. As much as 

the line approaches the balanced case, its efficiency is being close to the ultimate highest 

performance. It might be asked that it could be achieved by balancing the mean processing 

times that can be referred to as static balancing. Actually, the manufacturing process exposes 

many sources of noise and some of them are difficult or not cost-effective to manage. The effect 

of those sources could be represented as variability.  As results, the line becomes unbalanced 

in the short term. In this sense, on-the-fly or state-dependent balancing (dynamic balancing) is 

more effective than static.   
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3.3 Model Description 

We use a two-station production line. One worker is at each station. W1 attends at station 

1 and W2 attends at station 2. The movement between stations is not allowed. The buffer 

capacity is infinite, but the total number of jobs in the line is restricted to WIP number of jobs. 

This inventory level is kept constant by the CONWIP (CONstant-Work-In-Process) policy. 

CONWIP, introduced by [7], [8], keeps MaxWIP constant by preventing a new job to enter the 

line until a finished job leaves when the number of jobs reaches to Max WIP level. This policy 

eases controlling the number of jobs in the line, which affects the performance whether work 

sharing is used, or not. Figure 3-3 illustrates how CONWIP policy works comparing with others 

control policies. 

 

Figure 3-3 CONWIP, Pure Push, Pure Pull 

Source: [9] Hopp and Spearman, 2008 “Factory Physics” 
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Having a high level of WIP in the line normally results to improve the throughput. Since 

the goal is to explore the work-sharing and the high level of WIP in the line will hide the work-

sharing influence and prolong the cycle time and other side consequences accompanying that. 

The study is done with small numbers of WIP; 3, 4, 5. Bokhost [3] demonstrated the bad effects 

of having large amount of WIP on the balanced use of cross-trained skills. With the ample WIP, 

the workers will work more on the familiar tasks and hardly use and maintain the newly 

acquired skills. He ended that reducing the amount of work in process forces the workers to 

make a more balanced use of skills they have.  

Basically, in DLB each job consists of two types of tasks, the first type is unique tasks 

for each worker and the other tasks are shared tasks between each neighboring workers.   For 

example in a model with two stations as in our model, there are task A, task B, and task C done 

in this order. Task A can only be performed by W1 at station1 and task C can only be performed 

by W2 at station 2. Both of tasks A, C are called fixed tasks. Task B can be done by W1 or W2 at 

his own station and it is called shared task. We assume there are enough equipment and tools 

for both workers to avoid any waiting for occupied tools available at their stations to operate 

task B. we consider the shared task B is non-preemptive task. When a worker starts processing 

the shared task, it can be released until it becomes completed. 

The tasks that forms a job is modelled following the subtask model introduced by [10]. 

In this model, the job consists of T numbers of equal subtasks to be performed in sequence. 

Based on this model, we represent the processing time of each task (A, B and C) by the number 

of subtasks where each subtask has a processing time of one unit time and the subtasks are 

identically distributed. For example, in tA- tB - tC task division, task A has tA subtasks, task B has 

tB subtasks, and task C has tC subtasks.  Dividing the job’s tasks into a number of equal subtasks 
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has three advantages (as mentioned in [10]). Firstly, the variability of the total processing time 

of completing a job does not change with different configurations of task division. Secondly, it 

can represent most production systems where tasks are grouped to help balance the line. Finally, 

the variability of processing time is better to be modelled by the subtask model.  

The job is processed in first come first serve (FCFS) queue. The job goes in one 

direction from upstream to downstream stations. If a job is sent to the downstream station, it 

cannot return to the previous station. The workers are equal in speed and W1 is the one who 

decides to pass on or keep working on the shared task. 

 

3.4 Coordinate Rules 

In research model, both workers can do the same shared task (but not at the same time). 

Having small WIP in the line is one of the most important advantages to invest in work-sharing. 

In this sense, if worker 1 (W1) does the shared task most of the time that leads to worker 2 (W2)’ 

starvation and if W2 does it most of the time W1 might starve for long time. As W1 who the only 

can make the decision to send or keep the job, he / she has to consider the available work 

downstream. After completing his fixed tasks, W1 should push a job with uncompleted shared 

task when he finds out that W2 might become idle in the near future while he is busy or at least 

reducing  the probability of W2 being idle.  

The rules and policies that describe the mechanism of making the decision of doing the 

shared task or not, should have three characteristics. These characteristics can be similar but 

still with some differences from that in [3]’s paper. He labels them as three rules to assign the 

work in DRC (Dual resource constrained) studies. The three features are  



32 
 

(1) at what moment the job can be sent downstream,  

(2) which job should be processed first. 

(3) The last is which worker should process the shared task when there are more than 

one skilled worker can do it.  

 In DLB environment, the first characteristic has three options which are (1) after 

completing the whole shared task (non-preemptive shared task), (2) at natural breaking points 

(as with granularity mentioned in [4]), and (3) at any moment (preemptive shared task). The 

second characteristic has two popular methods in DLB which are FCFS (First-Come-First-

Serve) or STP (i.e. Do the shortest job from the upstream buffer) order [1]. The final 

characteristic is what is usually called in DLB, decision or control rules. 

Two kinds of decision rules can be found in DLB literature. The first one is the optimal 

control rule. This rule is the solution of optimization problem of stochastic model that describes 

all the system states. The system states increase as WIP increases. For example, a model of 10 

WIP has 1023 states for which worker needs to know the proper action (see [4]). Moreover, the 

optimal rules do not have a simple structure, which makes it easy to apply by workers in the 

line. In the light of these disadvantages, the second type of rules is the threshold rules are more 

practical in the real production environment. Those rules are not generally optimal. However, 

there are several of them are near optimal with a small accepted level of deviation from the 

optimal situation. In the threshold rules, after W1 finishes the fixed tasks, the decision is made 

based on the comparison between the available downstream workload and a specific threshold 

called R. Many threshold rules are found in the literature. These rules can be distinguished 

based on the information complexity level required (which are mentioned before).  
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Among of threshold rules from these two groups, we used one rule from each class that 

is the most near-optimum based on [5]. Of the first group, SRNS is used and of the second HFB 

is used. In SRNS (HFB) (see [5],[6]), W1 starts working on the shared task if R or more units of 

subtasks are available in the buffer before (and at) station 2.  And W1 will pass the shared task 

if the subtasks in buffer before (and at) station 2 are less than R. The threshold value R is given 

by equation (1) for SRNS and equation (2) for HFB, where WIP is the CONWIP level and tC 

(tB) is the number of subtasks for task C (B): 

𝑅 = {
(𝑊𝐼𝑃 − 2)𝑡𝐶 ,           𝑖𝑓 𝑡𝐵 ≥ (𝑊𝐼𝑃 − 2)𝑡𝐶 ,

[𝑡𝐵  , (𝑊𝐼𝑃 − 2)𝑡𝐶]  𝑖𝑓 𝑡𝐵 < (𝑊𝐼𝑃 − 2)𝑡𝐶  
                          (1) 

 

 

                  𝑅 = 
𝑡𝐵

2
+  

(𝑡𝐵+ 𝑡𝐶)+ 𝑡𝐶

2
.  

𝑊𝐼𝑃−2

2
                                               (2) 

 

 

 

3.5 Workload Measure 

In DLB research, the workload and its distribution are rarely treated. Even when it is 

tackled, it is with some examples (as in [4], [5]), or mentioned briefly (as in [4]).  The balanced 

fixed workload with different sizes of the shared task is the most common case in the research. 

However, unbalanced fixed workload might be more realistic. The unbalance could come from 

the nature of processing that does not allow dividing the workload to equal fixed tasks because 

of technical or quality issues.  

The shared task can be managed by the decision rules and of course can help alleviating 

the unbalanced workload (see [6]). On the other hand, having a clear full picture of workload 

effect can help the production stuff to find ways to manage this workload by for example 

altering the order of processing some fixed task from W1 to W2 which might lead to higher 
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efficiency. For that reason and others, we simulate variety of fixed workload configurations to 

clarify the workload effect and its trends. 

From this point, workload refers to the size of fixed tasks and their distribution between 

the stations. For example, 4-2-4 task division has equal fixed tasks while 6-2-2 has different 

fixed task. 2-2-6 task division has the same shared task’s size but the distribution of the fixed 

workload is opposite to the former division. 

In this research, a new way to measure the workload is proposed to ease investigating 

and comparing the different task divisions with different workload configurations. The measure 

of workload starts from a theoretical assumption that all task divisions can be returned to the 

case of balanced line with only two equal tasks. Then, the shared task is composed from some 

last work units of station i and some first work units of station j.  

Let ‘suppose a job with fixed tasks and shared task that is shown in figure 3-4, the virtual 

breakeven point BP divides the job’s work units into two equal groups of work units L. The 

shared task consists of some work units from station i’s side and some work units from the other 

side j. STij (STji) represents the size of shared task that can be done by worker i (j) from station 

j (i)’s side. 

