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Abstract

Sequence homology search is an approach for establishing structural and functional

similarity with existing genes or proteins using a variety of databases containing a

large number of DNA and protein sequences and the associated biological information.

Sequence homology search is used in metagenomics. However, because of improvements

in DNA sequencing technology, the volume of sequence data and the number of queries

used in this analysis have been increasing rapidly in recent years, and the speed of

sequence homology search has become insufficient.

In this dissertation, we propose fast protein sequence homology search algorithms

that can be applied to metagenomics using the latest DNA sequencing output. We used

three approaches: development of novel protein sequence homology search algorithms,

acceleration of protein sequence homology search with graphics processing unit (GPU),

and parallelization of protein sequence homology search using modern supercomputing

environments.

We propose a novel protein sequence homology search algorithm that finds simi-

larities between a query and database sequences based on the suffix arrays of these

sequences. We used a subsequence search method relying on a similarity-based opti-

mal length. This algorithm designated as GHOSTX provides approximately 165 times

faster protein sequence homology search than BLASTX in the analysis of metagenomic

data. In addition, we propose a novel protein sequence homology search method based

on database subsequence clustering, designated as GHOSTZ. This method clusters

similar subsequences retrieved from a database to reduce alignment candidates based

on triangle inequality, and its performance in the analysis of metagenomic data is

approximately two times faster than that of GHOSTX.

In addition, we applied the GPUs and massively parallel computing systems, TSUB-

AME and the K computer, for protein sequence homology search and show that these

approaches provide a significant acceleration of protein sequence homology search.

DNA sequencing technology is constantly improving, resulting in generation of vast

amounts of sequence data. This explosion of sequence volume makes computational

analysis with contemporary tools more difficult. Here, we offer the algorithms, which

may provide a potential solution to this problem.
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Chapter 1

Introduction

Sequence homology search widely used in biological analyses, is an approach to

establishing structural and functional similarity with existing genes or proteins using

a variety of databases containing a large number of DNA and protein sequences and

the associated biological information. This method is related to string search, which

is an important problem in computer science.

1.1 String Search

String search identifies positions where one or several patterns are found within a

text. Let Σ be an alphabet of size |Σ|, P be a pattern and T be a text. P and T

are sequences of characters over Σ. The lengths of P and T are |P | and |T |, respec-
tively. A brute-force string search algorithm checks all positions of P within T . This

algorithm requires O(|P ||T |) time. In practice, the positions of substrings similar to P

within T are also required. This problem known as approximate string search is more

complicated compared to string search because of mismatches or gaps. Approximate

string search often uses edit distance [26] to measure similarity between P and a sub-

string in T . Edit distance allows deleting, inserting, and replacing a character in both

strings. The classical solution uses dynamic programming [44]. It requires O(|T ||P |)
time. These string searches require long computation time, if large amount of string

data is used. To accelerate string search, a number of algorithms with data structured

as indexes such as a hash table and a suffix array are proposed [21, 36, 39]. For exam-

ple, the Rabin-Karp algorithm [21] uses hashing to find P within T with an average

computational time of O(|P |+|T |). String search, including approximate string search,

is useful in many applications such as spelling error correction [56], image compression

1
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[34], and data mining [9].

1.2 String Search in Bioinformatics

String search, including approximate string search, is widely employed in biological

analyses. DNA and protein molecules represent specific sequences of nucleotides and

amino acids, respectively, and, therefore, can be expressed as strings of nucleotides

and amino acids denoted as alphabet characters. DNA and protein sequences are

composed of sets of 4 and 20 letters, respectively, and thus, can be easily analyzed by

computational methods.

One of the methods used for approximate string search in biological analyses is

sequence homology search, often employed for identifying evolutionary relationships

among species. If two species have similar sequences, they may have a common an-

cestor, and these sequences are called homologous. Sequence homology search can be

also used for estimating potential functions and structures of unknown biomolecules,

because DNA and proteins of similar sequences often demonstrate similar structures

and biological functions. Approximate string search in sequence homology analysis is

based on sequence similarity to relate with evolutionary distance instead of edit dis-

tance. This similarity is often defined as the score of sequence alignment calculated

with a more complex scoring scheme than edit distance. A match, mismatch, and gap

penalty in edit distance are 0, 1, and 1, respectively. For DNA sequence, a match is

given a positive score and a mismatch is penalized by a negative score, whereas, gap

penalty varies depending on gap length. For protein sequence, a match and mismatch

are defined for each character pairs. BLOSUM62 [18] is the matrix defining match

scores and mismatch penalties for character pairs. One of the characteristics in the

score matrix for protein sequence is a mismatch score, which is usually negative in ap-

proximate string search. However, in this score matrix, the score for a pair of different

characters may be positive when the corresponding amino acids have similar proper-

ties. For example, the score for isoleucine (I) and leucine (L) is 2 in this score matrix.

The differences in the scoring system prevent using an effective pruning approach for

edit distance. A sequence homology search tool based on dynamic programming [41]

can find the closest sequence similarity to a query in a database; however, it requires

considerable computation time. Therefore, BLAST [4, 5], which is based on a heuristic

algorithm, is often used in biological analyses.

Another method employing approximate string search in biological analyses is map-

ping, which determines the location of each short DNA fragment in a genome. In shot-
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gun sequencing, DNA molecules are randomly broken into numerous small segments,

and DNA sequencers generate information in the form of short fragments (reads) rang-

ing from 100 to 1,000 base pairs (bp). Thus, to utilize known biological information,

even when a reference genome is available, it is necessary to determine the location of

each read in a genome. Many effective mapping programs, such as BWA [27, 28] and

Bowtie [24, 25], have been developed for this purpose. Mapping uses the same sequence

similarity approach as DNA sequence homology search; however, a read should be quite

similar to the subsequence in a reference genome. This assumption of the similarity

between a read and reference genome is used by a number of heuristic approaches in-

corporated into current mapping tools, which are estimated to be over 10,000 times

faster than BLAST.

1.3 Current Explosion of Biological Sequence Data

The computation time of sequence homology search depends largely on the sizes

of a query and database, which have been rapidly increasing in recent years because

of the progress in DNA sequencing technology. These advancements have also re-

duced the cost of DNA sequencing. The cost of sequencing a genome equal by size

to the human genome is shown in Fig. 1.1. The reduction in DNA sequencing cost

is outpacing Moore’s Law beginning January 2008; currently, DNA sequencing cost is

approximately 24 times less than it was 5 years ago, which for a human-size genome

would be 4,905 dollars. While DNA sequencing costs are decreasing, the data available

for biological analyses are constantly increasing. DNA sequencing based on the latest

technology is called next generation sequencing (NGS). One of NGS instruments, Illu-

mina HiSeq2500, can produce approximately 1 terabase (Tb) sequence data in a single

run.

Similarly, the computation time for mapping also depends on the size of a query and

reference genome and is increasing along with the progress in sequencing technology.

However, current mapping tools can use effective heuristic approaches, and, therefore,

can perform fast mapping. On the other hand, sequence homology search cannot use

heuristic approaches for requiring more search sensitivity; thus, the analysis based on

sequence homology search such as metagenomics still takes long computation time.
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Figure 1.1: Cost per genome [1]. (Courtesy: National Human Genome Research Insti-
tute)
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1.4 Metagenomic Analysis

Metagenomics, which is the study of the genomes of uncultured microbes obtained

directly from microbial communities in their natural habitats, has recently become

more popular because of the rapid improvement of DNA sequencing technologies. Mi-

crobes live in every environment, including soil, ocean, and human body, and their

community structure is defined by environmental conditions, while they, in turn, affect

biological characteristics of their habitat. It is, therefore, very important to understand

structure-functional relationship between microbial populations and their environment.

Conventional genomic analysis is usually performed for a single microorganism, which

should first be cloned and obtained as a pure culture. However, such an approach can-

not be applied to a wide variety of microorganisms existing in nature and thus, fails to

represent the true status of microbial population structure and biological interactions

within microbial community. Metagenomics based on DNA sequences directly obtained

from mixed microbial populations in their natural habitats provides a more comprehen-

sive approach to the problem. In metagenomic analysis, environmental samples usually

contain DNA sequences from many different species, whereas the reference database

often does not contain closely related genomes. Thus, more sensitive approaches than

mapping are required. In a typical metagenomic analysis, reads are translated into

protein sequences and assigned to protein families by running protein sequence homol-

ogy searches against publicly available databases such as KEGG [20, 19], COG [50, 51],

and Pfam [12]. The BLASTX program, which is one of implementations of the BLAST

algorithm, is widely used for such binning and classification searches. To identify ho-

mologues that may not have high DNA sequence identities, BLASTX translates query

DNA sequences into protein sequences, and then performs protein sequence homology

search against a protein sequence database, because protein sequences are often more

similar than the original DNA sequences [53, 23]. When a DNA sequence is translated

in BLASTX, each codon is converted into a corresponding amino acid using three pos-

sible reading frames in a single DNA strand, and a double-stranded DNA molecule is

thus translated into six protein sequences.

However, the search speed provided by BLASTX has become insufficient for the

analysis of currently available large sequence data. If we perform BLASTX with the

data produced by Hiseq2500 and stored in the KEGG GENES database on 1 CPU

core in metagenomic analysis, it is estimated to require 1 million CPU days. Sev-

eral currently available sequence homology search tools are faster than BLASTX. For

example, BLAT [22] is approximately 50 times faster than BLASTX in protein se-
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quence homology search; however, the search sensitivity of BLAT is much lower than

that of BLASTX and is often insufficient for metagenomic analysis. Recently, novel

protein sequence homology search tools such as RAPSearch [58] have been developed.

RAPSearch has a sufficient sensitivity for metagenomics and provides faster homology

search than BLASTX or BLAT, because it uses a reduced amino acid alphabet [38]

and a suffix array [36]. In addition, RAPSearch2 has been improved to use hash tables

instead of suffix arrays, which makes it more memory-efficient [59].

However, several large metagenome projects such as the Human Microbiome Project

(HMP) [52], the Metagenomics of the Human Intestinal Tract (MetaHIT) [43], and the

Earth Microbiome Project [16] have recently produced unprecedentedly large amounts

of sequence information. For instance, HMP has sequenced 681 whole human metagenome

shotgun samples. In addition, the number of reference sequences in the databases

would continue to grow in parallel with further progress in sequencing technologies.

For example, the size of the National Center for Biotechnology Information (NCBI)

non-redundant protein database (nr) [7] have increased from approximately 4.1 billion

amino acids in 2010 to approximately 16.7 billion amino acids in 2014. Therefore, the

speed of homology searches needs to be increased to facilitate metagenomic analysis.

1.5 Purpose of Study

In the present study, we describe the development of protein sequence homology

search algorithms that can be applied to metagenomic analysis with NGS output.

Fig. 1.2 shows our approaches to improve protein sequence homology search. For

the increase of analyzed sequence data, we developed and implemented fast protein

sequence homology search algorithms. In addition, we accelerated protein sequence

homology search with the graphics processing unit (GPU) and parallelized the search

using modern supercomputing environments.

1.6 Summary of Contributions

The contributions of this thesis are classified into three categories: (i) development

of novel protein sequence homology search algorithms, (ii) acceleration of protein se-

quence homology search with the GPU, and (iii) parallelization of protein sequence

homology search using modern supercomputing environments. We now describe these

contributions in more detail.
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Figure 1.2: Relationship among approaches to improve protein sequence homology
search.

(i) Development of novel protein sequence homology search algorithms

(1) We propose a protein sequence homology search algorithm that finds sim-

ilarities between query and database sequences based on suffix arrays of

these sequences. We used a seed search method relying on a similarity-

based optimal length. In the algorithm, only seeds with a sufficient match

score are searched based on a given score matrix. Thus, the algorithm can

effectively exclude seeds with sufficient length but insufficient similarity. We

designated it as GHOSTX. When we evaluated GHOSTX performance with

metagenomic data,GHOSTX demonstrated an approximately 131–

165 times faster search than BLASTX.

(2) We propose a protein sequence homology search method based on database

subsequence clustering, and designated it as GHOSTZ. This method clus-

ters similar subsequences retrieved from a database to reduce alignment

candidates based on triangle inequality. This database subsequence cluster-

ing method provides an approximately two-fold increase in speed without a

significant decrease in search sensitivity. When we evaluated GHOSTZ per-

formance with metagenomic data, it was approximately 213–285 times

faster than BLASTX.
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(ii) Acceleration of protein sequence homology search with GPU

(1) We have developed a protein sequence homology search algorithm suitable

for GPU calculations. We implemented it as a GPU system, and desig-

nated it as GHOSTM. GHOSTM first searches for positions of sequence

alignment candidates retrieved from a database using a hash table and then

calculates the scores of local alignments around the candidate positions be-

fore calculating similarity. The system with 1 and 4 GPUs achieved

calculation speed that was approximately 130 and 407 times, re-

spectively, higher than BLASTX with 1 CPU core. The system with

1 and 4 GPUs also showed higher search sensitivity and performed calcula-

tions approximately 4 and 15 times, respectively, faster than BLAT with 1

CPU core.

(2) We have developed a GPU version of GHOSTZ. Several calculations such

as distance calculation, ungapped extension, and gapped extension are the

bottlenecks in GHOSTZ. We mapped these processes to the GPU and desig-

nated the version as GHOSTZ-GPU. In this version, we optimized memory

access in GPU calculation. In addition, GHOSTZ-GPU uses CPU-GPU

heterogeneous computing to improve utilization efficiency of the CPU and

GPU. When we used metagenomic data, GHOSTZ-GPU with 12 CPU

cores and 3 GPUs was approximately 5.1–7.1 times faster than

GHOSTZ with 12 CPU cores.

(iii) Parallelization of protein sequence homology search in modern super-

computing environments

(1) We have developed a large-scale system for analyzing vast amounts of metage-

nomic data obtained by NGS. This system enables us to analyze NGS-

generated metagenomic data in real time by utilizing huge computational re-

sources provided by TSUBAME 2.0. We used GHOSTM to analyze metage-

nomic data in this system, and show that the system could process

about 60 million reads per hour with 2,520 GPUs (840 computing

nodes).

(2) We have developed a method for parallel protein sequence homology search

on massively parallel computing systems. This method provides fast protein

sequence homology search with database indexes and hierarchical parallel

search and allows large-scale metagenomic analysis. Its parallel efficiency
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and search speed were evaluated using two massively parallel computing

systems, TSUBAME 2.5 and the K computer. The method could pro-

cess over 10,000 CPU cores approximately 89 times faster than

mpiBLAST, a tool to perform BLAST in a parallel computing system.

1.7 Thesis Organization

The remaining chapters of this thesis are organized as follows: Chapter 2 reviews

studies on sequence homology search focusing mainly on protein sequences. Chapter

3 describes a novel protein sequence homology search algorithm GHOSTX that finds

subsequence similarity between query and database sequences based on suffix arrays.

Chapter 4 presents a novel protein sequence homology search method GHOSTZ based

on database subsequence clustering. Chapters 5 and 6 discuss GPU implementations

and execution results using the GPUs. Chapter 7 discusses the application of the

novel protein sequence homology search algorithm to massively parallel computing

systems and the execution results in supercomputing environments. Conclusions are

presented in Chapter 8 together with future work. In addition, Appendix A describes

the comparison of search sensitivity with score based on E-value.

This thesis is based on the following publications by the author: [47, 46, 48, 49].





Chapter 2

Sequence Homology Search

2.1 Introduction

Sequence homology search is a method of searching sequence databases by using

alignment to a query sequence. The analysis of sequence similarity is essential for

identifying evolutionary relationships among species; it can also be used for estimating

potential structures and functions of biomolecules. In biological analyses, the high-

est score of sequence similarity between a query and database sequences obtained by

sequence alignment is generally used.

2.2 Sequence Alignment

Sequence alignment is an arrangement of DNA or protein sequences inclusive of gaps.

The score of an alignment is calculated based on a scoring scheme consisting of scores

for each substitution pattern and gap penalty. For DNA sequences, an exact match

gives a positive score and a mismatch is penalized by a negative score. For protein

sequences, substitution score matrices such as PAM [10] or BLOSUM [18] are often

employed. Substitution scores in these matrices are defined for each character (amino

acid) pair. Several amino acids have similar physicochemical properties and are often

evolutionary conserved. Thus, substitution scores for such pairs are higher than for the

other pairs. For example, isoleucine (I) and leucine (L) have similar physicochemical

properties and the substitution score for this pair is 2 in BLOSUM62, while substitution

scores for most pairs are negative. (Fig. 2.1). The alignment with the highest score is

called optimal sequence alignment.

Alignment methods are classified into two categories, global alignment and local

11
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A R N D C Q E G H I L K M F P S T W Y V
A 4 −1 −2 −2 0 −1 −1 0 −2 −1 −1 −1 −1 −2 −1 1 0 −3 −2 0
R −1 5 0 −2 −3 1 0 −2 0 −3 −2 2 −1 −3 −2 −1 −1 −3 −2 −3
N −2 0 6 1 −3 0 0 0 1 −3 −3 0 −2 −3 −2 1 0 −4 −2 −3
D −2 −2 1 6 −3 0 2 −1 −1 −3 −4 −1 −3 −3 −1 0 −1 −4 −3 −3
C 0 −3 −3 −3 9 −3 −4 −3 −3 −1 −1 −3 −1 −2 −3 −1 −1 −2 −2 −1
Q −1 1 0 0 −3 5 2 −2 0 −3 −2 1 0 −3 −1 0 −1 −2 −1 −2
E −1 0 0 2 −4 2 5 −2 0 −3 −3 1 −2 −3 −1 0 −1 −3 −2 −2
G 0 −2 0 −1 −3 −2 −2 6 −2 −4 −4 −2 −3 −3 −2 0 −2 −2 −3 −3
H −2 0 1 −1 −3 0 0 −2 8 −3 −3 −1 −2 −1 −2 −1 −2 −2 2 −3
I −1 −3 −3 −3 −1 −3 −3 −4 −3 4 2 −3 1 0 −3 −2 −1 −3 −1 3
L −1 −2 −3 −4 −1 −2 −3 −4 −3 2 4 −2 2 0 −3 −2 −1 −2 −1 1
K −1 2 0 −1 −3 1 1 −2 −1 −3 −2 5 −1 −3 −1 0 −1 −3 −2 −2
M −1 −1 −2 −3 −1 0 −2 −3 −2 1 2 −1 5 0 −2 −1 −1 −1 −1 1
F −2 −3 −3 −3 −2 −3 −3 −3 −1 0 0 −3 0 6 −4 −2 −2 1 3 −1
P −1 −2 −2 −1 −3 −1 −1 −2 −2 −3 −3 −1 −2 −4 7 −1 −1 −4 −3 −2
S 1 −1 1 0 −1 0 0 0 −1 −2 −2 0 −1 −2 −1 4 1 −3 −2 −2
T 0 −1 0 −1 −1 −1 −1 −2 −2 −1 −1 −1 −1 −2 −1 1 5 −2 −2 0
W −3 −3 −4 −4 −2 −2 −3 −2 −2 −3 −2 −3 −1 1 −4 −3 −2 11 2 −3
Y −2 −2 −2 −3 −2 −1 −2 −3 2 −1 −1 −2 −1 3 −3 −2 −2 2 7 −1
V 0 −3 −3 −3 −1 −2 −2 −3 −3 3 1 −2 1 −1 −2 −2 0 −3 −1 4

Figure 2.1: BLOSUM62

alignment.

