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The phase description is a powerful tool for analyzing noisy limit-cycle oscillators. The method,

however, has found only limited applications so far, because the present theory is applicable only to

Gaussian noise while noise in the real world often has non-Gaussian statistics. Here, we provide the phase

reduction method for limit-cycle oscillators subject to general, colored and non-Gaussian, noise including

a heavy-tailed one. We derive quantifiers like mean frequency, diffusion constant, and the Lyapunov

exponent to confirm consistency of the results. Applying our results, we additionally study a resonance

between the phase and noise.

DOI: 10.1103/PhysRevLett.105.154101 PACS numbers: 05.45.Xt, 05.40.�a, 02.50.Ey

Limit-cycle oscillators effectively model various sus-
tained oscillations in many fields of science and technology
including chemical reactions, biology, electric circuits, and
lasers [1–4]. The phase reduction method is a powerful
analytical tool which approximates high-dimensional dy-
namics of limit-cycle oscillators with a single phase vari-
able that characterizes timing of oscillation [1,5]. Since the
phase is neutrally stable, phase perturbations persist in time
and result in various remarkable phenomena where weak
action leads to significant effects, such as those addressed in
the theory of synchronization [6,7]. While the theory of the
phase reduction had been developed for deterministic os-
cillators, recent studies successfully extended the theory to
limit-cycle oscillators subject to noise [8–10] and revealed
that interplay between nonlinearity and noise results in
fascinating noise-induced phenomena including frequency
modulation and noise-induced synchronization [11,12].

This extended phase reduction method, however, has
found limited applications so far, since the method is
applicable only to Gaussian noise. While the noise in the
real world often has non-Gaussian statistics, few theories
have considered nonlinear systems subject to general non-
Gaussian noise, which has forced people to use the
Gaussian approximation. In particular, whether the phase
description is still valid for oscillators subject to non-
Gaussian noise and how quantifiers of the phase dynamics
should be amended remains unknown. In this Letter, we
develop the phase reduction method for limit-cycle oscil-
lators subject to general, colored and non-Gaussian noise.
By correctly evaluating the influence of amplitude pertur-
bations up to second order in the noise strength, we derive
the stochastic differential equation of phase, which allows
us to study nonlinear oscillations in the real world without
the Gaussian approximation. To confirm consistency of the
result, we derive closed expressions of quantifiers of the

phase dynamics such as mean frequency, phase diffusion
constant, and the Lyapunov exponent. The only limitation
we impose is the weakness of the noise. Thus, the obtained
results are applicable even when higher order moments of
the noise diverge as long as the second order moment is
finite and we confirm this fact numerically. As an applica-
tion of the results, we study a limit-cycle oscillator driven
by a phase noise with a finite correlation time and show that
amended quantifiers precisely predict resonance between
phase and the noise.
We start with the case of a two-dimensional limit-cycle

oscillator and then extend our results to higher dimensions
and multicomponent noise. One can describe the evolution
of the system subject to noise in terms of the phase � and
the amplitude deviation r from the limit cycle [10,13];

_� ¼ !þ �fð�; rÞ�ðtÞ; (1)

_r ¼ ��rþ �gð�; rÞ�ðtÞ; (2)

here ! is the cyclic frequency of unperturbed oscillations;
� :¼ �ð!=2�Þ ln� and � is the Floquet multiplier of the
cycle, i.e., � is the average amplitude relaxation rate; �ðtÞ
is a normalized noise; � � 1 is the noise amplitude;
fð�; rÞ and gð�; rÞ are 2�-periodic in � and represent
sensitivity of the phase and amplitude, respectively, to
noise. The amplitude deviation is nonuniformly scaled so
that Eq. (2) is not an approximation, but uniformly valid
over the basin of attraction of the limit cycle, as we
rigorously show in the supplementary material [13].
We use � as an expansion parameter; �ðtÞ ¼ �0ðtÞ þ

��1ðtÞ þ �2�2ðtÞ þ � � � , rðtÞ ¼ �r1ðtÞ þ �2r2ðtÞ þ � � � ,
fð�; rÞ ¼ f0ð�Þ þ f1ð�Þrþ � � � , and gð�; rÞ ¼ g0ð�Þ þ
g1ð�Þrþ � � � . From Eqs. (1) and (2), �0ðtÞ ¼ !t, _�1 ¼
f0ð�0ðtÞÞ�ðtÞ, and _r1 ¼ ��r1 þ g0ð�0ðtÞÞ�ðtÞ; the latter
two formulae provide
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�1ðtÞ ¼
Z t

