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Abstract 

This thesis proposes a 3D CT liver-image segmentation system based on a level-set 

image segmentation method. It consists of three main modules. First, the 

construction of confident region images is proposed. It describes approximate liver 

regions as homogeneous regions after boundaries of anatomical structures are 

determined by a combination of gradient information. In the second module, a two-

resolution level-set image segmentation approach is introduced. This approach firstly 

performs level-set image segmentation at the low-resolution. Then, its result is used 

for the initialization process of level-set image segmentation at the original 

resolution. This approach contains two main components including initialization and 

level-set evolution processes. The initialization process is studied to construct the 

good initial zero level-set function. Furthermore, it generates mask regions for 

preventing the leakage regions after the evolution process is performed. For the level-

set evolution process, a modified Chan-Vese model is proposed to control directions 

of the curve propagation. Finally, the segmentation result is refined in the last 

module. 

 The proposed system was applied to 3D CT images acquired by a 4D-CT imaging 

system. From experimental results, the proposed system possibly gives higher 

accuracy than some modern level-set image segmentation methods. After a liver-

segmented volume is extracted, two kinds of its applications are investigated in this 

study.      

 The first application is liver-tumor segmentation. The integration of modified 

Chan-Vese model and a clustering method is examined to segment tumor regions in a 

noisy image. It is assumed that a segmented liver-region includes several tumor 

areas, which are possibly approximated by a clustering result. 

 In the second application, enhancement in visualization of anatomical structures 

is considered. The segmentation result is combined with the original 3D-CT data 

before applying a ray-casting technique. This combination probably improves 

visualization of anatomical structures. Moreover, opacity and color transfer functions 

are simply studied for controlling appearances of segmented volumes.      
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Chapter 1  

Introduction  

1.1 Motivation and challenges 

Liver cancer is the second most common cause of worldwide cancer deaths in 2012 as 

mentioned by IARC GLOBOCAN [1], and it has been one of the four most common 

causes of cancer death since 1975 [2].  

 To diagnose liver cancer, anatomical structures and tumors are visualized by one 

or several imaging systems [3], such as ultrasound, computed tomography (CT), 

magnetic resonance imaging (MRI), angiography, laparoscopy, and so on. Generally, 

a CT scanner is utilized to seek abnormalities or signs of cancer in the liver and other 

organs. After diagnosing and staging the liver cancer, a multidisciplinary treatment 

team, which includes different types of specialists, such as a surgeon, a radiation 

oncologist, a medical oncologist, and a gastroenterologist, will decide a treatment 

option for a patient [3, 4]. For example, the liver transplantation may be chosen when 

the cancer has not spread out of the liver and a suitable liver is available. 

Hepatectomy is to remove a portion of liver including the cancer, and then the liver 

tissue grows back to its normal size. However, this option is suitable for a patient who 

does not have cirrhosis. Further, if the cancers are too large or spread beyond the 

liver, this treatment option will be cancelled. Radiation therapy is to deliver high-

energy to eliminate cancer cells by destroying their DNA. Conversely, this treatment 

option is a limited use because the radiation of high-energy can damage healthy liver 

tissue. 

 Actually, many treatment options relate to liver-image segmentation. For 

example, the liver-image segmentation is used to determine the liver's volume [5] 

that is essential information of liver surgery for primary hepatic tumors, metastatic 

lesions, and transplantation. Further, it is utilized to plan radiation treatments that 

need to maximize high radiation energy on the cancer cells and minimize the 

radiation energy on the nearby healthy tissues [6].  

 This study mainly considers liver-image segmentation in CT images acquired by 

a 4D-CT imaging system. It is a challenging topic because of large variations in 

shapes and sizes. Moreover, some ranges of gray-intensities of liver generally overlap 

other soft tissues. CT data sometimes presents high levels of image noises, some 
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artifacts, low image contrast, and weak edges due to the conditions of image 

acquisition and respiratory status [7, 8].  

1.2 Literature review 

Many algorithms [9, 10, 11] have been proposed to give high efficiency of liver-image 

segmentation and reduce user involvement. In recent years, four kinds of 

fundamental image-segmentation methods have been proposed to segment liver in 

CT images. 

 First, region-growing based methods consider properties of seed regions and 

their neighbor pixels or voxels to grow them. For instance, a semi-automatic liver 

segmentation system called HepaTux [12] was presented to segment the liver in three 

main steps. The interactive filling is started to flood-fill the volume from seed voxels, 

and it is stopped by the non-linear coupling criterion. Next, segmented results are 

corrected by cutting leakage regions, and then post processing is performed to refine 

the 3D liver's shape. 

 The second kind is graph-cut based methods. These methods represent pixels or 

voxels as vertices, which are connected by edges. Meanwhile, the weight of edge 

connecting two adjacent vertices is used to describe the similarity between two 

connected vertices. Further, these methods require some seed regions of foreground 

and background regions. Then, the cost function is fundamentally formulated by 

using a combination of boundary and region terms. However, these methods 

sometimes need additional seed regions to refine the segmentation results. For 

example, a segmentation refinement approach [13] was introduced to segment the 

liver by using a graph-cut segmentation algorithm [14] and two refinement steps. The 

first refinement allows a user to add or remove volume chunks to or from the current 

result. Further, the editing tool [15] is required to perform the second refinement. 

 Third, level-set based methods begin with a rough contour, and then it is evolved 

under the speed function or energy function. Indeed, the speed function plays an 

important role to control directions of the curve propagation. For example, the speed 

of the propagation process is adaptively controlled by a dynamic speed function [16]. 

It is utilized to control contours after rough contours are manually created inside the 

liver. It is also used to achieve a semi-automatic liver-segmentation application [17].   

 Furthermore, probabilistic atlases based methods are grouped into the fourth 

kind. These methods require manual segmentation to obtain a probability value in 

each pixel or voxel from large training image data. In fact, it is necessary to transform 
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all training images into a common space by using affine transformation. Then, the 

posterior probability is used to segment the object of interest. For example, nonrigid 

atlas matching [18] was introduced to segment the liver. The atlas is created from 

twenty training images by using two image-registration methods. It subsequently 

computes an affine transformation using the mutual information metric [19] and a B-

spline non-rigid registration [20]. For segmentation in a test image, the probabilistic 

atlas segmentation is transformed into the test image. Then, the thresholding is 

applied to the transformation result before employing a morphological opening and 

removing unconnected components. However, this approach consumes long 

computation time caused by the nonrigid registration method and it is dependent on 

the precision of manual drawing in the training images.  

1.3 Objectives 

This study proposes an efficient liver-image segmentation system based on a level-set 

method. It is aimed to segment the liver volume in CT images acquired by a 4D-CT 

imaging system.  

 Subsequently, an example of liver-tumor segmentation is studied. Moreover, a 

simple visualization tool is designed and developed to demonstrate an example of 

liver-image segmentation application. In this example, a liver-segmented volume is 

combined with an original 3D-CT data before applying a ray-casting technique. This 

combination helps to enhance visualization of liver in the ray-casting result. 

Therefore, these objectives support a simple pipeline of liver-image segmentation 

application as shown in Figure 1-1.  

 

Figure 1-1 An example of a simple pipeline of liver-image segmentation 
application  

1.4 Thesis structure 

This thesis is organized as follows. Chapter 2 briefly explains related methods 

containing level-set image segmentation with free re-initialization, geodesic active 

contour (GAC), active contour without edges or Chan-Vese (CV), and edge based 

level-set method. Chapter 3 describes the proposed 3D CT liver-image segmentation 
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system. It includes construction of confident region image, generation of initial zero 

level-set function, and a modified Chan-Vese model. Chapter 4 shows experimental 

results and two major issues are investigated. First, it shows the influence of types of 

image representations on standard level-set methods. Second, it demonstrates a 

performance of the proposed modified Chan-Vese model in a comparatives 

assessment. Afterwards, two related applications of liver-image segmentation are 

studied and described in chapters 5 and 6. Chapter 5 introduces an integration of the 

modified Chan-Vese model and a clustering method. It is aimed to illustrate an idea 

for segmenting tumor regions after a liver-segmented region is presented. However, 

in this study, the proposed method was applied to an eight-bit mock liver-tumor 

image. Chapter 6 presents a visualization application. A simple visualization tool is 

developed to support a ray-casting technique. It is aimed to visualize anatomical 

structure after the segmentation result is integrated into the original image data. 

Lastly, all studies are concluded in the chapter 7.  
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Chapter 2   

Level-Set Image Segmentation 

2.1 Introduction 

This chapter briefly explains general concepts of level-set image segmentation. 

Section 2.2 describes definition of a level-set method. Section 2.3 shows a summary 

of level-set image segmentation with free re-initialization. Section 2.3 summarizes 

concepts of a geodesic active contour (GAC), a Chan-Vese (CV) model, and an edge-

based level-set method.  

2.2 A Level-Set Method 

In a basic description, the level-set function describes an objective function in 

different levels of the cut-planes. A contour at the zero-level is called the zero level-set 

function. For example, a function of a surface                  is separately 

described by a constant in a z-axis (see Figure 2-1.) The zero level-set function is 

outlined by the red contour (it is sometimes called front). Due to this definition, the 

red front represents implicit-curve properties as a signed distance function as 

 

       

                       

             

                        

  (2.1) 

where   denotes the given contour or front. 

 

 
 

 

Figure 2-1 An example of (left) the level set function                , and 
(right) the different cut-planes  based on levels of z-constants as shown by 
numbers over the contours 
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Subsequently, if a target level differs from the current state, a speed function   will be 

required to propagate the contour in normal direction over an artificial time  . This 

traditional approach was presented by Osher and Sethian [21]. Let      be a point on 

the propagating contour, and        is a point on the initial contour. To evolve the 

level-set function with preserving the zero level-set function on a hypersurface, it 

needs            . By the chain rule,  

 
          

  
 

  

  
 

  

  

  

  
     

(2.2) 

 
                       

 

Since     
  

    
 is an inward unit normal vector, the level-set evolution equation is 

 
                         (2.3) 

Consequently, if the front moves inwards, the level-set evolution equation is given by 

  

 

  

  
                       

                   

  (2.4) 

where    is the initial zero level-set function, and the variable   is a position in a two 

dimensional space   . Actually, the speed function   in Equation (2.4) can be 

described by the mean curvature   [21] as 

 
      

  

    
     

  

    
   (2.5) 

where        is a divergence operator. Thus, the level-set evolution equation is 

rewritten by 

 

 

  

  
     

  

    
                      

                    

  (2.6) 

2.3 Level-set image segmentation with free re-initialization 

Traditionally, the evolution of level-set function   requires the re-initialization 

process to preserve numerical accuracy [22] because the evolution process may cause 

the level-set function to be flat. Thus, the traditional level-set image segmentation is 

performed as a diagram in Figure 2-2. First, the initialization process constructs the 

initial zero level-set function   . Then, the given contour is propagated by the speed 



7 

 

function  . Next, the re-initialization is computed to regularize the level-set function 

for representing the signed distance function. Afterwards, a stop condition is checked 

to terminate the iteration process. If the stop condition is not satisfied, the level-set 

function will be sent backwards to the evolution process. 

 However, the re-initialization process consumes high computation cost. Many 

studies [23, 24, 25, 26] have been proposed to solve this problem. From the literature 

review, the distance regularized level-set evolution (DRLSE) [24] and the reaction 

diffusion (RD) [26] method demonstrated attractive results. Indeed, the DRLSE 

method has been referred in many studies [27, 28, 29], but this method may not 

perform well when the speed function or energy functional is a geodesic active 

contour [30] or an active contour without edge (Chan-Vese) [31] model as described 

in some results [26]. Therefore, this study chooses the reaction diffusion technique to 

remove the re-initialization process and preserve numerical accuracy. However, both 

DRLSE and RD methods are briefly explained in this section. 

 

Figure 2-2 Three diagram of the level-set image segmentation based on 
conventional, DRLSE, and RD methods 

2.3.1 Distance regularized level-set evolution (DRLSE) 

From [24], a level-set function is defined by an energy-functional      as 

 
                     (2.7) 

 
                  (2.8) 
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where       is the level-set regularization term formulated by a potential function 

            ,   is a positive constant, and         denotes an external energy. This 

regularization term is aimed to achieve a minimum when the zero level-set function 

moves to a target location. The potential function is declared by                ; 

thus, the level-set regularization is expressed by   

 
       

 

 
              (2.9) 

Next, to determine a level-set evolution (LSE) equation, the energy functional is 

minimized by using the G  teaux derivative and the gradient flow equation [32] 

  

  
  

  

  
. Therefore, the energy functional      is transformed to 

   

  
   

   

  
 

     

  
  (2.10) 

and 
  

  
    

   

  
 

     

  
  (2.11) 

Then, referring to [24], the G  teaux derivative is applied to       as shown in 

Equation (2.9) and it is given by  
    

  
                    (2.12) 

Thus, the Equation (2.11) is rewritten by 

 
   

  
                   

     

  
  (2.13) 

From [24],        
     

 
 

     

 
  or          

      

    
   

 

    
 

 

   

  
          

  

    
  

     

  
  (2.14) 

 
 

          
  

    
  

             
                     

 
     

  
  

 

Consequently, the level-set function is propagated by the time-step   as follows. 

