
論文 / 著書情報
Article / Book Information

Title Diffusion-induced instability and chaos in random oscillator networks

Authors Hiroya Nakao, Alexander S Mikhailov

Citation Physical Review E, Vol. 79, No. 3,  pp. 036214

Pub. date 2009,  3

Journal URL  http://journals.aps.org/pre/

Copyright  Copyright (C) 2009 American Physical Society

Powered by T2R2 (Tokyo Institute Research Repository)

http://journals.aps.org/pre/
http://t2r2.star.titech.ac.jp/


Diffusion-induced instability and chaos in random oscillator networks
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We demonstrate that diffusively coupled limit-cycle oscillators on random networks can exhibit various
complex dynamical patterns. Reducing the system to a network analog of the complex Ginzburg-Landau
equation, we argue that uniform oscillations can be linearly unstable with respect to spontaneous phase modu-
lations due to diffusional coupling—the effect corresponding to the Benjamin-Feir instability in continuous
media. Numerical investigations under this instability in random scale-free networks reveal a wealth of com-
plex dynamical regimes, including partial amplitude death, clustering, and chaos. A dynamic mean-field theory
explaining different kinds of nonlinear dynamics is constructed.
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Phase oscillators coupled through various network struc-
tures have been extensively analyzed as a prototype model of
network dynamics �1–4�. In most studies, complete synchro-
nization of all oscillators has been the main focus, though
possibilities of more complex dynamics have also been re-
ported �5,6�. Coupled phase oscillators are obtained from
general coupled limit-cycle oscillators by eliminating ampli-
tude degrees of freedom in the weak-coupling limit �7�.
When the coupling is not weak, such phase reduction breaks
down and much richer dynamics can be expected.

In this paper, we analyze complex dynamics exhibited by
diffusively coupled limit-cycle oscillators on random net-
works. In continuous media, sufficiently large difference in
diffusion constants of oscillating components �e.g., chemical
species� can destabilize uniform oscillations and lead to
diffusion-induced spatiotemporal chaotic regimes �7�, such
as those experimentally observed in surface chemical reac-
tions �8�. We argue that diffusional mobility of the compo-
nents can also lead to the instability and complex dynamics
on networks.

Rather than treating a specific model of limit-cycle oscil-
lators, we focus on a network version of the complex
Ginzburg-Landau �CGL� equation derived from a general
model of diffusively coupled limit-cycle oscillators near the
supercritical Hopf bifurcation. Our linear stability analysis
based on Laplacian eigenvectors of the network generally
shows that the uniformly oscillating solution can become
unstable when the analog of the Benjamin-Feir �BF� condi-
tion is satisfied. Numerical simulations on random scale-free
networks under this condition reveal different kinds of com-
plex dynamical regime. To explain them, an approximate
mean-field theory is constructed.

We consider a system of diffusively coupled identical
limit-cycle oscillators on random networks consisting of N
nodes described by

Ẋ j�t� = F�X j� + D�
k=1

N

LjkXk. �1�

Here, X j�t� represents the state of the oscillator on node j
�j=1, . . . ,N�, F�X� specifies the intrinsic dynamics of an os-
cillator, and the last term takes into account diffusive cou-

pling on the network, where D is a diffusion matrix and Ljk is
a Laplacian matrix of the network. The network is defined by
a symmetric adjacency matrix Ajk, whose components are 1
if the nodes j and k are connected, and 0 otherwise. The
Laplacian matrix is given by Ljk=Ajk−kj� jk, with kj
=�k=1

N Ajk representing the degree �number of connections� of
node j. We assume that each oscillator has a stable limit-
cycle solution X0�t� in absence of diffusion. A uniformly
oscillating solution of the system, X j�t��X0�t� for ∀j, al-
ways satisfies Eq. �1� because �k=1

N Ljk=0 holds, but diffusion
may destabilize this solution.

We assume that each oscillator is slightly above the su-
percritical Hopf bifurcation point and consider a situation
where the effect of diffusion is also comparably small. Then,
using the standard weakly nonlinear analysis �7�, we can
reduce Eq. �1� to a network version of the CGL �or
Kuramoto-Tsuzuki� equation,

Ẇj�t� = �1 + ic0�Wj − �1 + ic2��Wj�2Wj + K�1 + ic1��
k=1

N

LjkWk.

