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An FMM Based on Dual Tree Traversal for Many-core Architectures

R. Yokota
King Abdullah University of Science and Technology

Abstract

The present work attempts to integrate the independent efforts in the fast N-body commu-
nity to create the fastest N-body library for many-core and heterogenous architectures. Focus
is placed on low accuracy optimizations, in response to the recent interest to use FMM as a
preconditioner for sparse linear solvers. A direct comparison with other state-of-the-art fast
N -body codes demonstrates that orders of magnitude increase in performance can be achieved
by careful selection of the optimal algorithm and low-level optimization of the code. The cur-
rent N-body solver uses a fast multipole method with an efficient strategy for finding the list of
cell-cell interactions by a dual tree traversal. A task-based threading model is used to maximize
thread-level parallelism and intra-node load-balancing. In order to extract the full potential of
the SIMD units on the latest CPUs, the inner kernels are optimized using AVX instructions.

1 Introduction

N-body simulations have traditionally been used in fields such as astrophysics and molecular dy-
namics, where the physics is naturally described by pairwise interaction of discrete bodies. However,
applications for N-body solvers can be found in many other areas of physics including elastics, fluid
dynamics, electromagnetics, acoustics, and quantum mechanics. This is made possible by trans-
forming the partial differential equation governing the continuum field into an integral equation over
discrete quadrature points. Therefore, N-body solvers are used in numerous scientific application
codes and are considered as one of the key algorithmic components in scientific computing.

The fast multipole method (FMM) is a fast algorithm that reduces the complexity of the N-body
problem from O(N2) to O(N). It is widely regarded as one of the top 10 algorithms in scientific
computing [5], along with FFT and Krylov subspace methods. It is quite common that algorithms
with low Byte/flop (dense linear algebra) have high complexity O(N3), and algorithms with low
complexity (FFT, sparse linear algebra) have high Byte/flop. The FMM has an exceptional com-
bination of O(N) complexity and a Byte/flop that is even lower than matrix-matrix multiplication
[38]. In other words, it is an efficient algorithm that is compute bound, which makes it an inter-
esting alternative algorithm for many elliptic PDE solvers, on architectures of the future that will
most likely have low Byte/flop.

The recent trend in computer architecture is shifting towards less and less Byte/flop ratios. A
summary of the Byte/flop of flagship architectures from each vendor (as of August 2012) is shown in
Table 1. From this table, one can see that the Byte/flop will soon fall below 0.2, which makes it very
difficult for most algorithms to extract a high percentage of peak flop/s from these architectures.
According to the roofline study by Williams et al. [34], sparse matrix-vector multiplication has
about 4− 5.88 Byte/flop, stencil calculations have about 2− 3 Byte/flop, and 3-D FFT has about
0.61−0.92 Byte/flop. It is clear how much the modern architectures are off balance compared to the
requirements of these common algorithms. This trend will most likely continue, so it is necessary
to rethink the underlying algorithms in scientific simulations. Matrix-free methods seem to have an
advantage in this respect, and FMM can be viewed as one of them.

1



In a recent study we have shown that FMM becomes faster than FFT when scaling to thousands
of GPUs [40]. The comparative efficiency between FMM and FFT can be explained from the
asymptotic amount of communication. On a distributed memory system with P nodes, a 3-D
FFT requires two global transpose communications between

√
P processes so the communication

complexity is O(
√
P ). On the other hand, the hierarchical nature of the FMM reduces the amount

of communication to O(logP ). A preliminary feasibility study for Exascale machines [15] indicates
that the necessary bandwidth for FFT could only be provided by a fat-tree or hypercube network.
However, constructing such network topologies for millions of nodes is prohibitive in terms of cost,
and the current trend of using torus networks is likely to continue. Therefore, network topology is
another area where the trend in hardware is deviating from the requirements of common algorithms.
Hierarchical methods are promising in this respect, and FMM is undoubtedly one of them.

It is clear from the above arguments that FMM could be an efficient alternative algorithm for
many scientific applications on Exascale machines. One common objection is that FMM requires
much more operations than other fast algorithms like multigrid and FFT, and therefore is much
slower. However, as future microarchitectures move towards less and less Byte/flop, the asymptotic
constant of the arithmetic complexity becomes less of a concern. Therefore, the advantage in the
communication complexity trumps the disadvantages as mentioned in the previous paragraph.

2 Related Work

FMM is a relatively new algorithm compared to well established linear algebra solvers and FFT,
and has ample room for both mathematical and algorithmic improvement, not to mention the need
to develop highly optimized libraries. We will briefly summarize the recent efforts in this area
by categorizing them into; CPU optimization, GPU optimization, MPI parallelization, algorithmic
comparison, auto-tuning, and data-driven execution.

Table 1: Byte/flop of modern microprocessors. GByte/s is the theoretical peak of the memory
bandwidth, and Gflop/s is the theoretical peak of the double-precision arithmetic throughput when
fused-multiply-add units are fully utilized, along with maximum clock frequency by turbo boost (if
available).