 
                   

  

    
   

     

  
   (2.15) 
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2.3.2 Reaction Diffusion (RD) 

In [26], the reaction-diffusion equation in a two-dimension space for the level-set 

method is formulated by 

  

 

  

  
     

 

 
                      

                    

  (2.16) 

The     presents a diffusion term used to regularize the level-set function into a 

piecewise constant instead of a re-initialization process. Meanwhile, the reaction 

term  
 

 
     is used to control directions of the curve propagation. Subsequently, 

the level-set evolution is implemented by using a two-step splitting method modified 

from [33]. In summary, the reaction diffusion method contains three main steps. 

First, the initial zero level-set function    is constructed from an initial region    and 

a positive constant    as defined by 

 
       

            
              

  (2.17) 

Second, the level-set evolution (LSE) equation   is defined to produce the reaction 

term for controlling directions of the curve propagation. This reaction term is 

 
              (2.18) 

where    is a constant that gives the reaction time-step. Then, its result is updated 

into the level-set function (LSF) in the diffusion term by 

 
                    (2.19) 

where    is a constant for diffusion time-step. Next, the updated result of the LSF is 

backwards sent to the second step for performing the iteration process. Further, this 

iteration process is terminated when a stop condition is satisfied. 

2.4 GAC, CV, and Edge-based level-set methods 

From literature review, geodesic active contour, active contour without edge (Chan-

Vese), and edge based level-set models are often mentioned in image segmentation 

applications. These level-set models are briefly discussed in this section. 

2.4.1 Geodesic active contour in the RD technique: RD-GAC  

The energy functional of the geodesic active contour [30] is defined as the length as  
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    (2.20) 

where      is the edge detector of a parameterized planar curve               and 

      
     

  
. To determine the evolution equation, the energy function needs 

minimization. Let        and           thus the derivative of   with respect to   

is computed by 

 

  
        

 

  
         

 

 

         
 

  
     

 

 

    (2.21) 

                 
 

 

              

 

 

     

where    is a unit tangent to the curve  . Then, integration by parts is applied to the 

second term as 

 

  
                     

 

 

             
 
  

 

 

   (2.22) 

                 
 

 

                   

 

 

                

 

 

   

                                        
 

 

                

 

 

    

From           and            then 

 

  
                                                       

 

 

   (2.23) 

                                               
 

 

   

                               
 

 

      

Since         

 

  
                                   

 

 

      (2.24) 
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Next, the steepest descent method is applied to connect an initial curve    with a 

minimum length of     . The evolution equation is given by   

 
  

  
                       (2.25) 

It should be rewritten in a level-set form [34, 35] as 

 
  

  
 

       
  

    
     

             
              

      
(2.26) 

 
      

 

            
  (2.27) 

where      is an edge detector function used in a given image  . The variable    is a 

Gaussian function with a standard deviation  . The variable   is a constant. Further, 

this level-set evolution equation can be directly integrated into Equation (2.18) in the 

RD technique as 

 

                      
  

    
        (2.28) 

and the curve propagation of the level-set function is  

 

                            
  

    
         (2.29) 

2.4.2 A Chan-Vese model in the RD technique: RD-CV 

The Chan-Vese (CV) [31] model considers an energy-functional instead of the speed 

function of the given contour, which is based on the gradient of the level-set function 

     as Equation (2.4). The energy functional of the CV model     is a combination of 

length, area, and the global gray-intensity fitting terms, and it is formulated by  

             

                    

                  
      

             

            
    

             
           

 

             
               

                                                
                             

  

(2.30) 
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  (2.31) 

 

       
                   
 

               
 

  (2.32) 

 
       

 

 
   

 

 
       

 

 
    (2.33) 

 
       

 

 

  

     
  (2.34) 

where    and    are equivalent to mean-intensities of regions inside and outside the 

given contour, respectively. The       is the Heaviside function, and       is the Dirac 

delta function where the variable   denotes the width of the Dirac delta function. 

Further, the variables  ,  ,   , and    are constants. Then, the level-set evolution 

equation is determined by minimizing the energy functional    . 

 In order to minimize this energy function    , weak differential (G  teaux 

derivative) is applied to each term. The definition of the weak differential is 

 

           
   

            

 
 

 

  
              (2.35) 

First, the length term      is considered as 

                        

 

 (2.36) 

            
   

                  
 

             
 

  

 
 (2.37) 

     

  
                  

   

  

 

 

From differential rule 
 

  
                                  and the linearity of 

gradient             , 



13 

 

           
 

  
                  

 

 (2.38) 

 

           
 

  
          

   

   
 

                                  
       

         
 
   

  

 

 

                     
  

    
     

 

 

Let      
  

    
  ,      

  

   
, and the Greens theorem is applied to the second term as 

      

 

         

  

       

 

  (2.39) 

     
     

    

  

   
   

  

           
  

    
   

 

  

When the second term is substituted to the differentiation of       , 

                      

 

    (2.40) 

      
     

    

  

   
   

  

           
  

    
   

 

  

                      
  

    
     

 

    
     

    

  

   
   

  

  

Since 
     

    

  

   
   on the curve evolution domain, 
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  (2.41) 

             
  

    
     

 

  

Second, the area term is                 
 

, and its weak differential is 

formulated by 

            
   

  
              

 
  

 

    

  
         

   
  

 

  (2.42) 

           

 

  

Third, the weak differential of the global intensity fitting term is similarly 

determined, and it finally presents 

                
          

 

        
            

 

  (2.43) 

Consequently, from 
  

  
  

  

  
 and           , the level-set evolution equation of 

the CV model is 

   

  
            

  

    
            

          
    (2.44) 

where                    and                  Moreover, in this study, this 

level-set evolution equation is directly applied to the reaction term (Equation (2.18)) 

for controlling directions of the curve propagation as 

 

                       
  

    
            

          
     (2.45) 

Consequently, the level-set function is propagated by 
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          (2.46) 

 

                     
  

    
            

          
       

2.4.3 An edge-based level-set method in the DRLSE technique: DRLSE-E 

In this section, the edge-based level-set method in the DRLSE technique [24] is 

referred. It starts from defining the external energy functional as a combination of 

length and area terms in Equation (2.7). 

 
                    

      

           
    

  
(2.47) 

 

                         

 

  (2.48) 
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 (2.50) 

 

       

 
 

 
 

 
   

 

 
 

 

 
    

  

 
            

          
          

  (2.51) 

 

        

 

  
       

  

 
            

           

  (2.52) 

where      is an edge detector function as it is defined in the GAC model, and the 

variable   denotes a given image. The variables  ,  , and   are constants. To obtain 

the level-set evolution equation, the energy functional in each term is minimized by 

applying the weak differential as explained in the Chan-Vese model section 2.4.2. 

Then, the curve evolution of the level-set function is formulated by   
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        (2.53) 

where   is an artificial time-step. 

2.5 Summary 

Level-set image segmentation generally starts from constructing the initial zero level-

set function. Then, the level-set evolution equation is defined to control directions of 

the curve moving. Further, a re-initialization process is traditionally required to 

preserve numerical accuracy after performing much iteration. However, the re-

initialization process consumes high computation cost. Thus, a reaction-diffusion 

(RD) evolution technique is preferred to remove the re-initialization process and keep 

accuracy. Afterwards, the stop condition is used to terminate the iteration process. 

 To control the curve moving, RD-GAC, RD-CV, and DRLSE-E methods are 

considered and summarized in this study. Actually, the GAC and CV denote the 

geodesic active contour and Chan-Vese, respectively. Further, the DRLSE-E method 

is the integration of the distance regularization level-set evolution and edge-based 

level-set model.  

 Both the RD-GAC and DRLSE-E require gradient information from a given 

image to control the curve propagation. However, the propagation of the RD-GAC 

model is dominated by the gradient magnitude of the level-set function. On the other 

hand, the DRLSE-E model uses the Dirac delta function to manage the curve 

propagation. Further, it is possible to control the smoothness of the curve evolution 

by adjusting the coefficient of the curvature term in the DRLSE-E model.  

 Furthermore, the RD-CV model considers the global variation of gray-intensities 

between inside and outside the curve. Thus, the curve evolution of the RD-CV is not 

dependent on gradient information.     
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Chapter 3     

An Image Segmentation System for 

3D CT Liver-images  

3.1 Introduction 

This chapter explains details of the proposed liver-image segmentation system. This 

system is aimed to segment a liver volume from CT images. Section 3.2 describes an 

overview of the process. Section 3.3 discusses about the construction of the specific 

image representations. Section 3.4 introduces a concept of multi-resolutions used in 

the curve evolution. Section 3.5 presents the generation of initial zero level-set 

functions. Section 3.6 explains prevention of leakage regions outside ribs. Section 3.7 

describes the modification of Chan-Vese model, which is used to control directions of 

the curve propagation. Section 3.8 explains a refinement step.   

3.2 An Overview of the 3D CT liver-image segmentation system 

This study presents an efficient system of liver-image segmentation. It performs 

under a concept of the level-set image segmentation.  

 The proposed system contains three main modules. First, construction of specific 

image representations is introduced. This module is used to generate two alternative 

types of image representations. One is an edge-based image referred as a seed-

region-growing image [36]. The other is a confident region image proposed in this 

study. Moreover, the latter is constructed from a new technique called multilevel edge 

detections. However, this module will be ignored if gray-intensity image type is 

considered as an image input. 

 The second module is a level-set image segmentation process. This process is 

implemented by a multi-resolution technique. It requires two main operations 

including initialization and level-set evolution. The initialization is required to 

construct initial zero-level-set function and define the mask regions inside ribs. 

Actually, the mask regions are created to prevent leakage regions outside ribs after a 

given curve is moved. The level-set evolution controls the curve propagation that is 

dependent on the type of level-set evolution equations, such as geodesic active 

contour (GAC), edge, and Chan-Vese models. 
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 In the last module, segmentation results are refined. An overview diagram of the 

proposed liver-image segmentation system is illustrated in Figure 3-1. 

 

Figure 3-1 An overview of the 3D CT liver-image segmentation system based on a 
level-set method 

3.3 Construction of the specific image representations 

Many algorithms have been proposed in sophisticated formulas. Some algorithms 

add an extra term into a conventional method. These algorithms probably provide 

good segmentation results after they are applied to a typical gray-intensity image. 

However, they often consume high computation cost or may be limited by some 

requirements such as a large number of training data sets. 

  Alternatively, it is possible to improve the quality of segmentation results by 

constructing good image representation for describing the region of interest. For 

example, the seed region growing images [36] are produced to present the regions of 

interest in edge-based images. Indeed, this idea conveys the motivation to this study. 

This study proposes confident region images that are generated from a combination 

of multi-levels of gradient information. Meanwhile, the region of interest is described 

as a homogeneous region. 
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   the initial zero level-set  
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3.3.1 Edge-based image representation  

This image type starts from generating the speed images (SI) [36]. First, it requires 

an image filter to reduce a level of image noise. In some cases, an advanced filter like 

a modified curvature diffusion filter [37] is required to reduce image noise and 

preserving edge information. Next, a sigmoid function is applied to extract edge 

information. 

 
      

 

       
         

  
 

(3.1) 

where      is a given image and   is a pixel coordinate. The parameter   and   

present the center and the width of the sigmoid function, respectively. This speed 

image is aimed to present homogenous regions towards one and boundary regions 

near zero. Then, each speed image is inverted by thresholding to construct a seed 

region growing (SRG) image as shown in Equation (3.2). The seed-region growing 

image represents homogeneous regions as zero and boundaries of anatomical 

structures as one.   

 
        

             
           

  (3.2) 

where    is a threshold level. Therefore, this SRG image is considered as an edge-

based image representation (see Figure 3-2). 

