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TOKYO INSTITUTE OF TECHNOLOGY

Abstract

Graduate School of Information Science and Engineering

Doctor of Science

in

Mathematical and Computing Sciences

by Koichi Shirahata

Fast processing for extremely large-scale data is becoming increasingly important in var-

ious domains such as health care, social networks, system biology, and electric power

grids, which typically consists of millions to trillions of elements. Although supercomput-

ers has accelerated a wide range of applications such as physical simulations, large-scale

data processing is also considered an important application on supercomputers. Recent

supercomputers employ many-core processors such as GPUs in addition to general pur-

pose CPUs, since many-core processors can provide high peak performance and high

memory bandwidth for applications with specific computation patterns.

Although many-core-based supercomputers are possible environments for large-scale

data processing, how to accelerate extremely large-scale data processing with careful con-

sideration of scalability of multiple many-cores and management of deep memory hierar-

chy on many-core-based heterogeneous supercomputers is an open problem. Firstly, the

validity of acceleration, including optimization techniques, of large-scale data processing

using many-cores is an open problem. Also, efficient techniques to handle many-core

memory overflows, including overflow detection and performance analysis in large-scale

systems, are not well investigated.

To address the problem, we propose scalable and hierarchical multi-GPU MapReduce-

based large-scale data processing techniques for GPU-based heterogeneous supercom-

puters. Our implementation applies a number of optimization techniques for improving

scalability such as load balance optimization, as well as thread assignment optimiza-

tion and data compression. Our implementation also handles GPU memory overflow

by applying a technique that automatically divides input data into multiple chunks and

overlaps CPU-GPU data transfer and computation on GPUs as much as possible.

http://www.titech.ac.jp/
http://www.ise.titech.ac.jp/


Our experimental results on TSUBAME2.5 using 1024 nodes (12288 CPU cores, 3072

GPUs) exhibit that our GPU-based implementation performs 2.10x faster than running

on CPU when graph data size does not fit on GPUs. We also see that our implementation

exhibits 186.6 times performance improvement compared with an existing widely used

MapReduce-based graph processing implementation.
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Chapter 1

Introduction

1.1 Motivation

Recent emergence of extremely large-scale data in various application fields, such as

health care, social networks, intelligence, system biology, and electric power grids, which

typically consists of millions to trillions of elements, requires fast and scalable analysis

by using HPC technologies. For example, a friend network in an existing social network

service [4] is expressed as a graph with over 1.31 billion vertices and over 170 billion

edges, and is required to analyze mutual relationships of the graph. Furthermore, these

large-scale graph applications attract recent attention to the Graph500 benchmark [5]

in the HPC community, which ranks supercomputers by executing a large-scale graph

search problem as an instance of data-intensive supercomputing applications. Also,

homology search to be used in emerging bioinformatics problems such as metagenomics

is of increasing importance and challenge as its application area grows more broadly while

the computational complexity is increasing. Required dataset for metagenomic search

consists of queries and database, each of whose size will reach Gigabytes to Terabytes,

and total data size to compute will grow to product of these two datasets (i.e. Exabytes

to Zettabytes).

MapReduce [3] is a successful programing model for efficient, scalable, and massive

data processing with large-scale commodity compute clusters, which conceals elaborate

efforts in distributed systems such as communication between thousands of nodes, data

management for petabyte-scale large data volumes, and fault tolerance. MapReduce is

also applied to graph processing with petabyte-scale data; PEGASUS [6], which is an

Hadoop [7]-based peta-scale graph mining system that employs the GIM-V (Generalized

1
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Iterative Matrix-Vector multiplication) algorithm, has been proposed. GIM-V enables

users to describe important graph algorithms, such as PageRank, Random Walk, and

Connected Component, without any difficulties in distributed systems. Kang et al. [6]

have reported that GIM-V exhibits good scalability in a compute cluster; however,

such CPU-based implementation introduces significant performance overheads when we

increase the size of a graph.

Recent supercomputers employ many-core processors such as commodity graphics pro-

cessing units (GPUs) and Intel Many Integrated Core Architecture (MIC) [8] in addition

to general CPUs, since many-core processors can provide high peak performance and

high memory bandwidth for applications with specific computation patterns, while CPUs

offer flexibility and generality over wide-ranging classes of applications. These super-

computers are called heterogeneous supercomputers since these supercomputers employ

two different types of processors. A large number of heterogeneous supercomputers

have been ranked high order in terms of the TOP500 list [9]. For instance, Tianhe-2

at National Super Computer Center in Guangzhou, China, which employs Intel Xeon

Phi many-core processors ranked 1st in June 2014. As for GPU-based heterogeneous

supercomputers, Titan [10] at Oak Ridge National Laboratory, United States ranked

2nd and TSUBAME2.5 [11] at Tokyo Institute of Technology, Japan ranked 13th. This

tendency is applied not only to HPC supercomputers, but cloud data centers as well.

For example, Amazon EC2 provides Cluster GPU Instances as a GPU-based compute

cluster [12]. In such environments, large-scale graph processing is also considered as an

important kernel application. In practice, several existing GPU-based graph process-

ing techniques have shown that the GPUs accelerate the performance on several graph

applications, such as Breadth-First Search (BFS) [13], PageRank [14], etc.

1.2 Problem Statement

Although utilizing the big data software substrates using MapReduce enables to handle

large-scale data on many-core-based heterogeneous supercomputers, how to accelerate

extremely large-scale data processing with careful consideration of scalability of multiple

many-cores and management of deep memory hierarchy on many-core-based heteroge-

neous supercomputers is an open problem. Firstly, although many-core-based hetero-

geneous compute clusters are also possible environments for large-scale data processing

applications, how much the applications can be accelerated is unclear. Moreover, we

have to consider overflow of graph data from a single many-core memory when applying

the GIM-V algorithm to large-scale data. Using multiple GPU devices may relax the
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overflow situation; however, even in such cases, load balance optimization techniques

between GPU devices are required for efficient execution of the application. How much

utilizing many-cores accelerates for large-scale data processing is a problem worth inves-

tigating. Also, the capacity of device memory on many-cores limits scalable large-scale

data processing, since many-cores typically have smaller memory capacity than the CPU

hosts. For example, the TSUBAME2.5 supercomputer [11] employs 1408 compute nodes,

each of which equips 3 GPU devices and 2 CPU sockets, where the capacity of device

memory on each GPU is 6GB, while that of CPU host memory is 54GB. Thus, in order

to process larger-scale graphs whose size exceeds the capacity of many-core memory,

data management techniques for handling many-core memory overflows are required.

However, such out-of-core many-core data management techniques with detailed perfor-

mance studies for large-scale graph processing are not well investigated. Furthermore,

even if we apply the out-of-core many-core data management techniques, which execu-

tion approaches to use, only the device memory on many-cores (scale-out) or offload

partial graph data to the secondary CPU memory (scale-up) on a multi-node environ-

ment, in terms of graph application’s performance and its power efficiency, is considered

another important issue.

1.3 Proposal

To address the problem, we propose scalable and hierarchical multi-GPU MapReduce-

based large-scale data processing techniques for GPU-based heterogeneous supercomput-

ers. First, we implement a multi-GPU-based GIM-V application with load balance opti-

mization among GPU devices. Our implementation extends the existing MapReduce li-

brary for supporting multi-GPU-environments using the MPI library and optimizes load

balance among GPU devices by employing task scheduling-based graph partitioning. We

also propose an out-of-core GPU memory management technique for GPU-MapReduce-

based graph applications. Our proposed technique automatically handles GPU memory

overflows by dividing graph data into multiple chunks and hides CPU-GPU data trans-

fer overheads by overlapping computations on GPUs and CPU-GPU data transfers. We

also investigate the balance of the scale-up and scale-out approaches, in terms of the

number of GPUs for processing graph data size per node, by comparing application’s

performance and power efficiency. We also implement large-scale data processing appli-

cations including a large-scale graph processing algorithm and a metagenomic homology

search algorithm on top of MapReduce.
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1.4 Contributions

This thesis presents several contributions towards fast and scalable MapReduce-based

large-scale data processing on GPU-based heterogeneous supercomputers. The primary

contributions are as follows:

1.4.1 A Scalable Implementation of a MapReduce-based Graph Pro-

cessing Algorithm on GPUs

We implement a multi-GPU-based GIM-V application with load balance optimization

between GPU devices. We conducted our implementation on the TSUBAME2.0 super-

computer using 256 nodes (6144 hyper-threaded CPU cores, 768 GPU devices). The

results exhibit that our GPU-based implementation performed 87.04 ME/s on 230 (1.07

billion) vertices and 234 (17.2 billion) edges, and 1.52 times faster than the CPU-based

naive implementation with 229 (536.9 million vertices) and 233 (8.6 billion) edges. We

also exhibit the performance characteristics of our implementation and load balance

optimization technique.

Here is a quick summary of contributions of this work:

• We implemented a multi-GPU-based GIM-V application by extending an existing

MapReduce library that supports a single GPU environment.

• We applied load balance optimization between GPU devices for large-scale graphs.

• We studied the performance characteristics of our multi-GPU-based GIM-V im-

plementation and load balance optimization.

1.4.2 Out-of-core GPU Memory Management for MapReduce-based

Graph Processing

We propose an out-of-core GPU memory management technique for GPU-MapReduce-

based graph applications. We conduct experiments on TSUBAME2.5 using up to 1024

nodes (12288 CPU cores, 3072 GPU devices). The results exhibit that our GPU-based

implementation performs 2.81 GE/s (billion edges per second) on a large-scale graph

with 234 (17.18 billion) vertices and 238 (274.9 billion) edges. These results indicate that

our GPU-based implementation performs 2.10x faster than the multi-core CPU-based

implementation even when the graph data size exceeds the device memory capacity on
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the multiple GPUs. We also show that the scale-up approach outperforms the scale-out

approach by 1.71x in power efficiency on the TSUBAME-KFC supercomputer.

Here we describe a summary of contributions of this work:

• We propose an out-of-core GPU data management technique for GPU-based-

MapReduce-based large-scale graph processing.

• We demonstrate the scalability of our proposed technique on heterogeneous large-

scale GPU-based supercomputers by utilizing several optimization techniques.

• We investigate the balance of scale-up and scale-out approaches, i.e., the number of

GPUs for processing graph data per node, whose results suggest that the scale-up

approach helps power-efficient graph processing rather than the simple scale-out

approach.

1.5 Thesis Outline

Before describing the main contributions of this thesis, some background information

about large-scale data processing on supercomputers are provided, particularly on large-

scale data processing applications, MapReduce-based large-scale data processing includ-

ing graph processing and bioinformatic processing, GPU architecture, GPU-based het-

erogeneous supercomputers, programming models on GPUs.

Chapter 3 describes related work to our work. Existing work on graph processing on

GPUs, large-scale graph processing on CPUs and on GPUs including our-of-core pro-

cessing, as well as MapReduce implementations utilizing GPUs are introduced. Efforts

on MapReduce-based large-scale data processing including graph processing and bioin-

formatic processing are also provided.

Chapter 4 addresses the problem of the scalability of large-scale graph processing on

GPUs. We start by providing a general introduction to the problem domain of large-

scale graph processing and a formal definition of the problem. We describe in detail our

multi-GPU-based MapReduce implementation and analyze the implementation in terms

of edge scan performance on GPU architecture.

Chapter 5 addresses the problem of out-of-core GPU memory management for graph

processing. Particular attention is given to the problem of overlapping of moving data

between host and GPU memories. This chapter also discusses the balance of the scale-up



Chapter 1 Introduction 6

and scale-out approaches, in terms of the number of GPUs for processing graph data

size per node, by comparing application’s performance and power efficiency.

Chapter 6 presents additional discussion on applicability of the proposed techniques on

MapReduce-based large-scale data processing on GPU-based heterogeneous supercom-

puters. We also introduce another big data application case study: MapReduce-based

designs and implementations of a metagenomic homology search algorithm. We also

compare the MapReduce-based implementations with an existing MPI-based master-

worker framework for homology search.

Chapter 7 concludes this work. It outlines the main findings from implementation ex-

perience and performance evaluation of our solutions. We also suggest some directions

for future work in processing further larger data by utilizing deeper memory hierarchy

utilizing Non-Volatile Memories.



Chapter 2

Background

This chapter provides basic background information for understanding GPU comput-

ing on heterogeneous supercomputers and large-scale data processing. We start by

reviewing overview of GPU computing in Section 2.1. We then describe the MapReduce

programming model and existing MapReduce implementations in Section 2.2, followed

by summarizing large-scale data processing including large-scale data in real world, ex-

isting large-scale data processing applications, as well as MapReduce-based large-scale

data processing in Section 2.3.

2.1 GPU Computing

In this section, firstly we give overview of GPU architecture, followed by introduction of

GPU-based heterogeneous supercomputers, then we summarize existing programming

models for GPU computing.

2.1.1 GPU Architecture

A graphics processing unit (GPU) is a specialized electronic circuit designed to rapidly

manipulate and alter memory to accelerate the creation of images. Although GPU is

originally designed for accelerating image processing, GPGPU (General-purpose com-

puting on GPU) [15] became practical and popular, with the advent of both pro-

grammable shaders and floating point support on graphic processors. GPGPU is a

technique to apply commodity GPUs, which is typically used for running specific graphic

operations, to general purpose computing in applications traditionally handled by CPUs.

7
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Figure 2.1: Floating point operations per second. Source: NVIDIA Corporation
(2014) [1]

Recent advancement of GPU, in architecture by adding programmable stages and higher

precision arithmetic to the rendering pipeline and in programmability by providing in-

tegrated development environments embodied as CUDA [1] and OpenCL [16], enables

application programmers to use stream processing on non-graphics data.

GPU suits for parallel computing, since the architecture employs SIMD-based process-

ing. GPU achieves much higher perk performance and memory bandwidth than CPU

by using tens of thousands of fine-grain threads. Figure 2.1 shows the computing power

of the GPU and how it compares to the CPU. The vertical axis shows the theoretical

GFLOP/s (Giga Floating Point Operations per Second). The horizontal axis shows

the advances in technology over the years. As can be seen from the figure, GPUs can

theoretically perform 1.4 to 5.3 Trillion Floating Point Operations per Second (or 1.4

to 5.3 teraFLOPS), which is around 5 to 17 times faster compared with CPUs. The

GPU is also capable of transferring large amounts of data through the PCI-Express bus.

Figure 2.2 shows the memory bandwidth in GB/s of the latest NVIDIA GPU compared

to the latest desktop CPUs from Intel. As can be seen from the figure, GPUs can also

perform around 280 to 340 GB/s, which is around 5 to 6 times faster compared with

CPUs.
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Figure 2.2: Memory bandwidth. Source: NVIDIA Corporation (2014) [1]

However, computation in GPUs requires to transfer data from main memory in a host

compute node to global memory in a GPU device and introduces significant overheads to

applications running on GPU devices. Moreover, applications with many branches and

synchronizations may cause inefficient execution on GPU devices, whereas CPU suits

general purpose computation and plays a main role in data transfer to GPU devices and

in post- and pre-processing in a host compute node. Note that GPU cannot work as a

stand-alone system.

Kepler architecture is currently NVIDIA’s flagship GPU replacing the Fermi architec-

ture. The Kepler GPU was designed to be the highest performing GPU in the world.

The Kepler GK110 consists of 15 SMX (streaming multiprocessor) units and six 64-bit

memory controllers as shown in Figure 2.3. If we zoom into a single SMX unit, we see

that each SMX unit consists of 192 single-precision CUDA cores, 64 double-precision

units, 32 special function units (SFU), and 32 load/store units (LD/ST) as shown in

Figure 2.4. Each SMX supports 64 KB of shared memory, and 48 KB of read-only data

cache. The shared memory and the data cache are accessible to all threads executing

on the same streaming multiprocessor. Access to these memory areas is highly opti-

mized and should be favored over accessing memory in global DRAM. The SMX will
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Figure 2.3: Kepler architecture. Source: NVIDIA Corporation (2012) [2]

schedule 32 threads in a group called a warp. Using compute capability (generation of

CUDA architecture) 3.5, the GK110 GPU can schedule 64 warps per SMX for a total

of 2,048 threads that can be resident in a single SMX at most at a time. Each SMX has

four warp schedulers and eight instruction dispatch units (two dispatch units per warp

scheduler) allowing four warps to be issued and executed concurrently on the streaming

multiprocessor.

2.1.2 GPU-based Heterogeneous Supercomputers

Recent supercomputers employ many-core processors such as GPU and Intel Many In-

tegrated Core Architecture (MIC) [8] in addition to general CPUs, since many-core

processors can provide high peak performance and high memory bandwidth for applica-

tions with specific computation patterns, while CPUs offer flexibility and generality over

wide-ranging classes of applications. These supercomputers are called heterogeneous su-

percomputers since these supercomputers employ two different types of processors. A

large number of heterogeneous supercomputers have been ranked high order in terms

of the TOP500 list [9]. For instance, Tianhe-2 at National Super Computer Center

in Guangzhou, China, which employs Intel Xeon Phi many-core processors ranked 1st
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Figure 2.4: CUDA SMX unit. Source: NVIDIA Corporation (2012) [2]

in June 2014. As for GPU-based heterogeneous supercomputers, Titan [10] at Oak

Ridge National Laboratory, United States ranked 2nd and TSUBAME2.5 [11] at Tokyo

Institute of Technology, Japan ranked 13th.

2.1.3 Programming Models for GPUs

Several programming environments, such as CUDA [1] and OpenCL [16], etc, focus on

GPU computing. CUDA is a widely-used programming environment, which provides

C- and C++-based programming environment for NVIDIA CPUs with high level ab-

straction in a SIMD-style. CUDA is applied to various applications such as chemistry,

sparse matrix, sorting, searching, and physical modeling, etc. in order to accelerate their

computing performance.

CUDA C extends C by allowing the programmer to define C functions, called kernels,

that, when called, are executed N times in parallel by N different CUDA threads, as

opposed to only once like regular C functions. Each thread that executes the kernel
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Figure 2.5: Grid of thread blocks. Source: NVIDIA Corporation (2014) [1]

is given a unique thread ID that is accessible within the kernel through the built-in

threadIdx variable. For convenience, threadIdx is a 3-component vector, so that threads

can be identified using a one-dimensional, two-dimensional, or three-dimensional thread

index, forming a one-dimensional, two-dimensional, or three-dimensional thread block.

This provides a natural way to invoke computation across the elements in a domain such

as a vector, matrix, or volume. There is a limit to the number of threads per block, since

all threads of a block are expected to reside on the same processor core and must share the

limited memory resources of that core. On current GPUs, a thread block may contain

up to 1024 threads. However, a kernel can be executed by multiple equally-shaped

thread blocks, so that the total number of threads is equal to the number of threads

per block times the number of blocks. Blocks are organized into a one-dimensional,

two-dimensional, or three-dimensional grid of thread blocks as illustrated by Figure 2.5.

The number of thread blocks in a grid is usually dictated by the size of the data being

processed or the number of processors in the system, which it can greatly exceed. Each

block within the grid can be identified by a one-dimensional, two-dimensional, or three-

dimensional index accessible within the kernel through the built-in blockIdx variable.

The dimension of the thread block is accessible within the kernel through the built-in

blockDim variable.

2.2 MapReduce

This section describes overview of the MapReduce programming model, followed by

summary of existing MapReduce implementations including CPU-based and GPU-based
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7. When all map tasks and reduce tasks have been completed, the mas-
ter wakes up the user program. At this point, the MapReduce call
in the user program returns back to the user code.

After successful completion, the output of the mapreduce execution
is available in the R output files (one per reduce task, with file names
specified by the user). Typically, users do not need to combine these R
output files into one file; they often pass these files as input to another
MapReduce call or use them from another distributed application that
is able to deal with input that is partitioned into multiple files.

3.2 Master Data Structures
The master keeps several data structures. For each map task and
reduce task, it stores the state (idle, in-progress, or completed) and the
identity of the worker machine (for nonidle tasks).

The master is the conduit through which the location of interme-
diate file regions is propagated from map tasks to reduce tasks. There -
fore, for each completed map task, the master stores the locations and
sizes of the R intermediate file regions produced by the map task.
Updates to this location and size information are received as map tasks
are completed. The information is pushed incrementally to workers
that have in-progress reduce tasks.

3.3 Fault Tolerance
Since the MapReduce library is designed to help process very large
amounts of data using hundreds or thousands of machines, the library
must tolerate machine failures gracefully.

Handling Worker Failures
The master pings every worker periodically. If no response is received
from a worker in a certain amount of time, the master marks the worker
as failed. Any map tasks completed by the worker are reset back to their
initial idle state and therefore become eligible for scheduling on other
workers. Similarly, any map task or reduce task in progress on a failed
worker is also reset to idle and becomes eligible for rescheduling.

Completed map tasks are reexecuted on a failure because their out-
put is stored on the local disk(s) of the failed machine and is therefore
inaccessible. Completed reduce tasks do not need to be reexecuted
since their output is stored in a global file system.

When a map task is executed first by worker A and then later exe-
cuted by worker B (because A failed), all workers executing reduce
tasks are notified of the reexecution. Any reduce task that has not
already read the data from worker A will read the data from worker B.

