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Rio Yokota, L. A. Barba
Mechanical Engineering Department, Boston University, Boston MA 02215

Abstract

Among the algorithms that are likely to play a major role in future exascale computing, the fast multipole
method (FMM) appears as a rising star. Our previous recent work showed scaling of an FMM on GPU clusters,
with problem sizes in the order of billions of unknowns. That work led to an extremely parallel FMM, scaling
to thousands of GPUs or tens of thousands of CPUs. This paper reports on a a campaign of performance tuning
and scalability studies using multi-core CPUs, on the Kraken supercomputer. All kernels in the FMM were par-
allelized using OpenMP, and a test using 107 particles randomly distributed in a cube showed 78% efficiency
on 8 threads. Tuning of the particle-to-particle kernel using SIMD instructions resulted in 4× speed-up of the
overall algorithm on single-core tests with 103 − 107 particles. Parallel scalability was studied in both strong
and weak scaling. The strong scaling test used 108 particles and resulted in 93% parallel efficiency on 2048
processes for the non-SIMD code and 54% for the SIMD-optimized code (which was still 2× faster). The weak
scaling test used 106 particles per process, and resulted in 72% efficiency on 32,768 processes, with the largest
calculation taking about 40 seconds to evaluate more than 32 billion unknowns. This work builds up evidence
for our view that FMM is poised to play a leading role in exascale computing, and we end the paper with a
discussion of the features that make it a particularly favorable algorithm for the emerging heterogeneous and
massively parallel architectural landscape.

1 Introduction

Achieving computing at the exascale means accel-
erating today’s applications by one thousand times.
Clearly, this cannot be accomplished by hardware
alone, at least not in the short time frame expected
for reaching this performance milestone. Thus, a
lively discussion has begun in the last two or three
of years about programming models, software com-
ponents and tools, and algorithms that will facilitate
exascale computing.

The hardware path to exascale systems, although
not entirely certain, points to computing systems in-
volving nodes with increasing number of cores, and
consisting of compute engines with significant struc-
tural differences (for example, having different in-
struction set architectures), i.e., heterogeneous sys-
tems. Among heterogeneous systems, those involv-
ing GPUs are currently at the forefront and poised to
continue gaining ground, until and unless a totally
new and unexpected technology comes along. The
latest Top500 list of the world’s supercomputers (as
of June 2011) has three GPU-based systems ranked
among the top five. Furthermore, on the Green500

list (Feng and Cameron, 2009) of the world’s most
energy efficient supercomputers (as of June 2011),
three out of the top five are also GPU-based systems
(not the same systems leading the Top500 list, how-
ever). Even if a totally new technology were to come
around the corner on our path to the exascale, the
lessons learned from adapting our scientific algo-
rithms to the challenges posed by GPUs and many-
core systems will better prepare us. Features that are
inevitable in emerging hardware models, as recog-
nized in Bergman et al. (2008), are: many (hundreds)
of cores in a compute engine and programmer-
visible parallelism, data-movement bottlenecks, and
cheaper compute than memory transfers.

Computational methods and software will have
to evolve to function in this new ultra-parallel
ecosystem. One of the greatest challenges for scal-
ability (as well as programmability) is the growing
imbalance between compute capacity and intercon-
nect bandwidth. This situation demands our invest-
ment in algorithmic research, co-developed with ex-
ascale applications so that the new architectures can
indeed be exploited for scientific discovery at the
highest performance.
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On the other hand, it is clear that achieving ex-
ascale computing in the short time frame anticipated
(the next decade) will require much more than hard-
ware advances. Developments in algorithms must
play a leading role. If history is to be our guide,
algorithm developments have often provided great
leaps in capability, comparable or higher than those
offered by progress in hardware. Thus, we can be
fairly optimistic that, if we maintain a substantial re-
search effort into both scientific algorithms and their
implementation, the chances of success are higher.

It is interesting to note that many of the most suc-
cessful algorithms of today are hierarchical in nature,
such as the case of multi-grid methods. Hierarchi-
cal algorithms often result in the ideal O(N) scaling,
with N representing the problem size. A quintessen-
tial O(N) algorithm, which we focus on here, is the
fast multipole method, FMM. This algorithm was in-
troduced by Greengard and Rokhlin (1987) for per-
forming fast calculations of N-body type problems,
such as are encountered in gravitational or electro-
static calculations. These problems naturally have
a computational complexity of O(N2) for N bodies
(masses or charges), but the FMM provides a solution
in O(N) operations, to within a controllable accu-
racy. It is important to note that the FMM can be used
not only as an N-body solver, as it was originally de-
signed to be, it can also be used to solve any ellip-
tic PDE (e.g., Ethridge and Greengard, 2001; Cheng
et al., 2006; Langston et al., 2011).