�1
f0ð�0ðt1ÞÞ�ðt1Þdt1; (3)

r1ðtÞ ¼
Z þ1

0
g0ð�0ðtÞ �!�Þ�ðt� �Þe���d�: (4)

Meanwhile, the expansion of Eq. (1) reads

_� ¼ !þ �f0ð�0Þ�þ �2½f00ð�0Þ�1�þ f1ð�0Þr1��
þOð�3Þ;

here prime denotes derivative with respect to �. The right-
hand part of the latter equation except for the term propor-
tional to f1ð�Þ is merely the expansion of Eq. (1) with
fð�; rÞ replaced by fð�; 0Þ. Therefore, we can keep the
equation unexpanded with respect to � but add the correc-
tion owing to r1ðtÞ;

_� ¼ !þ �f0ð�Þ�ðtÞ þ �2f1ð�0Þr1�ðtÞ þOð�3Þ:
�2f1ð�0Þr1�ðtÞ is small in comparison to �f0ð�Þ�ðtÞ, but
makes an average contribution of the same order (because

h _�1i ¼ 0). Thus, the fluctuating part of this term is not
principal and may be omitted;

_� � !þ �f0ð�Þ�ðtÞ þ h�2f1ð�0Þr1�ðtÞi:
Employing expression (4) for r1, we obtain

hf1ð�0Þr1�ðtÞi ¼ f1ð�0ðtÞÞ
Z þ1

0
g0ð�0ðtÞ �!�Þ

� Cð�Þe���d�;

where Cð�Þ :¼ h�ðtÞ�ðt� �Þi is the noise autocorrelation
function. Finally, the reduced phase equation up to the
leading contributions reads

_� ¼ !þ �f0ð�Þ�ðtÞ

þ �2

!
f1ð�Þ

Z þ1

0
g0ð�� c ÞC

�
c

!

�
e�ð�=!Þcdc : (5)

Here � is replaced with c =!; the corrections to _� caused
by replacement of�0 with� in the integrand are / �3 and
thus negligible.

For Ornstein-Uhlenbeck (OU) noise, Cð�Þ ¼
� expð��j�jÞ, the reduced phase Eq. (5) takes the form

_� ¼ !þ �f0ð�Þ�ðtÞ

þ �2�

!
f1ð�Þ

Z þ1

0
g0ð�� c Þe�½ð�þ�Þ=!�cdc ;

which coincides with the one presented in Ref. [10] and
implies the corresponding results of Refs. [8,9,14]. While
Ref. [9] considers the case of Gaussian noise, a highly
stable limit cycle and short noise correlation times and
Ref. [10] is limited to the case of OU noise, the present
theory includes their results (as special cases) and addi-
tionally allows dealing with non-Gaussian noise, arbitrary
noise autocorrelation functions (including signals of cha-
otic oscillators) and arbitrary rate of amplitude relaxation.

The procedure for deriving the reduced phase equation
suggests that this equation will provide the correct proba-

bility density function for � and mean frequency� � h _�i
up to Oð�2Þ;

� ¼ !þ �2

!

�
f00ð�Þ

Z þ1

0
f0ð�� c ÞC

�
c

!

�
dc

�
�

þ �2

!

�
f1ð�Þ

Z þ1

0
g0ð�� c ÞC

�
c

!

�
e�ð�=!Þc dc

�
�

(6)

[henceforth, h� � �i� � ð2�Þ�1
R
2�
0 . . . d�]. The noise can

either increase or decrease the mean frequency, depending
on features of correlation function Cð�Þ, sensitivity func-
tions, and the cycle stability (e.g., see Fig. 2). However, one
should verify whether the more subtle quantities—the
phase diffusion constant D and the leading Lyapunov ex-
ponent �0—can be correctly evaluated from Eq. (5).
The principal contributions to the phase diffusion are

readily determined from Eq. (5); indeed,

D¼
Z þ1

�1
h½ _�ðtÞ � h _�i�½ _�ðtþ �Þ � h _�i�id�

¼ �2
Z þ1

�1
h _�1ðtÞ _�1ðtþ �Þid�þOð�4Þ

¼ �2

2�

Z 2�

0
d�

Z þ1

�1
d�f0ð�Þf0ð�þ!�ÞCð�Þ þOð�4Þ;

