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Sufficient conditions for the wave instability in general three-component reaction-diffusion sys-
tems are derived. These conditions are expressed in terms of the Jacobian matrix of the uniform
steady state of the system, and enable us to determine whether the wave instability can be
observed as the mobility of one of the species is gradually increased. It is found that the insta-
bility can also occur if one of the three species does not diffuse. Our results provide a useful
criterion for searching wave instabilities in reaction-diffusion systems of various origins.
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1. Introduction

The wave instability provides an important mechanism for oscillatory pattern formation in nonequi-
librium chemical systems. When it takes place, a critical mode corresponding to a traveling wave
with a certain wavenumber and oscillation frequency begins to grow, destabilizing the uniform
steady state. Although being less known, the wave instability has already been considered in 1952
by A. Turing in his pioneering publication [1], where the classical (i.e. static) Turing instability, lead-
ing to the establishment of a periodic stationary pattern, has also been introduced. Therefore, it may
also be appropriate to describe it as the oscillatory Turing bifurcation. Moreover, it was noticed by
A. Turing [1] that at least three interacting species are needed for this instability to occur.

Because of the spatial reflection symmetry, waves traveling in the left and right directions have the
same growth rates, and both of them begin to spontaneously develop above the instability threshold.
Nonlinear interactions between such modes determine whether one of the modes gets suppressed, so
that a wave traveling in a certain direction is established, or standing waves, representing superposi-
tions of left- and right-traveling waves, are formed instead [2,3]. The wave patterns resulting from
such instability can also exhibit secondary instabilities, and wave turbulence may set on.

In contrast to the classical Turing bifurcation, which has been extensively discussed for both bio-
logical and chemical systems [1,4–10], the wave bifurcation has so far attracted less attention. It has
been considered for special chemical models [11,12], and its existence was suggested in the exper-
iments with Belousov-Zhabotinsky microemulsions [13]. There are also publications in which this
instability was discussed for special ecological models [14].

© The Author(s) 2014. Published by Oxford University Press on behalf of the Physical Society of Japan.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
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Because at least three species are needed for the wave instability to occur, the linear stability analy-
sis is more complex in this case, as compared with the classical Turing bifurcation in two-component
activator-inhibitor systems. The complexity of the stability analysis, which was performed sepa-
rately for individual chemical systems, has probably also been responsible for the fact that the wave
instability was not broadly investigated for reaction-diffusion media. In a recent study, sufficient
conditions for the wave instability in general three-component reaction-diffusion systems have been
derived [15]. These conditions have been formulated in terms of the elements of the Jacobian matrix
and the diffusion constants of the reacting species.

By using an essentially different method, in this article we derive another set of sufficient conditions
for the wave bifurcation in general three-component reaction–diffusion models. As we show, the
derived sufficient conditions are complementary to those obtained in Ref. [15]. Indeed, there are
systems where our conditions can be used to predict the wave instability, whereas the other set of
sufficient conditions does not apply. On the other hand, our conditions do not work for some systems
while the conditions from Ref. [15] hold.

The conditions derived in the present paper tell whether the wave bifurcation is possible when the
mobility of any chosen species is gradually increased, while diffusion coefficients of other species
are kept constant. The instability may take place even if one of the three species is immobile.

2. Three-component reaction–diffusion systems

We consider reaction–diffusion systems with three chemical reactants U , V , and W . Local densities
of the reactants are denoted as u = [U ], v = [V ], and w = [W ]. All reactants diffuse over the space
and undergo local chemical reactions. Generally, such systems are described by the equations

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

du

dt
= f (u, v, w)+ Du∇2u,

dv

dt
= g(u, v, w)+ Dv∇2v,

dw

dt
= h(u, v, w)+ Dw∇2w,

(1)

where functions f , g, and h represent the local reactions. Diffusion coefficients of the reactants
are Du , Dv , and Dw. We assume that a uniform steady state (u, v, w) = (ū, v̄, w̄) determined
by f (ū, v̄, w̄) = g(ū, v̄, w̄) = h(ū, v̄, w̄) = 0 exists and that this state is stable in the absence of
diffusion.

