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Abstract. Fast multipole methods have O(N) complexity, are compute bound, and require
very little synchronization, which makes them a favorable algorithm on next-generation super-
computers. Their most common application is to accelerate N -body problems, but they can
also be used to solve boundary integral equations. When the particle distribution is irregular
and the tree structure is adaptive, load-balancing becomes a non-trivial question. A common
strategy for load-balancing FMMs is to use the work load from the previous step as weights to
statically repartition the next step. The authors discuss in the paper another approach based on
data-driven execution to efficiently tackle this challenging load-balancing problem. The core idea
consists of breaking the most time-consuming stages of the FMMs into smaller tasks. The algo-
rithm can then be represented as a Directed Acyclic Graph (DAG) where nodes represent tasks,
and edges represent dependencies among them. The execution of the algorithm is performed
by asynchronously scheduling the tasks using the QUARK runtime environment, in a way such
that data dependencies are not violated for numerical correctness purposes. This asynchronous
scheduling results in an out-of-order execution. The performance results of the data-driven FMM
execution outperform the previous strategy and show linear speedup on a quad-socket quad-core
Intel Xeon system.

1 Introduction

Bulk synchronous execution/communication models are reaching their limit as the amount of concur-
rency required in high performance computing applications increases. This problem is further exac-
erbated when the core computational kernels are naturally load imbalanced, which may increase the
overall idle process time.

In this paper, we focus on fast N -body methods such as the fast multipole method (FMM) on
shared-memory multicore architecture. FMMs have a wide range of applications in astrophysics [14],
acoustics [23], elastodynamics [10], electromagnetics [36], molecular electrostatics [5], and quantum
physics [43]. Such methods can reduce the complexity of the N -body problem from O(N2) to O(N),
while retaining the arithmetic intensity. On the other hand, they inherently present load balancing
issues due to the irregularity of the data distribution and dynamic nature of the application. FMMs
are therefore a representative class of load imbalanced algorithms for computational science. One
natural solution to this challenging problem is the data flow programming model [31], which consists
of expressing the application using task-based parallelism. The whole application can then be pictured
as a directed acyclic graph (DAG), where nodes represent computational tasks and edges define the
data dependencies among them. A dynamic runtime system is then employed to efficiently schedule
the different tasks over the available processing units and to ensure the data dependencies are not
violated for numerical correctness purposes.

Many related works using dynamic scheduling mainly in the dense linear algebra area (DLA) [34,17]
have been demonstrated in the last few years for solving dense linear systems of equations [2] as well
as eigenvalue and singular value problems [18,19]. These new tile algorithms have been integrated into
the PLASMA [35] high performance DLA library targeting x86 multicore platforms, which relies on
the dynamic runtime system QUARK [39] to distribute the tasks to worker threads. In the same token,
the MAGMA library [32] solves DLA algorithms targeting rather hybrid platforms composed of x86
multicore enhanced with hardware accelerators (e.g., GPUs) using the StarPU [4] framework as the task
scheduler. Some efforts have recently been initiated to extend the PLASMA and MAGMA libraries
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for distributed memory environment, using the dynamic runtime DAGuE [9,8]. It is noteworthy to
mention that there are also other DLA research works based on the same fundamental ideas [11,42]
i.e., using a data-driven execution framework. All these numerical frameworks will eventually supersede
the state-of-the-art DLA libraries i.e., LAPACK [3] and ScaLAPACK [7], for shared and distributed
memory systems, respectively.

Similar performance numbers could have been actually achieved by using a static scheduler [20],
where each worker thread knows its workload ahead of time. This is mainly because DLA algorithms
are generally well load balanced and compute intensive enough so that the overhead of the dynamic
scheduler is hidden by the computational load of the tasks. In fact, the real benefit of using the
aforementioned dynamic runtime framework for DLA, is to achieve high productivity in terms of
parallel implementation. Therefore, the dynamic feature of the runtime is not exploited at all for such
well balanced algorithms. It is in this context that N -body methods are an interesting candidate for
dynamic scheduling of tasks based on data dependencies. N -body methods also have computationally
intensive kernels and would indeed fit well with the data-driven execution model mentioned previously.
The QUARK-enabled FMM implementation presented in this paper achieves a linear speedup on 16
Intel Xeon cores.