2.2.1 Global Alignment

In global alignment, every character in a given sequence is aligned. Global alignment

is computed by using similarity to relate to evolutionary distance; it is most useful

when sequences are similar and of roughly equal size. Global alignment is calculated

by Needleman-Wunsch algorithm [40]. The example of global alignment is shown in

Fig. 2.2.

2.2.2 Local Alignment

Local alignment aligns similar regions within sequences. This alignment is used

when sequences are generally dissimilar but contain similar regions or motifs. Local

alignment is calculated by the Smith-Waterman algorithm [45] or Gotoh algorithm

[17]. The example of local alignment is shown in Fig. 2.3. The alignment is only

performed for central regions that are similar in these sequences. Local alignment used

to identify similar regions or sequence motifs related to potential functional, structural,
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Figure 2.2: The example of global alignment. When we used BLOSUM62 and −12 as
gap penalty, the score of this global alignment is 31.

Figure 2.3: The example of local alignment. When we used BLOSUM62 and −12 as
gap penalty, the score of this local alignment is 33.

and evolutionary similarity, is performed by a number of sequence homology search

tools such as BLAST, BLAT, and RAPSearch.

2.3 Dynamic Programing for Sequence Alignment

The Needleman-Wunsch algorithm, Smith-Waterman algorithm, and Gotoh algo-

rithm are based on dynamic programming to calculate optimal sequence alignment.

However, when sequences are long, these algorithms take significant computation time.

Let M be the length of one sequence and N the length of the other sequence. The

computation time of these algorithms is O(MN).
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2.3.1 Smith-Waterman Algorithm

The Smith-Waterman algorithm [45] is used for local alignment. Let A and B be

two sequences. A and B are given below.

A = a1a2...aM (2.1)

B = b1b2...bN (2.2)

Let S[i, j] be the score of the highest scoring local path ending at [i, j] between

A[1, i] and B[1, j]. Let s(ai, bj) be the substitution score, when ai changes to bi. This

algorithm applies linear gap penalty, which is gl, where g is the penalty of a gap and l is

gap length. By definition, we have S[0, 0] = 0, S[i, 0] = 0, and S[0, j] = 0. With these

initializations, S[i, j] for i ∈ 1, 2, ...,M and j ∈ 1, 2, ..., N can be computed following

recurrence.

S[i, j] = max


0

S[i− 1, j]− g

S[i, j − 1]− g

S[i− 1, j − 1] + s(ai, bj)

(2.3)

The largest value of S[i, j] is the score of the optimal alignment between A and

B. If the optimal alignment is also needed, the path for the alignment is computed

by a traceback algorithm that recovers this alignment using S. An example of S for

sequences in Fig. 2.3 is shown in Fig. 2.4.

2.3.2 Gotoh Algorithm

For aligning biological sequences, affine gap penalties are considered more appropri-

ate than linear gap penalties discussed in Section 2.3.1. An affine gap penalty is defined

as o+ el, where o is the penalty of gap opening, e is the penalty of gap extensions, and

l is the length of the gap. This gap penalty is most widely used in biological analyses.

The Gotoh algorithm [17] was proposed to apply affine gap penalties in computing

local alignment. The Gotoh algorithm used two more matrices, I and D, to distin-

guish gap extensions from gap openings. I[i, j] is the score of the optimal alignment

between A[1, i] and B[1, j] ending with an insertion. D[i, j] is the score of the optimal

alignment between A[1, i] and B[1, j] ending with a deletion. Let S[i, j] be the score of

the optimal alignment between A[1, i] and B[1, j]. By definition, we have S[0, 0] = 0,



2. Sequence Homology Search 15

Figure 2.4: An example of S in the Smith-Waterman algorithm when we used BLO-
SUM62 and g = −12. Red arrows show the path of the optimal alignment.
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S[i, 0] = 0, S[0, j] = 0, I[0, j] = −∞, and D[i, 0] = −∞. With these initializations,

I[i, j], D[i, j] and S[i, j] for i ∈ 1, 2, ...,M and j ∈ 1, 2, ..., N can be computed following

recurrence.

I[i, j] = max

I[i, j − 1]− e

S[i, j − 1]− o− e
(2.4)

D[i, j] = max

D[i− 1, j]− e

S[i− 1, j]− o− e
(2.5)

S[i, j] = max


0

I[i, j]

D[i, j]

S[i− 1, j − 1] + s(ai, bj)

(2.6)

The largest value of S[i, j] is the score of the optimal alignment between A and B.

If the optimal alignment is also needed, the path for the alignment is computed by

a traceback algorithm that recovers this alignment using S in the same way as the

Smith-Waterman algorithm.

2.3.3 SSEARCH

SSEARCH [41] is a sequence homology search tool based on the Smith-Waterman

and Gotoh algorithms. Therefore, sequences with the highest similarity to a query

sequence can be always found in databases using SSEARCH. However, most of current

biological analyses that use protein sequence homology search need to utilize large

sequence databases and high number of queries. Therefore, this tool does not meet

current demands.

2.4 Seed-and-Extend Strategy

The seed-and-extend strategy provides a fast method to perform sequence homology

search and is, therefore, frequently employed in current sequence homology search

tools [4, 5, 22, 35, 58, 59]. The Smith-Waterman algorithm and Gotoh algorithm need

long computation time, especially when large sequence data are used. To solve this

problem, the seed-and-extend strategy applies heuristics; therefore, sequence alignment
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computed by this algorithm may not be optimal, but is sufficiently accurate.

The strategy consists of two main steps: seed search and extension. In seed search,

subsequences from query and database sequences are constructed, and pairs of exactly

matched or similar subsequences between a query and database are searched. These

pairs of subsequences are called seeds. In extension, sequence alignment is performed

for the areas flanking the seeds and their alignment scores are calculated.

The seed-and-extend strategy is faster than the Smith-Waterman and Gotoh algo-

rithms, because it uses only the regions around seeds instead of entire sequence. Seed

search finds similar regions within query and database sequences by searching short

subsequences. Because sequences with similar regions often display structural and func-

tional homology, these regions are often matched in optimal alignments. Therefore, the

seed-and-extend strategy reports the alignment quite similar to an optimal alignment.

2.4.1 BLAST

The BLAST algorithm was proposed at 1990 by Altschul et al. [4]. Currently,

BLAST, which employs the seed-and-extend strategy, is widely used in various bio-

logical fields [53, 23, 13, 42, 11]. Two versions of the BLAST algorithm have been

proposed. In the first version, which computes local alignment without gaps [4], seed

search identifies exact or similar subsequence pairs as seeds in both query and database

sequences. A subsequence has a fixed length and is called “word” in the BLAST algo-

rithm. Words are searched by the Aho-Corasick algorithm [3] within BLAST, which

finds strings in a text by using a deterministic finite automaton (DFA). BLAST con-

structs a DFA from query sequences. By the Aho-Corasick algorithm, words can be

found in O(|Q| + |DB| + z), where |Q| is query length, |DB| is database sequence

length and z is the number of word occurrences. For DNA sequences, an exact match

between words is used. For protein sequences, BLAST employs neighborhood words,

which are subsequences similar to each word [4]. A vast variety of neighborhood words

are used in seed search to increase search sensitivity.

The extension which calculates the alignment without gaps is called ungapped ex-

tension. The calculation of ungapped extension is faster than that of gapped extention,

because ungapped extension does not consider insertions and deletions. However, it

is still a more extensive computation process compared with the other processes and

needs to be accelerated. For this, the X-dropoff has been introduced [4]. Ungapped

extension process is terminated, when the score of the current state is dropped more

than the X-dropoff value below the current maximum score.
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The first version of BLAST [4] was fast, but many analyses require considering gaps.

Therefore, the second version of BLAST (also called Gapped BLAST) [5] that could

compute local alignment with gaps has been developed. The second version uses the

two-hit search method to reduce useless seeds in protein sequence homology search. In

two similar protein sequences, there are a significant number of seeds within a relatively

short distance on the same diagonal. When matches repeat in the alignment, the seeds

are on the same diagonal, as shown in Fig. 2.4. Therefore, this BLAST version takes

the seeds into the next step when two non-overlapping seeds occur within a given

distance from each other on the same diagonal (Fig. 2.5). In the figure, no seeds are

on the diagonal with Seed0; therefore, this seed is not taken to the next step. On the

other hand, Seed1 and Seed2 are on the same diagonal and the distance between them

is short enough; therefore, they are merged into one and taken to the next step.

Gapped extension takes considerable computation time, which can be decreased by

reducing the number of seeds produced by seed search. However, it causes a loss of

a significant number of seeds, which can result in lower sensitivity. Therefore, this

BLAST version performs ungapped extension with the X-dropoff. If the ungapped

extension score of a seed excesses a threshold, the seed is extended with gaps. To

accelerate gapped extension, X-dropoff is also used in this version of BLAST. Gapped

extension is terminated when the score of the current state is dropped more than

the X-dropoff value below the found maximum score. Fig. 2.6 shows an example of

gapped extension with X-dropoff. Green regions correspond to the cells with the score

calculated in gapped extension with X-dropoff. Both Smith-Waterman and Gotoh

algorithms require scores of the entire region to be calculated. However, with the

introduction of X-dropoff, the regions requiring score calculation become smaller.

As the heuristic approach, BLAST is faster than SSEARCH and has high search

sensitivity. However, BLAST search speed has become increasingly insufficient for

current biological analyses of sequence homology searches based on large sequence data.

Therefore, novel sequence homology search algorithms, such as BLAT and RAPSearch,

have been proposed.

2.4.2 BLAT

The BLAT algorithm was proposed at 2002 by Kent [22] to solve the problem of

search speed encountered by using BLAST. As a result, BLAT is approximately 50

times faster than BLAST in protein sequence homology search [22]. BLAT also applies

the seed-and-extend strategy, but builds a hash table of a database and stores in mem-
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Figure 2.5: Explanation of two hits method.
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Figure 2.6: Example of gapped extension with the X dropoff.
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ory. The table consists of non-overlapping fixed-length subsequences with correspond-

ing positions in the database, thus reducing memory size and accelerating sequence

homology search; it requires a few GB of RAM and is affordable for many users. How-

ever, the sensitivity of BLAT search is much lower compared to that of BLAST and is

insufficient for several analyses, including metagenomics.

2.4.3 RAPSearch

RAPSearch [58] first proposed in 2011 [58], is one of the state-of-the-art protein

sequence homology search tools for metagenomic analysis, which performs faster and

more sensitive homology search than BLAT. RAPSearch also applies seed-and-extend

strategy, and uses a reduced amino acid alphabet [38] and a suffix array [36] in seed

search. In addition, the second version of RAPSearch has been improved to use hash

tables instead of suffix arrays, making it more memory-efficient [59]. RAPSearch is

approximately 20–90 times faster than BLAST, and has higher search sensitivity than

BLAT. However, RAPSearch utilizes the frequencies of database subsequences in seed

search, which may change the results when sequences are added to the database. Con-

sidering continuous increase in analyzed sequence data due to the advancements in

sequencing technologies, a faster protein sequence homology search tool is still required.





Chapter 3

A Protein Sequence Homology

Search Algorithm Using a Query

Suffix Array and a Database Suffix

Array

3.1 Introduction

In this study, we developed a fast protein sequence homology search algorithm using

suffix arrays [36] of both queries and database sequences for its seed search process.

We used a seed search method relying on a similarity-based optimal length. In the

algorithm, only seeds with a sufficient match score are searched, based on a given score

matrix. Thus, the algorithm can effectively exclude seeds with sufficient length but

insufficient similarity. We designated this algorithm as GHOSTX.

3.2 Methods

3.2.1 Overview of GHOSTX Algorithm

GHOSTX adopts the seed-and-extend strategy used in BLAST. GHOSTX consists

of three main steps: a seed search, an ungapped extension, and a gapped extension.

The flow of GHOSTX is shown in Fig. 3.1. Initially, GHOSTX finds seeds that are

subsequences of database sequences similar to the subsequences of a query sequence.

Next, GHOSTX makes alignments by extending those seeds without gaps, and then

23
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Seed search

Query

Suffix array

Construction of suffix array

Database

Suffix array

Construction of suffix array

Ungapped extension

Gapped extension

Trace back

Figure 3.1: The flow of GHOSTX.

similar, nearby seeds are brought together by a chain filter. Finally, GHOSTX makes

alignments from seeds with gaps. In BLAST, the gapped extension step requires heavy

calculation, but BLAST efficiently decreases the number of gapped extension candi-

dates through its seed search and ungapped extension steps. As a result, the seed

search and the ungapped extension steps are the most computationally intensive parts

of BLAST. The seed search and the ungapped extension steps consume approximately

75% of the computation time of BLAST, while approximately 20% of the time is spent

on the gapped extension [54]. Thus, reducing the computation time for the seed search

and ungapped extension steps is effective for achieving acceleration. To accelerate the

search seed step, GHOSTX uses suffix arrays for both the query sequences and the

database sequences.

Our seed search method using a suffix array effectively reduces the computation time

of the seed search step. As a result, the ungapped extension step then becomes the

bottleneck. Thus, for further acceleration, we have to decrease the number of ungapped
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extensions. It would be easy to decrease the number of ungapped extension candidates

by using longer seeds. However, if this is done, significant matches can be missed, and

search sensitivity becomes lower. Consequentially, a sophisticated method is required

for accelerating search speed, while still maintaining search sensitivity. Therefore,

GHOSTX does not fix the length of a seed in the seed search step, but rather it

extends the length until the matching score exceeds a given threshold. In comparison,

BLAST searches with seeds of fixed lengths, and if one seed is discovered near another,

BLAST performs ungapped extensions around it. BLAST seed hits with low matching

scores using fixed length seeds, such as an exact match of “AAA”, whose score is only

12 based on the BLOSUM62 score matrix, are treated equally with seed hits with high

matching scores, such as an exact match of “WWW”, whose score is 33. However,

hits with lower scores tend to be false. Consequently, GHOSTX extends such seeds

to check whether they are reliable, thus GHOSTX can use a higher score threshold

than BLAST, without losing its search sensitivity. As a result, GHOSTX can reduce

the number of ungapped extensions and gapped extensions needed, thereby reducing

computation time after the initial seed search step.

3.2.2 Suffix Array

A suffix array is the list of indexes of all suffixes of a string in a lexicographically

sorted order. A text T [0, n] = t0...tn−1 is a sequence of symbols and the length of T is

|T | = n. Each symbol is an element of an alphabet Σ (|Σ| of protein is 20). T [i] = ti

and T [i, i + j] = ti...ti+j−1 are subsequences. The suffix array of T is SAT , that is an

array of pointers to all the suffixes of T in lexicographical order. Therefore, if i < j,

then T [SAT [i], n] < T [SAT [j], n]. A suffix array can be constructed in linear time. An

exact search based on a binary search for pattern, whose length is m, can be performed

as O(m log(n)) with the suffix array of T .

3.2.3 Seed Search

For two suffix arrays, we can find all the local matches using dynamic programming

[15]. However, calculating all alignments using dynamic programming requires a huge

amount of computation time. In GHOSTX, therefore, we introduce two methods to

prune the search space.

Here, the sequences DB0, DB1, ..., DBN−1 in a database are connected with inserting

delimiters to transform them into a long single sequenceDB = #DB0#DB1#...DBN−1

(marked by the special symbol #). SADB is the suffix array of DB, and SAQ is the
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sequence of query Q. The pair of subsequences DB and Q, {DB[i, i + l], Q[j, j + l]}
is the seed. Here, we want to find a seed whose score is more than the threshold Tseed

based on these two suffix arrays. Fig. 3.2 shows the pseudo-code of the seed search

method, and Fig. 3.3 shows a pseudo-code for the search method of one character

using a suffix array. In Fig. 3.2, spQ, epQ, spDB and epDB are positions on SAQ and

SADB, and GHOSTX gets the positions of subsequences from suffix arrays by using

these positions. If the score of a pair of subsequences {XDB, XQ} exceeds threshold

Tseed, GHOSTX keeps the pair as a seed (line 22 in Fig. 3.2); otherwise, GHOSTX

checks all pairs of extended subsequences {XDBc
′, XQc} (c, c′ ∈ Σ) (line 25 in Fig.

3.2). Thus, the maximum number of new pairs of subsequences is |Σ|2. Using the

suffix arrays of a query and a database, GHOSTX can find a subsequence efficiently.

Fig. 3.4 shows the example for the seed search. If {A, A} is found, GHOSTX searches

the query sequence and the sequences in a database for extended subsequences AA,

AR, ..., AV. And then, GHOSTX checks all pairs of extended subsequences that are

found {AA, AA}, {AA, AR},..., {AV, AV}. GHOSTX repeats this step. However, the

search takes a long time if the max seed length lengthmax is large, because the size of

the seed search space is O(|Σ|2lengthmax). Thus, the search space must be pruned.

