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Large assemblies of nonlinear dynamical units driven by a long-wave fluctuating external field a
found to generate strong turbulence with scaling properties. This type of turbulence is so rob
that it persists over a finite parameter range with parameter-dependent exponents of singularity,
is insensitive to the specific nature of the dynamical units involved. Whether or not the un
are coupled with their neighborhood is also unimportant. It is discovered numerically that t
derivative of the original amplitude field exhibits strong spatial intermittency with multifractal structure
[S0031-9007(97)03232-8]
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We report our discovery of a new type of turbulen
behavior which arises generally in large assemblies
simple dynamical units driven by a long-wave randoml
fluctuating field. The driving field may actually be a
self-generated internal field due to long-range interactio
and this particular situation was studied in a previou
paper [1] where a rough explanation of the origin o
power-law correlations was also given. The present stu
thus aims at expanding as much as possible the class
systems capable of exhibiting the same type of turbulen
and also proposing a more transparent and coher
explanation of the phenomena.

An illustrative example is given by an array ofun-
coupledlogistic mapsfsXd  aXs1 2 Xd with driving

Xn11s jd  fsssXns jdddd 1 hns jd, j  1, 2, . . . , N , (1)

where hns jd 
K
2

≥
1 1 cosf2ph j

N 1 cnjg
¥
, cn being a

random variable in the intervals0, 1g with uniform distri-
bution. Were it not for spatial dependence ofhn, Eq. (1)
would representN identical copies of a randomly driven
map; the dynamics of such an ensemble was studied
[2]. Making hn nonuniform changes the problem com
pletely. Let the parameter values be set such that in
vidual maps are entrained tohn in the sense that their
maximum Lyapunov exponent (common to all maps)
negative. Unlikehn, however, the corresponding ampli-
tude profile is not smooth at all, a typical example o
which is displayed in Fig. 1(a). Such ill-behaved natur
of the pattern is even amplified in Fig. 1(b) which shows
strongly intermittent pattern of thedifferential amplitudes
Y s jd ; jXs j 1 1d 2 Xs jdj constructed from Fig. 1(a).

Before proceeding to further numerical study, som
theoretical predictions will be made as to the statistics
turbulence to be shared by the above system or more g
eral assemblies of units under long-wave random drivin
For this purpose, it seems more convenient to work with
picture in which the dynamical units form a quasicontin
uum rather than a lattice, and the driving field has a cha
acteristic wavelength ofOs1d. Our primary concern is to
0031-9007y97y78(21)y4039(4)$10.00
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understand how a simple driving field alone can genera
a nontrivial correlation between uncoupled units.

Suppose that each unit is represented by a discre
time dynamical systemXn11  f sXnd. Let the units be
driven by an additive random forcehn which is smooth
in space and statistically invariant with respect to spati
translations. The unit at siter is governed by the equation

Xn11srd  f sssXnsrdddd 1 hnsrd . (2)

Analogously to fully developed fluid turbulence [3], let
us consider various moments of the amplitude increme
between two sites. We thus concentrate on a pair of un
at sitesr0 and r0 1 x with distancex ; jxj satisfying
x ø 1. The amplitude incrementynsxd ; Xnsr0 1 xd 2

Xnsr0d obeys the equation

yn11  L̂nyn 1 Osjynj2d 1 Dhn , (3)

where L̂nyn is the linearization off sXd about X 
Xnsr0d, andDhn ; hnsr0 1 xd 2 hnsr0d is a quantity of

FIG. 1. (a) Instantaneous amplitude profile for the drive
logistic maps (1). N  1024, K  0.2, anda  3.7s1 2 Kd.
(b) Profile of differential amplitudesYs jd constructed from (a).
© 1997 The American Physical Society 4039
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Osxd. Equation (3) describes a multiplicative stochasti
process [4] with small additive noise. Similar equation
have recently aroused considerable interest in connect
with on-off intermittency and related phenomena [5,6
While on-off intermittency refers to a certain type o
temporal self-similarity peculiar to a special paramete
value, our major concern below is aspatial self-similarity
observable over an open parameter range.

Equation (3) may be simplified by neglecting al
eigenmodes of̂Ln other than the least stable one. Thi
leads to a scalar equation foryn ; jynj

yn11  eln yn 1 Os y2
nd 1 bnx , (4)

where ln is the local Lyapunov exponent of the unit a
siter0, andbn is a randomly changing factor ofOs1d. For
sufficiently smallx, there is a range ofy satisfyingx ø

y ø 1 where both the nonlinear and inhomogeneou
terms in (4) are negligible. We are thus left with a linea
equationyn11  eln yn or zn11 2 zn  ln in terms of a
new variablezn  ln yn. If the random process ofln

is Markoffian, which we assume, the probability densit
Qnszd for zn evolves in this linear regime according to