The remainder of this paper is organized as follows: Section 2 gives a detailed overview of the
fast multipole method as well as highlighting the load imbalance challenge and possible ways to fix
it. Section 3 recalls some related works in the dynamic runtime area, describes the general principles
and features of the QUARK scheduler and demonstrates how high productivity could be achieved
using this runtime with very small intrusions into the original sequential code. Section 4 presents the
implementation details of our FMM code associated with the dynamic scheduler QUARK. Section 5
gives the performance results on a quad-socket quad-core Intel Xeon system (16 cores total). Finally,
Section 6 summarizes the results of this paper and discusses future work.

2 Fast Multipole Methods

This Section provides an overview of fast multipole methods, describes the inherent load imbalance
issue and shows how task scheduling may efficiently resolve this issue.

2.1 Overview

The fast multipole method (FMM) is a hierarchical N -body solver, which calculates the interaction
of N bodies in O(N) complexity. It has high arithmetic intensity [40] and shows good scalability on
large GPU based systems [41], and also large CPU based systems [25]. It possesses a rare combination
of linear complexity of the algorithm, high arithmetic intensity of the kernels, and locally-dominant
communication pattern.

A schematic of the flow of the FMM algorithm is shown in Figure 1. The FMM consists of six
independent stages, some of which have data dependencies on others. The domain is partitioned into
cells in a hierarchical manner using an octree. In this octree structure, we refer to the whole domain
as the root cell, and the smallest cells at the bottom as leaf cells. The depth of the tree is chosen so
that the number of particles per leaf cell remains constant. The particle distribution can be irregular
in which case the tree structure would become highly adaptive.

The first stage is the particle-to-multipole (P2M) kernel, where the mass/charges of the particles are
translated into multipole expansions at the center of the leaf cells. The next stage is the multipole-to-
multipole (M2M) kernel, where the multipole expansion at the center of the smaller cells are translated
to the center of the larger cells. Once the multipole expansions are determined, they can be translated
to local expansions using the multipole-to-local (M2L) kernel. Note that the M2L kernel can only be
performed for well separated cells as shown in gray in Figure 1. The criteria for choosing well separated
cells is based on the ratio between the cell size and their distance from each other [14], or by using
the parent-neighbor-child relationship in the tree [12]. Since the neighboring cells at the leaf level will
never be handled by the M2L kernel, this part is calculated directly by a particle-to-particle (P2P)
kernel. Once the local expansions are calculated, they are translated to the center of smaller cells by
the local-to-local (L2L) kernel. Finally, the local expansion at the leaf cell is used to evaluate the
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Fig. 1. Flow of FMM calculation and the individual kernels.

solution on the particle via the local-to-particle (L2P) kernel. We refer the reader to [12] for a concise
presentation of the mathematical formulae for the individual stages, and [16] for a detailed derivation
of these kernels.

Out of the six stages of FMM, the M2L and P2P consume most of the calculation time. This is
easy to see because P2M and L2P are performed once per leaf cell, and M2M and L2L are performed
once per cell, while M2L is performed hundreds of times per cell. The P2P kernel is also a dominant
component of the calculation, since the work load between M2L and P2P is always balanced by selecting
the number of particles per leaf cell to an optimum value. The optimum number of particles per leaf
cell depends on the efficiency of the kernel implementation and also the hardware which they run on.
The P2P kernel has very high arithmetic intensity (Flop/Byte) and is unlikely to become bandwidth
limited on any architecture, whereas the M2L kernel could become bandwidth limited if the order of
multipole expansions is small and the architecture has low memory bandwidth relative to it’s arithmetic
capability.