Vendor Microarchitecture Model GByte/s Gflop/s Byte/flop

Intel Sandy Bridge Xeon E5-2690 51.2 185.6 0.276

Intel Knights Corner Xeon Phi 5110P 320 1010 0.317

AMD Piledriver Opteron 6386 SE 51.2 179.2 0.286

AMD Southern Islands Radeon HD7970 (GHz Ed.) 288 1010 0.285

NVIDIA Kepler Tesla K20X 250 1310 0.191

IBM PowerPC PowerPC A2 (BG/Q) 42.6 204.8 0.208

Fujitsu SPARC64 SPARC64 IXfx (FX10) 85 236.5 0.359



In terms of CPU optimization, Chandramowlishwaran et al. [6] have done extensive work on
thread-level parallelization with NUMA-aware optimizations and manual SIMD vectorization. They
performed benchmarks on four different microarchitectures; Harpertown, Barcelona, Nehalem-EP,
and Nehalem-EX, and exploit the simultaneous multithreading features of the Nehalem processors.
With the various optimizations, they were able to double the performance on Harpertown and
Barcelona processors, while obtaining a 3.7x speed-up on Nehalem-EX, compared to their previous
best multithreaded and vectorized implementation. Some of the optimizations are specific to the
kernel-independent FMM (KIFMM) [36], and do not apply to FMMs based on Cartesian, spherical
harmonics, or planewave expansions. It would be interesting to compare highly optimized kernels
for these different types of expansions (including KIFMM) to determine at what order of expansion
they cross over.

For GPU optimization for uniform distributions, Takahashi et al. [29] developed a technique
to turn the originally memory bound M2L kernel into a compute bound GPU kernel by exploiting
the symmetry of the interaction stencil. There are alternative techniques to make the M2L kernel
compute bound on GPUs, by recalculating the M2L translation matrix on-the-fly [37]. However, the
fact that the technique by Takahashi et al. precalculates the M2L translation matrix and still allows
the M2L kernel to be compute bound, means it is that much more efficient. Increasing the number
of particles per leaf [39] or calculating the M2L kernel on the CPU [20] is an easy optimization
strategy for heterogenous architectures. The value of this work lies in the fact that they tackle the
GPU-M2L optimization problem head on, and actually succeed in making it compute bound. One
limitation of their method is that the particle distribution must be somewhat uniform in order to
exploit the symmetry of the M2L translation stencil. Though, classical molecular dynamics is an
important application that will be able to benefit from this method.

For GPU optimization of non-uniform distributions for low accuracy, Bedorf et al. [4] developed
a highly optimized treecode bonsai1 that runs entirely on GPUs. For three significant digits of
accuracy in the force calculation for the Laplace kernel, their code is an order of magnitude faster
than any other treecode or FMM on GPUs. Their code takes less than 50 milliseconds to calculate
one million particles (including the tree construction) on an NVIDIA Fermi GF110 series GPU
for the aforementioned accuracy, whereas other codes take about 500 milliseconds to achieve the
same accuracy for one million particles. By using warp unit execution and ballot() functions
they have eliminated all synchronization barriers from their CUDA kernel. Furthermore, by using
mask operations and prefix sums, they have eliminated all conditional branching from their code.
However, an application which requires high accuracy may find this code difficult to use, since the
order of expansion is not adjustable past p > 3. Nonetheless, anyone who has experience optimizing
fast N-body codes knows that optimizing for low accuracy is much more challenging than optimizing
high accuracy codes, so the impact of this work is remarkable.

For MPI parallelization of an adaptive tree, Winkel et al. [35] propose a request based point-
to-point communication scheme that dedicates a thread for communication on each node, while the
evaluation is done using the remaining threads simultaneously, in their code PEPC2. Meanwhile, Jet-
ley et al. [21] used CHARMM++ to dynamically load-balance on large scale heterogenous environments,
obtaining large gains by task aggregation and memory pooling, in their code ChaNGa3. These efforts
to provide an alternative to bulk-synchronous communication models could eventually become ad-
vantageous, but the lack of comparison against current state-of-the-art bulk-synchronous methods
[26, 40] that also scale to the full node of the largest supercomputers, makes it difficult to predict
exactly when they will become advantageous (if they do at all).

1https://github.com/treecode/Bonsai
2https://trac.version.fz-juelich.de/pepc
3http://software.astro.washington.edu/nchilada



As another aspect of MPI parallelization of an adaptive tree, Winkel et al. use a 64-bit global
Morton key and partition the domain to equally distribute the number of keys, while using the
traversal time of the previous step as weights. This technique will only allow a maximum depth of
the global tree of 21 levels before the 64-bit key overflows. Current large scale simulations already
exceed this depth [26], and the method of Winkel et al. will require the use of multiple integers to
store the key in such cases. Looking into the future, it would seem that the use of ever more integers
to store the key will slow down the sorting of these keys, but the fact that Bedorf et al. [4] can sort
over a billion 96-bit keys per second using the back40computing library4 means that this remains
a viable option. It would be interesting to compare this approach with alternative techniques that
eliminate the use of global keys altogether [40].