 

   

 

 
Filtered image 

 
Speed Image  

(SI) 
Seed Region Growing 

(SRG) 
 

Figure 3-2 An example of filtered image, speed image (SI), and seed region 
growing (SRG) image [38]  

 Although the seed region-growing (SRG) image presents an attractive edge-

image, some dirty edges appear inside the homogeneous regions. In fact, it is difficult 

to get clear regions from using only one level of thresholding when a given image 

includes a high level of image noise. If a threshold value is very small, boundaries of 

anatomical structures will be opened.  
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3.3.2 Confident region image representation 

This study proposes a confident region image (CRI). It determines good boundaries 

of anatomical structures from using a combination of edge detector functions. Then, 

the result of this combination is used to describe the region of interest as a 

homogeneous region.  

                           

     

    

 

     

    

 

     

    

 

Figure 3-3 An example of three levels of edge detectors                
            on a given image    and its neighbors      and     .   

 This idea comes from an empirical study (see Figure 3-3). The result of edge 

detector function presents many details of edge information when a 3x3 Gaussian 

window with standard deviation       is applied. However, image noises also 

contribute edge information into the result. Meanwhile, a 27x27 Gaussian window 

with standard deviation       mostly illustrates a region including large variation 

on gray-intensities. Conversely, some details of anatomical structures are 

disappeared. In addition, anatomical structures in 3D-CT images are presented in 

consecutive image cut-planes. Further, some information of anatomical structures 

may be distorted due to high levels of image noises and artifacts. Consequently, this 

study presents an idea to combine edge information from multilevel edge detectors 

and three consecutive image slices. This combination is aimed to reduce unclear 

boundary as shown by      in Figure 3-4.  

 This study formulates the edge detector function        in an exponential form 

as given by 

 
            

 

          
   (3.3) 
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where   is a standard deviation of a Gaussian window that is convolved with a given 

image  . This edge detector function presents pixels beside boundaries of anatomical 

structures towards one. Otherwise, pixel values are gradually reduced to near zero. 

Next, 3x3, 9x9, and 27x27 Gaussian windows with standard deviations       , 

      , and   =6.5, are applied to a given image and its neighbors. Let a standard 

deviation be indexed by  , and the index of a given image slice be  . Therefore, the 

combination function      is determined by 

   

               

                       

  (3.4) 

or 

          
 

       
    

  

 

   

   

     

   
 

Then, the result of      is transformed to a binary image for presenting 

homogeneous regions and clear edges. This transformation is achieved by giving a 

threshold level    of edge responses and it is called the confident map function (CMF) 

as  

  
        

                          
           

  (3.5) 

Subsequently, the object of interest is selected from binary regions in the result of 

CMF. This selection is performed by using the connected component labeling 

method. If the selected binary-region is denoted by  , the confident region image 

(CRI) will be given by 

 
        

        
              

  (3.6) 

where   is a mean of gray-intensities of a given image      inside the labeled 

region      whereas the variable   denotes a pixel coordinate.  

 

   

 

      CMF CRI  

Figure 3-4 An example of a combination of multilevel edge detectors       , a 
confident map function (CMF), and a confident region image (CRI). 
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3.4 Level-set image segmentation based on a two-resolution 

technique 

This study proposes a two-resolution level-set image segmentation approach (see 

Figure 3-5). This approach contains two main steps. The first step performs the level-

set image segmentation at the low resolution. Subsequently, the second step 

computes the level-set image segmentation at the original resolution. 

 

Figure 3-5 A diagram of level-set image segmentation using a two-resolution 
technique  

 This approach starts from the initialization process. An image input represents 

one of gray-intensity, edge, and confident region images. The image input is used to 

construct the initial zero level-set function. Then, the level-set function and all relate 

spaces are down sampling into 25 percent of the original image resolution. These 

relate spaces are dependent on the level-set evolution equation. For example, the 

proposed level-set model requires gray-intensities from an image input. Thus, the 

initial zero level-set function    and the image input are down sampled. Afterwards, 

the level-set evolution is performed.  

Level-set image segmentation  
based on a two-resolution technique  
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 GAC  
 Edge 
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 (sec. 3.5 and 3.6) 
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 Next, the segmentation region at the low resolution is up sampled to the original 

resolution. This up-sampled region is denoted by   . Moreover, it is used to construct 

the initial zero level-set function for the second computation of the level-set evolution 

process. It is given by  

 
       

            
              

  (3.7) 

where    is a constant. Then, the level-set evolution process is repeated to get the 

final segmentation result at the original resolution.  

 Actually, the proposed two-resolution approach shows two advantages. First, it 

helps to adjust parameters. Indeed, the level-set image segmentation at the low 

resolution consumes computation cost less than the high resolution. Second, it is 

possible to reduce the number of iterations when the higher resolution is computed. 

The reason is that the result at low-resolution shows an approximate region near to 

the boundary of the object of interest. 

3.5 Construction of initial zero level-set function (LSF) 

This study generates the initial zero level-set function    from a binary region    and 

a positive constant   , this generation is defined by   

 
       

           
             

  (3.8) 

Indeed, the boundary of the binary region    is equivalent to the boundary of the 

initial zero level-set function. If the binary region gives a contour near a boundary of 

the object of interest, it is possible to reduce the number of iterations and affect the 

accuracy of segmentation result.  

 For example, if the geodesic active contour (GAC) [30] is applied to the SRG 

image and a boundary of initial zero level-set function is far from the region of 

interest, propagation of the given curve will be prematurely stopped as demonstrated 

in Figure 3-6.  

 Consequently, this study proposes two methods to generate the initial zero level-

set function. The first method is considered when a given image is represented by 

gray-intensities. Meanwhile, the second method is selected when an image input is 

the SRG (section 3.3.1) or CMF (section 3.3.2) image. 
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Initial zero  

level-set function 
295 Iterations 

      
590 Iterations 

     
 

 

   

 

 
590 iterations 

     
983 iterations 

     
590 Iterations 

       
 

Figure 3-6 Five examples of segmentation results (red contours) when initial 
zero level-set is far from the region of interest and the curve is propagated by 

using the GAC model,          
  

    
          where   is a constant.  

3.5.1 Generation of initial zero LSF in gray-intensity images 

The main idea is to obtain a region that presents a statistical distribution model of 

gray-intensities as same as a seed region. Indeed, mean       and standard deviation 

      are measured from a seed region allocated inside the object of interest in a given 

image  . Then, the initial region    for creating the initial zero LSF    (Equation 

(3.8)) is obtained by 

 
       

                       
           

  (3.9) 

where   is a pixel coordinate in an axial-image.  

 From a diagram in Figure 3-7, this study utilizes the coronal images to assist the 

construction of the seed regions of approximate liver-regions in axial-image planes. 

Actually, the coronal image visualizes anatomical image in the front-to-back 

direction. This image plane is perpendicular to the axial image plane that displays 

anatomical image in a head-to-foot direction. In this study, from preliminary 

experiment, the number of coronal image slices should be sampled at least 20 image 

slices for giving good seed regions inside axial image planes.  

 After coronal images are sampled around the center of a given 3D-CT volume, 

approximate liver-regions in these coronal images are obtained. In each coronal 

image   , it begins with some random rectangular patches. Indeed, these random 

patches are utilized to obtain an average of approximate liver-regions. Furthermore, 

these patches should be allocated on the left side of the considered image in 
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accordance with a physical location of the liver. Then, each patch is used to measure 

mean        and standard deviation        of gray-intensities. Next, the binary region 

   is extracted by thresholding as  

 

       
                          

           
  (3.10) 

where   is a pixel coordinate in each coronal-image. 

 

Figure 3-7 A diagram of the construction of initial zero level-set function in each 
gray-intensity image 
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Afterwards, this binary region is refined by the morphological operations [39] , such 

as hole filling, opening, and erosion. Next, the connected component labeling 

technique is applied to select the approximate liver region.  

 This selection considers three properties. First, a range of gray-intensities of liver 

is in a soft-tissue type (see standard CT numbers in section 4.2.1). Second, the liver 

region mostly locates on the left side of the coronal image. Third, the liver regions 

present the largest area if coronal images are sampled around the center of a 3D CT 

volume. 

 After all patches are applied to the considered coronal-image, it is possible to 

obtain an average of approximate liver regions. Similarly, averages of approximate 

liver-regions in the other coronal images can be determined.    

 Subsequently, the approximate liver regions of all sampled coronal images are cut 

in the horizontal planes to generate seed regions    in axial-image planes. Then, 

these seed-regions are used to measure mean       and standard deviation       for 

thresholding in Equation (3.9). The results of thresholding represent approximate 

liver regions    in axial image planes. Next, these regions are sometimes refined by 

using morphological operations and approximate liver region    in coronal images to 

limit boundaries of approximate liver-regions    in axial image planes. Actually, 

these approximate liver regions    should be inside the liver volume. 

3.5.2 Generation of initial zero LSF in edge and confident region images 

In this study, the seed region growing (SRG) image is considered as the edge image. 

Further, the confident region image is produced from the confident map function 

(CMF). Both the SRG and CMF present boundaries of anatomical structures like 

binary images. Therefore, this section proposed a simple algorithm to generate the 

initial zero level-set function for the both SRG and CMF images. This algorithm is 

shown in Figure 3-8. 

 First, some images are cut in the vertical planes from the 3D-SRG or 3D-CMF 

volume to represent the coronal SRG or CMF images. Next, approximate liver-

regions in coronal images are obtained. It begins with the inverse operation to 

present boundaries of anatomical structures as black pixels. Meanwhile, 

homogeneous regions are inverted into the white pixels. Afterwards, morphological 

operations, such as opening and erosion, are use to separate large regions and 

remove tiny regions. Then, the connected component labeling technique is used to 

select the approximate liver region. Indeed, three properties of liver-region selection 
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(as presented in section 3.5.1) are used to seek the approximate liver regions    in 

coronal images.  

 

Figure 3-8 Diagram of the construction of initial zero level-set function in edge-
based and confident region images 

 Afterwards, approximate liver-regions    in axial images are extracted by the 

same consequent processes used in coronal images. Indeed, this region extraction is 

possibly assisted by the approximate liver regions    in coronal images because both 

axial and coronal images are perpendicular to each other. Subsequently, the 

approximate liver-region    in each axial image is used to generate the initial zero 

level-set function by Equation (3.8). 

 In addition, if the construction of confident region images are considered, the 

approximate liver regions    are equivalent to the labeled region   in Equation (3.6). 

Therefore, these regions are directly utilized to generate the confident region images. 

3.6 Mask Generation for preventing leakage regions outside ribs 

Due to the conditions of CT-image acquisition, some ranges of gray-intensities of the 

liver overlap other soft tissues such as spleen and tissues around ribs. Furthermore, 

some parts of the liver in CT images sometimes adhere to soft tissues outside ribs 

without edge information. Thus, the leakage regions outside ribs occasionally appear. 

 This section introduces an algorithm to generate masks for preventing these 

leakage regions. It aims to connect all bone regions in each axial image plane. It 
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begins with the extraction of the bone regions. This study introduces a two-stage 

multilevel Otsu's method with a range constraint (see section 3.6.1). It 

automatically extracts five classes of regions from each axial image. These classes 

contain background, three levels of soft tissues, and hard-tissue regions. Then, 

borders of all hard-tissue regions are linked. For example, a template of seed 

points (Figure 3-9) is created and moved to the boundary of the hard-tissue 

regions. Then, these seed points are connected by straight lines.    

 

   

 

 (a) (b) (c)  

 

   

 

 (d) (e) (f)  

Figure 3-9 An example of mask creation; (a) and (d) Two sample images, (b) and 
(e) templates of seed points, (c) and (f) mask regions [38] 

 However, hard-tissue regions as ribs and vertebrae are not always clearly 

displayed as shown by a yellow arrow in Figure 3-9. Thus, a combination of soft-

tissue regions is preferred instead of the hard-tissue regions. Conversely, the 

combined region of the soft tissue is often larger than a boundary of the ribcage. 

Therefore, morphological erosion is required to shrink this combined region after 

connecting all seed points together. 

3.6.1 A two-stage multilevel Otsu's method with a range constraint 

The Otsu's method [40] is a famous algorithm for image segmentation from a 

histogram of gray-intensities [41]. However, it consumes high computation cost when 

multiple-classes thresholding is preferred. Some algorithms [42, 43, 44] have been 

proposed to solve this problem. An attractive method is a two-stage multilevel Otsu's 

(TSMO) method [43]. It is introduced to accelerate computation without changing 

the result of original Otsu's method. Conversely, its results are not good to present 

          

          

 

 
 
 
 

 
 

 
 

 

 
 
 

 
 
    

 

 
 
    

 

 
 
    

 

 
 
    

 

 
 
    

 

 
 
    

 

 
 
    

 

 
 
 
 

 
 

 
 

 

 
 
 

 
 
    

 

 
 
    

 

 
 
    

 

 
 
    

 

 
 
    

 

 
 
    

 

 
 
    

 

 



29 

 

hard-tissue regions as shown in Figure 3-11. Thus, this study presents a simple 

solution by giving a range constraint.  

