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ABSTRACT

LELECUT type triple patterning lithography is one of the most promising techniques in the next generation
lithography. To prevent yield loss caused by overlay error, LELECUT mask assignment which is tolerant to
overlay error is desired. In this paper, we propose a method that obtains an LELECUT assignment which is
tolerant to overlay error. The proposed method uses positive semidefinite relaxation and randomized rounding
technique. In our method, the cost function that takes the length of boundary of features determined by the cut
mask into account is introduced.

Keywords: Triple Patterning, LELECUT, Design for Manufacturability, Positive Semidefinite Relaxation

1. INTRODUCTION

Multiple patterning technique enables us to fabricate small features without using advanced technologies such as
extreme ultra violet (EUV) lithography. Triple patterning lithography (TPL) is one of the most promising tech-
niques in 14 nm logic node and beyond. In order to realize a target pattern, various types of techniques including
design for manufacturability such as LELE type double patterning lithograph,1–7 LELELE type TPL,8–18 LELE-
CUT type TPL,19,20 and side wall process,21 are used in addition to a basic litho-etch process with optimized
mask. These techniques are summarized in.22,23

Sidewall process21 forms a wall feature with unique width so that it surrounds the prefabricated polygon.
The sidewall process which is used in self-aligned double patterning enables us to fabricate finer pattern pitch
by combining a slimming process, but the variety of target patterns that can be fabricated is limited.

Two types of TPL technologies are often discussed in literature. In LELELE, litho-etch process is repeated
three times. However, it is difficult to achieve high yield due to native conflict and overlay problems. In
LELECUT, the third mask called cut (or trim) process removes a part of a fabricated pattern. It is used to
improve the quality of fabricated patterns as well as to enhance the flexibility of layout. However, it has overlay
problems and lithographical limitations. In order to prevent yield loss caused by overlay error as much as possible,
LELECUT mask assignment which is tolerant to overlay error is desired.

To our best knowledge, two LELECUT mask assignment methods have been proposed. In,19 LELECUT
mask assignment problem is formulated as an integer linear programming problem. Although it minimizes the
weighted summation of the number of conflicts and stitches, the effect of cuts on layout quality is not taken into
account. In,20 LELECUT mask assignment problem is solved by positive semidefinite relaxation. Although it
minimizes the weighted summation of the number of conflicts, stitches, and polygons in the cut mask, the yield
of obtained layout is also not discussed. Fig. 1 shows mask assignments in LELECUT. A target pattern is shown
in Fig. 1 (a). The layouts obtained by two LELECUT mask assignments which are represented by blue, magenta,
and cut masks without overlay error are shown in Fig. 1 (b) and Fig. 1 (d). These mask assignments have no
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Figure 1. Mask assignments in LELECUT. Mask assignment shown in (c) has higher yield than that shown in (d).

conflicts, no stitches, and the number of polygons in the cut mask is same. The layouts of them with overlay
error in which blue, magenta, and cut masks move to the lower left, the upper right, and the left, respectively,
are shown in Fig. 1 (c) and Fig. 1 (e), respectively. The former is expected to have lower yield than the latter
since a longer dimension of features such as p1 and p2 is determined by the cut mask and is affected directly by
the overlay error. The length of a boundary of a feature that is determined by the cut mask should be small
enough to prevent the yield loss caused by overlay error.

In this paper, we propose a method that obtains an LELECUT assignment which is tolerant to overlay error.
The proposed method is an enhancement of the method proposed in20 and uses positive semidefinite relaxation
and randomized rounding technique. In our method, the cost function that takes the length of boundary
of features determined by the cut mask into account is introduced to obtain an overlay tolerant LELECUT
assignment.

2. PRELIMINARIES

2.1 Problem Definition

Let P = {p1, p2, . . . , pn} be the set of polygons in a target pattern. A polygon may represent a polygon
decomposed by given stitch candidates. A stitch edge is defined between two polygons if and only if two
polygons are decomposed by a stitch candidate. A polygon conflict edge is defined between two polygons if and
only if two polygons are too close to assign the same mask. A cut candidate is defined between two polygons
connected by a polygon conflict edge if and only if they can be cut by the cut mask when they are assigned to
the same mask. A cut candidate c has a cost l(c) which is defined by the length of boundary between polygons
in the target pattern and the cut candidate. A cut candidate may not be independent of other cut candidates. A
cut conflict edge is defined between two cut candidates if and only if they cannot be used simultaneously. Note
that even if the distance between two cut candidates is not long enough, they can be used simultaneously if they
can be merged into one. A cut conflict edge is not defined between two cut candidates if the distance between
them is long enough or if they can be merged into one without affecting the critical dimension of pattern. Let
S, CP , T , and CT be the set of stitch edges, the set of polygon conflict edges, the set of cut candidates, and the
set of cut conflict edges, respectively. Note that both the set of stitch edges S and the set of polygon conflict
edges CP are families of unordered pairs of polygons in P , the set of cut candidates T is a sub-set of the set of
polygon conflict edges CP , and the set of cut conflict edges CT is a family of unordered pairs of cut candidates
in T .

