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Scaling Properties in Large Assemblies of Simple Dynamical Units Driven
by Long-Wave Random Forcing

Yoshiki Kuramoto and Hiroya Nakao

Department of Physics, Graduate School of Sciences,Kyoto University, Kyoto 606, Japan
(Received 14 January 1997

Large assemblies of nonlinear dynamical units driven by a long-wave fluctuating external field are
found to generate strong turbulence with scaling properties. This type of turbulence is so robust
that it persists over a finite parameter range with parameter-dependent exponents of singularity, and
is insensitive to the specific nature of the dynamical units involved. Whether or not the units
are coupled with their neighborhood is also unimportant. It is discovered numerically that the
derivative of the original amplitude field exhibits strong spatial intermittency with multifractal structure.
[S0031-9007(97)03232-8]

PACS numbers: 47.27.—i, 05.45.+b, 47.53.+n, 87.10.+e

We report our discovery of a new type of turbulentunderstand how a simple driving field alone can generate
behavior which arises generally in large assemblies o& nontrivial correlation between uncoupled units.
simple dynamical units driven by a long-wave randomly Suppose that each unit is represented by a discrete-
fluctuating field. The driving field may actually be a time dynamical systenX,,.; = f(X,). Let the units be
self-generated internal field due to long-range interactiondriven by an additive random forde, which is smooth
and this particular situation was studied in a previousn space and statistically invariant with respect to spatial
paper [1] where a rough explanation of the origin oftranslations. The unit at siteis governed by the equation
power-law correlations was also given. The present study _
thus aims at expanding as much as possible the class of Xnirr) = fXn @) + I (r). )
systems capable of exhibiting the same type of turbulenceéinalogously to fully developed fluid turbulence [3], let
and also proposing a more transparent and coherebnf consider various moments of the amplitude increment
explanation of the phenomena. between two sites. We thus concentrate on a pair of units

An illustrative example is given by an array oh-  at sitesro andro + x with distancex = |x| satisfying
couplediogistic mapsf(X) = aX(1 — X) with driving x < 1. The amplitude increment,(x) = X,,(ro + x) —

X, (ro) obeys the equation

Xn+1(.]) f(Xn(.])) + hn(])’ J 1’2’~'~7N7 (1) VYoil = iny” + 0(|yn|2) + Ahn, (3)
where i, (j) = %(1 + cof2m{y + lﬁn}]), ¥, being a where L,y, is the linearization of f(X) about X =
random variable in the interva0, 1] with uniform distri-  X,,(ro), andAk, = h,(ro + x) — h,(ro) is a quantity of
bution. Were it not for spatial dependencemgf Eq. (1)
would representV identical copies of a randomly driven

map; the dynamics of such an ensemble was studied in 09 [ (a) ' g

[2]. Making &, nonuniform changes the problem com- '

pletely. Let the parameter values be set such that indi- = 0.7

vidual maps are entrained tg, in the sense that their =

maximum Lyapunov exponent (common to all maps) is 0.5

negative. Unlikeh,, however, the corresponding ampli-

tude profile is not smooth at all, a typical example of 0.3 ' '

which is displayed in Fig. 1(a). Such ill-behaved nature () ' '

of the pattern is even amplified in Fig. 1(b) which shows a 0.3 1

strongly intermittent pattern of thdifferential amplitudes -

Y(j)=|X(j + 1) — X(j)| constructed from Fig. 1(a). 02 1
Before proceeding to further numerical study, some 01

theoretical predictions will be made as to the statistics of '

turbulence to be shared by the above system or more gen- 0.0
eral assemblies of units under long-wave random driving. 0 500 1000

For this purpose, it seems more convenient to work with a J

picture in which the dynamlcal unlts_ f9rm a quasicontin-gi 9. (a) Instantaneous amplitude profile for the driven
uum rather than a lattice, and the driving field has a chargistic maps (1). N = 1024, K = 0.2, anda = 3.7(1 — K).
acteristic wavelength o®(1). Our primary concern is to (b) Profile of differential amplitude¥( j) constructed from (a).
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O(x).