GHOSTX uses two methods to prune the search space (line 24 in Fig. 3.2). First, let

scoremax be the sum of the exact match score of all query subsequence characters (line

16 in Fig. 3.2), score be the score of the pair of the query and database subsequence

(line 20 in Fig. 3.2), and D be the upper limit of scoremax − score. If score ≤
scoremax − D, GHOSTX does not extend the subsequence in the pair. For example,

if GHOSTX checks {AA, AR} and uses BLOSUM62 score matrix, scoremax of this

pair is 4 + 5 = 9 and score of this pair is 4 − 1 = 3. If D = 4, GHOSTX does not

extend the subsequences in this pair. Second, if the score of a subsequence pair is not

more than 0, GHOSTX does not extend it. If x < y < z, the score of the subsequence

pair {DB[i, i + y], Q[j, j + y]} is less than 0, and the score of the subsequence pair

{DB[i, i + z], Q[j, j + z]} exceeds the threshold Tseed, then GHOSTX finds another

pair {DB[i+ x, i+ z], Q[j+ x, j + z]} whose score exceeds Tseed. Therefore, GHOSTX

examines only those pairs with scores greater than 0. For example, if GHOSTX checks

{A, R} and uses the BLOSUM62 score matrix, the score of this pair is −1. Therefore,
GHOSTX does not extend the subsequences in this pair. Consequently, GHOSTX can

find long seeds quickly using these pruning methods. In addition, GHOSTX uses a

depth-first search for the implementation of this algorithm to save memory. With a

breadth-first search, the depth of the recursion in a seed search is proportional to the

exponential of lengthmax, and thus it is difficult to check all pairs of subsequences.
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SeedSearchCore(Q,SAQ, DB, SADB, spQ, epQ, spDB, epDB, scoremax, score, length)

1: if length < lengthmax then
2: Let resultQ be the array whose length is |Σ|.
3: Let resultDB be the array whose length is |Σ|.
4: Let S be the score matrix.
5: for all c ∈ Σ do
6: sp, ep⇐ SASearchNextCharacter(Q,SAQ, spQ, epQ, c, length)
7: resultQ[c]⇐ sp, ep
8: end for
9: for all c ∈ Σ do
10: sp, ep⇐ SASearchNextCharacter(DB,SADB, spDB, epDB, c, length)
11: resultDB[c]⇐ sp, ep
12: end for
13: for all c ∈ Σ do
14: sp, ep⇐ resultQ[c]
15: if sp ≤ ep then
16: score′max ⇐ scoremax + S[c, c]
17: for all c′ ∈ Σ do
18: sp′, ep′ ⇐ resultDB[c

′]
19: if sp′ ≤ ep′ then
20: score′ ⇐ score+ S[c, c′]
21: if Tseed ≤ score′ then
22: store sp, ep, sp′ep′

23: continue
24: else if score′ > score′max −D

∧
score′ > 0 then

25: SeedSearchCore(Q,SAQ, DB, SADB,
26: sp, ep, sp′, ep′, score′max, score

′, length+ 1)
27: end if
28: end if
29: end for
30: end if
31: end for
32: end if

SeedSearch(Q,SAQ, DB, SADB)

1: SeedSearchCore(Q,SAQ, DB, SADB, 0, |Q| − 1, 0, |DB| − 1, 0, 0, 0)

Figure 3.2: Pseudo-code for seed search algorithm using suffix arrays.



28
3. An Improved Sequence Homology Search Algorithm Using a Query

Suffix Array and a Database Suffix Array

SASearchNextCharacter(T, SA, sp, ep, c, length)

1: sptmp ⇐ sp− 1
2: eptmp ⇐ ep
3: while sptmp + 1 < eptmp do
4: m⇐ sptmp+eptmp

2

5: if T [length+ SA[m]] < c then
6: sptmp ⇐ m
7: else
8: eptmp ⇐ m
9: end if

10: end while
11: if T [length+ SA[eptmp]] ̸= c then
12: sptmp ⇐ 1
13: eptmp ⇐ 0
14: return sptmp, eptmp ▷ not found c
15: end if
16: sp⇐ eptmp

17: sptmp ⇐ sp
18: eptmp ⇐ ep+ 1
19: while sptmp < eptmp − 1 do
20: m = sptmp+eptmp

2

21: if T [length+ SA[m]] > c then
22: eptmp ⇐ m
23: else
24: sptmp ⇐ m
25: end if
26: end while
27: if T [length+ SA[sptmp]] ̸= c then
28: sptmp ⇐ 1
29: eptmp ⇐ 0
30: return sptmp, eptmp ▷ not found c
31: end if
32: ep⇐ sptmp

33: return sp, ep

Figure 3.3: Pseudo-code for search algorithm using a suffix array.
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Figure 3.4: An example seed search.

However, the depth of recursion in SeedSearchCore is O(lengthmax|Σ|2) based on a

depth-first search. Therefore, using this depth-first search strategy can save memory.

Even when using a binary search, this seed search approach was originally a bottle-

neck in GHOSTX. To accelerate the process, GHOSTX searches parts of seeds using an

auxiliary data structure. GHOSTX stores the search results for all subsequences whose

length is less than 6 on a table after the construction of the database index. In the

seed search, GHOSTX can find the search result for a subsequence without performing

a binary search on the suffix array of a database, if the length of the subsequence is

shorter than 6. If we store the search results for longer subsequences, we can make

the process more efficient. However, the table requires more memory depending on the

length of the subsequence. If the length lengthsubsequence of a subsequence is extended

by 1, the size of table increases by O(|Σ|lengthsubsequence). Thus, GHOSTX only stores

the search results for the subsequence whose length is less than 6.

3.2.4 Ungapped Extension and Chain Filtering

Decreasing the number of seeds is critical for the acceleration of a search. However,

higher Tseed values cause an increase in the number of significant hits missed, so it is

difficult to use high Tseed values without sacrificing sensitivity. Therefore, GHOSTX

performs an ungapped extension, which extends seeds without any gaps and excludes

low-score extended seeds, after the seed search step, as in BLAST. In the ungapped

extension step, GHOSTX uses X-dropoff [4].
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Figure 3.5: Conditions for reducing seeds in chain filtering.

Some seeds may overlap with others after the seed search and the ungapped extension

step. In particular, if there is a sequence highly similar to a query in the database, many

seeds that overlap with others are found, and almost identical alignments are often

obtained from these overlapped seeds. Thus, it is necessary to merge such overlapped

seeds to reduce the number of gapped extensions. Therefore, GHOSTX uses a chain

filtering technique. There are two cases in which the seeds are filtered out, as shown

in Fig. 3.5. First, if two seeds {DB[i, i+x], Q[k, k+x]} and {DB[j, j+ y], Q[l, l+ y]}
overlap as shown in Fig. 3.5A, GHOSTX combines these overlapped seeds together

into one. Second, if two seeds {DB[i, i+ x], Q[k, k+ x]} and {DB[j, j+ y], Q[l, l+ y]}
do not overlap but the score exceeds the dropoff used for the ungapped extension step,

as shown in Fig. 3.5B, GHOSTX also merges the overlapped seeds.

3.2.5 Gapped Extension

Those seeds judged as meaningful by the chain filter are extended with gaps. In the

gapped extension, GHOSTX employs X-dropoff in the same way as BLAST [5]. In

BLAST gapped extension, the process stops if the score is much lower than the best

score, which saves computation time. GHOSTX also employs this technique and uses

the same X-dropoff.
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3.2.6 Database Division

GHOSTX requires a large amount of memory in its protein sequence homology

search. Memory size depends on database size. However, computing systems generally

have relatively small memory sizes compared with current database sizes. Therefore,

GHOSTX divides a database into several chunks, each of whose size is lDB, before

it constructs its indexes. GHOSTX sequentially searches each database chunk, and

merges its results with the results of previous chunk searches, when this chunk division

is performed before the construction of its database indexes. GHOSTX dramatically

reduces working memory requirements using this approach.

3.3 Results and Discussion

3.3.1 Datasets and Conditions

To evaluate the performance of our tool, we compared its search sensitivity and

computation time to NCBI BLASTX (version 2.2.28+), BLAT (version 34 standalone)

and RAPSearch (version 2.12). We used the binaries of BLASTX and BLAT down-

loaded from web sites. We used RAPSearch compiled with GCC (version 4.3.4) and

the -O3 optimizing option. We also compiled GHOSTX using GCC with the -O3 op-

timizing option. We used a database obtained from KEGG [20, 19] GENES protein

sequences as of May 2013. This database contained approximately 10,000,000 pro-

tein sequences, with a total size of approximately 3,600,000,000 residues (3.9 GB).

We also used another database obtained from NCBI nr that contained approximately

25,000,000 sequences, approximately 8,600,000,000 residues (14.8 GB), to check our al-

gorithm’s dependency on database size. For the query sequences, we used 2 query sets:

one from human microbiome metagenomic sequences (SRS011098), and the other of

soil microbiome metagenomic sequences (SRR444039). SRS011098 was obtained from

the Data Analysis and Coordination Center for Human Microbiome Project (HMP-

DACC) [52] web site. We used the whole metagenomic shotgun sequencing data from

SRS011098. SRR444039 was obtained from the DNA Data Bank of Japan (DDBJ)

Sequence Read Archive. 10,000 randomly selected DNA short reads were used from

both sets, SRS011098 and SRR444039. We performed the analyses on a workstation

with two Intel Xeon 5670 processors (2.93 GHz, 6 cores) and 54 GB of memory.
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3.3.2 Relationship between GHOSTX Parameters and Sensi-

tivity and Computation Time

GHOSTX has two parameters for its seed search, threshold of the seed search Tseed,

and an upper mismatch scoreD. These parameters affect the performance of GHOSTX.

Therefore, we first searched for optimal parameters. To determine the best parameters,

we used Tseed = 22, 24, 26, 28, 30, 32 and D = 1, 4, 7. To evaluate search sensitivity, we

used the search results obtained using local alignment by SSEARCH [41] as the correct

answer. Because it does not use any heuristics, it returns an optimal local alignment.

We analyzed the performance of the particular parameter in terms of the fraction of

its results that corresponded to the correct answers. When the subject sequences that

had the highest score by SSEARCH and each particular method corresponded on each

query, the query was deemed correct. Table 3.1 shows the sensitivity and computation

time of each different parameter. As shown in the table, when Tseed is large or D

is small, the sensitivity of GHOSTX is low and its computing speed is fast. This is

because the search space in the seed search is small and the number of seeds is small.

However, when Tseed is small or D is large, the sensitivity of GHOSTX is high and

its computing speed is slow. This is because the search space in the seed search is

large and the number of seeds is large. We selected Tseed = 30 and D = 4 as default

parameters that have a good balance between sensitivity and computation time. We

used those parameters in the following evaluations.

3.3.3 Evaluation of Search Sensitivity

To evaluate search sensitivity, we evaluated sensitivity the same way as we evaluated

the relationship between GHOSTX parameters and their sensitivity and computation

time. To evaluate the software, we executed the BLASTX program with the command

line options “-outfmt 6 -comp based stats 0”, which instructed the program to output

in tabular format, without using composition-based statistics [6], because composition-

based statistics are not available in SSEARCH. We used default parameters for the

other options. The BLAT program does not include a function to translate DNA reads

to protein sequences. Therefore, we translated the DNA reads into protein sequences

based on all six potential frames using a standard codon table before executing BLAT.

We executed the BLAT program with the command line option “-q=prot -t=prot -

out=blast8”, which instructed the program to run the queries and database as protein

sequences, and to output data in the BLAST tabular format. We could not execute

BLAT when we used nr as a database because our machine has insufficient memory for
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Table 3.1: Relationship between GHOSTX parameters and sensitivity and computation
time. The first, second third, and fourth columns show Tseed, D , the sensitivity, and
the computation time.The sensitivity is calculated as the ratio of correctly searched
queries whose E-values < 10−5.

Tseed D Sensitivity Computation time (sec.)
22 1 0.978 615.0
22 4 0.985 2099.0
22 7 0.984 7066.6
24 1 0.977 474.4
24 4 0.984 1284.4
24 7 0.985 4312.9
26 1 0.976 316.1
26 4 0.984 779.9
26 7 0.985 3035.2
28 1 0.971 199.4
28 4 0.982 518.4
28 7 0.985 2472.6
30 1 0.963 151.2
30 4 0.980 401.9
30 7 0.985 2472.6
32 1 0.957 119.5
32 4 0.977 344.1
32 7 0.984 2101.9

the execution. Therefore, we only executed BLAT with KEGG GENES. We executed

the RAPSearch program with 2 cases. One case used the default options and the other

used the command line option “-a T”, which instructed the program to perform a

fast mode search. For GHOSTX, we used the following parameters: threshold of the

seed search Tseed = 30, upper mismatch score D = 4, and size of the database chunk

lDB = 2 GB. The other parameters used are the same as BLASTX defaults. In Fig. 3.6,

GHOSTX shows lower sensitivity than BLASTX, especially for those hits with E-values

above 10−5. However, hits with such high E-values are not used in practice because they

are unreliable. For instance, Trunbaugh et al. used hits with E-values below 1.0×E−5

[53], and Kurokawa et al. used hits with E-values below 1.0 × E−8 [23]. We used the

single-value search sensitivity calculated as the ratio of correctly searched queries to all

queries with the E-values < 1.0×E−5 to compare search sensitivity of GHOSTX with

that of other tools. Table 3.2 showing search sensitivity for each program indicates



34
3. An Improved Sequence Homology Search Algorithm Using a Query

Suffix Array and a Database Suffix Array

Figure 3.6: Search sensitivity of each tool with KEGG GENES. The vertical axis
shows the percentage of correct answers that correspond to the correct answers for
each method. The horizontal axis shows the E-value of the alignments.

Table 3.2: Search sensitivity. The search sensitivity is calculated as the ratio of cor-
rectly searched queries whose E-values < 10−5.

Sensitivity
GHOSTX 0.98
RAPSearch 0.97
RAPSearch in fast mode 0.93
BLAT 0.93
BLASTX 0.97

that the sensitivity of GHOSTX was clearly better than that of BLAT and RAPSearch

in fast mode, and almost equal to that of RAPSearch and BLASTX. Therefore, we

believe that GHOSTX has search sensitivity sufficient for most practical analyses.

3.3.4 Evaluation of Computation Time

We ran each method with the same commands as for the evaluation of search sensi-

tivity to measure computation time. We used 2 query sets, 10,000 randomly selected
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Table 3.3: Computation time with SRS011098 and KEGG GENES (3.9 GB). The first,
second, and third columns show the name of each program, the computation time, and
the acceleration in processing speed relative to BLASTX using 1 thread, respectively.

Computation time (sec.) Acceleration ratio
GHOSTX 401.9 152.6
RAPSearch 649.5 94.4
RAPSearch in fast mode 91.2 672.2
BLAT 1409.7 43.5
BLASTX 61314.1 1.0

Table 3.4: Computation time with SRR444039 and KEGG GENES (3.9 GB). The first,
second, and third columns show the name of each program, the computation time, and
the acceleration in processing speed relative to BLASTX using 1 thread, respectively.

Computation time (sec.) Acceleration ratio
GHOSTX 362.7 151.8
RAPSearch 553.2 99.5
RAPSearch in fast mode 64.8 849.6
BLAT 1265.3 43.5
BLASTX 55045.0 1.0

DNA short reads from SRS011098 and SRR444039, and we used KEGG GENES as

our database. Table 3.3 and Table 3.4 show the computation time for each program.

As shown with each query set, GHOSTX showed accelerations of approximately 153

and 152 times with respect to BLASTX, and approximately 3.5 and 3.5 times with

respect to BLAT. Additionally, GHOSTX was approximately 1.6 and 1.5 times faster

than RAPSearch. GHOSTX outperforms BLASTX in reducing computation time. The

computation time acceleration is caused by the use of a suffix array for its seed search

and ungapped extension steps. GHOSTX was slower than RAPSearch in fast mode.

However, the sensitivity of RAPSearch in fast mode is clearly lower than GHOSTX.

We also checked the dependency of computation time on the database size for each

program by using a larger database. Table 3.5 and Table 3.6 show the computation

times and accelerations for NCBI nr. GHOSTX showed a better acceleration ratio

against BLASTX, as compared with the KEGG GENES database (approximately 165

times and 131 times, respectively). This indicates that these programs can efficiently

handle an increase in database size in the future. In contrast to GHOSTX’s acceleration
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Table 3.5: Computation time with SRS011098 and NCBI nr (14.8 GB). The first,
second, and third columns show the name of each program, the computation time, and
the acceleration in processing speed relative to BLASTX using 1 thread, respectively.

Computation time (sec.) Acceleration ratio
GHOSTX 1020.1 165.2
RAPSearch 1564.4 107.7
RAPSearch in fast mode 223.8 752.8
BLAT N/A N/A
BLASTX 168488.0 1.0

Table 3.6: Computation time with SRR444039 and NCBI nr (14.8 GB). The first,
second, and third columns show the name of each program, the computation time, and
the acceleration in processing speed relative to BLASTX using 1 thread, respectively.

Computation time (sec.) Acceleration ratio
GHOSTX 1003.5 130.8
RAPSearch 1404.1 93.4
RAPSearch in fast mode 223.8 586.2
BLAT N/A N/A
BLASTX 131213.3 1.0

as compared with BLASTX, GHOSTX’s acceleration ratio was 1.5 and 1.4 times as fast

as RAPSearch with the larger database, and almost the same when using the smaller

KEGG GENES database. Thus, the acceleration ratio of GHOSTX to RAPSearch

would not significantly change regardless of the size of a database.

Additionally, to compare the computation time of each step, seed search, ungapped

extension and gapped extension in GHOSTX, we obtained execution profiles of BLASTX

and GHOSTX. These functions of GHOSTX are not used inline expansion to obtain

execution profile. These execution profiles were obtained from the calculation using

10,000 DNA short reads in SRS011098 as queries and KEGGGENES as a database. Ta-

ble. 3.7 shows execution profiles of GHOSTX and BLASTX. Seed search of GHOSTX

was faster than that of BLASTX. Because, GHOSTX uses effective seed search with

suffix arrays of query and database. Currently, seed search is one of the primary bot-

tlenecks in protein sequence homology searches. Thus, we consider that this effective

speed up in seed search contributes to significant increase in search speed observed.

We also measured the computation time of preprocessing, including database index-
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Table 3.7: Computation time of seed search, ungapped extension and gapped extension.
The percent of computation time of each step to total computation time is in bracket.

GHOSTX BLASTX
Seed search 146.0 (49%) 57759.5 (86%)
Ungapped extension 33.1 (11%) 7674.3 (11%)
Gapped extension 97.5 (32%) 875.1 (1%)
Others 24.4 (8%) 1009.8 (2%)
Total computation time 301.0 (100%) 67318.7 (100%)

Table 3.8: Computation time of the preprocessing including indexing with KEGG
GENES (3.9 GB) and NCBI nr (14.8 GB). The first, second, and third columns show
the name of each program, the computation time with KEGG GENES, and the com-
putation time with NCBI nr.

Computation time
with KEGG GENES (sec.)

Computation time
with NCBI nr (sec.)

GHOSTX 1589.2 4415.2
RAPSearch 1914.2 4210.5
BLASTX 637.6 1678.9

ing, for GHOSTX, BLASTX, and RAPSearch. Table 3.8 shows the computation time

for preprocessing. Preprocessing in GHOSTX requires computation time almost equal

to RAPSearch. However, protein sequence homology search computation time is gen-

erally much larger than that required for the database construction phase when a huge

amount of DNA reads sequenced by NGSs are processed. Moreover, preprocessing is

only performed when a database is updated. Therefore, we think preprocessing is not

a problem in practice.

3.3.5 Evaluation of Memory Size

While GHOSTX can search for homologues more efficiently than BLASTX, GHOSTX

requires more memory. GHOSTX uses approximately 18 GB of memory for construct-

ing the indexes of a typical database, and approximately 13 GB for the protein sequence

homology search itself, when a 2 GB database chunk is used. However, using a smaller

database chunk size can decrease the amount of memory required. Table 3.9 shows

the relationships between the amount of memory required to construct the indexes and



38
3. An Improved Sequence Homology Search Algorithm Using a Query

Suffix Array and a Database Suffix Array

Table 3.9: Comparison with memory size for KEGG GENES (3.9 GB) of each size of
the database chunks. The first, second, and third columns show the size of the database
chunk, the used memory size for constructing index (GB), and the used memory size
for protein sequence homology search (GB).