MapReduce is resilient to large-scale worker failures. For example,
during one MapReduce operation, network maintenance on a running
cluster was causing groups of 80 machines at a time to become unreach-
able for several minutes. The MapReduce master simply re executed the
work done by the unreachable worker machines and continued to make
forward progress, eventually completing the MapReduce operation.

Semantics in the Presence of Failures
When the user-supplied map and reduce operators are deterministic
functions of their input values, our distributed implementation pro-
duces the same output as would have been produced by a nonfaulting
sequential execution of the entire program.
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Figure 2.6: MapReduce workflow. Source: Dean et al. (2004) [3]

implementations.

2.2.1 MapReduce Programming Model

MapReduce [3] is a programming model with associated software toolchains proposed by

Google. MapReduce is used for large data sets effectively through distributed algorithm

across a cluster. MapReduce is composed of two major functions. The Map function

takes in the input and emits key-value pairs that represent useful information from

the input. These key-value pairs are later passes to reduce function to process the

final results. The Reduce function produce zero or more outputs based on the values

associated with each different key. An advantage of MapReduce is that it can handle

large-scale data even when the data is larger than host memory capacity by handling

memory overflow automatically. Another characteristic is that MapReduce can also

handle compute node failures by applying techniques of fault tolerance. MapReduce is

suitable for large-scale data processing and its implementations are widely used.

Figure 2.6 shows execution workflow of MapReduce. Firstly, input data files are divided

into multiple chunks (also called splits) whose size is typically 16 - 64 MB per split.
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The master assigns each map task to workers. Then, each worker reads the contents of

the corresponding input split. A worker parses key/value pairs out of the input data

and passes each pair to the user-defined map function. The intermediate key/value

pairs produced by the map function are buffered in memory or written to local disk.

After that, the intermediate key/value pairs are transferred to workers (possibly via

network) who is responsible to process the key in reduce phase, which is defined by a

partitioning function. Reduce workers read the transferred intermediate data sent from

map workers. When a reduce worker has read all intermediate data for its partition, the

worker sorts the data by the intermediate keys so that all occurrences of the same keys

are grouped together. The sorting is needed since typically many different keys map to

the same reduce task. If the amount of intermediate data is too large to fit in memory,

an external sort is used. After the reduce worker iterates over the sorted intermediate

data and for each unique intermediate key encountered, the worker passes the key and

the corresponding set of intermediate values to the user-defined reduce function. The

output of the reduce function is appended to a final output file for this reduce partition.

2.2.2 Existing MapReduce Implementations

Google MapReduce [3] is the original implementation, which includes a distributed file

system and a MapReduce framework itself.

Hadoop [17], inspired by the original Google MapReduce, is a now-popular open-source

software framework implemented in Java for storing and processing large data distribu-

tively on clusters. Hadoop is consisted of Hadoop Common, Hadoop Distributed File

System (HDFS), Hadoop YARN, and Hadoop MapReduce. HDFS is a highly fault-

tolerant distributed system, designed for applications with large data sets. Hadoop

YARN manages the compute resources in the file system and schedule jobs. A master

node, called NameNode, manages information related to file system namespace, such as

directory tree and meta data of stored files, etc., while worker nodes, called DataNodes,

accommodate actual file data. A single file is divided into several chunks (typically 64

MB). Then, the divided chunks are stored across DataNodes and replicated to different

DataNodes (typically three replicas). On the other hand, Hadoop MapReduce provides

a MapReduce execution environment on top of HDFS, whose environment also employs

master-worker model.

There exists in-memory MapReduce implementations intended higher performance com-

pared with Hadoop. Phoenix [18] provides programming APIs and runtime systems for
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shared memory systems, such as systems employing multi-core processors. As for in-

memory MapReduceo on distributed memory environments, Spark [19] is a fast open-

resource cluster computing framework implemented in Scala, building on top of HDFS.

Spark is intended to perform faster than Hadoop by in-memory computing, and promises

performance up to 100 times faster than Hadoop MapReduce in some certain applica-

tions. The main abstraction Spark provides is a resilient distributed dataset (RDD),

which is a collection of elements that can be persistent in memory and operated in

parallel [20]. M3R (Main-Memory Map Reduce) [21] is another in-memory MapReduce

implementation implemented in X10 [22], where X10 is a language for parallel computing

adopting asynchronous partitioned global address space (APGAS) programming model.

M3R is also compatible with Hadoop. Java Hadoop application can be submitted to

M3R through M3R/Hadoop adaptor.

MPI-based MapReduce has been studied for multi-node execution for utilizing the fast

network data transfer. Tu et al. provided a MapReduce-style programming interface for

users to write molecular dynamics trajectory simulations, called HiMach [23]. Hoefler

et al. proposed optimizations of MapReduce on top of MPI by combining shuffle and

reduce and moves into the built-in or user-defined MPI reduction operations with several

limitations in input keys [24]. MapReduce with MPI point-to-point communication

operations has been also proposed [25]. The MapReduce-MPI (MR-MPI) library [26] is

an open-source implementation of MapReduce written for distributed-memory parallel

machines on top of standard MPI massage passing for processing terabyte-scale data

sets on large-scale graph algorithms. MR-MPI can handle out-of-core execution by

offloading intermediate data on local disks. MR-MPI exhibits good scalability up to

1024 processors on various graph processing algorithms. Their experimental results also

showed that a distributed-memory matrix-based implementation using linear algebra

toolkits performs an order of magnitude faster than MR-MPI when the input data fits

on CPU host memory, while MR-MPI can handle out-of-core execution.

There also exists a lot of efforts on accelerating MapReduce utilizing GPUs. As for

single GPU MapReduce implementations, Mars [27] and a proposal from Catanzaro et

al. [28] are generic MapReduce frameworks for a single GPU, which enables application

users to implement data-intensive and computation-intensive tasks efficiently and easily

on a single GPU. MapCG [29] is proposed as a MapReduce framework to provide source

code level portability between CPU and GPU without using OpenCL. MapCG improved

performance on a GPU by two optimizations: replacing local sort by using hash func-

tions, and removing index counting phases by applying specialized memory allocators.

Ji et al. proposed optimization techniques on MapReduce on GPU by utilizing multiple
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levels of the GPU memory hierarchy [30]. Chen et al. optimized their implementation

by impoving shared memory usage [31]. They also extended their implementation for

an integrated architecture of the CPU and GPU, using an AMD Fusion chip as a repre-

sentative example [32]. These implementations are based on CUDA for NVIDIA GPUs.

Also, StreamMR has been proposed as an OpenCL MapReduce framework for not only

NVIDIA GPUs but also AMD GPUs [33].

As for multi-GPU MapReduce implementations, GPMR [34] is a multi-GPU MapReduce

library supporting out-of-core GPU execution on distributed computing environments.

Jiang et al. presented the MATE-CG system, which is a framework similar to MapRe-

duce, based on the generalized reduction API [35]. Mars is also extended for multi-GPU

by integrating with Hadoop [36]. Farivar et al. also proposed an architecture called

MITHRA together with an integration of CUDA with Hadoop for multi-GPU execu-

tion [37].

MapReduce runtimes that support iterative MapReduce computations have been stud-

ied for expanding the applicability of MapReduce to more fields such as data clustering,

machine learning, and computer vision where many iterative algorithms are common.

HaLoop has been proposed as an extension of Hadoop for efficient iterative computa-

tion [38], as well as static scheduler-based MapReduce runtime with iterative support

has been also presented called Twister [39].

2.3 Large-scale Data Processing

This section provides basic background information of large-scale data in real world and

an existing graph model, followed by large-scale data processing algorithms including

large-scale graph processing algorithms and large-scale homology search algorithms in

metagenomics. We also summarize MapReduce-based large-scale data processing.

2.3.1 Large-scale Data in Real World

Networks in real world, such as health care, social networks, intelligence, system biology,

and electric power grid, can be modeled as a graph with millions to trillions of vertices

and 100’s millions to 100’s trillions of edges, whose structure has the following character-

istics: scale-free (power-law degree distributions), small-world (6 degree of separation),

and clustering, etc.
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G2 =G1⊗G1G1
Figure 2.7: An example of Kronecker graph

Kronecker Graph [40] is a graph model that has similar properties to real world graphs

and employs the recursive matrix (R-MAT) model. Applying Kronecker Product to a

base matrix, we can generate an adjacency matrix of a Kronecker graph. Let A = (aij)

be a m× n matrix, and B = (bkj) be a p× q matrix. Kronecker Product A⊗B can be

defined as follows:

A⊗B =


a11B . . . a1nB
...

...

am1B . . . amnB


By using this representation, we can describe a Kronecker graph Gk as follows:

Gk = G1 ⊗G1 ⊗ · · · ⊗G1︸ ︷︷ ︸
k times

where k denotes the number of iterations, and G1 denotes the base matrix with v vertices

and e edges. Note that Gk has vk vertices and ek edges; thus we can get densification

with few parameters. Since the Kronecker Graph can be obtained easily by simply

applying iterative product operations to a base matrix, the model is widely used (i.e.,

the Graph500 benchmark [41]), in order to represent large-scale graphs in real world.

Figure 2.7 shows an example of generation process of Kronecker graph. The left matrix

describes G1, a 2× 2 matrix where g11 = 4, g12 = 3, g21 = 2, g22 = 1. The right matrix

describes G2, a 4× 4 matrix where each element is calculated by gij ⊗G1.
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2.3.2 Large-scale Data Processing Applications

This section summarizes large-scale data processing applications, focusing on large-

scale graph processing algorithms, followed by large-scale homology search algorithms

in metagenomics.

Large-scale Graph Processing Algorithms

There exists a wide range of graph processing algorithms: breadth-first search, Shortest

path, PageRank [42], connect component, minimal spanning Tree, finding graph center,

bipartite matching etc. Breadth-first search is a strategy for searching a graph. Breadth-

first search can be used to solve many problems such as finding all nodes within one

connected component, finding the shortest path, computing maximum flow in a flow

network. Breadth-first search is also used in Graph500 benchmark [41].

The Graph500 benchmark is a data processing benchmark for supercomputers and

clouds launched in 2010, in addition to the original Top500 benchmark [9] which is

a compute intensive benchmark. Graph500 is launched in order to guide the design of

hardware architectures and software systems intended to support data intensive appli-

cations, since graph algorithms are a core part of many data analytics workloads. The

Graph500 benchmark mainly consists of two kernels: Graph Construction and Breadth-

First Search. Before the graph construction, the data generator will construct a list

of edge tuples containing vertex identifiers. Each edge is undirected with its endpoints

given in the tuple as source vertex and destination vertex. The number of input vertices

and input edges are described by two parameters: SCALE and edgefactor. SCALE is the

logarithm base two of the number of vertices, and edgefactor is the ratio of the graph’s

edge count to its vertex count. Then, the total number of vertices can be described as

N = 2SCALE where N is the total number of vertices, and the number of edges can be

described as M = edgefactor ∗ N where M is the total number of edges. The graph

construction kernel may transform the edge list to any data structures, including sparse

matrix formats such as Compressed Row Storage (CSR) format and linked lists, that

are used for the remaining kernels. After the graph construction, a breadth-first search

(BFS) of a graph starts with a single source vertex as a fundamental method on which

many graph algorithms are based. After each search, run a function that ensures that

the discovered breadth-first tree is correct. In order to compare the performance of

Graph500 search implementations across a variety of architectures, a performance met-

ric is adopted. In the similar manner as floating-point operations per second (FLOPS)
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measured by LINPACK benchmark in Top500, a performance rate called traversed edges

per second (TEPS) is defined.

Shortest path algorithms are applied to automatically find directions between physical

locations, such as driving directions on road networks. The shortest path problem is

categorized into two variations; single-source shortest path problem and all-pairs shortest

path problem. There have been a lot of efforts on developing efficient shortest path

algorithms; such as Dijkstra’s algorithm, Bellman-Ford algorithm, A* algorithm for

solving the single-source shortest path problem, as well as Floyd-Warshall algorithm

and Johnson’s algorithm for solving all-pairs shortest path problem.

PageRank is an algorithm developed and used by Google Search to rank websites in

their search engine results. PageRank is a way of measuring the importance of website

pages. PageRank works by counting the number and quality of links to a page to deter-

mine an estimate of how much the website is important, with an underlying assumption

that more important websites are likely to have more incoming links from other web-

sites. The PageRank computations require several iterations through the collection to

adjust approximate PageRank values to more closely reflect the theoretical true value.

A probability is expressed as a numeric value between 0 and 1. Let p be a PageRank

eigenvector of n web pages; the PageRank algorithm satisfies the following characteristic

equation:

p = (cET + (1− c)U)p

where c denotes a dumping factor, set to 0.85 in typical configuration, E denotes a

row-normalized adjacency matrix, and U denotes a matrix with all elements set to 1/n.

In order to acquire the next PageRank eigenvector pnext, we initialize pcur and set all

the elements to 1/n, then we calculate pnext = (cET + (1 − c)U)pcur. We continue the

multiplication until p converges.

Graph processing implementations can be categorized into three types: pure imple-

mentation of a graph algorithm, MapReduce-based framework, and Bulk Synchronous

Parallel (BSP) [43]-based framework. Pure implementation of a graph algorithm is de-

veloped for achieving high performance for a specific graph algorithm. Implementations

of Graph500 [5] are instances of pure implementations of breadth first search algorithm.

A graph processing framework consists of some built-in graph processing algorithms,

but also provide API to build new algorithms and extend the framework. An instance

of MapReduce-based graph processing framework is PEGASUS [6], a framework imple-

mented on top of Hadoop. We also implement a MapReduce-based graph processing
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framework on GPUs. As for BSP-based graph processing frameworks, Pregel [44] is pro-

posed as a first BSP-based graph processing framework as an alternate graph processing

framework to MapReduce, since not all graph algorithms can be solved with MapReduce

efficiency. There exists a number of BSP-based graph processing implementations, such

as Apache Giraph [45], Apache Hama [46], Apache GraphLab [47], and ScaleGraph [48].

Giraph and Hama both work on top of HDFS, and Giraph is implemented on top of

Hadoop MapReduce while pure BSP framework is implemented in Hama. GraphLab

is a high performance distributed graph processing framework written in C++. There

also exists a disk-based large-scale graph computation framework called GraphChi [49].

ScaleGraph is a high performance distributed graph processing framework written in

X10.

There are several formats to store graphs. Basically there exists three types of formats to

store graphs; in a flat file as pairs of vertex id and connected vertices ids to the vertex,

in a relational database using referencing tables or join tables, or using a specialized

format for graphs. A flat file is typically stored as an adjacency list for sparse graph

and an adjacency matrix for dense graph. Main difference between relational database

and graph database is that graph database has direct pointers from a vertex to its any

adjacency vertices.

There exists graph databases for storing graph dataset in specialized formats, such as

Neo4j [50], GraphBase [51], InfiniteGraph [52], AllegroGraph [53], FlockDB [54]. Neo4j

is a disk-based Java persistence graph database. InfiniteGraph is a distributed graph

database in Java designed to handle very high throughput. FlockDB is a distributed

fault-tolerant graph database for managing wide but shallow network graph, initially

used by Twitter to store relationships between users. There is also a benchmarking

platform for graph stores called XGDBench [55], written in X10. XGDBench supports

to benchmark graph databases by generating realistic graph data and analyzing the

community structures of synthetic graphs.

Large-scale Homology Search Algorithms

Homology search or alignment search in metagenomics is an approach to identify genes

based upon homology with genes that are already publicly available in sequence databases

by using a search algorithm. Homology search is used in the field of Metagenomics, the

study of genetic material recovered directly from environmental samples for advancing

knowledge in a wide variety of application domains, such as medicine, engineering, agri-

culture, ecology. Homology search algorithms are used as tools for life science researchers
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to gain a set of high-scoring pairs from an exhaustive list of protein coding sequences

similar to a given query sequence, such as the amino-acid sequence of different proteins

or the nucleotides of DNA sequences.

BLAST (Basic Local Alignment Search Tool) [56, 57] is proposed as a fast homology

search algorithm and its implementation is widely used as a standard homology search

tool. BLAST applies a heuristic algorithm much faster than previous approaches such

as a full alignment procedure using the Smith-Waterman algorithm [58] or FASTA [59].

There have been a lot of efforts for improving BLAST [60, 61]. These efforts achieve

speedup from the BLAST algorithm by improving search algorithms. Some of the au-

thors also make efforts on accelerating BLAST. GHOSTX [62] adopts the seed-extend

alignment algorithm used by BLAST. GHOSTX achieved approximately 131-165 times

faster than BLAST. GHOSTX finds seed that are highly similar segments between

database sequences and the query sequence. Next, GHOSTX obtain alignments by

extending those seeds without gaps for larger similar regions. Finally, GHOSTX make

alignments by extending the seeds with gaps. In order to accelerate the seed search

process, GHOSTX constructs suffix array both for the query and the database before

the search. In addition, instead of fixing the length of a seed like BLAST, GHOSTX

extends it till the matching score exceeds a given threshold to reduce the computation

time for untapped extension while not losing the sensitivity.

There exists also an extension of GHOSTX for distributed computing environments.

GHOST-MP is built on GHOSTX with MPI library for homology search on supercom-

puters like K computer and TSUBAME, or general PC clusters. It achieves distributed

paralleling search process through a master-worker style. In GHOST-MP’s algorithm, it

accomplishes I/O optimization for paralleled file system by utilizing locality of database

chunks to achieve high speed processing.

2.3.3 MapReduce-based Large-scale Data Processing

There exists MapReduce-based large-scale graph processing including Hadoop-based im-

plementations and MPI-based implementations. PEGASUS [6] is a Hadoop-based graph

mining system written in Java. Graph mining algorithms that PEGASUS provides in-

clude PageRank, Random Walk with Restart (RWR), connected components, degree,

and radius. PEGASUS implements the GIM-V (Generalized Iterative Matrix-Vector
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multiplication) graph processing algorithm, which can compute various graph process-

ing algorithms such as PageRank, Random Walk with Restart, and Connected Compo-

nents using MapReduce. MR-MPI [26] also implements several graph algorithms such

as PageRank, triangle finding, connected component identification, Luby’s algorithm for

maximally independent sets, and single-source shortest path calculation.

There have also been a lot of efforts on MapReduce-based large-scale bioinformatic

processing. CloudBLAST [63] provides MapReduce-based bioinformatics applications,

which integrates Hadoop, virtual machine, and virtual network technologies to deploy the

commonly used bioinformatics tool NCBI BLAST on a WAN-based test bed consisting

of clusters.
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Related Work

This chapter summarizes prior large-scale data processing on GPUs especially focusing

on graph processing on GPUs, followed by existing work on handling memory overflow

including out-of-core CPU processing and out-of-core GPU processing.

3.1 Large-scale Graph Processing

In this section, we review prior work on large-scale graph processing, especially focusing

on graph processing on single GPU and multiple GPUs, followed by prior local balance

optimization techniques for large-scale graph processing.

3.1.1 Graph Processing on GPUs

Existing GPU-based graph processing techniques have shown that GPU accelerates per-

formance on several graph algorithms, such as BFS [13, 64, 65, 66], PageRank [14], etc.

In particular, graph processing frameworks, such as [67, 68, 69], are also accelerated by

using a single GPU; however, most of these efforts focus on algorithms for a single GPU.

Harish et al. [13] have solved the shortest path problem on GPUs, however, they do not

achieve competitive performance compared with CPUs for scale-free graphs and real

world networks in the DIMACS challenge since the distribution of the degrees follows

a power law which introduces significant load imbalance. Thus, the size of processing

graphs in these algorithms reaches around 10 million vertices and 60 million edges.

Several efforts focus on the use of multiple GPUs on a single node for BFS [70, 71, 72],

PageRank [72, 73] etc., in which the size of graphs to process reaches around 50 million

23
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vertices and 100 million edges. However, these techniques do not consider communica-

tion between multiple nodes nor show the scalability when the graph data size exceeds

the CPU memory capacity on a single node.

As for the efforts on multi-node multi-GPU environments, GPU-based implementations

of sparse matrix vector multiplication for PageRank [74, 75] and BFS [76] have been

proposed. However, these implementations cannot handle GPU memory overflows due

to heavy CPU-GPU data transfer overheads.

3.1.2 Load Balance Optimizations

Chhugani et al. [77] propose a work distribution approach for multi-socket platforms,

whose approach ensures load-balancing while keeping cross-socket communication low

on R-MAT graphs. They see a benefit of about 5-10% for their load-balancing scheme

on R-MAT graphs, and as much as 30% performance improvement on stress-case graph,

which is a bipartite graph where all vertices are either small or large (at alternate

depths) Aydin et al. [78] achieve a reasonable load-balanced graph traversal technique

by randomly shuffling all the vertex identifiers prior to partitioning, whose technique

also reduces inter-processsor collective communication volume using graph partitioning.

3.2 Out-of-core Memory Management

This section describes prior work on out-of-core processing including techniques on han-

dling memory overflow from CPU host memory and GPU device memory. We also

review MapReduce on GPUs which can handle out-of-core execution.