 

 

 

 

 

 

Figure 3-4 The illustration of the proposed measure for the workload distribution 
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The measure of workload αij is defined by the ratio of the shared work units’ number 

done by worker (i) from station (j) side to the total shared task’s size as if all subtasks are 

distributed equally between two adjacent workers. The measure is correct as long as both of tA 

and tC are less or equal to L. The measure is given as follows;   

                                                                      
BST

jiij /
                                                          (3) 

                                                                     jiji STSTB 
                                                         (4) 

 

With a numerical instance, let’s have a job with 4-4-2 task division. We have B=4, ST12 

=3, ST21 =1 and α12 =3/4, α21=1/4. Task division 5-3-2 has B=3, ST12 =3, ST21 =0 and α12 =1, 

α21=0. To explore several cases and get the more reliable general results, ST21, ST12 each are 

given four values; 1, 2, 3, and 4. Therefore, we get 24 cases. Table 3-1 presents some of these 

cases with calculated α12, α21 based on equation (3).  
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Table 3-1 The studied workload configurations 

 
A B C ST12 ST21 α12 α21 

5 0 5 0 0 - - 

4 1 5 0 1 0 1 

3 2 5 0 2 0 1 

2 3 5 0 3 0 1 

1 4 5 0 4 0 1 

       

5 1 4 1 0 1 0 

4 2 4 1 1 0.5 0.5 

3 3 4 1 2 0.33 0.67 

2 4 4 1 3 0.25 0.75 

1 5 4 1 4 0.2 0.8 

       

5 2 3 2 0 1 0 

4 3 3 2 1 0.67 0.33 

3 4 3 2 2 0.5 0.5 

2 5 3 2 3 0.4 0.6 

1 6 3 2 4 0.33 0.67 

       

5 3 2 3 0 1 0 

4 4 2 3 1 0.75 0.25 

3 5 2 3 2 0.6 0.4 

2 6 2 3 3 0.5 0.5 

1 7 2 3 4 0.4286 0.5714 

       

5 4 1 4 0 1 0 

4 5 1 4 1 0.8 0.2 

3 6 1 4 2 0.67 0.33 

2 7 1 4 3 0.5714 0.4286 

1 8 1 4 4 0.5 0.5 

 

 

3.6 Settings of Experiments 

Visual Slam language (A simulation language) through AweSim software [11] is used 

to model and execute the simulation. The workers are working for 8 hours per day. The 

simulation is run for one year for each configuration (1year * 250 days * 8 hours * 60 min = 

120,000 min) with four replications and the warm-up period is 10000 min.  
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The processing time of a subtask is exponentially distributed with mean of one, and a 

task is Erlang-k where k is equal to the number of subtasks composing this task. The total 

processing time of the job is 10 minutes plus the variability. The control rule used here is SRNS 

rule and we will present the results with the HFB rule in the next chapter in the context of 

comparison with SRNS rule.  

To evaluate the performance, the efficiency is considered as a measure to evaluate the 

performance. It is defined as the ratio of simulated throughput rate THs over maximum 

achievable throughput rate TH* with balanced line, and deterministic processing times. This 

measure is given by Equation (5); 

                                                                   
*TH

TH
E

s


                                                                    (5) 

3.7 Results and Discussion 

The cases of study are combined by using the average efficiency into five combinations. 

Each combination represents a range of α values as shown in Table 3-2. The average results of 

efficiency of these combinations show three distinguished patterns according to WIP level. 

 

Table 3-2 The five combinations of workload measure 𝛼  

 

Combination α12 ∈ α21 ∈ 

α12 = 0 , α21 = 1 [0,0.25[ ]0.75,1] 

α12 = 0.25 , α21 = 0.75 [0.25,0.5[ ]0.5,0.75] 

α12 = α21 = 0.5 0.5 0.5 

α12 = 0.75 , α21 = 0.25 ]0.5,0.75] [0.25,0.5[ 

α12 = 1 , α21 = 0 ]0.75,1] [0,0.25[ 
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The first, when WIP=3. Figure 3-5 presents the results. The plot shows that as α12 

increases the efficiency increases till it reaches the value 0.75 then decreases. α21 has an 

inversed pattern since α12+ α21 =1. Where the performance increases till 0.25 then starts 

decreasing. The highest efficiency is achieved for (α12=0.75, α21=0.25) while the lowest 

efficiency is achieved for (α12=0, α21=1). For example, 4-4-2 has higher efficiency than 1-4-5. 

 

Figure 3-5 The change of efficiency with α under WIP=3 

 

 

By comparing between (α12=0, α21=1), (α12=1, α21=0), we find that the second 

combination presents higher efficiency. The same is for (α12=0.25, α21=0.75), (α12=0.75, 

α21=0.25), but with better performance than the previous. The reason might be that when α12 is 

0 or small, it means a large fixed task for station 2. As a result, this large fixed task will cause 

a smaller throughput since station 2 becomes a bottleneck. This could be alleviated as the fixed 

task of station 2 get smaller or in other word as α12  becomes bigger. However, this amount of 

fixed task or α12 has a limit which is 0.75 after that the effect gets inversed as station 1 will be 
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the bottleneck. Beside to the above reason, the small number of WIP in the line deepens this 

difference, since the station one could starve. Another observation is when α12=α21=0.5, the 

efficiency is between (α12=0.25, α21=0.75), (α12=0.75, α21=0.25). Let us take an example to 

make the previous discussion clearer. Figure 3-6 represents the different combinations of α 

under B=3.  

  

Figure 3-6  Efficiency with different task divisions and B=3 

 

 

The second case when WIP=4. Here as in Figure 3-7, the differences between the 

opposite combinations get smaller. (α12=0.25, α21=0.75), (α12=0.75, α21=0.25)  have small 

difference and also for (α12=0, α21=1), (α12=1, α21=0). However, the other results are same 

except for          α12=α21=0.5 which becomes as same as (α12=0.75, α21=0.25). Here, the surplus 

of WIP in the line moderates the starvation of station one, which results to minimize the 

differences between the opposite combinations. 
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Figure 3-7  The change of efficiency with α under WIP=4 

 

For example, with B=4, we get Figure 3-8 which demonstrates the pattern of workload 

when WIP increases to 4. 

 

Figure 3-8  Efficiency with different task divisions and B=4 
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The last case when WIP equals to five. The pattern is opposite to the first case and the 

differences between the opposite combinations are less. As in figure 3-9, the efficiency get 

better as α12 get bigger then decreases after 0.5 while the efficiency of α21 continues improving 

till 0.75. The combination (α12=0, α21=1)  shows higher efficiency than (α12=1, α21=0). Also the 

combination (α12=0.25, α21=0.75) has better efficiency than (α12=0.75, α21=0.25) which is 

opposite to the case with WIP=3. (α12=0.25, α21=0.75) gives the highest efficiency and 

α12=α21=0. 5 also has the same efficiency.  

When α12=1, that means the fixed task of station 1 gets so big (in this study 5), in other 

words it becomes a bottleneck. That will prevent inserting more jobs into the line resulting 

starvation in the station 2. On the other hand, when α12=0, which means the station 2 gets a 

bottleneck. Here, no station will starve since there is a surplus of WIP. For α12=0.25 and 0.75, 

the same analysis can be considered. As long as α12 is between 0 and 1, that will result better 

performance since the effect of bottleneck will be less. Figure 3-10 plots the same pattern as 

discussed before with B=5. 
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Figure 3-9  The change of efficiency with α under WIP=5 

 

 

 

 

Figure 3-10 Efficiency with different task divisions and B=5 
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We noticed some variances between the examples and the average patterns. The reason 

is that the efficiency is also affected by the size of the shared task.  Figure 3-11 plots the 

efficiency with different shared task’ size which is represented by the fraction of shared task to 

total work (β) and under (α12=1, α21=0). The performance deteriorates as β increases after 0.2. 

In this case, station 1 has a big fixed task and as shared task’ size gets bigger, additional tasks 

will be available to W1. As a result, station 2 starves for longer time. On the other side, there is 

no remarkable change with (α12=0, α21=1) as the size of shared task changes except for low WIP 

where the performance declines (Figure 3-12). In the low WIP, station 1 is more prone to 

starvation as β raises than the other cases where the efficiency remains almost the same. In these 

cases, the station 2 will be the bottleneck, and since W1 who will decides to pass or keep the 

shared task, he can adapt with the bottleneck’s effect by keeping working on the shared task 

more frequently and the ample WIP can support.  

 

Figure 3-11  Efficiency versus β under α12=1, α21=0 
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Figure 3-12  Efficiency versus β under α12=0, α21=1 

 

The balanced fixed workload (Figure 3-13) which can be translated as α12=α21=0.5 has 

the same trend as in previous papers [3], [4], [5]. The performance improves as β increases till 

0.4 then the efficiency declines. 



45 
 

 

Figure 3-13  Efficiency versus β under  α12=α21=0. 5 

 

To summarize the comparison between the opposite configurations, we use the relative 

difference. For example, D (0-1, 1-0) equals the efficiency of ( α12=0, α21=1) minus (α12=1, 

α21=0) then the result is divided by the efficiency of (α12=0, α21=1).  

Figure 3-14 shows the results of these differences. As much as the fixed workload 

approaches toward the balanced workload, the differences diminishes. A line with WIP =3 and 

5 has the biggest difference for all cases while the one with a moderate amount of WIP has a 

small difference.  

