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A Robust Visual-Feature-Extraction Method in Public Environment

by Gangchen Hua

In this study we describe a new feature extracting method that can extract robust fea-

tures from a sequence of images and also performs satisfactorily in a highly dynamic

environment. This method is based on the geometric structure of matched local feature

points. When compared with other previous methods, the proposed method is more ac-

curate in appearance-only simultaneous localization and mapping (SLAM). When com-

pared to position-invariant robust features[1], the proposed method is more suitable for

low-cost, single conventional-lens cameras with narrow fields-of-view.

We tested our method in an outdoor environment at Shibuya station. We captured these

images by using a conventional hand-held, single-lens video camera. These environments

of experiments are public environments without any planned landmarks. The results

show that the proposed method can accurately obtain matches for two visual-feature

sets, and using the proposed method, stable and accurate appearance-only SLAM can

be achieved in public dynamic environments.

In chapter 6, we show the proposed method based hybrid SLAM and visual odometry

also work better than other previous methods in public dynamic environments.
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Simultaneous localization and mapping (SLAM) is widely used to generate maps for

localization or autonomous robotic navigation.

Appearance-only SLAM is a type of low-cost solution. Moreover, SLAM based on visual

features has abundant information that can be used for matching and recognition.

There are two kinds of visual features, including local visual features and global visual

features. Global visual features ([2]etc.) extract one feature for each image and are

used for vision-based generic recognition (object classification, scene classification etc.)

generally. Typical local visual features extract multiple feature points at each image’s

multiple interesting locations. Local visual features based solutions are widely used for

vision-based specific recognition (robotic navigation, SLAM etc.). Because the vision-

based SLAM is a kind of specific recognition, we have to use the local visual feature.

scale-invariant Feature Transform (SIFT)[3] and Speeded Up Robust Features(SURF)[4]

are typical local visual features.

SIFT calculates scale-invariant features at interesting locations, these features are 128-

dimension vectors. The feature matching and indexing process uses a modification of

the k-d tree algorithm called the Best-bin-first[5] search method that can identify the

nearest neighbors with high probability using only a limited amount of computation.

SURF is similar to SIFT, however, for faster processing SURF’s feature is 64-dimension.

The proposed method uses SURF to track feature points.

M. Cummins et al. [6] proposed a rapid method based on the probabilistic bail-out con-

dition for appearance-only SLAM. It is called FAB-MAP. An offline dictionary need to

be generated before running, so FAB-MAP is not a complete online incremental solution.

FAB-MAP uses SURF as local visual feature. F However, the appearance of objects in

the actual world is always dynamic. Many appearance-only SLAM methods are based

on the hypothesized static environment. These methods use SIFT[3] or SURF[4]. These

local-visual features do not have a strong influence on moving objects such as walking

humans in cafeterias, stations, or shopping malls.

For appearance-only SLAM, the visual features’ robustness and the effectiveness of the

matching are important.

A. Kawewong et al.[1] proposed a method that tracks robust features in a sequence of im-

ages, called position-invariant robust features (PIRF). PIRF extracts common features

by referring to past images. So it is more robust than original SIFT or SURF in dy-

namic environments. In addition, A. Kawewong et al. proposed two online-incremental-

appearance-only methods for SLAM PIRF-nav[7] and PIRF-nav2.0[8] on the basis of [1].

The methods in PIRF-nav[7] and PIRF-nav2.0[8] perform better than [6] in dynamic
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environments. Besides, [7] and [8] are fully online incremental methods. Fig. 1.1 shows

the basic algorithm of PIRF extraction.
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Figure 1.1: Basic algorithm of PIRF extraction [1]: a,b,c ... are visual features(SIFT
or SURF) of each image. PIRF [1] extracts current image’s robust features by referring
to past images. Only common features are extracted. In this figure, current image It’s

PIRFs are a and p.
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However, [7] is based on SIFT ,[6] and [8] are based on SURF. Because they match and

index features only on basis of n-dimensional nearest neighbors , they are called pure

bag-of-words (BoW) methods.

Fig. 1.2 shows a disadvantage of previous pure BoW SLAM methods. Because SIFT or

SURF, so in certain situations, BoW SLAM methods are not sufficiently robust.
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Figure 1.2: Disadvantage of pure BoW methods: Ia and Ib are images photographed
at almost the same location. a↔ a′, b↔ b′, c↔ c′ and d↔ d′ are local feature points’
matches betweens two places. All correct matches’ links should be approximatively
horizontal. a ↔ a′, b ↔ b′ and c ↔ c′ are correct matches, d ↔ d′ is incorrect.

Although, pure BoW methods can not distinguish them.
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To avoid this problem, we propose a method called Incremental Center of Gravity Match-

ing (ICGM) that uses relative geometric structure of local feature points to track robust

features in a sequence of images. Fig. 1.3 shows the ICGM’s basic algorithm to dis-

tinguish incorrect matches and correct matches. Similar to PIRF, we propose a SLAM

method that extracts robust features by referring to past image (It−1) on the basis of

ICGM. It is called single-directional ICGM (Fig. 4.2). It works better than PIRF.

Moreover, because of the reasons described in 2.1.3 and 2.1.4. PIRF as well as single-

directional ICGM always causes significant loss of features. So we also proposed a

method called double-directional ICGM (Fig. 4.3). Double-directional ICGM extracts

robust features not only by referring to past image (It−1) but also by referring to future

image (It+1).
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Figure 1.3: Basic algorithm of ICGM: Similar to Fig. 1.2, a ↔ a′, b ↔ b′, c ↔ c′

,d ↔ d′ and e ↔ e′ are local feature points matched by Best-bin-first[5]. However,
d ↔ d′ is incorrect. Assuming that the algorithm has already known that a ↔ a′,
b ↔ b′, c ↔ c′ are correct, and the algorithm attempts to calculate reliabilities of
d ↔ d′ and e ↔ e′. o is the center of gravity of 4abc, o’ is the center of gravity of
4a′b′c′. ~oe ≈ ~o′e′, meanwhile, ~od 6= ~o′d′. ICGM calculates feature points’ matches’
reliability on the basis of these vectors’ relationship. Because ~oe ≈ ~o′e′, the match
e ↔ e′’s reliability is high. ~od 6= ~o′d′, so the match d ↔ d′’s reliability is low. ICGM

avoids matches with low reliability. So ICGM removes d↔ d′ and keeps e↔ e′.



Chapter 1. INTRODUCTION 9

Because of increasing of features, the double-directional ICGM’s performance is the best.

However, the double-directional ICGM needs the image of ”future (It+1)”, so double-

directional ICGM causes delay. In the following sections, we would like to discuss this

in detail.

Besides, single-directional ICGM and double-directional ICGM are online fully incre-

mental solutions.



Chapter 2

SLAMs

There are many kinds of SLAMs(simultaneous localization and mapping). Because

Bag-of-Words based SLAMs are fast and accurate, in this chapter, at first bag-of-words

approaches are introduced. Then appearance-only and hybrid SLAMs are introduced.

10
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2.1 Bag-of-Words Approaches

Bag-of-Words’s concept is the same as text analysis. Bag-of-Words approaches creat

dictionaries as bags of unique keywords. Fig 2.1 shows the bag of words model in

documents.

Figure 2.1: BoW model in documents.

The idea is similar in computer vision. In computer vision, images are represented as

bags of visual words. Visual words are described by descriptors. Fig 2.2 shows the bag

of words model for computer vision.

Figure 2.2: BoW model in images.
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BoW is used for object or scene recognition. By constructing dictionaries objects or

scenes are discribed as histograms of the frequency words that are in the images. Fig.

2.3 shows the concept.

In image processing, scale and rotation invariant features[3][4] are used.

Dictionary without ordering of the words is constructed after descriptors are extracted.

Matching

Objects

Dictionary

Figure 2.3: BoW: Object are representing as histograms of words occurrences.

2.2 Appearance-only SLAMs

Appearance-only SLAMs are metric SLAMs.

Appearance-only SLAMs means all localization are achieved by image feature. Appearance-

only SLAMs do not calculate accurate trajectory of cameras. So they can not localize

the camera in global coordinates accurately. They are not suitble for robotic SLAMs,

but they are basis of hybrid robotic SLAMs.

Torralba et al. [9] porposed a method for location recognition by using Gaussian Mixed

Model.

Lazebnik et al. [10] porposed a method to cluster SIFT features on the basis of k-means

algorithm.

Cummins et al. [6] proposed a BoW method into the Bayesian probabilistic framework,

[6] works well in the localization.
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In 2008, Angeli et al. [11] proposed fast and incremental BoW. It is a incremental

method, the systmen do not need to creat a off-line dictionary. [11] incrementally collects

new words while localizing places.

Later, Kawewong,A. et al. [12][7][1][13] proposed a SLAM method based on SIFT called

PIRF-nav which is robust against appearance’s changing of environment. Referring to

[12], it works better than other methods.

[12] is a online and incremental method. But it dose not create a BoW dictionary, this

causes redundancy matches. So [12] is slower than BoW methods([11],[6]).