 To smooth comprehension, a summary of the Otsu's method is firstly explained. 

First, a given image is represented in   gray levels            . Let    denote the 

number of pixels at the gray level  , and then the total number of pixels is      
 
   . 

Thus, the probability of occurrence of gray-level   is given by    
  

 
. If a given image 

is divided into   classes                , the number of thresholds will be    . 

Consequently, the cumulative probabilities    and the mean levels    in each class   

is described by 

 

      

    

  (3.11) 

 

   
 

  
    

    

  (3.12) 

Thus, the average         of gray-levels in a given image is   

 

           

 

   

      

 

   

  (3.13) 

Meanwhile, the between-class variance is 

 

                 
 

 

   

  (3.14) 

Therefore, the optimal thresholds       
    

    
        

   is determined by 

 
      

     
           

(3.15) 

 In the first stage of the TSMO [43], it groups the histogram of gray intensities to 

present as a small number of bins (see Figure 3-10). For example, if a given image 

contains 256 gray levels, these levels will be grouped into eight bins (32 levels per 

bin). Next, the Otsu's method is applied to these bins, and its results indicate optimal 

bins giving the maximum between-class variances. Afterwards, the Otsu's method is 

applied to gray-levels inside these optimal bins and their neighbors for obtaining 

optimal thresholds. 
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Figure 3-10 An example of the two-stage multilevel Otsu's method [43] for 
obtaining two optimal thresholds   

  and   
 . 

 Actually, many studies [45, 46, 47] presented a specific range constraint to 

improve results of the Otsu's method. However, it depends on a specific pattern of 

gray-intensities in a given image. This study defines a range constraint by cutting 

gray-intensities below the CT number of the water from original data. This range 

comes from two reasons. First, CT numbers of soft and hard tissues are normally 

higher than the water. Second, gray-intensities in the cut range generally illustrate 

air and some artifacts. This range constraint improves the original TSMO's result 

as shown in Figure 3-11. 

 

   

 

 (a) (b) (c)  

Figure 3-11 An example of five-class clustering on a 16-bits CT image (a) using 
TSMO method (b) and including a proposed range-constraint (c) [38]. 

3.7 Modified Chan-Vese model 

An original Chan-Vese (CV) [31] model normally considers the global variation in 

mean of gray-intensities between inside and outside a given contour. In some cases, it 

will be difficult to stop the curve propagation at the boundary of the object of interest 

if this boundary shows lower variation of gray-intensities than another location. 

Therefore, this study proposes a modified Chan-Vese (MCV) model to reduce this 
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problem and achieve liver-image segmentation. This modification is formulated by 

connecting two main ideas. 

 First, the level-set evolution (LSE) equation of the CV model is referred, and it is 

defined by 

 
  

  
            

  

    
 

         
         

   
    

         
          

                  
                             

   
(3.16) 

 

       
               
 

           
 

  (3.17) 

 

        
                   
 

               
 

  (3.18) 

where  ,  ,   , and    are constants. The variable   is a given image. The       is the 

Heaviside function, and       is the Dirac delta function where the variable   denotes 

the width of the Dirac delta function. This LSE equation describes an area term as a 

constant  . It gives small contribution to the whole force if it is compared with 

remaining terms. Therefore, this study introduces an artificial balloon force to 

explain regions as a signed function. It is formulated by              where   is 

a Gaussian smooth function. The variable    is an initial region used to construct the 

initial zero level-set function.    

 Second, this study considers the Heaviside and Dirac delta functions. Actually, 

these functions differ from the definitions given in the edge-based level-set method 

[24]. The major difference is a quantity of elements responding to the Heaviside and 

Dirac delta functions. To explain the difference, the Heaviside       and Dirac delta 

functions       of the CV model are called "global type" and re-denoted by         

and        , respectively. On the other hand, "local type,"         and         denote 

the Heaviside and Dirac delta functions used in the edge-based level-set model [24]. 

These definitions are rewritten as   
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  (3.22) 

If the input signal is varied from -2 to 2, and widths of the Dirac delta functions are 

defined by      ,    , and    , the response signals will be illustrated in Figure 3-12.  

  
                

  
                

Figure 3-12 Three examples of response signals of (top) local and (bottom) global 
Heaviside functions where the width   of the Dirac delta function are defined 
by   = 0.1, 0.3, and 0.5. 

 The global type of the Heaviside function considers the wide range of the input 

signal. There are some small responses from the global Heaviside function although 

the input signal is out of a range of   to  . Further, if the level of   is increased, the 

output of the Dirac delta function will be raised up.      

 On the other hand, the local type of the Heaviside function responds the input 

signal when it is more than the negative width of the Dirac delta function     . It is 
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completely activated to one when the input signal is more than the positive width of 

the Dirac delta function    . Meanwhile, the Dirac delta function gives the output 

signal if the input signal is in a range of    to  .  

 However, from observation, CT axial images in an abdomen area contain many 

types of tissues and levels of gray-intensities. Furthermore, a variation of gray-

intensities between a patient's body and background is larger than the difference in 

gray-intensities between the liver and neighbor soft tissues. Consequently, this study 

selects the local type to limit the force contribution in the curve propagation. For this 

local type of functions, the force is not computed from everywhere in a given image 

space. Moreover, this study simplifies the level-set evolution equation as 

   

  
        

  

    
                (3.23) 

 
                

 
            

        
    

where    is a constant. In addition, the reaction-diffusion (RD) technique [26] is 

preferred to control the curve evolution with free re-initialization (see details in 

section 2.3.2). Thus, the proposed level-set model given by Equation (3.23) is 

integrated into the reaction term (Equation (2.18)). This reaction term is  

 

                   
  

    
                 (3.24) 

where    is a constant for giving the reaction time-step. Next, the level-set function is 

propagated by 

 

                         
  

    
                  (3.25) 

where    is a constant for diffusion time-step. 

 In addition, an example of the difference in the original Chan-Vese model and 

the proposed modified Chan-Vese model are shown in Figure 3-13. 
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(a) (b) (c) 

 Figure 3-13 An example of image segmentation results when an initial zero level-
set function is specific (a), and the level-set function is evolved by the original 
Chan-Vese model (b) and the proposed modified Chan-Vese model (c). 

 From the comparative result, the proposed modified Chan-Vese model presents 

the region near the initial region of the initial zero level-set function. Meanwhile, the 

original Chan-Vese model shows all regions, which present the same level of gray-

intensities.  

3.8 Refinement 

To refine the segmentation results, this study applies a Gaussian smooth filter to 

coronal and sagittal image planes. Further, a hole-filling method is utilized to get 

outside boundaries of the liver regions.  

3.9 Summary 

The proposed liver-image segmentation system consists of three main steps. First, the 

construction of specific image representations is considered. This study considers 

edge-based and confident region images as alternative forms of gray-intensity 

images. Second, the level-set image segmentation is implemented by a concept of 

two-resolution approach for extracting the object of interest. It consists of 

initialization and evolution processes. This chapter proposes the construction of the 

initial zero level-set function and the modified Chan-Vese model. In the final step, the 

segmentation result is refined.  

 



35 

 

Chapter 4  
Experiment and Results of  

3D CT Liver-Image Segmentation 

4.1 Introduction 

This chapter presents some experiments and their results on the proposed liver-

image segmentation system. First, some details of data sets are explained in section 

4.2. Section 4.3 introduces the evaluation method for indicating accuracy of liver-

image segmentation. Section 4.4 shows accuracy of segmentation results under four 

case studies that consist of the effect of the initial zero level-set function, the impact 

of multilevel edge detectors, the influence of image representation on GAC, CV, and 

edge-based level-set methods, and the performance of the proposed modified Chan-

Vese model.   

4.2 Materials 

This section briefly introduces some characteristics of computed tomography (CT) 

images and a 4D-CT imaging system. The basic principle of CT imaging is to 

transform a series of projection datasets that are acquired at different angles around 

an object of interest into a cross-section image. This transformation is called an 

image-reconstruction process. The projection data is measurements of X-ray 

attenuation after X-rays transmit the object of interest to detectors locating on the 

opposite side [48]. Thus, a typical CT imaging scanner contains a couch, where a 

patient lies down, and the gantry, which is used to rotate an X-rays source and 

detectors for acquiring projection data (see Figure 4-1). 

4.2.1 Standard CT numbers   

After the image-reconstruction process finishes, cross-section images in axial image 

planes of the object of interest are visualized. Gray-intensities are described by 

standard CT numbers in the Hounsfield unit (HU). Indeed, the Hounsfield unit is 

computed from the linear attenuation coefficient of materials. These CT numbers are 

related to the attenuation coefficient of water [49] as 
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      (4.1) 

where    and      are the linear attenuation coefficient of the object and water, 

respectively. Examples of CT numbers are shown in Table 4-1 [50]. 

Table 4-1 An example of CT numbers of different tissues (unit: HU) 

Tissue Types CT numbers Tissue Types CT numbers 
Bone +1000 Kidneys 30 
Liver  40 to 60 Water 0 
Blood  40 Fat  -100 to -50 
Muscle 10-40 Air -1000 
    

 

 

 

Figure 4-1 Basic Components of (left) a 3D-CT scanner and (right) projection-
data acquisition 

4.2.2 4D-CT Imaging 

Generally, a 4D-CT imaging system contains two main components. First, a 3D-CT 

scanner is used to visualize anatomical structures. Second, a respiratory gate system 

is required to synchronize a respiratory signal with a 3D-CT imaging process. Thus, 

the 4D-CT imaging system can give a sequence of 3D-CT data sets in accordance with 

subsequent phases of a breathing cycle.  

 For example, a 4D-CT data set is acquired in a cine-mode [51] with a real-time 

position management (RPM) respiratory monitoring system as demonstrated in 

Figure 4-2. In this acquisition system, a small plastic block including infrared retro-

reflective dots is placed on a patient's abdomen at a specific location to track motion 

by using an infrared camera. This tracking system gives the respiratory signal, which 

is correlated with the free-breathing CT data. In each couch's position, CT data is 



37 

 

continuously acquired covering a whole breathing-cycle before moving to the next 

couch's position. Indeed, the translation of couch's position is needed to collect 

anatomical images covering the region of interest. Afterwards, all CT images in 

different couch's positions at the same phase of a breathing cycle are arranged to 

generate a 3D-CT data volume.  

 

 

 

 

 Figure 4-2 A diagram of 4D-CT imaging in a cine mode (modified from [51]) 

4.2.3 Information of data sets 

This study investigated liver-image segmentation in CT images including following 

information.  

 Data sets are acquired from four patients by a 4D-CT imaging system (a GE 

Discovery ST machine and a Varian RPM system) in a cine mode with the free 

breathing conditions. For each patient, 10 different sets of 3D CT liver data are 

collected from different time-phases of a breathing cycle. These data sets correspond 

to the sequence of 0%, 10%, 20%, ..., and 90% time-phases of a breathing cycle. Thus, 

it may be possible to observe a change in anatomical structures caused by a 

respiratory process. These data sets are provided by the medical image data archive 

system (MIDAS) community, http://midas.kitware.com/community/view/47. Each 

3D-CT data set includes 136, 120, 150, and 120 slices of 16-bits axial images for 

patient A, B, C, and D, respectively. The size of each axial image is 512x512 pixels with 

resolution 0.98 square millimeters, and slice thickness is 2.5 millimeters. In addition, 

this resource also provides manual delineations drawn by a radiologist. 
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4.3 Evaluation methods 

To evaluate the accuracy of all segmentation results, three different types of similarity 

measures are used. They are the relative absolute-difference volume similarity (AVS), 

volume overlapped coefficient (VOC), and dice similarity coefficient (DSC) [52]. 

Then, these measures are averaged to present average accuracy of segmentation.   

        
       

    
       (4.2) 

      
       

       
       (4.3) 

      
        

         
       (4.4) 

where    and    represent a segmented volume and a manual-drawing volume, 

respectively.  

4.4 Experimental results 

The experiment contains four sections. First, an example of a quantitative measure is 

shown when the initial zero level-set function was constructed by the proposed 

process. It was compared with a manual-drawing based method. Second, the 

influence of the multilevel edge detectors in the confident region image 

representations is illustrated. Third, the effect of three different image 

representations is examined. Three standard level-set models were applied to gray-

images, edge-images, and confident region images. Lastly, the proposed modified 

Chan-Vese method and some modern level-set methods are comparatively evaluated.  