For algorithmic comparison, Fortin et al. [14] compare the BLAS based adaptive FMM by
Coulaud et al. [8], NEMOtree15 implementation of the Barnes & Hut treecode [3], the GADGET-26

code by Springel et al. [28] (without using the treePM part), and falcON7 code by Dehnen [9].
The comparison is for 6 different datasets with various non-uniformity, and the time-to-solution
and memory consumption was compared for different problem sizes and various number of cores,
while the accuracy was set to roughly 3 significant digits for the force. There was over an order
of magnitude difference in the speed between these codes, falcON being consistently the fastest
for all types of non-uniform distributions, and exhibiting perfect O(N) complexity throughout the
examined range of N . A major drawback of falcON is that it is not parallel. In the present work,
we extended the falcON framework to MPI, pthreads, OpenMP, Intel TBB, SSE, and AVX based
parallelism, as shown later in this article.

An example of auto-tuning efforts in FMMs is given by Yokota & Barba [38], where the dual tree
traversal approach by Dehnen [9] was combined with an auto-tuning mechanism by selecting between
M2L and M2P kernels to produce a treecode-FMM hybrid code, and by selecting between M2L and
P2P kernels to optimize the number of particles at the leaf at which P2P is performed. This is an
advantage when developing a black-box library that runs on both CPUs and GPUs without having
to worry about selecting the optimal number of particles per leaf for each architecture. This code –
exaFMM8 – inherits all the techniques of falcON such as the dual tree traversal, mutual interaction,
error aware local optimization of the opening angle θ, and a multipole acceptance criterion based on
Bmax and Rmax [9]. At the same time, it adds features such as arbitrary order of expansion by using
template metaprogramming, periodic boundary conditions, CUDA version of all FMM kernels, and
a scalable MPI implementation. The present work is a further extension of this code to thread-level
and SIMD parallelism.

Last but not least, there have been a few recent attempts to use event-driven runtime systems
for optimizing the data flow of parallel FMM codes. Ltaief & Yokota [24] used QUARK9 to schedule
the threads dynamically according to a directed acyclic graph that represents the data flow of
exaFMM’s dual tree traversal. Dekate et al. take a similar approach but using ParalleX10 for the
runtime system and a classical Barnes-Hut treecode [3] for the fast N -body solver. Agullo et al.
use StarPU11 along with the black-box FMM [13] on a CPU+GPU environment. Pericás et al. use
OmpSs 12 with exaFMM. These are all preliminary results, and large gains from using runtime systems

4http://code.google.com/p/back40computing
5http://bima.astro.umd.edu/nemo
6http://www.mpa-garching.mpg.de/gadget
7http://bima.astro.umd.edu/nemo/man html/gyrfalcON.1.html
8https://bitbucket.org/rioyokota/exafmm-dev
9http://icl.cs.utk.edu/quark/index.html

10http://stellar.cct.lsu.edu/tag/parallex
11http://runtime.bordeaux.inria.fr/StarPU
12http://pm.bsc.es/ompss



have yet to be reported.
In summary, the present work aims to provide the best implementation of the best algorithm for

fast N -body solvers on many-core and heterogeneous architectures based on the thorough investiga-
tion of existing algorithms and implementations mentioned above. Our results indicate that many
orders of magnitude in acceleration can be achieved by integrating many of these techniques that
have not been previously combined. Upon integrating these various techniques, it was necessary to
first reverse engineer many existing codes and to systematically investigate the individual contribu-
tions of each algorithmic improvement and each optimization trick that was not mentioned in the
accompanying publication. Then, the value of these individual contributions had to be reevaluated
based on predictions of how they will preform on many-core co-processors and GPUs. Finally, care-
ful design decisions had to be made on which techniques to adopt, and what standardized constructs
could be used to implement them in the simplest and most portable way in the integrated code.
This ongoing work is being made available as an open source FMM library for Exascale – exaFMM,
which is currently hosted on bitbucket13. Although the current work is influenced by many other
predecessors, the work cited in this section are the ones that influenced the design decision of the
final integrated code the most.

3 Present Method and Results

There are many variants of fastN -body methods, as described in the previous section. The argument
in the previous section is strengthened by providing a more detailed description of the underlying
techniques. The significance of the present work can be understood in more depth if these subtle
differences in the algorithms and their implications on future architectures are explained clearly.
Each subsection within this section revisits certain aspects of fast N -body methods in light of
many-core and heterogenous architectures. In the end, we will compare 5 major implementations
of treecodes and FMMs to show the relative performance of the resulting code.

13https://bitbucket.org/rioyokota/exafmm-dev

Table 2: Asymptotic complexity of the storage and arithmetic with respect to the order of expansion
p for the different expansions in fast N -body methods (3-D). There are two references for each
expansion, the first is the original work describing the use of each expansion in the context of
FMM, while the second has the simplest mathematical description of the translation operations.

Type of expansion (+M2L acceleration) Storage Arithmetic

Cartesian Taylor [2, 30] O(p3) O(p6)

Cartesian Chebychev [11, 13] O(p3) O(p6)

Spherial harmonics [18, 7] O(p2) O(p4)

Spherial harmonics+rotation [33, 7] O(p2) O(p3)

Spherial harmonics+FFT [12, 22] O(p2) O(p2 log2 p)

Planewave [17, 22] O(p2) O(p3)

Equivalent charges [1, 25] O(p2) O(p4)

Equivalent charges+FFT [36, 23] O(p3) O(p3 log p)



3.1 Choice of Series Expansions

The accuracy of fast N -body algorithms is controllable by adjusting the order of multipole/local ex-
pansions. There are many series expansions that can be used for approximating Green’s functions,
e.g. Cartesian, spherical harmonics, planewaves, and equivalent charges. These series expansions
have different characteristics in terms of Byte/flop, parallelism, and asymptotic complexity. A ma-
jority of the existing techniques to accelerate FMMs are based on old programming paradigms from
back when arithmetic operations were the bottleneck. For example, pre-computation of translation
matrices will reduce the arithmetic workload of computing the matrix entries multiple times, but
requires extra bandwidth for loading the matrix every time. This goes against the current trend in
hardware, where Byte/flop is decreasing at every level of the memory hierarchy. Furthermore, it
may even be necessary to reconsider the choice of series expansions based on how regular the data
access patterns are, and how parallel the operations are.