(7)

_�1ðtÞ [Eq. (3)] is precisely determined by terms accounted
in Eq. (5); therefore, Eq. (7) is completely consistent with
the reduced phase equation. Interestingly, up to the leading
order of accuracy the phase diffusion is not affected by
the extra amplitude terms. Thus, for instance, the analytical
results and important conclusions of Refs. [15,16] for
limit-cycle oscillators subject to weak noise and delayed
feedback control remain correct.
For the leading Lyapunov exponent, the situation is more

subtle. To deal with it rigorously, we consider a small
perturbation (� ¼ �0 exp½	ðtÞ�, s) to the solution [�ðtÞ,
rðtÞ] of Eqs. (1) and (2). We have

_	 ¼ �ðf00ð�ðtÞÞþ rðtÞf01ð�ðtÞÞÞ�ðtÞ
þ �f1ð�ðtÞÞ s

�0

�ðtÞe�	;

_s ¼ ��sþ �g00ð�ðtÞÞ�0e
	�ðtÞ þ �g1ð�ðtÞÞs�ðtÞ;

and employ the standard multiscale method adopting
	ðtÞ ¼ 	ðt0; t2; . . .Þ, d=dt ¼ @=@t0 þ �2@=@t2 þ � � � , etc.
After some calculations, one finds the expression for the
leading Lyapunov exponent �0 :¼ h _	i up to Oð�2Þ:
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�0 ¼ �2

!

�
f000 ð�Þ

Z þ1

0
f0ð�� c ÞC

�
c

!

�
dc þ @

@�

�
f1ð�Þ

�
Z þ1

0
g0ð�� c ÞC

�
c

!

�
e�ð�c =!Þdc

��
�
þOð�4Þ

¼ ��2

!

�
f00ð�Þ

Z þ1

0
f00ð�� c ÞC

�
c

!

�
dc

�
�
þOð�4Þ;

(8)

which is consistent with the phase equation (5). Note, in
the latter equations, the amplitude degree of freedom,
which was disregarded in previous works, impacts the
instantaneous growth rate of perturbations, but averages
out to zero. Thus, on the one hand, our results demonstrate
the importance of amplitude degrees of freedom for the
stability of response of a general limit-cycle oscillator even
in the limit of vanishing noise; on the other hand, its
average impact turns out to be zero up to the leading order
of accuracy for general noise, proving that analytical cal-
culations and conclusions presented in Refs. [12,16] are
valid for real situations. Notice, the negative Lyapunov
exponent and its decrease with increase of the noise
strength are related to the stability of the noisy system
response in sense that it attracts trajectories (the phenome-
non is known as noise-induced synchronization), but this
does not mean that the response is regular due to the
nonzero phase diffusion.

All the results can be extended in a straightforward
manner to the case of an N-dimensional dynamical system
subject to M-component noise;

_� ¼ !þ XM

¼1

�
�
f
ð�; 0Þ�
ðtÞ þ

XN�1

j¼1

�2



!

�
@f
ð�; rÞ

@rj

�
r¼0

�
Z þ1

0
g
;jð�� c ; 0ÞC


�
c

!

�
e�ð�jc =!Þdc

�
; (9)

D ¼ XM

¼1

�2



!

�
f
ð�; 0Þ

Z þ1

�1
f
ð�� c ; 0ÞC


�
c

!

�
dc

�
�
;

(10)

�0 ¼ � XM

¼1

�2



!

�
@f
ð�; 0Þ

@�

Z þ1

0

@f
ð�� c ; 0Þ
@�

� C


�
c

!

�
dc

�
�
: (11)

Here 
 indexes noise components, j does the degrees of
freedom transversal to the limit cycle.

Now, we address the issue of applicability of our results
for noise with diverging higher moments. Although the
derived expressions involve only second moments of the
noise, one has to check that possible divergence of higher
moments does not break the entire expansion and influence
�, D, and �0 in the main order.