4.4.1 Influence of the initial zero level-set function 

This section shows an example of influence of initial zero level-set function. The 

proposed initialization method was compared with a manual-drawing based method. 

The both methods were assessed under the conditions of edge-based image 

representation and a geodesic active contour (GAC) model.  

 The manual-drawing based method starts from subdividing a liver volume into 

two sections in the z-axis (a head-to-foot direction). This subdivision is required to 

reduce complicated shapes of the liver. Indeed, the liver region is small at the top 

layer and then it expands to the middle layer. Then, it shrinks to the small region at 



39 

 

the bottom. Two manual-drawing regions on the top and bottom of the liver volume 

are provided. Subsequently, the GAC model is selected to control the curve 

propagation. In addition, the segmentation result in each axial-image slice is used to 

construct the initial zero level-set function in the next consecutive image slice. 

Therefore, the segmentation process will perform from the top to the middle layers of 

the liver volume if the top section is considered. Otherwise, the segmentation process 

will be started from the bottom to the middle layers of the liver volume. The average 

accuracy of the liver-segmentation results is shown in Table 4-2.  

 A major problem found in the manual-drawing based method is an accumulated 

error. For example, an over segmented region from the prior axial-image is used to be 

an initial curve. If this initial curve is far from a boundary of the object of interest, it 

will be difficult for the GAC method to move the curve towards the boundary of the 

object of interest.  

 On the other hand, the proposed method used the liver regions extracted from 

the coronal images to correct an initial curve in each axial image before starting 

propagation. For instance, an initial curve was possibly shrunk by using 

morphological erosion in accordance with the size of liver regions in coronal images. 

However, liver segmentation in coronal images needs adequate accuracy. 

Table 4-2 Average accuracy of segmentation results from 40 sets of 3D-CT data 
when initial zero level-set function is generated by two different types (unit : %)  

Methods 
AVS VOC DSC Average 

Mean SD Mean SD Mean SD Mean SD 

Manual-Drawing 
based Method 

73.95 7.07 76.78 5.12 86.77 3.24 79.17 5.15 

The Proposed 
Method 

82.09 6.16 83.59 4.18 91.00 2.64 85.56 4.33 

4.4.2 Influence of multilevel edge detectors 

This section demonstrates an effective example of multilevel edge detectors based on 

       and      in Equations (3.3) and (3.4). The confident region images (CRI) were 

constructed from two choices. First, the CRI was created from an edge detector using 

a 9x9 Gaussian window with standard deviation      . Second, the CRI was 

generated from three levels of edge detectors and three consecutive images. The 

levels of edge detectors were formed by using 3x3, 9x9, and 27x27 Gaussian windows 

with standard deviations       ,       , and   =6.5, respectively. To construct the 

confident map function (CMF), the threshold value (   in Equation (3.5)) was 

manually adjusted to get the best result in each choice. Moreover, the GAC model 
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with the reaction-diffusion technique was applied to control the curve propagation in 

the two choices. An example of segmentation result is shown in Figure 4-3 and an 

average accuracy of liver-image segmentation results is demonstrated in Table 4-3.  

 An advantage of a combination of gradient information is to reduce unclear 

boundaries. These boundaries are normally distorted by high level of image noises 

and some artifacts (see an arrow in Figure 4-3). Further, this combination can 

improve liver-image segmentation results around 1.73 % of accuracy. 

 

   

 

                     Final result  

 

   

 

                 Final result  

Figure 4-3 An example of liver-image segmentation when the RD-GAC method is 
applied to confident region images that are constructed from (top) one level edge 
detector without neighbor and (bottom) three level edge detectors with three 
consecutive images.   

Table 4-3 Average accuracy of segmentation results from 40 sets of 3D-CT data 
when one level edge detector without neighbor is compared to three-level edge 
detectors with three consecutive images (unit : %)  

Methods 
AVS VOC DSC Average 

Mean SD Mean SD Mean SD Mean SD 

One level edge 
detector without 

neighbor 
80.36 6.18 82.11 4.39 90.11 2.76 84.19 4.44 

Three-level edge 
detectors with three 
consecutive images 

82.48 1.85 83.99 1.47 91.29 0.87 85.92 1.40 

4.4.3 Influence of image representations on standard level-set methods 

This section investigates the influence of three different types of image 

representations. These image-types consist of gray-intensity images (GI), edge-based 

images (EI), and confident region images (CRI). In addition, three standard level-set 

methods were selected to evaluate their performances. These level-set methods are 

the geodesic active contour with the reaction-diffusion (RD-GAC) technique, the 

original Chan-Vese model with the RD technique (RD-CV), and the edge-based level-
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set method with the distance regularized level-set evolution technique (DRLSE-E). 

Furthermore, Table 4-4, Table 4-5, Table 4-6, and Table 4-7 show the accuracy of 

liver-image segmentation results. 

Table 4-4 Three similarity measures of segmentation results from four patients 
when an geodesic active contour (GAC) model with the reaction-diffusion (RD) 
technique is applied to three different types of image representations (unit :%)  

Types of Representations 
AVS VOC DSC Average 

Mean SD Mean SD Mean SD Mean SD 

Gray-Intensity Image (GI) 73.98 5.17 74.34 5.15 85.18 3.45 77.83 4.59 

Edge-based image (EI) 82.09 6.16 83.59 4.18 91.00 2.64 85.56 4.33 

Confident region image (CRI) 82.48 1.85 83.99 1.47 91.29 0.87 85.92 1.40 

 

Table 4-5 Three similarity measures of segmentation results from four patients 
when the Chan-Vese (CV) model with the reaction-diffusion (RD) technique is 
applied to three different types of image representations (unit :%)  

Types of Representations 
AVS VOC DSC Average 

Mean SD Mean SD Mean SD Mean SD 

Gray-Intensity Image (GI) - - 23.82 20.65 38.47 0.85 20.76 0.50 

Edge-based image (EI) 80.81 6.38 82.47 4.11 90.34 2.65 84.54 4.38 

Confident region image (CRI) - - 23.52 1.28 38.06 1.69 20.53 0.99 

 

Table 4-6 Three similarity measures of segmentation results from 40 sets of 3D-
CT data when edge-based level-set model with the distance regularized level-set 
evolution (DRLSE) technique is applied to three different types of image 
representations (unit :%) 

Types of Representations 
AVS VOC DSC Average 

Mean SD Mean SD Mean SD Mean SD 

Gray-Intensity Image (GI) 80.54 3.50 81.39 3.43 89.70 2.11 83.88 3.02 

Edge-based image (EI) 81.61 7.35 83.86 4.52 91.15 2.89 85.54 4.92 

Confident region image (CRI) 83.73 2.42 84.91 1.92 91.83 1.13 86.82 1.82 

 

Table 4-7 A summary of average similarity measures of segmentation results 
from 40 sets of 3D-CT data when three standard level-set models are applied into 
three different types of image representations (unit :%) 

Level-set 
Models 

Gray-intensity images Edge-based images Confident region images 

Mean SD Mean SD Mean SD 

RD-GAC 77.83 4.59 85.56 4.32 85.92 1.40 

RD-CV 20.76 0.50 84.54 4.38 20.53 0.99 

DRLSE-E 83.88 3.01 85.54 4.91 86.82 1.82 

 

 



42 

 

 

   

 

 RD-GAC [GI] RD-GAC [EI] RD-GAC [CRI]  

 

   

 

 RD-CV [GI] RD-CV [EI] RD-CV [CRI]  

 

   

 

 DRLSE-E [GI] DRLSE-E [EI] DRLSE-E [CRI]  
 Axial view  

 

   

 

 RD-GAC [GI] RD-GAC [EI] RD-GAC [CRI]  

 

   

 

 RD-CV [GI] RD-CV [EI] RD-CV [CRI]  

 

   

 

 DRLSE-E [GI] DRLSE-E [EI] DRLSE-E [CRI]  
  Coronal view   

Figure 4-4 Some examples of segmentation results in axial and coronal views 
when three acceptable different level-set models are applied to three different 
types of image representations 
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 From comparative results, the confident region image representation possibly 

improved the accuracy of segmentation when the RD-GAC or DRLSE-E model was 

applied to segment the liver volume from gray-intensity images or edge-based 

images. In the case of gray-intensity images, the RD-GAC and DRLSE-E models did 

not well propagate when metal artifacts appeared inside the liver regions. Meanwhile, 

the results of both models in edge-based images presented small leakage regions. 

This problem occurred when a high level of image noise causes some boundaries of 

the liver regions to open. Furthermore, the RD-CV model well extracted liver regions 

from edge-based images. However, it failed to segment liver regions from gray-

intensity and confident region images. In those cases, the given curve moved 

outwards from the boundaries of liver to the mask borders (see Figure 4-4).  

4.4.4 Performance of the proposed level-set method 

In this section, the proposed modified Chan-Vese (MCV) model is applied to three 

different types of image representations. The results are shown in Table 4-8. Next, 

the best result of the proposed level-set method was compared with the best results of 

RD-GAC, RD-CV, and DRLSE-E level-set methods. Furthermore, a modified Chan-

Vese model using gradient image (MCV09 [53]) was included into this comparison.  

 In summary, the MCV09 method formulated the level-set evolution equation as 
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  (4.9) 

where   is a constant. The variable   denotes a given image. Moreover, in this 

comparison, the MCV09 method was integrated into the RD technique to control 

curve evolution. Meanwhile, the initial zero level-set function was constructed by the 

same process as the proposed method for gray-intensity image representation 

(section 3.5.1).  
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 Table 4-9 shows average accuracy of liver-image segmentation after the best 

results of modern level-set methods are compared. The best result was released when 

the proposed level-set method was applied to the confident region images. Further, 

the proposed modified Chan-Vese model gave a better result than the MCV09 

method when both methods were computed under the same conditions of initial zero 

level-set function and gray-intensity images. The result showed improvement around 

5.38% of accuracy. However, a major problem of gray-image representation found in 

the proposed level-set method is a metal artifact (see Figure 4-5). This problem 

causes a premature stop in the curve propagation.  

 

  

 

 RD-MCV09 [GI] RD-MCV [GI]  

 

  

 

 RD-MCV [EI] RD-MCV [CRI]  
 Axial view  

 

  

 

 RD-MCV09 [GI] RD-MCV [GI]  

 

  

 

 RD-MCV [EI] RD-MCV [CRI]  
 Coronal view  

Figure 4-5 An example of segmentations in axial and coronal views when the 
proposed method and a modified Chan-Vese model using gradient image 
(MCV09) [53] are compared 
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Table 4-8 Three similarity measures of segmentation results from 40 sets of 3D-
CT data when the proposed modified Chan-Vese model (MCV) with the reaction-
diffusion (RD) technique is applied to three different types of image 
representations (unit :%)  

Types of Representations 
AVS VOC DSC Average 

Mean SD Mean SD Mean SD Mean SD 

Gray-Intensity image (GI) 78.55 3.95 79.55 3.86 88.56 2.42 82.20 3.41 

Edge-based image (EI) 69.86 4.77 70.65 4.35 82.72 3.05 74.41 4.06 

Confident region image (CRI) 84.21 2.34 85.12 2.00 91.95 1.17 87.09 1.84 

 

Table 4-9 Average accuracy of segmentation results from 40 sets of 3D-CT data 
when several combinations of level-set methods and image representation are 
compared (unit :%) 

Level-set methods Types of Representations Mean SD 

RD-GAC Confident region images (CRI) 85.92 1.39 

RD-CV Edge-based images (EI) 84.54 4.37 

DRLSE-E Confident region images (CRI) 86.82 1.82 

RD-MCV09 Gray-intensity images (GI) 81.71 4.07 

RD-MCV (Proposed) Confident region images (CRI) 87.09 1.84 

4.5 Summary 

The proposed 3D CT liver-image segmentation system was applied to CT images, 

which are acquired from a 4D-CT imaging system. Four issues were investigated in 

this chapter. First, it is possible to use coronal image planes to assist the construction 

of initial zero level-set function. The proposed technique showed higher accuracy 

than the manual-drawing based method. Second, the combination of multilevel edge 

detectors used in the construction of the confident region images (CRI) presented 

good boundary detection. Indeed, this detection seems to be better than using only 

one level of edge detector. Third, the accuracy of liver-segmentation is probably 

improved when the geodesic active contour (RD-GAC) or edge-based level-set 

(DRLSE-E) method is applied to the CRI. Actually, dirty regions appear inside the 

liver regions in the CRI fewer than gray-intensity and edge images. These dirty 

regions also produce gradient information as image noises. Meanwhile, performances 

of both RD-GAC and DRLSE-E methods are dependent on the quality of gradient 

information. Therefore, the RD-GAC and DRLSE-E cannot perform well when they 

are applied to gray-intensity or edge images. In contrast, the CRI cannot enhance the 

accuracy of liver-image segmentation when the curve evolution is managed by the 

Chan-Vese (RD-CV) model. Actually, the RD-CV mainly considers the global 

variation of mean of gray-intensities. In addition, the CRI describes a gray-intensity 
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level of a liver region as a mean of gray-intensities, and the large variation of gray-

intensities normally appears around boundaries of a patient's body regions. 