The asymptotic complexity of the storage and arithmetic operation for the M2L kernel for each
expansion is shown in Table 2. Cartesian Taylor expansions are most widely used in treecodes,
while other types of expansions are only used in FMMs. The common (but misleading) claim that
treecodes are faster than FMMs for low accuracy, is actually a consequence of the choice of series
expansions. Dehnen [9] used Cartesian expansions for FMM, and showed that it was an order of
magnitude faster than the FMM using spherical harmonics or planewaves by Cheng et al. [7] for low
accuracy, but was slower for higher accuracy. This result clearly demonstrates that it is not the use
of treecodes that makes the difference, but rather the Cartesian Taylor expansion that increases the
relative performance for lower accuracy. The FMM is always faster than treecodes for any accuracy
if the only difference was cell-cell interactions vs. cell-particle interactions, and all other conditions
(choice of expansion, particles per leaf cell, opening angle θ) remain the same [38].

Cartesian expansions have higher arithmetic complexity but smaller asymptotic constants, whereas
methods with lower arithmetic complexity tend to have larger asymptotic constants. For example,
White and Head-Gordon [33] compare the spherical harmonics expansion with rotation O(p3) and
without rotation O(p4), and observe only a 2 fold speed up even for p = 21. When comparing the
break-even point between different series expansions, it is necessary to consider the low order terms
as well. For example a O(p6) method actually has a complexity of ap6+bp5+cp4+dp3+ep2+fp+g.
If the coefficients of the lower order terms are large, a O(p6) method may exhibit lower order asymp-
totic behavior for practical accuracy.

In order to demonstrate this behavior, we plot the calculation time of a single M2L kernel for
a pair of cells against the order of expansion p for the O(p3) rotation based spherical harmonics
expansion and O(p6) Cartesian Taylor expansion in Figure 1. The time is shown in microseconds,
and the runs were performed on a single socket of a Xeon X5650 (Westmere-EP, 2.67 GHz, 6 physical
cores). The timings are measured using an actual FMM calculation with N = 1, 000, 000 particles,
while timing the M2L kernels and counting the number of M2L kernel calls. The timing per M2L
kernel is obtained by dividing the total M2L time by the number of M2L kernel calls. Even though
the leading order term of the complexity of these methods are O(p3) and O(p6), they are closer
to O(p2.5) and O(p4.5) in the practical accuracy range. Furthermore, the present implementation
of the rotation based spherical harmonics expansion seems to crossover with the Cartesian Taylor
expansion at around p ≈ 12. Our Cartesian Taylor kernels are highly optimized using template
meta-programming with specialization for low p. On the other hand, our rotation based spherical
harmonics kernels are not optimized to the same extent, and simply use precalculated Wigner
rotation matrices and translation matrices. Both versions use OpenMP but no SIMD intrinsics.

It would be useful to the FMM community to complete Figure 1 with the other entires in Table
2, and for a broader range of p. However, such results are not only hardware dependent, but also



2 4 6 8 1010−2

10−1

100

101

Order of expansion p
Ti

m
e 

pe
r c

el
l p

ai
r [
μs

]

O(p4.5)

O(p2.5)

Spherical
Cartesian

Figure 1: Calculation time of M2L translation between a single pair of cells for different orders of
expansion p. The time is shown in microseconds. This data is calculated by performing a full FMM
calculation and timing the M2L kernel while counting the number of cell pairs that call the M2L
kernel. Calculations are performed on a single socket of a Xeon X5650 (2.67GHz, 6 physical cores).

highly implementation dependent. The tests would have to be run on a wide range of architectures,
while tuning each kernel for each architecture. Furthermore, low level optimization of kernels of this
complexity require a significant effort, and the absence of highly tuned open source implementations
of these kernels makes it difficult to perform an exhaustive comparison between different expansions.
Therefore, completing Figure 1 with the remaining series expansions is an ongoing investigation,
which we hope to report in a future publication.

In the current work, we will use Cartesian Taylor expansions and focus on low accuracy FMMs.
High accuracy FMMs with larger order of expansions will yield more fine grained parallelism, and
will naturally offer better performance on many-core CPUs and GPUs. The real challenge is to
optimize low accuracy FMMs on these architectures, and the reward will be substantial if this is
possible. Recent efforts to view the FMM as a general elliptic PDE solver [23] have opened the
possibility to use it as a preconditioner for even a broader range of applications. If the FMM is
to be used as a preconditioner the required accuracy would not be high, which is the reason why
we are interested in low accuracy FMM on future architectures. In terms of relative performance
compared to multigrid preconditioners, the treecode by Bedorf et al. [4] can solve 8 levels in
roughly 50 milliseconds on 1 GPU 14, while the multigrid code by Goddeke et al. also takes about
50 milliseconds for 8 levels on 1 GPU [16] to achieve the same accuracy.