The variance is positive for the big WIP where a small value of α12 or a small fixed task 

at station 1 shows better performance. On contrary, a big fixed task at station 1 gives higher 

efficiency with small WIP as we found previously. With moderate WIP, the small fixed task at 

station 1 (α12 is close to zero) exhibits better performance for extreme cases while the big fixed 
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task at station 1 at some certain amount displays higher efficiency for moderate cases of 

configurations. In extreme cases, the effect of having more WIP is more influential where it can 

offset existing a small fixed task at station 1 and in this case, both stations suffer less starvation. 

 On the other side, a big fixed task at station 1 at or after the balanced workload point to 

some extent leads to higher results then drops dramatically when this task gets so big as it 

hinders flowing the jobs to the station 2. The contribution of two factors, having somehow big 

fixed task at station 1 and the surplus of WIP, helps to improve the performance. 

 

Figure 3-14  The discrepancy between the opposite configurations 

 

In the above analysis, we presented the mean values of studied groups. To have more 

deep view, it is important to show the variation in each group and compare between other groups 

and different WIP. Standard deviation is employed for that purpose. Figure 3-15 indicates three 

forms of variations according to the amount the jobs in the line. However, in all of these three 
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the extreme configurations are close to each other for all values of WIP. Small WIP generally 

have more variability than others do especially when the fixed workload is far from the extreme 

cases. The balanced fixed task has the highest variability where the more effective factor is the 

size of shared task with absence of supportive WIP. When there is more jobs in the line (WIP 

= 4, 5), the variability decreases dramatically. A line with moderate or large WIP is more stable 

where all groups show a small value of standard deviation except when the fixed task at station 

1 is too big.  

 

Figure 3-15  The variation in each studied group  

 

 

 

With large WIP, the variability decreases as the fixed task at station 1 grows until 

reaching the balanced fixed workload then the variability rises up. The group of configuration 

with a large fixed task at station 1 has the highest variability in this case. 
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Considering the variability of the whole job tasks, the workload pattern will suffer a big 

difference. Conducting experiments with coefficient of variability (CV) of 0.5 instead of 1 as 

with the above analysis, the outcomes show a notable change when WIP is small. Figure 3-16 

illustrates a comparison between the performance of two CV (1, 0.5). 

Figure 3-16  The performance of two levels of variability 
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It is noticed, the performance of less variable case is better and the variances between the 

opposite configurations and the highest and lowest efficiencies are smaller than the case with 

high CV. As mentioned above, the case with scarce WIP experiences a big change in term of 

the workload pattern. The efficiency of (α12=1, α21=0) gets better when CV is low comparing 

with high CV.  As the number of jobs in the line is small, having a big fixed task at station 1 

will make the choice of sending the job with undone shared task to stations 2 more frequent. 

Beside to that, the low variable process will reduce the potential of W1 being idle due to the lack 

of jobs. With high variability, this potential increases.  

3.8 Conclusion 

We investigated in this research a wide range of workload configurations for a two-

station production line. The results of simulation show a remarkable trend of efficiency through 

different workload configurations. We find that a big fixed task at upstream station with small 

amount of WIP can give better performance than having a big fixed task at the downstream 

station. As much as WIP increases, the upstream bottleneck affects badly the efficiency. The 

variability has a little to do with the performance pattern while it improves the performance in 

term of its value and the differences between the different configurations. 

A downstream bottleneck with this surplus of WIP supports the throughput comparing 

with the upstream bottleneck. However, as fixed workload goes toward the balanced status, the 

results gets close to the maximum. Two factors can be considered in this stream, which can 

help to improve the performance. The first is the ability to process the job in flexible order, 

which facilitates the mission of production stuff by altering the position of workers in the line. 

Another factor is the possibility to divide a task to have a near balanced fixed workload. 
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CHAPTER 4   

FACTORS AFFECTING THE DLB 

PERFORMANCE 

 

Overview 

This chapter addresses the structure factors that affect the DLB performance with considering 

the workload imbalance. Three factors are tackled; Information Accuracy, Granularity of shared 

task and Variability. The results show the change happens in term of the value and the pattern 

of the performance through the variety of workload configurations. 

 

4.1 Introduction 

Generally, the production lines are always prone to many disturbances. That would lead 

in the most cases to deteriorating the performance. Some factors that cause these deviations far 

from the target are internal (we focus on the internal factors) and others are external. The 

internal factors can be overcome by manipulating the characteristics of the elements composing 

the line. As these factors are internal, they are easier to manage or remove than the external 

ones. The external factors are out of control in many cases so adapting or at most alleviating 

their effects is the most the production managers can do.   

Exploring these factors and how they influence the performance is essential to tackle 

them. The treatment might contain eliminating them or at least reducing the severity of their 

effects. 
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In the conventional serial production line, the factors that have an impact on the outcome 

are well investigated in the literature. In DLB as a special way to apply, the work-sharing, new 

related factors must arise. The affecting factors in this context are rarely or briefly studied. The 

only paper that considers some of these factors deeper than others is [1]. On the other hand, 

they focused on a special case of line which is a balanced case.  Askin and Chen [2], [3] 

conducted experiments on the performance of DLB with considering the interaction of two 

factors; granularity and information accuracy. Their model is also a balanced fixed workload. 

We try in this research to explore several factors and investigate their effects under more 

general model with balance and unbalance fixed workload configurations. These factors are 

Information Accuracy, Granularity and Variability.     

 

4.2 Information Accuracy  

Generally, to manage a production line it is needed several types of information. In work 

sharing environment, the types of information depends on the work sharing mechanism. For 

example, a line with full ability of workers to do any task and to move between stations needs 

different kind or scope of information than a line having non movable workers with some level 

of work sharing. 

Dynamic Line Balancing is used as a mechanism to manage the work-sharing here. In 

DLB, W1 after finishing task A has to make a decision whether to pass on or continue processing 

the shared task B. This decision considers the current state of system. Appropriate decisions 

[2],[3] will give more work to station 2 when it is more available or potentially so, or pass less 

work onto it when otherwise. In other words, it tries to reduce the starvation with fewer buffers.  
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On other side, it is not easy to make the best decision for all cases since this process is 

state-dependent and complicated to compute and implement in reality [1], [4]. Threshold rules 

are more practical, where the decision is made based on the comparison between the available 

downstream workload Z and a specific threshold called R. Many threshold rules are found in 

the literature. These rules can be distinguished based on the information accuracy level required. 

Mostly, one of two levels of the information accuracy is needed to make the decision to pass or 

keep the shared task.  The first level (Low) requires the information about the amount of work 

available in the downstream buffer, which is easy to know by simply recognizing the number 

of jobs with and without a completed shared task in the buffer. The more difficult level (High) 

to identify is specifying the uncompleted work in the buffer and at the next station. To do that, 

it might be required more sophisticated methods depending on the nature of tasks. These 

information accuracy levels are employed in threshold rules as described below to facilitate the 

decision process. Figure 4-1 plots the two levels of information accuracy. 

 

Figure 4-1 Two Levels of Information Accuracy 
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We used one rule from each class that is the most near optimum based on [2]. Of the 

first level, SRNS is used and of the second HFB is used. In SRNS (HFB) W1 will start or keep 

working on the shared task if R or more units of subtasks are available in the buffer before (and 

at) station 2.  W1 will pass the shared task if the subtasks in buffer before (and at) station 2 are 

less than R. The threshold value R is given by (1) for SRNS and (2) for HFB, where WIP is the 

CONWIP level and tc (tb) is the number of subtasks for task C (B): 
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4.2.1    Settings of Experiments 

The same model as in the chapter 3 but this time we did the experiments under the two 

rules SRNS and HFB rules. However, here we prolonged the time of simulation to 900x103 

time units and increased the number of replications to 12. 

 

4.2.2   Results and Discussion 

Figure 4-2  presents the results under HFB and SRNS for WIP =3. We notice that the 

case with balanced workload (α12=α21=0.5) has better performance in HFB than that in SRNS. 

The cause returns to that the workload’s effect is minimal in this case since each worker has the 

same probability to starve. As a result, the accurate information used in HFB helps reducing the 
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opportunity of both workers’ starvation by sending the shared tasks as exact as W2 does need 

but without causing long starvation for W1. For example, W2 has just started processing a job 

and the buffer before it becomes empty. If at the same time W1 has finished his fixed task, (in 

HFB) he will send or not the job with considering how many subtasks still under processing at 

station 2. If they are enough, the job will not be sent even if the buffer is empty. On the other 

hand, in SRNS W1 will surely sends it if the buffer is empty which might make him starving 

longer.  

 

Figure 4-2  Efficiency vs. α for WIP =3 

 

Another; interesting point, the performance of (α12=1, α21=0)  in HFB is less than the 

one in SRNS. Also by comparing this combination with (α12=0.25, α21=0.75) in both cases, it 

is obvious that the results of that combination in HFB is less than (α12=0.25, α21=0.75) . The 

combination (α12=1, α21=0) has a big portion of subtasks for W1 (5 subtasks) while relatively 

small number of subtasks for W2 and R is small under WIP=3. This means that R could be close 

to fixed task of W2. In the light of what mentioned above and since in HFB the uncompleted 

subtasks at station 2 are considered to make a decision to send or keep. The chance of having 
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empty in-between buffer is more than in SRNS. As a result, W2 has a high possibility to starve 

longer in HFB.  