Fig. 2 shows an example of problem. In this example, P = {p1, p2, p3, p4}, S = {{p3, p4}}, CP = T =
{c1, c2, c3, c4, c5}, where c1 = {p1, p3}, c2 = {p1, p4}, c3 = {p1, p2}, c4 = {p2, p3}, and c5 = {p2, p4} with
costs l(c1) = 2, l(c2) = 2, l(c3) = 1, l(c4) = 2, and l(c5) = 2. The set of cut conflict edges is given by
CT = {{c1, c2}, {c1, c3}, {c2, c3}, {c3, c4}, {c3, c5}, {c4, c5}}.

In this paper, a polygon is assigned to one of two masks except the cut mask. The problem of finding an
assignment of polygons, and/or two-coloring, is essentially equivalent to a maximum cut problem. We employ a
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Figure 2. Polygons with stitch and cut candidates.

{−1, 1} formulation represented by function x : P → {−1, 1}, which is introduced by Goemans and Williamson
in24 for a max cut problem. This formulation naturally yields a positive semidefinite relaxation appearing in
a later section. For two-coloring x, the set of polygon conflict edges that connect the same color polygons is
represented by

CP (x)
def.
= {{p, q} ∈ CP | x(p) = x(q)}.

Similarly, the set of stitch candidates that connect the different color polygons is represented by

S(x)
def.
= {{p, q} ∈ S | x(p) ̸= x(q)}.

The set of feasible cuts for two-coloring x is a subset of CP (x)∩ T and an independent set of cut graph (T,CT ).
The problem we consider is given as follows:

P1: minimize

α1|CP (x) \ T ′|+ α2|S(x)|+ α3

∑
c∈T ′

l(c)

= α1|CP (x)|+ α2|S(x)| − α1

∑
c∈T ′

1 + α3

∑
c∈T ′

l(c)

= α1|CP (x)|+ α2|S(x)|+
∑
c∈T ′

(α3l(c)− α1)

subject to

• x(p) ∈ {−1, 1} (∀p ∈ P ),

• T ′ ⊆ CP (x) ∩ T ,

• T ′ is an independent set of cut graph (T,CT ).

In this formulation, the weighted sum of the number of unresolved conflict edges, the number of caused stitches,
and the total cost of used cut candidates is minimized. In the following, we assume that α1 ≥ α2 ≥ 0 and
α1 ≥ α3l(c) ≥ 0. According to this assumption, the total cost of used cut candidates is minimized under the
condition that the number of conflict edges that connect the same polygons is minimized and the number of used
cut candidates is maximized.

Fig. 3 shows examples of mask assignments. The mask assignment shown in Fig. 3 (a) has two cuts with
total cost 4 and one stitch. On the other hand, that shown in Fig. 3 (b) has one cut with total cost 1. Obviously,
the mask assignment shown in Fig. 3 (b) is better than that shown in Fig. 3 (a).

2.2 Maximum Independent Set with Minimum Total Cost Problem

For a given two-coloring x : P → {−1, 1}, the problem P1 is equivalent to a maximum independent set with
minimum total cost problem MISMTCP1 since we assume α1 ≥ α3l(c).
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(a) Two cuts with total cost 4 and one stitch. (b) One cut with total cost 1.
Figure 3. Mask assignments for layout in Fig. 2.

Step 1: Formulate a positive semidefinite relaxation SDP-L.

Step 2: Solve SDP-L by SDP solver.

Step 3: Obtain a mask assignment by randomized rounding algorithm with iterative improvement.

Figure 4. Outline of the proposed method.

MISMTCP1: maximize ∑
c∈T ′

(1− αl(c))

subject to

• αl(c) < 1,

• T ′ ⊆ CP (x) ∩ T ,

• T ′ is an independent set of cut graph (T,CT ).