There are several groups actively contributing to
the field of hierarchical N-body algorithms, and their
high-performance implementation in both massively
parallel CPU systems and GPU architecture. These ef-
forts have often been divided along two lines: the
O(N log N) treecodes, with a strong following in the
astrophysics community, and the O(N) fast multi-
pole method, and its variants. A notable player in
the field is the kernel-independent version of the
FMM, a variant which does not make use of multi-
pole expansions of the sources in a cluster but rather
an equivalent density on a surface enclosing the clus-
ter. The group working on this algorithm, known as
kifmm (Ying et al., 2004), has provided a continued
stream of evidence of the high performance levels
that can be attained with this family of algorithms.
Most recently, they were awarded the coveted ACM
Gordon Bell prize at the Supercomputing conference
(Rahimian et al., 2010), with a sustained performance
of 0.7 Petaflop/s—this is merely 3.7× less than the
peak HPC Linpack benchmark of the same date, but
achieved with a full application run (involving flow
of deformable red blood cells). Thus, we are con-
vinced that hierarchical algorithms, and the FMM in

particular, are especially poised to be leading players
in the exascale computing future.

In our own recent efforts, we have achieved ex-
cellent scaling on GPU clusters, with problem sizes
that are in the order of billions of unknowns (Yokota
et al., 2011b,a). This work has led to an extremely
parallel FMM, which is capable of scaling to thou-
sands of GPUs or tens of thousands of CPUs. In
the present study, we demonstrate the scalability of
our new FMM on a large CPU-based system (Kraken,
at the National Institute for Computational Science,
University of Tennessee). We also perform single-
node performance tuning by using SIMD instructions
and OpenMP. Our efforts are on a par with the
most high-performing computations using FMM, yet
are fully independent. Thus, we contribute to the
mounting evidence of the decisive role of FMM and
related algorithms in the quest for exascale. In view
of this, we conclude our paper with a brief discus-
sion of the features of the FMM that make it a partic-
ularly favorable algorithm for the emerging hetero-
geneous, massively parallel architectural landscape.
We hope that this will enrich the ongoing discussions
about the challenges and opportunities to reach the
milestone of exascale computing within a decade.

Given the magnitude of the challenge, we main-
tain that working in collaboration and under a model
of openness should offer the best opportunities.
Consistent with this view, all codes developed as
part of this research effort are open source, and
released at the time of publication. The full im-
plementation of the FMM used to produce the re-
sults of this paper, as well as some of our pre-
vious publications, is available via the website at
http://www.bu.edu/exafmm/.

2 The fast multipole method, and its
place in high-performance computing

2.1 Brief overview of the algorithm

Evaluating the interactions among N sources of a
force potential that has long-range effects in princi-
ple requires O(N2) operations. The canonical exam-
ples of this situation are gravitational and electro-
static problems. The fast multipole method (FMM)
of Greengard and Rokhlin (1987) is able to reduce the
computational complexity of this problem to O(N)
operations, and thus can have tremendous impact on
the time to solution in applications.

The FMM begins with a hierarchical subdivision
of space, allowing a systematic categorization of
spatial regions as either near or far from one an-
other. Different analytical approximations to the ker-
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Figure 1: Illustration of FMM algorithm components, with the upward sweep depicted on the left side of the tree, and the
downward sweep depicted on the right side of the tree. The multipole expansions are created at the leaf level in the P2M
operation, they are translated upwards to the center of the parent cells in the multipole-to-multipole (M2M) translation,
then transformed to a local expansion in the M2L operation for the siblings at all levels deeper than level 1. The local
expansions are translated downward to children cells in the L2L operation and finally, the local expansions are added at
the leaf level and evaluated in the L2P operation.

nel that represents the interaction are used for pairs
of points that are in near or far regions, correspond-
ingly. These approximations are then transfered be-
tween different scales, up and down, using the sub-
division hierarchy, eventually resulting in the assem-
bly of a complete interaction force field at all of the
points to a given approximation. A view of the com-
plete algorithm is given in Figure 1, where the main
computational steps are associated to a tree graph
representing the hierarchical subdivision of a one-
dimensional domain space. The multi-resolution na-
ture of the hierarchical space division, with its asso-
ciated tree, is illustrated in Figure 2 for the 2D case.