In 2011, Tongprasit,N. and Kawewong,A.[8][14][15] proposed a faster method called

PIRF-nav2.0. PIRF-nav2.0 is based on SURF. It creates incremental Bow dictionary to

recognize places. It is 3 times faster than [12]. In addition it is as accurate as [12]. Fig.

2.4 shows the [8]’s matching process with incremental dictionary.

Figure 2.4: [8]’s matching process with incremental dictionary. In this occasion,
location t matched 2 features with location 3, matched 1 features with location 4. In
the current location Lt, the system finds matching features in Dic and puts the index
numbers into Appeart. Then the likelihood between images can be calculated. New

words of Lt are inserted into the Dic incrementally.

2.3 Hybrid SLAMs

Hybrid SLAMs are combined by metric SLAMs and topological SLAMs. Hybrid SLAMs

use some kinds of odometry to calculate camera trajectories. Hybrid maps are estab-

lished based on learned metric features and trajectories. Robot’s accurate location in

the map can be calculate based on hybrid map. So hybrid vision based SLAMs are very

suitable for accurate robotic navigations.
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In 2005, Joan Sol et al. [16] elaborated that the (SLAM) is one of the fundamental ones

in mobile robotics. It concerns the incremental construction of an environment model

from the fusion of sensory data (laser range finder, vision,...) and proprioceptive data

acquired by an inertial measurement unit or by odometry. Sensory data are processed

to extract features.

Pfingsthorn, Max et al. [17] won the Best Mapping Award in the RoboCup Rescue Vir-

tual Robots competition in 2006 by a hybrid SLAM method. This method is combining

the strengths of topological maps and occupancy grids. This method maintains a graph

with sensor observations stored in vertices and pose differences including uncertainty

information stored in edges. Through its graph structure, updates are local and can be

efficiently communicated to peers. The graph links represent known traversable space,

and facilitate tasks like path planning.

Blanco, J. et al .[18] poposed a approach that is based on the reconstruction of the robot

path in a hybrid discrete-continuous state space, which naturally combines vision and

topological maps.

But dynamic environment is a big challenge of robotic hybrid SLAMs. Morioka et al.[19]

proposed a method called 3D-PIRF based on [1] and [7]. This method is combining

omni-vision and tire odometry. It localizes the robot by 8 points algorithm[20] based on

matched features and odometry.

Fig. 2.5 shows that in [19], the trajectory’s errors are accumulated gradually. [19]

detecte loop-closure by PIRF, and correct the trajectory.

2.4 Summary

BoW based PIRF-nav2.0[8] is fast and accurate.

Because it match and index features only on basis of n-dimensional nearest neighbors,

it is called pure bag-of-words (BoW) methods. Because of the reason described in Fig.

1.2, PIRF-nav2.0[8] is hard to improve the performance anymore.

In addition, [19]’s hybrid map can work in dynamic environments. However, because of

the same reason described in Fig. 1.2, its loop closure detected ratio are not satisfied.

It is based on PIRF[7], so it is slow.

My proposed method is intend to improve appearance-only and hybrid SLAM’s perfor-

mance.
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Figure 2.5: Trajectory calculated from only odometry in [19]. Errors are accumulated
gradually.
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Figure 2.6: Trajectory learned using [19]. The trajectory was modified.



Chapter 3

Image Features

Image feature’s robustness is critical to vision based SLAMs. In this Chapter, I introduce

3 kinds of image features, including Scale invariant feature transform(SIFT), Speed Up

Robust Features(SURF) and Position Invariant Feature(PIRF).

SIFT and SURF are scale and rotation invariant features. PIRF is a kind of robust

feature for SLAM in dynamic environment.

17
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3.1 Scale invariant feature transform(SIFT)

Scale invariant feature transform(SIFT)[3] is a computer vision algorithm, it is used to

detect and describe the local features of image, it seeks extreme point in the space scale,

and extract its scale and rotation invariant descriptor. The algorithm is proposed by

David Lowe in 1999.

Its application areas include object recognition, perception and robot map navigation,

image stitching, 3d modeling, gesture recognition, image tracking etc.

SIFT is robust to light, noise and small angle change. Because of its robustness, SIFT

descriptor can match with large database correctly. SIFT feature based object detection

rate is quite high. Because SIFT features’ information is plenty, SIFT is suitable for

match in large databases. Thus, there are many kinds of BoW SLAMs based on SIFT.

Lowe’s classic SIFT algorithm is decomposed into the following four steps:

1. Detect extreme points in scale space: search images of all scales. By using gaussian

function to identify scale and rotation invariant points of interest.

2. Key point positioning: on each candidate location, uses a repeated interpolation

algorithm to determine the location. The choices of key points based on each candidate

locations’ stability.

3. Direction determination : calculate key points neighborhood’s gradient direction.

Determinate main direction of key points. By determining main direction, key points

can be described with rotation invariant characteristic.

4. Key point description: create descriptions of key points based on there neighborhood’s

gradient direction.

3.1.1 Detect extreme points in scale space

SIFT algorithm is look for key points in the different scales, and scale space need to use

the gaussian blur, Lindeberg et has proved the gaussian convolution kernels is the only

reasonable transform kernels for scale space.

Scale space was presented by Iijima in 1962 initially, later Lindeberg[21][22] Blanco, J.

L. [23] Salden, Alfons H.[24]Mikolajczyk, K. et al.[25] Wang, M. et al. [26] promoted

gradually, scale space is used widely in computer vision field.

Scale space theory’s basic idea is: introduce a scale parameter to the image information

processing model, by changing scale parameter a continuously under the multi-scale
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space, main edges of scale space’s sequences are extracted, and use main edges as features

of image. On the bases of these edges, scale invariant features are extracted.

Scale space is implemented by gaussian pyramid, gaussian pyramid building is divided

into two parts:

1. Blur the image by different scales of gaussian filter.

2. Down sample the image.

The 2D gaussian filter is:

G(x, y, σ) =
1√

2πσ2
e−

(x−m/2)2+(y−n/2)2

2σ2 (3.1)

Refers to the image pyramid model, the original image is down sampled constantly from

big to small. The original image is first layer of the pyramid, new images of down

sampling are new layers of the pyramid, a pyramid has n layers:

Figure 3.1: SIFT pyramid[3].

A image’s scale space is defined as convolution between original image and different

gaussian filters:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (3.2)
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* means convolution operation.

Figure 3.2: 2D gaussian filter.

with edge

Original image

Figure 3.3: Images of gaussian blur with different σ.

Points of interest are extracted difference of gaussian(DoG) preliminary.

DoG is calculated by the following formula:

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y)

= L(x, y, kσ)− L(x, y, σ) (3.3)
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Figure 3.4: DoG calculation[3].

Key point is composed of the local extreme value point of the DoG. In order to find DoG

extreme points, each pixel point compared to and all of its adjacent points, to test if its

value is the highest or lowest. As shown in Fig. 3.5, to ensure that the extreme value

is robust, a point must compare with adjacent points and adjacent scales corresponding

points. The total amount is 26.

3.1.2 Key point positioning

Although extreme points are extracted difference of gaussian(DoG) preliminary. As

shown in Fig. 3.6, not all detected extreme points are real extreme points. More

accurate locations of points of interest is extracted based on a repeated interpolation

algorithm.

To improve the robustness of extreme points, we must use a curve to fit the DoGs.

GoG’s taylor expansion is:

D(X) = D +
∂DT

∂X
+

1

2
XT ∂

2D

∂X2
X (3.4)
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Figure 3.5: Sift[3] feature detection based on 26 points.

Real extreme points

Detected extreme points

Figure 3.6: Some detected extreme points are not real extreme points[3].

Where X = (x, y, σ)T . Derivate and let equation equal to zero, offset of detected extreme

point is:

X̂ = −∂
2D−1

∂X2

∂D

∂X
(3.5)

X̂ means offset between detected extreme point and real extreme point. When X̂ > 0.5,

the interpolation has been shifted to the center of its neighboring points. So current
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extreme point’s location must be changed to the new location. Then repeatedly interpo-

late in the new locations until convergence. Lowe[3] suggested that interpolation should

be repeated 5 times.

Besides, DOG operator will produce strong edge response. To eliminate the unstable

edge response, calculate points of interest’s Hessian matrix, the Hessian matrix H[27][28]

is:

H =

[
Dxx Dxy

Dxy Dyy

]
(3.6)

α and β are eigenvalues of H, α and β representatives x and y’s gradient.

Tr(H) = Dxx +Dyy = α+ β

Det(H) = DxxDyy −D2
xy = α+ β (3.7)

Assuming that α is larger eigenvalue, and β is smaller eigenvalues. Let α = rβ , then

Tr(H)2

Det(H)
=

(α+ β)2

αβ
=

(rβ + β)2

rβ2
=

(r + 1)2

r
(3.8)

D’s curvature is proportional to H’s eigenvalue, when α = β the formula’s value is the

smallest. Meanwhile, if the formula’s value is large, α and β’s difference is large. In

edge’s condition, gradient values in a certain direction is large and in the other direction

the gradient value is small. So in order to avoid point on edge, the formula’s value must

be lower than a threshold.