A maximum independent set with minimum total cost problem is known to be NP-hard. In this paper, the
following 0-1 integer linear programming MISMTCP2 is formulated by introducing 0-1 variable y(c).

MISMTCP2: maximize ∑
c∈T

y(c) · (1− αl(c))

subject to

y(c) ∈ {0, 1} (∀c ∈ T ), (1)

y(c) + y(c′) ≤ 1 (∀{c, c′} ∈ CT ), (2)

y(c) = 0 (∀c ∈ T \ CP (x)). (3)

3. POSITIVE SEMIDEFINITE RELAXATION

3.1 Outline of Proposed Method

The outline of the proposed method is shown in Fig. 4. The proposed method is based on the method proposed
in.20 In the proposed method, a positive semidefinite relaxation of P1 called SDP-L is formulated and a mask
assignment is obtained from an optimum solution of the relaxation by randomized rounding technique with
iterative improvement. It is well-known that a positive semidefinite programming problem can be solved by
interior point methods in polynomial time.
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3.2 Our Semidefinite Relaxation

In this subsection, we introduce a positive semidefinite relaxation of P1. Our relaxation is an enhancement of the
formulation proposed by Goemans and Williamson24 for a max cut problem to handle a maximum independent
set with minimum total cost.

First, we represent the objective function of P1 as a linear function. An arbitrary two-coloring x : P →
{−1, 1}, satisfies: x(p) = x(q) ↔ x(p)x(q) = 1 and x(p) ̸= x(q) ↔ x(p)x(q) = −1. By using these properties,
|CP (x)| and |S(x)| are represented in terms of x as follows:

|CP (x)| =
∑

{p,q}∈CP

(
x(p)x(q)

2
+

1

2

)

|S(x)| =
∑

{p,q}∈S

(
−x(p)x(q)

2
+

1

2

)
.

Let X be the n× n matrix whose (p, q)-th element is Xpq = x(p)x(q) (∀p,∀q ∈ P ). Let C and S be matrixes
that represent polygon conflicts and stitch candidates, respectively. That is, C and S are the n × n symmetric
matrixes, and

Cpq =


1

4
({p, q} ∈ CP ),

0 ({p, q} ̸∈ CP ),
Spq =


1

4
({u, v} ∈ S),

0 ({u, v} ̸∈ S),

respectively. Then, we have

|CP (x)| =
∑

{p,q}∈CP

(
x(p)x(q)

2
+

1

2

)
= C •X + const,

|S(x)| =
∑

{p,q}∈S

(
−x(p)x(q)

2
+

1

2

)
= −S •X + const,

where M •M ′ is defined as
∑

i

∑
j MijM

′
ij for square matrixes M and M ′ of the same size. Let y(c) be a 0-1

variable for a cut candidate c. c is assigned to the cut mask, if and only if y(c) = 1. Then, we have∑
c∈T ′

(α3l(c)− α1) =
∑
c∈T

y(c) · (α3l(c)− α1).

Therefore, the objective function of P1 is represented as

α1(C •X)− α2(S •X) +
∑
c∈T

y(c) · (α3l(c)− α1) + const. (4)

Note that C and S are constant matrixes.

Next, constraints of P1 are represented as linear functions in terms of X and y. Constraint (3) in MISMTCP2
is represented as

0 ≤ y(c) ≤
{

1 (if c ∈ T ∩ CP (x)),
0 (if c ∈ T \ CP (x)).

Then, constraint (3) is represented by using two-coloring x as follows:

0 ≤ y(c) ≤ x(p)x(q)

2
+

1

2
(∀c = {p, q} ∈ T ).

The representations of other constraints are straightforward, and P1 is represented as follows:
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P2: minimize
α1(C •X)− α2(S •X) +

∑
c∈T

y(c) · (α3l(c)− α1)

subject to

Xpq = x(p)x(q) (∀(p, q) ∈ P 2), (5)

x(p) ∈ {−1, 1} (∀p ∈ P ), (6)

y(c) ∈ {0, 1} (∀c ∈ T ), (7)

y(c) + y(c′) ≤ 1 (∀{c, c′} ∈ CT ),

0 ≤ y(c) ≤ x(p)x(q)

2
+

1

2
(∀c = {p, q} ∈ T ).

The objective function of P2 is obtained from Eq. (4) by removing constant term. Note that Xpp = 1 for all
p ∈ P .