The FMM algorithm defines the following math-
ematical tools. The Multipole Expansion (ME) is a
series expansion, truncated after p terms, which rep-
resents the influence of a cluster of sources on far-
away regions of space, and is valid at distances large
with respect to the cluster radius. The Local Ex-
pansion (LE) is also a series expansion of p terms,
valid only inside a given subdomain, and used to ef-
ficiently evaluate the contribution of a group of MEs
on that subdomain. In other words, the MEs and LEs
are series (e.g, Taylor series) that converge in differ-
ent subdomains. The center of the series for an ME
is the center of the cluster of source particles, and
it only converges outside the cluster of particles. In

the case of an LE, the series is centered near an eval-
uation point and converges locally. All the distinct
operations that are required in the algorithm are il-
lustrated in the flow diagram of Figure 3.

The utilization of an aggregate representation for
a cluster of particles, via the ME, effectively permits
a decoupling of the influence of the source particles
from the evaluation points. This is a key idea, result-
ing in the factorization of the computations of MEs
that are centered at the same point. This factorization
allows pre-computation of terms that can be re-used
many times, increasing the efficiency of the overall
computation. Similarly, the LE is used to decouple
the influence of an ME from the evaluation points. A
group of MEs can be factorized into a single LE so that
one single evaluation can be used at multiple points
locally. The combined effect of using MEs and LEs is
a computational complexity of O(N) for a full eval-
uation of the force field.

2.2 Our ongoing work on parallel FMM

Previously, our research group has led the devel-
opment of an open-source parallel software, called
PetFMM, which aims to offer a PETSc-like package
for FMM algorithms. It is characterized by dynamic
load-balancing based on re-casting the tree-based al-
gorithm, illustrated in Figure 1, into an undirected

3
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Figure 2: A three-level hierarchical decomposition of a 2D domain. Tree nodes corresponding to domain boxes are
shown in corresponding color.
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Figure 3: Flow of the FMM calculation, showing all of the operations required in the algorithms: P2M: transformation
of points into MEs (points-to-multipole); M2M: translation of MEs (multipole-to-multipole); M2L: transformation of an ME
into an LE (multipole-to-local); L2L: translation of an LE (local-to-local); L2P: evaluation of LEs at point locations (local-
to-point).
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Figure 4: Multi-GPU strong scaling, and timing break-
down of the different FMM kernels, tree construction (done
on the CPU) and communications. Test problem: 108 points
placed at random in a cube; FMM with order p = 10
and spherical harmonic rotation before each translation at
O(p3) cost. Parallel efficiency is slightly above 1 for 4−32
processes, possibly due to cache advantage on the tree
construction. Parallel efficiency is 78% on 256 and 48%
on 512 GPUs. From Yokota et al. (2011a).

graph created using a computational model of the
FMM (Cruz et al., 2010). The spatial hierarchy is di-
vided into many subdomains, more than the number
of processes available, and an auxiliary optimization
problem for the partition is constructed such that it
minimizes both load imbalance and communication.
The problem is modeled by a weighted graph, and
solved using the partitioner ParMetis (Karypis and
Kumar, 1998). Strong scaling results showing the
parallel performance of PetFMM were given in Cruz
et al. (2010), with a test evaluating the field due to 10
million particles using up to 256 processors of a CPU
cluster.

Recently, we have produced a multi-GPU FMM
implementation, and performed new scalability
studies. The parallel partitioning in this code is
based on work-only load balancing, by equally dis-
tributing the Morton-indexed boxes at the leaf level;
this is the standard and most commonly used tech-
nique for distributing N-body codes, first introduced
by Warren and Salmon (1993). A host of detailed
performance improvements were applied to accom-
plish good scalability on up to 512 GPUs in our first
study (Yokota et al., 2011b). We should note that
achieving parallel scalability on a cluster of GPUs is
a greater challenge than scaling on a CPU-only clus-
ter. The high compute capability of GPUs acceler-
ates the computation and exposes the time required