3.2.1 Out-of-core CPU Processing

Several research efforts have explored out-of-core graph processing on CPU. As for CPU-

based graph processing on a single node, several techniques, such as sequential I/O op-

timization [49], data placement optimization [79], and data prefetch optimization [80],

have been proposed. These techniques focuses on the utilization of a single node. Thus,

distributed computing environments are not supported. Pearce et al. [81] have pro-

posed a CPU-based out-of-core large-scale graph processing technique for distributed

computing environments. Their technique introduces a graph partitioning strategy and

applies to their multithreaded algorithm using distributed external memory; however,
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this algorithm cannot be straightforwardly applicable to GPUs, since this algorithm is

highly designed for utilizing multi-core CPUs. The MapReduce [3] programming model

has been proposed for processing big data applications with automatic memory/storage

hierarchy encapsulation, and Hadoop [7] is one of the widely used MapReduce imple-

mentation. MR-MPI [26] is a MPI-based MapReduce implementation on CPU, which

employs an out-of-core processing technique including in the sort phase after inter-node

data exchanges. These MapReduce implementations are designed for CPU-based dis-

tributed environments, while our work focuses on GPU-based large-scale environments.

3.2.2 Out-of-core GPU Processing

Researchers have been working on out-of-core GPU processing algorithms in a wide

range of application fields, such as BFS [66], stencil [82], rendering [83], etc. These

algorithms have shown GPU accelerations by using out-of-core techniques; however, the

scope of these applications is limited on specific algorithms. Out-of-core GPU sorting

algorithms, such as a sample-based sorting [84] and a merge-based sorting [85], have

also been studied; however, these algorithms are designed for a single node execution.

These algorithms also have not well investigated load balancing issues for highly skewed

data such as real world graphs. There also exists work on I/O issues from a GPU to

filesystems [86]; however, they have not conducted experiments on realistic large-scale

applications such as graph processing.

3.2.3 MapReduce on GPUs

The MapReduce model can provide out-of-core processing with simple application inter-

faces. There exists a generalized graph processing algorithm for the MapReduce model

called GIM-V (we explain the details in Section 4.3) and its Hadoop-based implemen-

tation [6]. However, the implementation does not show good performance due to heavy

overheads derived from the Hadoop framework. GPMR [34] is a multi-GPU MapReduce

library supporting out-of-core GPU execution on distributed computing environments.

They propose how GPUs can be applied to MapReduce model and show good scala-

bility using some dozens of nodes. It is not clear, however, whether large-scale graph

processing using MapReduce model scales well with the addition of hundreds of GPUs.

Also, users need to set chunk size of input data by hand so that each chunk fits on GPU

memory capacity. In addition, the sort phase in GPMR is executed on CPUs when the

size of input data exceeds the capacity of the GPU memory, instead of executing on
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GPUs. Besides, the performance studies on CPU vs. GPU comparison have not been

sufficiently conducted, especially in the out-of-core situation.

3.2.4 Balance between Scale-up and Scale-out

Earlier work have seen effectiveness of scale-out by showing good scalability commodity

clusters consisting of hundreds to thousands of machines [3, 6]. On the other hand,

several prior work also show that a single scale-up machine can perform competitive

with or better than scale-out clusters [87, 88]. These work suggest that the scale-up

approach can perform better than the scale-out approach in terms of performance, cost,

power, server density etc. However, these work do not consider the balance of scale-up

and scale-out on GPU-based heterogeneous computing environments.
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A Scalable Implementation of a

MapReduce-based Graph

Processing Algorithm on GPUs

This chapter reviews previously studied graph processing techniques on GPUs and

provides an in-depth analysis on their limitations. Then, we introduce target graph

processing algorithm we use for MapReduce-based execution and a baseline MapRe-

duce implementation on single GPU. Next, based on the observations, we describe our

implementation of the graph processing algorithm on single GPU, followed by multi-

GPU extension and optimization techniques including load balance optimization among

GPUs. At the end, we analyze experimental results, and observe 1.52x performance

improvement on 256 nodes with 768 GPUs over performance on 6144 hyper-threaded

CPU cores, and 186.6x improvement over an existing popular CPU-based MapReduce

implementation, using TSUBAME2.0.

4.1 Motivation

As we described in Section 1.1, recent emergence of extremely large-scale graphs in var-

ious application fields, which typically consists of millions to trillions of vertices and

100’s millions to 100’s trillions of edges, requires fast and scalable analysis by using

HPC technologies. MapReduce [3] is a successful programing model for efficient, scal-

able, and massive data processing in clouds with large-scale commodity compute clusters,

which conceals elaborate efforts in distributed systems such as communication between

27
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thousands of nodes, data management for petabyte-scale large data volumes, and fault

tolerance. MapReduce is also applied to graph processing with petabyte-scale data;

PEGASUS [6], which is an Hadoop [7]-based peta-scale graph mining system that em-

ploys the GIM-V (Generalized Iterative Matrix-Vector multiplication) algorithm, has

been proposed. GIM-V enables users to describe important graph algorithms, such as

PageRank, Random Walk, and Connected Component, without any difficulties in dis-

tributed systems. Kang et al. [6] have reported that GIM-V exhibits good scalability

in a compute cluster; however, such CPU-based implementation introduces significant

performance overheads when we increase the size of a graph.

On the other hand, recent supercomputers employ commodity graphics processing units

(GPUs) in addition to compute nodes with general purpose CPUs, since GPUs can pro-

vide high peak performance and memory bandwidth for applications with specific com-

putation patterns, while CPUs offer flexibility and generality over wide-ranging classes

of applications. This tendency is applied not only to HPC supercomputers, but cloud

data centers as well. For example, Amazon EC2 provides Cluster GPU Instances as a

GPU-based compute cluster [12]. In such environments, large-scale graph processing is

also considered as an important kernel application. Although GPU-based heterogeneous

compute clusters are also possible environments for GIM-V-based graph applications,

how much the application can be accelerated is an open problem, especially in terms

of the performance in the map, reduce, and sort stages. Moreover, we have to consider

overflow of graph data from a single GPU memory when applying the GIM-V algorithm

to large-scale graphs. Using multiple GPU devices may relax the overflow situation;

however, even in such cases, load balance optimization techniques between GPU devices

are required for efficient execution of the application.

4.2 Introduction to Graph Processing on GPU

In this section, we describe the existing GPU-based graph processing techniques and

point out the issues on processing large-scale graphs using GPUs.

4.2.1 Existing Graph Processing Techniques on GPU

Existing GPU-based graph processing techniques have shown that GPU accelerates per-

formance on several graph algorithms, such as BFS [13, 64, 65, 66], PageRank [14], etc.

In particular, graph processing frameworks, such as [67, 68, 69], are also accelerated
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Figure 4.1: Performance of MapReduce-based graph processing on CPUs (SCALE 21
per node)

by using a single GPU; however, most of these efforts focus on algorithms for a single

GPU. Thus, the size of processing graphs in these algorithms reaches around 10 million

vertices and 60 million edges.

Several efforts focus on the use of multiple GPUs on a single node for BFS [70, 71, 72],

PageRank [72, 73] etc., in which the size of graphs to process reaches around 50 million

vertices and 100 million edges. However, these techniques do not consider communica-

tion between multiple nodes nor show the scalability when the graph data size exceeds

the CPU memory capacity on a single node.

As for the efforts on multi-node multi-GPU environments, GPU-based implementations

of sparse matrix vector multiplication for PageRank [74, 75] and BFS [76] have been

proposed. However, these implementations cannot handle GPU memory overflows due

to heavy CPU-GPU data transfer overheads.
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4.2.2 Issues on Processing Large-scale Graphs on GPUs

Although GPU-based heterogeneous compute clusters are applicable for graph process-

ing applications, how much the application can be accelerated is an open problem.

Specifically, It is unclear how much each computation phases in MapReduce-based graph

processing on GPU in terms of the performance in the map, reduce, and shuffle stages.

As a motivating example, Figure 4.1 shows the execution time of the CPU-based GIM-V

implementation when we vary the size of a graph. In this figure, the shuffle stage, where

the output of map stage is sorted and forwarded to the input of the reduce stage, is

divided into two stages: copy and sort. After the map stage is finished, the output of

the map stage is hashed and then transferred via MPI between multiple processes in

the copy stage, then the received output is sorted by each node in the sort stage. Here

we see significant performance overheads in the map and sort stages, whose overheads

may affect performance of graph processing with further large size even if we run the

program using multiple compute nodes.

Another significant issue on processing large graphs on GPUs is considered that how to

manage graph data whose size exceeds the capacity of GPU memory with minimal per-

formance overheads. As explained in the previous section, GPU memory generally has

the smaller capacity than CPU memory, and computation on GPUs requires to transfer

data between CPU memory and GPU memory. Thus, when we naively apply the graph

algorithms to GPUs, data transfers dominantly disturb efficient graph processing. In

particular, when the size of the graphs exceeds the capacity of device memory on GPUs,

the number of data transfers drastically increases for executing dependent graph kernels.

As a motivating example, Figure 4.2 shows an adjacency matrix and sorted vertex distri-

bution of a Kronecker graph in SCALE 14 with A = 0.57, B = 0.19, C = 0.19, D = 0.05

generated by the graph generator included in Graph500 reference implementation. The

top of Figure 4.2, the x-axis indicates source vertex index and the y-axis indicates

destination vertex index for edges. Plots indicate that the graph contains edges with as-

sociated source and destination vertices. The bottom of Figure 4.2, the x-axis indicates

vertex index and the y-axis indicates the number of edges connected with. Because of

the nature of the Kronecker graph, the adjacency matrix and the vertex distribution

indicate the graph is composed of a highly skewed edge distribution where some vertices

are connected with large number of vertices while the other vertices are connected with

a few number of vertices.
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Figure 4.2: (Top) Adjacency matrix of a Kronecker graph (SCALE 14), (Bottom)
Sorted vertex distribution of a Kronecker graph (SCALE 14)
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4.3 GIM-V: Target Graph Processing Algorithm

GIM-V (Generalized Iterative Matrix-Vector multiplication) [6] is a general expression

of matrix-vector multiplication with iterative operations for MapReduce-based large-

scale graph processing. Let M = (mi,j) be a matrix of size n × n, and v = (vi) be

a vector of size n, where i, j ∈ {1, ..., n}. Matrix-vector multiplication is described as

follows:

M × v = v′ where v′i =

n∑
j=1

mi,jvj

Here the above expression is described by using three operators: combine2, combineAll,

and assign:

combine2: Multiply mi,j and vj .

combineAll: Sum the results of combine2 for vertex i.

assign: Update vi to the new result v′i.

By introducing the operator ×G, we can define the GIM-V algorithm as follows:

v′ = M ×G v

where v′i = assign(vi, combineAll i({xj | j = 1..n,

and xj = combine2 (mi,j , vj)}))

We iterate the above operation until satisfying a convergence condition defined by graph

algorithms such as PageRank, Random Walk, Connected Component, etc. We can

describe these graph algorithms by defining the above three operators.

As an example, here we describe the PageRank algorithm [42], which is a well-known

algorithm for scoring the relative importance in web pages, Let p be a PageRank eigen-

vector of n web pages; the PageRank algorithm satisfies the following characteristic

equation:

p = (cET + (1− c)U)p

where c denotes a dumping factor, set to 0.85 in typical configuration, E denotes a

row-normalized adjacency matrix, and U denotes a matrix with all elements set to 1/n.

In order to acquire the next PageRank eigenvector pnext, we initialize pcur and set all

the elements to 1/n, then we calculate pnext = (cET + (1 − c)U)pcur. We continue the
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Algorithm 1 GIM-V Stage 1. Source: Kang et al. (2009) [6]

Require: Matrix M = {(idsrc, (iddst,mval))},
Vector V = {(id, vval)}

Ensure: Partial vector V ′ =
{(idsrc, combine2(mval, vval))}

1: Stage1-Map(Key k, Value v);

2: if (k, v) is of type V then
3: Output(k,v); //(k: id, v: vval)
4: else if (k, v) is of type M then
5: (iddst,mval)← v;
6: Output(iddst, (k,mval)); //(k: idsrc)
7: end if
8: Stage1-Reduce(Key k, Value v[1..m]);

9: saved kv ← [ ];
10: saved v ← [ ];
11: for all v ∈ v[1..m] do
12: if (k, v) is of type V then
13: saved v ← v;
14: Output(k, (“old”, saved v));
15: else if (k, v) is of type M then
16: Add v to saved kv //(v:(idsrc,mval))
17: end if
18: end for
19: for all (id′src,mval′ ∈ saved kv) do
20: Output(id′src, (“new”, combine2(mval′, saved v)))
21: end for

multiplication until p converges. Based on the above descriptions, we can define the

three operations as follows:

combine2 (mi,j , vj) = c×mi,j × vj

combineAll i(x1, . . . , xn) =
(1− c)

n
+

n∑
j=1

xj

assign(vi, vnew) = vnew

The GIM-V algorithm can be implemented using two MapReduce stages: GIM-V Stage1

and Stage2, whose pseudo codes are shown in Algorithm 1 and 2. In these algorithms,

id represents an index of vertices, and idsrc and iddst represent a source index and

a destination index of edges respectively. The GIM-V Stage1 performs the combine2

operation by combining mij of the matrix M and vj of the vector v, and outputs key-

value pairs, where the key denotes the source vertex id i and the value denotes the

partially combined result xj = combine2(mij , vj). Then the output of the GIM-V Stage1
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Algorithm 2 GIM-V Stage 2. Source: Kang et al. (2009) [6]

Require: Partial vector V ′ = {(idsrc, vval′)}
Ensure: Result vector V = {(idsrc, vval)}
1: Stage2-Map(Key k, Value v);

2: Output(k, v);
3: Stage2-Reduce(Key k, Value v[1..m]);

4: new v ← [ ];
5: old v ← [ ];
6: for all v ∈ v[1..m] do
7: (tag, v′)← v;
8: if tag == “old” then
9: old v ← v′;

10: else if tag == “new” then
11: Add v′ to new v;
12: end if
13: end for
14: Output(k, assign(old v, combineAllk(new v)));

is forwarded to the input of the GIM-V Stage2. The GIM-V Stage2 combines all partial

results from the GIM-V Stage1 by applying combineAlli(xj | j = 1 . . . n), and assigns the

new vector vnew to the old vector vi by applying assign(vi, combineAlli(xj | j = 1 . . . n)).

These two MapReduce operations are iterated until the application-specific convergence

criterion is met.

4.4 Mars: a MapReduce Implementation on Single GPU

Mars [27, 36] is a library-based MapReduce framework for a single GPU device, whose

library provides similar APIs to CPU-based MapReduce frameworks. By writing map

and reduce operations on top of CUDA kernels through these APIs, users can run

MapReduce programs on a GPU device. We use Mars as a base of our GPU-based

GIM-V implementation described in Section 4.5 and 4.6.

Figure 4.3 shows the overview of the original Mars library. Similar to the existing

MapReduce frameworks, Mars basically has two stages: map and reduce. Before starting

the map stage, Mars reads input data from secondary storage and converts the input

data to key-value pairs as a preprocessing step.

In the map stage, the split operator firstly divides the input key-value pairs into multiple

fragments such that the number of fragments is equal to that of GPU threads. Next

each GPU thread calculates the number and the size of intermediate records to allocate
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Figure 4.3: Mars architecture

memory region on a GPU device. Then the runtime executes GPU-based PrefixSum

in order to get the size and the position of the output. After the preparation, a CPU

process allocates a buffer in GPU device memory and invokes a GPU kernel, in which

each thread executes a map function defined by users.

After the map stage is finished, the intermediate key-value pairs are sorted so that the

pairs with the same key are stored consecutively. We call the stage between the map

and reduce stages, the shuffle stage. Mars uses GPU-based bitonic sort [89], whose time

complexity is O(nlog2(n)), in the shuffle stage, since bitonic sort can efficiently utilize

the parallelism of GPU.

Then, in the reduce stage, the split operator divides the sorted key-value pairs into

multiple fragments of similar size, whose pairs with the same key belong to the same

fragment. Note that the number of fragments is equal to that of GPU threads. After the

reduce stage is finished, the output of key-value pairs from all GPU threads are finally

merged into a single buffer.

Mars runtime automatically assigns key-value pairs to each thread by a scheduler running

on a CPU process and invokes massively parallel GPU threads for map and reduce tasks,

respectively. In order to avoid conflicts in concurrent writes to an output buffer by

GPU threads, Mars employs a lock-free scheme that manages concurrent writes among

different threads and enables Mars to accurately execute massively parallel GPU threads

while reducing synchronization overheads.

Mars employs array data structure for input, intermediate, and output records, each of

which has three arrays for key, value, and index. The index array consists of an entry of

< key offset, key size, value offset, value size >. In order to get a key-value pair in key
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and value arrays, we need to access the index array to get the offset and the size of the

corresponding key-value instance.

4.5 Single GPU Implementation

This section introduces our proposal of an implementation of GIM-V algorithm on

MapReduce using a single GPU.

4.5.1 Basic Idea

In order to implement the GIM-V algorithm for GPU environments, we implement the

GIM-V algorithm on the existing Mars library that supports MapReduce execution on

a single GPU environment. Our implementation employs CUDA and C++, although

the original PEGASUS library is written in Java. This section describes the details of

our implementation.

4.5.2 GIM-V on Single-GPU MapReduce

Based on the Mars library for GPU environments, we implement the GIM-V algorithm

described in Section 4.3. Figure 4.4 shows the workflow of our GIM-V implementation,

in which we connect multiple MapReduce stages as follows:

STEP1 Preprocessing (Reading input)

STEP2 MapReduce Stage1 (combine2)

STEP3 MapReduce Stage2 (combineAll and assign)

STEP4 Convergence test

STEP5 Next iteration if not converged (go to STEP2)

First, the application reads an edge list and generates initial vertex vectors in the pre-

processing step. Next, we conduct two MapReduce stages as described in Section 4.3.

Namely, the MapReduce Stage1 performs the combine2 operation and forwards the re-

sult to the input of the MapReduce Stage2. Then the MapReduce Stage2 performs the

combineAll and assign operations. Finally, we conduct a convergence test.
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Figure 4.4: GIM-V workflow

4.6 Multi-GPU Extension

This section describes multi-GPU extension of GIM-V on GPU MapReduce from a

single GPU MapReduce-based GIM-V provided in Section 4.5. We first extend the

single GPU MapReduce implementation to multi-GPU using MPI, then we implement

GIM-V on our multi-GPU MapReduce extension. We also apply several optimization

techniques including a task-scheduling-based load balance optimization.

4.6.1 Basic Idea

In order to implement the GIM-V algorithm for multi GPU environments, we apply the

following techniques to the existing Mars library that supports MapReduce execution

on a single GPU environment:

• We extend Mars to run on a multi-GPU environment using MPI.

• We implement the GIM-V algorithm on our muti-GPU-based Mars library.

• We apply a load balance optimization technique based on task scheduling to our

multi-GPU-based GIM-V application.

This section describes the details of our implementation and optimization technique.

4.6.2 Mars Extension for Supporting multi-GPU devices

In order to enable the existing Mars library to run on a multi-GPU environment, we

extend the shuffle layer of the original Mars library to support inter-process communica-

tion. Figure 4.5 shows the overview of our extended Mars implementation, in which we

divide the shuffle stage into two parts: data transfer between processes (copy) and sort-

ing in a single process (sort). First, each process sends the outputs of the map stage to
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destination processes that are determined by hash values generated from corresponding

keys. Our implementation basically determines a hash value by the remainder acquired

by dividing a key by the number of processes; however, when we use graph partitioning

for load balance optimization, we determine a hash value by the partition id acquired

by graph partitioning. After sending the outputs, each destination process receives the

outputs of the map stage and conducts sorting of the received outputs. We employ the

MPI Alltoallv function for implementing this feature.

We also implement a parallel I/O feature using MPI-IO in order to improve I/O through-

put between host memory and secondary storage. When the application reads an input

edge list, each process sets the start and end positions to the range that the process

is responsible for conducting I/O operations. Then, the processes read the part of the

input edge list in parallel. Note that the parallel I/O not only reduces the time for

I/O operations but enables the application to handle large-scale graph data whose size

extends memory capacity on a single node.

We assign input data onto multi-GPU statically so that we can avoid additional over-

head of data movements among GPUs. Intermediate data after the copy stage is also

assigned to GPUs statically. We further discuss advantages and disadvantages of our

task scheduling strategy in Section 6.1.3.

