
論文 / 著書情報
Article / Book Information

Title Collective-phase description of coupled oscillators with general network
structure

Authors Hiroshi Kori, Yoji Kawamura, Hiroya Nakao, Kensuke Arai, Yoshiki
Kuramoto

Citation Physical Review E, Vol. 80, No. 3,  pp. 036207

Pub. date 2009,  9

Journal URL  http://journals.aps.org/pre/

Copyright  Copyright (C) 2009 American Physical Society

Powered by T2R2 (Science Tokyo Research Repository)

http://journals.aps.org/pre/
http://t2r2.star.titech.ac.jp/


Collective-phase description of coupled oscillators with general network structure

Hiroshi Kori,1,2,* Yoji Kawamura,3 Hiroya Nakao,4 Kensuke Arai,5 and Yoshiki Kuramoto6,7

1Division of Advanced Sciences, Ochadai Academic Production, Ochanomizu University, Tokyo 112-8610, Japan
2PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan

3Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, Yokohama 236-0001, Japan
4Department of Physics, Graduate School of Sciences, Kyoto University, Kyoto 606-8502, Japan

5Brain Science Institute, RIKEN, Wako 351-0198, Japan
6Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan

7Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Japan
�Received 29 November 2008; revised manuscript received 20 July 2009; published 21 September 2009�

We develop a collective-phase description for a population of nonidentical limit-cycle oscillators with any
network structure undergoing fully phase-locked collective oscillations. The whole network dynamics can be
described by a single collective-phase variable. We derive a general formula for the collective-phase sensitivity,
which quantifies the phase response of the whole network to weak external perturbations applied to the
constituent oscillators. Moreover, we consider weakly interacting multiple networks and develop an effective
phase coupling description for them. Several examples are given to illustrate our theory.
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I. INTRODUCTION

An assembly of coupled limit-cycle oscillators often be-
haves like a single large oscillator. This general scenario re-
curs in a wide variety of rhythmic phenomena in living or-
ganisms, ranging from circadian oscillations, cardiac
rhythms to pathological phenomena such as epilepsy and
Parkinsonian disease �1–5�. Recent experiments using elec-
trochemical oscillators simulate such naturally arising popu-
lations of oscillators in an idealized form �6�.

Many previous studies have been devoted to answering
how and under what conditions oscillators mutually synchro-
nize. In comparison, little attention has been paid to investi-
gating the dynamical response of an oscillator network to
external stimuli. There are open fundamental problems re-
lated to this issue. For example, which oscillator should be
perturbed to give the largest phase shift to a network? How
are the phase sensitivity �19� of each oscillator and that of a
whole network �i.e., a large oscillator� related? Such inquir-
ies would shed light on mechanisms underlying biological
functions �including the link between the cell-level �7� and
the system-level �8� phase response curves of circadian
rhythms�, external control, and internetwork synchronization
of oscillator networks �9�.

In the present paper, we develop a collective-phase de-
scription for a population of nonidentical limit-cycle oscilla-
tors undergoing fully phase-locked collective oscillations. By
reducing the whole network dynamics to a single collective-
phase variable, we clarify how weak microscopic forcing
�i.e., forcing given to constituent oscillators� results in the
macroscopic phase response. A general formula for the
collective-phase sensitivity is derived, which links the phase
sensitivity functions of individual oscillators and that of a
whole network. Similar issues have been studied very re-
cently �10,11� for populations of identical oscillators under

independent noise �10� or nonidentical oscillators without
noise �11�, but both of these results apply only to the sim-
plest global-coupling case. We consider a similar case as in
Ref. �11� of noiseless, nonidentical oscillators. However, a
distinct advantage of our present approach from those previ-
ous studies is that we can systematically treat any system
size, any connectivity, any heterogeneity in the coupling, and
nonuniform external forcing. Moreover, the theory is ex-
tended to describe the dynamics of multiple interacting net-
works by reinterpreting the external stimuli applied to a
given network as the coupling forces originating from the
other networks, which enables us to predict the synchroniza-
tion behavior among multiple interacting networks.