for communications and other overheads, which is
exacerbated by the fact that, for multi-GPU calcula-
tions, the GPUs cannot communicate with each other
directly. With current technology, it is necessary to
send the data back to the host machine and commu-
nicate between nodes via MPI. Yet, our strong scaling
tests for the FMM on multi-GPUs demonstrated high
parallel efficiency despite these challenges; see Fig-
ure 4. On the Degima cluster1, parallel efficiency re-
mains close to 1 all the way up to 128 GPUs, then
drops to 78% at 256, and to 48% at 512 processes.
The efficiency drop was ascribed to the configuration
of the interconnect in the machine, and the number
of GPUs per node: up to 128 GPUs, only one pro-
cess was running on each node; for the case with
256 GPUs, two processes were running on each node;
and for the case with 512 GPUs, four processes were
running per node. This situation limits the effective
bandwidth per process as bandwidth must be shared
within the node. To alleviate this problem, we imple-
mented a hierarchical all-to-all communication with
MPI_Comm_split, splitting the MPI communicator
into sub-sets of size 4. With 4 processes per node,
we are effectively splitting the communicator into an
inter-node and an intra-node communicator. Thus,
we first perform an intra-node MPI_Alltoallv,
then an inter-node MPI_Alltoallv. We found
that this could speed-up the communication nearly
4 times at 512 processes. This is an example of ap-
plying a hierarchical parallel model to effectively obtain
performance from a heterogeneous system.

2.3 High-performance FMM computing

Hierarchical N-body algorithms, including both the
O(N log N) treecode and the O(N) FMM, have been
visible players in the field of high-performance com-
puting for many years. In fact, the top place in
performance of the Gordon Bell award2 has been
obtained several times with these algorithms. In
1992, the first place was awarded to Warren and
Salmon (1992) for a simulation of 9 million grav-
itating stars with a parallel treecode (sustaining 5
Gflop/s); some of the techniques used in that work
remain important to this day. The same authors
(with others) achieved the first place again in 1997
with a simulation of the dynamics of 322 million
self-gravitating particles, at a sustained 430 Gflop/s
(Warren et al., 1997). That year, the award in the

1Degima is the GPU cluster at the Nagasaki Advanced Com-
puting Center, which at the time had two nVIDIA GTX295 cards
per node (two GPUs per card), and mixed QDR/SDR Infiniband
network.

2http://awards.acm.org/bell/
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price/performance category also went to this team,
who reported $50/Mflop.

More recently, we have seen treecodes and FMM
figure prominently with Gordon Bell awards in the
last two years. In 2009, the work by Hamada
et al. (2009) was recipient of the award in the
price/performance category, achieving 124 Mflop/$
(more than 6 thousand times “cheaper” than the
1997 winner) with a GPU cluster. And last year, the
first place in the performance category was achieved
with an FMM-based Stokes solver of blood flow
which sustained 0.7 Pflop/s when solving for 90 bil-
lion unknowns (Rahimian et al., 2010). To achieve
this performance, a fast multipole method that al-
ready had undergone development to attain high
parallel scaling (Lashuk et al., 2009) was further op-
timized by means of explicit SSE vectorization and
OpenMP multi-threading (Chandramowlishwaran
et al., 2010). As a result, a full application code was
obtained that was merely 3.7× slower than the Lin-
pack high-performance computing benchmark that
is used to build the Top500 list3.

Given that the FMM algorithm can achieve per-
formance in applications that is close to the Linpack
benchmark, and that moreover it has excellent com-
patibility with massively parallel GPU hardware, we
estimate that it will feature prominently in the path
to exascale. In the present contribution, we per-
form optimizations of our FMM for single-core per-
formance, and carry out scalability studies at large
scale on CPU-based systems. Added to our ongoing
work on GPU implementation, we keep the momen-
tum going in the direction of exascale FMM for the
next decade.

3 Intra-node performance optimization

This section is dedicated to reporting a campaign of
code optimization for single-node performance, in-
cluding both SIMD vectorization and multithreading
within a node using OpenMP. All runs were per-
formed on the Kraken Cray XT5 system of the Na-
tional Institute for Computational Sciences (NICS) at
the University of Tennessee, via TeraGrid access.

Each node of the Kraken system has two 2.6 GHz
six-core AMD Opteron processors (Istanbul) and 16
GB of memory. The system is connected via a Cray
SeaStar2+ router, and it has 9,408 compute nodes for
a total of 112,896 compute cores.