�2�

Here, Wj�t� represents the complex oscillation amplitude of
jth oscillator such that X j�t�−X�S��Wj�t�exp�i�0t�U+c.c.,
where X�S� is the unstable fixed point, �0 is the Hopf fre-
quency, and U is the complex critical eigenvector of the
Jacobian matrix of F�X� at X�S�. Real parameters c0, c1, and
c2, and positive coupling strength K can be determined when
F�X� and D are explicitly given. Note that if the diffusion
constants of all components are equal, i.e., D=DI, where I is
the identity matrix, we have c1=0. Equation �2� has a uni-
formly oscillating solution, Wj�t��W0�t�ªexp�i�c0−c2�t�
for ∀j.

When K is small enough, each oscillator state is always
near the unperturbed limit cycle, so that Eq. �2� can further
be reduced to coupled phase oscillators of the form �̇ j�t�
=�−C�k=1

N Ljk sin�� j −�k+��, where � j is the phase of the
oscillator j, �=c0−c2 is the frequency, C is the rescaled
coupling strength, and the coupling phase shift � satisfies
cos �= �1+c1c2� /��1+c1

2��1+c2
2�. Recently, it has been

shown that this network phase model exhibits coexistence of
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drifting and phase-locked oscillators with stationary phase
gradients �5�. In the following, we focus on the case with
stronger coupling.

Let us analyze linear stability of the uniform solution.
Plugging weakly perturbed solution Wj�t�=W0�t�	1
+� j�t�
exp�i� j�t�� into Eq. �2� with � j�t� and � j�t� being am-
plitude and phase perturbations, respectively, we obtain the
following linearized equations:

�̇ j�t� = − 2� j + K�
k=1

N

Ljk��k − c1�k� ,

�̇ j�t� = − 2c2� j + K�
k=1

N

Ljk�c1�k + �k� . �3�

To proceed, we introduce Laplacian eigenvalues ��	� and
eigenvectors ��	�= ��1

�	� , . . . ,�N
�	�� of the Laplacian matrix

Ljk satisfying �k=1
N Ljk�k

�	�=��	�� j
�	� for 	=1, . . . ,N. All ei-

genvalues are real and nonpositive, and the eigenvectors are
mutually orthogonal. We expand the perturbations as
�� j ,� j�=�	=1

N ���	� ,��	��� j
�	� exp�
�	�t�, where ��	� and ��	�

are expansion coefficients and 
�	� is the complex growth
rate of 	th eigenmode. Then, a characteristic equation
	
�	�
2+2	1−K��	�

�	�−2�1+c1c2�K��	�+ �1+c1

2�	K��	�
2

=0 is obtained for each eigenmode, which yields


�
�	� = − 1 + K��	� � �1 + 2c1c2	K��	�
 − c1

2	K��	�
2.

�4�

When Re 
�
�	��0 for some 	, the 	th eigenmode is unstable.

By expanding the upper branch 
+
�	� of Eq. �4� for small

K��	�, we obtain 
+
�	�= �1+c1c2�K��	�+O�	K��	�
2�. There-

fore, Re 
+
�	� can be positive when the condition 1+c1c2
0

is satisfied �note that ��	��0�. This is the same as the BF
condition for instability of the uniform solution of the CGL
equation in continuous media �7�, which also applies to glo-
bally coupled and nonlocally coupled CGL oscillators �9,10�.
Note that the BF condition cannot be satisfied for c1=0 and
therefore a sufficiently large difference in diffusion constants
of the components is necessary. For the instability to actually
occur, the discrete Laplacian eigenvalues should exist near
the peak of the upper curve given by Eq. �4�. As we already
know for other coupling schemes �7,9,10�, Eq. �2� is ex-
pected to exhibit strongly nonlinear behavior once the uni-
form solution becomes unstable.

As an example of random networks, we use random scale-
free networks of size N=1000 and mean degrees �k�=20
generated by the Bárabasi-Albert preferential attachment rule
�11�. We fix the parameters c1=−2 and c2=2 �c0 can be set to
0 without loss of generality�, and vary the coupling strength
K. Numerical results shown below are for one particular re-
alization of the random network, but similar behavior was
observed for other network realizations as well.

Figure 1�a� displays the degree kj of each node vs the
node index j, where the node indices 	j
 are sorted in de-
creasing order of their degrees 	kj
 so that inequalities k1
�k2� ¯ �kN hold. We use this ordering as a useful way to
visualize the complex dynamics on the network throughout
our analysis. Figure 1�b� shows the Laplacian eigenvalues

��	� of the same network. The eigenvalue indices 		
 are
also sorted in decreasing order of the eigenvalues such that
0=��1����2�� ¯ ���N� hold.

Figure 1�c� plots growth rates of the perturbations Re 
�
�	�

obtained by the linear stability analysis as functions of
−K��	� at K=0.04. The actual growth rates are distributed
discretely on the curves given by Eq. �4�. We can see that the
growth rates on the upper branch Re 
+

�	� can become posi-
tive when the coupling strength K is in an appropriate range,
indicating that the uniform solution can undergo a diffusion-
induced instability.