II. FORMULATION

A. Basic model

Consider a network of N coupled limit-cycle oscillators
under external forcing. As is well known �2�, if the hetero-
geneity of oscillators, the coupling between oscillators, and
external forcing are weak, the system is describable by the
phase equation �for details, see the Appendix�

�̇i = �i + �
j=1

N

�ij��i − � j� + �Z��i��i�t� . �1�

Here �i is the phase of the ith oscillator �i=1, . . . ,N�, �i its
natural frequency, and �ij is the coupling force from the jth
oscillator to the ith oscillator. The parameter � is the charac-
teristic intensity of the external forcing. The terms �i�t� and
Z��i� respectively represent the time-dependent external
force and the phase sensitivity of the oscillator i in the direc-
tion of the forcing �see the Appendix�.

More generally, we can consider vector forcing �i�t� to the
limit-cycle oscillator. The corresponding forcing term in Eq.
�1� will then be a scalar product Z��i� ·�i�t�, where Z��i� is
the phase sensitivity vector of the oscillator i. Although our
theory may be formulated similarly for such a general forc-*Corresponding author. kori.hiroshi@ocha.ac.jp
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ing term, we have assumed a simpler form as in Eq. �1� to
avoid unnecessary complication.

B. Collective-phase description

Our aim is to establish the collective-phase description for
Eq. �1�, i.e., to derive the dynamical equation for a suitably
defined macroscopic variable that describes the response to
external forcing. This is generally formulated under two ba-
sic assumptions. �i� In the absence of external forcing a
stable periodic solution corresponding to a fully phase-
locked state exists, and thus, the oscillator network behaves
as a single large limit-cycle oscillator. �ii� The external force
is even weaker than the coupling force, i.e., ��1, so that the
synchronized state is almost unaltered under external forc-
ing. Under these assumptions, the phase reduction method
applicable to a weakly perturbed oscillator �2� can be applied
once again to the oscillator network by treating the unper-
turbed system, Eq. �1� with �=0, as a single limit-cycle os-
cillator.

For convenience, we begin by rewriting Eq. �1� in terms
of the N-dimensional state vector X= ��1 ,�2 , . . . ,�N�T as

Ẋ = F�X� + �p�X,t� , �2�

where Fi�X�=�i+� j=1
N �ij��i−� j� and pi�X , t�=Z��i��i�t�.

We first consider the unperturbed system ��=0�:

Ẋ = F�X� . �3�

A fully phase-locked solution X0�t� represents the state in
which all the oscillators have an identical, constant fre-
quency �. Thus, X0�t� is found as a solution of Fi�X0�=�
for all i. This solution is denoted by

X0�t� = ��t + �1
0,�t + �2

0, . . . ,�t + �N
0 �T, �4�

where �i
0 is constant and represents the phase distribution of

the fully phase-locked state. Note that Eq. �4� can be re-
garded as an N-dimensional limit-cycle solution.

We now define the collective phase ��X� as a scalar field

of X such that �̇=� identically holds in the unperturbed
system ��=0�. Note the identity

�̇ =
d�

dX
·

dX

dt
. �5�

This identity and Eq. �3� implies

d�

dX
· F�X� = � . �6�

For later convenience, we express the limit-cycle solution,
Eq. �4�, as a function of �:

���� = �� + �1
0,� + �2

0, . . . ,� + �N
0 �T, �7�

where we have set ��t=0�=0 as the initial value of �, which
can be set arbitrarily.

The dynamical equation of � for the perturbed system
���0� may be derived by substituting Eq. �2� into the iden-
tity, Eq. �5�. We then obtain

�̇ = � + �
d�

dX
· p�X,t� . �8�

To proceed further, notice that the second term in Eq. �8�
may be evaluated at X=���� to the lowest order in �.
For convenience, we introduce the row vector w
= �w1 ,w2 , . . . ,wN�= �d� /d��T. Then, Eq. �8� reduces to �̇
=�+�wp�� , t�, or

�̇ = � + ��
i=1

N

wiZ�� + �i
0��i�t� . �9�

This equation, which is free of the microscopic variables �i,
describes the response of the collective phase of the synchro-
nized network. The effect of the forcing to the ith oscillator
on the collective phase is weighted by wi. We thus call w the
weight vector henceforth. A larger overall phase response
arises when an oscillator with larger wi is forced �20�.

In what follows, we often consider uniform forcing, i.e.,
�i�t�=��t� for all i. In such a case, Eq. �9� is further reduced
to

�̇ = � + �	�����t� , �10�

where 	��� is the collective-phase sensitivity defined for uni-
form forcing �10�,

	��� = �
i=1

N

wiZ�� + �i
0� . �11�

Generally speaking, the shape of 	��� deviates from that of
Z��� more significantly as the phases of the fully phase-
locked state becomes more widely distributed.