The second case is when WIP is 4. Here as in figure 4-3, the differences between the 

opposite combinations get so small. (α12=0.25, α21=0.75), (α12=0.75, α21=0.25) and (α12=0, 

α21=1), (α12=1, α21=0) have a small difference in their efficiency.  

 

 

Figure 4-3  Efficiency vs. α for WIP =4 

 

For α12=α21=0.5, the performance becomes as same as (α12=0.75, α21=0.25) in SRNS 

and gets a bit higher in HFB. The surplus of WIP moderates the starvation of W1 and W2, which 

results to minimize the differences between the opposite combinations.  

In addition to the above mentioned, we have almost similar patterns for both rules. 

However, the workload configurations with extreme values of α show a bit better efficiency in 

SRNS than that in HFB. With high level of information accuracy as in HFB, considering the 

number of subtasks at station 2 with ones in buffer helps sending no extra subtasks to 

downstream buffer whereas in SRNS the buffer will be full more, which can be noticed easily 
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from a bit longer cycle time in SRNS. With an ample WIP, a line with SRNS experiences less 

starvation for station 2 and no negative effect on station1.  The effect of this behavior on the 

performance diminishes as the workload configuration goes toward balanced case (α12=α21=0.5) 

where each worker has a relatively equal opportunity to starve.   

The last case when WIP reaches to five. Each rule shows a different pattern of efficiency. 

In HFB (Figure 4-4), the change of efficiency has almost the same pattern as in the previous 

case (WIP=4) with higher efficiency. The higher level of information accuracy helps to have 

more robust pattern against the increase of WIP.  

 

Figure 4-4  Efficiency vs. α for WIP =5 

 

On the other side, Figure 3-4 also displays a pattern of SRNS that is opposite to the first 

case but the differences between the opposite combinations are a bit less.  

Another notable point (from figure 4-4) is that the differences between the opposite 

combinations in SRNS are bigger than that in the previous case and in HFB for the same case. 

For example, for α12=1, α21=0  we have a big fixed task at station1 that delays inserting more 
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jobs and R decreases as the fixed task at station 2 shrinks. In this sense, station 2 starves longer 

thus the efficiency deteriorates. This matter is not existed in HFB and in the case with WIP=4 

where its effect is tiny since the WIP is not so big.  

 

4.3 Granularity of Shared Task 

The granularity of shared task can be classified into three types; non-preemptive, 

preemptive, and between these two extremes. The granularity refers to the number of decision 

points that divide the shared task into several subtasks. The decision that is made at each of 

these points is to pass or keep working on the shared subtasks. In this logic, in the preemptive 

shared task the decision to keep or pass can be made at any point during processing the shared 

task while in the non-preemptive shared task the decision is made only before processing the 

shared task starts. In the cases between these two extremes, there are natural break points in the 

shared task where the shared task can be transferred to the next station only at these points [1]. 

The majority of research papers depended totally or partly on the non-preempted shared task as 

in [2-10]. A few papers employed a preempted task for sharing [1], [11-12], whereas the others 

investigated a range of granularity [1], [2] and [3]. We focus on the last type of studies in our 

research range. 

Gel et al. [1] defined the granularity as “a measure that accounts for the number of break 

points and the size of subtasks that are transferable in the shared task.” They combined these 

two factors in one metric of granularity (g). They used a Markoven Decision Process (MDP) 

model and got the optimal policy that controls the decision to send or keep the job by using 

dynamic programming. However, they found that the resulting rule is difficult to apply. 
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Therefore, they tried to find the optimal heuristic rules for the potential cases.  The resulting 

throughput of the optimal heuristic policy is compared with the one of best static policy and the 

evaluation measure was opportunity which measures how well the optimal work-sharing policy 

performs relative to the best static policy. The experiments were done for a two-station line 

with Constant Work-In-Process (CONWIP) policy and the processing times of subtasks of 

shared task are identically distributed exponential random variables. Four cases are studied; 

preemptive shared task, non-preemptive one and two cases with a granularity level of two 

subtasks; one with two equal subtasks and the other with one short subtask and one long subtask. 

The results showed that the performance of both policies improves as the shared task becomes 

more granular and the opportunity increases as the shared task gets less granular. The lowest 

opportunity is achieved by the shared task with two equal subtasks, and it is better than the case 

with a preemptive shared task. 

Chen and Askin [2], [3] examined different number of break points of shared with equal 

subtasks for each case. They also examined a two-stage line but for four cases of control 

policies; HFB, SRNS, and their optimal models which were gotten by the simulation 

optimization. Three sizes of shared task are investigated; 2, 4, 6 where 2 has two cases; one and 

two decision points, 4 has three cases one, two and four decision points. For 6, there were four 

cases; one, two, three, and six decision points. These numbers (2, 4, 6) represent the number of 

subtasks that composes the shared task since the subtask model [6] is used by the researchers 

here. The results of simulation confirmed the results of [1]. In addition, they found that larger 

shared tasks achieve higher efficiency than smaller shared tasks when given higher granularity. 

This is contrary to the case with non-preemptive shared task where the small to medium sized 

shared task gives better performance than the large shared task. The results showed also that R 
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values which represents the threshold decreases in the optimal models and the efficiencies of 

HFB and SRNS rules jump up as the granularity increases but not as in optimal rules. 

In the above papers [1], [2], [3], only two factors are considered in the granularity. These 

two factors are, the number of decision points, and the size of subtasks resulting by existing of 

these points. In the paper [1], they did their experiments with one, two, infinite numbers of 

decision points. In addition, equal and non-equal sized subtasks are used. Whereas in [2], [3] 

more variety of decision points’ numbers is taking in account; one, two, three, four, and six. 

However, the sizes of resulting subtasks are equal. 

In this research, we study other new two factors, which are the order of subtasks resulted 

from decision points and the workload. The order of subtasks here is related to the size of 

subtasks. In other words, if the shared task has two decision points with two subtasks, one short 

and one long, the order means which one is chose first to be done or if the sequence is important 

which subtask should have bigger size the first or the second. Gel et al. [1] examined a case 

with two subtasks one is 0.25 of the shared task and the other is 0.75. The wonder here is “Is 

there a difference in the performance whether the first subtask has 0.75 or 0.25 of shared task?” 

We try to explore this wonder as that will give more insights in efforts of maximizing the 

efficiency by just managing these subtasks. 

 

4.3.1   The order of Subtasks 

Under some level of granularity, the decision points divides the shared task B into a 

number of subtasks, we symbolize these subtasks as B1, B2, B3, B4... (Figure 4-5). This number 

can be specified based on how many points there are. For example, if we have one point that 



62 
 

means B is one subtask and the decision to pass or keep is made before starting processing B. 

If there are three points, the decision is made three times, before the first subtask B1, before the 

second B2 and before the third B3. The sizes of these subtasks could be equal or not. Our main 

focus is non-equal ones since the different sizes could raise the query whether the order is 

important or not.  

                                       

              Equal Shared Subtasks                                                 Unequal Shared Subtasks 

Figure 4-5  Granular shared task with equal and unequal shared subtasks 

 

The order has two meanings based on the ability of doing the subtasks in sequence or 

not. If the subtasks have to finish in sequence, the order means where the big portion of shared 

task should be for the first subtask or for the second and so on. Another meaning, when the 

sequence is not important, is which subtasks should be processed firstly. For instance (Figure 

4-6), let B=4 has two subtasks B1 and B2. Their sizes are 1, 3 work units. In sequential processing, 

(B1, B2) = (1, 3) is different than (3, 1) while in non-sequential processing B1 could be 1or 3. In 

this study, this matter does not affect the results, and it is totally a technical issue influenced by 

the processing nature of shared task.  
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                     Equal Shared Subtasks                                           Unequal Shared Subtasks 

Figure 4-6  Granular shared task with equal and unequal two shared subtasks 

 

SRNS is utilized as a threshold rule. The level of granularity that is employed in our 

experiments is with two decision points. In this case, the shared task has two subtasks; B1, B2. 

Different sizes of shared task are utilized. The resulting subtasks are given the all possible 

combinations of subtasks with all potential sizes under a step of one unit work.  All settings of 

these experiments are presented in table 4-1.  

 

Table 4-1  The task divisions and the subtask combinations of B used in the study 

 

A B C SUBTASKS (B1,B2) 

3 4 3 (1, 3) - (2, 2) - (3, 1) 

2 6 2 (1, 5) - (2, 4) - (3, 3) - (4, 2) - (5, 1)  

1 8 1 (1, 7) - (2, 6) - (3, 5) - (4, 4) - (5, 3) - (6, 2) - (7, 1) 
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Figure 4-7  The efficiency with different subtasks’ order for task division 3-4-3 

 

 

Figure 4-8  The efficiency with different subtasks’ order for task division 2-6-2 

 

 

Figure 4-9  The efficiency with different subtasks’ order for task division 1-8-1 
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The simulation results of these experiments are plotted in the figures 4-5, 4-6, 4-7. The 

efficiency is evaluated under three values of WIP in the line; 3, 4, 5.  