Tr(H)2

Det(H)
<

(r + 1)2

r
(3.9)

In lowe’s paper, let r = 10.

By using finite difference method based on Taylor expansion, D’s derivatives can be

calculate by refereeing to neighborhoods conveniently.(Fig. 3.7 and Fig. 3.8)
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Figure 3.7: Finite difference method neighborhoods’ value indexes.

Figure 3.8: Approximate derivatives calculation based on Taylor expansion.
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3.1.3 Direction determination

In order to make the descriptor rotation invariant, the main direction of feature points

must be found.

After the calculate adjacent points gradient, a direction histogram is established. Di-

rection histogram’s 0 360 degrees is divided into 36 columns (bins), each column is 10

degrees. As shown in FFfigure 5.1, the direction histogram’s peak represents the main

direction of the key points.(Fig. 3.9)

Main direction

Figure 3.9: Direction histogram of SIFT[3].

For descriptor’s characteristic of rotation invariant, the feature point’s coordinate is

rotated based on main direction.(Fig. 3.10)

Figure 3.10: Main direction rotation[3].
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3.1.4 Key point description

Through the above steps, for each key point, has three information: the position, scale

and direction. Next is to build a descriptor for each key point.

Many kinds of descriptors has been proposed, such as Gaussian derivatives [29], moment

invariants [29], complex features [30][31], steerable filters [32], phase-based local features

[33].

The latter, Lowe [3] proposed a method performs better than the others [34].

SIFT uses a set of vectors to describe key points. For robustness, this descriptor not

only include key points, also contains points around the pixels.

Lowe advice that the descriptor had batter to use 4 * 4 key window in the scale space

to calculate eight direction of gradient information. The descriptor is a 4 * 4 * 8 = 128

dimensional vector.(Fig. 3.11)

Figure 3.11: SIFT’s 128 dimensional descriptor[3].

3.1.5 Key point matching

Since SIFT descriptor is scale and rotation invariant, SIFT’s matching is very robust.

Although a scene is resized and rotated, SIFT can match them effectively.

The SIFT descriptor is vector, so SIFT’s matching is finding nearest neighbor of each

descriptor. The descriptor matching and indexing process uses a modification of the k-d

tree algorithm called the Best-bin-first[5] search method that can identify the nearest

neighbors with high probability using only a limited amount of computation.
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Figure 3.12: The appearance of SIFT[3]’s matching. SIFT is a kind of scale-invariant
and rotation-invariant feature.

3.2 Speed Up Robust Features(SURF)

SURF (Speed Up Robust Features)[4] is another kind of scale-invariant and rotation-

invariant feature. Similar to SIFT, SURF is based on multi-scale space theory and the

feature detector is also based on Hessian matrix.

SURF creates a pyramid (Fig. 3.13) without 2:1 down sampling. Due to the use of

integral images, SURF filters the stack using a box filter approximation of second-order

Gaussian partial derivatives.

Since SURF achieves gaussian blur and hessian matrix calculation at the same based

on approximation of second-order gaussian partial derivatives and SURF do not need

to down sampling the original image, SURF’s extraction is 3 times faster than SIFT.

Fig. 3.14 and 3.15 Shows the Gaussian second order partial derivatives in y-direction

and xy-direction.

SURF descriptor and its matching is based on similar properties to SIFT. But SURF

use 64 dimensional vector as descriptor. So SURF’s matching is faster than SIFT too.

Experiment results in paper show that SURF is as effective as SIFT. So SURF is a fast

and ideal candidate for SLAM. The proposed method choose SURF as feature point.
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Figure 3.13: SURF[4]’s scale space pyramid.

3.3 Position Invariant Robust Feature(PIRF)

Because of scale and rotation invariant characteristic, for object recognition, SIFT[3]

and SURF[4] work effectively.

However, the appearance of objects in the actual world is always dynamic. Many

appearance-only SLAM methods are based on the hypothesized static environment.

These methods use SIFT[3] or SURF[4].

These local-visual features do not avoid moving objects such as walking humans in cafe-

terias, stations, or shopping malls. Features on walking humans is useless and harmful

to localization.

For appearance-only SLAM, the visual features’ robustness and the effectiveness of the

matching are important.

A. Kawewong et al.[1] proposed a method that tracks robust features in a sequence

of images, called position-invariant robust features (PIRF). PIRF extracts features by

referring to past images based on SURF or SIFT. So it is more robust than original

SIFT or SURF in dynamic environments.

PIRF’s extraction is illustrated in Fig. 3.17.

By using PIRF, dynamic component of environment can be ignored.(Fig. 3.18)
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3.4 Summary

SIFT and SURF are scale and rotation invariant features. But they are not robust

against changing of environment appearance. PIRF is robust against dynamic compo-

nents of environment. However because of the reason described in Fig. 1.2, PIRF is not

robust enough. Besides other problems of PIRF will be descried in chapter 4.
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Figure 3.14: The approximate gaussian second order partial derivatives in xy-
direction[4].

Figure 3.15: The approximate gaussian second order partial derivatives in y-
direction[4].
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Figure 3.16: Crowed station. Because there were many walking humans, this scene
is very noisy for SLAM.
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Figure 3.17: [1]’s extraction. Every image pair is compared using feature match-
ing, resulting in six matching index vectors. A vector element is the index of
the corresponding feature in the next image. For example, for the first sub-place
(~mi

1, ~m
i
2, ~m

i
3)of I1, I2, I3, I4there are only three features appearing in all images:

(1,3,6,1), (4,1,1,2),(6,3,6,1). (1,3,6,1) is interpreted, respectively, as the 1st, 3rd, 6th,
and 1st feature of image I1, I2, I3, I4. These four features are interpolated to obtain a
single representative PIRF. Therefore, there would be 3, 4, 4, 3 PIRFs for the 1st,2nd,

3rd, and 4th sub-place respectively, 14 PIRFs in all for the whole ith place.

Figure 3.18: Yellow Points are PIRFs, human is ignored by PIRF[1].
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Incremental Center of Gravity

Matching Based SLAM

In this chapter, i present a highly accurate visual-feature-extracting method, which can

be applied to SLAM and navigation even in highly dynamic environments.

The details of the proposed method are described.

33
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4.1 Extraction of Robust Features

We choose SURF [4] as local visual feature. We use a method called Incremental Center

of Gravity Matching (ICGM) based on local visual feature points’ relative geometry

structure to extract robust feature.

4.1.1 Definition of Robust Feature

The definition of robustness of a feature differs according to its application. In this study,

the objective is location recognition. With respect to PIRF [1], we define a robust feature

as a position-invariant feature. These features should satisfy the following condition:

First, the definition of the environment corresponds to the entire visual field of the

camera. The static component of the environment will not change in the long term.

For instance, in a railway station, there are many pedestrians. Because the features

of these pedestrians change rapidly, they are not considered to be the features of the

static component of the environment. Features that appear on places such as walls and

billboards will not change in the long term. Therefore, these features can be treated as

robust features.

4.1.2 Incremental Center of Gravity Matching

ICGM is a method that avoids dynamic visual-features and incorrect matches effec-

tively. In this section, first, we describe the relationship between a camera’s descriptive

geometry and dynamic environment; then, we elucidate this method in detail.

Camera’s Descriptive Geometry and Dynamic Environment From descrip-

tive geometry:

q = MQ, where q =


x

y

w

 , M =


fx 0 cx

0 fy cy

0 0 1

 , Q =


X

Y

Z

 (4.1)

where q represents the homogeneous coordinates of the camera, Q is a 3D point in the

real world, and M is the camera intrinsic matrix.

The camera movement is assumed to have six degrees of freedom. Assuming that from

time t0 to t1, the camera moved by ∆X0, ∆Y0, and∆Z0 and rotated at the angles of
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θ0x, θ
0
y, and θ

0
z . The angles θ0x, θ

0
y, and θ

0
z are the initial angles of rotation around the x-,

y-, and z-axes, respectively. The rotation matrix of the camera is

R0 = Rx(θ0x) ·Ry(θ0y) ·Ry(θ0y) (4.2)

Where,

Rx(θx) =


1 0 0

0 cosθx −sinθx
0 sinθx cosθx



Ry(θy) =


cosθy 0 sinθy

0 1 0

sinθy 0 cosθy



Rz(θz) =


cosθz −sinθz 0

sinθz cosθz 0

0 0 1



(4.3)

The images I0 and I1 are captured at t0 and t1, respectively. Two visual-feature points

on I0 and I1 are q0 and q1 and q0
′ and q1

′, respectively . The points q0,q0
′ and q1,q1

′ are

the same in the real world but are observed at different times. The points q0 and q1 are

related to q0
′ and q1

′, respectively.

q0 = M ·


X0

Y0

Z0

 , q1 = M ·


X1

Y1

Z1

 (4.4)

The points q0 and q1 are assumed to be the visual-feature points of the static component

of the environment. Because the camera moved by ∆X0, ∆Y0, and ∆Z0 and rotated

around θ0x, θ
0
y, and θ

0
z in the environment, the following equation can be obtained:

q′0 = M ·R0 ·


X0 −∆X0

Y0 −∆Y0

Z0 −∆Z0

 , q′1 = M ·R0 ·


X1 −∆X0

Y1 −∆Y0

Z1 −∆Z0

 (4.5)

We define the relative vector Diff as follows:
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Diffij =
qi
wi
− qj
wj

=


xi

wi

yi
wi

1

−


xj

wj

yj
wj

1

 =


xi

wi
− xj

wj

yi
wi
− yj

wj

0

 (4.6)

The relative vector means two feature points’ relative position’s vector.