3. Linear stability analysis with rescaled variables

We introduce small perturbations to the steady state as (u, v, w) = (ū, v̄, w̄)+ (δu, δv, δw). Sub-
stituting this into Eqs. (1), the following linearized differential equations for the perturbations are
obtained: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d

dt
δu = fuδu + fvδv + fwδw + Du∇2δu,

d

dt
δv = guδu + gvδv + gwδw + Dv∇2δv,

d

dt
δw = huδu + hvδv + hwδw + Dw∇2δw,

(2)
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where fu = ∂ f/∂u|(ū,v̄,w̄), fv = ∂ f/∂v|(ū,v̄,w̄), fw = ∂ f/∂w|(ū,v̄,w̄), . . . are partial derivatives at the
steady state. The following rescaled variables are introduced for convenience:

δũ = δu, δṽ =
√∣∣∣∣ fv

gu

∣∣∣∣δv, δw̃ =
∣∣∣∣ fv
hv

∣∣∣∣ δw, t̃ =
√

| fvgu|t. (3)

We substitute these variables into Eqs. (2) to obtain the set of equations

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d

dt̃
δũ = m0δũ + αδṽ + nδw̃ + Duμ∇2δũ,

d

dt̃
δṽ = βδũ + p0δṽ + qδw̃ + Dvμ∇2δṽ,

d

dt̃
δw̃ = rδũ + γ δṽ + s0δw̃ + Dwμ∇2δw̃,

(4)

where

m0 = fu√| fvgu| , n = fw |hv|√∣∣ fv3gu
∣∣ ,

p0 = gv√| fvgu| , q = gw

∣∣∣∣ hv
fvgu

∣∣∣∣ ,
r = hu

|hv|

√∣∣∣∣ fv
gu

∣∣∣∣, s0 = hw√| fvgu| ,

μ = 1√| fvgu | . (5)

The coefficients α, β, γ are determined by the signs of fv, gu , hv , α = sign( fv), β = sign(gu),
γ = sign(hv). The perturbations (δũ, δṽ, δw̃) are expanded over plane waves as

δũ =
∫

d�kŨ

(
�k
)

exp

[
λ

(
�k
)
t̃ − i�k · �x

]
,

δṽ =
∫

d�kṼ

(
�k
)

exp

[
λ

(
�k
)
t̃ − i�k · �x

]
,

δw̃ =
∫

d�kW̃

(
�k
)

exp

[
λ

(
�k
)
t̃ − i�k · �x

]
,

(6)

where �k = (k1, k2, . . .) is the wave vector, and λ

(
�k
)

is the growth rate of the plane wave with wave
vector �k. Thus, we obtain the following equations for each wave vector �k:

λ(k)

⎛
⎜⎝Ũ (k)

Ṽ (k)

W̃ (k)

⎞
⎟⎠ =

⎛
⎜⎝m0 − Duμk2 α n

β p0 − Dvμk2 q
r γ s0 − Dwμk2

⎞
⎟⎠

⎛
⎜⎝Ũ (k)

Ṽ (k)

W̃ (k)

⎞
⎟⎠ , (7)

where k =
∣∣∣�k∣∣∣ is the wave number, the magnitude of the wave vector �k. Because only the magnitude

of the wave vector is important, we drop the vector symbols from here on.
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The condition

det

⎛
⎜⎝m0 − Duμk2 − λ(k) α n

β p0 − Dvμk2 − λ(k) q
r γ s0 − Dwμk2 − λ(k)

⎞
⎟⎠ = 0 (8)

should be satisfied for Eq. (7) to have non-trivial solutions. Thus, the linear growth rate λ(k) is
determined by the characteristic equation

λ3 − (m + p + s)λ2 + (mp + ps + sm − nr − γ q − αβ)λ

− (mps − npr + αqr − γmq + βγ n − αβs) = 0, (9)

where

m = m(k) = m0 − k2μDu,

p = p(k) = p0 − k2μDv,

s = s(k) = s0 − k2μDw.

(10)

The growth of each plane-wave mode is determined by the real part of λ(k). The uniform steady
state is stable if Re(λ(k)) is negative for all k. The instability occurs if Re(λ(k)) becomes positive for
at least one wave number k = kc. Then the uniform steady state is destabilized, leading to sponta-
neous development of wave patterns with critical wave number kc. If the imaginary part Im(λ(kc)) of
the unstable mode is zero, the first critical mode represents a stationary plane wave and the Turing
instability occurs. On the other hand, if Im(λ(kc)) �= 0, the critical mode is oscillatory in time and
periodic in space, so that the critical mode represents a traveling wave and the wave instability takes
place.