To investigate nonlinear dynamics after the instability, we
have performed numerical simulations of Eq. �2� with
slightly perturbed uniform solutions as initial conditions.
When K is very small �K
0.001�, no oscillator deviates
largely from the unperturbed limit-cycle orbit W�0��t�, so that
the reduced phase model is valid. The coupling phase shift is
given by �=arccos�−3 /5�
−2.21, which is repulsive be-
cause ����� /2 �7�. Therefore, the oscillators do not syn-
chronize but rotate incoherently. When K is very large �K
�0.165�, there exist no discrete growth rates on the positive
part of the upper curve of Fig. 1�c�, so that the uniform
solution remains stable even if the BF condition is satisfied.

Between these limits, we have found three characteristic
steady dynamical regimes as shown in Fig. 2, where snap-
shots of the amplitude profile �Wj� and the distribution of Wj
on the complex plane are displayed for three values of the
coupling strength, K=0.02, K=0.04, and K=0.08.

�i� Partial amplitude death �Figs. 2�a� and 2�d��. When
0.006
K
0.028, a group of oscillators with small node
indices �i.e., with large degrees� stops rotation and stays near
the origin of the complex plane while other oscillators are
rotating around circular orbits incoherently, with a rather
sharp but smooth transition between the two groups.

�ii� Chaos �Figs. 2�b� and 2�e��. When 0.028
K
0.078,
the oscillators are roughly separated into three groups. In the
first group, oscillators take approximately constant ampli-
tudes near 0.5, which corresponds to the central cluster on
the complex plane. Amplitudes of oscillators in the second
group are strongly scattered and evolve chaotically, but their
envelope still forms smooth curves. This group corresponds
to the intermediate scattered oscillator states on the complex
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FIG. 1. �Color online� �a� Degree kj and �b� Laplacian eigen-
value ��	� of the scale-free network used in numerical simulations.
�c� Linear growth rates of perturbations Re 
�

�	� plotted as functions
of −K��	�. Dashed green line shows the slope −�1+c1c2� of the
upper branch at the origin.
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plane. The oscillators in the last group again take constant
amplitudes near 1, which correspond to the oscillator states
elongated along the unit circle on the complex plane. The
largest Lyapunov exponent of the system is positive in this
regime.

�iii� Clustering �Figs. 2�c� and 2�f��. When 0.078
K

0.164, phase relations among the oscillators are frozen and
the whole system exhibits a rigid constant rotation. For rela-
tively small values of K �K
0.12�, the oscillators with small
degrees split into two groups with two distinct amplitudes;
i.e., they exhibit a two-cluster state. As K becomes larger, the
two clusters gradually approach each other and, at relatively
large K �K�0.14�, the two clusters merge to a single cluster
but still with phase scattering.

Transitions between the above dynamical regimes occur
abruptly and are clearly detectable, whereas the change in the
dynamics within each regime, e.g., transformation from two-
cluster to one-cluster states, occurs gradually with K.

To explain the observed dynamical patterns, we employ
the mean-field approximation, valid for large random net-
works with strong diffusive mixing. It has been used in ana-
lyzing network-based epidemic spreading models �12�,
coupled phase oscillators �3,5�, and also network Turing pat-
terns �13�. A crucial point here is that we consider not only
static but also dynamic mean fields that oscillate periodically
with time.

Introducing a complex local field hj�t�=�k=1
N AjkWk�t�, the

diffusion term in Eq. �2� can be written as �k=1
N LjkWk=hj�t�

−kjWj. We approximate this local field as

hj�t� 
 kjH�t�, H�t� = �
j=1

N
kj

ktot
Wj�t� , �5�

where ktot=� j=1
N kj and H�t� is a degree-weighted global mean

field over the network �3,12,13�. Thus, we ignore detailed
connections of the network and retain only the degrees.
Equation �2� is then approximated as

Ẇj�t� = �1 + ic0�Wj − �1 + ic2��Wj�2Wj

+ kjK�1 + ic1�	H�t� − Wj
 , �6�

which describes independent CGL oscillators coupled to a
global mean field H�t�. The effective coupling strength of
each oscillator to H�t� is given by kjK, and thus depends on
the node degree kj.