Finally, we emphasize that the collective phase � corre-
sponds to various macroscopic phases that may be observed
in experiments. For example, the phase 
�t� of the order
parameter defined by Rei
�N−1� j=1

N ei�j �where R and 
 are
real� approximately agrees with the collective phase ��t�
with some constant offset because � j�t����t�+� j

0. Simi-
larly, other macroscopic phases may be employed to measure
the collective-phase response.

C. Weight vector

It is known that the phase gradient d� /d� at the limit-
cycle orbit is actually the left zero eigenvector of the linear-
ized system �2�. In our particular system it is easy to show
that the weight vector w is the left zero eigenvector of the
Jacobian of F�X0�. Note that a similar proof is given in Refs.
�12,13� for Malkin’s theorem.

The linearized equation for Eq. �3� around the limit-cycle
solution is given by

ẋ = Lx , �12�

where x�X−X0 is a small perturbation and L is the Jaco-
bian, elements of which are given by Lij =�Fi�X0� /�Xj, or

KORI et al. PHYSICAL REVIEW E 80, 036207 �2009�

036207-2



Lij = �ij�
k�i

N

�ik� ��i
0 − �k

0� − �1 − �ij��ij� ��i
0 − � j

0� . �13�

Due to the symmetry of F�X� with respect to a global phase
shift, the Jacobian L is a constant matrix, one eigenvalue of
which equals zero with the corresponding right eigenvector
given by U= �1,1 , . . . ,1�T, i.e., LU=0. Because of the as-
sumption of the stability of the fully locked state, the real
parts of the other eigenvalues are all negative.

Now we prove that the weight vector is the left zero ei-
genvector of the Jacobian L,

wL = 0, �14�

satisfying the normalization condition

�
i=1

N

wi = 1. �15�

Consider two trajectories X0�t� and X�t�, each obeying the
unperturbed dynamical equation, Eq. �3�. Let the trajectories
X0�t� and X�t� start from a point on the limit cycle and an
arbitrary nearby point, respectively. We denote the difference
by x�t�=X�t�−X0�t�. All equations below are valid to the
lowest order in �x�. The difference ��=��X�−��X0� in the
collective phase between the two trajectories is given by

�� =
��

��
· x = wx. �16�

In the unperturbed system, �̇�X�=�̇�X0�=� holds so that
�� is time independent. We thus obtain

0 = ��̇ = wẋ = wLx , �17�

where we have used Eq. �12�. This equation holds for any
small x. We may thus conclude that w is the left zero eigen-
vector of L, i.e., Eq. �14�. The normalization condition for w
is required by Eq. �6�: for X=�, Eq. �6� implies �i=1

N wi�
=�, or Eq. �15�. In Sec. III, we provide convenient methods
to calculate the weight vector w for a given L and some
examples of w.

D. Multiple interacting networks

Next, we formulate the collective-phase description for
multiple interacting networks of phase oscillators. We are
concerned with the case in which external forcing is absent,
while ��i�t� in the last term in Eq. �1� is interpreted as the
coupling force coming from oscillators of other networks.
For clarity, we first consider a simple system in which two
identical networks composed of N oscillators, called group A
and group B, are uniformly coupled �the extension to a more
general case is given later�. The dynamical equations for
such a system are given by

�̇i
A = �i + �

j=1

N

�ij��i
A − � j

A� + �Z��i
A���	�k

B
� ,

�̇i
B = �i + �

j=1

N

�ij��i
B − � j

B� + �Z��i
B���	�k

A
� , �18�

where �i
X is the phase of the ith oscillator in group X �X

=A, B�, and ��	�k
X
� denotes a function of �1

X ,�2
X , . . . ,�N

X,
which represents the uniform coupling force coming from
group X. Denoting the collective phases of the respective
groups by �A and �B, we obtain the resulting phase equa-
tion in the form

�̇A = � + �	��A����B� ,

�̇B = � + �	��B����A� , �19�

where ���X����	�X+�k
0
�. To the lowest order in �, we

may time average the coupling terms in Eq. �19� over the
common period 2 /� �or, we may adopt a near-identity
transformation, as done in the Appendix, to get the same
result�. We perform the averaging as

���A − �B� =
1

2
�

0

2

	�� + �A���� + �B�d� , �20�

where � rather than � has been used to indicate that this
coupling function acts between the groups. In this way, we
succeeded in deriving the collective-phase equation in the
simple form