2.2 Load balancing

An important difference between the well known domain decomposition problem of meshes, and domain
decomposition of FMMs, is that each partition in the FMM requires information from a global (but
hierarchical) halo region, as shown in Figure 1. When the particle distribution is irregular and the
tree structure is adaptive, load balancing these M2L/P2P kernels becomes a non-trivial task. Different
target cells will have a different number of source cells to consider, so equally partitioning the domain
will result in load imbalance. Furthermore, the dynamic nature of the N -body simulation necessitates
frequent repartitioning and load balancing, so the overhead must be small. A clever way to solve this
dilemma is to record the work load from the previous time step and use it to repartition for the
present step. Such strategies were first used in the early 90’s on both sheared memory architectures
[27] and distributed memory architectures [38]. The basic idea of using information from the previous
step to repartition the present step, can be used with any partitioning scheme such as orthogonal
recursive bisection (ORB) [37], partitioning Morton/Hilbert keys [38], and graph based partitioning
[33]. The work load from the previous step can be used as weights in any of these originally unweighted
partitioning schemes.
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There are many subtleties in the implementation of these partitioning schemes that affect their
practical usefulness. In order to illustrate these subtleties, we first describe the key differences between
the two types of tree structures; rectangular binary trees resulting from ORB, and cubic octrees. The
ORB subdivides the domain into rectangular cuboids, while cubic octrees always subdivide into perfect
cubes. Since ORB always divides into equal number of particles (which could be weighted according
to the previous work load) the resulting binary tree will be perfectly balanced, and there will be no
adaptivity in the tree structure itself. When the number of processes is not a power of two, it is a
trivial matter to adjust the subdivisions so that the tree remains balanced. Therefore, in terms of load
balancing, this is an ideal tree structure. On the other hand, cubic octrees will result in an adaptive
tree structure with different depth for different branches if the particle distribution is irregular. The
advantage of using cubic octrees is the direct correspondence between the proximity of the nodes in the
tree and the geometrical proximity of the cells which they represent. This means Morton/Hilbert keys
can be used to determine the geometrical location of the cell and vice versa. Therefore, neighbor lists
for P2P kernels and well separated lists for M2L kernels can be calculated from the Morton/Hilbert
keys without traversing the tree and without any explicit information about the size and distance of
cells. Furthermore, the structured layout of cells permits the use of symmetry in the M2L kernels to
reduce redundant computation/storage. However, load balancing adaptive octrees remains an open
area of research [29,13]. Also, incrementally rebalancing the tree is much simpler for the rectangular
binary tree since the tree structure remains constant and only the cell boundaries are updated, whereas
the cubic octree requires alteration of the tree structure along with the migration of particles.

In parallel FMMs, the tree structure is used for two separate purposes; a) partitioning and balancing
the work/communication, and b) traversal that determines the list of cells for M2L/P2P kernels. The
rectangular binary tree is suitable for the former, while the cubic octree is more appropriate for
the latter. There are three approaches that can be taken; Case A. “Use rectangular binary tree for
partitioning and cubic octree for traversal” [27,28,15], Case B. “Use cubic octree for both” [21,22],
and Case C “Use rectangular binary tree for both”. There are many techniques that can be applied to
overcome the weakness of each of these methods, and as far as the authors are aware, there is no clear
conclusion as to which method is superior.

2.3 Task scheduling

Static partitioning of the global tree structure and bulk-synchronous communication of the LET are
common denominators for the approaches mentioned above. As the amount of concurrency required in
future architectures continues to increase exponentially, these bulk-synchronous execution models will
not be able to scale up forever. The convectional technique of using work/communication imbalance
in the previous step to incrementally rebalance the current step can be thought of as a dynamic
load balancing scheme in the broad sense. However, the temporal granularity of the load balancing is
restricted to one time step, and within that time step the load balancing is static. One could argue
that the particle distribution and tree structure only change between time steps, and therefore there
is no need to have a finer granularity of load balancing if the data structure does not change. This is
true if all threads and all processes on all nodes of a large capability machine performed at a constant
performance with 0 % failure rate. The fact of the matter is that load balancing on future architectures
must also be fault tolerant. Furthermore, a single time step can take more than 100 seconds in some
applications [41,25], and it is definitely worthwhile to load balance at finer temporal granularity.

Data-driven dynamic task scheduling can solve this issue by stealing work from busy threads,
while optimizing the data flow at the same time. Since moving data is relatively expensive compared
to computing data, it is extremely important that the data movement is optimized. In the following
section, we will give an overview of QUARK, which is a tool that does precisely what has been described
above.

3 The QUARK Runtime Environment for Dynamic Task Scheduling

This Section gives an overview of different dynamic runtime schedulers and highlights then the main
features of QUARK, which is the task scheduler selected to run the FMM code on homogeneous x86
shared-memory multicore architecture.
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3.1 Background

By now, multicore processors are ubiquitous in both low-end consumer electronics and high-end servers
and supercomputer large installations. This leads to the emergence of numerous multithreading frame-
works, both open-source and commercial, embracing the idea of task scheduling: Cilk [30], Intel Thread-
ing Building Blocks [1,26], OpenMP (tasking features) [24], just to name a few prominent examples.
From our perspective, one especially important category of such frameworks are the multithreading
systems based on data flow principles. They represent the computation as a Direct Acyclic Graph
(DAG) and schedule tasks at runtime through resolution of data hazards: Read after Write (RAW),
Write after Read (WAR) and Write after Write (WAW). QUeueing And Runtime for Kernels (QUARK)
is an example of such a system. Three others, very similar to some extend, academic projects are also
available: SMPSs [6] from Barcelona Supercomputer Center, SuperMatrix [11] from the University of
Texas at Austin and StarPU [4] from INRIA Bordeaux.