4. Critical condition for the instabilities

The complex conjugate root theorem holds that a characteristic equation with real coefficients

λ3 + aλ2 + bλ+ c = 0 (11)

has either three real roots or one real root and a pair of complex conjugate roots. In the latter case,
the three roots can be written as

λ1,2 = ψ ± iω, λ3 = φ, (12)

so that the coefficients are represented as

a = −(2ψ + φ), b = ψ2 + ω2 + 2ψφ, c = −(ψ2 + ω2)φ. (13)

Combining these three equations, we obtain

c − ab = −(ψ2 + ω2)φ + (2ψ + φ)(ψ2 + ω2 + 2ψφ)

= 2ψ
[
(ψ + φ)2 + ω2

]
. (14)

At the threshold of the wave instability, we have ψ = 0, so that c − ab = 0. At the threshold of
the Turing instability, we would have φ = 0, and therefore c = 0. Note that the Turing instability is
also possible when the characteristic equation has three real roots and one of them becomes positive.
It can be easily checked that, also in this case, the instability threshold corresponds to c = 0.
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(a) (b)

Fig. 1. Boundary surface for the wave instability Iwav(m, p, s) = 0. The line� touches the surface at a point P .
Panel (b) is a close-up of (a). The parameters are fixed at n = q = r = α = β = γ = 1, m0 = 0.4, p0 = 0.4,
and s0 = −1.8. The diffusion constants are Du = 1, Dv = 1, and Dw = 14.521.

Thus, the wave instability first takes place when, for one wave number k = kc, the equation

Iwav = (mps − npr + αqr − γmq + βγ n − αβs)

+ (m + p + s)(mp + ps + sm − nr − γ q − αβ) = 0
(15)

becomes satisfied, where m, p, and s are given by Eqs. (10) with k = kc.
The Turing instability first takes place when, for one wave number k = kc, the equation

Ist = −(mps − npr + αqr − γmq + βγ n − αβs) = 0 (16)

becomes satisfied, where the coefficients m, p, and s are again given by Eqs. (10) with wave
number kc.

It is convenient to introduce the three-dimensional m-p-s space in order to represent these con-
ditions graphically. As illustrated in Figs. 1 and 2, each of the conditions (15) and (16) defines a
boundary surface and Eqs. (10) determine a straight line � which is parameterized by the wave
number k. If the line � touches the boundary surface Iwav(m, p, s) = 0 or Ist(m, p, s) = 0, then
condition (15) or (16) is satisfied and the corresponding instability takes place.

5. Sufficient conditions for wave instability

The uniform steady state (ū, v̄, w̄), corresponding to the plane-wave mode of wave number k = 0,
should be stable if diffusion is absent. In terms of the coefficients of the characteristic equation (11),
this implies that

a > 0, b > 0, c > 0 and c − ab < 0, (17)

which is known as the Routh-Hurwitz criteria [5]. Note that the third and fourth criteria in (17)
are equivalent to the conditions Ist < 0 and Iwav < 0, respectively. Thus, the initial point P0 with
coordinates (m0, p0, s0) on the line (10) should lie inside the stable region in the m-p-s space.

The wave instability takes place if the first critical mode is oscillatory. At the threshold of the wave
instability, the line � defined by Eq. (10) should touch the boundary surface Iwav = 0 without having
intersections with the surface Ist = 0.
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Fig. 2. Boundary surface for the Turing instability Ist(m, p, s) = 0. The parameters are fixed at
n = q = r = α = β = γ = 1.

Suppose that we want to check whether the wave instability can occur when the diffusion constant
Dw is varied. Let us denote A = Dv/Du and B = p0 − m0 Dv/Du , and consider a plane p = Am +
B parallel to the s-axis. The line� always lies on this plane irrespective of Dw, because the conditions
p0 = Am0 + B and Dv/Du = A are satisfied. A coordinate

x = m + p

A + 1
(18)

is introduced on the plane in such a way that we have x = 0 when m + p = 0 holds. From the
conditions p = Am + B and (18), variables m and p are represented as m = x − B/(A + 1) and
p = Ax + B/(A + 1) on the plane. The slope of the line � in the x-s space is Du Dw/

√
Du

2 + Dv2

and is nonnegative. The initial point P0 of the line � is at (x0, s0) on the plane, where x0 =
(m0 + p0)/(A + 1). The point (x0, s0) is in the stable region of the x-s space. Thus, two surfaces
Iwav = 0 and Ist = 0 intersect the plane along the boundary curves Îwav = 0 and Îst = 0, that is

Îwav(x, s; A, B) = Iwav

(
x − B

A + 1
, Ax + B

A + 1
, s

)
= 0, (19)

Îst(x, s; A, B) = Ist

(
x − B

A + 1
, Ax + B

A + 1
, s

)
= 0. (20)

Below, we examine the dependences of the boundary curves Îwav = 0 and Îst = 0 on the parameters
m0, p0, s0, n, q, r , α, β, and γ . This allows us to obtain the parameter conditions under which the
wave instability can occur.