Consequently, it is difficult to stop curve propagation at liver-region borders. Finally, 

the performance of the proposed modified Chan-Vese (RD-MCV) model was 

evaluated. The proposed RD-MCV uses the signed region function to present strong 

forces of approximate liver regions. Furthermore, the force contributions are not 

computed from all elements in a level-set function space. Meanwhile, the original 

RD-CV model considers all elements in the space. Thus, the proposed RD-MCV 

perhaps improves the original RD-CV model. From experimental results, the 

proposed RD-MCV using the CRI possibly presents the best accuracy of liver-image 

segmentation when it is compared with RD-GAC, RD-CV, DRLSE-E, and RD-MCV09 

[53] methods. However, the proposed method cannot perform well if liver regions 

include large tumor areas. In that case, the proposed method cannot estimate good 

shapes of liver because some parts of liver regions are lost in these large tumor areas.          
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Chapter 5  
Integration of Level-Set and 

Clustering Methods for Liver-Tumor 

Segmentation  

5.1 Introduction 

This chapter introduces integration of level-set and clustering methods for giving an 

example of tumor-region segmentation. It assumes that a liver-segmented image 

contains tumor regions, which are possibly approximated by a clustering result. 

Section 5.2 explains the related methods. Section 5.3 proposes a new combination of 

the modified Chan-Vese model and the clustering method. It is aimed to segment 

tumor regions in a noisy image. Section 5.4 shows segmentation results. 

5.2 Related methods 

One of impressive combinations is an integration of the edge-based level-set method 

[23] and spatial fuzzy C-mean (sFCM) [54] clustering. It is called the FCMLSM 

method [29]. The sFCM clustering is selected to give the approximate region of 

interest. Then, the approximate region is used to construct the initial zero level-set 

function and artificial balloon force in the edge-based level-set method. 

 Actually, the sFCM is a modified method of the fuzzy C-mean (FCM) clustering 

[55]. Thus, the FCM is firstly explained. Each data point is described by a degree of 

membership functions of all given   clusters in a clustering space. Let a set data 

points be            , and the objective function      given by Equation (5.1) 

needs to be minimized. 
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where      is a degree of membership functions of pixel    in the  th cluster centered 

at the    position. The variable     is a weight exponent, and its default value is 

equal to two. The objective function is minimized by using an iteration approach as 

follows. 

Step 1: Randomize a matrix of membership function               where   is 

an iteration index. 

Step 2: Calculate the cluster center    

Step 3: Measure the distances among all data points and all cluster centers 

Step 4: Update a degree of membership function        

Step 5: Check the condition, if                 where   is a constant that is 

used to stop the iteration; otherwise, return to step 2. 

 Next, the sFCM clustering was introduced to improve a performance of the FCM 

clustering when a given image includes image noise. It uses a spatial function      to 

modify the membership function      as follows. 
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 (5.5) 

where        is a square window (e.g. 5x5-pixels window) centered at pixel    in the 

spatial domain. The parameters   and   are used to control the relative contribution 

between the membership function      and the spatial function     . For example, 

if     and    , the result of the modified membership function       will be 

identical to the conventional fuzzy c-means clustering. 

 After applying the sFCM clustering to a given image, each pixel in the given 

image is described by membership functions of all   clusters. Let          be the 

region of interest, and it is described by the membership function of the  th cluster. 

Then, a thresholding technique is applied to the region   , and a binary region is 

presented by        . The variable   is a constant indicating the acceptable 

degree of membership function. Moreover, this binary region is used to construct the 
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initial zero level-set function as                . The variable   is a width of the 

Dirac delta function      . Afterwards, the edge-based level-set method [23] is 

referred from 
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The variables  ,  ,   are constants. The Gaussian function with the standard deviation 

  is denoted by   . Subsequently, the FCMLSM [29] method replaces the constant   

in Equation (5.6) with a dynamic balloon force              . Therefore, the 

level-set evolution equation of the FCMLSM method is  

 
  

  
          

  

    
               

  

    
           (5.9) 

5.3 Integration of modified Chan-Vese and spatial fuzzy C-means 

clustering methods  

If a noisy image is considered, the FCMLSM method may not perform well because it 

is dependent on the gradient information. Moreover, the Chan-Vese (CV) model can 

propagate a given curve without the gradient information, but it is sometimes 

difficult to stop the curve in a local area. Thus, this chapter proposes the integration 

of a modified Chan-Vese (MCV) and the spatial fuzzy C-mean clustering. This 

integration is denoted by the FCMMCV method. 

 First, the original Chan-Vese (CV) model [31] is referred, and its level-set 

evolution equation is  
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where  ,  ,   , and    are constants. The variable   denotes a given image. Next, the 

constant   is replaced by a balloon force                  , where    is the 

Gaussian smooth function with the standard deviation  . The variable    denotes the 

region of interest in a clustering result of the sFCM clustering method at the  th 

cluster. Furthermore, a signed pressure force      function [56] is needed to assist in 

local segmentation, and it is described by  
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Subsequently, the modified Chan-Vese model is formulated by  
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The constant   is used to control the smoothness of the given curve. Next, the 

reaction-diffusion (RD) technique [26] is required to control the curve evolution with 

free re-initialization process. Consequently, the level-set image segmentation is 

performed in the following steps. 

Step 1: Use the binary region of the clustering result at the class   as           

to generate the initial zero level-set function as  

 
       

            
              

  (5.17) 

 where    is a positive constant.  

Step 2: Define the reaction time-step    and compute the reaction term as  

 

                        
  

    
                  (5.18) 

Step 3: Give the diffusion time-step    and calculate the diffusion term   



51 

 

 
                    (5.19) 

Step 4: Repeat step 2 and 3 until the stop condition is satisfied.  

5.4 Experiment and Results 

This study evaluates the performances of three level-set methods. All of them used 

the same results of the spatial fuzzy C-mean clustering to generate the initial zero 

level-set functions. Then, the FCMLSM, Chan-Vese (CV), and the proposed method 

(FCMMCV) were computed. Indeed, the evolution process of the Chan-Vese and the 

proposed methods were controlled by the reaction diffusion technique (RD).   

5.4.1 Qualitative evaluation 

Figure 5-1 shows four examples of tumor-region segmentation when RD-CV, RD-

FCMMCV, and FCMLSM were applied to a mock CT 8-bit image [29] including some 

levels of the Gaussian, speckle, and Poisson noises. It was difficult for the RD-CV to 

extract tumor-regions (dark-gray areas) from the liver-tissue region (a bright-gray 

area). Actually, all results of the RD-CV method presented the boundary between 

liver-tissue and background regions. Meanwhile, the RD-FCMMCV and FCMLSM 

methods possibly distinguished tumor regions from liver-tissue areas. However, in 

the concave and convex areas, segmentation results of the RD-FCMMCV seemed to 

show small difference as indicated by blue arrows. In addition, the RD-FCMMCV 

probably gave the better segmentation result than the FCMLSM when a high level of 

the Gaussian noise was added into the image. Furthermore, after a speckle noise was 

added into the image, the result of the RD-FCMMCV perhaps showed a thin region at 

the in-between two tumor regions as pointed by yellow arrows. Actually, this region 

was thinner than the result of the FCMLSM. Next, the given image was contaminated 

by the Poisson noise. In this experiment, the Poisson-distribution numbers was 

generated by the Knuth's algorithm [57] and mean of distribution was equal to the 

gray-intensity value of each pixel. The segmentation result of the RD-FCMMCV 

slightly differed from the segmentation result of the FCMLSM.   

 Afterwards, the RD-CV, RD-FCMMCV, and FCMLSM methods were applied to a 

synthetic image (see Figure 5-2) including the Gaussian noise (       ). This 

synthetic image consists of four bar regions, and the third bar region from the left 

side is the object of interest. In this result, the RD-CV seemed to present all regions 

when their means of gray-intensities were equal or higher than the mean of gray-
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intensities in the third bar region. Moreover, the third bar region was possibly 

extracted by the RD-FCMMCV and FCMLSM methods. However, some small dirty 

regions and a rough contour were appeared in the result of FCMLSM.  
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Figure 5-1 Five examples of tumor-segmentation results extracted by sFCM, RD-
CV, RD-FCMMCV, and FCMLSM methods after a given image includes some 
image noises (modified from [58])  
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Original image sFCM RD-CV RD-FCMMCV FCMLSM 

Figure 5-2 An example of the third bar region extracted by sFCM, RD-CV, RD-
FCMMCV, and FCMLSM methods [58]  

5.4.2 Quantitative measures 

In this section, different variances    of the Gaussian and speckle noises and 

different maximum-mean      of the Poisson distributions were added into the 

synthetic image. Furthermore, the level of image noise was measured by computing 

the signal-to-noise ratio (SNR) [59]. Then, the dice similarity coefficient (DSC) [52] 

was used to evaluate the accuracy of segmentation and it is described by   

      
      

       
       (5.20) 

where the segmented and reference regions are indicated by   and  , respectively. 

Furthermore, The results are presented in Table 5-1, Table 5-2, and Table 5-3.  

Table 5-1 The DSC values of the third bar region extracted from the synthetic 
images including different levels of the Gaussian noises 

   SNR RD-CV RD-FCMMCV FCMLSM 

0.001 22.13 66.65 99.69 99.62 

0.002 19.10 66.28 99.69 99.56 

0.003 17.36 65.38 99.62 99.47 

0.004 16.09 64.23 99.53 99.25 

0.005 15.06 62.12 99.43 98.52 

0.006 14.37 60.95 99.47 97.88 

0.007 13.66 59.25 99.22 97.67 

0.008 13.10 58.56 99.18 97.08 

0.009 12.58 56.82 98.99 95.99 

0.01 12.07 55.40 98.49 92.96 

0.02 9.29 44.42 95.24 79.60 

0.03 7.76 38.72 93.12 64.26 

0.04 6.81 35.03 62.32 57.00 

0.05 5.93 32.28 21.53 47.21 
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Table 5-2 The DSC values of the third bar region extracted from the synthetic 
images including different levels of the speckle noises 

   SNR RD-CV RD-FCMMCV FCMLSM 

0.01 19.94 66.67 99.56 99.44 

0.02 17.00 66.02 95.77 84.56 

0.03 15.23 61.92 90.03 69.75 

0.04 14.08 54.92 96.53 81.12 

0.05 13.17 50.47 95.23 70.68 

0.06 12.50 49.44 96.53 72.45 

0.07 11.85 47.67 84.78 56.45 

0.08 11.27 45.67 06.65 45.67 

 

Table 5-3 The DSC values of the third bar region extracted from the synthetic 
image including different levels of the Poisson noises 

      SNR RD-CV RD-FCMMCV FCMLSM 

140 18.85 66.67 99.62 99.59 

110 17.44 66.67 99.62 99.62 

80 16.33 66.64 99.66 99.53 

50 15.01 66.46 99.62 99.15 

40 14.20 66.29 99.28 99.05 

30 13.64 66.00 99.31 98.13 

25 13.23 65.81 98.38 96.71 

20 11.65 65.83 96.94 93.72 

15 11.13 65.26 82.87 72.78 

 

The results of RD-CV showed low accuracy because they normally contained the first 

bar region. It includes a mean of gray-intensities that is higher than the third bar 

region. Furthermore, the results of RD-FCMMCV slightly differed from the FCMLSM 

when the Gaussian noises were added into the image and the SNR was higher than 14 

dB. However, the results of RD-FCMMCV seemed to be clearly better than the 

FCMLSM when the SNR was small and it was higher than 7 dB. In addition, the RD-

FCMMCV probably improved around 20% of the accuracy of segmentation result 

from the FCMLSM when the speckle noises were added into the tested image and the 

SNR was in a range of 12 to 17 dB. Moreover, the different results of the RD-

FCMMCV and the FCMLSM were not clearly presented when the tested image 

included the Poisson noises and the SNR was higher than 14dB. However, the 

remaining results showed a gradual drop in the accuracy.   
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5.4.3 Influence of image filtering 

From the results in sections 5.4.1 and 5.4.2, the FCMLSM gives low accuracy of 

segmentation results when some high levels of image noises are added into a given 

image. A simple solution is to apply an image filter before performing the level-set 

evolution process. This experiment selected the median and mean-shift filters [60] to 

examine the influence of image filtering on the result of the FCMLSM and the 

proposed method (RD-FCMMCV). 