While all four systems have their strength and weaknesses, QUARK [39] has vital extensions for
use in a numerical library as well as at the application level.

3.2 Principles

There are many details about the internals of the scheduler, its dependency analysis, memory man-
agement, and other performance enhancements that are not covered here. However, information about
an earlier version of this scheduler can be found in [39].

Description of Dependency Types. The authors describe briefly the scheduling techniques of QUARK.
In order for a scheduler to be able to determine dependencies between the tasks, it needs to know
how each task is using its arguments. Arguments can be VALUE, which are copied to the task, or
they can be INPUT, OUTPUT, or INOUT, which have the expected meanings. Given the sequential
order that the tasks are added to the scheduler, and the way that the arguments are used, we can
infer the relationships between the tasks. A task can read a data item that is written by a previous
task (read-after write RAW dependency); or a task can write a data item that is written by previous
task (write-after-write WAW dependency); a task can write a data time that is read by a previous
task (write-after-read WAR dependency). The dependencies between the tasks form an implicit DAG,
however this DAG is never explicitly realized in the scheduler. The structure is maintained in the way
that tasks are queued on data items, waiting for the appropriate access to the data. The tasks are
inserted into the scheduler, which stores them to be executed when all the dependencies are satisfied.
That is, a task is ready to be executed when all parent tasks have completed. The execution of ready
tasks is handled by worker threads that simply wait for tasks to become ready and execute them using
a combination of default tasks assignments and work stealing.

From Sequential Nested-Loop Code to Parallel Execution. The scheduler is designed to start from the
sequential code (C, C++, Fortran), in which calls to computational tasks are exposed. This is intended
to make it easier for algorithm designers to experiment with algorithms and design new algorithms.
Each of the calls to the core routines is substituted by a call to a wrapper that decorates the arguments
with their sizes and their usage (INPUT, OUTPUT, INOUT, NODEP, VALUE). The tasks are inserted into the
scheduler, which stores them to be executed when all the dependencies are satisfied. That is, a task is
ready to be executed when all parent tasks have completed. The execution of ready tasks is handled
by worker threads that simply wait for tasks to become ready and execute them using a combination
of default tasks assignments and work stealing. The thread doing the task insertion is referred to as
the master thread. Under certain circumstances, the master thread will also execute computational
tasks. Figure 2 provides an idealized overview of the architecture of the dynamic scheduler.

Scheduling a Window of Tasks. If we were to unfold and retain the entire DAG of tasks for a large
problem, we would be able to perform some interesting analysis with respect to DAG scheduling and
critical paths. However, the size of the data structures would quickly grow overwhelming. Our solution
to this is to maintain a configurable window of tasks. The implicit DAG is then traversed through this
sliding window, which should be large enough to ensure all cores are kept busy. When this window
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Fig. 2. Idealized architecture diagram for the dynamic scheduler. Inserted tasks go into a (implicit) DAG based
on their dependencies. Tasks can be in NotReady, Queued or Done states. Workers execute queued tasks and
then determine if any descendants have now become ready and can be queued.

size is reached, the core involved in inserting tasks does not accept any more tasks until some are
completed. The usage of a window of tasks has implications in how the loops of an application are
unfolded and how much look ahead is available to the scheduler.

Data Locality and Cache Reuse. It has been shown in the past that the reuse of memory caches can
lead to a substantial performance improvement in execution time. Since we are working with data
structures that should fit in the local caches on each core, there is a feature which gives the ability to
hint the cache locality behavior. A parameter in a call can be decorated with the LOCALITY flag in
order to tell the scheduler that the data item (parameter) should be kept in cache if possible. After a
computational core (worker) executes that task, the scheduler will assign by-default any future task
using that data item to the same core. Note that the work stealing can disrupt the by-default assign-
ment of tasks to cores.

The next Section discusses further implementation details of the QUARK integration into the
original FMM source code.

4 Implementation Details

As mentioned in Section 2, the M2L and P2P kernels are the dominant part of the FMM calculation.
Therefore, as a first step, we decided to implement the dynamic scheduling by considering as a task
each of these kernels. In our implementation, the M2L and P2P kernels exist inside a dual tree traversal
routine (the interact procedure). The dual tree traversal is a method to find all pairs of well separated
cells in the octree in O(N) time [14]. It is more general than the commonly used adaptive lists [12]
because the cells need not be perfect cubes. The cells can actually be any shape as long as they are
mutually exclusive and are grouped hierarchically. Furthermore, the definition of well-separateness can
be adjusted more smoothly because the definition of neighboring cells is based on the distance instead
of “how many cells to skip”. This allows the exclusion of the corner cells, and yields a list that is closer
to a sphere than a cube.