�̇A = � + ����A − �B� ,

�̇B = � + ����B − �A� . �21�

It is straightforward to extend this description to a system
of M multiple networks. We allow that the networks are non-
identical and the coupling force is nonuniform �i.e., i depen-
dent�. The dynamical equation for group X �X=1, . . . ,M� is
given by

�̇i
X = �i

X + �
j=1

NX

�ij
X��i

X − � j
X� + �Z��i

X��
Y=1

M

�i
XY�	�k

Y
� ,

�22�

where NX is the number of oscillators in group X, �ij
X is the

intragroup coupling inside group X, and �i
XY is the intergroup

coupling from oscillators in group Y to the ith oscillator in
group X. The corresponding collective-phase equation is
given by

�̇X = �X + ��
Y=1

M

�XY��X − �Y� , �23�

�XY��X − �Y� =
1

2
�

0

2

�
i=1

NX

wi
XZ��X + �i

X0 + ��

��i
XY��Y + ��d� , �24�

where �X, �i
X0, and wi

X are, respectively, the collective fre-
quency, the locking phase, and the weight vector defined for
group X.
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III. CALCULATION OF THE WEIGHT VECTOR

We have found in Sec. II B that a key quantity linking
microscopic and macroscopic dynamics is the weight vector
w, and shown in Sec. II C that it is the left zero eigenvector
of the Jacobian L. In this section, we provide both analytic
and numerical methods to calculate the weight vector for a
given L. Also, several examples of the weight vector are
given.

A. Algebraic method

An algebraic expression for the left zero eigenvector of
the Laplacian matrix is known �14�. This expression holds
for any matrix L satisfying � j=1

N Lij =0 as shown below. We
define the �i , j� cofactor of L as

D�i, j� � �− 1�i+jdet L�i, j� , �25�

where the matrix L�i , j� is L with the ith row and jth column
removed. We also define the matrix L�i� as L with the ith row
removed and express it as a series of column vectors, L�i�
= �l1 , l2 , . . . , lN�. Then, using the relation � j=1

N Lij =0, or l1
+ l2+ ¯+lN=0, we obtain

det L�i,1� = det�l2,l3, . . . ,lN� = det�l2 + l3 + ¯ + lN,l3, . . . ,lN�

= det�− l1,l3, . . . ,lN� = − det L�i,2� . �26�

Similarly, one may show �−1�det L�i ,1�= �−1� jdet L�i , j�.
Combining this fact and definition �25�, we find that D�i , j� is
j independent, or

D�i,1� = D�i,2� = ¯ = D�i,N� . �27�

Now we define the row vector m= �m1 , . . . ,mN� where

mi = D�i,i� = det L�i,i� . �28�

Then, m is the left zero eigenvector of L because

�
i=1

N

miLij = m1L1,j + ¯ + mNLN,j

= L1,jD�1, j� + ¯ + LN,jD�N, j�

= det L = 0, �29�

where we have used the cofactor expansion and the fact that
one eigenvalue of L is zero. Finally, combined with the nor-
malization condition, we find an algebraic expression of the
weight vector given by

wi =
mi

�
j=1

N

mj

, mi = det L�i,i� . �30�

Note that in Eq. �28� it is also possible to define mi by D�i , j�
with any j. We chose mi=D�i , i� because it has the simplest
form �see Eq. �25��.

B. Numerical method

Although the algebraic expression is useful for the ana-
lytic calculation, this is not suitable for numerical calculation

because of its large numerical cost. Instead, the following
dynamical equation is useful:

u̇j�t� = �
i=1

N

uiLij . �31�

By the assumption of the stability of the fully phase-locked
solution, the real parts of all the eigenvalues of L are nega-
tive except for a zero eigenvalue. Thus, starting from a gen-
eral initial condition, the vector u= �u1 ,u2 , . . . ,uN� asymp-
totically converges to the left zero eigenvector of L. Thus,
taking into account the normalization condition, the weight
vector is obtained as

wi =
ui

�
j=1

N

uj

. �32�

Note that when the network is undirected and the cou-
pling function �ij��� is an odd function for all i and j, L is
symmetric and wi is trivially 1 /N for all i. This is the case
even for networks with strongly heterogeneous connectivity
including scale-free networks �15�. Except for such a special
case, L is usually asymmetric and w is heterogeneous.