3.2 Treecodes and FMMs

The two variants of hierarchical N -body methods – treecodes and FMMs – have followed very
different paths of evolution over the past two decades. The primary reason for this divergence is
the difference in the communities that adopted them. Treecodes have been used predominantly in
the astrophysics community, where the distribution of stars are highly non-uniform, variation of
local time scales is large, and the required accuracy is relatively low. On the other hand, FMMs
received more attention from the applied mathematics community, and more emphasis was placed
on asymptotically faster techniques with respect to the order of expansion p, extension to other

14The latest code from https://github.com/treecode/Bonsai is much faster than the one reported in their paper



kernels besides Laplace, and other generalizations to make them applicable to a wider range of
problems. The variety of series expansions mentioned in the previous subsection is one example
where FMMs are more advanced. Conversely, an area where treecodes are more sophisticated is the
handling of adaptive tree structures for highly non-uniform distributions, which was an absolute
requirement for their primary application. There are many interesting design decisions that arise
when merging these orthogonal efforts into a unified framework.

The key differences between typical treecodes and FMMs are summarized in Table 3. The first
item is the difference in how the particles are grouped into a tree structure. Treecodes commonly
use rectangular grouping which squeeze the bounds of each cell15 to exactly fit the residing particles
[10], while FMMs always use cubic cells. When combined with the second item in the table for
a sophisticated definition of “well-separated” cells, the use of tight rectangular cells results in an
efficient error bounding mechanism. On the other hand, the use of cubic cells assumes a worst case
scenario where the farthest particle from the cell center is at the corner of the cell. This may be
a good approximation at coarser levels of a uniform tree, but is an extremely crude assumption at
the leaf level of an adaptive tree. This assumption, along with the rigid definition of well-separated
cells to be simply the non-neighboring cubes, results in an inefficient mechanism to achieve a given
accuracy. This effect is much more prominent for low accuracy calculations, where the number of
particles per leaf cell becomes small.

The multipole acceptance criterion (MAC) for treecodes has many variants as described by
Salmon and Warren [27]. The concept of MACs have also been extended to FMM by the same
authors [32] where they provide error bounds for the MAC based FMM. The different types of
MAC are shown in Figure 2. The Barnes-Hut MAC is the original one proposed by Barnes and Hut
[3]. It sets the threshold for accepting the multipole expansion according to the ratio between the
cell size and distance between the target particle and center of expansion. Cells that are not accepted
are further divided into their child cells and reevaluated. Therefore, the accuracy of treecodes can
be controlled by adjusting the opening angle θ. Though, decreasing θ too much will ultimately turn
the treecode into a O(N2) direct summation method (with no error by definition). The Bmax MAC
gives a tighter error bound [27] and the same concept can be extended to FMMs [32].

Using the notation in Figure 2, the leading error term in the series expansion for the M2L

kernel is of the order O(
(
Bi+Bj

R

)p
). Therefore, the FMM has a simple error bound of O(θp) [9].

15In our descriptions, the terminology “nodes” and “cells” essentially mean the same thing, where “node” refers to
the elements in the tree data structure (from a computer science perspective), while “cell” refers to the corresponding
geometric object in physical space (from a scientific computing perspective).

Table 3: Key differences between typical treecodes and FMMs.

Treecode FMM

Octree node shape rectangle cube

Definition of “well-separated” multipole acceptance criterion non-neighboring cubes

Center of expansion center of mass geometric center of cell

Accuracy control opening angle θ order of expansion p

Data structure of tree octree Morton key

Finding interacting nodes tree traversal
parent’s neighbor’s children

that are non-neighbors

Domain decomposition orthogonal recursive bisection Morton key partitioning
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Figure 2: Illustration of the different types of multipole acceptance criteria (MAC). Barnes-Hut
MAC is the original one proposed by Barnes and Hut [3], Bmax MAC is a tighter MAC proposed
by Salmon and Warren [27], and FMM MAC is the extension of the Bmax MAC to FMM [32].

This error bound is easily extendable to treecodes by assuming Bi = 0, which is equivalent to
assuming that the target cell is just one particle and has no size. As the third item in Table 3
indicates, treecodes increase the accuracy by decreasing θ, while keeping p constant (p = 3 in most
cases). Conversly, FMMs increase the accuracy by increasing p, while keeping θ constant (most
commonly θ = 1 according to the definition of “FMM MAC” in Figure 2). At every level of the
tree, the M2L interaction list forms a constant-thickness layer on the surface of a sphere with radius
Bi+Bj

θ < R < 2
Bi+Bj

θ , which means the lists size grows as O(θ−2) (surface of sphere with normalized
radius 1/θ). If one were to use a O(p3) method for the M2L kernel, the complexity with respect to
p and θ will be O(θ−2p3). There should exist an optimal balance between p and θ that minimizes
the O(θ−2p3) work, while keeping the O(θp) error constant.