Chunk size
Memory size

for constructing index (GB)
Memory size for protein

sequence homology search (GB)
512 MB 4.6 4.2
1 GB 9.2 7.2
2 GB 18.2 13.3

Table 3.10: Comparison with Computation time for KEGG GENES (3.9 GB) of each
size of the database chunks. The first, second, and third columns show the size of
the database chunk, the computation time, and the acceleration in processing speed
relative to GHOSTX with 2GB database chunks, respectively.

Chunk size Computation time (sec.) Acceleration ratio
512 MB 526.9 0.8
1 GB 452.7 0.9
2 GB 401.9 1.0

protein sequence homology search versus the size of a database chunk. The required

memory size of GHOSTX is almost linearly increased in proportion to the size of a

database chunk. If a database is divided into more chunks, the required memory size

becomes smaller accordingly. Therefore, with smaller database chunk sizes, GHOSTX

can be executable even on a general PC. Of course, there is a trade-off between database

chunk size and search speed. Protein sequence homology search computation times in-

crease as the size of a database chunk becomes smaller. This is so because the same

suffix array search has to be performed for each respective chunk, and the number of

suffix array searches increases as a result. However, the situation is not dire; as shown

in Table 3.10, the search speed of GHOSTX with 512 MB chunks is approximately

20% slower than that with 2 GB chunks. The maximum size of a database chunk is 2

GB in GHOSTX, because the maximum size of a 32 bit integer is 2 GB.
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3.4 Summary

We have developed an efficient algorithm for performing protein sequence homol-

ogy searches, and have implemented it as GHOSTX. GHOSTX has sufficient search

sensitivity for practical analyses. It uses an extremely efficient seed search algorithm,

employing database and query suffix arrays, to achieve a well over 100 times faster pro-

tein sequence homology search than BLASTX. GHOSTX is also almost 1.4–1.6 times

faster than RAPSearch, which is one of the fastest protein sequence homology search

tools available, even though GHOSTX is slightly more accurate.





Chapter 4

A Protein Sequence Homology

Searches with Clustering

Subsequences Technique

4.1 Introduction

In this study, we developed a faster protein sequence homology search algorithm using

database subsequence clustering. Current protein sequence homology searches require

long computation time to extend alignments without gaps, because seed searches tend

to produce a large number of seeds [54]. However, only a small number of seeds gener-

ate ungapped extension scores that are higher than the score threshold, and the wasted

computation time increases the overall time required for ungapped extensions. Our al-

gorithm clusters subsequences derived from a database and reduces non-representative

seeds within these clusters to minimize the computation time spent on ungapped ex-

tensions. In this study, we developed a novel fast protein sequence homology search

algorithm that uses hash tables, and applied our subsequence clustering method to

the index to further accelerate protein sequence homology search. We designated this

algorithm as GHOSTZ.

4.2 Methods

The flow of GHOSTZ, which adopts the seed-and-extend strategy used in BLAST

is shown in Fig. 4.1. Subsequences are extracted from a database and similar subse-

quences are clustered. Then, hash tables, which contain indexes for the subsequences

41
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Figure 4.1: Flow of the proposed protein sequence homology search method based on
database subsequence clustering. Clustering of database subsequences and similarity
filtering (green box) are included in this method.

and the clusters, are constructed. The protein sequence homology search method uses

the hash tables to select the seeds for alignments from representative sequences in the

clusters. The distance between a query subsequence and a cluster representative is

calculated, and the lower bounds for the distance between the query subsequence and

other members of the cluster are computed based on triangle inequality as shown in

Fig. 4.2. If the computed lower bound is less than or equal to the distance threshold,

the seed is selected for ungapped extension to investigate the homology between the

query and the sequences of the cluster. This filtering using the lower bounds of the

distance is referred to here as “similarity filtering”. Finally, chain filtering is used to

bring similar extended seeds together, and gapped extension is performed to align the

extended seeds with gaps.

In the database subsequence clustering and seed search processes, the protein se-

quences of a query and database are converted to a reduced amino acid alphabet to

increase search sensitivity. We used a 10-letter reduced amino acid alphabet (A, {K,

R}, {E, D, N, Q}, C, G, H, {I, L, V, M}, {F, Y, W}, P, {S, T}) derived from the

BLOSUM62 matrix [38]. This reduced amino acid alphabet has been used successfully

in a previous study on protein sequence homology searches [58]. For ungapped and

gapped extensions, alignments were performed with the standard 20-letter amino acid
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Figure 4.2: Example of similarity filtering. CQ,i is the query subsequence. RD,j0

and RD,l0 are the representative subsequences in cluster 0 and cluster 1, respectively.
The lower bound of the distance between CQ,i and the member subsequence MD,j1

in cluster 0 is calculated from the distance d(CQ,i, RD,j0). When the lower bound
of d(CQ,i,MD,j1) ≤ Tdistance, the seed for CQ,i and MD,j1 is taken to the next step.
The lower bound of the distance between CQ,i and the member subsequence MD,l1

in cluster 1 is calculated from the distance d(CQ,i, RD,l0). When the lower bound of
d(CQ,i,MD,l1) > Tdistance, the seed for CQ,i and MD,l1 is not taken to the next step.
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alphabet.

4.2.1 Database Subsequence Clustering and Construction of

Hash Tables

Our database subsequence clustering approach was developed for efficient sequence

homology searches. In this method, subsequences in a database are clustered to be used

in similarity filtering; however, we do not cluster subsequences used in seed searches,

but instead use longer subsequences, which overlap seed subsequences. To avoid term

confusion, we use “subsequence for seed” for subsequences used in general seed searches

denoted by S, and “subsequence for clustering” for subsequences used in the database

subsequence clustering and similarity filtering denoted by C. All subsequences for

clustering depend on a subsequence for seed. Therefore, GHOSTZ first builds a hash

table of subsequences for seed, and then determines which subsequences should be used

for clustering based on the hash table. Database subsequence clustering is performed

using these subsequences. Therefore, we will first describe the construction of hash

tables containing subsequences for seed, and then the construction of subsequences for

clustering and database subsequence clustering.

Here, the text T = T [0, n] = t0...tn−1 denotes a sequence of symbols, and the length

of T is |T | = n. Each symbol is an element of an alphabet Σ (|Σ| of protein is 20).

T [i] = ti and T [i, i + j] = ti...ti+j−1 are subsequences. The sequence of a query is Q.

The sequences D0, D1,...,DN−1 in a database are connected by inserting delimiters to

transform them into a single long sequence D = #D0#D1#, ...,#DN−1# (marked by

the special symbol #). A seed is a pair of identical or similar subsequences of Q and

D. SQ,i = Q[i, i + l] and SD,j = D[j, j + l] is the subsequence of Q and D for a seed,

and {SQi
, SD,j} is a seed. The hash table used to identify subsequences for seed stores

a pair of hash values of SD,i and the starting point i of SD,i.

In the BLAST-like seed-and-extend strategy based algorithms, search speed can be

increased by decreasing the number of seeds. The number of seeds can be decreased

if longer subsequences are used for seeds, because this decreases the number of ran-

domly matched cases. However, this also causes a decrease in the search sensitivity.

Thus, tolerances are required in the matching to retain sufficient search sensitivity. In

BLAST, the length of the subsequence for seed is three and neighborhood words are

identified [5]. A neighborhood word is a subsequence similar to each subsequence [4].

BLAST uses a large variety of subsequences of each subsequence in a seed search to

increase search sensitivity using neighborhood words, which, however, are ineffective



4. Sequence Homology Searches with Clustering Subsequences
Technique 45

for longer subsequences for seed because of high variation in neighborhood words.

GHOSTZ identifies long subsequences by employing a reduced amino acid alphabet

in the seed search. In subsequences, the conventional amino acid alphabet is converted

to a reduced amino acid alphabet, and then the hash value for this subsequence is

calculated. Using the reduced amino acid alphabet, the variety of subsequences for

each original subsequence becomes one. In addition, the reduced amino acid alphabet

allows GHOSTZ to find longer subsequences without a significant decrease in search

sensitivity. In GHOSTZ, the length of a subsequence for seed is determined by a sum

of the match scores for this subsequence. Because the frequency of each amino acid in

subsequences varies, the probability of finding each particular subsequence is different.

Therefore, different subsequences may have different lengths. Score definition has been

previously proposed to calculate matches between reduced amino acid alphabets [37].

However, in the present study we used a simpler definition. We defined the match

scores of the groups of reduced amino acid alphabets by the largest match score in

the group based on the original score matrix. For example, in the BLOSUM62 score

matrix, the match scores of amino acids F, Y, and W, are 6, 7, and 11, respectively;

thus, the match score for the group including F, Y, and W is 11. To avoid insignificant

hits, only subsequences with scores that exceed score threshold Tseed are hashed as

subsequences for seed. For example, when Tseed = 39, “HDGLNP” is not used in

seed search because its score is 38 and does not exceed Tseed. However, “HDGLNPA”

is used in seed search because its score is 42, which exceeds Tseed. Furthermore, in

our implementation, the length of subsequences for seed is restricted to 6–8 residues,

because a perfect hash function is used.

After building the hash table of subsequences for seed, the subsequences for clustering

are constructed and database subsequence clustering is performed as follows: if i is

the starting point of SD,i = D[i, j] and L is the length of the subsequence used for

clustering, then let CD,i = D[i − L/2, i + L/2] be the subsequence for clustering. For

clustering, the subsequence for clustering with i as the center is used instead of a

subsequence for seed with i as the starting point. The relationship between CD,i and

SD,i is shown in Fig. 4.3. If CD,i has delimiters, CD,i are not used for clustering,

because CD,i contains the subsequence of several sequences in the database. CD,i

becomes a member of a cluster if it has the same hash value of SD,j as the cluster

representative CD,j and the distance between the representative of a cluster CD,j and

CD,i is lower than or equal to the distance threshold Tcluster. Hamming distance, which

is the number of mismatches between sequences, is used to measure this distance. To

reduce the computation time required for clustering, a greedy algorithm similar to
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Figure 4.3: Relationship between a subsequence used for clustering and the starting
position of the seed.

CD-HIT [29, 14] was employed. The algorithm for database subsequence clustering is

shown in Fig. 4.4. In this algorithm, the first subsequence sampled always becomes a

cluster representative. All subsequences are compared with each cluster representative,

and a subsequence becomes a new cluster representative if it is not a member of any

other cluster. Before running database subsequence clustering, we recommend that

similar sequences are arranged close to each other in the input file using a clustering

tool such as CD-HIT, which allows the clustering algorithm to cluster subsequences

more efficiently. After subsequence clustering, the results are used to construct three

tables to be used as indexes for seed searches. The Be hash table stores hash values

of SD,i and starting points i of SD,i for the representatives of clusters containing only

one member. The Br hash table stores the hash values of SD,i, their cluster IDs, and

starting points i of SD,i, which are representatives of a cluster (not stored in Be). The

Bm table stores mapping from the cluster IDs to the starting points i of SD,i, which

CD,i are the members of that cluster. These three tables are used for seed search.

Examples of Be, Br, and Bm are shown in Fig. 4.5A, B, and C.

4.2.2 Seed Search and Similarity Filtering

Seed search is performed with Be, Br, Bm, and the hash table of queries. The hash

table of the queries is constructed before seed search. This hash table contains the hash

values of SQ,i, query IDs, and starting points of subsequences for the corresponding

hash values. An example of a hash table of queries is shown in Fig. 4.5D.

In seed search, seeds of query subsequences and representative subsequences in the
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1: Let D be the concatenated sequence of a database.
2: Let L be the length of CD,i.
3: Let Tcluster be the distance threshold of clustering.
4: Let clusters be the results of clustering.
5: build hash table H from D
6: for each hash value h in H do
7: Let flagsR be the flag for representative subsequences.
8: Let members be the lists of members.
9: for i in H.find(h) do
10: build subsequence CD,i

11: flagM ← false ▷ The flags for member subsequences
12: if CD,i does not have delimiters then
13: for j in H.find(h) do
14: if j ≥ i then
15: break
16: end if
17: build subsequence CD,j

18: if flagsR[j] & (d(CD,i, CD,j) ≤ Tcluster) then
19: add CD,i to members[j]
20: flagM ← true
21: break
22: end if
23: end for
24: end if
25: if flagM then
26: flagsR[i]← false
27: else
28: flagsR[i]← true
29: end if
30: end for
31: store flagsR and members to clusters
32: end for
33: build the tables Be, Br and Bm from H and clusters

Figure 4.4: Pseudo-code for database subsequence clustering.
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Figure 4.5: Examples of data structures. A) An example of a hash table Be. Be stores
the hash values of SD,i and the starting points i of SD,i that are the representatives
CD,i of clusters with only one member. B) An example of a hash table Br. Br stores
the hash values of SD,i, their cluster IDs, and starting points i of SD,i, which are the
representative CD,i of a cluster (not stored in Be). C) An example of a table Bm. Bm

that stores the mapping from the cluster IDs to the starting points i of SD,i, which CD,i

are the members of that cluster. D) An example of a hash table of the queries, which
contains the hash values of SQ,i, query IDs, and starting points i of subsequences for
the corresponding hash values.
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database are found using Be and Br. If the seeds are from Be, ungapped extension is

performed because there are no other subsequences in the cluster. If the seeds are from

Br, similarity filtering is performed. Then, the hamming distance between a query and

database subsequence is calculated. Given two sequences S1 and S2, d(S1, S2) denotes

the distance between S1 and S2, which should satisfy the following triangle inequality:

d(S1, S2) ≤ d(S1, S3) + d(S2, S3) (4.1)

If CQ,i is the subsequence of the query, MD,j (CD,j) is the sequence of a cluster

member, and RD,k (CD,k) is the subsequence of a representative cluster member, then

the lower bound of the distance between RD,i and MD,j from this inequality will be:

d(CQ,i,MD,j) ≥ d(CQ,i, RD,k)− d(RD,k,MD,j) (4.2)

The lower bound of the distance between CQ,i and MD,j is calculated, and the seed

is extended without gaps if the lower bound of the distance is less than or equal to the

distance threshold Tdistance. The relationships among the query, cluster representative,

and cluster members are shown in Fig. 4.6. The pseudo-code for the seed search and

similarity filtering is shown in Fig. 4.7.

4.2.3 Ungapped Extension

Gapped extension generally requires long computation time; therefore, most protein

sequence homology search algorithms perform ungapped extension before gapped ex-

tension. We used ungapped extension to filter candidate seeds in the output from seed

search. Only seeds with ungapped extension scores that exceed the score threshold

Tungapped are stored and extended with gaps after ungapped extension is complete. In

ungapped extension, the X-dropoff used in BLAST [4] is applied to accelerate extension

process. The Tungapped and other parameters for ungapped extensions are the same as

the default parameters in BLAST.

For the efficient memory access in ungapped extension, seed searches are performed

for multiple queries simultaneously. If the hash values of query subsequences are the

same, their starting points are packed using a hash table. Then, ungapped extension is

performed for the queries that have identical hash values in sequential order, because it

increases the cache hit ratio when accessing the positions of sequences in the database

(lines 9–31 in Fig. 4.7).
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Figure 4.6: Relationships among the query subsequence, representative cluster subse-
quence, and member of the cluster that satisfies the triangle inequality.

4.2.4 Chain Filtering and Gapped Extension

Chain filtering is performed after ungapped extension because some seeds overlap.

Therefore, the number of gapped extensions can be reduced by merging overlapping

seeds. After chain filtering, the seeds are extended with gaps using X-dropoff [5].

4.2.5 Execution of the Protein Sequence Homology Search

Method without Subsequence Clustering

The flow of the protein sequence homology search without subsequence clustering

is shown in Fig. 4.8. This method is almost identical to that used in GHOSTZ,

except that subsequence clustering and similarity filtering are not used for seed search.

The method without subsequence clustering was used to evaluate the reduction in

computation time achieved by subsequence clustering. Here, query subsequences are

searched against all the subsequences in the database using hash tables. Next, all seeds

are directly extended using the ungapped extension process. Finally, chain filtering

is performed to merge similar seeds, and gapped extension is used to extend seed

sequences.
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1: Let hashqueries be the hash value of queries.
2: Let positionslistqueries the list of positions of hashqueries of each query.
3: Let Br be the hash table for the representative subsequences in a database.
4: Let Bm the inverted table for the member subsequences in a database.
5: Let Tungapped the threshold for ungapped extension.
6: Let ListQ the list of query data passed through similarity filtering.
7: pairsid,position ← Br.find(hashqueries)
8: for idcluster, pr in pairsid,position do
9: for iquery, pquery in positionslistqueries do
10: d← CalculateDistance(iquery, pquery, pr)
11: if SimilarityF iltering(d) then
12: add iquery, pquery to ListQ
13: end if
14: if d ≤ Tdistance then
15: build seedr by using iquery, pquery, pr
16: score← UngappedExtention(seedr)
17: if score > Tungapped then
18: store seedr
19: end if
20: end if
21: end for
22: positionsm ← Bm.find(idcluster)
23: for pm in positionsm do
24: for iquery, pquery in ListQ do
25: build seedm by using iquery, pquery, pm
26: score← UngappedExtention(seedm)
27: if score > Tungapped then
28: store seedm
29: end if
30: end for
31: end for
32: clear ListQ
33: end for

Figure 4.7: Pseudo-code for seed search, similarity filtering, and ungapped extension
in the case of multiple cluster members.
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Figure 4.8: Flow of the proposed protein sequence homology search method without
database subsequence clustering for the purpose of comparison.

4.3 Results

4.3.1 Datasets and Computing Environment

We evaluated the performance of the protein sequence homology searches with and

without subsequence clustering using protein sequences in the KEGG GENES database

[20, 19] (May 2013). This database contains approximately 10,000,000 protein se-

quences comprising a total of approximately 3,600,000,000 residues. For query se-

quences, we used the datasets of microbiome metagenomic sequences derived from

soil (accession number SRR407548, read length = 150 bp), ocean (accession number

ERR315856, read length = 104 bp), and humans (accession number SRS011098, read

length = 101 bp). SRR407548 and ERR315856 were obtained from the DDBJ Sequence

Read Archive. SRS011098 was obtained from the HMP-DACC web site. We used the

whole metagenomic shotgun sequencing data from SRS011098. For all datasets, 10,000

randomly selected short DNA reads were used. Evaluation tests were performed on

a workstation with two Intel Xeon 5670 processors (2.93 GHz, 6 cores) and 54 GB

memory.