C. Example I: networks of identical oscillators

We consider a network of identical oscillators with homo-
geneous coupling, whose evolution is given by

�̇i = � + �
j=1

N

Aij���i − � j� , �33�

where A is the adjacency matrix describing the connectivity,
which is generally asymmetric and weighted. We further as-
sume that ��0�=0 and ���0��0, which is often the case in
diffusively coupled oscillator networks �2�. In such a net-
work, the phase synchronized solution, �i=� j for all i and j,
always exists and we assume its stability. By going into a
rotating frame and rescaling t, we put �=0 and ���0�=−1
without loss of generality. Then, Eq. �13� reduces to a net-
work Laplacian generalized for asymmetric and weighted
networks given by

Lij = �Aij for j � i ,

− �
j�i

N

Aij for j = i .  �34�

We illustrate the weight vector using two small networks
shown in Fig. 1. In both cases, the weight vector can be
easily calculated via the algebraic expression, Eq. �30�. Fig-

1 2
κ

(a) (b)
1

1 2

3

4

FIG. 1. Examples of the weight vector in identical oscillators.
Using Eq. �30�, we find �a� w1 :w2=1:� and �b� w1 :w2 :w3 :w4

=2:4 :3 :1.
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ure 1�a� is a weighted network. The corresponding Laplacian
is

L = �− � �

1 − 1
� . �35�

The weight vector is w= �1,�� / �1+��, being a simple reflec-
tion of the connection weights. Figure 1�b� is a directed un-
weighted network. The corresponding Laplacian is

L =�
− 2 0 1 1

1 − 1 0 0

0 1 − 1 0

0 1 1 − 2
� , �36�

and we find w= �2,4 ,3 ,1� /10. Here, it is worth noticing that
w2�w3; i.e., oscillator 2 is more influential than oscillator 3,
although they have locally the same topological properties:
one inward and two outward connections. In general, the
weight vector depends on the global topology.

D. Example II: globally coupled nonidentical oscillators

We next consider globally coupled nonidentical oscilla-
tors

�̇i = �i +
K

N
�
j=1

N

sin�� j − �i + �� , �37�

where K�0 is the coupling strength and � is a parameter of
the coupling function. For simplicity, we assume the attract-
ing coupling, − /2��� /2, implying that the oscillators
tend to synchronize in phase when the oscillators are identi-
cal, i.e., �i=�. Such a coupling function appears in various
coupled oscillator systems �2,6,16�. Below we consider two
cases, �i� N=2 and �ii� N=100.

�i� N=2. We put �1=1 and �2=0 without loss of gener-
ality. The phase-locked solution is given by

��0 � �1
0 − �2

0 = arcsin� 1

K cos �
� , �38�

and �= �K /2��sin���0+��+sin ��. The stable solution
exists in the region 0���0� /2. Because m1=L2,2
=���−��0�=−�K /2�cos���0+�� and m2=L1,1=�����0�
=−�K /2�cos���0−��, we obtain

w1 =
1 − tan ��0 tan �

2
, w2 = 1 − w1. �39�

Thus, for ��0 ���0�, the faster oscillator has a larger
�smaller� weight, as displayed in Fig. 1�a�. Interestingly, ei-
ther of the weights can take a negative value, which actually
occurs when �tan ��0 tan ���1. In such a situation, when a
perturbation is given to an oscillator having negative weight,
the perturbation instantaneously advances the phase of the
oscillator but eventually results in the delay of the phases of
both oscillators.

�ii� N=100. Natural frequency �i is chosen randomly
from the uniform distribution �−0.5, 0.5� and the oscillators
are sorted according to the natural frequencies. A particular

realization is presented in Fig. 2�b�. We fix K=1.5 and con-
sider three values of �=0, �0.7, for which all the oscillators
fully phase lock, with the phase distributions shown in Fig.
2�c�. Given a phase-locked solution, w can be numerically
calculated by Eqs. �31� and �32�. The result is displayed in
Fig. 2�d�. Although the phase distributions for different � are
similar, the corresponding weight vectors differ considerably.
For large ���, the weight vector is highly heterogeneous. For
instance, there is about a 20-fold difference in the weights
between the fastest and the slowest oscillators for �=−0.7.
Similar to the case of N=2, faster oscillators have larger
�smaller� weights for ��0 ���0�. For �=0, the weight
vector is homogeneous because the Jacobian L is symmetric.