While on-off intermittency refers to a certain type of

Equation (3) describes a multiplicative stochasticthe driving field, we obtain power-law moments
process [4] with small additive noise. Similar equations

have recently aroused considerable interest in connection
with on-off intermittency and related phenomena [5,6].

(y)) ~x? (¢ < 18D, ! (g>18D). (10)

The result ofg-independent exponent valid for higher
moments § > |B]|) is anomalous, reflecting strong non-

temporal self-similarity peculiar to a special parameterGaussianity of?(y). In the postcritical regimeg > 0),

value, our major concern below isspatial self-similarity
observable over an open parameter range
Equation (3) may be simplified by neglecting all

eigenmodes of., other than the least stable one. This

leads to a scalar equation foy = |y, |
Yn+1 = e/\”yn + O(y,%) + bux, (4)

where A, is the local Lyapunov exponent of the unit at
sitery, andb,, is a randomly changing factor of(1). For
sufficiently smallx, there is a range of satisfyingx <«

all moments possess artindependent part, while the
residual part still obeys a power law:

(y@)) ~ Blg + B! + 0KP). (11)

The reason why the amplitude difference in the post-
critical regime is nonvanishing for vanishing is that
the two units in question have lost their respective syn-
chrony with &, implying also the loss of their mutual
synchrony. Note that (10) and (11) are asymptotic for-
mulae valid forx — 0 under fixed3. Near|8| = ¢ and

y <1 where both the nonlinear and inhomogeneous) under fixedx, however, there exist crossover regimes
terms in (4) are negligible. We are thus left with a linear(c1) |(8 + ¢)Inx| < 1 and (C2)|8Inx| < 1, respec-

equationy,+; = e*y, or z,+1 — z, = A, in terms of a
new variablez, = Iny,. If the random process of,

tively, in each of which we havéy(x)?) ~ x!#l|Inx| and
[Inx|~1.

is MarkOfﬁan, which we assume, the prObablhty denSity A few more remarks are now given on the cases of

0.(z) for z,, evolves in this linear regime according to
o]

0@ = [ wose = Nax, @)

where w(A) is the normalized probability density for
A,. Equation (5) admits a stationary solution of the
form Q(z) = exp(Bz) = y#. Thus, the corresponding
probability density fory,,, denoted byP( y), becomes

P(y) =y "B, (6)

where B8 is determined as a nontrivial (i.e., nonzero)
solution of

[ e P wA)dar = 1. (7)
Note that for sufficiently smalB, we have
B = 24/A2, 8)

where the bar means the average with respeat ().
We have now to modify (6) by taking into account the

effects of the nonlinear and inhomogeneous terms in (4).

g = 2 and 1 for which our theory recovers our previous
results [1]. We obtain from (10) and (11) the second
moment

(Y ~ 2% (=2), 1 (-2<0),
B2+ B+ o0xP) (B>0), (12)

while in the aforementioned crossover regimes, we have
(y(x)?y ~ x*|Inx| (C1) and1/| Inx| (C2).

The case; = 1 is related to the length of an amplitude
versus space curve. This is because the lergfth
for the part of an amplitude profile contained in the
unit interval, when measured with the resolution of the
minimum length scale:, is given byS(x) ~ x~(y(x)).
Applying (10) and (11), we thus obtaif(x) ~ const
(B < —1),xB-1 (=1 < B <0),andx"! (8 > 0). In
the crossover regimes, however, these must be replaced
by S(x) ~ |Inx| (C1) and1/(x|Inx|) (C2). The fractal
dimensionD defined byS(x) ~ x!~?s thus becomes

D=1 (B<-1, 2—- Bl (=1 <pB<0),

The nonlinearity, which is assumed to work in such a way

that the unstable growth of, be saturated when, > 0,
may roughly be incorporated by introducing a cutoff in

2 (B>0),
except for the crossover regimes.