The various combinations of p and θ for a given accuracy are shown in Table 4. This table was
generated by first setting a target accuracy (relative L2 norm error of the force (not potential) for
the Laplace kernel, shown as Err) and setting p. Then, we searched through the parameter space
of θ to find the largest value that achieves the target accuracy. These, values of θ are shown in the
table along with the amount of time it takes to perform the dual tree traversal for each case. The

Table 4: Balance between order of expansion p and opening angle θ for Cartesian Taylor expansions
to achieve a specific error tolerance. Err is the relative L2 norm error of the force (not potential)
for the Laplace kernel, where the result from a direct summation is used as the reference value.
The time is measured for the dual tree traversal (M2L kernels+P2P kernels+list construction) for
N = 105 particles for one time step. The maximum number of particles per leaf cell is set to
Ncrit = 30 for all cases.

p = 3 p = 4 p = 5 p = 6

Err = 10−2 θ = 1.00 θ = 1.18 θ = 1.23 θ = 1.24
time = 0.016s time = 0.012s time = 0.015s time = 0.026s

Err = 10−3 θ = 0.67 θ = 0.78 θ = 0.91 θ = 0.94
time = 0.036s time = 0.027s time = 0.024s time = 0.038s

Err = 10−4 θ = 0.30 θ = 0.49 θ = 0.62 θ = 0.70
time = 0.22s time = 0.085s time = 0.071s time = 0.073s

Err = 10−5 θ = 0.12 θ = 0.20 θ = 0.36 θ = 0.45
time = 1.38s time = 0.59s time = 0.21s time = 0.21s



tree construction, P2M, M2M, L2L, L2P kernels are not included in these timings. The number of
particles is N = 105, and the maximum number of particles per leaf cell is set to Ncrit = 30 for
all cases. Here, the definition of θ is a more advanced version than the ones shown in Figure 2,
and uses both Bmax and Rmax [9] but without error optimization of Rmax. The optimal p shifts
to larger values when more accuracy is required. According to the current definition, Err = 10−5

means that 5 significant digits match with the results of a direct summation, which is sufficient for
many applications in structural mechanics, fluid dynamics, and molecular dynamics. By comparing
with Figure 1, one can conclude that Cartesian Taylor expansions are much faster than spherical
harmonics with rotation for this range of p.

3.3 Dual tree traversal

As summarized in Table 3, the underlying data structure in treecodes and FMMs is quite different.
Treecodes usually construct a tree data structure, where each node is expressed as a structure which
contains a pointer to it’s children. By looping over it’s children in a recursive function call (or by
using a stack or queue), all nodes can be visited once in a topdown manner, i.e. a tree traversal.
The multipoles in the well-separated cells are easily found by applying the MAC during the tree
traversal. This procedure is shown in Algorithm 1.

On the other hand, most FMM codes do not construct links between the tree nodes, nor do
they traverse a tree. Instead, they bin the particles based on Morton/Hilbert keys, and loop
over all the target cells in the tree (level wise), and explicitly construct a list of source cells that
are well-separated. This procedure does not require a linked tree structure. The definition of
well-separated cells is usually the “target cell’s parent’s neighbor’s children that are not direct
neighbors of the target cell”. Parents and children are found by multiplying and dividing the
Morton key by 8. Neighbors are found by deinterleaving the bits in the key into a three-dimensional
index, incrementing/decrementing in a certain direction, and interleaving them back to a single key.
In adaptive trees these keys are mapped to a unique index by hashing (or simply arrays with zeros
for the empty boxes), and this unique index is used to load/store the corresponding multipole/local
expansion coefficients. This procedure is shown in Algorithm 2.

There are more advanced techniques for finding the interaction lists in FMMs. Cheng et al.
extended the originally non-adaptive interaction list with only 2 categories “well-separated” and
“neighbor”, to lists for adaptive trees using 4 categories [7]. Gumerov and Duraiswami proposed a
way to reduce the number of interactions for the “well-separated” cells of the original non-adaptive
interaction list from 189 to 119 without sacrificing the accuracy [19]. However, both of these
techniques have the same structure of using the “parent’s neighbors” to define the well-separated
cells, and finding neighbors in this way have several disadvantages. First, special treatment of

Table 5: Different types of tree traversals and interaction list generation.

Treecode FMM FMM (adaptive) FMM (DTT)

Data structure octree array array octree

Complexity O(N logN) O(N) O(N) O(N)

Interaction list implicit explicit explicit implicit

Cell shape rectangular cubic cubic rectangular

θ adjustable yes no no yes

Parallelism for loop for loop for loop task-based



cells on the boundaries is required since they will not have a full list of 26 neighbors. Second, the
definition of “well-separatedness” cannot be flexibly controlled, which makes a large difference as
we have demonstrated in Table 4. Third, only cubic cells can be used because the cell’s dimensions
are used as units to measure well-separatedness, whereas rectangular cells have been preferred in
treecodes for highly non-uniform distributions. This third disadvantage also has implications for
load-balancing adaptive global trees, which is an important issue that is beyond the scope of the
present work.