IV. TWO COUPLED GROUPS OF LIMIT-CYCLE
OSCILLATORS

As a demonstration of our theory, we illustrate that the
collective-phase sensitivity of a group of coupled limit-cycle
oscillators varies with intragroup coupling strength. We then
consider two groups of coupled oscillators with an additional
intergroup coupling of fixed strength and show that a non-
trivial qualitative change in the synchronization behavior be-
tween the groups occurs when the collective-phase sensitiv-
ity changes as a result of modifications to the intragroup
coupling strength.

As schematically illustrated in Fig. 3�a�, we consider a
pair of identical groups A and B, each of which consists of
two coupled limit-cycle oscillators. We use the Hindmarsh-
Rose model as the limit-cycle oscillator, a model originally
proposed as a neural model. The system reads

ẋi = 3xi
2 − xi

3 + yi − �i + �
j=1

4

Dijxj ,

(a) (b)

(c) (d)
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FIG. 2. �Color online� Examples of the weight vector in globally
coupled nonidentical oscillators. �a� The weights wi for N=2, i.e.,
Eq. �39�, as a function of � with fixed K=2. There is no phase-
locked solution in the region of � where the weights are absent. �b�
The natural frequencies �i, �c� the relative phases �i

0−�50
0 in a fully

phase-locked state, and �d� the weights multiplied by the system
size, Nwi, for N=100, K=1.5, and �=0, �0.7.
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ẏi = 1 − 5xi
2 − yi. �40�

Here, the coupling matrix D is given as D12,21,34,43=K,
D11,22,33,44=−K, D13,23,31,41=� with K and � being the cou-
pling intensities for intragroups and intergroups, respectively.
We assume 1�K��=1.0�10−5. We set �1=�3=−3.000
and �2=�4=−3.001, corresponding to �1,3�1.804 76, �2,4
�1.804 43, and thus ���3.3�10−4. The wave form x���
and the phase sensitivity Z��� of an isolated oscillator ob-
tained numerically are shown in Fig. 3�b�.

The corresponding phase model is given by

�̇1,2 = �1,2 + K���1,2 − �2,1� + �Z��1,2�x��3� ,

�̇3,4 = �3,4 + K���3,4 − �4,3� + �Z��3,4�x��1� . �41�

Here, the notation is slightly different from Eq. �18�: �1,2
A and

�1,2
B are denoted by �1,2 and �3,4, respectively. The coupling

function � is calculated as

���1 − �2� =
1

2
�

0

2

d�Z��1 + ��	x��2 + �� − x��1 + ��
 .

�42�

For convenience, we display �a����������−��−��� in
Fig. 3�c�. The phase difference ��0 between the oscillators 1
and 2 of a synchronized state is found as a stable solution of
�̇1= �̇2 �where �=0 is assumed�, and thus, a solution of
�a���0�=�� /K. The predicted phase difference is plotted in
Fig. 3�d� as a curve. It agrees well with numerical data ob-
tained through direct numerical integration of Eq. �40�. Us-
ing Z���, ��0, �����, and its derivative ������ obtained
numerically, we can calculate w1, w2, and 	���. The results
are shown in Fig. 3�e� and its caption. For large K �compared

to ���, 	��� is indistinguishable from Z���. As K decreases,
��0 becomes larger and w1 and w2 �having different signs in
this case� become more heterogeneous resulting in consider-
able variation in 	���.

Given 	���, the synchronization behavior between groups
is now predicted. The collective coupling function ����� is
calculated from Eq. �20� where ����=x��� in the system
under consideration. For convenience, we display the anti-

symmetric part of ����� in Fig. 3�f�. Putting �̇A=�̇B, we
find the stable phase-locked state, ����A−�B. The pre-
dicted �� is exhibited by the curve in Fig. 3�g�, implying
that the in-phase solution becomes unstable at around K
=0.006 �via a pitch-fork bifurcation� and the out-of-phase
solution appears below. The phase difference �� �or ap-
proximately, �1−�3� obtained from direct numerical integra-
tion of Eq. �40� is plotted in Fig. 3�g�, which convinces us of
the precision of the phase description.