For this reason we performed numerical simulation of a
Hopf oscillator subject to colored noise �ðtÞ:

_A ¼ iAþ ð�=2Þð1� jAj2ÞAþ ��; (12)

_� ¼ ��1
� ½��þ sð�Þ�ðtÞ�; (13)

where A is complex, the noise acts only on ReðAÞ, �ðtÞ is
Gaussian white noise: h�ðtÞ�ðt0Þi ¼ 2�ðt� t0Þ. We con-
sider normalized noises �ðtÞ (h�2i ¼ 1) with three kinds

of distribution Vð�Þ: (1) Gaussian, V1ð�Þ ¼ ð2�Þ�1=2 �
expð��2=4Þ; (2) exponential, V2ð�Þ ¼ ð1=4Þ�
expð�j�j=2Þ, which has nonzero but still finite higher
cumulants; and (3) fractional rational function, V3ð�Þ ¼
��1ð1þ �2Þ�2, for which h�2ni is finite only for n ¼ 1.
These noises are generated with employment of s1ð�Þ ¼ 1,

s2ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4þ j�j=2p

, and s3ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ �2Þ=3p

in
Eq. (13). For the oscillator (12), one finds f0 ¼ � sin�,
f1 ¼ �f0 ¼ sin�, and g0 ¼ cos�; therefore,

� ¼ 1� �2

2

Z 1

0
ðsinc Þð1� e��c ÞCðc Þdc ; (14)

D ¼ �2�0 ¼ �2
Z 1

0
ðcosc ÞCðc Þdc : (15)

For exponential and fractional rational distributions, the
correlation function Cð�Þ was calculated numerically. In
Fig. 1 one can see that the analytical theory is in fairly good
agreement with results of numerical simulation both for
noises with all moments finite [(b), (c)] and for one with
infinite h�4i (d). For the latter case the analytical theory is
practically no less accurate than for the former ones.

(a) (b)

(c) (d)

FIG. 1 (color online). Hopf oscillator (12) subject to different
noises; here �� ¼ 1 and � ¼ 2. (a) Correlation function Cð�Þ for
Ornstein-Uhlenbeck noise, which is Gaussian, (red circles) and
noises with exponential (blue squares) and fractional rational
(green diamonds) distributions. (b)–(d) The numerically calcu-
lated mean frequency (red circles) and Lyapunov exponent (blue
squares) are in good agreement with Eqs. (14) and (15) (solid
lines) for OU noise (b) and noises with exponential (c) and
fractional rational (d) distributions.
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Another important particular opportunity yielded by the
theory we developed is the treatment of the effect of the

phase noise, �ðtÞ ¼ ffiffiffi
2

p
cos½!0tþ ffiffiffiffi

�
p R

t �ðt1Þdt1�. With

the noise autocorrelation function Cð�Þ ¼ cosð!0�Þ�
expð��j�jÞ one can evaluate quantifiers, � and �0.
In Fig. 2 the results of numerical simulation for the Hopf
oscillator [Eq. (12)] subject to the phase noise are com-
pared to the analytical theory. Two points are worth em-
phasizing here: (i) Now we have the phase description for
general oscillators subject to noise which is the represen-
tative of signals of chaotic and stochastic oscillators. This
is important because it provides us with a tool to analyti-
cally investigate the synchronizing action of another oscil-
lator (either chaotic or stochastic) on the system under
consideration in general. (ii) The amplitude degree of free-
dom is essential here: in the graph for the frequency
(Fig. 2), one can see how the analytical theory neglecting
the amplitude perturbations (dashed line) is far from
the real observations fairly fitted by the theory we have
developed. The most remarkable effects here are observed
when the characteristic noise correlation time 2�=!0 is
commensurable with the natural oscillation period of the
system, that is nonsmall, meanwhile the earlier studies
were not able to deal with such a case.

Summarizing, we have derived the reduced phase equa-
tion for limit-cycle oscillators subject to general non-
Gaussian noise. The derived phase equation correctly
provides the mean frequency, the phase diffusion constant,
and the Lyapunov exponent. Since the noise-induced shift
of the mean frequency means the shift of the resonant
frequency for entrainment by external forcing [8,10], our
result for mean frequency is immediately relevant for
all investigations concerning collective phenomena in net-
works of coupled oscillators, e.g., [1,4,17], where noise is
unavoidably present. In particular, the theory is valid for
noise which is the representative of signals of chaotic and
stochastic oscillators and thus may provide an accurate
analytical tool to investigate their synchronizing action.
For the Lyapunov exponent, importance of the amplitude
degrees of freedom has been proven, though their average
impact on the system stability vanishes in the leading order
of accuracy. This implies that the analytical theories in

earlier studies on the phase diffusion and the Lyapunov
exponent, where the amplitude degree of freedom was
disregarded (e.g., [12]), remain generally correct. The the-
ory provides opportunity for analytical investigation of the
reliability of neurons [18] and consistency of lasers [19] as
well as the quality of clocks, electric generators, lasers, etc.
for general noise and general limit-cycle oscillators.
D. S. G. acknowledges support from CRDF (Grant