For the protein sequence homology search with and without subsequence clustering,

we used the seed score threshold of Tseed = 39. Tseed was determined to be similar in

sensitivity to RAPSearch. The parameters used for gapped and ungapped extensions

were the same as BLASTX default parameters. To efficiently perform database subse-

quence clustering, similar sequences were arranged close to each other in the database

file based on the results of CD-HIT.
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Table 4.1: Computation times for protein sequence homology searches using different
subsequence length for SRR407548 reads against the KEGG GENES database. L is
the subsequence length. The increase in processing speed is presented as the ratio of
the time used for search with subsequence clustering to that used for search without
subsequence clustering.

Computation time (sec.) Acceleration ratio
Without clustering 954.1 1.0
L = 6 332.6 2.9
L = 8 393.7 2.4
L = 10 464.3 2.1
L = 12 456.2 2.1
L = 14 508.3 1.9

4.3.2 Relationship Between Subsequence Length and Accel-

eration Ratio and Search Sensitivity

The subsequence clustering method has three parameters: subsequence length L,

distance threshold for the representative of a cluster Tcluster, and distance threshold for

similarity check Tdistance. Subsequence length L particularly affects the performance of

the search method because Tcluster and Tdistance depend on L; therefore, we first deter-

mined the optimal subsequence length using L = 6, 8, 10, 12, and 14 and fixed distance

thresholds of Tcluster = 0.1L and Tdistance = 0.2L. We used 10,000 randomly selected

short DNA reads from soil microbiome metagenomic sequences (SRR407548) and the

KEGG GENES database. The speed with different L used for the subsequence clus-

tering search method was compared with the method without subsequence clustering

in Table 4.1. As shown, the speed of the search method that included subsequence

clustering increased when L decreased.

The search sensitivity of the protein sequence homology search for different query

sequences was estimated using search results obtained by the Smith-Waterman local

alignment algorithm implemented in SSEARCH [41] as the correct result. Performance

was estimated as the portion of the results corresponding to the correct result achieved

when the subject sequence with the highest score in SSEARCH was the same as the

subject sequence obtained by our search method with subsequence clustering. The

search sensitivity of L = 10 was better than that of the other lengths (Fig. 4.9).

Therefore, we considered L = 10 as the optimal subsequence length because it yielded

a good balance between sensitivity and computation time. Using database subsequence
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Figure 4.9: The search sensitivity of GHOSTZ for SRR407548 sequence alignments
against the KEGG GENES database. The percentage of correct answers is shown on
the vertical axis, and the E-values of the alignments are shown on the horizontal axis.

clustering, GHOSTZ provided an approximately two-fold increase in processing speed

without a significant decrease in search sensitivity.

4.3.3 Comparison of the Proposed Search Method with Other

Methods

To further evaluate GHOSTZ, we compared its search sensitivity and computation

time with those of NCBI BLASTX (version 2.2.28+), BLAT (version 34 standalone),

and RAPSearch (version 2.12) using metagenomic DNA sequences (SRR407548, SRS011098,

and ERR315856) and the KEGG GENES database. Composition-based statistics [6]

were not used because it is not employed in SSEARCH. Therefore, BLASTX was

executed with the command line options “-outfmt 6 -comp based stats 0,” used for

tabular format. BLAT does not include a function to translate DNA reads to pro-
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Table 4.2: Search sensitivity of SRR407548, SRS011098, and ERR315856. The search
sensitivity is calculated as the ratio of correctly searched queries with the E-values
< 10−5.

SRR407548 SRS011098 ERR315856
GHOSTZ 0.86 0.98 0.96
GHOSTX 0.84 0.98 0.95
RAPSearch 0.87 0.97 0.96
BLAT 0.51 0.93 0.81
BLASTX 0.94 0.97 0.96

tein sequences; therefore, we translated DNA reads based on the standard codon table.

BLAT was executed with the command line options “-q = prot -t = prot -out = blast8,”

which instructed the program to use protein queries and databases, and tabular for-

mat for output data. RAPSearch was executed with the default command line options.

GHOSTZ was executed with L = 10.

Search sensitivity was evaluated the same way as in Section 4.3.2. The results for

SRR407548, SRS011098, and ERR315856 are shown in Fig. 4.10, 4.11 and 4.12, respec-

tively. The search sensitivity of GHOSTZ was lower than that of BLASTX, especially

for hits with the E-values above 1.0×E−6. However, hits with such high E-values are

not used in practice because of their unreliability. For example, Trunbaugh et al. used

hits with the E-values below 1.0 × E−5 [53], and Kurokawa et al. used hits with the

E-values below 1.0 × E−8 [23]. Therefore, we used the single-value search sensitivity

calculated as the ratio of correctly searched queries to all queries with the E-values

< 1.0 × E−5. Table 4.2 showing search sensitivity for each program indicates that

the search sensitivity of GHOSTZ was better than that of BLAT and almost equal

to that of RAPSearch and GHOSTX. Therefore, we believe that GHOSTZ has search

sensitivity sufficient for most metagenomic applications.

The computation time for each method was also evaluated. The software was run

with the same commands used to analyze search sensitivity. Computation times for the

tested methods with SRR407548, SRS011098, and ERR315856 are shown in Table 4.3,

4.4 and 4.5, respectively. GHOSTZ demonstrated approximately 213.3–285.3, 3.5–5.0,

2.6–3.0, and 1.0–2.0 times faster processing than BLASTX, BLAT, RAPSearch, and

GHOSTX, respectively.

We also measured search sensitivity and computation time for each tool using differ-

ent parameters. We used 10,000 short DNA reads randomly selected from SRR407548
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Figure 4.10: Search sensitivity of different search methods for SRR407548 sequence
alignments against the KEGG GENES database. The percentage of correct answers
is shown on the vertical axis, and the E-values of the alignments are shown on the
horizontal axis.



4. Sequence Homology Searches with Clustering Subsequences
Technique 57

Figure 4.11: Search sensitivity of different search methods for SRS011098 sequence
alignments against the KEGG GENES database. The percentage of correct answers
is shown on the vertical axis, and the E-values of the alignments are shown on the
horizontal axis.
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Figure 4.12: Search sensitivity of different search methods for ERR315856 sequence
alignments against the KEGG GENES database. The percentage of correct answers
is shown on the vertical axis, and the E-values of the alignments are shown on the
horizontal axis.
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Table 4.3: Computation times for SRR407548 reads against the KEGG GENES
database. The increase in processing speed for the search using subsequence clus-
tering compared to BLASTX using one thread.

Computation time (sec.) Acceleration ratio
GHOSTZ 464.3 285.3
GHOSTX 906.0 146.2
RAPSearch 1404.2 94.3
BLAT 2333.8 56.8
BLASTX 132450.0 1.0

Table 4.4: Computation times for SRS011098 reads against the KEGG GENES
database. The increase in processing speed for the search using subsequence clus-
tering compared to BLASTX using one thread.

Computation time (sec.) Acceleration ratio
GHOSTZ 290.7 231.8
GHOSTX 323.9 208.0
RAPSearch 742.4 90.8
BLAT 1145.1 58.9
BLASTX 67391.3 1.0

Table 4.5: Computation times for ERR315856 reads against the KEGG GENES
database. The increase in processing speed for the search using subsequence clus-
tering compared to BLASTX using one thread.

Computation time (sec.) Acceleration ratio
GHOSTZ 387.7 213.3
GHOSTX 384.2 215.2
RAPSearch 995.3 83.1
BLAT 1357.9 60.9
BLASTX 82672.7 1.0

and the KEGG GENES database. Because it is difficult to compare multiple plots

showing the results for various parameters, we used the single-value search sensitivity

calculated as the ratio of correctly searched queries to all queries with the E-values

< 1.0×E−5. Using these conditions, GHOSTZ computation time and search sensitiv-

ity were 464.3 seconds and 0.86, respectively. Table 4.6, 4.7, 4.8 and 4.9 show search



60
4. Sequence Homology Searches with Clustering Subsequences

Technique

Table 4.6: The influence of GHOSTX parameters on sensitivity and computation time.
We changed Tseed, which is the threshold of seed search, to 22, 24, 26, 28, 30, and 32,
and D, which is the upper mismatch score, to 1, 4, and 7. The columns show Tseed, D
, sensitivity, and computation time.

Tseed D Sensitivity Computation time (sec.)
22 1 0.85 1542.0
22 4 0.93 4313.4
22 7 0.96 10964.6
24 1 0.84 1248.0
24 4 0.92 3311.4
24 7 0.95 9221.9
26 1 0.81 859.2
26 4 0.90 2124.1
26 7 0.95 5183.0
28 1 0.77 542.9
28 4 0.87 1141.0
28 7 0.93 3877.2
30 1 0.73 357.9

30 (default) 4 (default) 0.84 906.0
30 7 0.92 3637.9
32 1 0.69 246.7
32 4 0.81 650.3
32 7 0.90 2793.5

sensitivity and computation time for GHOSTX, RAPSearch, BLAT, and BLASTX,

respectively, using different parameters. GHOSTX demonstrated the sensitivity with

{Tseed = 22, D = 1}, {Tseed = 28, D = 4} and {Tseed = 30, D = 4} similar to that of

GHOSTZ, but required longer computation time. The search sensitivity of RAPSearch

showed a dramatic decrease in the fast-mode, and that of BLAT was not significantly

improved, even with a smaller tile size. Using the fastest parameter, the sensitivity

of BLASTX was similar to that of GHOSTZ; however, the required computation time

was much longer.

4.3.4 Evaluation of Memory Size

The amount of memory required for running GHOSTZ depends on the size of a

database. The memory sizes of current computing systems are often small compared

to those of current databases. Therefore, GHOSTZ divides a database into several



4. Sequence Homology Searches with Clustering Subsequences
Technique 61

Table 4.7: The relationship between RAPSearch parameters and performance. We
changed -a F (default) and T, which instructed the program to perform a fast-mode
search. The columns show the parameters, search sensitivity, and computation time.

RAPSearch parameters Search sensitivity Computation time (sec.)
default (-a F) 0.87 1404.2
fast mode (-a T) 0.60 156.3

Table 4.8: The relationship between BLAT parameters and performance. We changed
-tileSize, which is the subsequence length for seed search, to 4, 5 (default), and 6. The
columns show the parameters, search sensitivity, and computation time.

-tileSize Search sensitivity Computation time (sec.)
4 0.60 65979.0

5 (default) 0.51 2333.8
6 0.45 492.9

chunks, sequentially searches each chunk, and then merges the results with those of

the previous chunk search performed when database division has been done prior to

the construction of the database indexes. The default chunk size is 1 GB. Using this

approach, GHOSTZ dramatically reduces working memory requirements. However,

even using this technique, GHOSTZ needs more memory than RAPSearch. When

we used 10,000 randomly selected short DNA reads from soil microbiome metage-

nomic sequences (SRR407548) and the KEGG GENES database, GHOSTZ required

approximately 41 GB of memory for constructing the indexes of the database, and

approximately 7 GB for protein sequence homology search (Table 4.10). In contrast,

RAPSearch required only approximately 4 GB for protein sequence homology search.

However, GHOSTZ can reduce memory requirements by decreasing database chunk

size. As shown in Table 4.10, the memory required for GHOSTZ has a nearly linear re-

lationship with the size of database chunks. If a database is divided into smaller chunks,

the required memory decreases proportionally. However, it decreases search speed; con-

sequently, the computation time for protein sequence homology search increases with

the decrease in database chunk size, because the number of clusters increases and the

cache hit ratio in ungapped extension decreases. However, this speed reduction is not

dramatic; as shown in Table 4.11, GHOSTZ search with 128 MB chunks is approx-

imately 12% slower than that with 1 GB chunks. Therefore, with smaller database
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Table 4.9: The relationship between BLASTX parameters and performance. We
changed -threshold, which is the threshold for neighborhood words, to 12 (default),
14, 16, 18, 20, 22, and 24, and -word size, which is the subsequence length for seed
search, to 3 (default), 4, 5, 6, and 7. The columns show -threshold, -word size, search
sensitivity, and computation time. When the parameters were “-threshold 12 -word size
” and “-threshold 12 -word size 7”, BLASTX required > 96 hours, and we were unable
to measure the computing time under these conditions.

-threshold -word size Search sensitivity Computation time (sec.)
12 (default) 3 (default) 0.94 132450.0

12 4 0.94 182071.8
12 5 0.94 298595.0
12 6 N/A N/A
12 7 N/A N/A
14 3 0.94 41032.6
14 4 0.94 65636.3
14 5 0.94 126303.4
14 6 0.94 264059.3
14 7 0.94 217667.0
16 3 0.94 26589.0
16 4 0.94 27609.1
16 5 0.94 58431.0
16 6 0.94 109505.2
16 7 0.94 106926.1
18 3 0.93 106926.1
18 4 0.92 12434.9
18 5 0.94 12434.9
18 6 0.94 47378.5
18 7 0.94 42263.1
20 3 0.93 22920.8
20 4 0.88 6610.6
20 5 0.93 13458.9
20 6 0.94 22860.9
20 7 0.93 22241.0

chunks, GHOSTZ is executable even on a regular PC.
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Table 4.10: Memory usage for database construction and protein sequence homology
search with various database chunk sizes. The columns show the size of database
chunks, memory required for constructing the index (GB), and memory required for
the protein sequence homology search (GB). We searched the KEGG GENES (3.9 GB)
database.

Tool (chunk size)
Memory size

for constructing index (GB)
Memory size for protein

sequence homology search (GB)
GHOSTZ (128 MB) 5.4 1.4
GHOSTZ (256 MB) 10.1 2.2
GHOSTZ (512 MB) 21.0 3.8
GHOSTZ (1 GB) 41.0 6.7
RAPSearch 6.9 4.1

Table 4.11: Computation time for database construction and protein sequence homol-
ogy search with various database chunk sizes. The columns show the size of database
chunks, computation time, and processing speed relative to GHOSTZ using 1 GB
database chunks. We se arched the KEGG GENES (3.9 GB) database.

Tool (chunk size) Computation time (sec.) Acceleration ratio
GHOSTZ (128 MB) 545.2 0.88
GHOSTZ (256 MB) 488.2 0.94
GHOSTZ (512 MB) 479.1 0.96
GHOSTZ (1 GB) 460.8 1.00
RAPSearch 1285.5 0.35

4.4 Discussion

In the evaluation experiment, GHOSTZ demonstrated an approximately two-fold

increase in speed compared to GHOSTZ without clustering, which can be probably

attributed to the reduction in the number of ungapped extensions. To validate this

hypothesis, we compared the total number of ungapped extensions required by each

method. In the database subsequence clustering, similarity filtering requires comput-

ing time comparable to that for ungapped extension; therefore, we added the number

of similarity filtering steps to that of ungapped extensions and found that the num-

ber of ungapped extensions could be reduced to approximately one-third of the origi-

nal using database subsequence clustering. To evaluate the performance of similarity
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Table 4.12: Computation time of seed search, similarity filtering, ungapped extension,
and gapped extension. Computation time for each step as the percentage of total
computation time is shown in brackets.

GHOSTZ
GHOSTZ

without clustering GHOSTX BLASTX
Seed search 42.2 (8%) 104.2 (11%) 298.6 (34%) 115173.0 (80%)
Similarity filtering 28.8 (10%) - - -
Ungapped extension 236.8 (46%) 590.0 (60%) 104.7 (12%) 19768.5 (14%)
Gapped extension 159.6 (31%) 255.4 (26%) 425.9 (48%) 5873.3 (4%)
Others 47.4 (9%) 36.5 (4%) 53.2 (4%) 2435.2 (2%)
Total computation time 514.8 (100%) 986.1 (100%) 882.5 (100%) 143250.0 (100%)

filtering, we obtained the execution profiles of BLASTX, GHOSTX, GHOSTZ, and

GHOSTZ without clustering. Seed search, similarity filtering, ungapped extension,

and gapped extension of GHOSTX, GHOSTZ, and GHOSTZ without clustering were

not used in inline expansion to obtain execution profile. These execution profiles were

obtained from the calculation using 10,000 short DNA reads in SRR407548 as queries

and KEGG GENES as a database. Table 4.12 shows execution profiles of GHOSTZ,

GHOSTZ, GHOSTZ without clustering, and BLASTX. The seed search of GHOSTZ

and GHOSTZ without clustering was faster than that of GHOSTX, because GHOSTZ

and GHOSTZ without clustering used hash tables. In addition, ungapped extension

of GHOSTZ was faster than that of GHOSTZ without clustering because of similar-

ity filtering. Currently, ungapped extension is one of the primary bottlenecks in fast

protein sequence homology searches. Thus, we consider that this effective decrease

in ungapped extensions contributes to a significant increase in search speed observed

when subsequence clustering for protein sequence homology searches is used.

GHOSTZ allows database indexes to be constructed anew, so that the users who

need to consider other parameters can employ this method. The construction of the

indexes for a 1 GB database requires approximately three hours of computation time.

However, when a large number of DNA reads obtained using NGS are to be processed,

the computation time for protein sequence homology searches is generally much longer

than that required for database construction. Therefore, we think that in practice, the

computational time spent in rebuilding database indexes and clustering is not likely to

be a problem.

To further reduce the number of ungapped extensions, other clustering methods may
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be effective. However, the ungapped extension step takes about 46% of total time and,

therefore, acceleration of only this step is insufficient to significantly increase search

speed.

4.5 Summary

We developed a new protein sequence homology search algorithm with subsequence

clustering, where we reduced the number of ungapped alignment extensions by clus-

tering subsequences in a database and achieved a two-fold increase in processing speed

without reduction in search sensitivity. The algorithm was designed for functional

and taxonomic annotations in metagenomic analysis. The proposed database subse-

quence clustering method could also be useful in proteomics requiring a large number

of sequence protein sequence homology searches.





Chapter 5

A GPU-Accelerated Protein

Sequence Homology Search

5.1 Introduction

To improve the performance of protein sequence homology search, we developed two

algorithms. However, it has limits to increase the acceleration. Therefore, we used

GPU to improve protein sequence homology search.

In this study, we developed a protein sequence homology search algorithm suitable

for GPU calculation and implemented it on GPUs, called GHOSTM. It accepts a large

number of short reads produced by a NGS as the input and, like the BLASTX program,

performs DNA sequence homology searches against a protein sequence database. We

used NVIDIA CUDA to implement the GPU computing. The search system demon-

strated a calculation speed that was 130 times faster with one GPU than BLASTX on a

CPU. This system should enable researchers to analyze large amounts of metagenomic

data from NGSs, even with a small-scale workstation.

5.2 General-Purpose Computing on Graphics Pro-

cessing Units (GPGPU)

GPUs are architectures that were originally designed for graphics applications. How-

ever, new-generation GPUs have been transformed into powerful co-processors for gen-

eral purpose computing, and their computational power supersedes that of CPUs.