It is possible to overcome the aforementioned disadvantages by using a dual tree traversal [32,
9], where the target tree and source tree are traversed simultaneously to efficiently create the
interaction list. A pseudocode for the dual tree traversal is shown in Algorithms 3 and 4. Table
5 summarizes the characteristics of four different ways to systematically evaluate the far field and
near field contributions in fast N -body methods. The dual tree traversal inherits the flexibility
and adaptiveness of the tree traversal used in treecodes, while achieving O(N) complexity. The
“well-separatedness” can be defined flexibly and the use of rectangular cells are allowed. The target
tree and source tree can be completely independent tree structures, since the distance between cells
is identified from the coordinates of the center of expansion at each cell. The use of Morton/Hilbert
keys is not a requirement, but can be used to accelerate the tree construction process. One drawback
of the dual tree traversal could be the loss of obvious parallelism at the outermost loop, as can be
seen by comparing Algorithms 1, 2, and 3. Treecodes have an outer loop over all target leafs, while
conventional FMMs have an outer loop over all target cells. However, the dual tree traversal does
not have any “for loop” structures that could be readily parallelized by, for example a #pragma omp

parallel for directive. This may or may not be an issue since standards such as OpenMP 3.0
and Intel Thread Building Blocks (TBB) now provide task-based threading models, which do not
require “for loops” for parallelization. In this model, tasks are spawned by the user and dispatched
to idle threads dynamically during runtime. Extracting thread level parallelism from the dual tree
traversal on NUMA architectures is an interesting challenge for data-driven execution models such
as QUARK, StarPU, OmpSs, and ParalleX.

The lack of “for loop” type parallelism in dual tree traversals makes it difficult to simply assign
a certain part of the work to a thread. Therefore, on GPUs and many-core co-processors, it is
crucial to use task-based parallelization tools available in CUDA 5.0, OpenMP 3.0 and Intel TBB.
However, the lack of “for loop” type parallelism in dual tree traversals itself is not a limitation,
since these task-based parallelization tools now exist on the latest compilers. It is important to
stay updated on the advancement in compiler technology and to continuously consider all variants
of FMMs that can take advantage of them.

3.4 Code optimization

A highly optimized code must take advantage of SIMD instructions, to extract the full potential
of modern microprocessors. For the current purpose of optimizing FMM for low accuracy, single-
precision is sufficient. For this case SSE and AVX can offer a maximum of ×4 and ×8 acceleration,
respectively. Furthermore, N -body kernels involve a reciprocal square root operation, which can
be accelerated by an intrinsic function rsqrt ps() in SSE/AVX. Furthermore, by reordering the
instructions to interleave the load operations with fused-multiply-add operations, one can achieve
flop/s that is very close to the theoretical peak, given the low Byte/flop ratio of these N -body
kernels.

We first demonstrate the performance increase in a Laplace P2P kernel when SSE and AVX
intrinsics are used. The runs are on a Intel Xeon E5-2643 (Sandy Bridge, 3.3 GHz, 4 physical
cores) with g++-4.7 -O3 -mavx -fopenmp -ffast-math -funroll-loops. The execution time



Algorithm 1 EvaluateTreecode()

for all target leafs do
push source root cell to stack
while stack is not empty do

pop stack
for all children of cell do

if child cell is a leaf then
call P2P kernel

else
if child cell satisfies MAC then
call M2P kernel

else
push child cell to stack

end if
end if

end for
end while

end for

Algorithm 2 EvaluateFMM()

for all target cells do
find parent cell by dividing Morton key
for all children of parent cell’s neighbor do

call M2L kernel
end for

end for
for all target leafs do
for all neighbor’s do

call P2P kernel
end for

end for

Algorithm 3 EvaluateFMMUsingDualTreeTraversal()

push pair of root cells (A,B) to stack
while stack is not empty do
pop stack to get (A,B)
if target cell is larger then source cell then

for all children a of target cell A do
Interact(a,B)

end for
else

for all children b of source cell B do
Interact(A,b)

end for
end if

end while



Algorithm 4 Interact(A,B)

if A and B are both leafs then
call P2P kernel

else
if A and B satisfy MAC then

call M2L kernel
else

push pair (A,B) to stack
end if

end if

and Gflop/s are shown in Table 6. The calculation is a direct summation between N = 105 particles
for both potential and force, which results in 20 floating-point operations per interaction. In all
three cases, the #pragma omp parallel for directive is used in the outermost loop to utilize all
cores. We obtain a speedup of ×3.88 with SSE and ×6.59 with AVX. These SSE and AVX kernels
are available from https://bitbucket.org/rioyokota/exafmm-dev as P2P kernels in our FMM.
In this code, predefined macros will detect the availability of AVX/SSE and turn them on if the
compiler supports them. Furthermore, the loop counter is carried across AVX, SSE, and non-SIMD
kernels so that the loop is first processed in increments of 8, then remainders of 8 are processed
with SSE, and finally remainders of 4 are processed with non-SIMD kernels.