4.6.3 GIM-V on Multi-GPU MapReduce

Based on the extended Mars library for multi-GPU environments, we implement the

GIM-V algorithm described in Section 4.3. Figure 4.6 shows the workflow of our GIM-V



Chapter 4 A Scalable Implementation of a MapReduce-based Graph Processing
Algorithm on GPUs 39

Figure 4.6: GIM-V workflow on multi-GPU Mars

implementation, in which we connect multiple MapReduce stages as follows:

STEP1 Preprocessing (Graph partitioning and reading input data)

STEP2 MapReduce Stage1 (combine2)

STEP3 MapReduce Stage2 (combineAll and assign)

STEP4 Convergence test

STEP5 Next iteration if not converged (go to STEP2)

First, the application reads an edge list and generates initial vertex vectors in the pre-

processing step. When we apply graph partitioning, we divide a graph to sub-graphs

after reading the edge list, and each process holds a part of the edge list. Next, we

conduct two MapReduce stages as described in Section 4.3. Namely, the MapReduce

Stage1 performs the combine2 operation and forwards the result to the input of the

MapReduce Stage2. Then the MapReduce Stage2 performs the combineAll and assign

operations. Finally, we conduct a convergence test that employs two detection mech-

anism phases. In the first phase of the test, each process sums the number of vertices

that meet the convergence condition after finishing the reduce stage. Then the master

process aggregates the number of the converged vertices from the processes using the

MPI Allreduce function. We compare the aggregated value with the total number of

vertices in the graph. If the values differ, we iterate MapReduce operations (MapReduce

Stage1 and Stage2); otherwise we terminate the GIM-V algorithm.

We apply several optimization techniques to the original Mars implementation for scal-

able GIM-V processing. First, we change data structure of Mars, since Mars has meta-

data (size) in addition to payload (actual data) of key-value pairs, whose structure

introduces heavy performance degradation and wastes memory. We eliminate metadata

(size) from the original Mars implementation and use fixed size payload (actual data)

to reduce the amount of data transfer. Second, we change the thread allocation in
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the reduce stage. The original Mars implementation introduces significant performance

overheads in the reduce stage due to lack of massive parallelization of CUDA threads;

that is, Mars assigns a single CUDA thread to a reduce operation for values to a single

key in the reduce stage, whose situation introduces inefficient reduce execution. Our im-

plementation allocates multiple CUDA threads to a single reduce operation in combine2

in MapReduce Stage1.

4.7 Optimization Techniques

This section describes optimization techniques on top of our multi-GPU-MapReduce-

based GIM-V provided in Section 4.6. We first introduce a task-scheduling-based load

balance optimization, followed by implementation techniques of a GIM-V-based graph

algorithm on GPU.

4.7.1 Load Balance Optimization

We use a task scheduling-based graph partitioning, called Longest Processing Time

(LPT) schedule [90], for load balance optimization. The purpose of graph partitioning

here is to reduce the load imbalance between GPU devices by partitioning a graph into

several sub-graphs to minimize the maximum number of edges and vertices, and by

distributing the partitioned sub-graphs to each process as the preprocessing step. Our

implementation describes a graph as an edge list, in which each edge consists of a pair of

source and destination vertices. The straightforward allocation without load balancing

may introduce performance overheads in proportion to the imbalance of the number of

incoming and outgoing edges. In contrast, the optimized allocation with load balancing

minimizes the difference of the number of edges to handle on a GPU device.
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Several heuristic load balancing algorithms exist [91], [92], [90] since obtaining optimal

solution for the problem is considered to be NP-complete [91]. LPT is an O(nlogn)

heuristic algorithm for homogeneous processors; whose algorithm produces a schedule

close to the optimal and has the termination time obtained by assigned jobs in decreasing

order of the execution times. Graham et al. [90] have reported that the termination

time of LPT is at most 4
3 of the optimal time. Here we show an example of LPT in

Figure 4.7. We assume three processors, P1, P2, and P3, and five tasks, whose sizes are

8, 5, 4, 3, and 1. The axis indicates the amount of assigned tasks on each processor.

LPT assigns tasks to a processor which contains least amount of tasks, from task1(8) to

task5(1). The figure shows the final state after all the tasks has been assigned, where

each bar indicates a task and each number inside the bars indicates the order in which

the task assigned. By applying LPT to the GIM-V algorithm, we obtain a near optimal

partitioning result.

4.7.2 Implementation of a GIM-V-based Graph Algorithm on GPU

We demonstrate an implementation of the PageRank algorithm on top of the GPU-

based MapReduce framework with our proposed out-of-core GPU memory management

technique. We implement two stages of MapReduce (Map1 -Reduce1 and Map2 -Reduce2

phases) based on the GIM-V algorithm explained in Section 4.3. First, Map1 phase sim-

ply passes input key-value pairs to Reduce1 phase. Next, the Reduce1 phase conducts

the combine2 operation. Then, Map2 phase simply passes the results of key-value pairs

to Reduce2 phase. Finally, the Reduce2 phase conducts the combineAll and assign

operations. In the Reduce1 and Reduce2 phases, we apply the warp-based thread as-

signments onto key-value scans: lines 11 to 18 and lines 19 to 21 in Algorithm 1 for the

Reduce1 phase, and lines 6 to 13 in Algorithm 2 for the Reduce2 phase. We use shared

memory for efficient warp-based key-value scans. We also apply warp shuffle operations

to the combineAll operations for fast reduction. The warp shuffle operation is a new

feature of the NVIDIA Kepler compute architecture.

4.8 Performance Analysis

In this section we present performance results for our multi-GPU-MapReduce-based

large-scale graph processing using GIM-V.We compare performance of our GPU-MapReduce-

based implementation with our CPU-MapReduce-based implementation as well as Hadoop;
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an existing popular CPU-based MapReduce implementation. We first analyze the re-

sults of single GPU performance by comparing with Hadoop and our CPU-based im-

plementation, then analyze multi-GPU performance. We investigate the speedup from

our CPU-based MapReduce implementation, performance breakdown, effectiveness of

optimizations for GPU utilization, effectiveness of the load balance optimization using

Kronecker graphs as well as Twitter graphs, and the speedup from Hadoop.

4.8.1 Single GPU Performance

We conducted performance studies of our GPU implementation of the GIM-V algorithm

to answer the question; comparison with a CPU-based implementation. We also include

a comparison of our GIM-V implementation with the original Hadoop-based implemen-

tation using PEGASUS.

In our experiments, we use artificial Kronecker graphs, which are characterized by

SCALE and edge factor parameters, to represent real world networks with scale-free

and power-law distribution properties. Note that SCALE denotes the base 2 logarithm

of the number of vertices, and edge factor denotes a parameter to represent the total

number of edges as edge factor × 2SCALE. We set the edge factor parameter to 16

in our experimental setting. Our experiments use the Kronecker graph generator in

the Graph500 reference implementation [41] [93] to generate adjacency matrices of the

Kronecker graphs.

We use single compute node, in which a machine has 2 processors of Intel(R) Core(TM)

i7-3930K 3.20GHz (6 cores) CPU running in hyper-threading mode, 16.3GB of main

memory, 1 device of NVIDIA Tesla C2050 GPU with 3GB of memory connnected via a

PCI-Express 2.0 × 16 bus, running Scientific Linux release 6.1. We use GCC 4.4.6 for

the CPU implementation, and CUDA driver 4.1 and CUDA runtime 4.1 for the GPU

implementation.

Comparison with Hadoop-based GIM-V implementation

First, we compare our GPU-based GIM-V implementation with PEGASUS, which is the

Hadoop-based original GIM-V implementation, using single compute node. Here we use

Hadoop version 0.21.0 and HDFS for the underlying Hadoop’s file system. Figure 4.8

shows the elapsed time of one iteration in the GIM-V algorithm, where the x-axis de-

notes the size of the input graph in SCALE and the y-axis denotes the elapsed time
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Figure 4.8: Mars vs PEGASUS: Elapsed time of an iteration in GIM-V

of an iteration in the GIM-V algorithm in the logarithm scale. We see that our imple-

mentation exhibits 8.80 to 39.0 times faster than PEGASUS. The main reason of this

significant performance improvement is mainly derived from acceleration by GPUs in

the map stages. Figure 4.9 shows the performance comparison in map and reduce stages

between our GPU-based implementation and PEGASUS, where the x-axis denotes the

size of graph in SCALE and the y-axis denotes the elapsed time of an iteration in the

GIM-V algorithm in the logarithm scale. We see that the map stage in our implementa-

tion is highly accelerated by GPU. Besides, PEGASUS conducts I/O operations from/to

secondary storage in every map and reduce stage, while our implementation only con-

ducts read I/O operations in the preprocessing step and write I/O operations in the

end of the computation to output final data to secondary storage. Our implementation

forwards output data of the reduce stage to the input of the next map stage by keeping

the output on GPU device memory, when the iterative operation continues.

Comparison with CPU implementation

We compare our implementation with a CPU-based implementation to investigate the

validity of GPU acceleration. To compare the performance difference between GPU-

based implementation and CPU-based one, we also implement the GIM-V algorithm for

CPU environments, whose implementation employs a parallelization technique using the

POSIX thread library, in addition to our GPU-based implementation. We use the POSIX
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Figure 4.9: Mars vs PEGASUS: Breakdown of an iteration in GIM-V

thread library to parallelize map and reduce tasks, and shuffle in a single node. We

implement parallelization of map and reduce tasks in straightforward manner by using

a simple fork-join model. Shuffle is implemented by quick sort using a work-pile model

that suits for the divide and conquer algorithm. Besides the above implementation, our

CPU-based implementation optimizes fetching patterns of cache line in map and reduce

tasks to avoid cache line conflict which is caused by simultaneous accesses to the same

cache line by processes running on different CPU cores.

Figure 4.10 shows the performance results of our CPU and GPU implementations, where

the x-axis denotes the size of input graph in SCALE and the y-axis denotes the elapsed

time in each stage. Here we describe the GPU-based implementation as MarsGPU, and

the CPU-based implementation as MarsCPU. We use single node in both MarsGPU and

MarsCPU experiments; we use 12 threads in a node running on hyper-threaded cores in

MarsCPU.

The results in Figure 4.10 exhibit significant performance improvement in map stage;

the elapsed time for the map stage in MarsGPU achieves 2.72 times faster than that of

MarsCPU. The reason of this performance improvement is considered that the map stage

consists of simple instructions and the input graph data for the stages are comparatively

well-balanced, which suites for highly parallelized architecture of GPU.

On the other hand, MarsGPU introduces significant performance overheads in the re-

duce stages compared with MarsCPU. The reason for the overheads is derived from the

characteristics of the graph; since we use Kronecker graphs for the experiments, the
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Figure 4.10: Mars on GPU and CPU

characteristics of which include the property that few vertices hold a large number of

edges, workload imbalance among threads in a GPU device is introduced.

In summary, the above results exhibit that our GPU-based implementation can improve

performance of the GIM-V algorithm in map stage. It is also possible to improve the

performance of our implementation further by executing the map stage on GPUs and

the reduce stage on CPUs.

4.8.2 Multi-GPU Performance

We conducted performance studies of our multi-GPU implementation of the GIM-

V algorithm to determine the following: scalability of our GPU-based implementation,

performance comparison with a CPU-based implementation, and validity of load balance

optimization. We also compare our GIM-V implementation with the original Hadoop-

based implementation using PEGASUS.

Evaluation Method

Our experiments use artificial Kronecker graphs, which are characterized by SCALE and

edge factor parameters, to represent real world networks with scale-free and power-law

distribution properties. Note that SCALE denotes the base 2 logarithm of the number

of vertices, and edge factor denotes a parameter to represent the total number of edges

as edge factor×2SCALE. We generate adjacency matrices of the Kronecker graphs with
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edge factor 16 by the Graph500 reference implementation [41, 93]. On top of the GIM-V

algorithm, we implemented PageRank as an application for the experiments.

Experimental Environment

We use 256 compute nodes of the TSUBAME2.0 supercomputer [94] located at Tokyo

Institute of Technology; each of the machines has 2 processors of Intel Xeon X5670

2.93GHz (6 cores) CPU running in hyper-threading mode, 54GB of DDR3 main memory,

3 devices of NVIDIA Tesla M2050 GPU, each of which has 3GB of discrete GDDR5

memory, and connects to a PCI-Express 2.0 × 16 bus, and 2 cards of QDR Infiniband

HBA (40 Gbps) connected to the dual rail interconnect network with full bisection

fat tree, and runs SUSE Linux Enterprise 11 SP1. Files are stored on the Lustre file

system (version 1.8), which is configured with 2 MDSs and 8 OSSs with 104 OSTs

connected to the IB network. We use Open MPI version 1.4.2 with GNU GCC 4.3.4 for

the MPI implementation, and CUDA driver 4.1 and CUDA runtime 4.0 for the GPU

implementation.

Comparison with CPU implementation

We compare our GPU-based implementation with a CPU-based implementation to in-

vestigate the validity of GPU acceleration. To do so, we also implemented the GIM-V

algorithm for multi CPU environments, whose implementation employs a hybrid par-

allelization technique using MPI and POSIX threads. We use MPI to parallelize the

code among compute nodes similar to our multi-GPU implementation, whereas we use

POSIX threads to parallelize map, reduce, and sort in a single node. Our implemen-

tation parallelizes map and reduce tasks in straightforward manner by using a simple

fork-join model. Sorting is implemented by quick sort using a work-pile model that

suits well for the divide and conquer algorithm. Besides the above implementation, our

CPU-based implementation optimizes fetching patterns of cache line in map and reduce

tasks to avoid cache line conflict which is caused by simultaneous accesses to the same

cache line by threads running on different CPU cores.

Figure 4.11 shows the weak-scaling performance results of our CPU- and GPU-based

implementations, where the x-axis denotes the number of compute nodes and the y-

axis denotes the performance in ME/s (mega edges per second) in each stage. Each

node has the constant problem size, SCALE 21. Here we describe the GPU-based

implementation as MarsGPU or MarsGPU-n where n denotes the number of GPUs
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Figure 4.11: Weak scaling performance on MarsGPU and MarsCPU (SCALE 21 per
node)

per node, and the CPU-based implementation as MarsCPU. We use 256 nodes in both

MarsGPU and MarsCPU experiments; we vary the number of GPUs per node from 1 to

3 in MarsGPU, while we use 12 threads per node running on hyper-threaded cores using

1 socket in MarsCPU. Note that the result of 256 nodes on MarsGPU-1 is not listed

since the input size is too large to fit into the amount of GPU memory. Figure 4.11 also

shows the performance of MarsGPU-3 on SCALE 30 with 256 nodes (SCALE 22 per

node). We achieved 87.04 ME/s on SCALE 30 with 256 nodes (6144 hyper-threaded

CPU cores, 768 GPUs). The results also exhibit 1.52 times performance improvement

in a single iteration on SCALE 29 with 256 nodes.

Figure 4.12 shows the performance breakdown on SCALE 28 at 128 nodes in Figure 4.11.

The y-axis denotes the elapsed time in milliseconds. We divide the results of the copy

stage into Hash, MPI-comm, and PCI-comm phases; each denotes the time for deter-

mining destination for the next reduce stage using a hash function, the time for commu-

nication via MPI Alltoallv function, and the time for data transfer between GPU and

CPU devices, respectively. Note that PCI-comm includes both data transfers between

CPU and GPU devices, i.e., data transfer from GPU to CPU at the start of the copy

stage and data transfer from CPU to GPU at the end of the copy stage. The results

exhibit that the elapsed time for the map and sort stages in MarsGPU-3 with 128 nodes
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Figure 4.12: Performance breakdown on MarsGPU and MarsCPU (SCALE 28,128
nodes)

achieves 8.93 times and 2.58 times faster than those of MarsCPU respectively. The rea-

son for this performance improvement is that the map, sort, and reduce stages consist

of simple instructions and the input graph data for the stages are comparatively well-

balanced, whose configuration suites for highly parallelized architecture of GPU. On the

other hand, we observe that MarsGPU introduces significant overheads in PCI-Comm,

since MarsGPU has to transfer data between CPU and GPU devices at the start of the

map stage, the copy stage, and at the end of the reduce stage.

Performance Comparison with Naive GPU Implementation

We compare the performance differences between naive GPU implementation and our

optimized implementation. Figure 4.13 shows the elapsed time of the map, sort, and

reduce stages on MarsGPU-3 on SCALE 26 with 128 nodes in milliseconds in the loga-

rithm scale.

This figure shows that our optimized implementation performs better than the naive

implementation; 1.92 times in map, 1.64 times in sort, and 66.8 times in reduce. This

performance benefits come from our optimization techniques described in Section 4.6.3;
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Figure 4.13: Performance comparison with naive GPU implementation on MarsGPU-
3 (SCALE 26,128 nodes)
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Figure 4.14: Load balance: Round robin vs. LPT (SCALE 19 per node)

first, the change of the data structure improves memory access performance and re-

duces waste memory consumption, and second, the change of the thread allocation also

improves performance in the reduce stage.
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Figure 4.15: Weak scaling performance on MarsGPU-3: Round robin vs. LPT
(SCALE 21 per node)

Performance Comparison with Load Balancing Algorithm

First, we compare two load balance techniques, naive partitioning (Round robin) and

partitioning based on load balance (LPT) described in Section 4.7.1, based on simu-

lation. Here we define load imbalance as the ratio of maximum and average amount

of task each GPU handle, which is calculated by the percentage of the difference be-

tween maximum and average amounts divided by average amount. Figure 4.14 shows

the weak-scaling results of the simulation. Each node has the constant problem size,

SCALE 19. The x-axis denotes the number of compute nodes and the y denotes the

load balance in percentage. We observe performance improvement by using optimized

partitioning: 13.8% better on SCALE 26 at 128 nodes. In other cases, however, we

cannot see significant performance differences; only 3.98% for SCALE 25 at 64 nodes.

The result means that the input graphs generated from the Graph500 implementation

are relatively well-balanced without any optimized partitioning.

Next, we compare the weak-scaling performance of our GPU-based GIM-V implemen-

tation with load balancing techniques. Figure 4.15 shows the comparison of the results

between MarsGPU-3 with Round robin partitioning and MarsGPU-3 with LPT-based

partitioning. The results exhibit that the performance is almost equal for each plot
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Figure 4.16: Performance breakdown on MarsGPU-3: Round robin vs. LPT (SCALE
28, 128 nodes)

except for 128 nodes. This is because the input graphs are relatively well-balanced as

shown in Figure 4.14. However, In the case of 128 nodes, we see some performance

improvement. Here Figure 4.16 shows the performance breakdown on 128 nodes from

Figure 4.15. The results exhibit that the performance improvement is derived from the

sort stage. Since we use the bitonic sort algorithm in our current implementation, the

algorithm sorts power-of-two key-value pairs, the number of which has to be equal to

or larger than the number of input key-value pairs. Therefore, the number of key-value

pairs to sort can vary by the number of input key-value pairs. This situation in the sort

stage introduces the performance differences as we see in Figure 4.16.

We also compare the load-balance approaches on different types of graphs. Here we use

four types of graphs; (1) a Kronecker graph with A = 0.57, B = 0.19, C = 0.19, D =

0.05 (default parameters used in the Graph500 benchmark), (2) a Kronecker graph with

A = 0.80, B = 0.05, C = 0.05, D = 0.10, and (3) a random graph. We compare weak

scaling performance with non-scrambled graphs, scrambled graphs, and graphs using the

LPT scheduling. Note that the scrambled graphs are the graphs whose vertex indices are

randomized as preprocessing. Note that we use one GPU per node for these experiments.

We use TSUBAME-KFC as a computing environment and we use TSUBAME 2.5 for

the fourth graph. A node on TSUBAME-KFC contains 2 sockets of Intel Xeon E5-2620
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Figure 4.17: (Top) Comparative performance on TSUBAME-KFC (Weak scaling,
SCALE 19 per node, A = 0.57, B = 0.19, C = 0.19, D = 0.05), (Bottom) Comparative

graph data distribution on 32 nodes of TSUBAME-KFC

v2 (Ivy Bridge EP, 2.10GHz, 6 cores) CPU, 64GB of DDR3 main memory, 4 devices of

NVIDIA Tesla K20X GPU with 6GB of discrete GDDR5 memory connected to PCI-

Express 2.0 × 16 buses, and 1 card of FDR InfiniBand HBA (56Gbps) connected to a

single rail interconnect network, and runs on CentOS release 6.4. We use Open MPI

1.7.2 with GNU GCC 4.4.7 for the MPI implementation, and CUDA driver 5.5 and

CUDA runtime 5.5 for the GPU implementation.