Qn11szd 
Z `

2`

wsldQnsz 2 lddl , (5)

where wsld is the normalized probability density for
ln. Equation (5) admits a stationary solution of the
form Qszd ~ expsbzd ; yb . Thus, the corresponding
probability density foryn, denoted byPs yd, becomes

Ps yd ~ y211b , (6)

where b is determined as a nontrivial (i.e., nonzero
solution of Z `

2`

e2blwslddl  1 . (7)

Note that for sufficiently smallb, we have

b  2lyl2 , (8)

where the bar means the average with respect towsld.
We have now to modify (6) by taking into account the
effects of the nonlinear and inhomogeneous terms in (4
The nonlinearity, which is assumed to work in such a wa
that the unstable growth ofyn be saturated whenln . 0,
may roughly be incorporated by introducing a cutoff in
Ps yd at y  1. On the other hand, the inhomogeneou
term will come into play whenyn becomesOsxd or
smaller, thus suppressing the power-law divergence
Ps yd there. For the purpose of qualitative argument, on
may therefore use the following simple model forPs yd:

Ps yd  Cx211b s y # xd, Cy211b sx , y # 1d ,

0 s y . 1d, C : normalization const. (9)

This form allows us to calculate theqth momentk ysxdql
for arbitraryq. For simplicity, only positive values ofq
will be considered below. In the subcritical regime (b ,

0, i.e.,l , 0), where the dynamical units are entrained t
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the driving field, we obtain power-law moments

k ysxdql , xq sq , jbjd, xjbj sq . jbjd . (10)

The result of q-independent exponent valid for higher
moments (q . jbj) is anomalous, reflecting strong non-
Gaussianity ofPs yd. In the postcritical regime (b . 0),
all moments possess anx-independent part, while the
residual part still obeys a power law:

k ysxdql , bsq 1 bd21 1 Osxbd . (11)

The reason why the amplitude difference in the pos
critical regime is nonvanishing for vanishingx is that
the two units in question have lost their respective syn
chrony with hn, implying also the loss of their mutual
synchrony. Note that (10) and (11) are asymptotic for
mulae valid forx ! 0 under fixedb. Nearjbj  q and
0 under fixedx, however, there exist crossover regime
(C1) jsb 1 qd ln xj ø 1 and (C2)jb ln xj ø 1, respec-
tively, in each of which we havek ysxdql , xjbjj ln xj and
j ln xj21.

A few more remarks are now given on the cases o
q  2 and 1 for which our theory recovers our previous
results [1]. We obtain from (10) and (11) the secon
moment

k ysxd2l , x2 s22d, xjbj s22 , 0d ,

bs2 1 bd21 1 Osxbd sb . 0d , (12)

while in the aforementioned crossover regimes, we ha
k ysxd2l , x2j ln xj (C1) and1yj ln xj (C2).

The caseq  1 is related to the length of an amplitude
versus space curve. This is because the lengthSsxd
for the part of an amplitude profile contained in the
unit interval, when measured with the resolution of th
minimum length scalex, is given bySsxd , x21k ysxdl.
Applying (10) and (11), we thus obtainSsxd , const
(b , 21), xjbj21 (21 , b , 0), andx21 (b . 0). In
the crossover regimes, however, these must be replac
by Ssxd , j ln xj (C1) and1ysxj ln xjd (C2). The fractal
dimensionDf defined bySsxd , x12Df thus becomes

Df  1 sb , 21d, 2 2 jbj s21 , b , 0d,

2 sb . 0d , (13)

except for the crossover regimes.
The above arguments on discrete-time dynamics c

easily be carried over to continuous-time dynamics. On
needs only make replacementsn ! t, n 1 1 ! t 1

dt, and ln ! lstddt. Then, (4) becomesÙy  lstdy 1

Os y2d 1 bstdx, and (5) reduces to a Fokker-Planck equa
tion ÙQ  2l≠zQ 1

1
2 l2≠2

zQ. The latter admits a sta-
tionary solutionQszd ~ expsbzd, and the corresponding
Ps yd is the same form as (6) withb given by (8).

In order to test the validity of our argument, the array
of logistic maps (1) has been analyzed numerically. I
Fig. 2, we displayPs yd versusy for some values ofK ,
with x fixed at a sufficiently small value. As expected
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FIG. 2. Probability densityPs yd in logarithmic scales for
the driven logistic maps (1). For eachK value, Ps yd obeys
a power law in the intermediate range ofy. The exponent
changes as21.40, 21.77, and 22.33 with increasing K.
a  3.7s1 2 Kd, andx  102421.

Ps yd exhibits a power-law dependence ony for not
too small or too largey, with the exponent dependin
on K . Figure 3 shows momentsk ysxdql versusx for
some values ofq. Their power-law dependence onx
is clear, but the observed change of the exponent w
q, indicated in the small box, is not so sudden acro
q  jbj as the formula (10) predicts. The main source
this discrepancy seems to be the existence of the cross
regime C1.