5.1. Conditions to satisfy Iwav = 0

Let us examine the shape of the boundary curve Îwav = 0 at large values of |s|. If |s| � 1, we can
neglect O(s0) terms and obtain

Îwav(x, s; A, B) ≈ s
[
(1 + A)2x2 + s(1 + A)x − nr − γ q

]
. (21)
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Then the boundary curve Îwav = 0 is given by the equation

(1 + A)2x2 + s(1 + A)x − nr − γ q = 0, (22)

and we have

x = 1

2

⎡
⎣− s

A + 1
±

√(
s

A + 1

)2

+ 4
nr + γ q

(A + 1)2

⎤
⎦

	 s

2(A + 1)

[
−1 ±

(
1 + 2

nr + γ q

s2

)]
. (23)

From Eq. (21), the boundary curve approaches x = 0 in the limit of large |s| as

(A + 1)xs2 = 0. (24)

Then the plus sign should be chosen in Eq. (23). Thus, the asymptotic boundary curve in the limit
s � 1 is the hyperbola

xs = nr + γ q

A + 1
. (25)

If the coefficient of this hyperbola is negative, i.e. nr + γ q < 0, the boundary curve lies in the
region of x > 0 and s < 0. In such cases, given that x0 > 0, the line � always touches the boundary
curve when increasing the diffusion constant Dw, as shown in Figs. 3 and 4. Therefore, we require
nr + γ q < 0 and x0 > 0 as a part of the sufficient conditions. Using the definitions of the model
parameters (4), these requirements can be written in terms of the Jacobian matrix as

fwhu + gwhv < 0, (26)

fu + gv > 0. (27)

5.2. Conditions not to satisfy Ist = 0

The boundary curve for the Turing instability Îst(x, s; A, B) = 0 is given by

s(x) = −(A + 1)2(Anr + γ q)x − (A + 1)2(βγ n + αqr)+ (A + 1)B(nr − γ q)

A(A + 1)2x2 − (A2 − 1)Bx − αβ(A + 1)2 − B2 , (28)

which is a single-valued function of x .
Let us assume that all three reactants diffuse over the space, Du �= 0, Dv �= 0, and Dw �= 0, which

leads to A �= 0. If the denominator on the right-hand side of Eq. (28) is not zero for all values of x ,
then s(x) is a continuous function. Figure 3(a) illustrates the qualitative shape of the boundary curves
Îwav = 0 and Îst = 0 in such a situation. In this case, the line � touches the boundary curve Îwav = 0
without intersecting Îst = 0 as Dw is increased. As a consequence, the wave instability takes place.
The condition is given by

(A2 − 1)2 B2 + 4A(A + 1)2
[
αβ(A + 1)2 + B2

]
< 0, (29)

which implies

fugv − fvgu >
( fu Dv + gvDu)

2

4Du Dv
. (30)

If the denominator on the right-hand side of Eq. (28) vanishes at x− and x+, the boundary curve
Îst = 0 diverges in two ways depending on the values of n, q, r , α, β, and γ [Fig. 3(b) and (c)].
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(c)

s

(x, s; A, B) = 0Îwav

xx0

(x, s; A, B) = 0ÎST

increasing wD

x-

x+

P0

G

(a)

(x, s; A, B) = 0Îwav

s

xx0

(x, s; A, B) = 0ÎST

increasing wD

(b)

s

(x, s; A, B) = 0Îwav

xx0

(x, s; A, B) = 0ÎST

increasing wD

x-

x+

P0

G

P0

G

Fig. 3. Boundary curves Îwav = 0 (red) and Îst = 0 (blue) when (a) the condition (30) and (b, c) the condi-
tion (34) are satisfied. All species are mobile. The positions of the line � defined by (10) are shown for two
different values of Dw. The boundary curve Îst = 0 can behave as shown in (b) or (c), depending on the model
parameters.

(x, s; A, B) = 0Îwav

s

(b)

xx0

(x, s; A, B) = 0ÎST

p0 +
p0

s

(x, s; A, B) = 0Îwav

(a)

x

P0

x0

(x, s; A, B) = 0ÎST

increasing wD increasing wD

G

P0

G

p0 +
p0

Fig. 4. Boundary curves Îwav = 0 (red) and Îst = 0 (blue). The reactant V does not diffuse (Dv = 0). The
line � defined by (10) is shown as black lines for two different values of Dw. The boundary curve Îst = 0 can
behave as shown in (a) or (b), depending on the parameters n, q, r , α, β, and γ .
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In both cases, if x0 ≤ x−, the line � touches Îwav = 0 first. Thus, if the condition

x0 ≤ x− = (A2 − 1)B − (A + 1)2
√

B2 + 4αβA

2A(A + 1)2
, (31)

which is equivalent to

fugv − fvgu > 0 (32)

and

fu Dv + gvDu ≤ 0 (33)

is satisfied, the wave instability takes place as Dw is increased.
Next, we assume that the reactant V does not diffuse, that is Dv = 0, leading to A = 0. In this

case, the boundary curve Îst = 0 is given by

s(x)|A=0 = −γ qx + βγ n + αqr + B(nr − γ q)