Since X in P2 is a positive semidefinite symmetric matrix, the problem P2 has a positive semidefinite
programming relaxation as follows. Let Sn

+ be the set of n × n positive semidefinite symmetric matrix. A
positive semidefinite relaxation problem SDP-L is obtained from P2 by restricting X within Sn

+ and ignoring 0-1
constraints for y, instead of constraints (5), (6), and (7).

SDP-L: minimize
α1(C •X)− α2(S •X) +

∑
c∈T

y(c) · (α3l(c)− α1)

subject to

Xpp = 1 (∀p ∈ P ),

y(c) + y(c′) ≤ 1 (∀{c, c′} ∈ CT ),

0 ≤ y(c) ≤ 1

2
Xpq +

1

2
(∀c = {p, q} ∈ T ),

X ∈ Sn
+.

SDP-L is a positive semidefinite programming problem and can be solved by interior point methods in polynomial
time.

3.3 Randomized Rounding for LELECUT

In this subsection, we propose a randomized rounding technique based on the hyper-plane separation technique
proposed by Goemans and Wiiliamson,24 which gives 0.878 approximation algorithm for a max cut problem.
The randomized rounding technique is based on the method proposed in,20 and the iterative improvement is
applied as post-processing.

For any positive semidefinite symmetric matrix X ∈ Sn
+, there exists a matrix Z satisfying X = Z⊤Z. This

decomposition is called Cholesky decomposition.

We solve problem SDP-L by a SDP solver and obtain an optimal solution (X̃, ỹ) for SDP-L. Let Z̃⊤Z̃ be

the Cholesky decomposition of X̃ and d be the number of rows of Z̃. Here we note that columns of Z̃ are
indexed by polygons in P and the length of every column vector is equal to 1. For each polygon p ∈ P ,
vector z̃(p) ∈ Rd denotes the corresponding column vector of Z̃. Algorithm RR shown in Fig. 5 outputs a

two coloring x̃ : P → {−1, 1} and the set T̃ of cuts. The mask assignment is modified by the greedy iterative
improvement so that better solutions are obtained. The quality of the obtained mask assignment depends on
the generated random unit vector and the runtime of Algorithm RR is very small. Therefore, Algorithm RR is
repeated appropriate times and the best mask assignment is output. During the repetition, we might choose a
comfortable mask assignment as well.
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Algorithm RR

Step 1: Generate a random unit vector u ∈ Rd (satisfying ||u|| = 1).

Step 2: For each polygon p ∈ P , set x̃(p) =

{
1 (if u⊤z̃(p) > 0),
−1 (otherwise).

Step 3: Construct a subgraph G̃ of cut graph (T,CT ) induced by vertex subset CP (x̃) ∩ T . Find a maximal

independent set S̃ of G̃ by employing a heuristic algorithm for maximum independent set with minimum
total cost problem.

Step 4: Apply the greedy iterative improvement in which mask assignment of a polygon is changed and a heuristic
algorithm for maximum independent set with minimum total cost problem is applied until the solution is not
improved.

Figure 5. Randomized Rounding Algorithm.

Table 1. Experimental results. The obtained mask assignments have no polygon conflicts and cut conflicts in ILP-#,
ILP-L, SDP-#, and SDP-L Imp. The units of cost and time are [nm] and [s], respectively.

# comp ILP-# ILP-L SDP-# SDP-L SDP-L Imp
circuit |P | # Seg |CP | total target |T | |T ′| cost time |T ′| cost time |T ′| cost time |T ′| |CP (x)| cost time |T ′| cost time
c432 850 4918 540 414 1 12 1 40 0.01 1 40 0.01 1 40 0 1 0 40 0 1 40 0
c499 1491 9518 1489 502 50 278 58 2720 0.42 58 2720 0.45 58 6030 0.12 62 0 2940 0.12 58 2720 0.15
c880 1872 10666 1422 717 168 934 172 11720 2.46 198 10390 6.25 172 20590 0.44 202 2 11105 0.35 198 10390 0.51
c1355 2656 15246 1514 1328 76 514 90 9760 1.10 122 8320 6.10 90 13230 0.27 130 2 9635 0.17 122 8320 0.37
c1908 4191 24370 3141 1733 182 1462 211 37700 5.77 373 30410 24.34 211 41140 0.73 411 13 36600 0.43 373 30410 1.37
c2670 6371 37564 5802 2056 585 4298 686 76950 10.52 958 64710 38.98 686 101975 2.32 1069 66 84540 1.39 952 65775 5.26
c3540 8188 47244 6897 2896 775 4794 821 73560 11.06 1044 63445 29.61 821 111330 2.24 1090 11 72630 1.47 1044 63445 3.02
c5315 11498 68476 10097 3926 1193 7552 1259 108290 17.52 1572 93965 53.23 1259 162510 3.59 1647 13 106280 2.33 1572 93965 4.11
c6288 11605 64762 5602 6259 256 1282 256 10320 2.39 256 10240 2.33 256 29840 0.66 256 0 10240 0.45 256 10240 0.66
c7552 17167 99526 14027 6258 1448 9325 1587 162980 20.02 2122 138905 89.62 1587 221025 4.47 2243 23 159505 3.01 2122 138905 6.12
ave. 0.82 1.12 0.50 (1) (1) (1) 0.82 1.77 0.09 1.05 1.12 0.07 1.00 1.00 0.12