FIG. 3. Momentsk ysxdql vs x in logarithmic scales for the
driven logistic maps (1), showing power-law dependence ox
for eachq with q-dependent exponenthsqd. Numericalh vs q
curve is displayed in the inset and compared with the theoret
curve. K  0.2, anda  3.7s1 2 Kd.
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Up to this point, we have considered uncoupled unit
We now show some evidence that inclusion of shor
range coupling leaves the above-described power-la
behavior of moments essentially unchanged. As a
illustration, we modify (1) with additional diffusive cou-
pling of the form Dh fsssXns j 1 1dddd 1 fsssXns j 2 1dddd 2

2fsssXns jddddjy2. Without the forcing termhn, such a model
would be identical with the usual coupled map lattice
In Fig. 4, the second momentsk ysxd2l are compared
between the two systems, one with diffusive couplin
(D  0.1) and the other without. The deviation from a
power law in the presence of coupling is limited to th
range covering ten or so units out ofN ( 4096). This
defines a lower cutoff lengthxd similar to the dissipation
length in fully developed fluid turbulence. Althoughxd

will increase withD like xd ~
p

D, we have a prefactor
N21, so that xd can be made arbitrarily smaller than
1 (i.e., the upper cutoff) by increasingN indefinitely.
Thus, the intermediate range ofx, which is similar to the
inertial subrange, has a sufficient extention over which th
power-law nature of correlations is practically unaffected

It is also worth noting that whether the dynamical unit
involved are themselves chaotic or not is unimporta
to the power-law nature ofPs yd and k ysxdql. This
has been confirmed with driven phase oscillators of th
form Ùfj  1 2 c cosfj 1 hjstd, jcj , 1 with suitable
random drivinghjstd. To save space, however, we will
not show such numerical data here.

Some new aspects of our turbulent field are reveal
through an analysis of the differential amplitudesY s jd or
quantities defined similarly when the spatial dimension
two or higher. We call such a field theY field. The
situation is analogous to fully developed fluid turbulenc
where the study of the energy dissipation field provide
rich information which would hardly be available from
the study of the velocity field alone. We will restrict

FIG. 4. The second momentk ysxd2l vs x in logarithmic
scales for the driven logistic maps (1) with additional diffusive
coupling (D  0.1) and without (D  0). K  0.2, a 
3.7s1 2 Kd, andN  4096.
4041
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FIG. 5. Size distributionrsld of the laminar domains of theY
field f; Ysxd  jXsx 1 dd 2 Xsxdjydg in logarithmic scales
for the driven logistic maps (1).K  0.2, a  3.7s1 2 Kd,
N  1024, d  N21, Y0  0.2, and0.4.

our discussion to 1D systems below. Note that in
absence of short-range coupling a true derivativedXydx
may not exist in the continuum limit, especially when t
amplitude profile is fractal. TheY field must then be
redefined asY sxd ; d21jXsx 1 dd 2 Xsxdj with finite
but sufficiently smalld.

Spatial intermittency of Y sxd as exemplified in
Fig. 1(b) may be analyzed similarly to the case of on-
intermittency. This is achieved by measuring the pro
bility density rsld for the space intervall over which
the units are in thelaminar state, namely, theirY values
stay below a certain thresholdY0. Such an analysis wa
done for the driven logistic maps (1). It is clear fro
Fig. 5 that, as in the on-off intermittency,rsld exhibits an
inverse power law. We confirmed that, for not too sm
or too largeY0, the exponent is insensitive to the choi
of Y0, but depends onK.

A more thorough characterization of theY field is pro-
vided by the generalized fractal dimensionsDq ; sq 2

1d21 lime!0 ln
P

i m
q
i y ln e [7]. Here, the measuremi of

theith box of sizee is defined as being proportional to th
integral ofY sxd within the same box, with the condition o
the total measure being normalized. Similar multifrac
analysis was performed for the energy dissipation fi
of fully developed fluid turbulence [8]. Figure 6 show
Dq obtained for the driven logistic maps (1). Note th
D0  1, which is simply becauseYsxd is nonvanishing
almost everywhere. In contrast to the power-law beha
of the original amplitude field, which was rather easy
explain, the multifractal nature of theY -field seems non
trivial and remains to be explained. This is because
latter does not result simply from the probability dens
for a singley variable, but is related to singular correl
tions among differenty’s created by the spatially corre
lated forcing field.

Finally, we emphasize the importance of the type of t
bulence reported here. Because of its remarkable rob
4042
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FIG. 6. Dimension spectrumDq of the Y field for the driven
logistic maps (1). K  0.2, a  3.7s1 2 Kd, N  1024, and
d  N21.

ness, similar phenomena should exist quite universally
They may appear in a wide variety of coupled and un
coupled systems, once placed in a long-wave random
fluctuating external field. Some possible candidate
would be electrohydrodynamic convection in nematic
liquid crystals, light-sensitive Belousov-Zhabotinsky
reaction, and nonlinear optical media. Their experimenta
verification is strongly desired.
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