No. Y5P0901). J.-N. T. acknowledges support from JST
PRESTO and MEXT Japan (No. 20700304). H.N. thanks
MEXT, Japan (Grant No. 22684020). G. B. E. acknowl-
edges support from NSF DMS 0817131.

[1] Y. Kuramoto, Chemical Oscillations, Waves and
Turbulence (Dover, New York, 2003).

[2] B. T. Grenfell et al., Nature (London) 394, 674 (1998).
[3] T. Danino et al., Nature (London) 463, 326 (2010).
[4] M.G. Rosenblum and A. S. Pikovsky, Phys. Rev. Lett. 92,

114102 (2004); O.V. Popovych, C. Hauptmann, and
P. A. Tass, Biol. Cybern. 95, 69 (2006); N. Tukhlina et al.,
Phys. Rev. E 75, 011918 (2007).

[5] A. T. Winfree, J. Theor. Biol. 16, 15 (1967).
[6] A. Pikovsky, M. Rosenblum, and J. Kurths,

Synchronization: A Universal Concept in Nonlinear
Sciences (Cambridge University Press, Cambridge, 2003).

[7] Ch. Zhou et al., Phys. Rev. Lett. 89, 014101 (2002).
[8] K. Yoshimura and K. Arai, Phys. Rev. Lett. 101, 154101

(2008).
[9] J. N. Teramae, H. Nakao, and G. B. Ermentrout, Phys. Rev.

Lett. 102, 194102 (2009).
[10] K. Yoshimura, in Reviews of Nonlinear Dynamics and

Complexity, edited by H.G. Schuster (Wiley-VCH,
Weinheim, 2010), Vol. 3, pp. 59–90.

[11] A. S. Pikovsky, Radiophys. Quantum Electron. 27, 390
(1984); D. S. Goldobin and A. Pikovsky, Phys. Rev. E 71,
045201(R) (2005); 73, 061906 (2006); S. Wieczorek,
Phys. Rev. E 79, 036209 (2009).

[12] J. Ritt, Phys. Rev. E 68, 041915 (2003); J. N. Teramae and
D. Tanaka, Phys. Rev. Lett. 93, 204103 (2004); K.
Pakdaman and D. Mestivier, Physica D (Amsterdam)
192, 123 (2004); D. S. Goldobin and A. S. Pikovsky,
Physica A (Amsterdam) 351, 126 (2005); H. Nakao, K.
Arai, and Y. Kawamura, Phys. Rev. Lett. 98, 184101
(2007); R. F. Galán, G. B. Ermentrout, and N.N. Urban,
J. Neurophysiol. 99, 277 (2007).

[13] See supplementary material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.105.154101.

[14] R. F. Galán, Phys. Rev. E 80, 036113 (2009).
[15] D. Goldobin,M. Rosenblum, andA. Pikovsky, Phys. Rev. E

67, 061119 (2003); Physica (Amsterdam) 327A , 124
(2003).

[16] D. S. Goldobin, Phys. Rev. E 78, 060104(R) (2008).
[17] J. D. Crawford, J. Stat. Phys. 74, 1047 (1994); D. S.

Goldobin and A. Pikovsky, Prog. Theor. Phys. Suppl.
161, 43 (2006); Yu. Maistrenko et al., Phys. Rev. Lett.
93, 084102 (2004).

[18] Z. F.Mainen andT. J. Sejnowski, Science 268, 1503 (1995).
[19] A. Uchida, R. McAllister, and R. Roy, Phys. Rev. Lett. 93,

244102 (2004).

(a) (b)

FIG. 2 (color online). Hopf oscillator (12) subject to phase
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2
p

cos½!0tþ ffiffiffiffi
�

p R
t �ðt1Þdt1� for � ¼ 0:1, � ¼

0:125, � ¼ 0:4. Circles: numerical simulation, solid line: ana-
lytical theory [Eqs. (14) and (15)], dashed line: analytical theory
disregarding the amplitude degree of freedom.
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