V. CONCLUSIONS

In summary, we have formulated the collective-phase de-
scription for a population of limit-cycle oscillators with any
network structure. This theory describes how the collective
state of the whole network responds to external inputs to its
constituent oscillators. Moreover, the theory has been ex-
tended to describe the synchronization behavior among mul-
tiple interacting networks. We have demonstrated �i� that in a
network of two coupled limit-cycle oscillators the collective-
phase sensitivity varies with the coupling intensity and �ii�
that in two such networks with additional intergroup cou-
pling the synchronization behavior between the networks un-
dergoes a qualitative change that may be interpreted by the
variation in the collective-phase sensitivity.
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FIG. 3. �Color online� Results for a network of limit-cycle oscillators. �a� Network structure under consideration. �b� Wave form x��� and
phase sensitivity Z��� of an individual oscillator. �c� Antisymmetric part of the coupling function, �a����. �d� Phase difference ��0 between
oscillators in each group. �e� Collective-phase sensitivity 	��� defined for uniform forcing. For K=0.007,0.002,0.0015, �w1 ,w2� is respec-
tively about �1.35,−0.35�, �2.87,−1.87�, and �2.89,−1.89�. �f� Antisymmetric part of the collective coupling function, �a����. �g� Phase
difference �� between the groups.
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A key quantity linking individual and collective dynamics
is the weight vector, which is the left-zero eigenvector of the
Jacobian matrix. The weight of an oscillator describes how
much influence the oscillator has on the collective behavior.
We have provided convenient methods, both analytical and
numerical, to calculate the weight vector for a given oscilla-
tor network. For networks composed of identical oscillators,
the Jacobian matrix is identical to the Laplacian matrix de-
fined for directed, weighted networks. Thus, our study would
also be of interest to those working on complex networks
�15�.

We remark on the limitations of our approach. We have
employed the phase model, Eq. �1�, as our starting point. To
a good approximation, the phase model describes the dynam-
ics of coupled limit-cycle oscillators when the coupling is
weak. In Eq. �1�, we have considered even weaker external
forcing. Based on this assumption, we were able to formulate
the collective-phase description. Similarly, in the collective-
phase description of multiple interacting networks, the cou-
pling between the networks must be sufficiently weaker than
the coupling inside each network. When one applies our ap-
proach to real oscillator systems, these assumptions should
be taken into account.

Nevertheless, our theory is very general. It can deal with
nonidentical oscillators, any system size, any connectivity,
any heterogeneity in the coupling, and nonuniform forcing.
Thus, a broad applicability would be expected.
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APPENDIX: DERIVATION OF EQ. (1)

Here we derive our basic model, Eq. �1�, from limit-cycle
oscillators with weak heterogeneity, weak coupling, and
weak external forcing. The aim of this presentation is to
derive the phase model in which the coupling term is a func-
tion of the phase differences between pairs of oscillators. To
this end, we usually employ a time averaging method �pre-
sented below�. However, if we naively average the dynami-
cal equation in our case �where the external forcing as well
as the coupling between oscillators is present�, the resulting
equation does not have the form of Eq. �1�. To derive Eq. �1�,
it is more appropriate to use a formal averaging method
�2,13,17�, which is done via a near-identity transformation of
the phase variable. For the clarity of the presentation, we
consider two coupled oscillators, as the smallest conceivable
system suffices to explain the essence of the derivation. The
extension to a large population is straightforward.

We consider two coupled limit-cycle oscillators subject to
external forcing, whose dynamical equations are given by

Ẇ1 = F�W1� + �F1�W1� + �G12�W1,W2� + ��1�t� ,

Ẇ2 = F�W2� + �F2�W2� + �G21�W2,W1� + ��2�t� ,

�A1�

where Wi is the state variable of the ith oscillator �i=1,2�,
F�W�+�Fi�W� describes intrinsic self-sustained oscillation
with homogeneous part F�W� and inhomogeneous part
Fi�W�, Gij describes interaction force from the jth to the ith
oscillators, and �i is external forcing �generally i dependent�.
We have introduced a small parameter � to represent that the
inhomogeneity of the intrinsic dynamics, the interaction
force, and the external forcing are small.

The limit-cycle solution for Eq. �A1� with �=0, i.e., Ẇ
=F�W�, is denoted by W0�t�. Its intrinsic frequency is de-
noted by �0=2 /T where T is the period of the oscillation of
the limit-cycle solution. The phase �i�Wi� of an oscillator is
defined as a scalar field of Wi such that �̇i=�0 identically
holds for �=0. Then, because of the identity �̇i
= ���i /�Wi� · �dWi /dt�, we obtain

�̇1 = �0 + �
��1

�W1
· �F1�W1� + G12�W1,W2� + �1�t�� ,

�̇2 = �0 + �
��2

�W2
· �F2�W2� + G21�W2,W1� + �2�t�� .