The first observation from the above figures is the efficiency generally improves as the 

shared task gets granular except for some cases of 1-8-1 under WIP=4, 5. This result confirms 

the outcomes of [1], [2] and [3]. The best efficiency is mostly achieved when the both subtasks 

have equal size. This is understandable since the fixed tasks for each case have the same number 

of work units, in this sense the line will be similar to a totally balanced line with benefiting 

from the DLB advantage in absorbing the effect of variability. 

For different order of subtasks, task division 3-4-3 (Figure 4-5) shows no notable 

increase in the efficiency for all values of WIP. All subtasks combinations have almost the same 

efficiency. The maximum difference between the different order is small around 0.49 % with 

WIP=3 and this difference diminishes as WIP gets bigger. 

In task division 2-6-2 (Figure 4-6), the variance of efficiency becomes a bit bigger than 

that in 3-4-3 as the difference between the subtasks’ sizes get larger. However, the performance 

does not show an important change between different orders of subtasks. For example, when 

WIP equals to 3, (1, 5) has less efficiency than (5, 1) by only 0.65%. This tiny variance 

diminishes as WIP rises.  

With large shared task as in 1-8-1 (Figure 4-7), the order has more significant effect on 

the performance. The efficiency of subtasks combinations with an opposite order is almost the 

same for WIP=3 while it has considerable differences for WIP=4, 5. The cases with a large first 

subtask have worse performance than those with small first subtask under WIP higher than 3. 

For example, combinations (2, 6), (6, 2) have efficiency of 0.9645, 0.9509 respectively for 
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WIP=4. The loss of efficiency is about 1.4%. This can be explained as follows.  A line with a 

large shared task has small R which means fewer jobs to send downstream and the potential of 

having jobs with small shared subtask is higher than the cases without granularity and with big 

second subtask (when granularity is considered).  In this sense, the station 2 will starve more as 

the first subtask is large even with ample of WIP since the station 1 has the decision to keep or 

send the shared task. In addition, a line with a big shared task has small fixed tasks which 

promote this starvation.  

The difference in the efficiency generally increases as the sizes’ variance of subtasks 

composing the shared task expands. In some cases, the performance even is less than the case 

with non-granular shared task. For example, for WIP=5, the efficiency of non-granular shared 

task is 0.9779 while of (6, 2) is 0.9580 with loss of 2%. It is clear in Figure 3-7 that the 

combination (7, 1) has better efficiency than (6, 2), and the difference between (1, 7), (7, 1) is 

less than that between (2, 6), (6, 2). This can be explained that the combination (7, 1) has the 

smallest second subtask which makes sending more jobs to approach R more potential than in 

(6, 2). Moreover, the surplus of WIP (WIP=5) supports this improvement comparing with 

WIP=4 where more jobs are sent downstream as R becomes bigger than for WIP=4. As a result, 

the station 2 starves less.   In the light of these results, the small to moderate size of shared task 

does not experience an important effect of different orders of subtasks on the performance. On 

other hand, in the large shared task the order of subtasks has a significant influence and that 

becomes clearer as WIP increases. The performance in this case (large shared task) gets worse 

as large as the first subtask becomes.    
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4.3.2   Workload 

We examined a variety of shared task’s sizes under a diversity of workload 

configurations. The sizes of shared task cover three types; small, medium, and large. These 

sizes are 3, 4, and 6. The workload configurations also include all the potential cases with step 

of one work unit. To consider the granularity, the experiments are done under the granularity 

level of two subtasks and different sizes of them. The order of subtasks is not included as it 

does not notably affect the performance of the studied shared tasks’ sizes based on the results 

of previous analysis. These settings will help to do more rigid analysis and give more 

comprehensive insights. The workload configurations for each size are displayed in tables 4-2, 

4-3 and 4-4.   

 

Table 4-2  The workload configurations and the subtask combination of B =3 

 

A B C ST12 ST21 α12 α21 Subtasks 

2 3 5 0 3 0 1 

(1, 2) 
3 3 4 1 2 0.333 0.667 

4 3 3 2 1 0.667 0.333 

5 3 2 3 0 1 0 
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Table 4-3  The workload configurations and the subtask combinations of B =4 

 

A B C ST12 ST21 α12 α21 Subtasks 

1 4 5 0 4 0 1 

(1, 3) 

 

(2, 2) 

 

2 4 4 1 3 0.25 0.75 

3 4 3 2 2 0.5 0.5 

4 4 2 3 1 0.75 0.25 

5 4 1 4 0 1 0 

 

Table 4-4  The workload configurations and the subtask combinations of B =6 

 

A B C ST12 ST21 α12 α21 Subtasks 

1 6 3 2 4 0.333 0.667 (1 ,5) 

(2, 4) 

(3, 3) 

2 6 2 3 3 0.5 0.5 

3 6 1 4 2 0.667 0.333 

 

The analysis of the simulation results shows two clear points in the effect of this factor 

on the performance in the granularity environment. These two are the effect on the granularity’s 

performance, and the influence of granularity on the workload’s patterns. We organized the 

analysis based on the shared task’s sizes (small, medium, large) and treated these two points 

for each size. 

In small sized shared task (B=3) (Figure 4-8), the extreme values of α12, α21; (0, 1), (1, 

0), give the worst efficiency. The performance of α12 =1, α21=0 outperforms that of α12 =0, 

α21=1 for WIP=3 and the difference between them reaches 4.6%. The reason is that α12 =1 

means the station1 has a big fixed task (bottleneck) which results having fast processing at 

station 2 since its fixed task is small. In addition, since the station 1 has the decision to pass or 
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keep the shared task, it will try to send jobs to the station 2 as many as it is needed. In this way, 

the station1 will starve less than the case with α12 =0 in which the station 2 becomes the 

bottleneck then fewer jobs are released from the line in any time period. This causes longer 

starvation for station1 with this small amount of WIP.  

For WIP=4, 5, the previous form gets inversed. The surplus of WIP helps to give the 

advantage to the case with station 2 as a bottleneck. In this case, the station 1 has a small fixed 

task which allows inserting more jobs in the line than if station1 is a bottleneck. The other 

values of α have higher performance and the performance of balanced fixed workload is located 

between these cases.  Also, when WIP is small, the higher values of α12 give better performance.  

As WIP increases the efficiency of opposite cases gets closer to each other. For example, 

the difference of efficiency between the extreme cases (α12 =1, α21=0), (α12 =0, α21=1) reaches 

4.6% for WIP=3 and then diminishes to 1.5%, and 1% for WIP=4, 5 respectively. The 

performance of extreme values is still the worst while for other cases their performance 

becomes almost the same for all values. For example, for WIP=4, the combinations (α12 =0.33, 

α21=0.667), (α12 =0.667, α21=0.33) have the efficiency of 0.977, 0.975 respectively which 

almost the same. 

The pattern of workload does not change comparing with non-granular (NG) shared task. 

The small size of shared task does not help to have a notable variation, and the efficiency does 

not have a remarkable increase.   
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Figure 4-10  The efficiencies of granularity (1, 2) 

 

When the shared task increases a bit (medium size B=4), the workload configuration 

has also a distinct influence on the performance in the granularity environment like in the 

previous case. The pattern of efficiency is the same under different cases of granularity (in our 

experiments (1, 3) – (2, 2)). Figure 4-9 displays the efficiencies of (2, 2) case. The extreme 

cases have also the worst performance, and α12 =1, α21=0 outperforms α12 =0, α21=1 for WIP=3 

then this gets inversed for more WIP. However, the differences between these two combinations 

have a dissimilar form than the ones in B=3 and this variance is large as WIP is small and big 

while it shrinks when WIP is moderate. For example, in the granularity of (2, 2) the difference 

is 4.23% for WIP=3 then it reduces to 1.69% for WIP=4, and rises again to 4.15% for WIP=5.  

  

 

Figure 4-11  The efficiencies of granularity (2, 2) 
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We found that other cases of α have the same style. The performance of balanced 

workload configuration is located comparing with the two combinations (α12 =0.75, α21=0.25), 

(α12 =0.25, α21=0.75) in altered positions as WIP changes. It is easily noticed that the 

performance of balanced workload increases and its position moves from between these two 

cases to equal to them then higher than them as WIP grows. Consider the granularity of (1, 3) 

as an example. The alteration of balanced workload’s performance is presented in table 4-5.  