Bx − αβ − B2 , (34)

which diverges at x = B + αβ/B = p0 + αβ/p0 [Figs. 4(a) and (b)]. In this case, if x0 ≤ p0 +
αβ/p0, the line � touches Îwav = 0 without intersecting Îst = 0 when Dw is increased. Thus, the
instability condition for a system with two diffusible reactants is given by

x0 ≤ p0 + αβ

p0
, (35)

which implies

gv( fugv − fvgu) ≤ 0. (36)

On the other hand, if the reactant U does not diffuse, Du = 0, one can choose a plane m = A′ p + B ′

where A′ = Du/Dv and B ′ = m0 − p0 Du/Dv , and derive the condition

fu( fugv − fvgu) ≤ 0. (37)

Thus, sufficient conditions for the wave instability under increasing diffusion constant Dw of the
reactant W has been derived for the four cases depending on the diffusion constants. The first two con-
ditions (26) and (27) are common to all cases. The last condition depends on the diffusion constants,
i.e. we have⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

fugv − fvgu >
( fu Dv + gvDu)

2

4Du Dv
(Du �= 0, Dv �= 0), (38)

fugv − fvgu > 0 and fu Dv + gvDu ≤ 0 (Du �= 0, Dv �= 0), (39)
fu( fugv − fvgu) < 0 (Du = 0, Dv �= 0), (40)
gv( fugv − fvgu) < 0 (Du �= 0, Dv = 0). (41)

These different requirements can, however, be expressed in a single equation:

det

(
fu + Du� fv

gu gv + Dv�

)
�= 0 for any � < 0, (42)

when at least two diffusion constants are non-vanishing.
The wave instability may take place also under the variation of the other two diffusion constants

Du or Dv . The corresponding sufficient conditions for each case can be obtained by permutating the
three variables u, v, and w.
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In summary, the wave instability occurs under increasing diffusion constants Du , Dv , or Dw if the
conditions

gv + hw > 0 and gu fv + hu fw < 0

and det

(
gv + Dv� gw

hv hw + Dw�

)
�= 0 for any � < 0, (43)

hw + fu > 0 and hvgw + fvgu < 0

and det

(
hw + Dw� hu

fw fu + Du�

)
�= 0 for any � < 0, (44)

or

fu + gv > 0 and fwhu + gwhv < 0

and det

(
fu + Du� fv

gu gv + Dv�

)
�= 0 for any � < 0, (45)

are respectively satisfied.

6. Numerical examples

In order to illustrate the results, we examine several three-component reaction-diffusion systems.
The first example is a chemical reaction-diffusion system introduced by Meinhardt [16], where self-
enhancement of an activator U is antagonized by two inhibitors V and W . The system is described
by the equations ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

du

dt
= −ruu + s

(
u2 + bu

)
v
(
1 + suu2

)
(1 + sww)

+ Du∇2u,

dv

dt
= −rvv + su2 + bv + Dv∇2v,

dw

dt
= −rww + rwu + Dw∇2w.

(46)

We fix the parameters at ru = 1.0, rv = 1.0, rw = 0.01, bu = 0.2, bv = 0, su = 0, sw = 2.0, and
s = 1.0, yielding the uniform steady state (ū, v̄, w̄) 	 (0.646, 0.417, 0.646). The Jacobian matrix at
the uniform steady state is

J 	

⎛
⎜⎝0.352 −1.548 −0.564

1, 291 −1 0
0.01 0 −0.01

⎞
⎟⎠ . (47)

This satisfies the conditions (17), so that the uniform steady state is stable when diffusion is absent.
Below, we demonstrate numerically wave instability in the system (46) to check the validity of the
derived conditions (43)–(45).

Suppose that the inhibitor W does not diffuse, i.e. Dw = 0. In this case, the conditions (44) are
always satisfied irrespective of the diffusion mobility Du of the activator U . Thus, the wave instability
will be found when Dv is gradually increased.