Once a pair of well separated cells are determined, the M2L kernel is called. When the dual tree
traversal reaches a pair of leaf cells, the P2P kernel is called. In our initial implementation, the QUARK
interface was placed at the level of these M2L/P2P kernel calls. Every time the M2L/P2P kernel was
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void Evaluator : : i n t e r a c t ( C i t e r Ci , C i t e r Cj , Quark ∗quark , bool mutual ) {
Quark Task Flags t f l a g s = Qua rk Ta sk F l a g s I n i t i a l i z e r ;
i f ( mutual ) {

QUARK Insert Task ( quark , interactQuark ,& t f l a g s ,
s izeof ( Ce l l ) ,&∗Ci ,INOUT,
s izeof ( Ce l l ) ,&∗Cj ,INOUT,
s izeof ( bool ) ,&mutual ,VALUE,
0 ) ;

} else {
QUARK Insert Task ( quark , interactQuark ,& t f l a g s ,

s izeof ( Ce l l ) ,&∗Ci ,OUTPUT | LOCALITY,
s izeof ( Ce l l ) ,&∗Cj ,NODEP,
s izeof ( bool ) ,&mutual ,VALUE,
0 ) ;

}
}

Fig. 3. Example of inserting and executing a task in the scheduler when computing cell interactions. The
interact routine inserts a task into the scheduler, passing it the sizes and pointers of arguments and their
usages (INPUT, OUTPUT, INOUT, NODEP, VALUE) along with the LOCALITY flag for optimizing data
reuse.

called, this task would be queued by itself. Then, QUARK would resolve the data dependency and
dynamically schedule the task onto an available worker thread. However, it turned out that the overhead
of the task scheduler was too large to be implemented at this granularity. In other words, there were
too many tiny tasks to schedule. Note that this is not a matter of arithmetic intensity, but the absolute
size of both the operations and data being too small.

In order to address the issue above, we implemented a mechanism, which could schedule tasks of
arbitrary (controllable) granularity. This was done by interfacing QUARK at a higher level in the tree
traversal. Grouping fine-grained tasks naturally follow good data locality guidelines by retaining data
in caches for as long as the computation continues. QUARK does not migrate threads that are in
the state of execution. And the look-up and update of the data dependence information takes place
only once per each merged super task. The savings in overhead will come from both lack of cache
memory pollution from QUARK’s internal data structures and elimination of tens if not hundreds of
instructions that help QUARK make scheduling decisions and keep its data in a consistent state. For
example, in the first step of a dual tree traversal, the target cell is split into eight child cells and eight
new pairs are formed between the new target cells and old source cell. If each of these are scheduled as
tasks on QUARK, the overhead of scheduling will be much smaller than the actual task of traversing
each of these large subtrees. Thus, there is a tradeoff between the small overhead of coarse grain
scheduling, and the load balancing that fine grain scheduling can offer.

In the FMM it is possible to calculate the mutual interaction of cells, reducing the computation by
about half. This is possible because all translation operators are a function of distance, and flipping
the sign of the odd terms allows it to be reused when the target and source are interchanged. How-
ever, mutual interaction has a more restrictive data dependency, and Non-mutual interaction is more
suitable for many cores due to the high degree of parallelism it provides. Figure 4 shows the actual
DAG of the FMM traversal using mutual or non-mutual particle interactions. The nodes represents the
coarse-grained tasks and the edges the data dependencies between tasks. While the DAG for mutual
interaction is very scattered, the DAG for non-mutual interaction clearly exposes more parallelism,
which can be exploited as a low hanging fruit by the QUARK dynamic scheduler. Furthermore, The
LOCALITY flag for the non-mutual interaction in Figure 3 permits to ensure that the sequence of
tasks within one branch is not interrupted by another thread during the execution, which may pollute
the cache memory.

The main key for getting high performance is to tune the granularity of the super task. We have
performed a thorough investigation of the optimal granularity, which will be presented in the following
section.
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(a) Mutual interaction. (b) Non-mutual interaction.

Fig. 4. DAG of FMM traversal using mutual and non-mutual interactions.