 First, the liver-tumor image including the variance of the Gaussian noise at 

        was considered. The segmentation results are shown in Figure 5-3. For the 

FCMLSM, the both of image filters possibly reduce many dirty regions in the liver 

tissue area appeared in Figure 5-1. On the other hand, the results of RD-FCMMCV 

display thin regions in-between two tumor regions as pointed by white arrows.  

    
Median 

filtered image 
sFCM RD-FCMMCV FCMLSM 

    
Mean-shift 

filtered image 
sFCM RD-FCMMCV FCMLSM  

Figure 5-3 An example of tumor-regions segmented by the proposed method 
(RD-FCMMCV) and the FCMLSM when a given image including the Gaussian 

noise (         is filtered by the median and mean-shift filters. 

 Next, the Gaussian noise with the variance         was added to the four bar-

region image. Then, this image was filtered and the third bar-region was extracted. 

The segmentation results are displayed in Figure 5-4. In the results of FCMLSM, the 

third bar region is clearly improved after applying one of two image filters. 

Conversely, a few number of small dirty regions appeared in the results. However, 

from further experiment, these dirty regions are possibly removed by increasing the 

large number of iterations in the evolution process. For the RD-FCMMCV, the results 
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are slightly improved when they are compared with the enhancement in the 

segmentation results of the FCMLSM.  

 
 

   
Add Gaussian 

        
sFCM 

RD-FCMMCV 
DSC = 93.12% 

FCMLSM 
DSC = 64.26% 

    
Median 

filtered image 
sFCM 

RD-FCMMCV 
DSC = 97.41% 

FCMLSM 
DSC = 95.05% 

    
Mean-shift 

filtered image 
sFCM 

RD-FCMMCV 
DSC = 97.18% 

FCMLSM  
DSC = 96.71% 

Figure 5-4 An example of the third bar region extracted by the proposed method 
(RD-FCMMCV) and the FCMLSM when the synthetic image including the 

Gaussian noise (         is filtered by the median and mean-shift filters 

5.5 Summary 

This chapter shows an example of tumor-region segmentation from a liver-

segmented image. The integration of level-set and clustering methods is examined. A 

good point of this integration is released when the result of clustering gives the good 

initial zero level-set function. Further, it is possible to use the clustered region for 

creating force and modifying the Chan-Vese model. From experimental results, the 

integration of the spatial fuzzy c-mean (sFCM) clustering and modified Chan-Vese 

model possibly performs better than the integration of the sFCM clustering and edge-

based level-set method when a given image includes some high levels of image noises. 

This improvement is achieved because the proposed method utilizes the relation of 

mean of gray-intensity between regions inside and outside a given curve. Meanwhile, 

the edge-based level-set method requires good gradient information to propagate the 

curve. In fact, this gradient information is sensitive to image noises. 
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Chapter 6  
Visualization Application 

6.1 Introduction 

This chapter presents an example of liver-image segmentation application in a 

visualization topic. Section 6.2 briefly explains general concepts of visualization. 

Section 6.3 describes design of a simple visualization tool for a ray-casting technique. 

It is used to display a combination of original 3D data and segmentation results. An 

idea of this combination is explained in section 6.4. Section 6.5 illustrates a simple 

correlation between color and liver's displacements to visualize liver's motion.  

6.2 General concepts of visualization 

6.2.1 Multi-planar reconstruction 

Generally, the anatomical structures in volumetric data are captured and displayed by 

cut-planes, which are used as a window to view the data in different locations and 

orientations. Typically, the axial, coronal, and sagittal planes are commonly required 

to visualize anatomical images from the head-to-feet, front-to-back, and left-to-right 

of the human body, respectively (see Figure 6-1).  

 

 

   

 

  Axial Coronal  Sagittal  

Figure 6-1 An example of axial, coronal and sagittal views 

6.2.2 Contour or Surface representation 

The boundaries of a specific organ can be enhanced by extracting contours. The 

marching squares (in 2D) or marching cubes (in 3D) [61] is one of famous algorithms 

giving outlines of anatomical structures. This algorithm outlines a target region from 

matching 16 patterns (see Figure 6-2) of cells (in 2D) or 256 patterns of cubes (in 3D) 

to a specific gray-intensity or a scalar value in each pixel or voxel. In fact, these 

patterns can be reduced by considering equivalent patterns. The pixels or voxels are 

located inside the contour if their gray-intensities or scalar values are greater than 
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this specific value of the contour. Otherwise, the pixels or voxels are positioned 

outside the curve or surface when their values are less than this specific value.  

 

Figure 6-2 Examples of 16 patterns of 2D cells and 15 patterns of cubes represent 
contours and faces in 3D, respectively; the vertices inside the object are 
represented by black dots [62].  

6.2.3 Volume rendering based on a ray-casting technique 

Instead of geometric primitives as line and polygons used in contour or surface 

representations, an accumulation of scalar values in many voxels can convey 

visualization of anatomical structures. These scalar values are possibly considered to 

represent optical properties such as absorption and emission. The basic volume-

rendering algorithm is ray casting, and it is investigated in this section. 

 The ray casting is a combination of scalar values of considered voxels on a given 

ray. This ray is projected from an image plane to a given volume (see Figure 6-3). 

Each voxel normally contains opacity and color values. Fundamentally, the opacity 

value is used to represent a degree of transmitted light after the given ray casts over 

the considered voxel. Therefore, visualization of each pixel on the image plane 

depends on the conversion of the combination of these scalar values.  

 

Figure 6-3 An example of ray casting over some voxels 

3D Data Image plane 

Opacity 

Color 
A conversion function 
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 A simple conversion determines the maximum intensity projection (MIP) value. 

Each pixel on the image plane is equal to the maximum value of all voxels along the 

given ray. However, it is difficult to explain the depth. Alternatively, an accumulation 

of opacity and color values can be calculated by the emission and absorptions model 

[63]. It is approximated by 

 

      

 

   

       

   

   

 (6.1) 

where    is a final displayed value. The displayed value is equal to a combination of 

multiplication between current displayed value and transmitted energy      , 

where   is opacity. If the composite color is computed from back-to-front, its iterative 

formula is 

 
                      (6.2) 

where     is the current composite color and        is the composite color from the last 

position. Indeed, the location index is counted from an observer to a target. Thus, the 

index of the farther position is more than the front location. Moreover, the variable    

denotes opacity at the current position.   

 For example [64], let the farthest voxel contains a green color             and 

opacity       . Further, the front voxel includes a red color             and 

opacity       . Thus, the composite color is                    and          

or 

          
 
 
 
                  

 
 
 
     

    
    
 

   

Similarly, the accumulated opacity is                                    . 

6.3 Design of a simple visualization tool 

6.3.1 Ray casting in the VTK library 

In this study, a simple visualization tool is designed and developed by basing on a 

visualization toolkit (VTK) [65, 62] library. The VTK is an open-source library 

supporting C++, Tcl, Python, and Java languages. It provides different data 

representations such as points, polygons, images, and volumes. A concept of 

implementation is the pipeline. This concept is used to communicate among different 
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modules from data source to a displayed window. Fundamentally, a simple pipeline is 

formed as shown in Figure 6-4. It starts from sources or input data. Then, the data is 

modified by one or several filters. It is an optional module such as an interpolation 

operation. Next, a mapper module is required to connect between data processing 

and rendering. Subsequently, an actor is used to define appearance properties such as 

colors and positions. It is added to a renderer module in a window or a screen. 

Indeed, the renderer is needed to control a process of transforming geometry, light, 

and a camera view into an image scene.     

  Figure 6-4 An example of a simple pipeline for using the VTK library 

 In the VTK library, the ray casting with the composite function is available in a 

simple pipeline as shown in Figure 6-5. The vtkVolumeRayCastMapper class is called 

to connect between a volumetric image-data and the actor (vtkVolume) for a 

rendering process. Meanwhile, the vtkVolumeRayCastCompositeFunction class is 

used to compute the composition of voxel values, which are stored in the 

vtkVolumeProperty class. Further, a user needs to design color and opacity tables for 

setting the properties of the rendered volume.  

 

Figure 6-5 An example of a volume rendering pipeline in the VTK library 

6.3.2 A concept of class design 

To study correlation among gray-intensities, opacity, and color transfer functions, a 

conceptual class diagram is simply designed as illustrated in Figure 6-6. 

 

Image Data vtkVolumeRayCastMapper 

vtkVolumRayCastCompositeFunction 

A Color Table 

vtkVolume 

vtkVolumeProperty 

An Opacity Table 

Source Filter Mapper Renderer Window Actor 
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Figure 6-6 An example of a conceptual class diagram designed for a simple 
visualization tool 

 In this design, each graphic user interface (GUI) class is associated by the action 

class. It starts from the main GUI class that receives the command from a user. Then, 

it conveys one of two actions. First, the read-data class is used to import data in a raw 

format by using the vtkVolume16Reader class. It requires the raw configuration class 

to describe data dimensions and spaces. In addition, it is possible to import more 

than one 3D volume (it is denoted by an asterisk * symbol). Furthermore, the relation 

between the read-data class and the raw configuration class should be an aggregation 

type. However, the vtkVolume16Reader class should be destroyed after a window of 

the raw configuration class is closed. Meanwhile, 3D data is allocated in the 

temporary memory. 

 Second, the visualization in the action class type is used to call a volume-

rendering module. After the volume-rendering module is preferred, the VR main 

class displays a ray-casting's result in the 3D window. Further, the 3D window class 

supports adjustment in the volume properties and updates them into the ray-casting 

result. For 4D volume rendering, however, this study considers relation between the 

color transfer function and motion information. This relation is used to define the 
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volume properties before rendering. Thus, it is assumed that memory and speed of 

computation are not critical problems.       

6.3.3 Opacity and color transfer functions for the volume rendering 

This section explains opacity and color transfer functions for indicating appearance of 

a volume data. These functions are simply converted from gray-intensity values. The 

opacity values are in a range of zero to one for controlling a degree of appearance. If 

the opacity is zero, the considered voxel will be disappeared. Moreover, they are 

usually relied on physical properties. For example, if a range of gray-intensities 

presents hard tissues in the standard CT number, opacity values should be high. 

 Figure 6-7 shows an example of adjustments in opacity and color values over a 

full range of gray-intensities. The blue arrows indicate a change of opacity values and 

red arrows show the color adjustment.      

 

 

   

 

  

 

 

  

 

Figure 6-7 An example of design of opacity and color adjustments 
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Actually, this graphic user interface (GUI) permits a user to control the opacities and 

colors of sampling points. Thus, it is not necessary to identify opacity and color 

transfer functions for every level of gray-intensities.  

6.4 Integration of original 3D data and segmentation results 

6.4.1 A combination of original 3D data and a liver-segmented volume 

Two simple combination methods are examined in this section. First, a direct-

combination method is given by 

 
                     (6.3) 

where      is an original volume,      is the binary liver-volume, and              

is a constant. The variable   is a voxel coordinate. Then, the combined volume is 

refined by the Gaussian smooth filter to reduce the aliasing effect. Second, an indirect 

combination method begins with a separation between liver volume and the others. 

Next, each volume is multiplied by the original volume     . This combination is 

defined by 

 
               

                   
             (6.4) 

where       denotes a compliment volume of the liver volume     . Let       
    be a 

normalization operation, and gray-intensities of image input are normalized into a 

range of    to   . This study defines     ,        , and        . Afterwards, the 

combined volume is smoothed by the Gaussian smooth filter.  

 Next, full ranges of gray-intensities in both combination methods are normalized 

into a range of zero to 5000 gray-level. This normalization is required to compare the 

ray-casting's results of them.  

 Figure 6-8 shows enhancement of liver-visualization when a liver-segmented 

volume is combined with the original gray-intensity images. The opacity transfer 

functions (magenta line graphs) and color transfer functions (red, green, blue line 

graphs) are plotted over a histogram (gray line graphs). The opacity and color 

transfer functions in the first, second, and third rows are applied to original image 

data,      , and      , respectively.  