In Figs. 3�a�, 3�d�, and 3�g�, time sequences of the global
mean field H�t� obtained numerically for the three cases in
Fig. 2 are shown. H�t� almost vanishes at K=0.02, whereas it
oscillates sinusoidally at K=0.04 and K=0.08. We can thus
approximate H�t� in these regimes as H�t�=B exp�i�t�,
where B and � denote amplitude and frequency of the peri-
odic sinusoidal oscillation, which reasonably fit the numeri-
cal data as shown in the figures. Similar sinusoidal-field ap-
proximation has been used in the analysis of collective
dynamics of globally coupled CGL oscillators �9�, but degree
inhomogeneity in networks essentially changes the results.
Precisely speaking, in the chaotic regime, H�t� is only ap-
proximately sinusoidal and can be more complex, e.g., qua-
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FIG. 2. �Color online� ��a�–�c�� Snapshots of the complex amplitude Wj on the complex plane. ��d�–�f�� Snapshots of the amplitude �Wj�
vs the node index j. Coupling strength is K=0.02 for �a� and �d�, K=0.04 for �b� and �e�, and K=0.08 for �c� and �f�. Node indices are sorted
in decreasing order of their degrees 	kj
 so that inequalities k1�k2� ¯ �kN hold. Solid blue curves in �d�–�f� are predictions of the
mean-field theory.
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siperiodic for some other values of K �as also known in the
case of global coupling �9��, but we focus on the simplest
sinusoidal case here. In the clustering regime, H�t� is always
strictly sinusoidal.

Moving to a rotating frame by introducing W�t�
=V�t�exp�i�t�, we obtain an autonomous equation for V�t�
as V̇�t�= �1+ i�c0−���V− �1+ ic2��V�2V+��1+ ic1��B−V�.
Here we dropped the index j, because all oscillators obey the
same dynamics, and defined �=��j�=kjK, which plays the
role of a bifurcation parameter. The dependence of the oscil-
lator dynamics on the node index j enters only through �.

Figures 3�b�, 3�e�, and 3�h� display the bifurcation dia-
grams of the above equation as functions of the control pa-
rameter �, where the maximal and the minimal values of
�W�= �V� are plotted using B and � estimated numerically in
Figs. 3�a�, 3�d�, and 3�g�. Depending on the values of B, �,
and �, the equation exhibits a symmetric limit cycle, an
asymmetric limit cycle, and one or two fixed points �14�.

Now, using the relation between the bifurcation parameter
and the node degree, �=��j�=Kkj, we can map the bifurca-
tion diagrams onto actual amplitude patterns in the network.
The solid curves in Figs. 2�d�–2�f� are the maximal and mini-
mal values of �Wj�= �Vj�, which fit the envelopes of the os-
cillator dynamics reasonably well. Figures 3�c�, 3�f�, and 3�i�
compare the numerical probability density functions of the
amplitude with these curves, showing good agreement. In
particular, the condition for an oscillator to fall in the ampli-
tude death state in regime �i� can be obtained analytically by
linear stability analysis of the fixed point Vj =0 with B=0.
This yields kj �1 /K, which also agrees well with the numeri-
cal data. Thus, the complex network dynamics in our model
can be well understood through the mean-field approxima-
tion �15�.

Summarizing, we have investigated diffusion-induced in-
stability and resulting complex dynamics exhibited by limit-
cycle oscillators on random networks. Under the mean-field

FIG. 3. �Color online� ��a�, �d�,
and �g�� Evolution of real �red
circles� and imaginary parts �blue
crosses� of the global mean field
H�t� and fitting by B exp�i�t�.
��b�, �e�, and �h�� Bifurcation dia-
grams of the sinusoidally driven
oscillator. Insets show limit-cycle
orbits or fixed points of V�t� at the
parameter values indicated by bro-
ken vertical lines. ��c�, �f�, and �i��
Probability density functions of
�Wj� compared with the mean-field
approximation �yellow or light
gray represents lower density, and
red or dark gray represents higher
density, with white representing
zero�. Solid blue curves represent
the maximal and minimal values
of the complex amplitude �Wj� un-
der the mean-field approximation.
Parameters are K=0.02 and B=0
for �a�–�c�; K=0.04, B=0.442,
and �=−1.25 for �d�–�f�; and K
=0.08, B=0.532, and �=−0.796
for �g�–�i�.
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approximation, the observed inhomogeneous dynamical pat-
terns can be interpreted as a mixture of various limit cycles
and fixed points, which is reminiscent of the “chimera” states
found in nonlocally coupled oscillators �5,16�. In the present
case, however, the degree inhomogeneity of the network es-
sentially determines the dynamics of each oscillator.

Dynamical systems coupled through various networks are
ubiquitous structures in the real world, ranging from neu-
ronal circuits in the brain to various engineering problems,

such as sensor networks and power grids �see �1,4��. The fact
that complex dynamical patterns can spontaneously emerge
in random oscillator networks may be of fundamental impor-
tance in understanding the behavior and functions of such
systems.
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