The 2D coordinates of the visual-feature points on the image are denoted by x/w, y/w.

p =

[
x
w
y
w

]
(4.7)

The local visual-feature point on the image is denoted by p, and the 2D visual-feature

points’ relative vector v is defined as follows:

vij = pi − pj =

 xi
wi
− xj

wj
yi
wi
− yj

wj

 (4.8)

First, assuming that the camera did not move from t0 to t1,

∆X0, ∆Y0, ∆Z0, θ
0
x, θ

0
y, θ

0
z = 0

v01 = p0 − p1 = v0′1′ = p′0 − p′1 (4.9)

Then, assuming that the camera moved only slightly from t0 to t1,

(∆X0, ∆Y0, ∆Z0)→ (0, 0, 0), R0 →


1 0 0

0 1 0

0 0 1

 (4.10)

Thus

v01 − v0′1′ →

[
0

0

]
(4.11)

Eq. (4.11) shows that after the viewing location and angle changed slightly, the static

component of the environment’s feature points should maintain their approximate rela-

tive geometric structure.
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It is assumed that Q2 is a 3D point that appears on the dynamic component of the en-

vironment from t0 to t1. With respect to the camera, Q2 has moved to ∆X1, ∆Y1, ∆Z1

and (∆X1, ∆Y1, ∆Z1) 6→ (0, 0, 0). The corresponding visual-feature points of Q2 on

I0 and I1 are q2 and q′2, respectively.

q2 = M ·


X2

Y2

Z2

 , q′2 = M ·R0 ·


X2 −∆X1

Y2 −∆Y1

Z2 −∆Z1

 (4.12)

Beacuse (∆X1, ∆Y1, ∆Z1) 6→ (0, 0, 0)

v02 − v0′2′ 6→

[
0

0

]
, v12 − v1′2′ 6→

[
0

0

]
(4.13)

Therefore, in common

‖v02 − v0′2′‖, ‖v12 − v1′2′‖ > ‖v01 − v0′1′‖ (4.14)

Eq. (4.14) shows that after the viewing location and angle changed slightly, there are

different changes to the static and dynamic points of the relative vector of the 2D visual-

feature points. The relative vector of the static points changed slightly, whereas the

relative vector between the static and dynamic points changed considerably. Eq. (4.14)

summarizes the basic concept of this study. These static feature points are considered

as the robust features of a dynamic environment.

Although Eq. (4.14) was only proved in a condition in which the camera moved slightly,

in actual situations, the requirement that the camera “moves slightly” is not so tight.

From Fig. 4.1, we observe idea of this study simply.

Incremental Center of Gravity Matching (ICGM) Initially, on the basis of

Eq. (4.7), we define the center of gravity as follows:

CGN =

[
X

Y

]
=

1

N

N∑
i=0

pi (4.15)

This center of gravity for a set of local feature points on the image. CG includes the

geometric structure of feature points. The proposed method involves the use of the
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x
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z a

c
b

!a

!b

!c

(a) Relative position at time point t-1

x

y

z a'

c'

b'

!a′

!b′

!c′

(b) Relative position at time point t

Figure 4.1: Assume that we captured two images at time point t-1 and t, during
this duration camera only moved very slightly. Points a,b,c indicate locations of visual
features with respect to the environment, fig. (a) shows their relative position at time

point t-1, ~a, ~b, ~c are their relative vectors. At time point t, in fig. (b), feature c has

changed its position. We can obtain ~a ≈ ~a′, ~b 6= ~b′, ~c 6= ~c′
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center of gravity to extract robust visual-features in dynamic environments. We define

the center of gravity vector as follows:

CGVNx = CGN − px =
1

N

N∑
i=0

(pi − px) (4.16)

In Eq. (4.16) [refer to Eq. (4.8)], pi − px is the relative vector of the 2D visual-feature

points. By using (16), we can calculate the average of these relative vectors between a

feature point and set of feature points.

It is assumed that at t0, pi = (p0, p1, ...pi) is a set of robust visual-feature points

on I0, and CGi0 is the center of gravity of pi. The corresponding set at t1 on I1 is

pi′ = (p′0, p
′
1, ...p

′
i), and CGi1 is the center of gravity of pi′ . The terms pi, pi′ are a

part of the set of entire feature points, but it does not include all robust visual-feature

points. Then, we can test whether or not the remaining points are the robust visual

features of the environment.

For example, pj , p
′
j is a pair of robust visual-feature points at t0 and t1, which are

excluded from pi, pi′ . By referring to Eqs. (11) and (16), the following Eq. can be

obtained:

CGVi0j − CGVi1j′ = (CGi0 − pj)− (CGi1 − p′j)→

[
0

0

]
(4.17)

Moreover, pk, p
′
k is a assumed to be a pair of unstable visual-feature points at t0 and t1,

which are also excluded from pi, pi′ . By referring to Eqs. (13) and (16), the following

equation can be obtained:

CGVi0k − CGVi1k′ = (CGi0 − pk)− (CGi1 − p′k) 6→

[
0

0

]
(4.18)

We define the ratio of difference RoD as follows:

RoD(x,y) =
‖CGVx − CGVy‖
‖CGVx‖+ ‖CGVy‖

(4.19)

The result
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RoD(i0k,i1k′) > RoD(i0j,i1j′) (4.20)

is similar to (14)

On the basis of Eq. (4.20), we can set a threshold Thr to distinguish between robust and

unstable visual features. If the center of gravity of a vector pair satisfies RoD <= Thr,

the feature point is considered as a robust visual-feature point. If the center of gravity of

a vector pair satisfies RoD > Thr, the feature point is considered as an unstable visual-

feature point.

Eq. 4.19 is robust to the changing of relative vectors’ length.

We proposed a method to extract robust visual features on the basis of Eq. (4.20).

Because the center of gravity changed during processing, the proposed method is called

as ICGM, and its algorithm is shown as Algorithm1.

4.1.3 Single- and Double-directional ICGMes

Using ICGM can extract robust features from a sequence of images. In some ways,

ICGM is similar to PIRF [1]. Fig. 4.2 shows the Single-Directional robust feature

extraction method based on ICGM which extracts robust features from It and It−1.

It means matches obtained by ICGM between It and It−1 will be extracted as robust

features of It and It−1. Therefore, the robust features of It can be extracted by referring

to It−1. These features are more robust than those extracted only from It. However, it

also causes a significant loss of features. In particular, while using a conventional single-

lens camera, the loss is high. Fig. 4.3 shows a method that is different from that of

the Single-Directional ICGM. It is called double-directional ICGM. Double-directional

ICGM extracts robust features of It not only by referring to It−1, but also by referring to

It+1. In Section 2.1.4, we show certain factors that affect the extraction of ICGM while

using a conventional single-lens camera and prove that the double-directional ICGM

works more effectively.

4.1.4 Factors affect extraction of ICGM

Several factors affect the extraction of ICGM, such as the camera’s speed of motion and

the size of ICGM extraction window.
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Algorithm 1: Incremental Center of Gravity Matching’s Algorithm

Input: Match feature points between I0 and I1: p = (p0, p1, ...pn), p′ = (p′0, p
′
1, ...p

′
n) and

ICGM’s matching threshold Thr
Output: Robust feature points’ set on I0 and I1: pR, p′R

CG0, CG1, CGV0, CGV1 =

[
0
0

]
;

pR, p′R = Φ;
GetGoodSet = false;
SCG = 0;
/* Get initial two robust feature points */

while GetGoodSet is false do
i, j = 0;
while i == j do

i← random int between 0 and n;
j ← random int between 0 and n;

end
CGV0 ← pi − pj ;
CGV1 ← p′i − p′j ;
if RoD(0,1) <= Thr then

GetGoodSet← true;

CG0← 1
2 (pi + pj);

CG1← 1
2 (p′i + p′j);

SCG ← 2;
delete pi, pj from p;
delete p′i, p

′
j from p′;

end

end
/* Test remaing feature points in p and p′ */

for k = 0; k ≤ n− 2; k 6= i do
CGV0 ← CG0− pk;
CGV1 ← CG1− p′k;
if RoD(0,1) <= Thr then

CG0← SCG

SCG+1 (CG0 + 1
SCG

pk);

CG1← SCG

SCG+1 (CG1 + 1
SCG

p′k);

SCG ← SCG + 1;
insert pk to pR;
insert p′k to p′R;

end

end
return pR, p′R;

ICGM

ItIt−1 It+1 ......