 

Table 4-5  The alteration of balanced workload’s performance for B=4 and with granularity 

of (1, 3) 

 

Combination 

Efficiency (E) 

WIP=3 WIP=4 WIP=5 

α12 =0.25,  α21=0.75 0.9089 0.9714 0.9833 

α12 =0. 5,  α21=0. 5 0.9330 0.9714 0.9911 

α12 =0.75,  α21=0.25 0.9389 0.9710 0.9750 

 

There are some variations between granular and NG shared task in the pattern of 

workload and these variations are the same for different granularity cases (Figure 3-9). For 

WIP=3, the efficiency of balanced workload is lower than (α12 =0.75, α21=0.25) in granular task, 

while it is equal to this combination in non-granular shared task. For WIP=4, the performance 

of (α12 =0.75, α21=0.25), (α12 =0.25, α21=0.75) improves comparing with NG task to be equal 

to the balanced workload. For WIP=5, the pattern is almost the same but the difference between 

the opposite combinations is smaller in granular than NG shared task.  

Considering a large sized shared task (B=6), the simulation results showed that all 

different cases of subtasks have the same pattern. Figure 4-10 plots the efficiencies for the 
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granularity of (3, 3). The figure indicates that the combinations (α12 =0.667, α21=0.33), (α12 

=0.5, α21=0.5) have almost the same best efficiency except for WIP=5. If there is a difference 

between these combinations, it is so small. For example, the maximum difference is 0.43% for 

WIP=3 and the granularity of (2, 2). When WIP rises to 5, the combination (α12 =0.33, 

α21=0.667) becomes equal to (α12 =0.5, α21=0.5) and they have the best efficiency. In this case, 

(α12 =0.667, α21=0.33) has the worst performance instead of (α12 =0.33, α21=0.667). This can be 

explained as mentioned in the case of B=3 and since the fixed workload is small this trend needs 

more WIP to happen. 

 

 

Figure 4-12  The efficiencies of granularity (3, 3) 

 

Another obvious point is that the variance of efficiency between (α12 =0.33, α21=0.667), 

(α12 =0.667, α21=0.33) is moderate for WIP=3, 5 and large for WIP=4. For the granularity of (1, 

5), this variance is 1.41%, 2.03%, 1.34% for WIP=3, 4, 5 respectively. Here, when WIP is small, 

having small fixed task for station 2 helps released jobs faster from the line and that prevents 

the starvation of station 1 for long time and increases the efficiency. Normally, as WIP increases 

this pattern is expected to get inversed. In other words, having small fixed task of station 1 has 

higher performance due to the surplus of WIP and inserting more jobs. Unfortunately, this does 

not happen because (in large shared task B=6) the value of R rises with WIP growing to big 
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values which means sending more jobs to downstream buffer. For example, for 1-6-3 task 

division, the threshold value R rises from 3 work units for WIP=3 to 6 work units for WIP=4 

while it remains 6 work units for WIP=5. This issue plus a big fixed task at station 2 causes the 

station 1 to starve for longer time than the case with big fixed task at station 1. When we have 

more WIP this matter is solved and the configuration (α12 =0.33, α21=0.667) becomes the best 

as there is enough work units for both stations.  

Comparing with NG shared task, the granularity changes the pattern of workload for 

small to moderate WIP. (α12 =0.667, α21=0.33) with granular shared task has better performance 

which is almost equal to the best efficiency. For large WIP, the shape of trend is the same for 

both granular and NG shared task but the (α12 =0.33, α21=0.667) gets closer to (α12 =0.667, 

α21=0.33) than in NG shared task.  

 

4.4 Variability 

The variability we focus on here is called natural variability. It is caused by minor 

fluctuations in process time due to differences in operators, machine and materials [13]. In the 

modeling of processing time variability, we can distinguish between two approaches; task 

approach and worker approach. The task based approach considers the inherent variability of 

the tasks is the main source of variability [14]. On the other hand, the worker constitutes the 

dominant source of the variability. Doerr and Arreola-Risa [15] support this approach. Their 

field experiments showed that even with identical workers with high variable tasks, the workers 

are the major source of the variability. In our investigation, we try to consider both approaches 

in our experiments. 
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 This section addresses the variability in both fixed and shared work. We also consider 

the disparity of load of fixed work and illustrate the interaction between the workload and 

variability. The results provide insights for directing the efforts of improving the variability. 

We try to find answers for the questions like “Having less variable shared work, is it enough to 

get better performance?”, “For some workload allocation, which fixed work should be less 

variable to have higher throughput?”, in other way, “How can we reallocate the workload for 

some variability combination if the sequence is flexible?”. 

4.4.1    Settings of Experiments 

To tackle the variability in this research, we use two levels of variability. These levels 

are represented by Erlangen distribution with two values of k (Erlang-1) for high variability and 

(Erlang-4) for low variability. The variability combination of tasks is symbolized as V(a,b,c) 

where a, b and c equal to the value of k. For example, V(1,4,4) means that the variability 

distribution  of processing time of a subtask unit is Erlang-1 for subtasks of task A, Erlang-4 

for task B and Erlang-4 for task C. Two levels of variability should be examined for each of 

three distinct tasks so we have eight different combinations of variability.  These combinations 

are displayed in table 4-6.  

Table 4-6  The studied variability combinations 

 

Task\Experiment 1 2 3 4 5 6 7 8 

Task A Erlang-1 Erlang-4 Erlang-1 Erlang-1 Erlang-4 Erlang-4 Erlang-1 Erlang-4 

Task B Erlang-1 Erlang-1 Erlang-4 Erlang-1 Erlang-4 Erlang-1 Erlang-4 Erlang-4 

Task C Erlang-1 Erlang-1 Erlang-1 Erlang-4 Erlang-1 Erlang-4 Erlang-4 Erlang-4 

V(a,b,c) V(1,1,1) V(4,1,1) V(1,4,1) V(1,1,4) V(4,4,1) V(4,1,4) V(1,4,4) V(4,4,4) 
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4.4.2    Results and Discussion 

Figure 4-11 and figure 4-12 depict the efficiency of each variability combination as the 

workload changes in SRNS and HFB respectively. Clearly, the workload pattern when WIP is 

small (WIP=3) experience remarkable distortion through different variability combinations. 

Meanwhile, the pattern is almost the same with tiny change for more WIP. Another point, the 

performance of the same workload configuration improves when the variability of shared task 

drops except the case of (α =1) (where α =α12) where this behavior is a bit different. For instance, 

V(1,4,4) outperforms V(1,1,4) for any same workload configuration with same variability of 

fixed tasks. The increase of efficiency between different variability combinations shrinks as the 

WIP raises since the extra WIP will compensate the variance in variability. The proportions of 

increase between the highest and lowest performance for balance fixed workload (α=0.5) as an 

example are 5.12%, 2.88% and 1.49% as WIP raises from 3, 4 till 5. 
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(a)  

(b)  

(c)  

Figure 4-13  The performance of each variability combination through workload 

configurations for SRNS 
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(a)  

(b)  

(c)  

Figure 4-14  The performance of each variability combination through workload 

configurations for HFB 
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Figures 4-13, 4-14 indicate obviously that there is almost no difference in the 

performance trend of studied variability combinations between the two used levels of 

information accuracy and the three WIP cases for each workload alone. It is easy to discover 

that by checking the style of performance for each workload configuration. The tendency is the 

same in all charts where the order of variability combinations on the axis x is same in all graphs. 

However, the effect of information accuracy is distinct in term of the performance value.  

By comparing the efficiency between the workload configurations through all 

variability combinations, we find three directions. The first one is the balanced configuration 

(α=0.5). Here, having less variable shared task improves the efficiency dramatically. The line 

will experience so high performance even better than having task A or task C or both of them 

less variable. As the second priority in this case, reducing the variability of task C helps to raise 

the outcome. As CONWIP is closed loop control, decreasing the inter-departure time of jobs 

leads to shorter inter-arrival time. That minimizes the opportunity of starvation in station 1 

especially in low WIP scenarios.  
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(a)  

(b)  

(c)  

Figure 4-15 The performance of each workload configuration through variability 

combination for SRNS 
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(a)  

(b)  

(c)  

Figure 4-16 The performance of each workload configuration through variability 

combination for HFB 
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The second and third cases are when the fixed workload of station 1 or 2 goes toward a 

heavy load.  In other words, it becomes a bottleneck. Moderate bottleneck has so similar trend 

of performance to the balanced case. When the bottleneck has an excessive load, minimizing 

the variability of the bottleneck is even better than having a low variable shared task.  For 

instance, when α12=1 the efficiency of V(4,1,1) surpasses the one of V(1,4,1). We can also 

notice that the differences in the performance increase as WIP increases for the extreme 

configurations, which is opposite to the other configurations. The variance is bigger in the case 

with a high level of information accuracy as in HFB. 

 

4.5 Conclusion 

We simulated a two-station production line run under DLB policy. Three factors were 

investigated information accuracy, granularity and variability. Several workload configurations 

were employed.  

We considered two levels of information accuracy represented by two threshold rules; 

HFB, SRNS.  The simulation outcomes showed that the workload has an obvious effect on the 

efficiency and this effect has remarkable patterns with several values of α under different values 

of WIP. The information accuracy also affects the performance especially for high and low WIP 

and low information accuracy level generally presents better performance for extreme values 

of α.  On the other hand, higher level of information accuracy shows a better performance as 

close as the fixed tasks approach to the balance state. 