3http://www.netlib.org/benchmark/hpl/

3.1 Multithreading with OpenMP

All kernels in the FMM were parallelized using
OpenMP (the outermost loop for each kernel was ex-
plicitly parallelized by using the thread id). Results
are presented in Figure 5, consisting of the break-
down of the calculation time of the FMM for different
numbers of threads. The calculation time is multi-
plied by the number of threads for ease of compari-
son, i.e., bars of equal height would indicate perfect
scaling. These tests were performed on a single node
of Kraken using 1, 2, 4, and 8 cores, and the test prob-
lem was a set of N = 107 particles randomly dis-
tributed in a cube. In the legend on the right hand
side, the P2P, P2M, M2M, M2L,L2L, L2P labels corre-
spond to the individual stages of the FMM as shown
in Figure 3. The P2P kernel (the direct particle-
particle interaction for the near field) takes up most
of the calculation time, with the M2L (multipole-to-
local translation between two distant cells) also tak-
ing a significant portion. These two kernels are bal-
anced in an FMM calculation by the number of levels
in the tree, and the proportion of time taken by each
will change as N changes; in this case, with N = 107,
the situation shown in Figure 5 offers the best tim-
ing and hence it is balanced. The results in Figure 5
show that the two main kernels scale quite well up
to 8 threads. Some of the other kernels do not scale
as well, which requires further investigation; how-
ever, this is not of primary importance since we do
not need to scale to a large number of threads with
the OpenMP model at the moment.

The order of the FMM expansions is set to p = 3
for the tests in Figure 5, which will give 3 − 4 sig-
nificant digits of accuracy. We simply choose this
value because it is common in astrophysics applica-
tions, one of the main application areas for the FMM,
where high accuracy is not required. Using a larger
p would result in more work for the P2M, M2M, L2L,
L2P, and especially the M2L kernel, which would re-
quire in turn using more particles per leaf cell to bal-
ance the calculation load of P2P and M2L kernels.
This would affect the parallel scalability of the P2P
kernel favorably, because of more data parallelism
within each cell. Increasing p would also increase the
fine-grained parallelism of the M2L kernel because of
more expansion coefficients to calculate, but would
decrease the coarse-grained parallelism because the
tree would become shallower for a given N.

3.2 Vectorization with inline assembly

Recently, other researchers have dedicated substan-
tial effort to single-node optimization and multi-core
parallelization of an FMM-type algorithm. Chan-
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Figure 5: OpenMP strong scaling, and timing breakdown
of the different kernels, tree construction and communi-
cations. Calculation time is multiplied by the number of
threads. Test problem: N = 107 points placed at random
in a cube; FMM with order p = 3. Parallel efficiency is 78%
on 8 threads.

dramowlishwaran et al. (2010) reported the first ex-
tensive study of its kind, which included not only
SIMD vectorization and intra-node parallelization,
but also various other optimizations of the kifmm
algorithm. They reported a total performance im-
provement of 25× for both optimizations and 8-core
parallelization on Intel Nehalem CPUs (plus differing
performance improvements in other, less advanced,
platforms). The speed-up from optimizations only
on the overall algorithm is not specifically stated, but
assuming perfect scaling on the 8 Nehalem cores, we
can infer a 3× speed-up by the optimizations (in-
cluding manual SIMD vectorization) in double pre-
cision.

We have performed a similar optimization cam-
paign using inline assembly and achieve a 4× overall
acceleration for a single-thread execution using sin-
gle precision. Results are shown in Figure 6, consist-
ing of the calculation time of the FMM with and with-
out SIMD vectorization, for N = 103 − 107 particles
randomly distributed in a cube. At the moment, the
optimization was performed for the P2P kernel only.
The P2P kernel itself accelerates 16× compared to an
unoptimized double-precision kernel, but since the
acceleration is limited to a certain part of the algo-
rithm the overall acceleration is only 4×. We expect a
further increase in performance when the other ker-
nels are optimized using the same method. Never-
theless, even with the present implementation we
are able to calculate N = 107 particles in less than
100 seconds on a single core on Kraken (as shown in
Figure 6).