Figure 4.2: Single-Directional ICGM: Single-directional ICGM. The single-directional
ICGM only extracts robust features from It and It−1.
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We mention two situations which use a conventional single-lens camera: the camera

rotates at a certain speed, and it approaches or moves away from an infinite object at a

certain speed.

For these two typical situations, the double-directional ICGM is better than a single-

directional ICGM.

Camera rotating at a certain speed In this situation, we assume that the angular

velocity of the camera is denoted by ω, and the camera’s field-of-view is denoted by the

angle γ. Therefore, the interval at which the camera views a completely different scene

is TDisappear = γ/ω. We define TDuration as the duration of extraction using the single-

directional ICGM (duration from t − 1 to t). We also assume that the points of static

features approximately follow a uniform distribution.

In this situation, the ratio of features extracted by the single-directional ICGM Pα is

given as follows:

Pα =


TDisappear−TDuration

TDisappear
= 1− TDuration

TDisappear
TDuration ≤ TDisappear

0 TDuration > TDisappear

(4.21)

The ratio of features extracted using the double-directional ICGM Pβ is given as follows:

Pβ =

1 TDuration <
1
2 · TDisappear

2 · Pα TDuration ≥ 1
2 · TDisappear

(4.22)

To compare the two approaches, we define a parameter λα as

λα =
TDuration
TDisappear

(4.23)

Therefore, Pα = 1− λα.

From Fig. 4.4, we observe that the double-directional ICGM can extract more static

visual-feature points than those by the single-directional ICGM. In particular, when

λα ≤ 1
2 , the double-directional ICGM does not lose any static visual-feature points.

Camera approaching or moving away from an infinite object at a certain

speed In this situation, we use the same definition of TDuration as that mentioned



Chapter 4. Incremental Center of Gravity Matching 43

ICGM

ItIt−1 It+1 ......
ICGM

A B

Figure 4.3: Double-directional ICGM. The double-directional ICGM extracts robust
features from It, It−1, and It+1. It is assumed that A and B are the set of features
extracted from It and It−1 and It and It+1, respectively. Then, the robust features

extracted using the double-directional ICGM are C = A ∪ B.
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Figure 4.4: Comparison between Double and Single-directional ICGMs when the
camera rotates at a certain speed: Pα is the ratio of features extracted by the single-
directional ICGM. Pβ is the ratio of double-directional ICGM. Double-directional ICGM

always loses fewer features than single-directional ICGM.
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above. We assume that the vertical and horizontal fields-of-view are equal to η and θ,

respectively. In addition, the static feature points follow a uniform distribution.

Therefore, when the camera moves away from a sufficiently large infinite object with

speed ν, assuming that at time t, the distance between the camera and the object is d,

the area at this time is given as s, where

s = 4 · tan(η)tan(θ) · d2 (4.24)

Before the duration for ICGM, TDuration, at time t − TDuration, the distance between

the camera and the object was d′ = d − TDuration · ν. Then, the field-of-view for time

t− TDuration is

s′ = 4 · tan(η)tan(θ) · (d− TDuration · ν)2 (4.25)

Therefore, in this situation

Pα =
s′

s
=

(d− TDuration · ν)2

d2
(4.26)

Similarly, we define

λβ =
TDuration · ν

d
(4.27)

Because the single-directional ICGM only generalizes the information of the past, a

part of the field-of-view is ignored when the camera moves away from the object, i.e.,

Pα = (1 − λβ)2. The double-directional ICGM generalizes the information of both the

past and future. Because the field of view of a camera viewpoint is completely included

by that of the other viewpoints (including past and feature), the field-of-view loss will

be zero; therefore, in all cases, Pβ = 1.

When the camera approaches an infinite object, because the camera previously had a

larger field-of-view, Pα = 1 Pβ = 1. Fig. 4.5 shows the comparison between the double

and single-directional ICGMes in this situation.

Discussion of the two methods We developed an improved visual-feature-extraction

method for ICGM called as the double-directional ICGM. When compared with the

single-directional ICGM, the double-directional ICGM can extract robust features from

the dynamic environment more effectively.



Chapter 4. Incremental Center of Gravity Matching 45

The main difference between the two methods is that the single-directional ICGM ex-

tracts features only on the basis of the previous state of the environment, which means

that only if a feature was previously present for a sufficiently long duration, then that

feature is considered to be robust. Features extracted by the single-directional ICGM

are definitely robust. In future, features that are observed for a sufficiently long duration

can be considered as a robust feature. Therefore, the ”future” data can be used. By

using both sets of information, the double-directional ICGM can solve many problems

due to the single-directional ICGM. Referring to Fig. 4.4 and Fig. 4.5. When λα < 0.5,

the double-directional ICGM (with appropriate Thr) dose not lose any feature. λα < 0.5

means that the camera should not rotate too fast. To extract features as many as pos-

sible, when the camera rotates, the overlap’s acreage of two neighboring images should

be larger than each image’s acreage’s 50%. The method to decide Thr is discussed in

section 3.1 in detail.

For several conditions, we described the factors that will affect the extraction of (single-

directional and double-directional) ICGM. The parameters λα and λβ are very important

in the extraction of ICGM because unless we increase these parameters, we cannot

extract more robust features. However, when λα and λβ are increased, the number of

extracted features decreases. To extract a sufficient number of features while increasing

λα and λβ, the double-directional ICGM is very effective. Although we only mentioned

how the factors affect the extraction of ICGM in a few simple conditions, the movements

of an average camera can be separated into an approximate combination of these simple

situations. Therefore, the double-directional ICGM is usually better than the single-

directional ICGM.

4.1.5 Relationship with PIRF [1]

PIRF [1] is also a method that is used to extract robust features from a sequence of

images. With reference to Algorithm 1, when Thr → ∞, the Single-Directional ICGM

→ PIRF [1](window size = 2). However, if the window size = 2, PIRF [1] is not

sufficiently robust. If we want to extract additional robust features using PIRF [1], we

should enlarge the window size. Nevertheless, while enlarging the window size, PIRF [1]

will provide fewer visual features, which will be a problem.

When Thr is set as normalsize, the Single-Directional ICGM is more robust than PIRF

[1](window size = 2). Furthermore, the double-directional ICGM can increase the num-

ber of extracted features. These ICGM characteristics can be beneficial during proce-

dures such as SLAM.
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4.2 Online-Incremental-Appearance-only SLAM

We used a method similar to that cited in [8] to achieve online-incremental SLAM. PIRF

[1] is used as a feature for the study in [8]. The proposed method uses features that are

extracted using ICGM.

An online-incremental SLAM method that is based on the detection of loop closures is

cited in [8], i.e., the dictionary cited in [8] is dynamic and it will automatically register

a new word. The online-incremental method requires more calculation than that by the

batch method.

The study cited in [8] can be divided into two phases: the creation of the dictionary

and its testing. In addition, ICGM is suitable for online-incremental SLAM. Moreover,

ICGM can not only be used to extract features but also to detect loop-closure. This

characteristic of ICGM also improves the precision of SLAM.

Although the double-directional ICGM can be used while creating the dictionary and its

testing, to calculate the robust features of It, the double-directional ICGM requires It+1.

Therefore, the robot system should obtain the information of “future” events, which is

not possible. Hence, for real-time systems such as automatic robots,, the testing phase

cannot employ the double-directional ICGM to increase the robust features, and we can

instead use the single-directional ICGM. However, real-time systems can also use the

double-directional ICGM to create a dictionary. Platforms such as pedestrian navigation

do not require real-time processing; therefore, they can use the double-directional ICGM

while creating the dictionary and testing it to improve the effectiveness of the system.

Fig. 4.6 shows the System framework of ICGM based online-Incremental-appearance-

only SLAM. Incremental dictionary is described in Fig. 2.4.

4.3 Summary

This chapter described the proposed’s algorithms for crowed pubulic environment, in-

cluding feature extraction algorithm(single and double directional ICGM) and ICGM

based SLAM algorithm.

Next chapter presents results of the proposed method in crowed pubulic environment.



Chapter 4. Incremental Center of Gravity Matching 47

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

P

λβ

Pα
Pβ

Figure 4.5: Comparison between Double and Single Directional-Approaches when the
camera approaches or moving away from an infinite object at a certain speed: similar
to Fig. 4.4, the double-directional ICGM never loses any feature. Meanwhile, single-

directional ICGM loses many features.
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Chapter 5

Experiments

In this chapter, we elucidate the results of a location-recognition experiment in a crowed

environment. In addition, we will show the results for a SLAM experiment in a dynamic

outdoor environment.

49
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5.1 Experiment A : Visual-Feature Matching By ICGM

ICGM is a visual-feature matching method basically. This experiment’s dataset is cap-

tured at an indoor environment. In the environment their are some dynamic objects.

Fig.5.2(b) shows the situation of conventional SURF matching. In this image there

are many incorrect matchings. Besides, features on moved objects are not be ignored.