The top of Figure 4.17 shows the results of comparative performance of the first three

graphs respectively. Also, the bottom of Figure 4.17 shows the results of comparative
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Figure 4.18: (Top) Comparative performance on TSUBAME-KFC (Weak scaling,
SCALE 19 per node, A = 0.80, B = 0.05, C = 0.05, D = 0.10), (Bottom) Comparative

graph data distribution on 32 nodes of TSUBAME-KFC

graph data distribution on 32 nodes of the first three graphs respectively. These distri-

bution represent data distribution (i.e. number of records on each node) after Shuffle

operation in GIM-V Stage 1. Note that the distributions depend on source index of

edge data; i.e. a node which handles high degree vertex index receives large number

of records. For all the three results, the results indicate non-scrambled graphs exhibit

heavy performance degradation. This degradation is due to load-imbalance stemmed

from highly skewed edges, as we see in Figure 4.2 in non-scrambled graphs. We also

see that the results show similar performance between scrambled graphs and graphs
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Figure 4.19: (Top) Comparative performance on TSUBAME-KFC (Weak scaling,
SCALE 19 per node, random graph), (Bottom) Comparative graph data distribution

on 32 nodes of TSUBAME-KFC

using LPT in the Kronecker graph with A = 0.57, B = 0.19, C = 0.19, D = 0.05 and

the random graph, while performance improvement using LPT in the Kronecker graph

with A = 0.80, B = 0.05, C = 0.05, D = 0.10. The results show 20.6% performance

improvement with LPT on 32 nodes compared with the scrambled graph. We consider

a possible reason of this results is that the scrambled graphs consist of relatively even

amount of edges for each node in the Kronecker graph with A = 0.57, B = 0.19, C =

0.19, D = 0.05 and the random graph, while there still is workload imbalance in the

Kronecker graph with A = 0.80, B = 0.05, C = 0.05, D = 0.10. In fact, the graph
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Figure 4.20: (Top) Comparative performance on TSUBAME 2.5 (Strong scaling,
Twitter friendship graph), (Bottom) Comparative graph data distribution on 256 nodes

of TSUBAME 2.5

data distribution results indicate that the scrambled graphs and the graphs using LPT

exhibit similar in the Kronecker graph with A = 0.57, B = 0.19, C = 0.19, D = 0.05 and

the random graph, while exhibit load imbalance with scrambled graphs in the Kronecker

graph with A = 0.80, B = 0.05, C = 0.05, D = 0.10.

We also conduct experiments with a real world graph data, using a Twitter friendship

graph with 61.6 million vertices and 1.47 billion edges. We compare strong scaling per-

formance with the original (non-scrambled) graph, the graph using the LPT scheduling,

and the inverse graph in which sources and destinations in all edges are swapped (we
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Figure 4.21: (Top) Adjacency matrix of Twitter friendship graph), (Bottom) Sorted
vertex distribution of Twitter friendship graph

call the third graph inverse graph). Note that we use one GPU per node for these ex-

periments. The top of Figure 4.20 shows the results of comparative performance of the

three types of configurations on TSUBAME 2.5, as well as the results of comparative

graph data distribution on 256 nodes of TSUBAME 2.5. The results show that LPT

performs the best; 1.11x faster compared with the original graph and 1.58x faster com-

pared with the inverse graph. The performance improvement of using LPT derives from

the fact that load imbalance of the other two graphs is improved by the LPT scheduling,
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Figure 4.22: Performance Comparison with PEGASUS (SCALE 27, 128 nodes)

as the bottom of Figure 4.20 indicates. The results also show that the inverse graph

suffers much heavier load imbalance compared with the original graph. In order to in-

vestigate the cause of the work load difference, we see the structure of the graph. The

top of Figure 4.21 shows the adjacency matrix and the sorted vertex distribution of the

Twitter friendship graph. The figure shows scale-free property similar to the artificial

Kronecker graphs, while the structure of adjacency matrix is different. This adjacency

matrix shows that some destination vertices receive a large number of edges. On the

other hand, source vertices are relatively evenly connected with the some destination

vertices. This evenly distributed source vertices result in little load imbalance of the ear-

lier performance results of the original graph. On the other hand, inverse graph suffers

much heavier load imbalance due to the skewed destination vertex distribution.

Comparison with Hadoop-based GIM-V implementation

Finally, we compare our multi GPU-based GIM-V implementation with PEGASUS,

which is the Hadoop-based original GIM-V implementation, using up to 128 compute

nodes. Here we use Hadoop version 0.21.0 and Lustre for the underlying Hadoop’s file

system. Figure 4.22 shows the performance of one iteration in the GIM-V algorithm,

where the x-axis denotes the size of the input graph in SCALE and the y-axis denotes

the performance in KE/s in the logarithm scale. We see that our implementation ex-

hibits 186.6 times performance improvement than PEGASUS on SCALE 27 with 128

nodes. The main reason of this significant performance improvement is derived from the
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underlying differences in implementation; Mars and Hadoop. PEGASUS conducts I/O

operations from/to secondary storage in every map and reduce stage, while our imple-

mentation only conducts read I/O operations in the preprocessing step and write I/O

operations in the end of the computation to output final data to secondary storage. Our

implementation forwards output data of the reduce stage in MapReduce Stage2 to the

input of the next map stage by keeping the output on CPU memory, when the iterative

operation continues.

4.9 Summary

We introduce a GIM-V implementation with load balance optimization for multi GPU

environments and conduct performance studies using our implementation on the TSUB-

AME2.0 supercomputer using 256 nodes (6144 hyper-threaded CPU cores, 768 GPUs).

The results exhibit that our GPU-based implementation performed 87.04 ME/s on

SCALE 30, and 1.52 times faster than the CPU-based native implementation on SCALE

29. We also show the effectiveness of our load balance optimization techniques especially

on highly skewed graphs. The results also show that our implementation exhibits 186.6

times performance improvement than PEGASUS on SCALE 27 with 128 nodes.



Chapter 5

Out-of-core GPU Memory

Management for

MapReduce-based Large-scale

Graph Processing

We have so far discussed issues and restrictions on large-scale graph processing on

GPU-based heterogeneous supercomputers due to uncertainty of efficiency using GPU

and memory management of hundreds of GPUs for large-scale graph processing. An-

other significant challenge with large-scale graph processing on GPU-based heteroge-

neous supercomputers is handling memory overflow from GPU memory. This chapter

first reviews prior proposed techniques on out-of-core processing on CPUs and GPUs,

then advantages and limitations of the techniques are thoroughly analyzed and are fol-

lowed by a description of novel techniques to out-of-core GPU memory management

for MapReduce-based large-scale graph processing. We analyze experimental results

on TSUBAME 2.5 using 1024 nodes (12288 CPU cores, 3072 GPUs) reveal that our

GPU-based implementation performs 2.10x faster than the CPU-based implementation

on 12288 CPU cores, using a graph with 17.18 billion vertices and 274.9 billion edges.

5.1 Motivation

Extremely large-scale graphs recently emerge in various application fields, such as health

care, social networks, system biology, and electric power grids, etc., typically consisting

59
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of millions to trillions of vertices and edges. These large-scale graphs require fast and

scalable analysis using HPC technologies by fully exploiting performance of recent su-

percomputers. On the other hand, modern supercomputers employ commodity graphics

processing units (GPUs) in addition to general purpose CPUs, since GPU-based hetero-

geneous supercomputers continue to attract attention due to their high peak performance

and high power efficiency. In chapter 4, we have proposed a distributed multi-GPU im-

plementation of a MapReduce-based graph processing algorithm, where we show that our

multi-GPU-based PageRank implementation performs faster compared with a multi-core

CPU-based implementation on the TSUBAME2.0 supercomputer [94] using 256 nodes

and 768 GPUs.

Although GPU-based heterogeneous supercomputers are suitable for graph applications,

the capacity of device memory on GPUs limits scalable large-scale graph processing, since

GPUs typically have smaller memory capacity than the CPU hosts. For example, the

TSUBAME2.5 supercomputer [11] employs 1408 compute nodes, each of which equips

3 GPU devices and 2 CPU sockets, where the capacity of device memory on each GPU

is 6GB, while that of CPU host memory is 54GB. Thus, in order to process larger-scale

graphs whose size exceeds the capacity of GPU memory, data management techniques

for handling GPU memory overflows are required. However, such out-of-core GPU

data management techniques with detailed performance studies for large-scale graph

processing are not well investigated. Furthermore, even if we apply the out-of-core

GPU data management techniques, which execution approaches to use, only the device

memory on GPUs (scale-out) or offload partial graph data to the secondary CPUmemory

(scale-up) on a multi-node environment, in terms of graph application’s performance and

its power efficiency, is considered another important issue.

5.2 Introduction to Out-of-core Processing

This section summarizes prior proposed techniques on out-of-core processing on CPUs,

followed by prior efforts on out-of-core GPU processing, and memory overflow handling

on MapReduce-based processing on GPUs.

5.2.1 Out-of-core CPU Processing

Several research efforts have explored out-of-core graph processing on CPU. As for CPU-

based graph processing on a single node, several techniques, such as sequential I/O op-

timization [49], data placement optimization [79], and data prefetch optimization [80],
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have been proposed. These techniques focuses on the utilization of a single node. Thus,

distributed computing environments are not supported. Pearce et al. [81] have pro-

posed a CPU-based out-of-core large-scale graph processing technique for distributed

computing environments. Their technique introduces a graph partitioning strategy and

applies to their multithreaded algorithm using distributed external memory; however,

this algorithm cannot be straightforwardly applicable to GPUs, since this algorithm is

highly designed for utilizing multi-core CPUs. The MapReduce [3] programming model

has been proposed for processing big data applications with automatic memory/storage

hierarchy encapsulation, and Hadoop [7] is one of the widely used MapReduce imple-

mentation. MR-MPI [26] is a MPI-based MapReduce implementation on CPU, which

employs an out-of-core processing technique including in the sort phase after inter-node

data exchanges. These MapReduce implementations are designed for CPU-based dis-

tributed environments, while our work focuses on GPU-based large-scale environments.

5.2.2 Out-of-core GPU Processing

Researchers have been working on out-of-core GPU processing algorithms in a wide

range of application fields, such as BFS [66], stencil [82], rendering [83], etc. These

algorithms have shown GPU accelerations by using out-of-core techniques; however, the

scope of these applications is limited on specific algorithms. Out-of-core GPU sorting

algorithms, such as a sample-based sorting [84] and a merge-based sorting [85], have

also been studied; however, these algorithms are designed for a single node execution.

These algorithms also have not well investigated load balancing issues for highly skewed

data such as real world graphs. There also exists work on I/O issues from a GPU to

filesystems [86]; however, they have not conducted experiments on realistic large-scale

applications such as graph processing.

5.2.3 MapReduce-based Out-of-core Processing on GPUs

The MapReduce model can provide out-of-core processing with simple application inter-

faces. There exists a generalized graph processing algorithm for the MapReduce model

called GIM-V (we explain the details in Section 4.3) and its Hadoop-based implemen-

tation [6]. However, the implementation does not show good performance due to heavy

overheads derived from the Hadoop framework. In chapter 4, we proposed a distributed

multi-GPU-MapReduce-based graph processing implementation and showed that our

multi-GPU-based PageRank implementation outperforms the Hadoop-based implemen-

tation considerably on TSUBAME2.0. GPMR [34] is a multi-GPU MapReduce library
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supporting out-of-core GPU execution on distributed computing environments. How-

ever, the sort phase in GPMR is executed on CPUs when the size of input data exceeds

the capacity of the GPU memory, instead of executing on GPUs. Besides, the per-

formance studies on CPU vs. GPU comparison have not been sufficiently conducted,

especially in the out-of-core situation.

5.2.4 Issues on Out-of-core GPU memory management

One of the significant issues for processing large graphs on GPUs is considered that how

to manage graph data whose size exceeds the capacity of GPU memory with minimal

performance overheads. As explained in the previous section, GPU memory generally

has the smaller capacity than CPU memory, and computation on GPUs requires to

transfer data between CPU memory and GPU memory. Thus, when we naively apply the

graph algorithms to GPUs, data transfers dominantly disturb efficient graph processing.

In particular, when the size of the graphs exceeds the capacity of device memory on

GPUs, the number of data transfers drastically increases for executing dependent graph

kernels.

We can certainly overcome the GPU capacity limitation problem by using multi-node

multi-GPU environments. Indeed, several existing efforts have shown good weak-scaling

performance of graph processing on GPU-based large-scale environments; however, these

techniques still have the limit on the size of the graphs below the device memory ca-

pacity on GPUs. Although out-of-core GPU memory management techniques may help

solving the problem by utilizing secondary host memory volumes, best approaches with

detailed performance studies whether we should use only the device memory on GPUs

(scale-out) or offload partial graph data to the secondary CPU memory (scale-up) on

a multi-node environment are not well investigated in terms of graph application’s per-

formance and power efficiency. Moreover, optimization techniques for out-of-core GPU

memory management techniques to achieve good weak scalability on large-scale envi-

ronments should be investigated, since the graph algorithms generally include irregular

data accesses to sparse data sets, whose situations introduce significant performance

overheads and disturb scalable large-scale graph processing.

5.3 Out-of-core GPU Memory Management

This section describes our proposed techniques on out-of-core GPU memory manage-

ment for MapReduce-based large-scale graph processing. We first summarize basic idea
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Figure 5.1: Overview of our out-of-core multi-GPU MapReduce framework. The
dashed boxes on the left side represent operations initialized by the dashed box on the

right side.

of our techniques, followed by a description of two novel techniques; stream-based GPU

memory management on MapReduce and optimized sample-based out-of-core GPU sort-

ing.

5.3.1 Basic Idea

Our out-of-core GPU memory management technique is designed on top of the MapRe-

duce model, since MapReduce can transparently encapsulate memory hierarchies by

providing automatic memory management from the system. Before describing our pro-

posed data management technique, we introduce the target multi-GPU MapReduce

framework.

Figure 5.1 shows an overview of the framework. The basic architecture of the framework

remains the same as our proposal in chapter 4, nevertheless we use a different imple-

mentation here. We firstly read key-value pairs as input data from a distributed file

system to CPU memory on multiple nodes and keep the data on CPU memory. Next,

we sort and reorder the input key-value pairs by key to obtain a set of values for a key.

Then, users call Map, Shuffle, or Reduce operations based on user-specific application

workflow. Note that we may skip the sorting process for the Map operations. When

Map or Reduce operations are called, the input data are processed on GPUs inside the

framework with user-provided operations. When Shuffle operations are called, the input

data are exchanged between multiple nodes based on system-provided or user-provided

splitters by using MPI all-to-all communications. Finally, output data are transferred
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Figure 5.2: Overview of our stream-based out-of-core GPU memory management.
The upper boxes represent input chunks on CPU memory to be processed. The lower
three types of boxes represent data transfers from CPU memory to GPU memory,
computations on GPUs, and data transfers from GPU memory to CPU memory, re-

spectively.

onto the CPU memory on each node. Our framework is flexibly designed so that the

users can define multiple Map and Reduce operations and call Map, Shuffle, and Reduce

operations in an arbitrary order. The users can also write applications with iterative

computations by writing loop syntax with user-provided convergence criteria.

The above technique includes a significant limitation that the framework cannot handle

GPU memory overflows. Thus, we simply extend the above framework based on two

straightforward ideas, streaming processing on GPUs and GPU-based external sorting.

By dividing input data into multiple chunks and by processing each chunk one by one

in a stream, we apply overlapping techniques between computation and data transfer

for hiding data transfer overheads as much as possible.

5.3.2 Stream-based GPU MapReduce Processing

Figure 5.2 shows an overview of our streaming processing technique for GPU-based

Map and Reduce operations. In order to optimize data transfer between CPU and

GPU, we overlap three operations: data transfer from CPU memory to GPU memory,
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Map and Reduce operations on GPU, and data transfer from GPU memory to CPU

memory, otherwise we suffer additional CPU-GPU data transfer overheads for each

Map or Reduce operation. Note that our stream-based memory management provides

additional benefits that hide CPU-GPU data transfer from Map and Reduce operations

on the GPU even if the size of input data fits the capacity of GPU memory. The detailed

instructions of our stream-based CPU-GPU memory management technique are shown

as follows:

STEP1: Divide input key-value data into d chunks evenly, where d denotes the number

of chunks. We determine the number of chunks dynamically so that each chunk

fits on the GPU memory capacity.

STEP2: Create s CUDA streams, where s denotes the number of streams, and allocate

s buffers on GPU for the chunks of the input key-value data; a single buffer is

linked to a single CUDA stream.

STEP3: Repeat streaming processing d times; transferring a chunk of the input key-

value data from CPU to a buffer on GPU, running Map and Reduce operations on

GPU, and transferring output from the buffer on GPU to CPU. These three op-

erations are overlapped using asynchronous function calls (i.e. cudaMemcpyAsync

function with pinned memory).

We set the s parameter to three by default in order to overlap the above three operations.

We dynamically update the d parameter to fit the size of input data chunks on the

capacity of GPU device memory.

5.3.3 Out-of-core GPU Sorting

We introduce a GPU sorting implementation to the framework for handling GPU mem-

ory overflows. The implementation consists of a combination of existing GPU-based out-

of-core and in-core algorithms. As for out-of-core GPU sorting, we employ an existing

sample-based out-of-core sorting algorithm for GPUs proposed by Ye et al. [84], while

as for in-core GPU sorting, we employ the radix sort algorithm based on the Thrust

library [95]. Out-of-core GPU sorting is conducted when the size of input data exceeds

the GPU memory capacity. Otherwise, in-core GPU sorting is conducted.

Figure 5.3 shows an overview of the out-of-core GPU sorting algorithm. Sample-based

parallel sorting uses t−1 samples as splitters to partition the input data set into several
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data chunks, where t denotes the number of sample points. The chunks can be put

on GPU memory by considering the size of chunks and the capacity of GPU memory.

We dynamically determine the number of chunks by checking the available amount of

memory and the input data size at the beginning. If the input data size is too large to

fit on the GPU memory, our framework divides the input data into d chunks based on

the available GPU memory capacity and the input data size. The detailed instructions

of the out-of-core GPU sorting algorithm are shown as follows:

STEP1: Randomly select c keys as sample candidates from input keys on CPU host

memory.

STEP2: Sort the c sample candidates. Then, pick the (k+1) ·c/d th sample points and

set the points to t[k], where k ∈ [0, d− 1]. Here, d denotes the number of chunks.

We set t[d− 1] to the maximum limit value on the host memory.

STEP3: Divide the input data set into d chunks on the host, each of which contains

n/d elements evenly, where n denotes the number of input keys.

STEP4: Copy each chunk onto GPU memory, sort each chunk using the in-core sorting

algorithm, and split each chunk into d buckets using splitters based on the sample

points on GPU.

STEP5: Swap the buckets among chunks on the host, so that elements in the (i+1)th

chunk are no smaller than those in the ith chunk.

STEP6: Copy each chunk onto GPU and sort one by one using the in-core sorting

algorithm on GPU.

Our out-of-core sorting algorithm differs from the existing out-of-core GPU sorting pro-

posed by Ye al. [84] in that we present less CPU-GPU data transfer overheads by sim-

plifying the data dividing strategy than the existing algorithm, since we observe good

load balance when we set c to larger numbers than 1000.

We implement a stream-based overlapping feature for GPU sorting and CPU-GPU data

transfers, whose instructions are shown in Step 4 and 6. Thrust uses default CUDA

stream and does not presently have a mechanism to control execution streams. In order

to overlap with the default stream, we create multiple streams by cudaStreamCreate-

WithFlags with cudaStreamNonBlocking flag, a new feature enabled from CUDA 5.0.

cudaStreamNonBlocking flag enables overlapping with the default stream. In Step 5,

we also implement pointer-based swapping algorithm with low-overheads. Pointers of

buckets are swapped instead of the payloads.
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Figure 5.3: Overview of the out-of-core GPU sorting algorithm. Blue boxes represent
operations called on CPUs and green boxes represent operations running on GPUs.

Red vertical bars represent splitters based on sample points.

5.4 Optimization Techniques

In order to achieve good weak-scaling performance on large-scale GPU-based heteroge-

neous supercomputers, we apply several optimization techniques to the framework with

our out-of-core GPU memory management technique. Here we describe the details of

the optimization techniques.

5.4.1 Data Structure

We employ a compact data structure similar to CSR (Compressed Sparse Row) for sparse

matrix formats, which consists of an array of unique keys, values, and indices of first

values for unique keys, for compressing redundant data and for achieving efficient Map

and Reduce processing. For instance, if a Kronecker graph in the Graph500 benchmark

is given as input data, we can expect to compress duplicate keys to around 1/16, since

the graph includes 16 edges per vertex on average. We firstly reorder input key-value

pairs by using the out-of-core GPU sorting algorithm. Then, we apply the scan (prefix

sum) operation to the sorted keys in order to calculate indices of first values for unique

keys. Finally, we compact the duplicated keys by using the unique operation.
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5.4.2 Shuffle

We implement a Shuffle operation for redistributing intermediate data onto each node

based on a system-provided or user-defined splitter function. We implement range-based

and hash-based splitters as system-provided splitters. We provide a default splitter as

the range-based splitter, where each node takes charge of a range of the number of data.

Instead users can also implement customized splitters. We observe the range-based

splitter performs good load balance for skewed graphs generated in the same way as the

Graph500 benchmark by randomizing vertex indices. Although load balance depends

on the input graph structure, our Shuffle operation can extend to other splitters by

customization according to the input graph structure.

5.4.3 Thread Assignment Policy on GPU

We apply a thread assignment optimization on a GPU for handling the skew of vertex

degrees on large-scale graph processing. We consider the following three strategies for

assigning threads onto vertices and edges.

1. Thread-based Assignment: Assign one thread per vertex.

2. Warp-based Assignment: Assign one warp per vertex. The warp size on recent

GPUs is set to 32.

3. Thread Block-based Assignment: Assign one thread block per vertex. The

thread block size on recent GPUs (e.g. NVIDIA Tesla K20X) is set to 1024.