3.5 Comparison between different FMM codes.

In order to clarify the relative performance of the major open source treecodes and FMMs, we
perform a benchmark of 5 different codes on the same computer. The benchmark is for a Laplace
kernel with randomly distributed particles in a cube. The number of particles is changed from
N = 104 to 106, while setting the accuracy to 3 significant digits for the force (not potential).
Note that this setting will yield a little more than 4 significant digits for the potential. For codes
that do not calculate the force, we tried our best to match the corresponding accuracy for the
potential. These benchmarks are performed on a single socket of a Xeon X5650 (Westmere-EP,
2.67GHz, 6 physical cores). exaFMM is the latest version of our code16. KIFMM [6] is the latest version
directly obtained from the developers. falcON [9] is publicly available as part of the package NEMO17.
ufmmlap [17] is publicly available as FMM-Laplace-U from fastmultipole.org18. PEPC [35] is the

16https://bitbucket.org/rioyokota/exafmm-dev
17http://bima.astro.umd.edu/nemo
18http://fastmultipole.org/Main/FMMSuite

Table 6: Execution time and Gflop/s of Laplace P2P kernel with SSE and AVX. The calculation
is a direct summation between N = 105 particles for both potential and force, which results in 20
floating-point operations per interaction.

no SIMD SSE AVX

CPU time [s] 1.75 0.486 0.274

Gflop/s 48.7 189 321

Speedup ×1 ×3.88 ×6.59
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Figure 3: Comparison between different FMM codes. The benchmark is for a Laplace kernel with
randomly distributed particles in a cube. These benchmarks are performed on a single socket of a
Xeon X5650 (Westmere-EP, 2.67GHz, 6 physical cores). Parameters in each code are adjusted to
obtain 3 significant digits of accuracy in the force for all codes. Timings include the tree construction
time.

latest publicly available version19.
The characteristics of the 5 different codes are summarized in Table 7. PEPC is a treecode, while

the other four are FMMs. PEPC inherits most of it’s features from Salmon and Warren’s treecode

19https://trac.version.fz-juelich.de/pepc

Table 7: Characteristics of the different codes in Figure 3. DTT : dual tree traversal, STT : single
tree traversal, EC : equivalent charges, TBB : thread building blocks

exaFMM KIFMM faclON ufmmlap PEPC

Language C++ C++ C++ F90 Fortran 2003

Tree data structure octree array octree array octree

Interaction list DTT U,V,W,X [36] DTT U,D,N,S,E,W [17] STT

Series expansion Cartesian EC + FFT Cartesian planewave Cartesian

Accuracy control p & θ p θ p θ

MPI yes yes no no yes

Threading model TBB OpenMP N/A N/A pthreads

SIMD AVX SSE N/A N/A N/A



[31], and has the structure of a typical treecode. On the other hand, ufmmlap can be thought of as a
typical FMM code, so the contrast in the tree data structure, interaction list, series expansion, and
accuracy control are most drastic between these two. KIFMM is similar to ufmmlap in the sense that it
also uses a typical FMM framework, except the series expansion is unique. The high performance of
KIFMM mostly comes from the implementation (OpenMP+SSE with low level optimizations), and on
a 12 (hyper-threaded) core machine this results in a big difference between the single core non-SIMD
implementation of ufmmlap. Although falcON is also a single core non-SIMD implementation, it
achieves the same speed as KIFMM just from purely algorithmic improvements. These algorithmic
improvements include the dual tree traversal, mutual interaction, error aware local optimization of
the opening angle θ, and a multipole acceptance criterion based on Bmax and Rmax [9]. Finally,
exaFMM combines the algorithmic improvements of falcON with a highly parallel implementation
using MPI, Intel TBB, and AVX. Accuracy can be controlled by both p and θ, the dual tree traversal
is parallelized efficiently with task-based parallelism that can either use OpenMP 3.0 or Intel TBB,
and the kernels are optimized with AVX to yield 300 Gflop/s on a single CPU socket. With the
combination of these techniques, exaFMM can calculate the Laplace potential+force for N = 106

particles to 3 digits of accuracy for the force in approximately 0.2 seconds on a single CPU socket,
which exceeds the performance of most GPU implementations of FMM.

4 Summary

The present work attempts to integrate the independent efforts in the fast N-body community to
create the fastest N-body library for many-core architectures of the future. Focus is placed on low
accuracy optimizations, in response to the recent interest to use FMM as a preconditioner for sparse
linear solvers. A direct comparison with other state-of-the-art fast N -body codes demonstrates that
orders of magnitude increase in performance can be achieved by careful selection of the optimal
algorithm and low-level optimization of the code.

The low Byte/flop of future architectures affects the choice of series expansions and translation
methods, and our focus on low accuracy perturbs this decision even further. For example, the
Cartesian Taylor expansion was shown to be much faster than spherical harmonics with rotation in
the range of accuracy of interest. Furthermore, simultaneous control over the order of expansion p
and opening angle θ was also shown to yield a significant increase in performance over conventional
treecodes and FMMs that only control either of them.

The dual tree traversal offers an interesting alternative to conventional interaction list construc-
tion, and modern compilers now provide the necessary tools to parallelize them efficiently. The fact
that dual tree traversals allow rectangular cells, enables great flexibility in the partitioning/load-
balancing on distributed memory architectures. There has been little work in this promising area,
because dual tree traversal has not been used in the FMM community until now. Although the
scope of the present article is focused on single node performance, we would like to point out that the
current framework enables various interesting possibilities for partitioning/load-balancing FMMs.

The performance of the FMM code described in this article is made available to the general
public20. The developer has made a significant effort to make the code readable by carefully de-
signing the code structure to make it as simple as possible, while retaining the performance. One
can easily see by comparing the source code with the other 4 codes in the benchmark study, that
exaFMM is more than an order of magnitude smaller in terms of lines of code, while being orders of
magnitude faster.

20https://bitbucket.org/rioyokota/exafmm-dev
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