Fig.5.2(c) is the situation of ICGM, there are not any incorrect matching and dynamic

objects are ignored correctly. Conventional SURF matches’ number is 975 and ICGM’s

number is 374. We observed that when the number of ICGM’s features is 374, there is

no incorrect matching. Fig.5.1 shows ICGM’s number of features’ trend while the Thr

changes. When Thr = 0.08(1/Thr = 12.5) the ICGM extracted 374 matches without

false-positive and false-negative. While Thr is getting normalizer, false-negative matches

are increasing. When Thr = 0.031(1/Thr = 31.4), because the Thr is too strict, the

ICGM can not extract any match.

So far, the Thr needs to be decided by user. It means that the user needs to change the

Thr until the ICGM works without false-positive and false-negative match. However,

an appropriate Thr is suitable for images, which were captured with similar intervals.

So for one dataset, the user only needs to decide the threshold once.

This experiment shows that ICGM can work stably and effectively in dynamic environ-

ment even camera moved a lot.
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Figure 5.1: ICGM’s number of features’ trend while the Thr changes on the basis of
Experiment A
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(a) Experiment A’s dataset. These two images are captured at different time. Objects’ positions in red
ellipses have been changed. Besides camera’s view-angle has changed.

(b) Conventional SURF matching between two images. There are many incorrect matchings. Moreover,
many feature points on dynamic objects are matched.

(c) Incremental center of gravity matching between two images. All matchings are correct, dynamic
objects are ignored correctly.

Figure 5.2: Images of experiment A
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5.2 Experiment B : U-shaped Route at Shibuya Station

(Location Recognition)

This experiment’s dataset is captured using a hand-held camera (made by sony) (resized

resolution: 480*320) at Shibuya Station, the frequency is 0.5 frame per second. The

station was crowded. The learned route was approximately 80 m, and the learning

duration was 5 min. The test datasets were similar. First, we extracted the features

(using ICGM and PIRF) from the learning database. Then, we extracted the features

from the testing database. Finally, we performed the experiment for the learning and

testing features. This experiment was not a SLAM experiment, but it tests ICGM’s

SLAM system in terms of the place recognition performance.

Fig. 5.3 shows a comparison between double- and single-directional ICGMs, and this

experiment shows that double-directional ICGM can obtain more robust features than

that obtained with single-directional ICGM.

Fig. 5.4 are images of experiment B.

In this experiment, the precision of PIRF [1] was 82.65%, whereas, the precision of

double-directional ICGM is 98.56% and Thr = 0.075 .
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Figure 5.3: Features’ amount’s comparison between Double and Single-Directional
ICGMs on the basis of Experiment B
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(a) Experiment B’s route, the route is composed by route 1, 2 and 3. Route 1 and 3 are
abrupt slopes, route 1 and 3’s exteriors are similar. It is easy to confuse 1 with 3 using
vision information.

(b) Image of crowed Shibuya Station at route 1. Pedestrians in red ellipse are dynamic
components of the environment.

(c) Visual-feature extraction’s result on the basis of Experiment B. normalize circles with
different colors represent extracted visual-features. Dynamic components of this environ-
ment are ignored correctly.

Figure 5.4: Images of experiment B
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5.3 Experiment C : Minamidai Outdoor (SLAM)

This dataset for this experiment was also captured using a hand-held camera (resized

resolution: 480*320), the frequency is 0.5 frame per second. This scenario was not as

crowded. However, there were a few dynamic objects (cars, humans). The learned route

was about 170 m, and the learning duration of 9.5 min.

Fig. 5.5 is images of experiment B. Fig. 5.6 shows the result of double-directional ICGM.

Table 5.1 shows the results of this experiment. The proposed methods’ accuracy and

ratio of recall is better than those of PIRF-nav2.0[8]. Because the proposed method

(single-directional) used the single-directional ICGM in the testing phase and the pro-

posed method (double-directional) used the double-directional ICGM in the testing phase,

the proposed method (single-directional) extracts fewer features than those by proposed

method (double-directional). Thus, the proposed method (double-directional) is better

than the proposed method (single-directional). Double-directional ICGM as well as

single-directional ICGM obtained best results while Thr = 0.082. In addition, because

FAB-MAP is a batch method that generates dictionary in offline, it is the fastest of all

the methods. However, FAB-MAP is not a fully online incremental method.
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(a) Appearance of outdoor in Minamida. Human and car in red ellipses are dynamic components of the
environment.

(b) Visual-feature extraction’s result on the basis of Experiment C. Dynamic components of this environ-
ment are ignored correctly.

Figure 5.5: Images of experiment C
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Table 5.1: Results of experiment C

Recall Precision Total Processing Time (second)

Proposed
method (double-
directional
ICGM)

96.1% 97.5% 204.25

Proposed method
(single-directional
ICGM)

86.1% 95.2% 196.51

FAB-MAP [6] 38.8% 95.4% 155.6

PIRF-nav2.0 [8] 86.2% 78.8% 182.4
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Figure 5.6: Results of experiment C. Red points are loop-closing detected locations.
And the yellow lines represent the experiment’s route.
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Figure 5.7: Precision and recall-ratio of experiment C.



Chapter 5. Experiments 60

5.4 Summary

Experiments have shown that our proposed method not only can learn objects in complex

dynamic environment but also can achieve in a dynamic public environment. All images

were photographed using a conventional hand-held single-lens camera. The proposed

method was shown to have high accuracy and robustness.

Experiment A shows that using the proposed method, motion segmentation was accu-

rate.

On the basis of Experiment C, Table 5.2 shows a brief review of SLAM methods. The

proposed methods can run without offline dictionary generation. The proposed methods

are online incremental methods. Although the proposed method (double-directional)

causes a delay, its accuracy is highest. On occasions of high real-time demand (SLAM

for robot etc.), we should choose the proposed method (single-directional). However,

on other occasions, for example, pedestrian navigation, the proposed method (double-

directional) works better.
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Table 5.2: Review of SLAM methods

Ability to run incremental without
offline dictionary generation

Accuracy
Ability to process

without delay

Proposed method
double-directional ICGM

Yes Very high No

Proposed method
single-directional ICGM

Yes High Yes

FAB-MAP [6] No Low Yes

PIRF-nav2.0 [8] Yes Moderate Yes
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Today, high-performance hand-held smart phones have become very popular. For the

proposed method to possess high robustness while using hand-held devices, ICGM may

be applied to many types of platforms (including hand-held smart phones) for navigation

by pedestrians. This is our future goal.

Deciding the threshold Thr automatically is one of our important future study.

When compared to PIRF-Nav 2.0, the processing speed of the proposed method is

possibly relatively fast. However, we are currently considering replacing SURF with

a type of corner detector (FAST[35], HARRIS[36] etc.). Although SURF[4], SIFT[3]

possesses more information for visual recognition, FAST[35] or HARRIS[36] is faster.

Furthermore, ICGM can extract robust corner detectors on the basis of their geometric

structure. Therefore, we intend to use FAST[35], HARRIS[36] for faster processing.



Chapter 6

Applications of ICGM

ICGM not only can apply to vision only SLAM but also can apply to hybrid SLAM and

visual odometry. In this chapter, ICGM based hybrid SLAM and visual odometry are

introduced.

63
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6.1 Hybrid SLAM Based on RGBD Camera

Kinect is a sensor devoloped by microsoft which can grab depth’s information and RGB-

vision information from environment at the same time. For its high performance, high

accuracy, low power consumption, it is very suitable for use in mobile robots.

In this study, we propose a SLAM/Navigation method to combine depth’s information

and RGB-vision information grabbed by kinect with mobile robot’s odometry informa-

tion.

Similar to 3D-PIRF[19] we modify trajectories based on loop closure.

Figure 6.1: Mobile robot’s hardware system, and its SLAM in dynamic environment.
Right image is robot with Kinect installed. Left image is a sample of SLAM based
on Kinect grabbed information from crowded environment. Left top of this image is
depth information transformed to RGB, right top of this image is common RGB vision
information. Features extracted by ICGM are marked as circles in common vision RGB
information. The blue line in the image below depth’s information and common RGB

vision information is robot moved route calculated by SLAM.

6.1.1 Incremental Hybrid Map Construction and Modification Based

on Loop-closure Detecting (SLAM)

We propose a SLAM method can be used in highly dynamic environment. And we

create hybrid map in SLAM, this hybrid map including route’s topological information,

vision features and their corresponding coordinates. And the Hybrid map can be used

for autonomous navigation directly. Hybrid map’s contraction is indicated in Fig.6.2.