(13)

P(y) aty = 1. On the other hand, the inhomogeneous The above arguments on discrete-time dynamics can

term will come into play wheny, becomesO(x) or

easily be carried over to continuous-time dynamics. One

smaller, thus suppressing the power-law divergence ofeeds only make replacements— ¢, n + 1 — ¢ +
P(y) there. For the purpose of qualitative argument, ong;;, and A, — A(f)ds. Then, (4) becomes = A(t)y +

may therefore use the following simple model fofy):
P(y)=Cx P (y=x, o x<y=1),
0 (y>1, C: 9

This form allows us to calculate thgh moment( y(x)?)
for arbitrary¢. For simplicity, only positive values aof
will be considered below. In the subcritical regime €

normalization const.

O(yz) + b(t)x, and (5) reduces to a Fokker-Planck equa-
tion 0 = —X9.0 + %/\ZagQ. The latter admits a sta-
tionary solutionQ(z) « exp(Bz), and the corresponding
P(y) is the same form as (6) witB given by (8).

In order to test the validity of our argument, the array
of logistic maps (1) has been analyzed numerically. In

Fig. 2, we displayP(y) versusy for some values oK,

0,i.e.,A < 0), where the dynamical units are entrained towith x fixed at a sufficiently small value. As expected,
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10° , , Up to this point, we have considered uncoupled units.
We now show some evidence that inclusion of short-
102 i range coupling leaves the above-described power-law
behavior of moments essentially unchanged. As an
10" ] illustration, we modify (1) with additional diffusive cou-
pling of the form D{f(X,(j + 1)) + f(X,(j — 1)) —
2 10 1 2f(Xn(j))}/2. V_Vithou_t the forcing ternk,,, such a modgl
& would be identical with the usual coupled map lattice.
¥ In Fig. 4, the second momentsy(x)?) are compared
10 ] between the two systems, one with diffusive coupling
2 (D = 0.1) and the other without. The deviation from a
10 3 power law in the presence of coupling is limited to the
o° range covering ten or so units out 8f (= 4096). This

o 0'01 0 ‘01 o1 ' 1 defines a lower cutoff length, similar to the dissipation
) ) ) length in fully developed fluid turbulence. Although
y will increase withD like x; « /D, we have a prefactor
FIG. 2. Probability densityP(y) in logarithmic scales for N~', so thatx, can be made arbitrarily smaller than
the driven logistic maps (1). For eadh value, P(y) obeys 1 (i.e., the upper cutoff) by increasiny indefinitely.
a power law in the intermediate range of The exponent Thys, the intermediate range .of which is similar to the
changes as-1.40, —177, and —2.33 with increasingK. i eriia| subrange, has a sufficient extention over which the
a =371 — K), andx = 10247!. . . .
power-law nature of correlations is practically unaffected.
It is also worth noting that whether the dynamical units

P(y) exhibits a power-law dependence on for not involved are themselves chaotic or not is unimportant
too small or too largey, with the exponent depending O the power-law nature o(y) and (y(x)?). This

on K. Figure 3 shows momentéy(x)?) versusx for has been confirmed with driven phase oscillators of the
some values ofy. Their power-law dependence on form ¢; =1 — ccosg; + h;(1), lc| < 1 with suitable

is clear, but the observed change of the exponent witf@ndom driving;(z). To save space, however, we will
g, indicated in the small box, is not so sudden acros§0t show such numerical data here. _

¢ = |8 as the formula (10) predicts. The main source of SOme new aspects of our turbulent field are revealed

this discrepancy seems to be the existence of the crossovéfough an analysis of the differential amplitudes)) or
regime C1. quantities defined similarly when the spatial dimension is

two or higher. We call such a field thE field. The
situation is analogous to fully developed fluid turbulence

where the study of the energy dissipation field provides
e 0@ ....o-o:oa;';'“ rich information which would hardly be available from
. e ¢ ’ the study of the velocity field alone. We will restrict
10_1 ..'M 4
e ° ooec’ =0.50 10"
® T T T
° ......_M
. g=0.75 3
w/\ ] d >
- @ -
% . * e®**°0=1.00 10
[ ]
_2 [
10 ¢ . . 04 Soia A
4T o) 1 oy -
= ° % 10 N :2’
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0.0¢ : : 10° ¢ + D=0.1
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FIG. 3. Moments(y(x)?) vs x in logarithmic scales for the .