GPUs have already been used for several bioinformatics applications, such as CUD-

67
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ASW++ [31, 32, 33] and GPU-HMMER [55]. These applications have successfully

achieved more than a 5-fold increase in acceleration compared to their CPU-based

counterparts. Using GPUs, the BLASTP program was also accelerated to create new

applications, known as GPU-BLAST [54] and CUDA-BLASTP [30]. BLASTP per-

forms protein versus protein sequence searches, whereas BLASTX conducts a trans-

lated DNA sequence search against a protein database with automatic translation of

the query sequence into all six of the possible reading frames. However, the calcula-

tion speed of CUDA-BLASTP was only approximately 10 times faster than BLASTP

on the CPU platform, and GPU-BLAST was only approximately 3 times faster. The

small increase in speed was likely related to the BLAST search algorithm being com-

plicated and inefficient when implemented on GPUs. Therefore, a new and efficient

search algorithm optimized for GPU calculations is required.

5.3 Methods

Our protein sequence homology search tool was mainly composed of three compo-

nents, as shown in Fig. 5.1. The first component searched the candidate alignment

positions for a sequence from the database using the indexes. The second component

calculated local alignments around the candidate positions using the Gotoh algorithm

[17] for calculating the alignment scores. Finally, the third component sorted the align-

ment scores and output the search results

5.3.1 Construction of Database Indexes

Before searching a database, the indexes for all of the database sequences were con-

structed. All of the sequences in the database were connected to inserting delimiters

to transform them into several long sequences. Index keys were generated for every

offset of a k-mer, which is a k length sequence, in a database sequence. The position at

which each key appeared was stored in the order in which it appeared in the database.

For large database, the sequences in the databases were divided into several chunks

because of the limitation of memory space. In a search process, the system searches

for homologues for each database chunk by switching them and then merges the search

results. GHOSTM automatically divides a database into chunks according to the upper

limit of the database chunk size specified by the user.
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Figure 5.1: Data flow and processing within GHOSTM.

5.3.2 Search for Candidate Alignment Positions

The DNA query sequences were initially translated into protein sequences in all of the

six open reading frames. GHOSTM uses the same method to translate DNA sequence

as BLASTX.

The index keys of protein sequences were generated in the same way as the database

indexes but with s character skips. These skips reduce the calculation cost at the ex-

pense of search sensitivity in the candidate search component. For confirming matches,

a database sequence was first divided into regions of size r, and the key of each query

was compared with the keys of the database sequences. If more than a threshold num-

ber t of keys matched in a region and the right adjacent region, the position was stored

as a candidate alignment. Fig. 5.2 shows an example of a search result in which three

candidate positions were reported with a threshold of t = 2.

5.3.3 Local Alignment

After searching for sequence alignment positions, optimal sequence local alignment

was performed for the region around each candidate position using the Gotoh algorithm,

and the alignment score for each candidate position was calculated. When calculating
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Figure 5.2: Search for candidate alignments.

Figure 5.3: Calculation of an alignment in the region around a candidate position.

the local alignment, we restricted the alignment target of a database sequence to a

small region of size m + 2r + 2e, where m was the length of the query and e was the

extension width of an alignment region, as illustrated in Fig. 5.3.
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5.3.4 Mapping to GPUs

Both the candidate search and local alignment components required a large amount

of computing time. Therefore, we processed queries on both components in parallel and

mapped them onto GPUs. Thus, multiple queries were simultaneously processed on

different GPU cores. We used NVIDIA CUDA 2.2 to implement the GPU computing

and mapped the two different calculation components as the two kernel functions.

The GPU computing program has several limitations, even with the use of current

GPUs and CUDA. Thus, we introduced some techniques to our implementation. First,

because it was impossible to access the host memory during GPU execution, the calcu-

lation results had to be stored to memory on a GPU. However, the size of the memory

on a GPU is limited, and the global memory, which is the largest on a GPU, is also

used for storing query sequences, database sequences and indexes. Furthermore, we

could not know, a priori, the number of candidates and the size of the results to be

stored when we generated a candidate for a large number of queries. Consequently,

the storage of the results often failed because of the shortage of GPU memory. To

overcome this problem, we first counted the number of candidates at the alignment

position and then divided the queries into subqueries, whose results could be stored in

the global memory of the GPU.

For the implementation of local alignment, a GPU-accelerated Gotoh algorithm

has already been proposed [31, 32, 33]. However, this implementation was designed

for alignments between long sequences and required the synchronization of multiple

threads. Shorter sequences require more frequent synchronizations, which slows the

calculation. Thus, in our proposed system, a thread was assigned to each candidate

alignment position, and the synchronization among threads was removed. In the align-

ment process, all of the threads randomly and frequently accessed the scoring matrix.

Thus, the matrix data were stored on the texture memory of a GPU because the access

speed was much faster than the global memory of a GPU.

To utilize GPUs with CUDA, we must decide the number of grids, blocks, and

threads. We fixed the number of grids, blocks, and threads to 1, 128, and 256, re-

spectively. We optimized these parameters for the Tesla S1070, which we used. These

parameters do not affect the performance significantly, but they should be optimized

for other types of GPUs to achieve maximum performances.
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5.4 Results

5.4.1 Datasets and Conditions

To evaluate the performance of GHOSTM, we compared its search sensitivity and

computation time with the NCBI BLAST (version 2.2.25+) and BLAT (standalone

package, version 34). We used protein sequences obtained from KEGG GENES as

of November 2010 as the search target database. The number of sequences in the

database was approximately 4,200,000, and the total length of these sequences was

approximately 2,000,000,000 amino acids. We used DNA sequence reads obtained

from a polluted soil metagenome study with Illumina/Solexa sequencing as the DNA

query sequences. We used approximately 6,800,000 high-quality reads selected from

approximately 20,000,000 reads that were obtained from the Illumina/Solexa sequence

run. We selected reads that had a quality score greater than 15 (Q15 or over) over

a continuous region of more than 60 bp. Thus, the lengths of the reads ranged from

60 to 75 bp. For all of the evaluations, we used the BLOSUM62 as the score matrix

and performed all of the tests on a workstation with two dual core CPUs (3.2 GHz

Dual-Core AMD Opteron 2224 SE) and a GPU server (1.44 GHz Tesla S1070), which

included 4 GPUs.

5.4.2 Evaluation of Computation Time

We ran GHOSTM, BLASTX, and BLAT to measure their computation times. For

comparing BLAT with GHOSTM, we used all of the 6,800,000 reads as query se-

quences. However, we used only 100,000 randomly selected reads as query sequences

for comparing GHOSTM with BLASTX because the calculation cost of BLASTX is

too excessive to perform millions of reads. As previously described, the queries were

DNA reads, and the database was composed of protein sequences; thus, we executed

the BLASTX program with the command line options “-outfmt 6 -seg no”, which in-

structed the program to output in tabular format. We did not use the SEG filter [57]

because BLASTX sometimes fails to find significant hits with this filtering for short

queries. We tested BLASTX with 1 thread and 4 threads. The BLAT program does

not include a function to translate DNA reads to protein sequences. Therefore, we

translated the DNA reads into protein sequences based on the standard codon table.

We executed the BLAT program with the command line option “-q=prot -t=prot -

out=blast8”, which instructed the program to use protein queries as well as a protein

database and to output data in the BLASTX tabular format. The BLAT program does
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Table 5.1: Computation time for 100,000 reads. The first, second, third, and fourth
columns show the name of each program, the number of GPUs used for the calculation,
the computation time, and the acceleration in processing speed relative to BLASTX
using 1 thread, respectively.

Computation time (sec.) Acceleration ratio
GHOSTM (1 GPU) 2,855 129.5
GHOSTM (4 GPUs) 909 406.7
BLAT 9,898 37.3
BLASTX (1 thread) 369,678 1.0
BLASTX (4 threads) 102,255 3.6

not support a multi-core processor. Thus, we executed the BLAT with only 1 thread.

For GHOSTM, we used the command line options “db -k 4 -l 128” for constructing

database indexes: the length of the search seeds was k = 4, and the size of a database

chunk was 128 Mbp. Using these parameters, GHOSTM generated 16 database chunks

for the KEGG GENES database. The command line options “aln -l 128 -s 2 -r 4 -e

2 -t 2” were used for the search process, with character skips at s = 2, search region

size at r = 4, extension size at e = 2, and the number of required matches at t = 2.

We determined these parameters based on the balance between the prediction sensi-

tivity and computational time. The performance of GHOSTM with other parameters

is discussed in the following section.

Table 5.1 shows the computational times for BLASTX, BLAT, and GHOSTM for

100,000 reads. The GHOSTM program achieved a calculation speed 129.5 and 35.8

times faster than the BLASTX using 1 thread and 4 threads, respectively. Moreover,

GHOSTM was approximately 3.4 times faster than BLAT. In addition, GHOSTM

implemented on a system with 4 GPUs showed a processing acceleration that was 406.7

and 112.5 times faster than the computational speed of BLASTX using 1 thread and 4

threads, respectively. Thus, GHOSTM implemented on a system with 4 GPUs showed

an acceleration that was approximately 3.1 times greater than the speed achieved using

a single GPU.

Table 5.2 shows the computational times required for BLAT and GHOSTM to ana-

lyze the 6,800,000 reads. The GHOSTM program was 4.2 times faster than the BLAT

program. Moreover, GHOSTM implemented on a system with 4 GPUs showed a pro-

cessing acceleration that was 14.6 times faster than BLAT. GHOSTM on a4 GPUs

system was 3.5 times faster than the 1 GPU system for the 6,800,000 reads, while the
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Table 5.2: Computation time for approximately 6,800,000 reads. The first, second,
third, and fourth columns show the name of each program, the number of GPUs used
for the calculation, the computation time, and the fold increase in the acceleration in
the processing speed relative to BLAT, respectively.

Computation time (sec.) Acceleration ratio
GHOSTM (1 GPU) 166,740 4.2
GHOSTM (4 GPUs) 47,995 14.6
BLAT 699,300 1.0

increase in speed with 4 GPUs was approximately 3.1 for the 100,000 reads.

5.4.3 Evaluation of Search Sensitivity

To evaluate the search sensitivity, we used the search results obtained with SSEARCH,

and these results were assumed to be the correct answers. We analyzed the performance

of a particular method in terms of the fraction of its results that corresponded to the

correct answers obtained by SSEARCH.

For this analysis, we used only 10,000 randomly selected reads because the calculation

cost of the local alignment by SSEARCH was excessive. We translated the DNA reads

into protein sequences in the same manner used for the evaluation of the computation

time with BLAT because SSEARCH does not have a translation function. For these

protein sequences, we executed the BLASTP program with the command line options

“-outfmt 6 -seg no -comp based stats 0”. We did not use composition-based statistics

[6] because this method was not employed in the default configuration of BLASTX. We

also did not use the SEG filter. For GHOSTM and BLAT, we used the same command

line options that were used for the evaluation of the computation time.

Fig. 5.4 shows the evaluation of the results of the search sensitivity. The search

sensitivity of GHOSTM was clearly higher than BLAT. However, the sensitivity of

GHOSTM was lower than BLASTP, especially for those hits whose scores were below

40. However, low-scoring hits (e.g., < 50) are generally not used in practice because

such hits can occur by chance. With the exception of the low-score hits, GHOSTM

successfully identified more than 90% of the hits identified by SSEARCH. This result

suggests that GHOSTM is sufficiently accurate for general usage.
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Figure 5.4: Search sensitivity. The vertical axis shows the percentage of results for
each method that corresponds to the correct answers. The horizontal axis shows the
bit scores of the alignments.
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5.4.4 Relationships between Search Parameters and Their Sen-

sitivity and Computation Time

To determine the relationships between search parameters and their sensitivity and

computation time, we executed GHOSTM by changing one of its parameters from

default to different values and measured the computation time and search sensitivity.

To evaluate the search sensitivity and computation time, we used the same method used

for comparing BLASTX, BLAT and GHOSTM. We tested the following parameters

and compared their computation times: k = 3, 4, and 5; s = 2, 3, and 4; r = 2, 4, and

8; e = 0, 2, and 4; and t = 1, 2, and 3.

Fig. 5.5 and 5.6 show the acceleration in processing speed relative to GHOSTM with

default parameters for different search regions size r and extension size e. As shown in

the figure, search region size and extension size do not significantly change the search

sensitivity and computation time. However, other parameters, including the length of

the search seed k, character skips s, and the number of required matches t, significantly

change the performance. Using k = 5, s = 4, or t = 3, the acceleration of BLASTX

increases to 931.2, 329.5, and 239.6, respectively (Figs. 5.7A, 5.8A and 5.9A). However,

the search accuracies decrease to levels similar to BLAT (Figs. 5.7B, 5.8B and 5.9B).

With these parameters, GHOSTM often fails to find search seeds, including significant

hits, which causes this low search sensitivity. We believe that these search accuracies

are insufficient for metagenomic analysis; thus, we did not use these settings as default

settings. GHOSTM with k = 3, s = 1, or t = 1 shows good search sensitivity that

is comparable with BLASTX (Figs. 5.7B, 5.8B and 5.9B.). However, the calculation

speed is slower, and the acceleration of BLASTX with 1 thread is 5.2, 22.2, and 5.2,

respectively (Figs. 5.7A, 5.8A and 5.9A). These accelerations are smaller than BLAT;

thus, we did not use these parameters as default settings.

5.5 Discussion

GHOSTM clearly outperformed BLASTX in reducing the computation time for con-

ducting protein sequence homology searches. The reason for the acceleration in compu-

tation time was that the system simultaneously processed multiple queries on different

GPU cores (the Tesla S1070 has 240 cores per GPU). Importantly, the GPU system

requires a sufficient number of queries, and in fact, when using only one query se-

quence, the calculation of GHOSTM becomes much slower than BLASTX. Table 5.3

shows the relationship between the number of query sequences and the acceleration
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Figure 5.5: The relationships between search speed and sensitivity and the search
region size r. (A) The acceleration in processing speed relative to BLASTX using 1
thread and (B) search sensitivity.

Figure 5.6: The relationships between search speed and sensitivity and the extension
size e. (A) The acceleration of processing speed relative to BLASTX using 1 thread
and (B) search sensitivity.
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Figure 5.7: The relationships between search speed and sensitivity and the length of
search seeds k. (A) The acceleration of processing speed relative to BLASTX using 1
thread and (B) search sensitivity.

Figure 5.8: The relationships between search speed and sensitivity and the character
skips s. (A) The acceleration of processing speed relative to BLASTX using 1 thread
and (B) search sensitivity.
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Figure 5.9: The relationships between search speed and sensitivity and the number
of required matches t. (A) The acceleration of processing speed relative to BLASTX
using 1 thread and (B) search sensitivity.

Table 5.3: Computation time and acceleration of GHOSTM on a 1 GPU system relative
to BLASTX for different query numbers.

#queries GHOSTM (sec.) BLASTX (sec.) Acceleration ratio
1,000 213 4,180 19.6
10,000 422 37,167 88.0
100,000 2,855 369,678 129.5

in computation time. This result explains why GHOSTM on a system with 4 GPUs

achieved a calculation speed that was only 3.1 times faster than GHOSTM on a sys-

tem with 1 GPU for the small query set. However, the calculation speed of GHOSTM

on a 4 GPUs system was approximately 3.5 times faster than the speed obtained on

the 1 GPU system when the number of queries was sufficient, as shown for 6,800,000

reads. Thus, we suggest that the acceleration of GHOSTM will increase almost linearly

as a function of the number of GPUs in practical situations in metagenomic analysis

projects comprising hundreds of millions of reads.

In addition to the number of queries, GHOSTM had another restriction because it

assumed that the length of all of the queries was approximately the same. For calcu-

lating the local alignment of each query, GHOSTM takes a GPU memory allocation

plan according to the length of the longest query. Once GPU memory is allocated
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according to the maximum memory consumption case at first, GHOSTM can reuse the

allocated space until the end of calculation, with avoiding overhead of GPU memory

re-allocation. Thus, if the lengths of the queries were markedly different, GHOSTM

required too much memory, which decreased the number of queries that GHOSTM

could process concurrently. However, the number of reads from NGSs is large, and the

lengths of the reads are approximately the same. Therefore, these two restrictions are

generally satisfied, and we predict that they will have little impact on the calculation

speed of GHOSTM.

5.6 Summary

We developed a GPU-optimized algorithm to perform sensitive protein sequence

homology searches and implemented the system as GHOSTM. Currently, sequencing

technology continues to improve, and sequencers are increasingly producing larger and

larger quantities of data. This explosion of sequence data makes computational analysis

with contemporary tools more difficult. We developed GHOSTM, which is a cost-

efficient tool, and offer this tool as a potential solution to this problem.



Chapter 6

A Protein Sequence Homology

Searches with Clustering

Subsequences Technique on GPUs

6.1 Introduction

GHOSTM enabled us to perform fast protein sequence homology search using GPUs.

However, the analysis of large metagenomic data, a faster protein sequence homology

search tool is still required. To accelerate protein sequence homology search, we devel-

oped a GHOSTZ-based protein sequence homology search algorithm with GPUs and

designated it as GHOSTZ-GPU.

GHOSTZ has several bottlenecks. Table 6.1 shows the proportion of calculation

time required for each step of GHOSTZ. The ungapped extension step takes most

(46.0%) of total calculation time. However, mapping of ungapped extension to GPUs

is insufficient to significantly improve search speed, because the other steps such as

distance calculation and gapped extension also consume considerable time. To improve

search speed with the GPUs, the mapping of these steps, including distance calculation,

ungapped extension, and gapped extension, onto the GPUs is obviously critical for

achieving significant process acceleration.

For GPU implementation, we used NVIDIA CUDA 6.0. A current computing system

often has multiple CPU cores and multiple GPU cards in a computing node; thus, it

is important to fully exploit such a computing environment. Therefore, we targeted a

computing node with multiple CPU cores and multiple GPU cards.

81
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Table 6.1: The execution profile of GHOSTZ calculation on 1 thread. This profile was
obtained by the calculation using 10,000 randomly selected short DNA reads in soil
microbiome metagenomic sequences (accession number, SRR407548, read length = 150
bp) as queries and the KEGG GENES (released May 2013) as a database. The profile
was obtained on a workstation with a 2.93 GHz Intel Xeon 5670 processor and 54
GB memory. GHOSTZ is compiled by GCC (version 4.3.4) with the -O3 optimization
option. To obtain the profile, the functions of distance calculation, ungapped extension,
and gapped extension were not inlined.