Figure 5 illustrates the linear stability analysis in this case, and also presents the results of numerical
simulations which were performed for a one-dimensional system under periodic boundary condi-
tions. The boundary surfaces Iwav = 0 and Ist = 0 and the x-p plane in the m-p-s space are shown
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Fig. 5. Wave instability in the model (46). (a) Boundary surfaces Iwav(m, p, s) = 0 (red surface),
Ist(m, p, s) = 0 (blue surface), and the x-p plane (gray transparent plane) in the three-dimensional m-p-s
space. (b) Boundaries Îwav(x, p) = 0 (red curve) and Îst(x, p) = 0 (blue curve) on the x-p plane. The lines �
for two different diffusion constants, Dv = 2.5 (black dashed line) and Dv = 156 (black solid line), are shown.
(c) The real part (red curve) and the imaginary part (blue curve) of the linear growth rate λ as functions of wave
number k. (d) The space-time plot of the final established patterns at Dv = 157.5. The diffusion constants of
two species U and W are fixed at Du = 2.5 and Dw = 0 in this figure.

in Fig. 5(a). Note that, while the variable x was introduced by using the variables m and p in Eq. (18),
here it depends on the variables s and m, so that the line � lies on the x-p plane irrespective of the
value of Dv . The boundary curves Îwav = 0 and Îst = 0 in the x-p plane are shown in Fig. 5(b).
Figure 5(c) plots the linear growth rate λ for the instability threshold. The emerging wave pattern is
shown in Fig. 5(d).

Starting from equal mobilities of the species U and V , Du = Dv = 2.5, we gradually increase the
mobility Dv . When it reaches a certain threshold, the line � touches the boundary curve Îwav = 0 at
P0 without having intersections with Îst = 0, as shown in Fig. 5(b). At the instability threshold, the
real part of the linear growth rate vanishes, Reλ(k) = 0, for the critical wave number kc 	 8, whereas
the imaginary part remains finite [Fig. 5(c)]. Thus, the wave instability takes place and the uniform
steady state becomes unstable. When the instability occurs, traveling waves with wave number k = 8
spontaneously develop, as can be seen in Fig. 5(d).
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As another example, we apply our theory to an ecological reaction-diffusion (dispersal predator-
prey) system with three species U , V , and W , where the top predator W feeds on intermediate species
V , which is in turn a predator for prey U . All species are able to diffuse, and their diffusion constants
are different. Such a system can be modelled by the equations⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

du

dt
=

[
au − buu − cu

w

u + μ

]
u + Du∇2u,

dv

dt
=

[
av

(
1 − cv

v

u

)
− dv

w

v + ν

]
v + Dv∇2v,

dw

dt
=

[
aw

(
1 − dw

w

v

)]
w + Dw∇2w,

(48)

where the Holling type II dependence and a linear function are employed to describe the predator-
prey interactions [5,17]. The parameters are fixed at au = 3, bu = 1, cu = 1, av = 6, cv = 1,
dv = 1, aw = 4, dw = 0.25, and μ = ν = 0.25, which give a uniform steady state (ū, v̄, w̄) 	
(1.084, 2.557, 10.23). If all species have the same mobilities, Du = Dv = Dw, the steady state is
stable. The Jacobian matrix at the steady state is

J 	

⎛
⎜⎝0.471 −0.813 0

5.552 0.962 −0.911
0 16 −4

⎞
⎟⎠ . (49)

By substituting this into the inequalities (45), one can directly verify that the system satisfies the
sufficient conditions. Then, our theory tells us that the wave instability will take place when the
diffusion constant Dw of the predator W is increased.

Figure 6(a) shows the boundary surfaces Iwav = 0 and Ist = 0 and the x-s plane in m-p-s space.
The boundary curves Îwav = 0 and Îst = 0 in the x-s plane are displayed in Fig. 6(b). Figure 6(c)
gives the linear growth rate λ as a function of the wave number k at the instability threshold. The
developed wave pattern is shown in Fig. 6(d).

Starting from equal mobilities of all three species, Du = Dv = Dw = 20, the mobility Dw of the
top predator W is gradually increased. When it comes up to a threshold Dw = 892, the line� touches
the boundary curve Îwav = 0 without having intersections with Îst = 0 [Fig. 6(b)]. Correspondingly,
the real part of the linear growth rate vanishes at the threshold, Reλ(k) = 0, for the critical wave
number kc 	 4, whereas the imaginary part remains finite [Fig. 6(c)]. As a result, the wave insta-
bility takes place and the uniform steady state becomes unstable. After the instability, spontaneous
development of traveling wave patterns with wave number k = 4 is observed [Fig. 6(d)]. Thus, as
illustrated by the above examples, the derived sufficient conditions (43)–(45) indeed provide a useful
criterion when searching for the wave instabilities in specific reaction-diffusion systems.

It should be emphasized that the derived conditions (43)–(45) are sufficient, but not necessary. This
means that systems may exist where such conditions do not hold, but the wave instability is observed
nonetheless.