driven logistic maps (1), showing power-law dependencecon FIG. 4. The second momenty(x)?) vs x in logarithmic
for eachq with ¢g-dependent exponerit(g). Numericalny vs g scales for the driven logistic maps (1) with additional diffusive
curve is displayed in the inset and compared with the theoreticatoupling (O = 0.1) and without O =0). K =02, a =
curve. K = 0.2, anda = 3.7(1 — K). 3.7(1 — K), andN = 4096.
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FIG. 5. Size distributiorp(/) of the laminar domains of thE £ 6. Dimension spectrur®,, of the Y field for the driven
field [= Y(x) = |X(x + ) — X(x)|/8] in logarithmic scales |ogistic maps (1). K = 0.2, a = 3.7(1 — K), N = 1024, and
for the driven logistic maps (1).K = 0.2, a = 3.7(1 — K), s =N\

N =1024,6 =N', Y, = 0.2,and0.4.

our discussion to 1D systems below. Note that in theness, similar phenomena should exist quite universally.

absence of short-range coupling a true derivatiX¢’dx  They may appear in a wide variety of coupled and un-

may not exist in the continuum limit, especially when thecoupled systems, once placed in a long-wave randomly

amplitude profile is fractal. Th& field must then be fluctuating external field. Some possible candidates

redefined asv(x) = 6 '|X(x + §) — X(x)| with finite  would be electrohydrodynamic convection in nematic

but sufficiently smalls. liquid crystals, light-sensitive Belousov-Zhabotinsky
Spatial intermittency of Y(x) as exemplified in reaction, and nonlinear optical media. Their experimental

Fig. 1(b) may be analyzed similarly to the case of on-offverification is strongly desired.

intermittency. This is achieved by measuring the proba- The authors thank P. Marcq for fruitful discussions and

bility density p(I) for the space interval over which careful reading of the manuscript. The present work has

the units are in théaminar state, namely, thei¥ values been supported by the Japanese Grant-in-Aid for Science

stay below a certain threshold. Such an analysis was Research Fund from the Ministry of Education, Science

done for the driven logistic maps (1). It is clear from and Culture (No. 07243106).

Fig. 5 that, as in the on-off intermittency(l) exhibits an

inverse power law. We confirmed that, for not too small

or too largeYy, the exponent is insensitive to the choice

of Yy, but depends oK. [1] Y. Kuramoto and H. Nakao, Phys. Rev. Left6, 4352
A more thorough characterization of tiiefield is pro- (1996).
vided by the generalized fractal dimensiopg = (¢ —  [2] L. Yu, E. Ott, and Q. Chen, Phys. Rev. Le@i5 2935

(1990).
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analysis was performed for the energy dissipation field = 32 (1983); A.S. Pikovsky, Z. Phys. B5, 149 (1984);
of fully developed fluid turbulence [8]. Figure 6 shows L. Pecora and T.L. Carroll, Phys. Rev. Le@i4, 821
D, obtained for the driven logistic maps (1). Note that (1990); N. Platt, E.A. Spiegel, and C. Tresser, Phys.
Do = 1, which is simply becaus& (x) is nonvanishing Rev. Lett. 70, 279 (1993); J.F. Heagy, N. Platt, and
almost everywhere. In contrast to the power-law behavior ~ S-M. Hammel, Phys. Rev. H9, 1140 (1994); S.C.
of the original amplitude field, which was rather easy to ~ Venkataramaniet al., Physica (AmsterdamP6D, 66
explain, the multifractal nature of the-field seems non- (1996).

trivial and remains to be explained. This is because thel®! A-S. Pikovsky and P. Grassberger, J. Phys24 4587

latter does not result simply from the probability density ggiﬁgué; SM 'zki\ifgryrh;hy:hdlﬁnj %S:?ntssbe(rlg gé?{ys

for a singley variable, but is related to singular correla- Rev. E54, 3377 (1996).
tions among differeny’s created by the spatially corre- [7] g o, Chaos in Dynamical Systen{€ambridge Univ.
lated forcing field. Press, Cambridge, 1993).
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bulence reported here. Because of its remarkable robust-  Suppl.)2, 49 (1987).
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