�A2�

To the lowest order in �, ���i /�Wi� in Eq. �A2� can be evalu-
ated on the limit-cycle solution W0. Thus, defining
��� /�W0�=Z���, we get

�̇1 = �0 + �	f1��1� + g12��1,�2� + Z��1� · �1�t�
 ,

�̇2 = �0 + �	f2��2� + g21��2,�1� + Z��2� · �2�t�
 , �A3�

where

�0 = Z��1� · F��1� = Z��2� · F��2� ,

f1��1� = Z��1� · F1��1� ,

f2��2� = Z��2� · F2��2� ,

g12��1,�2� = Z��1� · G12��1,�2� ,

g21��2,�1� = Z��2� · G21��2,�1� .

To reduce Eq. �A3� to an even more tractable form, we
employ a near-identity transformation �2,17�: we introduce
the new phase variables �1 and �2 as

�1 = �1 + �a1��1,�2� ,

�2 = �2 + �a2��2,�1� , �A4�

where ai is a 2-periodic function and satisfies ai�0,��=0
for any �. Then, as shown below, by choosing appropriate ai,
Eq. �A3� results in the following equation to the lowest order
in �:

�̇1 = �0 + �	�1 + �12��1 − �2� + Z��1� · �1�t�
 ,

�̇2 = �0 + �	�2 + �21��2 − �1� + Z��2� · �2�t�
 , �A5�

where �i and �ij are obtained as the averaged quantities,
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�i =
1

2
�

0

2

f i���d� , �A6�

�ij��i − � j� =
1

2
�

0

2

gij��,� − �i + � j�d� . �A7�

To find ai, we take a time derivative of Eq. �A4�,

��̇1

�̇2
� = �I + �B���̇1

�̇2

� , �A8�

where I is the identity matrix and the elements of matrix B
are given by Bij =�ai /�� j. We then obtain

��̇1

�̇2

� = �I + �B�−1��̇1

�̇2
� = �I − �B���̇1

�̇2
� + O��2� = ��0

�0
� + �� f1��1� + g12��1,�2� + Z��1� · �1�t� − �0�B11 + B12�

f2��2� + g21��2,�1� + Z��2� · �2�t� − �0�B21 + B22�
� + O��2� ,

�A9�

where we have redefined f i, gij, and Zi as the functions of �1
and �2 instead of �1 and �2, as the error involved with this
replacement is of O��2�. Comparing Eqs. �A5� and �A9�, and
using the transformations B11+B12=��a1��+�1 ,�+�2� and
B21+B22=��a2��+�2 ,�+�1� with �=�0t, we obtain

��a1�� + �1,� + �2� = �0
−1�f1�� + �1� + g12�� + �1,� + �2�

− �1 − �12��1 − �2�� ,

��a2�� + �2,� + �1� = �0
−1�f2�� + �2� + g21�� + �2,� + �1�

− �2 − �21��2 − �1�� . �A10�

Because ai is a 2-periodic function, the integration of Eq.
�A10� over one period results in Eqs. �A6� and �A7�. The
function ai is then obtained as

a1�� + �1,� + �2� = �0
−1�

0

�+�1

�f1��� + g12��,� − �1 + �2�

− �1 − �12��1 − �2��d� ,

a2�� + �2,� + �1� = �0
−1�

0

�+�2

�f2��� + g21��,� − �2 + �1�

− �2 − �21��2 − �1��d� . �A11�

Thus, Eq. �A5� is indeed a lowest order approximation to Eq.
�A1�.

There are a few differences between Eqs. �1� and �A5�. To
get exactly the same form as Eq. �1�, we need the following
manipulation. Without loss of generality, we may put �0=0
and �=1 and add � to the forcing term �i. Moreover, by
assuming that the direction of the forcing �i is time indepen-
dent, i.e., ��t���i�t� / ��i�t�� is a time-independent unit vec-
tor, we may rewrite Z��i� ·�i�t�=Z��i��i�t� where Z���
�Z��� ·� and �i�t����i�t��. Here, Z��� is interpreted as the
phase sensitivity function defined for the direction of the
forcing. In many systems, the forcing vector �i�t� has only
one nonvanishing component, so that this assumption is of-
ten reasonable.
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