|P | the number of polygons
# Seg the number of line segments
|CP | the number of polygon conflict edges
total the number of components in the conflict graph (P,CP )

target the number of components in the conflict graph (P,CP ) in which cuts must be inserted
|T | the number of cut candidates in the target components
|T ′| the number of inserted cuts

|CP (x)| the number of conflicts in the obtained mask assignment
cost the total cost of cuts in the obtained mask assignment
time computational time
ave. the average normalized by ILP-L

4. EXPERIMENTS

Our proposed mask assignment method is implemented by using a SDP solver and C++ language. We compare
the following five methods. ILP-# and ILP-L are ILP formulations based on19 which minimizes the number of
cuts and minimizes the total cost of cuts, respectively. SDP-# is the positive semidefinite relaxation proposed
in20 which minimizes the number of cuts. SDP-L Imp and SDP-L are the proposed methods. SDP-L Imp applies
the greedy iterative improvement as post-processing and SDP-L does not. The methods are executed on a Linux
machine with 12 GB memory by using Intel core i7-3770 of 3.40 GHz. In our implementation, SDP problems are
solved by SDPA 7.3.825 which is a free tool. On the other hand, ILP problems are solved by CPLEX 12.6.126

which is one of the most famous commercial ILP solvers. In these methods, a speedup technique in which
the conflict graph (P, S ∩ CP ) is decomposed into connected components is adopted. This speedup technique
is discussed in many previous studies.1–3,5, 6, 19,20 In this experiment, we do not prepare stitch candidates to
focus on observing the total cost, the number of cuts, and the number of conflicts. The parameters in objective
functions are set to α1 = 106 and α3 = 1. α1 = 106 is much larger than cut costs. Algorithm RR is applied 100
times in SDP-#, SDP-L, and SDP-L Imp.

ISCAS benchmarks which were used in3,5 are used. The benchmarks are reproduced from the information
given by authors of3,5 and from figures in,3 though we could not obtain the same data. We followed the
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parameters as in,3,5 where the minimum polygon space in a mask is 54 nm. If stitches are allowed to be inserted,
the mask assignment without cuts is obtained. Therefore, we also do not insert stitches in this experiment.
Table 1 shows the results. Note that the mask assignments obtained by all methods except SDP-L have no
polygon conflicts and cut conflicts. Since the minimization of the total cost is added into the objective function
of ILP-L, the total cost obtained by ILP-L is optimum. Similarly, since the minimization of cuts is added into the
objective function of ILP-#, the number of cuts obtained by ILP-# is optimum. Although ILP-# and SDP-#
obtain mask assignments with the minimum number of cuts, the total cost of the mask assignment obtained
by them is larger than that by ILP-L since the minimization of cuts does not corresponds to that of the total
cost. Although SDP-L is fast, it obtains mask assignments with conflicts. The total cost of the mask assignment
obtained by SDP-L Imp is the same as that by ILP-L in nine circuits of ten circuits. Moreover, SDP-L Imp
is much faster than ILP-L. Consequently, SDP-L Imp obtains optimum solutions in the shortest computational
time in almost all circuits.

5. CONCLUSIONS

In this paper, we propose a fast LELECUT mask assignment method to be tolerant to overlay error. The
proposed method applies a positive semidefinite relaxation. The experimental results show the efficiency and the
validity of the proposed method. We will take the mask density balance, stitch direction, and etc. into account
to improve the quality of the mask assignment in our future works.
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