It is worth noting that in citing the independent
work on single-node optimization of the kifmm al-
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100

101
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With SIMD

Figure 6: Calculation time w/wo SIMD Test problem:
N = 103 − 107 points placed at random in a cube; FMM
with order p = 3. Only the P2P kernel is accelerated with
SIMD instructions. The overall speed up of the FMM is ap-
proximately 4 times.

gorithm by Chandramowlishwaran et al. (2010), we
are not encouraging that our work be compared toe
to toe in regards to performance. The kifmm al-
gorithm is in many ways different from our FMM,
although it solves the same type of problems and
shares a fundamental structure (e.g., hierarchical do-
main partition and associated tree structure). Quite
the contrary, the point is that two completely in-
dependent efforts with hierarchical N-body algo-
rithms are demonstrating the potential for applica-
tions based on these algorithms to benefit from ex-
cellent performance on multi-core systems.

4 Parallel scalability on Kraken

In this section, we report the results of parallel scal-
ability tests on Kraken using the same FMM code we
described in the previous section. Strong scaling is
shown between 1 and 2048 processes and weak scal-
ing up to 32,768 processes, with excellent parallel
efficiency. For the strong scaling tests, we used 1
thread per process, and for the weak scaling tests we
used 8 threads per process. The largest calculation is
performed on a problem size of 32 billion particles,
taking less than 40 seconds to complete.

The most recent results by researchers working
with the kifmm algorithm and code base were re-
ported in Rahimian et al. (2010), a work awarded
the 2010 ACM Gordon Bell prize in the performance
category. They report 84% parallel efficiency for a
strong scaling test between 48 and 3072 processes
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of the Jaguar supercomputer4. The study was car-
ried out on an application of the kifmm algorithm
to Stokes flow (red blood cells), and the reported
strong scaling test used a problem of size N =
108 unknowns. This is the same problem size that
we used in our strong scaling test (below), but it
must be noted that we use are using a different
(Laplace) kernel. Moreover, the current literature
points to many sophisticated features in the kifmm
code (including: bottom-up parallel tree construc-
tion scheme, all-reduce-on-hypercube communica-
tion, FFT-based translation methods for the cell-cell
interactions, among others), which are not utilized
in our present software. Thus, it is not appropriate
to make a performance comparison between these
two very different variations of the FMM and scal-
ing studies. The point we would like to make here is
that the FMM is a highly “strong-scalable” algorithm,
and therefore a truly suitable algorithm for the exas-
cale era. The fact that two completely independent
efforts both show similar excellent scalability is in-
deed promising.

We start by presenting our strong scaling results
without SIMD vectorization. Figure 7 shows the
breakdown of each stage of the FMM for a test con-
sisting of N = 108 points placed at random in a
cube, with the order of multipole expansions set to
p = 3. The calculation time is multiplied by the
number of MPI processes (Nprocs) for better visibility
at large Nprocs. The exponent of the number of pro-
cesses is shown in the horizontal axis, e.g., the bar
labeled with “11” represents Nprocs = 211 = 2048.
The legend is similar to that of Figure 5 except we in-
clude the MPI communication times “mpisendp2p"
and “mpisendm2l", which are the communication
times for the P2P kernel and M2L kernel, respectively.
All the other kernels do not require communication.
The parallel efficiency at 2048 processes is in this case
approximately 93%.

The results shown in Figure 7 were obtained with
the FMM code without single-node performance opti-
mizations. The results for the same strong-scaling
test using the FMM with the SIMD kernels are shown
in Figure 8. As we have mentioned in the previ-
ous section, only the P2P kernel is optimized in our
present code. Therefore, the tree is shallower and
there are more particles in the leaf cell to keep the
P2P and M2L balanced. Since the calculation time of
the P2P kernel decreases significantly, the other parts
start to dominate. The parallel efficiency is 54% at
2048 processes, with about half of the total run time
corresponding to the sum of tree construction time
and time for communication between nodes and —

4Jaguar is a Cray XT5 system, very similar to Kraken.
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Figure 7: MPI strong scaling from 1 to 2048 processes,
and timing breakdown of the different kernels, tree con-
struction and communications. Test problem: N = 108

points placed at random in a cube; FMM with order p = 3.
Calculation time is multiplied by the number of processes.
Parallel efficiency is 93% on 2048 processes.

we must stress, however, that this is a strong-scaling
test between 1 and 2048 processes (not offset scaling,
as shown in some other works), and that communi-
cations are not overlapped.