In addition, the high level of information accuracy displays low disparities between the 

opposite configurations of workload. For instance,   (α12=0, α21=1), (α12=1, α21=0) have almost 
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the same or so close performance in HFB comparing with that in SRNS. In other words, in case 

of exchanging the position of fixed tasks, high information accuracy shows more robust 

performance.  

Two factors in the granularity environment were explored, the order of subtasks 

resulting from the granularity and the workload. Both factors have a significant influence. The 

order of subtasks presents an important effect when the shared task’s size is large while this 

effect is minor for small to moderate size. For the large size of shared task, starting with a small 

subtask instead of a large one gives a higher performance as WIP increases. The gain could be 

more than 2.5%.  

We also examined the effect of workload that has more vital influence than the previous 

factor. Different cases of granularity of shared task and workload configurations are studied. 

The outcomes revealed that there is a pattern of workload configurations for each size of shared 

task and this pattern has some changes affected by the WIP amount. The granularity affects the 

workload pattern in term of the value and trend.  

Several variability combinations were employed as the last factor in this chapter. We 

found that generally the shared task should be given the first priority to reduce its variability 

then the fixed tasks.   However, the state of fixed tasks toward the balanced case can affect this 

general outcome. As much as the fixed workload goes far from the balanced case, focusing on 

the bottleneck station becomes more important to increase the line performance. At this case, 

less variable shared task alone gives a small improvement.  
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CHAPTER 5   

MODIFICATION OF COORDINATE RULES WITH 

CONSIDERING THE WORKLOAD 

 

Overview 

After exploring the role of workload on the performance, we suggested a modification in the 

control rule HFB, which takes in account the workload effect. This chapter aims to elaborate 

this suggestion and how including the workload in the rule would affect the performance. 

 

5.1 Introduction 

In the previous chapters, a thorough investigation has been given covering the workload 

effect on the line with work sharing applied. Most of the works have dealt with the structural 

elements comprised the line. For the fixed task, the effect of its size, position, and variability 

on the performance are studied. On the other hand, different types of aspects have been focused 

on for the shared task. The granularity of shared task, its variability have been considered. In 

this chapter, we study the control rule.  

Most of rules that use to conduct the work sharing, relay on one idea. This idea is in 

order to make a decision of keeping or sending the shared task, information about the status of 

downstream stations is required. The state of downstream might include whether the 

downstream worker being idle or busy [1], [2], [3] and the amount of available work whether 

in buffer or in buffer and at downstream stations which is undone yet [4].  
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Among these rules we target the rules that relay on the threshold value and calculate the 

cut off value as the half of the available workload for the two neighboring workers. These rules 

have showed a relatively better performance than the performance in other rules.  

Since the main concentration in the DLB literature has been on the balanced case of 

workload, these kind of rules indicate a distinct performance. Even with imbalance workload, 

they are able to offset the loss in the yield due to the imbalance workload [4]. 

 

5.2 Half workload based rules 

In these rules, the considered workload that should be half of is the cutoff or the 

threshold value is varied. The following rules present variety of the considered workload (tA the 

subtask number of task A- tB the subtask number of task B- tC the subtask number of task C -

WIP the number of jobs in the lines ): 

1- 
2

B
R                                                                                                                          (1) 

Where B is the capacity of buffer 

 

This rule is the first version of Half Full Buffer rule. It is introduced by [5] in 1990. The 

idea here is that the cutoff value is the half of buffer capacity.    

2- 
2

2
.

2

)(

2




WIPtttt
R CCBB                                                                                    (2) 

This rule is the most recent version of rule (1). It is the near-optimal rule [4], [6]. The 

second term is the average work content in a half full buffer and the first term represent 

the amount of work that will equalize the expected idling time of W1 and W2 [7]. 



87 
 

3- 
2

)2( CB tt
WIPR


                                                                                               (3) 

WIP - 2 is the maximum number of jobs in the buffer if neither station is starved and tB + tC 

is the expected task time for a job with undone shared task. Thus, (WIP-2)( tB + tC) defines 

the maximum workload in the buffer.  

4- 
2

).1(
)2( CB ttw

WIPR


                                                                                        (4) 

It takes into account a balance factor that is adapted from Gel et al. [8]. This factor, w, is 

the solution to the following equation :  

5- 
CBBA ttwtwt  ).1(.                                                                                                  (5) 

w estimates the proportion of task B that will be completed at station one over the long run 

to balance workload. 

6- 
2

).( ACBA ttttWIP
R


                                                                                            (6) 

The workload in the system is maximized when all N jobs are present at station one. At the 

decision point, the maximum workload as seen by station one is WIP. (tA +tB + tC) - tA 

because one task A has been completed 

7- 
2

. CB tWIPt
R


                                                                                                            (7) 

The workload in the system is minimized when WIP - 2 of jobs with shared task done are 

at station two. The minimal workload in the system that station one sees at the decision 

point is tB + WIP. tC.  

8-   2/
2

.

2

).( CBACBA tWIPtttttWIP
R





                                                             (8) 

 

This rule simply takes the average of maximum-based and minimum-based cutoff levels. 
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The rule (2) is the best choice to do our study here. Based on [4], the rules from 3 to 7 

have the same or worst performance comparing with the rule (2). Accordingly, we made our 

suggestion to involve the workload in the rule on this rule. 

 

5.3 HFB Rule with involving Workload Variance 

Two points motivated us to reform HFB rule by considering the fixed workload 

imbalance. The first point is that most of papers employing this rule utilize models with 

balanced workload. The other point is that HFB rule divides the buffer contents into half to get 

the cutoff value. This point is related to the first point.  

Since we did our investigation on the balanced and unbalanced fixed workload, we 

involved this sense of imbalance into HFB rule. By that, the rule becomes more generalized 

and considering the imbalance of fixed workload in the rule reflects more accurate information 

about the line status. 

The basic idea is that instead of having the cutoff value by dividing the buffer contents 

by 2 (half of it), we get this value by dividing the buffer contents by the ratio of fixed workload. 

In the light of this modification, the shared task should be sent more frequently to the buffer if 

the fixed task of the downstream station is small and the fixed task of the upstream station is 

big.  Conversely, the shared task should be done more often at the upstream station if the 

downstream fixed task is big and the upstream one is small. In HFB rule, the buffer contents in 

equal regardless of the magnitude of fixed workload of up- or down-stream station.   
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The workload ratio is given as in the following equation (9); 

A

CA

t

tt
w


                                                                                                                    (9) 

HFB rule after including the workload ratio becomes as follows;  

2

2
.

)( 


WIP

w

ttt

w

t
R CCBB                                                                                   (10) 

We call this rule after the modification WFB (Workload-Full-Buffer) since it does not represent 

the half of the full buffer. 

Let us take the following example to illustrate the calculations and the work mechanism 

mentioned above. Having task division 2-5-3 with WIP=4, w and R are calculated according to 

equations (9) and (10) as follows 

5.2
2

32



w  

4.6
2

24
.

5.2

3)35(

5.2

5



R  

Taking the opposite case 3-5-2, the w and R are 1.67, 8.4 respectively. It is easy to notice that 

R is bigger in the case 3-5-2 where tC is small and tA is big than 2-5-3 where tC is big and tA is 

small. In 3-5-2, more subtasks should be sent to offset the small amount of downstream fixed 

task thus R is bigger.   

5.4 Settings of Experiments 

The same model as in the previous chapter is utilized. Three rules are compared; WFB, 

HFB, SRNS rules. We included SRNS rule since we found in the previous chapter that this rule 
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showed better performance in some cases than HFB rule. In this sense, this inclusion will 

present the advantage of the new rule even when HFB failed to give a good performance 

comparing with a rule under a poor level of information accuracy. The values of R for these 

rules under the three values of WIP are present in table 5-1. 

 

Table 5-1 The cutoff values of studied workload configuration under WFB, HFB and SRNS 

tA tB tC 
WFB HFB SRNS 

3 4 5 3 4 5 3 4 5 

4 1 5 2.89 5.33 7.78 3.25 6 8.75 1 1 1 

3 2 5 3.00 5.25 7.50 4 7 10 2 2 2 

2 3 5 2.71 4.57 6.43 4.75 8 11.25 3 3 3 

1 4 5 1.83 3.00 4.17 5.5 9 12.5 4 4 4 

            

5 1 4 3.06 5.56 8.06 2.75 5 7.25 1 6 10 

4 2 4 3.50 6.00 8.50 3.5 6 8.5 2 2 5 

3 3 4 3.64 6.00 8.36 4.25 7 9.75 3 3 5 

2 4 4 3.33 5.33 7.33 5 8 11 4 4 5 

1 5 4 2.30 3.60 4.90 5.75 9 12.25 4 5 5 

            

5 2 3 3.75 6.25 8.75 3 5 7 2 6 9 

4 3 3 4.29 6.86 9.43 3.75 6 8.25 3 4 7 

3 4 3 4.50 7.00 9.50 4.5 7 9.5 3 4 4 

2 5 3 4.20 6.40 8.60 5.25 8 10.75 3 5 5 

1 6 3 3.00 4.50 6.00 6 9 12 3 6 6 

            

5 3 2 4.64 7.14 9.64 3.25 5 6.75 2 3 6 

4 4 2 5.33 8.00 10.67 4 6 8 2 4 5 

3 5 2 5.70 8.40 11.10 4.75 7 9.25 2 4 5 

2 6 2 5.50 8.00 10.50 5.5 8 10.5 2 4 6 

1 7 2 4.17 6.00 7.83 6.25 9 11.75 2 4 6 

            

5 4 1 5.83 8.33 10.83 3.5 5 6.5 1 2 3 

4 5 1 6.80 9.60 12.40 4.25 6 7.75 1 2 3 

3 6 1 7.50 10.50 13.50 5 7 9 1 2 3 

2 7 1 7.67 10.67 13.67 5.75 8 10.25 1 2 3 

1 8 1 6.50 9.00 11.50 6.5 9 11.5 1 2 3 
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5.5 Results and Discussion 

In general for all studied levels of WIP (as plotted in figure 5-1), the new rule shows the 

superior performance comparing with other two rules with one exception when α=0.75 with      

WIP =4. Nevertheless, the loss of efficiency is so small. 