An example of such a situation is provided by the extended Brusselator system [12]:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

du

dt
= a − (1 + b)u + u2v − cu + dw + Du∇2u,

dv

dt
= bu − u2v + Dv∇2v,

dw

dt
= cu − dw + Dw∇2w,

(50)
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Fig. 6. Wave instability in the ecological model (48). (a) Boundary surfaces Iwav(m, p, s) = 0 (red surface),
Ist(m, p, s) = 0 (blue surface), and the x-s plane (gray transparent plane) in the three-dimensional m-p-s
space. (b) Boundaries Îwav(x, s) = 0 (red curve) and Îst(x, s) = 0 (blue curve) on the x-s plane. The lines �
for two different diffusion constants, Dw = 20 (black dashed line) and Dw = 892 (black solid line), are shown.
(c) The real part (red curve) and the imaginary part (blue curve) of the linear growth rate λ as functions of the
wave number k. (d) The space-time plot of the final established patterns at Dw = 900. The diffusion constants
of the two species U and V are fixed at Du = Dv = 20 in this figure.

where activator U and inhibitor V react chemically, and the activator U reversibly transforms into
non-reacting species W . The parameters are fixed at a = 1, b = 2.9, c = 1, and d = 1, which yield
the uniform steady state (ū, v̄, w̄) = (1, 2.9, 1). The steady state is stable if all three species have the
same mobility, Du = Dv = Dw.

The Jacobian matrix at the steady state is

J 	

⎛
⎜⎝ 0.9 1 1

−2.9 −1 0
1 0 −1

⎞
⎟⎠ , (51)

which gives fu + gv < 0 and fwhu + gwhg > 0. Thus, the system does not satisfy the condi-
tions (45).

However, numerical simulations show that the wave instability takes place in this model when
the nonreactive species W diffuses sufficiently faster than the other two species (Fig. 7). The linear
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Fig. 7. Wave instability in the extended Brusselator system (50). (a) The real part (red curve) and the imaginary
part (blue curve) of the linear growth rate λ at the instability threshold as functions of wave number k. (b) The
space-time plot of the final established pattern at Du = Dv = 0.3 and Dw = 6.95.

growth rate as a function of wave number is shown in Fig. 7(a). The established traveling wave pattern
is displayed in Fig. 7(b).

7. Discussion and conclusions

We have constructed alternative sufficient conditions for the wave instability in general three-
component reaction-diffusion systems. The conditions are formulated in terms of the Jacobian matrix
elements at a steady state and of the diffusion constants. They do not depend on model details. Once
these conditions are satisfied, wave instability occurs as we increase the diffusion mobility of one of
the reacting species.

Our general results are applicable for systems of various origins, including biological, chemical,
physical, and ecological systems. Our analysis has revealed that the wave instability may occur even if
one of three reactants is immobile. This result can be important in a variety of applications involving
both diffusible and non-diffusible reactants.

In contrast to necessary and sufficient conditions, different sets of merely sufficient conditions
may be derived and hold for the same system. In fact, another set of sufficient conditions for the
wave instability in general three-species reaction-diffusion systems has recently been constructed in
Ref. [15].

In Ref. [15], the authors focused particularly on how the stability of a three-species system is
affected by instabilities of its two-species subsystems. They classified the instabilities of the subsys-
tems into several types and analyzed their effect on the complete three-species system in detail. Their
investigation was based on linear stability analysis, and the sufficient conditions were formulated in
terms of the elements of the Jacobian matrix and the diffusion constants of the three species. They
also derived sufficient conditions for the classical (stationary) Turing instability in three-component
reaction-diffusion systems.

In our study, we have constructed the sufficient conditions using a different method, based on linear
stability analysis and inspection of the instability threshold in the parameter space. Once the Jacobian
matrix is obtained, the boundary surfaces of the instabilities and the line whose slope corresponds
to the diffusion constants of the three species can be drawn as in Figs. 1 and 2. If the line touches
the boundary surface as its slope is varied, the instability occurs. By considering the situation where
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the line always touches the boundary surfaces of the wave instability when one of the three diffusion
constants is increased, we have derived sufficient conditions that are different from those in Ref. [15].

We stress that these two sets of sufficient conditions are complementary. There is an overlap
between them, but neither set of sufficient conditions includes the other one. For example, our con-
ditions can predict the wave instability in the ecological model (48); however, this model does not
satisfy the conditions [(iv)–(1) and (2) in Corollary 1.1] derived in Ref. [15]. On the other hand,
our conditions cannot predict the wave instability in the extended Brusselator system (50), while the
conditions in Ref. [15, Sect. 3.2] can do this.