The strategies 2) and 3) are expected to achieve good performance on GPUs by utilizing

massive amounts of threads; however, these strategies require to write CUDA-specific

descriptions, such as threadIdx, blockDim etc., in the user-defined Map and Reduce op-

erations. On the other hand, the strategy 1) can work on both CPUs and GPUs without

any special descriptions. We employ the strategy 2) since the warp size is expected to be

close to the average number of edges per vertex for wide range of graphs. For example, in

graphs used in the Graph500 benchmark, the average number of edges per vertex is set

to 16. As another example in real world graphs, the average number of edges per vertex

in the Facebook friend network reaches around 130. For graphs with a large average

number of edges, the strategy 3) is expected to achieve good performance. We set the

thread block size as (ws,max tbs/ws, 1) and the grid size as (nv/blockDim.x, 1, 1) for

the strategy 2), where ws denotes the warp size, max tbs denotes the maximum number

of threads per thread block, and nv denotes the number of vertices per GPU.
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Figure 5.4: Warp-based thread assignment onto 2D thread block on GPU. The mesh
in the left side represents keys, and the mesh in the right side represents values corre-
sponding to each key. Each warp is assigned to a portion of values corresponding to
a key. The warp is assigned multiple times to values whose length is larger than the

warp size.

5.5 Performance Analysis

In order to understand the efficiency of our out-of-core GPU memory management

technique for GPU-MapReduce-based graph processing, we run a PageRank applica-

tion based on the GIM-V algorithm on the TSUBAME2.5 supercomputer [11]. TSUB-

AME2.5 mainly consists of 1408 compute nodes, each of which has 2 sockets of Intel

Xeon X5670 (Westmere EP, 2.93GHz, 6 cores) CPU, 54GB of DDR3 main memory, 3

devices of NVIDIA Tesla K20X GPU with 6GB of discrete GDDR5 memory connected

to PCI-Express 2.0 × 16 buses, and 2 cards of QDR InfiniBand HBA (40Gbps) con-

nected to the dual rail interconnect network with full bisection fat tree, and runs on

SUSE Linux Enterprise 11 SP1. We use up to 1024 compute nodes of TSUBAME2.5

in the experiments. We use Kronecker graphs generated in the same way as Graph500

benchmark, using the recursive matrix (R-MAT) procedure with the following initiator

parameters: (A, B, C, D) = (0.57, 0.19, 0.19, 0.05) and an average vertex degree of 16.

We describe the size of the graphs as SCALE, the logarithm base two of their number

of vertices. We use Open MPI 1.4.2 with GNU GCC 4.3.4 for the MPI implementation,

and CUDA driver 5.0, CUDA runtime 5.0, and thrust 1.7.0 for the GPU implementation.
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5.5.1 Comparison with CPU-based implementation

We compare our proposed GPU-based implementation with a CPU-based implementa-

tion in order to investigate the efficiency of GPU acceleration when the size of graph

exceeds the capacity of device memory on GPUs. In order to make fair comparisons, we

extend our GPU-based implementation to support multi-node multi-CPU environments

as well. Our implementation employs a hybrid parallelization technique using MPI

and OpenMP. MPI is used for parallelization between compute nodes (or processes) in

the same way as our GPU-based implementation, whereas OpenMP is used for paral-

lelization of Map, Reduce, and Sort operations inside a single node (or process). Our

implementation parallelizes the Map and Reduce operations in a straightforward manner

by using a simple fork-join model. In the Sort operation, we use OpenMP-based parallel

sorting in the Thrust library. We use Thrust’s OpenMP sorting instead of parallel STL

sorting, since parallel STL sorting is not compatible with the CUDA compiler which we

use in the CPU-based implementation.

Figure 5.5 shows the results of the weak-scaling performance of our CPU- and GPU-

based implementations on TSUBAME2.5, where the x-axis denotes the number of com-

pute nodes and the y-axis denotes the performance in ME/s (million edges per second)

in each stage. Each node has the constant problem size: SCALE 23 for running on 1

CPU and 1 GPU and SCALE 24 for running on 2 CPUs, 2 GPUs, and 3 GPUs. Note

that the size of graphs in the configurations exceeds the capacity of device memory on

the GPUs. For example, the size of a SCALE 23 graph exceeds the capacity of de-

vice memory on a GPU, and the size of a SCALE 24 graph also exceeds the aggregate

capacity of device memory on 2 and 3 GPUs. Here we describe the GPU-based imple-

mentation as nGPU(s), where n denotes the number of GPU devices per node, and the

CPU-based implementation as mCPU(s), where m denotes the number of CPU sockets

per node. We use up to 1024 nodes in both nGPU(s) and mCPU(s) experiments; we

vary the number of GPUs per node from 1 to 3, while we use 12 threads per node using

1 or 2 socket(s) in mCPU(s). We see that our implementation on 3GPUs achieves 2.81

GE/s (billion edges per second) on SCALE 34 on 1024 nodes (12288 CPU cores and

3072 GPUs). The results also exhibit 2.10x performance improvement compared with

2CPUs on SCALE 34 on 1024 nodes.

Figure 5.6 shows the performance breakdown on SCALE 31 on 256 nodes, where the

y-axis denotes the elapsed time in milliseconds. We divide a single GIM-V iteration

into five phases; Map, Shuffle, Reduce, Sort, and Others. The Map and Reduce phases

include the time for Map and Reduce kernel executions and CPU-GPU data transfer.
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Figure 5.5: Results of weak scaling performance, where SCALE 23 for running on
1 CPU and 1 GPU per node and SCALE 24 for running on 2 CPUs, 2 GPUs, and 3

GPUs per node.

Shuffle phase includes the time for inter-node data transfer and its preparation. Sort

phase includes the time for sorting in each Map, Shuffle, and Reduce phase. Others

includes the time for the rest of the Map, Shuffle, Reduce, and Sort phases. The re-

sults exhibit that the elapsed times for the Map, Reduce, and Sort phases on 3GPUs

achieve 1.41x, 1.49x, and 4.95x faster than those on 2CPUs respectively. The reason for

this performance improvement is considered that our implementation hides CPU-GPU

data transfer overheads efficiently in Map, Reduce, and Sort phases by stream-based

asynchronous computation.

We analyze further breakdown of the Map and Reduce phases in a single GIM-V iter-

ation. Figure 5.7 shows the results, where Map n and Reduce n denotes each Map or

Reduce phase in GIM-V Stage n. As we see in Algorithm 1 and 2 in Section 4.3, the

Map1 and Map2 operations only pass input vertices or edges data to the next phase, the

Reduce1 operation combines a vertex and connecting edges for all vertices and passes

to the next phase, and the Reduce2 operation combines all edges connecting to a vertex

into an updated vertex for all vertices. Thus, we expect the Reduce1 and Reduce2 op-

erations to be accelerated compared to the Map1 or Map2 operations by using GPUs,

since the Reduce1 and Reduce2 operations include actual computation kernels as op-

posed to the Map1 and Map2 operations. The results in Figure 5.7 indicates that the

Map1 and Map2 operations are accelerated 1.41x, the Reduce1 operation is accelerated
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Figure 5.6: Results of performance breakdown on SCALE 31 using 256 nodes.
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Figure 5.7: Results of Map and Reduce phases on SCALE 31 using 256 nodes.

1.56x, and the Reduce2 operation is accelerated 1.33x respectively by using 3 GPUs per

node compared with 2 CPUs per node. As expected, the Reduce1 operation is more

accelerated than the Map1 and Map2 operations; however, we also see that the Reduce2

operation is not accelerated as much as the other phases. We consider the result comes

from not fully overlapping CPU-GPU communication, since the computation time in

Reduce2 operation is not sufficiently large.
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5.5.2 Results of Out-of-core GPU Sorting

In order to investigate the efficiency of the out-of-core GPU sorting technique explained

in Section 5.3.3, we compare the performance of our our-of-core GPU sorting implemen-

tation with STL sort and Thrust OpenMP sort on TSUBAME2.5 using a single node.

The objective of this experiment is to understand the effectiveness of the use of GPUs in

the Sort operation when the input key-value data exceeds the capacity of GPU memory.

Figure 5.8 shows the results, where the x-axis denotes the input number of key-value

pairs in millions and the y-axis denotes the sorting rate on key-value pairs in millions

per second. Note that the blue vertical bar between 100 and 150 on the x-axis denotes

the border that the size of input data exceeds the capacity of device memory on a GPU

when the input data increase. The results exhibit that our implementation performs

2.53x faster than STL sort at 285 million of the input key-value pairs. These results

indicate that GPU can accelerate sorting performance even though the size of input data

exceeds the memory capacity on a GPU; however, we also see the performance degrada-

tion in our implementation when the size of input data becomes large. This degradation

is largely caused by the nature of the out-of-core GPU sorting algorithm; We conduct

the in-core GPU sorting when the size of input data fits the capacity of device memory

on the GPU, while conducting the out-of-core GPU sorting only when the input data

exceeds the GPU memory capacity. The out-of-core GPU sorting algorithm introduces

several additional instructions, such as multiple repetitions of chunk-based in-core GPU

sorting and data transfers between CPU and GPU compared with the in-core GPU sort-

ing; however, GPU sorting still has performance benefits even for large data sets that

exceed the capacity of GPU device memory.

5.5.3 Balance between Scale-up and Scale-out

In order to investigate execution approaches whether we should use only device memory

on GPUs (scale-out) or offload partial graph data to secondary CPU memory (scale-up)

on a multi-node environment, we conduct performance studies on the balance of the

number of compute nodes and GPUs per node. We vary the number of GPUs per node

from 1 to 3 and use two patterns of the number of nodes: 512 and 1024. Then we

set the three configurations: a) 1 GPU per node on 1024 nodes (1024 GPUs in total),

b) 2 GPUs per node on 512 nodes (1024 GPUs in total), and c) 3 GPUs per node

on 512 nodes (1536 GPUs in total), and compare the edge scan performance of each

configuration. Figure 5.9 shows the results of the experiment, where the x-axis denotes

the size of graphs in SCALE and the y-axis denotes the performance in ME/s (million
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Figure 5.8: Results of out-of-core GPU sorting.

edges per second). We see that the configurations b) and c) exhibit 0.81x and 0.97x of

the performance compared with the configuration a). The results indicate that we can

obtain competitive performance results when we use a large number of GPUs per node

in a small number of nodes.

Furthermore, we also investigate the power efficiency on scale-up and scale-out ap-

proaches on TSUBAME-KFC, each of which has 2 sockets of Intel Xeon E5-2620 v2

(Ivy Bridge EP, 2.10GHz, 6 cores) CPU, 64GB of DDR3 main memory, 4 devices of

NVIDIA Tesla K20X GPU with 6GB of discrete GDDR5 memory connected to PCI-

Express 2.0 × 16 buses, and 1 card of FDR InfiniBand HBA (56Gbps) connected to a

single rail interconnect network, and runs on CentOS release 6.4. We use Open MPI

1.7.2 with GNU GCC 4.4.7 for the MPI implementation, and CUDA driver 5.5 and

CUDA runtime 5.5 for the GPU implementation. We use a SCALE 27 graph and mea-

sure the elapsed time and the mean power consumption using the GPUs. Figure 5.10

shows the results of the performance and the power efficiency using three configura-

tions: d). 32 nodes with 1 GPU per node, e). 16 nodes with 2 GPUs per node, and

f). 8 nodes with 4 GPUs per node. Note that the three configurations use the same

number of GPUs (i.e. 32 GPUs) in total. The results show that the simple scale-out

approach d) performs the best in the three configurations in edge scan performance.

On the other hand, the scale-up approaches e) and f) perform better power efficiency

than the scale-out strategy, by 1.53x and 1.71x respectively. These results suggest that
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Figure 5.10: Results of the performance and the power efficiency on scale-up and
scale-out strategies on TSUBAME-KFC.

the scale-up approach should be considered as an option for the architectures of next

generation supercomputers, since the power efficiency is considered as one of the most

important problems for future large-scale computing environments.



Chapter 5 Out-of-core GPU Memory Management for MapReduce-based Large-scale
Graph Processing 76

5.6 Summary

We proposed an out-of-core GPUmemory management technique for large-scale MapReduce-

based graph applications. The proposed technique handles memory overflows from GPUs

by automatically dividing graph data into multiple chunks and overlaps CPU-GPU data

transfer overheads as much as possible. Our experimental results on TSUBAME 2.5

using 1024 nodes (12288 CPU cores, 3072 GPUs) exhibit that our GPU-based imple-

mentation performs 2.10x faster than the CPU-based implementation on a graph with

17.18 billion vertices and 274.9 billion edges. We reveal that our GPU-based approach

with out-of-core GPU data management can accelerate Map and Reduce phases by fully

overlapping CPU-GPU data transfer and by applying several optimizations. We also

show that scale-up approach performs better power efficiency than simple scale-out ap-

proach.



Chapter 6

Discussion

This chapter first describes discussion on applicability of the proposed techniques on

MapReduce-based large-scale data processing on large-scale heterogeneous supercom-

puters in Section 6.1. Then, we also introduce another application case study of per-

formance analysis of a MapReduce-based homology search algorithm on metagenomics

for discussing advantage and disadvantage of our MapReduce implementation based on

comparative implementation and performance with existing MapReduce implementa-

tions in Section 6.2.

6.1 Applicable Scope of the Proposed Techniques

This section describes additional discussion on applicability of the proposed techniques

for MapReduce-based large-scale data processing on GPU-based heterogeneous super-

computers. We first discuss advantage and disadvantage of MapReduce-based large-

scale data processing including comparison with other programming models including

domain-specific systems such as other graph processing systems in Section 6.1.1. We then

describe additional discussion of applicability of the proposed techniques on MapReduce-

based large-scale data processing on GPUs in Section 6.1.2. Also, we discuss advantages

and disadvantages of scheduling strategy of our proposed MapReduce implementation,

especially in terms of static task scheduling used in our implementation compared with

dynamic task scheduling used in other MapReduce implementations such as Hadoop in

Section 6.1.3. At the end, we discuss applicability of our proposed techniques to future

architecture in Section 6.1.4.

77



Chapter 6 Discussion 78

6.1.1 Pros and Cons of MapReduce-based Large-scale Data Processing

We discuss advantage and disadvantage of MapReduce-based large-scale data processing

including comparison with other programming models and systems.

Advantages of MapReduce-based Large-scale Data Processing

An advantage of MapReduce-based large-scale data processing is that MapReduce is

applicable to a wide range of applications including both data-intensive and compute-

intensive applications. The data-intensive applications on MapReduce include large-

scale graph processing and large-scale text mining. The compute-intensive applications

on MapReduce include large-scale sequence alignment and large-scale clustering.

In addition to the wide applicable scope, MapReduce includes another advantage that

MapReduce can handle scalable and hierarchical data management automatically. As

for scalability, MapReduce handles multi-node execution automatically by distributing

input data onto multiple memories before processing then processing multiple data on

multiple nodes in parallel. MapReduce also handles data exchange among a large number

of memories for aggregating data from and to different nodes. When we use many-core

accelerators such as GPUs, we can use multiple GPUs in parallel as well.

As for hierarchical data management, MapReduce can also handle data movement be-

tween multiple memories and local disks on a single node for automatic out-of-core

data management and fault tolerance. For example, data movement between CPU host

memory and a local disk enables large-scale data processing whose data size exceeds

CPU host memory capacity. When we use many-core accelerators such as GPUs, we

can also handle out-of-core memory of accelerators by moving data from memory on an

accelerator to CPU host memory.

Disadvantages of MapReduce-based Large-scale Data Processing

On the other hand, MapReduce also includes disadvantages: suffering performance over-

head from the MapReduce programming model itself. Firstly, MapReduce includes

communication overhead in Shuffle phase. Shuffle phase includes redundant data copy

and synchronization compared with other systems such as domain specific programming

models and systems. Although Shuffle phase conducts all to all data exchange operation

on whole data among all nodes and synchronization among all the nodes, an application
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may require only one to one synchronization or partial data exchange such as boundary

data exchange in stencil computation.

Secondly, MapReduce may also incur redundant data movement overhead for certain

applications. MapReduce programming model requires whole data to read while an

application may only require partial data to read. For example, in breadth first search

computation, only frontier vertices and corresponding edges are required to be read

while the MapReduce programming model reads whole vertices and edges. On the other

hand, certain other graph processing applications are well suited to MapReduce, which

explores all paths in parallel such as PageRank, Random Walk with Restart, Connected

Component, Diameter Estimation.

MapReduce also includes computation overhead from the MapReduce programming

model. Some phases of MapReduce may be redundant compared with other systems

depending on application characteristics. For example, a Map phase of GIM-V compu-

tation is redundant since the phase only passes input data for subsequent Reduce phase.

However, this computation overhead can be eliminated by skipping redundant phases.

For example, we can skip a Map phase in GIM-V.

Applicable Scope of MapReduce-based Large-scale Data Processing by Com-

paring with BSP

In terms of comparison with other programming models and systems, the BSP (Bulk

Synchronous Parallel) model is a parallel computation model introduced by Valliant [96].

The BSP model is a programming model which designs parallel algorithms for distributed

computing environments. BSP algorithms proceed in supersteps in each of which pro-

cessors receive input at the beginning, perform some computation asynchronously, and

communicate any output from a processor to another processor among the processors

at the end. Barrier synchronization is used at the end of every superstep to synchronize

all the processors.

There exists BSP-based systems for large-scale graph processing such as Pregel by

Google [44] and Apache Hama [97]. Pregel develops certain graph processing appli-

cations such as PageRank, single source shortest paths (SSSP), bipartite matching, and

a semi-clustering algorithm. Hama also develops certain BSP-based applications such

as matrix inversion, PageRank, breadth first search. An advantage of BSP-based graph

processing is that BSP keeps vertices and edges on the process that performs computa-

tion and uses network transfers only for massages to be used in the destination process,
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while MapReduce requires passing the entire state of the graph from one stage to the

next.

Earlier work revealed that BSP can be more effective than plain MapReduce in certain

sets of graph processing applications as recognized theoretically in [98] and empirically

in [97, 99]. Pace analyses the relationship between MapReduce and BSP including

simulating BSP on MapReduce model with cost modeling of BSP and MapReduce [98].

They introduce theorems including a theorem simulating BSP on MapReduce, and the

theorem reveals that MapReduce can implement BFS efficiently only if the order of the

cost of storing local data over all supersteps is equal to the communication cost not

including the cost of reading the input and writing the output. This theorem is based

on the fact that BSP and MapReduce are different in that BSP can store local data while

MapReduce clears the primary local memory and the data is stored in global memory.

Based on the theorem, They also give a few examples including sorting, dense matrix

multiplication, and breadth first search to determine whether MapReduce should be

used to implement BSP, and prove that sorting and dense matrix multiplication can be

implemented in MapReduce efficiently while breadth first search cannot since the I/O

cost of local data is larger than the communication cost. According to the theorem, a set

of graph traversal algorithms such as breadth first search and single source shortest path

cannot be implemented in MapReduce efficiently since these algorithms store frontier

and neighbor vertices while transfer only neighbor vertices therefore the cost of storing

local data is larger than the communication cost without I/O.

Their work, however, do not consider memory overflow for extremely large-scale data

processing. when we consider memory overflow for processing large-scale data, MapRe-

duce can handle out-of-core execution while BSP cannot. When we consider handling

memory overflow, BSP has to offload local data onto external memory. Hutchinson pro-

posed the EM-BSP model, which is an extension of the BSP model to include secondary

local memories in [100]. In the case of EM-BSP, a set of graph traversal algorithms such

as breadth first search are still inefficient in MapReduce since these algorithms only

processes frontier and their neighbor vertices in a single step. However, certain graph

processing algorithms such as PageRank and betweenness centrality in EM-BSP can be

implemented in MapReduce efficiently, since these algorithms store all the vertices which

each processor is responsible and transfer all the neighbor vertices.
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6.1.2 Applicable Scope of the Proposed Techniques on GPUs

We have proposed techniques for MapReduce-based large-scale data processing on GPU-

based heterogeneous supercomputers including techniques for scalability to hundreds to

thousands of GPUs and hierarchical GPU memory management for handling out-of-

core GPU memory by offloading data from GPU device memory to CPU host memory.

We have used the PageRank graph processing application with Kronecker graphs as an

instance of large-scale data processing which includes similar properties with real world

large-scale data processing.

Criteria for Determining Whether to use GPU

In this section, we discuss applicability of the proposed techniques especially focusing

on applicable scope that GPU can accelerate over CPU. First, we discuss basic criteria

when to use GPU. Basic idea is that we should use GPU when running on GPU is faster

than running on CPU. We consider how we can define the performance on GPU. In the

proposed techniques we apply a chunk-based overlapping technique between computa-

tion on GPU and data transfer between CPU and GPU. When we overlap the three

operations, the performance is dominated by one of the three operations. If elapsed

time of computation on GPU is longer than elapsed time of data transfer from CPU

to GPU or from GPU to CPU, the performance is dominated by the computation on

GPU. Otherwise, the performance is dominated by the data transfer from CPU to GPU

or from GPU to CPU. We should run on GPU when the dominating performance on

GPU is better than the performance on CPU. For example, if the performance on GPU

is dominated by computation and the computation is faster than CPU, we should run

on GPU and otherwise we should run on CPU.