[p]
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Figure 6.2: Hybrid map’s contraction. This figure describe SLAM’s system’s struc-
ture. We have two metric sources of robot’s movement, one is depth information and
vision information grabbed by kinect, the other is trajectory calculated by odometry.
Assume in time t, we get one model depth information and one vision information.
After process( including ICGM extraction and Kinect’s calibration etc), we obtain a
set of robust vision features and these features’ corresponding 3D coordinates, called a
metric model. Mt is metric model of time t. We try to get Mt’s location by test with
current loop and previous learned loop(s). The location pose of Mt is Lt. If we can not
obtain Lt from current loop and previous learned loop(s), we get Lt from trajectory

calculated by odometry. Then, Mt and Lt are registered into the hybrid map.
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Table 6.1: Comparison of related navigation methods in dynamic environment

Learning enviromment

Sensor static dynamic Human in
Navigatin

Precision Processing
Speed(per
frame)

Loop
closure
detected
ratio

Hatao
et al. [37]

2D LRF,
odometry

- ©(several) 2 © 200ms -

Muller
et al. [38]

2D LRF,
odometry

© - 6 © 250ms -

Koch et al.
[39]

Omnivision
Cameras

© - 8 4 667ms 4

Morioka
et al. [19]

Omnivision,
odometry

- }(over
20)

over 20 © 3870ms ©

Proposed
method

3D LRF,
Vision,
odometry

- }(over
20)

over 20 } 202ms }

In this section we would like to introduce the hybrid map’s structure and modification

based on loop-closure detecting.

6.1.1.1 Basic Structure of Hybrid Map

Proposed hybrid map construct by visual odometry based on 6D rigid transformation[40]

between 3D points clouds. We control robot to move in a place, robot can grab depth,

RGB-vision and odometry information at the same time. A 3D points cloud can recon-

struct from per model’s Depth and RGB-vision data, each 3D points clouds is called

metric model Mx. We can get a queue of Mx continuously, namely M. By computing

6D rigid transformation between metric models, we can get relative 3D pose R. For

instance, Rx can be calculated from two metric models Mx and Mx−φ. φ is calculation

interval of 6D rigid transformation. From set of relative 3D poses R, we can get set of

robot’s global location poses L, the recursion formula is:

Ln = Ln−1 ⊕Rn (6.1)

It is noteworthy that the ⊕ and 	 operations of 3D poses have special definitions. ⊕
and 	 operations mean 3D pose transformation. Based on the set of L we get a global

route which the robot moved. Meanwhile, depth and RGB-vision data will be register

into corresponding location of the route.
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If a hybrid map have a correct topological structure, in autonomous navigation route

planing and shortest path calculation will be very convenient, so we try to keep correct

topological structure of hybrid map.

But for some reason such as lacking enough effective 3D feature points etc., it is not

guaranteed that 6D rigid transformation can calculate 3D pose successfully all the time.

So it is very hard to keep correct topological structure of hybrid map only by depth and

RGB-vision information. However, we use tires’ odometry information to maintain the

correct topological structure.

As details, we try to get a inliers’s set of 6D rigid transformation by RANSAC[41]. If we

can not get a good inliers’s set, we treat this calculation as failed. When failed, based

on time relationship between tires’ odometry information and depth and RGB-vision

information, we update relative pose which calculated from tires’ odometry to R.

6.1.1.2 Hybrid Map’s Modification and Incremental Construction Based on

Loop-cloure Detecting

To prevent error accumulation, we propose a hybrid map’s modification method based

on loop-cloure detecting. Loop-cloure detecting is described in Fig.6.3.

Figure 6.3: Loop-cloure detecting. Previous learned loops are loops in learned. Hy-
brid map. The loops only represent logic relationship not actual topological relation-
ship. Although only two previous learned loops in this figure, suppose that current
model MCurrent detected loop closure with previous learned loops 0, 1, 2. We get rel-
ative poses βi between MCurrent and Mli. Lloopi is global location pose of MCurrent

calculated by loopi, Lloopi = Lli ⊕ βi. Each Lloopi are always not the same. The red
points below represent global location pose of MCurrent calculated by diffrent previous
learned loops. We do optimization based on distance’s relationship to this location
pose’s set. The green point represents global location pose of MCurrent after optimiza-

tion.

Proposed loop-cloure detecting method is based on ICGM matching vote and 6D rigid

transformation. At first we calculate ICGM macthing score between current model and
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each previous loop’s models. We use a method which similar to PIRF-nav2[8] to calculate

the ICGM macthing score. And we get 3 best scored modelsmodelbest,modelsecond best,modelthird best

for each loop.

Then we try 6D rigid transformation between current model and 3 best scored models.

Suppose 6D rigid transformations are succeed, we can get a relative pose(RLC1, RLC2, RLC3)

between current model and the best macthed 3 models. Assume the 3 6D rigid trans-

formations are all failed, we would treat this loop-closure as failed.

By comparing the 3 output RANSAC[41] modeling results of 6D rigid transformations,

We choose the best relative pose βi. Thus, we can get a current model’s global location

Lloopi = Lli⊕βi. Also, we can get another current model’s global location LCurrent from

its own loop.

We can get a set of Lloopi. It’s need to do a optimization to this pose’s set for getting a

best global location pose LLoopClosure of MCurrent. We minimize the following expression:

N∑
i=0

‖Lli ⊕ βi − LLoopClosure‖2 (6.2)

This expression is calculating Mahalanobis distance of 3D pose and N is the sum of loop

closure detected loops.

Ideally, LCurrent and LLoopClosure should be equal. But actually LCurrent and LLoopClosure

can not reach consensus. And:

M PoseDiff = LLoopClosure 	 LCurrent (6.3)

Because location calculated from its own loop will have error accumulation, we always

suppose LLoopClosure is truth. Our task is let LOwnLoop and LLoopClosure to reach a semi-

consensus. The reason why only choose semi-consensus is preventing over-correction.

We apportion the difference to a part of relative poses’ set R.

[R′a · · ·R′b] = [Ra · · ·Rb]⊕
α

b− a
[M PoseDiff · · · M PoseDiff ] (6.4)

Here, we set 0 < α < 1, so the modification can not reach the full-consensus but a

semi-consensus. a is number of last location modified model in hybrid map, b is num-

ber of current model, [Ra · · ·Rb] is vector of relative poses that should be modified,

[M PoseDiff · · · M PoseDiff ] is vector of difference, [R′a · · ·R′b] is modified relative poses
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vector. After relative poses’ modification, we rebuild location poses [La · · ·Lb] by ex-

pression (8).

There are two kinds of learning called batch learning and online learning. Although batch

learning is faster than online learning, hybrid map created by batch learning can not be

expanded, it is not so suitable for actual usage. We propose a incremental hybrid map

building method based on loop-closure detecting. ICGM can support incremental hybrid

map building. Basic approach of incremental hybrid map building is that while recognize

location from existed map, update new information to existed map. We use loop-closure

detecting described above to recognize location of current model from existed map. After

recognized its location and modified route, a new model will be register into this map.

Registered information including vision features, their corresponding 3D coordinates and

the model’s global location. When loop-closure detecting failed in some models, we will

set model’s global location equal to relative pose calculated by its own loop directly.

In addition, using proposed method learned multiple data sets can be mergered to be

one hybrid map. For instance, human can control robot to learn one environment in

different time with different light conditions, then get multiple data sets. Based on these

data sets we can merger them to be one hybrid map. By using this hybrid map, robot

system will suitable for different light conditions.

6.1.2 Navigation Based on Learned Hybrid Map

Autonomous navigation is also based on loop-closure detecting. While navigate, robot

system also create a hybrid map to localize itself. The hybrid map’s creation is almost

the same as SLAM. But in (19) we always set α = 1, intend to reach full-consensus in

modification. Robot will reach the goal more effectively since a full-consensus reached

in map construction.

Learned hybrid map have a set of features and corresponding 3D coordinates’ models

with their own indexes. Indexes are from 1 to N. N is the longest loop’s sum in this

hybrid map. We use a pointer p to present the current location of robot in hybrid map.

In initial time, robot in the starting point and p = 1.

Robot try to detect loop closure in hybrid map using currently grabbed model MCurrent.

Suppose robot can detect loop closure at index i of longest loop in hybrid map, we can get

a best relative pose RelPosecurrent between MCurrent and Mi. If loop closure detecting

failed, we set RelPosecurrent = 0, meanwhile set i equal to index of ICGM best matched

model of longest loop in hybrid map. And we set a parameter called ω, ω is logical

moving step of robot in hybrid map.
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PosMove = Li+ω 	 Li ⊕RelPosecurrent (6.5)

Then robot will change its pose by PosMove automatically. Although robot can not

reach the goal fully accurately, it is means that robot has reached the i + ω model in

map analogously. After moving, we set current pointer p = i + ω. And robot will do

process as the same as above repeatedly, until p reach N.

Although navigation method described above is not so complicate, because the hybrid

map keeps correct topological structure, Dijkstra [42]’s algorithm can be applied to path

planning for searching the shortest path.

6.1.3 Experiments

In experiments, we used a iWs09 robot with a Kinect and a odometry installed. Kinect

is located at a height of 1300mm. We use C++ to created the algorithm. And we run

the algorithm on a Intel corei7 notebook computer. Operating system is ubuntu linux

11.10. The computer with a GTS360m installed for acceleration.

6.1.3.1 Robust Vision Feature Extraction in Highly Dynamic Environment

In this experiment, we show the result of ICGM extraction using proposed double-

directional ICGM.