Although our conditions have been derived for continuous media, they are also applicable for
reaction-diffusion networks where reactants diffuse over links and undergo local reactions on each
node [18–21]. In such systems, diffusion processes are described by the Laplacian matrix instead
of the Laplacian differential operator in Eqs. (1) and (2). Expanding small perturbations over eigen-
vectors of the Laplacian matrix, we obtain the same characteristic equation as that for continuous
media (9), where (m, p, s) are parameterized by the Laplacian eigenvalues � instead of −k2 in
Eq. (10)—see Appendix A. Thus, the critical conditions Iwav = 0 and Ist = 0 are valid, so that we also
obtain the sufficient conditions (43)–(45) in networks. This may be useful for finding the oscillatory
Turing bifurcation in networks of coupled reactors or biological cells [22,23].
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Appendix A. Linear stability analysis on reaction–diffusion networks

We consider three reactant species U , V , and W on a network of size N . The local densities of the
reactants on the network node i are denoted as ui = [U ]i , vi = [V ]i , and wi = [W ]i . The network
architecture is determined by the adjacent matrix A whose elements Ai j are 1 if the nodes i and j
are connected, and 0 otherwise. All reactants diffuse over network links and undergo local reactions
in each node. Such dynamics are described by the equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇i = f (ui , vi , wi )+ Du

N∑
j=1

Li j u j ,

v̇i = g(ui , vi , wi )+ Dv

N∑
j=1

Li jv j ,

ẇi = h(ui , vi , wi )+ Dw

N∑
j=1

Li jw j ,

(A1)

for i = 1, . . . , N , where the functions f , g, and h specify the local reactions, Du , Dv , and Dw are
the diffusion constants of the three reactants, and Li j = Ai j − δi j

∑
j Ai j is the Laplacian matrix.

The linear stability analysis is performed on the system in an analogous way to continuous media
(See Sect. 3). The system is assumed to have a uniform steady state (ū, v̄, w̄)which is determined by
f (ū, v̄, w̄) = g(ū, v̄, w̄) = h(ū, v̄, w̄) = 0. Small perturbations are introduced on the steady state
as (ui , vi , wi ) = (ū, v̄, w̄)+ (δui , δvi , δwi ). We substitute this into Eq. (A1) to obtain linearized
differential equations. Introducing the rescaled variables in the same way as in Eq. (3), the linearized
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differential equations are rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt̃
δũi = m0δũi + αδṽi + nδw̃i + Duμ

N∑
j=1

Li jδũ j ,

d

dt̃
δṽi = βδũi + p0δṽi + qδw̃i + Dvμ

N∑
j=1

Li jδṽ j ,

d

dt̃
δw̃i = rδũi + γ δṽi + s0δw̃i + Dwμ

N∑
j=1

Li jδw̃ j ,

(A2)

where m0, p0, s0, n, q, r , andμ are given in Eq. (5). Perturbations are expanded over a set of Laplacian
eigenvectors {φ(κ)i } as

δũi (t) =
N∑
κ=1

Ũ (κ) exp[λ(κ)t]φ(κ)i ,

δṽi (t) =
N∑
κ=1

Ṽ (κ) exp[λ(κ)t]φ(κ)i , (A3)

δw̃i (t) =
N∑
κ=1

W̃ (κ) exp[λ(κ)t]φ(κ)i ,

where λ(κ) is the linear growth rate of the κth eigenmode. Substituting into Eq. (A2), we obtain the
following matrix equation for each eigenmode:

λ(κ)

⎛
⎜⎝Ũ (κ)

Ṽ (κ)

W̃ (κ)

⎞
⎟⎠ =

⎛
⎜⎝m0 + Duμ�

(κ) α n
β p0 + Dvμ�(κ) q
r γ s0 + Dwμ�(κ)

⎞
⎟⎠

⎛
⎜⎝Ũ (κ)

Ṽ (κ)

W̃ (κ)

⎞
⎟⎠ , (A4)

where�(κ) is the Laplacian eigenvalue, which is defined by
∑

j Li jφ
(κ)
j = �(κ)φ

(κ)
i . Assuming that

the equations (A4) have non-trivial solutions, we obtain the same characteristic equation as Eq. (9)
with

m = m(κ) = m0 +�(κ)μDu,

p = p(κ) = p0 +�(κ)μDv, (A5)

s = s(κ) = s0 +�(κ)μDw.

Thus, the critical conditions for the instabilities (15) and (16) are valid, and therefore the sufficient
conditions (43)–(45) are also applicable for reaction-diffusion networks.
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