Required Properties for Acceleration by using GPU

Whether computation on GPU is faster than on CPU depends on application charac-

teristics such as computational intensity, memory access pattern, processing data size.

Although finding whether GPU performs faster than CPU before comparing these ac-

tual performance is difficult, we further discuss the applicable scope of utilizing GPU

including memory access pattern and processing data size studies in the following.

The first required property of the application for accelerating by using GPU is the SIMD

computational pattern. The SIMD (Single instruction, multiple data) computational



Chapter 6 Discussion 82

0	  

2	  

4	  

6	  

8	  

10	  

12	  

14	  

12	   14	   16	   18	   20	   22	   24	   26	  

Pe
rf
or
m
an

ce
	  [G

B/
s]
	

SCALE	

2CPUs	  

4GPUs	  

Figure 6.1: Comparison on different graph data size with CPU on a single node of
TSUBAME-KFC

pattern is the computational pattern that can be performed the same operation on

multiple data points simultaneously. The SIMD computational pattern is well suited

to GPU since computation on GPU can be highly accelerated by applying the same

operation on multiple data in parallel.

The second property to be accelerated on GPU is large input data size enough to hide

latency on GPU computation. GPU has a property that GPU can hide latency of data

movement on a GPU by switching groups of threads (i.e. warps) and GPU can hide

the latency when the input data size is large enough to overlap data movement and

computation on the GPU.

We conduct performance experiments for understanding how much input data size affects

performance on GPU. We compare performance on 4GPUs with 2CPUs on Kronecker

graphs with (a, b, c, d) = (0.57, 0.19, 0.19, 0.05) of different sizes from SCALE 14 to

SCALE 25 on a single node of TSUBAME-KFC. We apply overlapping of computation

on GPU and CPU-GPU data transfer and set the number of chunk to 4. Figure 6.1 shows

results of performance on the different graph sizes. The x-axis indicates input graph

data size in SCALE and the y-axis indicates performance of throughput in Gigabytes

per second. Note that the input data do not fit on the GPU memories with equal to

or larger than SCALE 24. The results exhibit that 4GPUs performs 2.23x faster than

2CPUs and 12.68 GB/s on SCALE 25. On the other hand, 4GPUs perform around 3
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Figure 6.2: Comparison on different graph data type with CPU on a single node of
TSUBAME-KFC using SCALE 23

GB/s when input graph data size is smaller than SCALE 20. These results indicate that

the performance on GPU also highly depends on input data size. The results indicate

we should use graph data size over SCALE 21; which corresponds to around 570 MB on

4GPUs which is equivalent to around 140 MB per GPU.

The third property to be accelerated on GPU is that input graph data contains low

data skew. Data skew indicates that input data consists of imbalanced data distribution

which corresponds to a small number of keys include large number of corresponding

values while the other keys include small number of corresponding values. For example,

Kronecker graphs typically consist of skew edge lists. GPU is suitable for low data

skew since GPU computes multiple data in parallel with multiple threads and skewed

data incurs load imbalance among threads. More precisely, GPU computes with a

unit of warp (i.e. typically 32 threads) and load imbalance among the threads lead

to performance overhead since GPU is suitable for parallel computation while is not

suitable for sequential operation.

In order to understand how much data skew affects performance on GPU, we conduct

comparative performance experiments with CPU on different data. We use three graph

data; random graph data, Kronecker graph with (a, b, c, d) = (0.57, 0.19, 0.19, 0.05)

(we call this graph Kronecker default), and a highly skewed Kronecker graph with (a,

b, c, d) = (0.80, 0.05, 0.05, 0.10) (we call this graph Kronecker skewed) and compare
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Figure 6.3: Achieved warp occupancy on different graph data type on 1GPU of
TSUBAME-KFC using SCALE 21

performance on 4 GPUs with 2CPUs on a single node of TSUBAME-KFC. We apply

overlapping of computation on GPU and CPU-GPU data transfer and set the number

of chunk to 4. We use problem size of SCALE 23 and we compare performance of

Combine2 operation on Reduce Stage 1 in GIM-V-based PageRank computation.

Figure 6.2 shows results of performance on the three graph types. The x-axis indicates

input graph type and the y-axis indicates performance of throughput in Gigabytes per

second. The results exhibit that 4GPUs perform 4.32x faster than 2CPU and 17.6

GB/s on the random graph. This throughput indicates that 4GPUs perform close to

the maximum bandwidth of CPU-GPU data transfer rate through PCI-E. On the other

hand, the results on the Kronecker graphs exhibit that 4GPUs perform slower than

the case of the random graph; 4GPUs perform 2.26x faster than 2CPU and 8.31 GB/s

on Kronecker default, and 0.60x of 2CPU and 2.38 GB/s on Kronecker skewed. Also,

Figure 6.3 shows results of achieved warp occupancy on the three graph types using

SCALE 21 on 1GPU of TSUBAME-KFC. The x-axis indicates input graph type and

the y-axis indicates achieved warp occupancy in percentage. The results exhibit that

warp occupancy is highly correlated with the performance in Figure 6.2. These results

indicate that the performance on GPU highly depends on the input graph data structure.

This data dependency on GPUs derives from the fact that some vertices are connected

with thousands to millions of vertices as we have seen in Figure 4.2 and Figure 4.21,

while a single warp (e.g. 32 threads in the case of Tesla K20X) is assigned to a vertex and
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edges connected with the vertex in our implementation as we presented in Section 5.4.3.

We consider the main reason of the data dependency derives from the characteristics

of GPU computation: GPU is suitable for coalesced memory access and is not suitable

for work load imbalance among threads. However, we consider this limitation can be

overcome and perform even faster than the current performance on the random graph,

by applying packing techniques for SpMV such as the padded JDR format [101] to the

vertices and edges sorted by the degree of the vertices.

Limitations to Applications with Variable Key/Value Lengths

In terms of our proposed techniques, we assume types of key and value are fixed length

types such as int or float. Our proposed techniques including task-scheduling-based

load balance optimization, out-of-core GPU memory management, and optimization

techniques for GPUs including the external GPU sorting and warp-based thread mapping

on GPU assume that key and value types are fixed length. Applications with variable

length of key or value such as variable sizes of string keys or values in text processing

are not applicable to the proposed techniques and applying these types to the proposed

techniques will be future work.

Application examples of large-scale data processing with fixed length key and value in-

clude machine learning applications such as k-means clustering, linear regression, and

principal component analysis as described in [102], and graph processing applications

such as PageRank, random walk with restart, connected components, diameter esti-

mation as described in [6], minimum spanning trees, maximal matchings, approximate

weighted matchings, approximate vertex and edge covers and minimum cuts as described

in [103], as well as graph-based approaches for DNA sequence assembly and the analysis

of protein-protein interaction networks as described in [104].

On the other hand, application examples of large-scale data processing using web crawl-

ing with variable length include word count from [3], and inverted index, similarity score,

page view count, page view rank as described in [27]. These applications use crawled

web data of HTML files or informations such as URL, IP, Cookie.

6.1.3 Comparison of Static and Dynamic Task Scheduling

In this section, we compare the two task scheduling strategy in MapReduce: static

and dynamic task scheduling. In chapter 4 and 5, we have proposed a multi-GPU-

MapReduce-based large-scale graph processing where we have extended an existing
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single GPU MapReduce implementation to multi-GPU. Mars is based on static task

scheduling since GPUs do not support dynamic thread scheduling [27]. Therefore, our

multi-GPU-based implementation adopts static task scheduling as well across multi-

ple GPUs, though we assign multiple chunks dynamically on each GPU. Twister also

adopts static task scheduling for supporting catchable map/reduce tasks during multiple

MapReduce iterations by fixing the cached locations [39].

On the other hand, other CPU-based MapReduce implementations such as Google’s

original MapReduce [3] and Hadoop [7] adopt dynamic task scheduling for improving

load balancing and speeds up recovery when a worker fails by spreading tasks out across

other worker machines [3].

Pros and Cons of Static Task Scheduling in MapReduce

The static task scheduling in MapReduce has advantages and disadvantages compared

with the dynamic task scheduling. An advantage of the static task scheduling in MapRe-

duce is low scheduling overhead of data movement across machines, especially in the Map

phase. In the static task scheduling in our implementation, each worker reads chunks

of input data which the worker is responsible to at the beginning of execution then

starts map tasks as soon as finishing reading the input data onto CPU host memory and

no additional data movement across machines until the Shuffle phase starts. In addi-

tion, the static task scheduling is suitable for our proposal of out-of-core GPU memory

management since the proposed stream-based overlapping between computation and

communication on a GPU works efficiently by assigning multiple chunks on each GPU

and processing each chunk in a streaming manner. Also, the static task scheduling is

beneficial for iterative computations since the static task scheduling enables the loca-

tions of the map/reduce tasks to be remain fixed for caching local data through multiple

iterations.

On the other hand, the static task scheduling also includes an disadvantage compared

with the dynamic task scheduling. The static task scheduling may lead load imbalance

among the workers after the Shuffle phase, since value length of each key which the

Reduce phase receives depends on input data structure, algorithms of the Map phase,

and splitters used in the Shuffle phase. We have seen large-scale graph data has scale-free

property (power-law degree distribution) and consists of highly skewed value lengths in

the Reduce phases in GIM-V as described in Section 2.3.1. Although we have minimized

the load imbalance after the Shuffle phase by introducing a task scheduling-based load
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balancing in Section 4.7.1, additional preprocessing is required for applying the load

balance optimization.

Pros and Cons of Dynamic Task Scheduling in MapReduce

The dynamic task scheduling also has advantages and disadvantages. An advantage is

that the dynamic task scheduling can achieve relatively balancing work loads among

workers well without preprocessing by setting chunk size of each task as small as all the

workers can receive tasks. The dynamic load balancing works efficiently especially when

the number of worker machines is small relative to input data size since the chunk size

can be set relatively large for distributing all the workers, which results in small number

of tasks in total and less overhead of task scheduling. The dynamic task scheduling is

also effective for hybrid task scheduling such as CPU-GPU hybrid task scheduling [105].

The dynamic task scheduling, however, also has disadvantages. First, the dynamic task

scheduling incurs additional overhead of data movement across machines as well as task

scheduling overhead of communicating between master and worker machines, compared

with the static task scheduling. Also, the dynamic task scheduling may suffer load

imbalance when setting the chunk size of a task large relative to the number of workers,

since some workers may receive smaller number of tasks or even may not receive any

task due to the small number of tasks in total. Parameter surveying for setting the

chunk size as well as setting other parameters including the number of slots each worker

handles is required for achieving optimal performance.

We further compare our static scheduling-based MapReduce implementation empirically

with Hadoop and Spark, popular dynamic task scheduling-based existing MapReduce

implementations, in Section 6.2.

6.1.4 Applicability of the Proposed Techniques to Future Architec-

tures

This section describes discussion on applicability of our proposed techniques on GPU-

based heterogeneous supercomputers to architectures to be developed in the future. We

firstly discuss performance bottlenecks on current architectures based on the results of

our proposals, followed by additional discussion on future architectures including possible

factors to improve and to affect performance. We then also discuss balance of scale-up

and scale-out approaches on future architectures.
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Performance Bottlenecks on Present Architectures

We have analyzed performance of our proposed MapReduce implementation including

performance breakdown in the previous chapters. The results have shown that the

Shuffle phase including local sort affects performance significantly such as in Figure 4.12

in chapter 4 and in Figure 5.6 in chapter 5. The results have shown that the Shuffle phase

and local sort take around 31.0% and 19.1% of the total execution time on 768 GPUs

(3GPUs per node using 256 nodes) in Figure 5.6. We have also seen that data transfer

between CPU and GPU through PCI-E bandwidth affects performance on GPUs in

map, reduce, and local sort operations, since PCI-E bandwidth is around 30x slower

compared with bandwidth inside a GPU. Also, in our current implementation, Each

process reads input data using MPI-IO before starting computation and writes output

on its local disk as we have been introduced in Section 4.6.2. In this implementation,

since disk I/O is conducted separately from computation and is not overlapped, disk

I/O bandwidth also affects performance.

Possible Factors to Affect Performance on Future Architectures

The improvement of CPU-GPU bus interconnect bandwidth can make it possible to

improve the performance of map, reduce, and local sort operations, with the next gen-

eration of interconnects such as PCIe4.0 and NVIDIA NVLink. Also, I/O bandwidth

improvement between CPU and local disks can improve the performance of reading

input and writing output, with Non-Volatile Memory (NVM) such as PCI-E-attached

flash memory.

As the number of nodes increases, performance gap between computational performance

and network communication may increase. For example, on TSUBAME, TSUBAME1.2

performs 69.3TB/s of memory bandwidth on 680 Tesla S1070 GPUs and 2GB/s of

network bisection bandwidth on 170 compute nodes, while TSUBAME2.5 performs

1056TB/s of memory bandwidth on 4224 Tesla K20X GPUs and 8GB/s of network

bisection bandwidth on 1408 compute nodes, whose performance gap between band-

width on GPUs and network bandwidth gets 3.81x larger. A possible reason of this

performance gap is that the number of nodes and performance per GPU increase more

rapidly than the increase of network bandwidth. Therefore, network bandwidth can be

a possible performance bottleneck on future architectures.
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Balance Between Scale-up and Scale-out Approaches

Since using larger number of nodes may affect performance by limited network band-

width, we consider using fewer number of nodes by assigning larger data per node can

improve performance. Therefore, optimizing balance between scale-up and scale-out ap-

proaches in terms of using larger data per node (scale-up) and increasing the number

of node (scale-out) can improve performance based on balance between bandwidth of

offloading to external memory such as NVM and network bandwidth. On present ar-

chitecture, scale-out works more efficiently as the results have shown in Figure 5.9 in

Section 5.5.3, since the network bandwidth is relatively better than the PCI-E band-

width. On future architecture, scale-up may work more efficiently when I/O bandwidth

and PCI-E bandwidth increases relative to network bandwidth by the new generations

of bus interconnects such as NVLink and NVM.

6.2 Performance Analysis of a MapReduce-based Homol-

ogy Search Algorithm

In order to understand efficiency of our proposed MapReduce implementation espe-

cially in terms of task scheduling we discussed in Section 6.1.3, we conduct empirical

performance analysis based on comparison with existing MapReduce implementations

on CPUs. Although we have revealed that our proposed MapReduce implementation

achieves significantly better performance over Hadoop in Section 4.8.2, we further con-

duct in-depth analysis. In this section, we implement a MapReduce-based homology

search algorithm in metagenomics as another application case study.

6.2.1 Motivation

Homology search to be used in emerging bioinformatics problems such as metagenomics

is of increasing importance and challenge as its application area grows more broadly

while the computational complexity is increasing. One way to cope with the increasing

complexity is to utilize massively parallel data processing. Required dataset for homol-

ogy search in metagenomics consists of queries and database, each of whose size will

reach Gigabytes to Terabytes, and total data size to compute will grow to product of

these two datasets (i.e. Exabytes to Zettabytes). BLAST [56, 57] is proposed as a basis

of homology search algorithms and there have been a lot of efforts on improving the

algorithm. Earlier work by some of the authors have devised novel algorithms such as
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GHOSTX [62] and extend the algorithm to distributed computing environments. Their

work has demonstrated their implementation scales well on existing supercomputers in-

cluding TSUBAME2.0 [94] and K computer [106], but the master-worker parallelization

to enumerate and schedule for data processing was done with their privately developed

MPI-based master-worker framework called GHOST-MP.

An alternative to using GHOSTX is to utilize the now-popular big data software sub-

strates, such as MapReduce with abundant associated software tool-chains, but it is un-

clear how to apply MapReduce to extremely large-scale homology search in an efficient

way. Firstly, It is not obvious how to design and implement homology search algorithms

onto the MapReduce model. Specifically, how to handle two different dataset called

queries and database which homology search algorithms receive using MapReduce is not

straightforward. Secondly, performance characteristics of MapReduce-based implemen-

tations of homology search should be considered in order to achieve high performance

homology search.

By converting the GHOSTX master-worker data processing pipeline to accommodate

MapReduce, and benchmarking them on a variety of high performance MapReduce in-

carnations including Hadoop [17], Spark [19], and our proposed implementation, we

attempt to characterize the appropriateness of MapReduce as a generic framework for

metagenomics that embody extremely resource consuming requirements for both com-

pute and data. We consider two different MapReduce-based designs of homology search

considering data allocation of queries and database. Then we implement one of the

designs onto Hadoop, Spark, and ours, and conduct performance analysis on real world

dataset in metagenomics. We also compare our MapReduce-based implementations

with GHOST-MP, an existing distributed implementation of GHOSTX on MPI-based

master-worker framework.

6.2.2 Introduction to Homology Search

Homology search or alignment search is an approach to identify genes based upon ho-

mology with genes that are already publicly available in sequence databases by using

a search algorithm. Homology search is used in the field of Metagenomics, the study

of genetic material recovered directly from environmental samples for advancing knowl-

edge in a wide variety of application domains, such as medicine, engineering, agriculture,

ecology. Homology search algorithms are used as tools for life science researchers to gain

a set of high-scoring pairs from an exhaustive list of protein coding sequences similar
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to a given query sequence, such as the amino-acid sequence of different proteins or the

nucleotides of DNA sequences.

BLAST (Basic Local Alignment Search Tool) [56, 57] is proposed as a fast homology

search algorithm and its implementation is widely used as a standard homology search

tool. BLAST applies a heuristic algorithm much faster than previous approaches such

as a full alignment procedure using the Smith-Waterman algorithm [58] or FASTA [59].

Figure 6.4 shows an overview of BLAST workflow. Firstly, BLAST finds seeds that are

substring of database sequences similar to the substrings of a query sequence. Then,

BLAST makes alignments by extending those seeds without gaps, and then similar,

nearby seeds are brought together by a chain filter. Finally, BLAST makes alignments

from seeds with gaps.

There have been a lot of efforts for improving BLAST [60, 61]. These efforts achieve

speedup from the BLAST algorithm by improving search algorithms. GHOSTX [62]

adopts the seed-extend alignment algorithm used by BLAST. GHOSTX achieved ap-

proximately 131-165 times faster than BLAST. GHOSTX finds seed that are highly

similar segments between database sequences and the query sequence. Next, GHOSTX

obtain alignments by extending those seeds without gaps for larger similar regions.

Finally, GHOSTX make alignments by extending the seeds with gaps. In order to ac-

celerate the seed search process, GHOSTX constructs suffix array both for the query

and the database before the search. In addition, instead of fixing the length of a seed

like BLAST, GHOSTX extends it till the matching score exceeds a given threshold to

reduce the computation time for untapped extension while not losing the sensitivity.

There exists also an extension of GHOSTX for distributed computing environments.

GHOST-MP is built on GHOSTX with MPI library for homology search on supercom-

puters like K computer and TSUBAME, or general PC clusters. It achieves distributed

paralleling search process through a master-worker style. In GHOST-MP’s algorithm, it

accomplishes I/O optimization for paralleled file system by utilizing locality of database

chunks to achieve high speed processing.

6.2.3 Large-scale Bioinformatic Applications

MapReduce-based bioinformatics implementations have been studied [107, 108, 109, 63,

110, 111, 112, 113]. Their work indicate a wide range of applications using MapReduce

related to bioinformatics as well as show high scalability on clusters and clouds using

existing MapReduce implementations such as Hadoop. Their work focus on introducing
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Figure 6.4: Workflow of homology search

algorithms or demonstrating scalability on relatively small number of nodes. However,

our work focus on high performance and scalable homology search using MapReduce

on large-scale computing environment such as supercomputers and analyze high perfor-

mance MapReduce implementations.

K MapReduce (KMR) [114] is a MPI-based MapReduce implementation for large-scale

supercomputers such as K computer. KMR optimizes shuffle operation by collective

communication utilizing interconnect on K computer. Their work also conducted exper-

iments using GHOST-MP by replacing master-worker tasking library in GHOST-MP

with KMR. Although their work achieved high communication and I/O performance

on K computer, they did not compare with other existing MapReduce implementation.

We compare multiple MapReduce implementations and investigate high performance

MapReduce-based homology search.

There have also been efforts on MPI-based parallelization of bioinformatics applications.

mpiBLAST [115] is a MPI-based parallelization of BLAST that achieves high scalability

by optimizing allocation of database. mpiBLAST applys database segmentation which
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distributes a chunk of database to each node and let each node searches a unique por-

tion of database. While mpiBLAST is high optimized for BLAST, our work focus on

MapReduce-based high performance homology search since MapReduce is more widely

used framework and can handle memory overflow and compute node failures.

6.2.4 Designs of a Homology Search Algorithm on MapReduce

We describe how to design homology search on MapReduce. Our main idea is to

parallelize query data onto multiple Mappers. We consider two different designs based

on how to assign query data and database onto worker nodes. On the two designs, query

data is distributed onto the worker nodes on both designs while database allocation

strategies are different. Note that we assume computing environments equip local disk

on each compute node.

MapReduce-based Design with Database Replication

We describe a design of homology search on MapReduce using database replication.