We chooose window size of double-directional ICGM S = 3. In this experiment we

take sequential images in cafeteria of tokyo institude of technology. And as we can

seen in fig.6.4. Pedestrians who were walking will not get any ICGMs. It means that

double-directional ICGM is robust enough and suitable for dynamic environment.

We use the same database grabbed in cafeteria of tokyo institute of technology as

SLAM’s experiment below. The database including 6739 frames of sequential RGB im-

age. We calculate single-directional ICGM and double-directional ICGM based on this

database’s squential RGB images. Number of double-directional ICGM is significantly

more than number of double-directional ICGM. As numerical results, average number

of single-directional ICGM is 160.562, meanwhile average number of double-directional

ICGM is 260.863. We get 62.3% increased.
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Figure 6.4: Appearance of double-directional ICGM’s extraction. Pedestrians within
red circles were walking. Small blue circles are feature points which centers are darker
than backgrounds. Small red circles are opposite. Red feature points’ centers are
brighter than backgrounds. Each circle’s radius is refers to detected scale of each

feature point.

6.1.3.2 SLAM’s Experiment in Small Scale Dynamic Environment

In this experiment, we have controlled robot to train 2m’s route of straight line in our

research room (indoor environment) without physical odometer’s information (only by

Kinect’s visual odometer). The learned route is showed in Fig. 6.5. While learning this

route, one person walked in front of robot for obstructing as Fig. 6.6. The result shows

in table 6.2.

Table 6.2: Result of experiment in small scale environment.

Task Error ratio

Route learning 2.5%
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Figure 6.5: Training route of experiment in small scale environment.

Figure 6.6: A people was walking in front of robot.

6.1.3.3 SLAM’s Experiment in Large Scale Highly Dynamic Environment

We do this experiment in cafeteria of Tokyo institute of technology. It is 20m * 20m

sized. We launch our method in this cafeteria at night 8:00. At that time, there were

70 people in cafeteria approximately. They eat or walk in this environment as their own

wills. It was a highly dynamic environment. For notarizing effectiveness of proposed

SLAM’s method in highly dynamic environment, we do experiment in this environment.

In this environment, we control robot by a joystick. While moving, robot record odome-

try information by odometry and record vision, depth information by Kinect. We control

robot to move two loops clockwise as route of Fig. 6.7. In the end of learning, the robot

return staring point. And total distance moved is about 80m. In the process, robot get

6739 frames vision and depth information.

Fig. 6.8 shows trajectory calculated only by odometry. Ideally, calculated starting point

and terminal point should be the same. However, trajectory calculated by odometry

shows a big error. And it can not keep correct topological struture. Meanwhile, Fig.

6.9 shows heterogeneous trajectory calculated by odometry and Kinect with loop closure

detecting. Althout it is using information grabbed by odometry, 97.6% of this trajectory
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Figure 6.7: Learned route in cafeteria.

is calculated by recorded Kinect’s vision, depth information.It has correct topological

struture. Calculated starting point and terminal point are almost the same. As numer-

ical evaluation, distance between calculated starting point and terminal point is 150mm

in average and error of robot’s angle is within 10.2 degrees.

Figure 6.8: Trajectory calculated only by odometry. The green point is starting point,
and the triangle is terminal point.

Loop closure detecting rate is 63.8%. Also, table 6.3 shows comparative of loop closure

detecting rate between method proposed by Morioka, proposed SLAM system using

single-directional ICGM method and proposed SLAM system using double-directional

ICGM method. The result shows that double-directional ICGM method is effective for

visual odometry be used in highly dynamic environment.
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Figure 6.9: Heterogeneous trajectory calculated by odometry and Kinect with loop
closure detecting. The triangle represents staring point and terminal point. They are
almost at the same location. Red Points represent locations where loop closure detected.

Table 6.3: Loop closure detected rate

Detected Rate

Morioka 44.2%
Proposed method(single-directional ICGM) 47.2%
Proposed method(double-directional ICGM) 63.8%

6.1.3.4 Autonomous Navigation’s Experiment in Highly Dynamic Environ-

ment

We do a navigation’s experiment in the same cafeteria based on map learned at SLAM’s

experiment above. And experiment’s environment is almost the same as SLAM’s ex-

periment above. The route shows in fig. 6.10. Fig. 6.11 shows that in navigation,

the environment was very crowded. But proposed system can work in the environment

stably.

The average calculating time for 1 frame is 321 milliseconds. Robot’s moving speed was

125mm/s. And average deviation from planned route was 60mm, maximum deviation

from planned route was 92mm. table 6.4 show navigation result’s comparison between

method proposed by Morioka and proposed method. We did not set the moving speed

faster for safety factor.
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Figure 6.10: Appearance of navigation in cafeteria.

Table 6.4: Navigation comparison

Processing
speed(ms)

Moving
speed(mm/s)

Average
error(mm)

Morioka 3870 38.4 150
Proposed
method

321 125 60

Figure 6.11: Navigation’s experiment. The length of navigation route is about 12m.
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6.2 Visual Odometer Based on Mono Handy Camera

Kayanuma in our research group proposed a ICGM based mono visual odometry.

Visual odometry’s objective is calculate the camera’s trajectory by mono image sequence.

It is very useful for robots navigation etc.

Visual odometry calculates two images’ 6D spatial transformation based on epistolary

equations. To establish epipolar equations correctly, features matching between two

images is necessary. So feature’s robustness and matching’s correctness is critical.

crowded environment(station,downtown etc.) is a big challenge of visual odometry.

Previous visual odometry[43][44] can not work well in public crowded environment.

Kayanuma uses ICGM to extract and match features for visual odometry.

Input sequence

Extract features by 
Single directional 

ICGM
Mono Camera 

Visual 
odometry

ItIt−1...

Figure 6.12: ICGM based visual odometry.
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6.2.1 Experiment: Shibuya Station Indoor

This dataset is grabbed by handy camera in shibuya station indoor. The environment

was very crowded. (Fig. 6.13)

The route is 100m * 50m approximately and the length of the route is about 200m.(Fig.

6.14)

Although this is no ground-truth, the result in Fig. 6.15 shows that visual odometry

with ICGM is better than visual odometry without ICGM.

Figure 6.13: Very crowded shibuya station indoor.

6.2.2 Experiment: Shibuya Station Outdoor

This dataset is grabbed by handy camera in shibuya station outdoor. The environment

was very crowded too. (Fig. 6.16)

The route is 10m * 20m approximately and the length of the route is about 50m.(Fig.

6.17)

We use google earth’s GPS data as groundtruth, the result in Fig. 6.18 shows that visual

odometry with ICGM is better than visual odometry without ICGM.
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Figure 6.14: Shibuya station indoor’s Learned route.

Figure 6.15: Shibuya station indoor’s comparison between ICGM based and Non-
ICGM visual odometry.

Table 6.5: Result comparison based on shibuya station outdoor dataset

error[%] inlier[%] time [s per frame]

with ICGM 6.01 71.1 0.32
without ICGM 8.09 70.0 0.31
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Figure 6.16: Very crowded shibuya station outdoor.

Figure 6.17: Learned route of shibuya station outdoor.(GOOGLE EARTH)
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Figure 6.18: Shibuya station outdoor’s comparison between ICGM based and Non-
ICGM visual odometry.
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6.3 Summary

This chapter described other applications of ICGM: hybrid SLAM and visual odometry.

Results shows that ICGM works good in crowded public environment.



Chapter 7

Conclusion and Future Studies

Incremental Center of Gravity Matching (ICGM) is a novel method to extract robust

visual-features from sequnce of images in in crowded public environment.

Using the proposed method, dynamic objects(pedestrians, cars etc.) can be ignored.

Robust features extracted by the proposed method can improve performance of vision

based localization.

This paper descried the basic algorithm of ICGM and its applications: appearance-only

SLAM, hybrid SLAM and visual odometry.

Results of appearance-only SLAM, hybrid SLAM and visual odometry shows that the

proposed method: Incremental Center of Gravity Matching (ICGM) works good in

crowded public environment.

Experiments results proved that ICGM is a effective matching and feature extraction

method. I believe that in the future, the proposed method should be more widely used.

Today, high-performance hand-held smart phones have become very popular. For the

proposed method to possess high robustness while using hand-held devices, ICGM may

be applied to many types of platforms (including hand-held smart phones) for navigation

by pedestrians. This is our future goal.

Deciding the threshold Thr automatically is one of our important future study.

When compared to PIRF-Nav 2.0, the processing speed of the proposed method is

possibly relatively fast. However, we are currently considering replacing SURF with

a type of corner detector (FAST[35], HARRIS[36] etc.). Although SURF[4], SIFT[3]

possesses more information for visual recognition, FAST[35] or HARRIS[36] is faster.

Furthermore, ICGM can extract robust corner detectors on the basis of their geometric

structure. Therefore, we intend to use FAST[35], HARRIS[36] for faster processing.
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