5 Experimental Results

In this section, we will present the results of a parametric scalability study of our data-driven FMM ap-
proach. All experiments are performed on a single node with a quad-socket quad-core Intel R© Xeon R©
E7340 processor at 2.40 GHz with 16 physical cores. The code is written in C++ and the compiler is
gcc version 4.1.2 20080704, and OS is x86 64 Red Hat 4.1.2-50. All codes were compiled with
“g++ -O3 -fopenmp -ffast-math -funroll-loops -fforce-addr”.

We have mentioned in Section 4 that a pair of subtrees are assigned to QUARK as tasks, instead of
a pair of cells. Depending on how large these subtrees are, QUARK will have to balance either a large
number of small tasks or a small number of large tasks through work stealing techniques. The idea here
is to optimize the overhead of dynamic task scheduling, by adjusting the size of the subtrees that are
passed to QUARK. In our dual tree traversal approach, it is trivial to adjust the size of the subtrees
that are passed to QUARK by simply stopping the breadth first (queue based) dual tree traversal, and
sending all the pairs of subtrees in the queue to QUARK as individual tasks. We note that the use of
a breadth first traversal is essential to this approach, since it creates tasks of similar size in the queue,
whereas a depth first (stack based) traversal will result in largely varying task sizes in the stack, which
would be much more difficult to balance. Furthermore, a breadth first traversal will create tasks with
much higher data-parallelism. Also, the size of the queue can get much larger (tens of thousands) than
the size of the stack in a depth first traversal (tens).

The results of strong scaling tests for the FMM are shown in Fig. 5, where Q is the size of the
queue, p is the order of expansion, and N is the number of particles. During the dual tree traversal the
size of the queue Q starts from 1 (pair of root cells) and increases rapidly. We simply put a conditional
statement in the tree traversal to ship all the queued tasks to QUARK when the queue size reaches a
certain threshold, and this threshold corresponds to the value Q. The particles are randomly distributed
in a unit cube and the resulting tree is well balanced.

By comparing Figures 5(a), 5(c), and 5(e) we see that increasing the problem size N automatically
gives us better strong scalability, but only if Q is sufficiently large. When the task size is small, the
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overhead of dynamically scheduling 10, 000 tasks becomes a significant burden as shown in Figures 5(a)
and 5(b). However, as the task size increases proportional to N , the constant overhead of scheduling
10, 000 tasks can be amortized as in Figures 5(e) and 5(f). From the fact that Q = 10, 000 is too large
for N = 105 but not for N = 106, we may assume that a ratio in the order of N/Q > 100 is necessary to
amortize the cost of the dynamic scheduling. Furthermore, increasing the order of expansion p increases
the operational intensity of the M2L kernel and results in slightly better scalability, which can be seen
by comparing the left and right column of Figure 5. In Figure 5(f) we achieve 100 % parallel efficiency
on 16 cores, using p = 9, N = 107, and Q = 10, 000.

The load-imbalance in the thread execution for p = 9, N = 107, and Q = 10, 000 is shown in Figure
6. The tick marks represent the total runtime of the FMM in seconds. The runtime is 720, 360, 180, 90,
and 45 seconds on 1, 2, 4, 8, and 16 threads, respectively. Each blue segment represents an individual
task that is dynamically scheduled by QUARK. These tasks are composed of dual tree traversals of
the pair of subtrees and the corresponding M2L/P2P kernels that arise from these traversals. Since
the searching of well separated cell pairs is imbedded inside each task unit and scheduled dynamically,
having an irregular tree structure should not degrade the quality of the load balance.

6 Conclusion and Future Work

This paper describes a data-driven execution of FMMs based on the dynamic runtime system QUARK.
After carefully tuning the granularity of the subtrees, our implementation achieves a linear speedup
on a quad-socket quad-core Intel Xeon (16 cores total). QUARK permits to achieve not only high
performance but also high productivity in terms of parallel implementation. The end user can therefore
focus and spend time improving his core numerical kernels and the burden to get parallel performance
is rather shifted on the runtime.

The authors plan to extend this work with the StarPU [4] dynamic runtime, which schedules tasks
on x86 as well as on hardware accelerators (GPUs). Although it has a somewhat similar API than
QUARK, the user has still to develop the appropriate kernels for the GPU and can let it up to the run-
time to decide on which available resource, x86 or GPU, the task can be executed on. Moreover, StarPU
provides a reduction operation, which could further improve our current implementation by adding
another dimension of parallelism during the execution of the successive tasks seen in the non-mutual
DAG representation. Finally, the authors will eventually tackle the distributed memory environment
using the DAGuE [9] framework to perform load balancing across time steps.
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