Query data is distributed on worker nodes while database is replicated among the worker

nodes. Figure 6.5 describes how MapReduce works on the design. First, input query data

files are copied to a distributed file system (e.g. HDFS) and the database file is replicated

onto local disk on each compute node. After putting query and database, a client submits

a job with a MapReduce application binary. A homology search application is called

in map function of the MapReduce application. After submitting the application, each

Mapper runs the homology search application with a split of query data and whole

database for each map function the Mapper calls. A Mapper emits outputs of homology

search for each query. Whole set of results from map functions is simply the final result.

This database replication design is useful when the size of database is small, since the

result of each query is directly computed using whole database for each query. When

the whole database can fit on local disk on each node, runtime can utilize locality of

database. On the other hand, when the size of database is large, not only it may not fit

on local disks but also parallelization efficiency may decrease because of the reduction

in the locality of the database.
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Figure 6.5: Design of homology search with replicated database

MapReduce-based Design with Database Distribution

We consider another design that distributes database as well as query data. Query data

is distributed on worker nodes and database is also distributed on the worker nodes.

Figure 6.6 describes how the design works. First, input query data files are copied to

distributed file system in the same way as the database replication design. Database is

split to multiple chunks and each chunk is distributed on each node. These chunks can

be also replicated to multiple nodes when the number of nodes is larger than the number

of chunks. After putting query and database, a client submits a job with a MapReduce

application binary. While a homology search application is called in each map function

in similar way as the database replication design, result of each map function is different

in that the result is a partial search result with a chunk of database. The results of

Mappers are passed to Reducers and the Reducers merge the partial search results into

a final search result for each query.

An advantage of this database distribution design is that the task granularity is smaller

which can result in better parallelization efficiency. The number of tasks (i.e. the number

of map function calls) with this database distribution design is larger than the database

replication design since the database is divided to multiple chunks and each chunk is

assigned to a Mapper. Having large number of tasks might not always be good; locality
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Figure 6.6: Design of homology search with distributed database

of database may become worse since each map function requires a specific chunk, which

may result in multiple movements of chunks among worker nodes.

6.2.5 Implementations of a Homology Search Algorithm on MapRe-

duce

We implement MapReduce-based homology search on existing multiple MapReduce

implementations. We use GHOSTX as a sequential implementation and extend it onto

the MapReduce model. We implement the database replication design described in

Section 6.2.4 on Hadoop and Spark.

Implementation on Hadoop

In order to use GHOSTX on top of Hadoop, we need a way to call C++ from Java

since GHOSTX is written in C++ while Hadoop is written in Java. There are several

ways for calling GHOSTX from Hadoop, including Hadoop Pipes, Hadoop Streaming,

and Java Native Interface. Hadoop Pipes is a library that allows C++ source code to



Chapter 6 Discussion 96

hadoop pipes\

-D hadoop.pipes.java.recordreader=true\

-D hadoop.pipes.java.recordwriter=true\

-files [db_files]\

-input [input_dir]\

-output [output_dir]\

-inputformat WholeFileInputFormat\

-program ghostmr

Figure 6.7: Calling GHOSTX from Hadoop Pipes. ghostmr is the compiled binary
program incorporated original GHOSTX with a Hadoop Pipes application.

be used for Mapper and Reducer code. Hadoop Pipes provides C++ API of map and

reduce functions and users write the functions in C++ according to input and output

formats provided by Hadoop. Hadoop Streaming is a more generic API that allows

programs written in any language to be used as Mapper and Reducer implementations.

While Hadoop Pipes and Hadoop Streaming are similar in that they split the application

code into a separate process, they are different in that Hadoop Pipes uses serialization

to covert the types into bytes that are sent to the process via socket, while Hadoop

Streaming uses Unix standard streams as the interface. Java Native Interface (JNI)

is a programming framework that enables Java code running in Java Virtual Machine

(JVM) to call native applications and libraries written in other language such as C++.

We select Hadoop Pipes since it provides closer interface with Java-based Mapper and

Reducer. We modify the interface of original GHOSTX program so that Mapper can

call GHOSTX program and setting query and database files through HDFS.

In order to distribute query and database files, we use different approaches for each

dataset. As for query files, we use HDFS in a standard way for distributing multiple

query files onto local disks on each node. We distribute the query files by the following

command; hdfs dfs -put [query files] [input dir]. On the other hand, we do

not distribute but copy the same database files onto each node since the database files

are identical among all the nodes. To do this, we use -files option provided by Hadoop

Pipes which copies specified files to cluster. As for query files, we need to avoid splitting

them since the design of replicated database assigns one whole query file per Mapper,

and Hadoop splits input data into lines and assign each line per map function by default.

In order to disable splitting a query file into multiple splits, we implement WholeFileIn-

putFormat for Hadoop Pipes based on [17]. We pass the customized input format to

Hadoop Pipes by using -inputformat option. We run our GHOSTX on Hadoop by the

following command described in Figure 6.7.
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spark-submit\

--class "GhostMR"\

--master yarn-client\

--num-executors [num_nodes]\

--executor-cores [num_threads]\

--files [db_files]\

--jars lib/hadoop-mapreduce-client-core-[ver].jar\

ghostmr.jar

Figure 6.8: Calling GHOSTX from Spark. ghostmr.jar is the compiled bytecode
incorporated original GHOSTX with a Spark application.

Implementation on Spark

As with the case of Hadoop, we need a way for calling C++ from Scala since GHOSTX

is written in C++ while Spark is written in Scala. Spark provides resilient distributed

dataset (RDD) pipe() operation, which pipes each partition of RDD through a shell

command in the same way as Unix pipe operation. RDD pipe() operation receives RDD

input and sends output through Unix standard input and output. We apply GHOSTX

to the pipe() operation, by simply executing GHOSTX binary program in pipe().

In order to pass input files to Spark, we assign query files through HDFS and assign

database files by copying to local disks on each node. In order to assign query files

through HDFS to Spark, we put the query files to HDFS before running the application.

We need to avoid splitting them since the Map-only design assigns one whole query file

per Mapper as with the case of Hadoop. In order to disable splitting a query file into

multiple splits, we apply WholeFileInputFormat for Spark. We pass the customized

input format to Spark by using -jars option with the jar file including WholeFileIn-

putFormat. During running the application, it reads the query files from HDFS using

SparkContext.textFile() method onto a RDD, then the RDD passes the query files

to pipe(). As for database files, we copy them using --files option provided by Spark

similar to Hadoop. Figure 6.8 describes the actual command for submitting GHOSTX

on Spark.

Implementation on Our MapReduce Framework

We use CPU-based implementation of our MapReduce to call GHOSTX, since GHOSTX

is implemented for CPU. We integrate GHOSTX directly into map function on our imple-

mentation, since our implementation is implemented in C++ for CPU implementation

and GHOSTX is also implemented in C++. Although our implementation has a feature
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# query database output

query.0 database output.0

query.1 database output.1

...

query.n database output.n

Figure 6.9: An example of table file for GHOSTX on our implementation.

$ mpirun -n [num_nodes] -hostfile [host_file]\

ghostmr -t [table_file]

Figure 6.10: Calling GHOSTX from our implementation. ghostmr is the compiled
binary incorporated original GHOSTX with an application on our implementation.

to run multiple map tasks in parallel using OpenMP, we do not use the feature and call

one map task per node since GHOSTX itself can be run using OpenMP.

In order to pass input files to our MapReduce, we use table file that consists of tuples of

query file name, database name, and output file name in the similar way as GHOST-MP.

A table file is consisting of tab-delaminated tuples of query, database, and output files

per line, and each tuple will be passed to a worker node in runtime. An example of

table file is described in Figure 6.9. In Figure 6.9, different query files and output files

are specified per line, while a whole database file is specified on all lines, since we apply

the replicated database design where the query files are distributed and the identical

database file is replicated. Our MapReduce reads the table file at the beginning of

execution then input query files are assigned onto multiple nodes according to the table

file. We run our GHOSTX on our implementation by the following command described

in Figure 6.10.

6.2.6 Performance Analysis

In order to understand performance characteristics of MapReduce implementations, we

conduct comparative performance experiments. We compare the elapsed time of homol-

ogy search using existing MapReduce implementations as well as a MPI-based master

worker implementation in order to investigate effectiveness of MapReduce-based imple-

mentation. We conduct data size scaling using different datasets as well as scaling of

using multiple compute nodes. We use 13MB and 130MB of query data which is reduced

from originally 1.1GB of query data named SRS014107 obtained from Data Analysis and

Coordination Center for Human Microbiome Project website (http://www.hmpdacc.

org/) [116]. We use 1.1GB of FASTA database which is reduced from originally 30GB

of database named nr obtained on November 4th, 2014 from The National Center for

http://www.hmpdacc.org/
http://www.hmpdacc.org/
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Figure 6.11: Elapsed time of query size scaling on single node

Biotechnology Information website (http://www.ncbi.nlm.nih.gov/) [117]. Note that

we split input query files into 10MB of smaller files before putting them to HDFS for

Hadoop and Spark, since we use WholeFileInputFormat as we described in Section 6.2.5.

Note that we do not include the elapsed time of database construction nor the time of

data placement to local disk or HDFS.

We use TSUBAME-KFC as a computing environment. A node on TSUBAME-KFC

contains 2 sockets of Intel Xeon E5-2620 v2 (Ivy Bridge EP, 2.10GHz, 6 cores) CPU,

64GB of DDR3 main memory, 4 devices of NVIDIA Tesla K20X GPU with 6GB of

discrete GDDR5 memory connected to PCI-Express 2.0 × 16 buses, and 1 card of FDR

InfiniBand HBA (56Gbps) connected to a single rail interconnect network, and runs

on CentOS release 6.4. We use Open MPI 1.7.2 with GNU GCC 4.4.7 for the MPI

implementation. We use Hadoop version 2.4.1, Spark version 1.1.0, and GHOST-MP

version 1.2.1. We use YARN scheduler on Hadoop and Spark. We use OpenMP for

GHOSTX and GHOST-MP using 24 threads per node and use local SSD for placing

query data and database as well as for writing output results. We build GHOST-MP

with original configuration, without defining CHUNK and IOMASTER parameters. We

use one worker process per node for GHOST-MP and set optional parameters to be

equal to that of GHOSTX. We do not apply OpenMP parallelization for Hadoop and

Spark, since the YARN scheduler may assign multiple tasks onto each node according

to free resource on each node.

http://www.ncbi.nlm.nih.gov/
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Data Size Scaling

First we conduct data size scaling of GHOSTX using single node with different datasets.

We conduct two types of data size scaling; query size scaling with different database size,

and database size scaling with different query size. Figure 6.11 shows the performance

results of query data size scaling. The x-axis indicates query data size and the y-axis

indicates elapsed time of homology search. Each line indicates elapsed time on different

query size with five sets of fixed database sizes. The results show that the elapsed time

increases in proportion to query size. On the other hand, Figure 6.12 shows the elapsed

time of database size scaling. The x-axis indicates database size and the y-axis indicates

elapsed time of homology search. Each line indicates elapsed time on different database

size with five sets of fixed query sizes. The results show that the elapsed time does

not increase in proportion to database size, as opposed to the query size scaling results.

When we consider multiple node scaling, this unproportional database size scaling would

result in poor scaling of distributing db, since dividing database into smaller chunks is

not considered to scale linearly. On the other hand, distributing query would scale

well, since dividing query size into smaller chunks is considered to scale near linearly.

Therefore, we employ performance analysis on the replicated database design which we

introduced in Section 6.2.4 in the following subsections.
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Figure 6.13: (Top) Performance of weak scaling, (Bottom) Elapsed time of weak
scaling, with 13MB of query per node and 1.1GB of database

Weak Scaling

We also conduct weak scaling experiments on the different implementations of the repli-

cated database design using up to 32 nodes. We fix the size of database to 1.1GB and

use two different query sizes: 13MB per node and 130MB per node. Figure 6.13 shows

the performance and elapsed time of weak scaling using 13MB of query size per node.

Also, Figure 6.14 shows the performance and elapsed time of weak scaling using 130MB

of query size per node. The x-axis indicates the number of nodes and the y-axis indicates
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Figure 6.14: (Top) Performance of weak scaling, (Bottom) Elapsed time of weak
scaling, with 130MB of query per node and 1.1GB of database

millions of query reads per hour on the top of Figure 6.13 and Figure 6.14, and elapsed

time in second on the bottom of Figure 6.13 and Figure 6.14.

The results indicate that all the implementations exhibit good scalability. We consider

the results comes from the facts that homology search mainly consists of computational

and I/O operations as well as the application includes little communication since com-

putation of each query is independent of other queries. Another possible reason is that

the implementations have little possibility to suffer load imbalance since workload we
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Figure 6.15: (Top) Performance of strong scaling, (Bottom) Elapsed time of strong
scaling, with 130MB of query and 1.1GB of database

use is well balanced. The results also show that our implementation exhibits compara-

ble performance with GHOST-MP, and the performance of Spark and Hadoop highly

depends on the query size; i.e. these implementations perform similar with 130MB of

query while slower with 13MB of query. Our implementation performs 2.16x and 2.99x

faster than Spark and Hadoop on 13MB query respectively. A possible reason of this

query data size dependency is that these two implementations suffer overhead of dynamic

task scheduling and involved data movements onto multiple nodes through HDFS. On

the other hand, our implementation does not suffer the scheduling and data movement

overheads since our implementation assigns query data onto multiple nodes evenly at
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the beginning statically in the similar way as GHOST-MP. The bottom of Figure 6.13

and Figure 6.14 also indicates elapsed time increases significantly when using two nodes

on Hadoop and Spark. We consider a possible reason of this time increase is additional

task scheduling overhead of YARN by using multiple nodes.

Strong Scaling

We also conduct strong scaling experiments using up to 32 nodes. We fix the size of

database to 1.1GB. Figure 6.15 shows the performance and elapsed time of strong scaling

using 130MB of query. The x-axis indicates the number of nodes and the y-axis indicates

millions of query reads per hour on the top of Figure 6.15 and elapsed time in second

on the top of Figure 6.15.

The results show that all the implementations scale well on small number of nodes, while

our implementation exhibits better performance compared with Spark and Hadoop on

larger number of nodes; 3.83x and 4.54x faster on 32 nodes respectively. The results

also show that our implementation exhibits similar performance with GHOST-MP. This

performance degradation on Spark and Hadoop derives from the fact that the query size

per node gets smaller as the number of nodes increases then dynamic task scheduling and

involved data movement overheads get larger ratio out of the total elapsed time. On the

other hand, our implementation scales better since our implementation assigns equivalent

amount of query data onto multiple nodes statically in the similar way as GHOST-

MP. We further investigate performance characteristics of the three implementations by

understanding the resource usage.

Resource Usage

In order to understand performance characteristics of MapReduce-based homology search

implementations, we investigate the resource usage of CPU, disk I/O, and network. We

conduct the experiments on 32 nodes with 13MB of query per node, and 500MB of

database, using dstat command on a single node to get CPU usage, the amount of

read/write on local disk, and the amount of send/receive over network.

Figure 6.16 shows usage of CPU and read/write on Hadoop, Spark, and our implemen-

tation. The x-axis indicates elapsed time in second and the y-axes indicate CPU usage

in percentage and the amount of read/write on local disk in million bytes per second.

s Figure 6.17 shows network usage on Hadoop, Spark, and our implementation. The x-

axis indicates elapsed time in second and the y-axis indicates the amount of send/receive
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over network in million bytes per second. The results exhibit that Hadoop and Spark

conduct significant amount of I/O and network data transfer at the begging while our

implementation does not. We consider these additional I/O and network data transfer

on Hadoop and Spark derive from dynamic resource scheduling of YARN which moves

significant amount of data among multiple nodes. The results also exhibit high CPU

usage in the middle on all the implementations. This high CPU usage derives from ho-

mology search operations using OpenMP in GHOSTX. When we compare elapsed time

during high CPU usage, our implementation takes smaller elapsed time than Hadoop

and Spark; our implementation takes around 65 seconds while Hadoop and Spark take

150 seconds and 140 seconds respectively. We consider this elapsed time difference de-

rives from task scheduling strategies of the YARN scheduler and the static scheduler on

our implementation, since we observe YARN assigns multiple tasks on a node while our

implementation assigns single task per node equivalently. At the end of execution, we

see disk write caused by write output operation in GHOSTX. We also observe significant

amount of elapsed time after the write output operation even on our implementation,

which indicates there exists some amount of load imbalance among compute nodes. We

consider this time difference derives from the fact that search time of a query varies by

query sequence in GHOSTX.

6.2.7 Summary

In order to understand performance characteristics of MapReduce implementations on a

compute-intensive large-scale data processing application, we present MapReduce-based

designs and implementations of a homology search algorithm. We conduct compara-

tive performance analysis of existing widely used MapReduce implementations as well

as comparison with an existing MPI-based master-worker implementation of a homol-

ogy search algorithm. The results indicate that our implementation performs not only

good weak scaling but also good strong scaling and outperforms existing widely used

MapReduce implementations significantly.

6.3 Summary

This chapter described discussion on applicability of the proposed techniques on MapReduce-

based large-scale data processing on GPU-based heterogeneous supercomputers. We

summarized applicable scope of our proposed techniques by reviewing advantages and

disadvantages of MapReduce-based large-scale data processing, required properties for
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acceleration by using GPUs, followed by comparison of the task scheduling strategy in

our proposed implementation with dynamic task scheduling used in popular MapReduce

implementations. Then, we also discussed applicability of our proposed techniques to

future architectures by summarizing bottlenecks on present architectures and possible

bottlenecks on future architectures.

We also introduce another application case study: performance analysis of a MapReduce-

based homology search algorithm on metagenomics for discussing advantage and disad-

vantage of our MapReduce implementation based on comparative performance analysis

with Hadoop and Spark. Hadoop and Spark apply dynamic task scheduling while our

implementation applies static task scheduling. We show that our implementation out-

performs existing widely used MapReduce implementations significantly, mainly by little

overhead of task scheduling.
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Figure 6.16: Resource usage of CPU and disk I/O on a node out of 32 nodes in total,
using 13MB of query per node and 500MB of database (Top: Hadoop, Middle: Spark,

Bottom: our implementation).
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Figure 6.17: Network resource usage on a node out of 32 nodes in total, using 13MB
of query per node and 500MB of database (Left: Hadoop, Middle: Spark, Right: our

implementation).
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Conclusion

7.1 Conclusion

We propose scalable and hierarchical multi-GPU MapReduce-based large-scale data pro-

cessing techniques for GPU-based heterogeneous supercomputers. Firstly, we introduce

a GIM-V implementation with load balance optimization for multi GPU environments

and conduct performance studies using our implementation on the TSUBAME2.0 su-

percomputer using 256 nodes (6144 hyper-threaded CPU cores, 768 GPUs). The results

exhibit that our GPU-based implementation performed 87.04 ME/s on SCALE 30, and

1.52 times faster than the CPU-based native implementation on SCALE 29. We also

show an approach for optimizing load balance.

Secondly, we proposed an out-of-core GPU memory management technique for large-

scale MapReduce-based graph applications. The proposed technique handles memory

overflows from GPUs by automatically dividing graph data into multiple chunks and

overlaps CPU-GPU data transfer overheads as much as possible. Our experimental re-

sults on TSUBAME 2.5 using 1024 nodes (12288 CPU cores, 3072 GPUs) exhibit that

our GPU-based implementation performs 2.10x faster than the CPU-based implemen-

tation on a graph with 17.18 billion vertices and 274.9 billion edges. We reveal that our

GPU-based approach with out-of-core GPU data management can accelerate Map and

Reduce phases by fully overlapping CPU-GPU data transfer and by applying several

optimizations. We also show that scale-up approach performs better power efficiency

than simple scale-out approach.
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We also summarized applicable scope of our proposed techniques by reviewing advan-

tages and disadvantages of MapReduce-based large-scale data processing, required prop-

erties for acceleration by using GPUs, followed by comparison of the task scheduling

strategy in our proposed implementation with dynamic task scheduling used in popu-

lar MapReduce implementations. Then, we also discussed applicability of our proposed

techniques to future architectures by summarizing bottlenecks on present architectures

and possible bottlenecks on future architectures. Then, we also introduce another ap-

plication case study: performance analysis of a MapReduce-based homology search al-

gorithm on metagenomics for discussing advantage and disadvantage of our MapReduce

implementation based on comparative performance analysis with Hadoop and Spark.

We show that our implementation outperforms existing Hadoop and Spark significantly,

mainly by little overhead of task scheduling.

7.2 Future Work

Our future work includes the use of Non-Volatile Memory (NVM) such as flash for han-

dling the larger size of data than the CPU memory capacity. We consider investigating

efficient hierarchical memory management techniques that utilize three-level memory

layers including GPU device memory, CPU host memory, and Non-Volatile Memory.

Also the balance between scale-up approach using NVM and scale-out approach using

network is worth investigating for utilizing I/O and network performance efficiently.

We also consider applying fault tolerance techniques, such as data replication technique

incorporated in Hadoop, or checkpoint/restart, which has been studied in a lot of re-

searchers for resilient large-scale computing.
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