The performance of WFB when α=0.5 is the same as in HFB. WFB turns to HFB when 

the fixed workload is balanced.  The efficiency of correspondent extreme cases have so close 

value to each other. The maximum difference is 0.36% for WIP=3. Meanwhile, the other rules 

SRNS and HFB are suffering a loss of efficiency about 2.1, 1 % respectively. 

For moderate fixed workload imbalance, WFB indicated the superior or same 

performance. However, this superiority is less than in the extreme cases. As we mentioned in 

the above paragraph, WFB is more robust against of the position of some task in the line. For 

instance, the performance of α=0.25 and α=0.75 under WIP=5 is the same while SRNS and 

HFB experience different efficiency according to the different α. SRNS presents a better 

performance than HFB when α=0.25 while it deteriorates and get inferior to HFB’s outcome 

when α=0.75 as an opposite configuration. 
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Figure 5-1 The performance of WFB, HFB and SRNS 
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Figure 5-2 plots the gain and loss of efficiency due to applying WFB comparing to HFB 

and SRNS. As mentioned before, the most of cases are above the bold line indicating to zero 

improvement rate. The pattern of improvement rate is too affected by asymmetry and sensitivity 

of others two rules to the task location. When their performance gets better, the rate shrinks.  

Taking WFB and SRNS, the contribution of WFB has a big variance as WIP changes 

when the fixed task of W2 is big. The gain due to WFB increases as WIP decreases.  Conversely, 

the line achieves less improvement when W1 holds big fixed task. Here, the gain due to WFB 

increases as the number of jobs increases. 

 

Figure 5-2 The improvement achieved by WFB comparing with HFB and SRNS 

 

For WFB and HFB, the improvement rates of different WIPs are close to each other 

especially when the fixed task of W2 is big. When the fixed task of W1 is big, HFB has a worse 

performance than WFB and the differences in the performance shrink as WIP increases.    
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5.6 Conclusion 

We investigated the performance of a rule which is a modified version of HFB. We call 

it WFB.  The adjustment is done by dividing the full buffer by the fixed workload ratio instead 

of by half to get the cutoff value. We chose HFB among other rules whose cutoff value is 

calculated by halving of an amount of workload which is different from one rule to another 

since it shows the best or similar performance.  

The new rule WFB presents the best performance comparing with HFB and SRNS in 

the most cases. However it indicate a weak performance with so tiny variance in scarce cases. 

In the light of these results, a rule considering the workload imbalance has a high potential to 

surpass the other rules for different workload configurations. 
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CHAPTER 6   

CONCLUSION 

 

Overview 

This chapter sums up the findings and the derived insights from the experiments and 

investigations done in this research. The directions of future work are also stated. 

 

6.1 General Summary 

This work aims a scarcely targeted area in the work sharing under DLB mechanism, 

which is the workload.  The workload in this research refers to the fixed workload since the 

shared work is managed by DLB. The shared work is managed dynamically based on the system 

status. On the other side, the fixed work is assigned at the line design stage, and this allocation 

continues working in this fixed structure. Therefore, investigating the effect of this factor can 

gives insights to the process designers to reduce any negative influence or boost any positive 

revenues on the performance. 

This dissertation started by exploring the relation between DLB and Cell Manufacturing. 

DLB has a resembling concept in Japanese production system. The most similar notion is an 

divisional cell with a helping zone. The helping zone corresponds to the shared task in DLB. 

Since the idea of having a buffer between stations has started to be acceptable in cell 

manufacturing, we studied the effect of buffer in the cell under DLB as a method to manage the 
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helping zone. The findings of study shows that the variability plays the most vital factor to 

define the importance of having a buffer. A line with low variable processing times does not 

need a buffer and the work sharing can offset the effect of variability. Conversely. Introducing 

the buffer shows a remarkable improvement if the processing time is highly varied or the worker 

are not sufficiently cross-trained. 

Several workload configurations are investigated. A measure of workload is made up to 

ease conducting the comparison between these configurations. The experiments have started by 

a so near optimal and easy to apply rule, SRNS (Smallest – R – No –Starvation). The 

performance of these configurations show a distinct pattern that is sensitive to the amount of 

available work in the line (WIP). The balanced case has the best performance, which is expected.  

For the other cases, with low WIP the big fixed task at the first station is more favorite while a 

small one is better when WIP is ample. In this sense, the ability of processing the job in a 

flexible order or breaking down the job to get a near balanced fixed workload is vital. 

 As any production line is prone to many distractions, our model was studied under 

several structural factors. Information accuracy, Granularity of shared task and variability are 

of the most important factors that have a notable influence on DLB performance. The 

information accuracy is an essential issue since the work sharing in DLB is managed based on 

the information about the system status. Two level of information accuracy have been tackled. 

Low information accuracy has a information about the available work in the a downstream 

buffer while high level needs additional information which is the amount of work at 

downstream station undone yet. We found that high level of information accuracy is not always 

good to the performance. The extreme cases of workload experience a better performance with 

the low level especially for low and high WIP. Besides, the case with a high level of information 
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accuracy does not indicate any advantage in case of exchanging the position of fixed tasks. 

For the granularity, two points were treated, the order of subtasks when the granular 

shared task has different sized subtasks, and the workload balance.  The first point shows an 

effect on the performance only when the shared task is large. In this case, processing the small 

subtask firstly gives a higher performance and the gain rises as WIP increases. The granularity 

affects the performance of workload in term of the value and pattern and its influence inflates 

as the size of shared task increases. The last factor is the variability. In this research, we took 

in account the variability of two types of task fixed and shared. Different combinations of 

variability were experimented. The findings indicate that the improvement efforts to reduce or 

eliminate the variability should focus on the shared task firstly to get a better performance. 

However, the effort should concentrate on the fixed task if it constitutes a big portion of job (i.e. 

bottleneck). 

After conducting this intensive examination about the workload and its interactions with 

other factors, we finished this research by considering the workload in the cutoff rule used in 

DLB. The focus was on the ones that use the available amount of workload to get the cutoff 

value R. The rules mentioned in DLB literature divide the available work by 2 to get R. We 

came up with the idea of weighting the control rule by the ratio of fixed workload. We chose 

HFB as the best rule among the other rules in its category. The comparison between the new 

rule WFB, HFB and SRNS illustrates that in general WFB surpasses the other rules’ 

performance. The improvement rate in some cases exceeds 2 % while for a very few cases the 

loss in performance is equal or less than 0.36%. 

The findings of this research can give practical useful insights to the process designers 

and the production managers (especially assembly lines) where sharing work is applied. They 
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aid them to find out the most efficient design by manipulating the elements of process 

considering the work environment limitations. Moreover, the outcomes support the 

improvement efforts by specifying the most important areas to focus on firstly to augment the 

performance.     

 

6.2 Limitations and Future Work 

This research is the preliminary stage of exploring the effect workload under DLB as a 

mechanism of work sharing. Therefore, the model was a bit basic. However, extending the 

derived insights to more complicated cases is still possible. For longer lines than the one used 

here, if WIP is small, a line with big workload existed upstream will give a better performance 

than the one with downstream big workload. Another example, the average long-term 

performance of a line with more than one product to produce closely follows the same pattern 

of the most frequent product.  

Nevertheless, further researches with more complicated model are important to reflect 

realistic situations. A line with more than one product and different bottleneck locations might 

be a interesting area to consider. The other directions of future work include representing the 

performance variances of workers when they process the shared task. The suggested rule is 

need a high level of information accuracy as in HFB, so finding a rule weighted by the workload 

ratio  with low level of information accuracy is an attractive area to explore.  

CONWIP (CONstatnt Work In Process) is used as a policy to control the number of jobs 

in the line. It is considered as a hyper policy (push-pull). Taking in account the pure push or 

pull system enriches the research in this area and gives important insights for such situations. 
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  The Simulation Model of SRNS Rule 
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The Simulation Model of HFB Rule 

 

 

 

 

 

 

 

 

 

 

 

 



103 
 

The Simulation Model of SRNS Rule with Granularity 
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The Simulation Model of HFB Rule with Variability 

 

 

 

 