CPU time (sec.) Ratio (%)
Distance calculation 28.9 5.6
Ungapped Extension 236.8 46.0
Gapped Extension 159.6 31.0
Others 89.4 17.4
Total 514.8 100.0

6.2 Methods

The flow of GHOSTZ-GPU is shown in Fig. 6.1. We mapped the following steps

of GHOSTZ algorithm to the GPUs: distance calculation, ungapped extension, and

gapped extension. CUDA programs contain functions performed on the GPU called a

kernel. Kernels represent operations launched by a single CPU thread and are invoked

as a set of concurrently executing threads on the GPU. These threads are organized in

a hierarchy consisting of thread blocks and grids. A thread block is a set of concurrent

threads and a grid is a set of independent thread blocks. CUDA uses several memories

such as global memory, local memory, shared memory, and register. Global memory

is used for communication between the CPU and GPU. Local memory stores local

variables of a thread, if registers are not used. Although global and local memories are

larger than the other GPU memories, the accesses to these memories are slow. There-

fore, it is important for GPU calculations to reduce the number of accesses to these

memories. It is often achieved by using shared memory, which is smaller than global

and local memories and the access is faster; this memory is also used for communica-

tion among threads in a block. Distance calculation, ungapped extension, and gapped

extension in GHOSTZ require access to sequence data in global memory. Therefore,

GHOSTZ-GPU is optimized for the efficient access to the data stored in global memory

on the GPU. Moreover, we reduced the computation time required for synchronization
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Figure 6.1: The flow of GHOSTZ-GPU. The green boxes are steps to be mapped into
the GPU.

to provide full use of such a computing environment. This is achieved via reduction

of inactive threads in gapped extension and usage of asynchronous executions on the

CPU and GPU implemented in GHOSTZ-GPU.

6.2.1 Distance Calculation

Distance calculation is a part of similarity filtering. The inputs of distance calculation

are query sequences, database sequences, a reduced amino acid alphabet, and start

positions of subsequences. Each distance calculation is performed independently by

different threads on the GPU. However, when each thread calculates different distances

in a block, the access to query or database memory occurs randomly in each step. To

fully utilize GPU efficiency, it is important to limit random accesses to global memory.

To achieve this, we used two approaches: vectorized memory access and group memory

access.

In GHOSTZ-GPU, character size in protein sequence is 5 bits, because the size

of protein alphabet is 20. Therefore, 8 bits of memory is enough for one character

in protein sequence. However, if 8 bits are used, multiple global memory accesses

are required for protein sequence. To reduce the number of global memory accesses,

larger-size memories (32 or 64 bit) are often used. In CUDA programming, such an
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Figure 6.2: The examples of accessing sequence data. A) An example of accessing
sequence data without group memory access. B) An example of accessing sequence
data with group memory access.
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approach is generally called vectorized memory access. When we use this method, the

accessed data have to be assigned to a consecutive region in global memory. Let w be

the number of characters for a single access and L be the length of sequence to compute

distance and also the length of subsequence for clustering. By this memory access, the

maximum number of global memory accesses is ⌈(L + w − 1)/w⌉. In GHOSTZ-GPU,

sequence data are allocated to consecutive global memory regions; therefore, we can use

vectorized memory for accessing sequence data. GHOSTZ-GPU uses L = 10 and 64

bit access for protein sequence; in this case, w is 12. Therefore, the maximum number

of global memory accesses is reduced by 1/5.

Moreover, to accelerate global memory access, we propose group memory access. As

described above, sequence data were assigned to a consecutive region. We required up

to ⌈(L+w−1)/w⌉ global memory accesses for each sequence data for different distance

calculation by vectorized memory access. To reduce the number of accesses, we divided

threads in a block into smaller groups to use coalesced memory access for sequence

data. When the threads in a block access the same region in global memory, these

memory accesses are often coalesced into a single transaction. It is called coalescing

memory access. Therefore, when the threads in a group access consecutive region in

global memory, coalescing memory access is used for these accesses and decrease the

number of global memory accesses. Examples of memory access without and with

coalescing are shown in Fig. 6.2. For group memory access, we used shared memory

for temporarily storage of sequence data and for communication among threads in a

group. GHOSTZ uses L = 10. The size of a character in the GPU is 5 bits; therefore,

when GHSOTZ-GPU uses 64 bit memory access, w is 12. In this case, the number

of memory accesses required without and with group memory access is two and one,

respectively.

6.2.2 Ungapped Extension

Each ungapped extension is performed independently by different threads on the

GPU. The calculation of ungapped extension requires the following six parameters:

seed, query ID, query sequence, database sequence, X-dropoff value, and score scheme.

Among them, query sequence, database sequences, X-dropoff value, and score scheme

parameters are used in any ungapped extension calculation, and are, therefore, stored

constantly in global memory. The other data, i.e., seed and query ID, are sent to the

GPU before performing each ungapped extension. After each ungapped extension, the

extension score is also sent to the CPU. However, the number of ungapped extensions
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in GHOSTZ is large and requires long computation time for data transfer. To reduce

the amount of data transferred between the CPU and GPU, we used two approaches,

setting query data on the GPU and sending only the next-step flag instead of ungapped

extension score.

The data sent to the GPU for ungapped extension are seeds consisting of start

positions for query and database subsequences, and query IDs. The data on queries

are larger than those on the database; therefore, GHOSTZ-GPU reduces query data

to be transferred to the GPU. In GHOSTZ seed search, the database is represented

by an outer loop and query is represented by an inner loop to optimize memory access

in ungapped extension in Fig. 4.7 in Section 4.2.2. These loops are exchanged in

GHOSTZ-GPU because the same query data in seeds are repeated in the list of seeds.

Therefore, only query positions and their repeat counts in hash tables are required to

be sent to the GPU. Using these data, start positions of query subsequences and query

IDs are set on the GPU. As the size of query hash tables is smaller than that of query

subsequence start positions and query IDs, the total data transferred to the GPU are

decreased.

Moreover, to reduce the size of transferred data, a flag indicating that the seed is

taken to the next step is sent instead of the ungapped extension score. The score

of ungapped extension is used to determine whether the process goes to the next

step; therefore, this selection is performed on the GPU and only the result is sent to

the CPU. To make this decision, thresholds are required and they are sent to GPU

before ungapped extensions. The total size of these thresholds is smaller than that of

ungapped extension scores, thus reducing the data transferred to the GPU.

Vectorized memory access and group memory access are also effective in ungapped

extension. However, because X-dropoff is used in this calculation, the length of align-

ment in ungapped extension is not preliminarily determined. Therefore, in GHOSTZ-

GPU, the number of group members is four. If the length used in ungapped extension is

more than four, GHOSTZ-GPU uses only vectorized memory access for the remaining

sequence data.

6.2.3 Gapped Extension

Ungapped extension excludes useless seeds produced by seed search and similarity

filtering. Then, similar nearby seeds are brought together by a chain filter. Finally,

these seeds are extended with gaps in gapped extension. In gapped extension, GHOSTZ

employs X-dropoff the same way as does BLAST [5]. By using an appropriate X-
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dropoff value, we can save time to compute gapped extension. Each gapped extension

is performed independently; therefore, these calculations are done by different threads

on the GPU. However, the computation time of gapped extension for each seed is

different. Several threads in a block must execute the same instruction at any given

time, which results in branch divergence. For example, when some threads in a block

run at “if” instruction, they split in two for the branch, and all paths are executed

sequentially, even though each thread executes only one paths. When threads run at

“while” instruction, they wait for other thread executions to end. Branch divergence

causes an increase of inactive threads on the GPU and extends computation time.

Therefore, branch divergence should be reduced. The primary cause of the problem

is size difference among S, I, and D in gapped extensions. The order of calculating

gapped extension in GHOSTZ is shown in Fig. 6.3A. In gapped extension, query

sequence length is represented by the inner loop. Query length affects computing

time more than database sequence length. For better load balancing, GHOSTZ-GPU

sorts seeds by query length and then assigns a seed to a thread on the GPU in order.

Therefore, in GHOSTZ-GPU, the computation times of gapped extensions are sorted.

In gapped extension, global memory access consumes a large portion of total com-

putation time. Therefore, vectorized and group memory accesses are used in gapped

extension. However, accessing alignment matrices in gap extensions, S, I and D, also

takes significant computation time. When only the gapped alignment score is calcu-

lated, we do not need to store all data in these matrices, because not all data are

required to compute S[i, j], I[i, j] and D[i, j]. Thus, GHOSTZ-GPU only stores previ-

ous columns of S and I in local memory. The length of S and I columns depends on

query length and is generally short in current metagenomic analysis. However, accesses

to local memory in the GPU are slower than those to register or shared memory. For

accelerating gapped extension process, a reduction in the number of accesses to local

memory is required. Therefore, to compute gapped extension we used shared mem-

ory and added another loop for calculating gapped extension. The calculation flow is

shown in Fig. 6.3. The additional loop is short and requires small memory, which

can be assigned to shared memory. The loop length is four in GHOSTZ-GPU. The

shared memory in gapped extension is reused in group memory access. Therefore, an

additional shared memory allocation for this loop is not needed.
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Figure 6.3: The examples of gapped extension on the GPU. A) An example of accessing
sequence data without the short loop. B) An example of gapped extension with the
short loop.
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6.2.4 Asynchronous Execution on CPU and GPU

To make full use of a computing environment with the GPUs, overlapping between

CPU and GPU calculations is essential. GHOSTZ-GPU divides the process with the

CPU and GPU into two main phases. The first phase consists of seed search, similarity

filtering, and ungapped extension and the second phase includes chain filtering and

gapped extension. Threads on the CPU are calculated independently in each phase.

Each thread on the CPU has different global memory on the GPU. If multiple GPUs

are used, each GPU is assigned to almost the same number of threads on the CPU.

To achieve overlapping between CPU and GPU calculations, each thread on the CPU

applies double buffering technique to CPU and GPU memories, which are used in all

steps on the GPU.

The first phase is shown in Fig. 6.4. Seed search for distance calculation is performed.

Then, distances for similarity filtering are calculated on the GPU. Seed search against

hash table Be is performed on the CPU simultaneously with this GPU calculation,

because this seed search is independent of similarity filtering. If distance calculation

is finished on the GPU, ungapped extension calculation is started on the GPU. If seed

search against Be is finished on the CPU, seed search and similarity filtering for hash

tables Br and Bm are performed on the CPU. Then, the seeds from tables Br and

Bm are built and ungapped extensions for these seeds are performed. This phase is

continued until the process for all query subsequences are complete.

The second phase is shown in Fig. 6.5. Chain filtering is performed on the CPU. If

the memory is filled up with seeds, they are sorted by query length for alignment and

then used to perform gapped extension. This phase is continued until the process for

all seeds is complete.

6.2.5 Optimization of Loading Database

As protein sequence homology search becomes faster by GPU calculation, loading

a database, including indexes, takes a large portion of computation time. Therefore,

GHOSTZ-GPU uses a thread to load database. While the other threads perform

protein sequence homology search against a database chunk, this thread loads the next

database chunk. By this approach, the computation time spent on database loading is

hidden in protein sequence homology search.
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Figure 6.4: The flow of the first phase in GHOSTZ-GPU
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Figure 6.5: The flow of the second phase in GHOSTZ-GPU
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6.3 Results

6.3.1 Datasets and Computing Environment

We evaluated the performance of GHOSTZ-GPU using the same dataset as in Section

4.3 expect the number of queries, because 10,000 randomly selected short DNA reads

represented too small a sample to measure correct computation time. To evaluate

computation time, 1,000,000 randomly selected short DNA reads were used for all

datasets. However, only 10,000 randomly selected short DNA reads from SRR407548

were used to evaluate search sensitivity of GHOSTZ-GPU because of computation cost.

The evaluation tests were performed on the same workstation mentioned in Section 4.3,

which had three NVIDIA Tesla K20X with 6 GB memory.

The parameters of GHOSTZ and GHOSTZ-GPU were the same as in Section 4.3. To

perform GHOSTZ and GHOSTZ-GPU, similar sequences were arranged close to each

other in the database file, based on the results of CD-HIT. Since the optimization of

database loading is also effective for GHOSTZ, we applied this approach to GHOSTZ.

6.3.2 Evaluation of the Acceleration by GPUs

To evaluate acceleration by the GPUs, we ran GHOSTZ-GPU and GHOSTZ using

their default parameters, except for the multithreading option. In this evaluation, we

used only short DNA reads from soil microbiome metagenomic sequences (SRR407548)

as queries. Fig. 6.6 shows computation time for each program with 1, 2, 4, 8, and

12 threads and 1, 2, and 3 GPUs. GHOSTZ and GHOSTZ-GPU with 12 threads

demonstrated the best performance. In addition, with 12 threads, GHOSTZ-GPU

showed an acceleration of approximately 3.9, 6.3, and 7.1 times with 1, 2, and 3 GPUs,

respectively, compared to GHOSTZ.

6.3.3 Evaluation of Search Sensitivity

The search results of GHOSTZ-GPU may be different from those of GHOSTZ be-

cause of the difference in calculation order for cells in S, I, and D in gapped exten-

sion. To evaluate the search sensitivity of GHOSTZ-GPU, we ran GHOSTZ-GPU and

GHOSTZ using their default parameters. In this evaluation, we used only 10,000 short

DNA reads from soil microbiome metagenomic sequences (SRR407548) as queries to

compare with the results of SSEARCH. Search sensitivity was evaluated the same way

as in Section 4.3. We used the single-value search sensitivity calculated as the ra-
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Figure 6.6: Computation times with multithreading of CPU and multi GPUs.
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Table 6.2: Search sensitivity of different search methods for SRR407548 sequence align-
ments against the KEGG GENES database.

Search sensitivity
GHOSTZ 0.86
GHOSTZ-GPU 0.86

tio of correctly searched queries to all queries with the E-values < 1.0 × E−5. The

results for SRR407548 are shown in Table 6.2. The search sensitivity for GHOSTZ-

GPU was approximately equal to that of GHOSTZ. In addition, we compared the

results of GHOSTZ-GPU with those of GHOSTZ. We used 10,000 short reads from

soil microbiome metagenomic sequences (SRR407548) as queries and compared sub-

ject sequences with the highest score in GHOSTZ-GPU with those in GHOSTZ. As a

result, the difference between the results of GHOSTZ-GPU and GHOSTZ is only one

query. Therefore, we believe that GHOSTZ-GPU has search sensitivity sufficient for

most metagenomic applications.

6.3.4 Comparison of the Proposed Search Method with Other

Methods

To further evaluate GHOSTZ-GPU, we compared its computation time with that of

RAPSearch (version 2.12) and GHOSTZ using metagenomic DNA sequences (SRR407548,

SRS011098, and ERR315856) and the KEGG GENES database. The RAPSearch pro-

gram was executed with the default command line options.

The computation times of the tested methods for SRR407548, SRS011098, and

ERR315856 are shown in Table 6.3. Among the software tested with 12 threads,

GHOSTZ-GPU showed the fastest search speed: with 3 GPUs, it demonstrated ap-

proximately 5.1–7.1 and 22.3–39.0 times faster processing compared to GHOSTZ and

RAPSearch, respectively.

6.3.5 Evaluation of Optimizations

To further evaluate GHOSTZ-GPU, we assessed optimization, asynchronous execu-

tion on the CPU and GPU, addition of threads for database loading, group memory

access, and load balancing of gapped extension using 1,000,000 randomly selected short

DNA reads from soil microbiome metagenomic sequences (SRR407548) and the KEGG
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Table 6.3: Computation times for all datasets. We used GHOSTZ-GPU with 3 GPUs;
each tool was used with 12 threads.

SRR407548 (sec.) SRS011098 (sec.) ERR315856 (sec.)
GHOSTZ-GPU (3 GPUs) 561.6 423.8 584.6
GHOSTZ 3995.1 2140.3 3409.5
RAPSearch 21903.6 9719.3 13076.4

Table 6.4: Computation times for SRR40754 reads. We performed GHOSTZ-GPU
without and with optimizations. The increase in processing speed is shown as the ratio
of the time used for GHOSTZ-GPU with optimization to the time used for GHOSTZ-
GPU with previous optimization and GHOSTZ with the thread for database loading.

Computation
time (sec.)

Acceleration ratio
of each optimization

Cumulative
acceleration ratio

GHOSTZ 3995.08 1.0 1.0
+ GPU 1006.0 4.0 4.0
+ Asynchronous execution 838.8 1.2 4.8
+ Loading database thread 617.8 1.4 6.5
+ Group memory access 571.7 1.1 7.0
+ Load balancing 561.6 1.0 7.1

GENES database. GHOSTZ was run with 12 threads and GHOSTZ-GPU with 12

threads and 3 GPUs. GHOSTZ used the thread for database loading. GHOSTZ-GPU

was run without and with each optimization. Acceleration expressed as the ratio of

the time used by GHOSTZ-GPU with optimization to the time used by GHOSTZ with

the thread for database loading is shown in Table 6.4. Each optimization accelerated

GHOSTZ-GPU. The asynchronous execution on the CPU and GPU and additional

thread for database loading provided the most significant increase in speed, indicat-

ing that these optimizations are important for accelerating protein sequence homology

search with the GPU.
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6.4 Discussion

In this work, we mapped distance calculation, ungapped extension, and gapped ex-

tension to the GPU. However, performing these steps on the GPUs resulted in the

remaining steps becoming new bottlenecks. For CPU calculation in GHOSTZ-GPU,

the most time-consuming step was seed search. However, this step overlapped with

distance calculation and ungapped extension on the GPU; therefore, the computation

time for seed search was hidden in that for distance calculation and ungapped extension

on the GPUs. However, in GHOSTZ-GPU, file I/O accounts for a significant portion of

the computing time, suggesting that for the best performance, GHOSTZ-GPU should

process large query data simultaneously. For concurrent processing of large query data,

GHOSTZ-GPU needed larger memory. Thus, when we used 1,000,000 randomly se-

lected short DNA reads from soil microbiome metagenomic sequences (SRR407548) and

the KEGG GENES database, GHOSTZ-GPU and GHOSTZ required approximately

43 GB and 41 GB, respectively, for protein sequence homology search. However, cur-

rent computing systems with multi-GPUs usually have relatively large memory. For

example, the node in TSUBAME 2.5 has at least 54 GB. Therefore, GHOSTZ-GPU

can be run in common multi-GPU environments.

6.5 Summary

We developed GPU-version of GHOSTZ. Distance calculation, ungapped extension,

and gapped extension are the bottlenecks in GHOSTZ. We mapped these processes to

the GPU, and optimized memory access in GPU calculation. GHOSTZ-GPU keeps

sufficient search sensitivity for practical analyses and is 5.1–7.1 times faster than

GHOSTZ. Given that sequencing technology continues to improve and sequence data

for metagenomic analysis are increasing, GHOSTZ-GPU could be useful for circum-

venting these bottlenecks.