 In addition, (see blue arrows in Figure 6-8) the result of the direct combination 

method       presented distribution of gray-intensities smaller than the result of the 

indirect combination method      . However, these results showed insignificant 

difference. 
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Figure 6-8 Nine examples of the ray casting's results on original volumetric data, 
and combinations of liver-segmented volume and original data in       and       
methods   
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 However, the indirect combination method seems to be a better choice than the 

direct combination method because it is possible to expand the distribution of gray-

intensities. Consequently, it is convenient to adjust opacity and color transfer 

functions under this expansion. In contrast, this adjustment cannot clearly display 

remaining anatomical structures.  

6.4.2 K-Means clustering for multi-region segmentation 

This section shows an example of improvement in bone visualization by using K-

means (KM) clustering. 

 The KM clustering [66] is normally introduced to divide data points   

          into   clusters. It supports multi-dimensional vectors and gives high 

efficiency of computation. The purpose of this algorithm is to minimize the objective 

function of  

 

                  

 

   

 

   

 (6.5) 

 
      

            
 

                   

           

  (6.6) 

 
   

 

  
  

    

 
(6.7) 

where     is a distance measure. The variables    and    denote the center and the 

number of data points in the cluster    indexed by  . This algorithm can be 

summarized as follows. 

Step 1: Initial cluster center           is randomly sampled from the data points  . 

Step 2: Measure the distances among all data points and all cluster centers 

Step 3: Label cluster index     to each data point in accordance with the shortest 

distance. 

Step 4: Determine new cluster centers from all member points in the same cluster. 

Step 5: Repeat step 2 to 4 until the cluster labels do not change. 
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Figure 6-9 A diagram of the proposed multiple-regions segmentation [67] 

 To segment multi-regions in CT images, this study utilizes a simple approach as 

shown in Figure 6-9. It performs an iteration process under a hierarchical concept. It 

starts from the feature extraction, and each voxel is described by two components. 

The first component is collected from original gray-intensity image      , where   is a 

voxel coordinate. Meanwhile, the second component is acquired by applying a 3x3x3 

median filter      . If a 3D volume includes   voxels, feature vector   is formed as 

    
                (6.8) 

 
                    (6.9) 

Next, a clustering process is performed under a hierarchical concept. In each level of 

a hierarchical model, all remaining feature vectors are subdivided into two 

clusters    . Let   is the number of remaining feature vectors. Indeed,     at the 

first clustering process. Further, if initial cluster centers are randomly defined, 

clustering results may be changed. To avoid the change in clustering result, initial 

cluster centers    are possibly obtained by  
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                                                    (6.10) 

 
                  (6.11) 

             (6.12) 

where         is a cluster index. Give         is a mean operation. Then, all feature 

vectors in each group are transformed into a binary region   . If the clusters is 

denoted by   , the region will be created by 

 
       

            
           

  (6.13) 

After two regions are generated, one of them is identified as an object-region and the 

other is a background region. To indicate the object region, two parameters are 

determined. The first parameter    is the mean of gray-intensities in each region. It 

can be obtained after multiplying the binary region     and original gray-intensities 

from the given images. Further, a threshold       is used to limit a range of gray-

intensities in the same type of materials or tissues. On the other hand, the second 

parameter    is the number of white pixels in each binary region   . Moreover, a 

threshold       is used to define size of small region that should not be further 

extracted in the next iteration.  

 Indeed, parameters                 and       are used to produce some conditions 

for indicating the object-region and stopping the iteration process. These conditions 

are shown in Algorithm 6-1 [67], and there are three ideas behind this algorithm. 

First, the difference in means of gray-intensities between two clustered regions 

should be large adequately to verify that both clustered regions are not the same type 

of materials or tissues. Second, if a considered region is very small or it possibly 

includes one type of material, it is not necessary to further subdivide the considered 

region. Third, a considered region will be the object region if its size is large 

adequately and its mean of gray-intensities is higher than the other region.  
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Algorithm 6-1: Object-Region Identification and Stop Conditions 

Input   ,   ,   ,   ,   ,   ,      , and       

Output         object region      , background region     , and a stop flag         

   

 If                                 

  If         
   If                    

              and        

   Else If                    

              and        

   Else    

                 and           

   End If    
  Else     
   If                    

              and        

   Else if                    

              and        

   Else    

                 and           

   End If    
  End If    
 Else     

             and           

 End If  
   

 

However, if the stop conditions are satisfied, both regions are merged and integrated 

into a final clustering result. Otherwise, if the stop conditions are not verified, all 

feature vectors in the object region will be sent backwards to the clustering process. 

Simultaneously, the background region is combined with the final clustering result. 

After the final clustering result is released, each region in this result is labeled by 

 
        

 
             (6.14) 

where                    is a set of estimated means of gray-intensities in 

background, fat, soft tissue, and hard tissue. The variable           is a label related 

to the index of the set  , and   is a mean of gray-intensities inside a region of the     

cluster. Thus, all labeled regions are presented as subsequent indexes of background, 

fat, soft tissue, and hard tissue, which are denoted by                           

         . 
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6.4.3 Integration of original 3D data, a clustering result, and a liver-volume 

All labeled regions in the clustering result      and a binary liver volume      are 

simply combined with the original 3D data as formed in Equation (6.15). The variable 

  denotes the voxel coordinate. This combination begins with multiplication between 

the clustering result and an original volume      in each labeled region. Then, the 

result of each multiplication is normalized into the specific range of gray-intensities. 

Similarly, the binary liver-volume is multiplied by the original volume      before the 

normalization is performed by giving                                      . 

                
                     

                     
                (6.15) 

         
                      

             

Figure 6-10 illustrates six examples of ray-casting's results when three types of color 

transfer functions   and six types of opacity transfer functions   are applied to the 

combined images         . The clustering results can help to enhance visualization of 

sternum, costal cartilages, and ribs. Further, surfaces of kidneys and some parts of 

blood vessels are possibly enhanced. Figure 6-10 (d)-(f) presents a little influence on 

ray-casting's result when the Gaussian function is applied to the opacity transfer 

function in each interval of gray-intensities. The Gaussian helps to reduce 

accumulation of opacity values among different classes. In fact, this effect is not 

significantly presented if a user can freely adjust opacity values over a full range of 

gray-intensities. However, the free adjustment on both opacity and color transfer 

functions may be a tedious process for a user. 
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Figure 6-10 Six examples of ray casting results after combining original 3D CT 
data, clustering result, and liver-segmented volume; let   and   denote opacity 
and color transfer functions. 
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6.5 Visualization of liver's motion 

Fundamentally, a 4D CT data set contains a series of different 3D CT data sets. In this 

study, 10 different sets of 3D CT data           are collected from a patient, and they 

are acquired in different phases of a breathing cycle. Thus, it is possible to visualize 

liver's motion by giving correlation between color transfer function and displacement 

parameters. This idea is explained in this section. 

 First, the displacements in three axes of a Euclidean space are obtained by using 

a rigid image registration. The basic framework of image registration based on the 

insight toolkit (ITK) [68] library is referred. This framework is shown in Figure 6-11.  

 

Figure 6-11 A basic image-registration framework [68] 

Let the zero phase of a breathing cycle    be the fixed image. Meanwhile, remaining 

data sets           are defined as moving images. The target is to transform each 

data in remaining data sets to the zero phase   . Further, the linear interpolation is 

required to evaluate pixel value at non-grid locations after applying transform 

parameters to the moving image. To validate accuracy of image registration, mean of 

square differences (MS) is used as a metric component. 

 

        
 

 
        

 

 

   

 (6.16) 

where    and    denote two comparative images indexed by pixel coordinate  . In 

addition, this similarity metric is used to be an indicator for the optimizer 

component. This study utilizes the gradient descent to perform optimization for 

giving optimal parameters of the transform.   

  After every moving-image is transformed by the rigid image registration, 

translation parameters in x, y, and z-axes are presented. Actually, these translation 
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parameters describe displacements of the liver volume from    to   , where   

        (see Figure 6-12 ). 

  

 

 

 

Figure 6-12 Three line graphs of displacements in x, y, and z-axes 

 Subsequently, the color transfer function is designed to explain two properties. 

The first property is to indicate the major direction of the liver's displacements. This 

property is simply defined by using B, G, and R color components for presenting 

translations in x, y, and z-axes, respectively. For example, if the displacement mainly 

appears in x-axis, the liver volume will be displayed in the blue color-component. 

Thus, let           be an index of the color set           and translation set   

          . Thus, absolute values of translations are used to indicate the presented 

color-component    by indexing as 

 

           
         

          (6.17) 

 Next, the second property is to describe relation of displacement in the major 

displacement axis. Let     ,     , and   be maximum, minimum, and current values 

of absolute displacement. Then, a color component    is represented in a range of 

zero to one      . Therefore, the final color    of the liver volume is   

 
   

      

         
   (6.18) 

From Equation (6.18), a liver volume will be presented in the brightest color if the 

absolute displacement is the maximum. An example of the visualization is shown in 

Figure 6-13. 
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Figure 6-13 An example of correlation between liver motion and color transfer 
function 

6.6 Summary 

This chapter uses a ray-casting technique to demonstrate an example of liver-image 

segmentation application. First, the liver-segmented volume is integrated into the 

original 3D data before rendering. Next, the K-mean clustering is selected to show an 

example of multi-regions segmentation. Then, the clustering result is combined with 

the original 3D data and the liver-segmented volume. Actually, segmentation results 

are used to separate ranges of gray-intensities among liver-segmented volume, 

clustering result, and original 3D data. This separation helps a user to control opacity 

and color transfer functions. Thus, the combination of an original 3D data and 

segmentation results possibly enhance the visualization of anatomical structures. 

Lastly, the correlation between the color transfer function and the volume 

displacements is utilized to visualize liver's motion. However, this motion cannot be 

well visualized when the displacement value is small.    
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Chapter 7  
Conclusion 

This thesis consists of two main parts. The first part proposes the liver-image 

segmentation system based on a level-set method. It is aimed to segment a liver 

volume from 3D CT images. The proposed system contains three main modules. 

 The first module is utilized to transform a gray-intensity image into edge-image 

or confident region image (CRI) representation. Actually, the CRI representation is 

proposed to describe approximate liver-regions as homogeneous regions. 

Furthermore, good boundaries of anatomical structures are obtained by a 

combination of edge information.  

 The second module is created to perform a two-resolution level-set image 

segmentation approach. It consists of two main components. The first component 

conducts the initialization process for generating the initial zero level-set function. 

The second component computes the level-set evolution. This evolution is dependent 

on the speed or energy function, and this study proposes the modified Chan-Vese 

(MCV) model. Lastly, the segmentation results are refined in the last module. 

 The proposed system was applied to CT images acquired from four patients by a 

4D-CT imaging system. Two main experiments were considered. First, influences of 

gray-intensity, edge, and confident region images were compared when the geodesic 

active contour (GAC), edge-based, and Chan-Vese (CV) methods were applied to 

control the level-set evolution. From experimental results, the use of confident region 

images possibly improves segmentation results from using gray-intensity or edge 

images. This improvement is occurred if the GAC or edge-based level-set method is 

utilized to propagate a given curve. Second, a performance of the proposed level-set 

method was investigated in a comparative assessment. Experimental results show 

that the use of confident region images and the proposed level-set method possibly 

outperforms other pairs.           

 For the second part, the results of liver-image segmentation are utilized to 

demonstrate two related applications. The first application is liver-tumor 

segmentation. This study proposes integration of modified Chan-Vese and spatial 

fuzzy C-mean clustering methods to segment tumor-regions in a noisy image. This 

study assumes the liver-segmented region contains tumor regions, and these tumor 

regions are possibly estimated by the clustering result. The clustering result is used to 
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create the initial zero level-set function and modify the Chan-Vese method. The 

proposed method was applied to an eight-bit mock liver-tumor image. From 

experimental results, if a given image includes some levels of image noises, the 

proposed level-set method possibly gives better segmentation result than the 

integration of an edge-base level-set model and a clustering method. 

 In the second application, the liver-segmented volume is used to demonstrate an 

example of enhancement in visualization application. In this application, the 

segmentation result is combined with the original 3D data before applying the ray-

casting technique. This combination possibly improves visualization of anatomical 

structures. Furthermore, it is possible to control appearance of the segmented volume 

by adjusting opacity and color transfer functions. In addition, this study uses the 

color transfer function to visualize liver's motion when the 4D volume rendering is 

considered. The color of the liver volume is changed in accordance with an axis of the 

maximum displacement. 

 In this thesis, several interesting research topics will be possibly extended and 

investigated in the future. For example, creation of initial zero level-set function in 

the level-set image segmentation should be more simplified. Moreover, medical 

image segmentation in other organs, such as brain and heart, is also an impressive 

and challenging topic. In addition, 4D visualization of motion analysis possibly gives 

useful information for diagnosis.  
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