Chapter 7

A Large-scale Protein Sequence

Homology Search on Massively

Parallel Computing System

7.1 Introduction

To perform protein sequence homology searches with large amounts of data such as

outputs from large-scale metagenomic projects, an efficient execution in supercomput-

ing environments is critical. In recent years, the field of high performance computing

has been rapidly evolving and we can use powerful supercomputers such as the K com-

puter at the RIKEN Advanced Institute for Computational Science and TSUBAME

2.5 at Tokyo Institute of Technology. Thus, full utilization of large-scale computing

resources makes it possible to comprehensively analyze large metagenomic datasets.

In metagenomics, query sequence data consist of many DNA reads independently

processed for protein sequence homology search, which can be done in parallel. Ide-

ally, parallel search reduces computation time, which is inversely proportional to the

number of computational units. Darling et al. have developed mpiBLAST [8], which

is a parallel implementation of NCBI BLAST with Message Passing Interface (MPI).

mpiBLAST performs parallel query searches using multiple processes in distributed

memory system with multiple CPU cores to reduce search time. However, mpiBLAST

performance is insufficient to execute large-scale analyses, because its protein sequence

homology search algorithm is much slower than most modern algorithms. Therefore, a

faster protein sequence homology search tool operating on massive parallel computing

systems is required. Here, we developed systems to effectively perform GHOSTM and
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GHOSTX on supercomputers.

7.2 A Large-scale Protein Sequence Homology Search

by Using GHOSTM

We developed a large-scale system based on GHOSTM, which allows the analysis

of large metagenomic datasets obtained by NGS in real time by utilizing computa-

tional resources of TSUBAME 2.0. Using this system, we could process metagenomic

information obtained from a single NGS run in a few hours.

For parallel performing of GHOSTM, the system uses Parallel Distributed Shell

(PDSH) [2], an efficient multithreaded remote shell client that simultaneously executes

commands on multiple remote nodes. However, file I/O processes, including database

copying and search result writing, caused contention in TSUBAME 2.0, when many

computation nodes were used. Thus, we employed a sophisticated file transfer process,

when the data were simultaneously copied from a local disk of one node to the others

in a binary-tree manner.

7.2.1 Results

We performed large-scale metagenomic analysis using our system on TSUBAME

2.0. Strong scaling was measured to evaluate scalability limitation by parallelization.

In a strong scaling setup, the number of total query sequences was fixed; therefore,

it evaluated how fast different methods could process the same data amount. The

overview of the computing environment is as follows. TSUBAME 2.0 consists of 1,408

thin compute nodes, each of which has two Intel Xeon Processors X5670 (2.93 GHz, 6

cores) and 54 GB of main memory and is connected with full bisection bandwidth fat-

tree network. Each compute node has three NVIDIA Tesla C2050 GPUs. We used data

sampled from polluted soils and sequenced using NGS. Original metagenomic data had

224,000,000 75-bp DNA reads. After excluding low-quality data, the dataset comprised

71,000,000 DNA reads, which were used to perform protein sequence homology searches

with NCBI nr program (4.2 GB; released April 2011). We evaluated the effectiveness

of system performance with GHOSTM on the GPUs. The results show that with

GHOSTM as a protein sequence homology search program, the system could process

about 60,000,000 reads per hour with 2,520 GPUs (840 computing nodes) (Fig. 7.1).

However, the speed with 2,520 GPUs increased only by 20% compared to that with



7. A Large-scale Protein Sequence Homology Search on Massively Parallel
Computing System 99

Figure 7.1: Speedup of the GHOSTM-based system for the number of GPUs.

1,260 GPUs, because the dataset was too small for 2,560 GPUs and might have caused

load balancing failure. Therefore, linear acceleration may be achieved even with more

than 2,520 GPUs by processing considerably larger amounts of metagenomic data.

7.3 A Large-scale Protein Sequence Homology Search

by Using GHOSTX

We also developed a GHOSTX-based protein sequence homology search tool for

massively parallel computing system, GHOST-MP, which adopted hierarchical paral-

lelization with master-worker model and allowed performing efficient parallel search.

To test the applicability of GHOST-MP to large-scale metagenomic analyses, we mea-

sured search speed and scalability of GHOST-MP on two massively parallel computing

systems, TSUBAME 2.5 and the K computer. GHOST-MP demonstrated faster pro-

tein sequence homology search than the state-of-the-art method, and enabled us to

perform large-scale metagenomic analysis in a short period of time.
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7.3.1 Hierarchical Parallelization of Protein Sequence Homol-

ogy Search with Data Parallelism

GHOST-MP adopts two-level hierarchical parallelization. Protein sequence homol-

ogy search is parallelized by MPI on an inter-node level and by OpenMP on an intra-

node level. Compared with parallelization by only MPI, hierarchical parallelization

has two advantages. First, it significantly reduces memory usage by worker processes,

because it allows sharing common data such as database sequences and indexes on

an intra-node level. The size of database sequences and indexes (an index points to

the corresponding position in concatenated database sequence, and database index

size is the product of concatenated database sequence length) is often too large for

memory size in massively parallel environments. For example, when KEGG GENES

(3.5 GB; released July 2012) is used as a protein sequence database, the total size of

database sequences and its suffix array is approximately 20 GB. If we use MPI both

in inter- and intra-node parallelization, each process has to store the same database

individually even within the same computing node. The nodes of current massively

parallel computing systems rarely contain enough memory to store multiple copies of a

database and its indexes. To reduce memory usage, it is possible to perform database

partitioning and spread each partition over multiple nodes as an alternative approach,

which is, however, inefficient in terms of search speed for two reasons. First, splitting

database requires an additional merge step to integrate search results of the same query

sequence obtained by different nodes to select the most similar hits. Second, searching

for alignment candidates with split database takes longer CPU time than with undi-

vided database, since the computation time of searching for alignment candidates with

a suffix array is proportional to the logarithm of database size. Hierarchical paralleliza-

tion can also lead to scalable parallel search. Since master-worker communication is

implemented by MPI point-to-point communication, parallel search with smaller MPI

reduces the number of master-worker communications compared to non-hierarchical

parallelization (parallelization only with MPI). The details of two-level hierarchical

parallelization with GHOST-MP are as follows. On the inter-node level, GHOST-MP

adopts a master-worker model with communications implemented by MPI. The master

process assigns a task to each worker process and then receives workers’ reports; an

idle worker process would be assigned a new task if available. Each task consists of a

file containing query sequences and is accessed by worker processes through distributed

file system. Each worker process executes protein sequence homology search, reports

to the master process, and then receives the next task. It is required to split query
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Figure 7.2: Schematic view of task distribution and file I/O of GHOST-MP.

sequence files in preprocessing, if the number of files does not exceed that of worker

processes, because a sufficient number of tasks are needed for good parallel efficiency.

Fig. 7.2 shows a schematic view of such task distribution and file I/O. On the intra-

node level, protein sequence homology searches are parallelized with OpenMP. Query

sequences in a file are divided into more fine-grained tasks, which are arranged into a

queue, and each OpenMP thread sequentially dequeues each task by releasing the lock.

7.3.2 Results

Evaluation of search speed and scalability of GHOST-MP on massively par-

allel computing systems

The search speed of GHOST-MP was measured on two systems, TSUBAME 2.5 and

the K computer. Weak scaling and strong scaling were also measured to evaluate scal-
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ability limitations, since speedups achieved by parallelization are limited by sequential

steps. In a weak scaling setup, the number of query sequences per core was fixed as

the number of cores was increased; therefore, it evaluated how a big problem could be

solved efficiently. In a strong scaling setup, the number of total query sequences was

fixed; therefore, it evaluated how fast different methods could process the same data

amount. We compared GHOST-MP with mpiBLAST (version 1.6.0) on TSUBAME

2.5, and also assessed GHOST-MP performance on the K computer as a larger system.

We did not evaluate mpiBLAST performance on the K computer because of bus error,

which could be caused by unaligned memory access, since the K computer processor

does not allow such accesses. The overview of the two computing environments is as

follows. TSUBAME 2.5 at Tokyo Institute of Technology is a supercomputer consisting

of 1,408 thin compute nodes, each of which has two Intel Xeon Processors X5670 (2.93

GHz, 6 cores) and 54 GB of memory, and is connected with full bisection bandwidth

fat-tree network. Each compute node has three NVIDIA Tesla K20X GPUs, which we

did not use. The K computer at the RIKEN Advanced Institute for Computational

Science is a supercomputer consisting of 82,944 compute nodes, each of which has a

SPARC64 VIIIfx processor (2.0 GHz, 8 cores) and 16 GB of memory, and is connected

to 6-dimensional mesh/torus network. We used up to 1,536 CPU cores (128 nodes) and

49,152 CPU cores (6,144 nodes) to measure the scalability of GHOST-MP on TSUB-

AME 2.5 and the K computer, respectively. To evaluate search speed and scalability,

we used tongue dorsum metagenomic sequencing data (accession number, SRS078182)

downloaded from HMP-DACC as queries. This metagenomic database consisted of

approximately 147,000,000 reads and its file was approximately 36 GB; the longest

read was 95 constituting 71.4% of the whole reads. For evaluation on TSUBAME 2.5,

we used only 1,280,000 and 80,000 query sequences for GHOST-MP and mpiBLAST,

respectively, because of limitation of computational resources. The KEGG GENES

database (3.5 GB; released July 2012) was used as reference sequences. Both GHOST-

MP and mpiBLAST performed protein sequence homology search with PAM30 score

matrix, gap opening penalty of −9, and gap extension penalty of −1. Fig. 7.3 shows

the search speed and scalability of GHOST-MP and mpiBLAST on TSUBAME 2.5.

GHOST-MP was approximately 89 times faster than mpiBLAST with 1,536 CPU cores,

because of an efficient alignment candidate search algorithm. In addition, GHOST-MP

demonstrated almost linear scalability, as was the case with mpiBLAST regardless of

its search speed, indicating that serial sections of GHOST-MP such as I/O and schedul-

ing take only a small fraction of computation time compared to a parallelizable protein

sequence homology search section. We further evaluated the scalability of GHOST-MP
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on the K computer to analyze its performance on a larger parallel computing system.

It is generally more difficult to scale well on larger systems, because the master process

has to communicate with more workers. However, GHOST-MP scaled well up to over

10,000 CPU cores in both systems (Fig. 7.4). GHOST-MP took 1.73 hours to process

the whole data with 24,576 cores. This search speed suggests that 100 samples can

be processed within 8 days providing large-scale metagenomic analysis with sensitive

protein sequence homology search. However, the search speed decreased with 24,576

and 49,152 cores in weak and strong scaling, respectively, compared to the ideal. The

decrease of search speed in weak scaling indicates that larger data cannot be processed

efficiently, and such a decrease in strong scaling indicates that no further acceleration

with the increase in computational resources is available. The reason for this perfor-

mance drop seems to be a large number of point-to-point communications from the

workers to the master. To make parallel search more scalable for large-scale analysis,

the reduction in these communications is required. Introducing multiple masters or

sub-masters on the MPI level or collective communication instead of point-to-point

communication may address this problem.

7.4 Summary

For the analysis of metagenomic data obtained by NGS in real time, we devel-

oped a large-scale computing system with GHOSTM, which enabled us to utilize large

computational resources provided by TSUBAME 2.0. We used GHOSTM to analyze

metagenomic data in this system, and show that the system could process about 60

million reads per hour with 2,520 GPUs (840 computing nodes). We also developed

GHOST-MP, a GHOSTX-based massively parallel protein sequence homology search

tool, which performed parallel protein sequence homology search using a two-level hier-

archical model. Combination of sophisticated database indexes and massively parallel

processing allowed fast protein sequence homology search and large-scale metagenomic

analysis. We confirmed the applicability of GHOST-MP to the current large-scale

metagenomic analysis of NGS data by evaluating its search speed using an actual

large metagenomic database. GHOST-MP performed an approximately 89 times faster

search than mpiBLAST and achieved an almost linear speedup with the increase of

CPU cores on TSUBAME 2.5. GHOST-MP also scaled well up to over 10,000 CPU

cores on the K computer. These systems enable us to perform large-scale metagenomic

analysis on a massively parallel computing system.
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Figure 7.3: Scalability of GHOST-MP and mpiBLAST on TSUBAME 2.5.
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Figure 7.4: Scalability of GHOST-MP on K computer.





Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this thesis, we developed protein sequence homology search algorithms that can

be used for metagenomic analysis of constantly accumulating sequence data. In addi-

tion, we increased the speed of our protein sequence homology search algorithms by

using GPU calculation and adapted the tools to modern supercomputing environments.

Based on the results of Chapter 4 and 6, GHOSTZ-GPU on 12 CPU cores and 3 GPUs

is estimated to achieve a 20,000-fold increase in processing speed of BLASTX on 1 CPU

core. The results of GHOST-MP on 8 and 128 nodes in TSUBAME 2.5 described in

Chapter 7 show that week scaling of GHOST-MP is 0.92. Therefore, if we use 60 nodes

on TSUBAME 2.5, GHSOTZ-GPU is estimated to achieve approximately 1,000,000-

fold increase in processing speed compared to BLASTX on 1 CPU core. Moreover, if we

use all nodes on TSUBAME 2.5 (1,408 nodes), GHSOTZ-GPU is estimated to achieve

approximately 26,000,000-fold increase in processing speed compared to BLAST on 1

CPU core. Based on these estimations, we could perform metagenomic analysis of all

data produced by the latest NGS in real time. Below, we describe practical significance

of this work.

8.1.1 Contributions

1. In Chapter 3, we proposed a protein sequence homology search algorithm that

identified similarities between query and database sequences based on the suffix

arrays of these sequences and designated it as GHOSTX. This method uses a

seed search method relying on a similarity-based optimal length. We showed that

GHOSTX could provide approximately 131–165-fold protein sequence homology
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search acceleration compared to BLASTX at similar levels of sensitivity.

2. In Chapter 4, we proposed a protein sequence homology search method based on

database subsequence clustering, and designated it as GHOSTZ. This method

clusters similar subsequences in a database to reduce the number of alignment

candidates based on triangle inequality. This database subsequence clustering ap-

proach provided an approximately two-fold increase in speed without a significant

decrease in search sensitivity. When we measured the performance with metage-

nomic data, GHOSTZ was approximately 213–285 times faster than BLASTX.

3. In Chapter 5, we developed a protein sequence homology search algorithm suit-

able for GPU calculations. We implemented it as a GPU system, and designated

as GHOSTM. GHOSTM first searches for positions of sequence alignment can-

didates in a database using a hash table, and then calculates the scores of local

alignments around the candidate positions before calculating similarity. The sys-

tem with 1 GPU and 4 GPUs performed calculations approximately 130 and 407

times, respectively, faster than BLASTX with 1 CPU core. The system with 1

GPU and 4 GPUs also showed higher search sensitivity and calculation speed,

which was approximately 4 and 15 times higher than that of BLAT with 1 CPU

core.

4. In Chapter 6, we developed a GPU-version of GHOSTZ. Several calculation steps

such as distance calculation, ungapped extension, and gapped extension are the

bottlenecks in GHOSTZ. We mapped these processes to GPU and designated the

algorithm as GHOSTZ-GPU. We optimized memory access in GPU calculation

of GHOSTZ-GPU. In addition, in GHOSTZ-GPU, CPU and GPU calculations

were overlapped to improve utilization efficiency of the CPU and GPU. When we

used the approach with metagenomic data, GHOSTZ-GPU with 12 CPU cores

and 3 GPUs was approximately 5.1–7.1 times faster than GHOSTZ with 12 CPU

cores.

5. In Chapter 7, we developed a large-scale system for analyzing large amounts of

metagenomic sequence data obtained by NGS in real time. We used GHOSTM

to perform such an analysis by utilizing computational resources on TSUBAME

2.0. The system could process about 60 million reads per hour with 2,520 GPUs

(840 computing nodes). In addition, we developed a parallel protein sequence ho-

mology search method to be used on massively parallel computing systems. This

method provided fast protein sequence homology search with database indexes
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and hierarchical parallel search as well as large-scale metagenomic analysis; its

high parallel efficiency and search speed were confirmed on two massively paral-

lel computing systems, TSUBAME 2.5 and the K computer. The method scaled

well up to over 10,000 CPU cores and was approximately 89 times faster than

mpiBLAST.

8.2 Future Work

DNA sequence technology is constantly improving and sequencing costs are gradually

reducing; therefore, many organizations can benefit from this situation. Thus, hospitals

can make use of DNA sequencing technology for diagnostic and prognostic purposes,

and some companies can apply it to monitor environmental changes. To make DNA

sequence data available to these organizations, a smaller size DNA sequencer is being

developed. Wide application of such instrumentation would popularize the use of DNA

sequence information related to the environment such as soil and ocean, and human

body, for constant monitoring and control. However, a comprehensive picture of the

interaction between microbial communities, humans, and environment can be obtained

by analyzing large metagenomic data. Therefore, technologies to store and evaluate

large amounts of sequence data will be required in the future.





Appendix A

Comparison of Search Sensitivity

with Score Based on E-value

A.1 Comparison of Search Sensitivity with Score

Based on E-value

To compare search sensitivity, we used the single-value search sensitivity calculated

as the ratio of correctly searched queries to all queries with the E-values < 1.0× E−5

in Section 4.3.3. We consider the importance of each hit with the E-values < 1.0×E−5

as equal in sensitivity. However, the hits with low E-values are more important than

others; therefore, we also compared search sensitivities with the scores based on the

E-value.

Let e be the E-value. The score based on the E-value s is defined as follows.

s(e) =

− log10 e (e < 1.0× E−5)

0 (otherwise)
(A.1)

We used the sum of s in the correct results to evaluate search sensitivity. A search re-

sult was considered correct when a subject sequence with the highest score in SSEARCH

was the same as a subject sequence obtained by each tool the same way as in Sec-

tion 4.3.3. We compared the sum of s for GHOSTZ, GHOSTX, RAPSearch, BLAT,

BLASTX, and SSEARCH using the same dataset as in Section 4.3.3. Table A.1 shows

the sum of s for each program.
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Table A.1: Total score based on the E-value of SRR407548, SRS011098 and
ERR315856. The ratio of total score of each tool to SSEARCH is in brackets.

SRR407548 SRS011098 ERR315856
GHOSTZ 42070.2 (0.91) 35385.8 (0.99) 43877.9 (0.97)
GHOSTX 41486.7 (0.89) 35307.2 (0.98) 42354.3 (0.97)
RAPSearch 42085.6 (0.91) 35250.2 (0.98) 42613.6 (0.97)
BLAT 28574.0 (0.62) 34194.5 (0.95) 38193.4 (0.87)
BLASTX 44297.9 (0.95) 35065.1 (0.98) 42460.1 (0.97)
SSEARCH 46389.2 (1.00) 35913.0 (1.00) 43877.9 (1.00)

When we compared the sums of s, sensitivity rank was almost equal to Table 4.2.

Therefore, we considered it sufficient for the comparison of search sensitivity using only

the sensitivity calculated as the ratio of correctly searched queries.
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