By comparing Figures 7 and 8, we see that the
calculation is approximately 4 times faster for the
optimized version when the number of processes is
small. However, since the optimized version does
not scale as well, the speed-up is about 3 times at
1024 and only doubles at 2048 processes. These
trends are similar to what we observed in the strong-
scaling tests on the GPU, where the acceleration of
the P2P and M2L kernels causes the communication
and tree construction to become the bottleneck.

Figure 9 shows weak scaling results on a test us-
ing N = 106 particles per process and p = 3. We
achieve a parallel efficiency of 72% on 32,768 pro-
cesses. The largest problem size that was calculated
consisted in 32 billion unknowns, being solved in
less than 40 seconds. It can be seen in Figure 9 that
the calculation times per process of both P2P and M2L
kernels remain somewhat constant up to 32k pro-
cesses.

5 Suitability of the FMM for achieving
exascale and future directions

The results shown here, added to our previous work
and comparable recent work by other researchers,
point to certain features of the FMM that make it
a particularly favorable algorithm for the emerging
heterogenous, many-core architectural landscape. In
this section, we will make this view more clear, ad-
dressing specific exascale application characteristics
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Figure 8: MPI strong scaling with SIMD from 1 to 2048
processes, and timing breakdown of the different ker-
nels, tree construction and communications. Test problem:
N = 108 points placed at random in a cube; FMM with or-
der p = 3. Calculation time is multiplied by the number of
processes. Parallel efficiency is 54% on 2048 processes.

identified in Bergman et al. (2008). The expectation
for exascale is that in the order of a million teras-
cale processors are required. (Note that the results
presented on Figure 4 mean that we already have
several million simultaneous threads running, if we
consider the 32 non-divergent threads in a SIMD
warp to be independent threads.) In recent feasi-
bility studies, hypothetical exascale systems are pro-
posed which would consist of 1024-core nodes, with
each core clocking at 1 GHz, and a total of 228 or
230 such cores (Gahvari and Gropp, 2010; Bhatele
et al., 2011). Analysis of representative algorithms
can then be performed to determine the problem
sizes required to reach 1 exaflop/s, and the con-
straints in terms of system communication capac-
ity that would make this performance feasible. In
Bhatele et al. (2011), three classes of algorithms are
considered by this analysis: pure short-range molec-
ular dynamics, tree-based N-body cosmology, and
unstructured-grid finite element solvers. Gahvari
and Gropp (2010) similarly consider multigrid al-
gorithms and fast Fourier transform. The conclu-
sion of these studies is that the feasibility region
for molecular dynamics (which is pleasantly paral-
lel) and tree-based simulations is considerably less
restricted than for other algorithms, having viable
bandwidth requirements (in the order of 1− 2 GB/s).
These analysis-based studies add to the experimen-
tal demonstrations of both our and other groups’ on-
going work with FMM to indicate great potential for
this family of algorithms. Below, we explain some of
the reasons for this potential.

Load balancing. Customarily, the FMM is load-
balanced via space-filling curves, either Morton or

1 8 64 512 4096 327680

10

20

30

40

Nprocs

tim
e 

[s
]

 

 

tree construction
mpisendp2p
mpisendm2l
P2Pkernel
P2Mkernel
M2Mkernel
M2Lkernel
L2Lkernel
L2Pkernel

Figure 9: MPI weak scaling with SIMD from 1 to 32768
processes, and timing breakdown of the different ker-
nels, tree construction and communications. Test problem:
N = 106 points per process placed at random in a cube;
FMM with order p = 3. Parallel efficiency is 72% on 32768
processes.

Hilbert. The latter is an improvement because the
length of each segment of the space-filling curve is
more uniform, i.e., it never jumps from one space lo-
cation to another far away. These techniques balance
only the computational work, without attempting to
optimize communications. We have demonstrated
an approach that optimizes both work and commu-
nications via a graph partitioning scheme in Cruz
et al. (2010); however, this approach is not tested
in large numbers of processors and extending it (by
means of recursive graphs, e.g.) is an open research
problem. In general, we believe that research into
hierarchical load balancing techniques should be a
high priority in our quest for exascale. The underly-
ing tree-based structure of the FMM points to an op-
portunity in this case.

Spatial and temporal locality. The FMM is an algo-
rithm that has intrinsic geometric locality, as the
global N-body interactions are converted to a series
of hierarchical local interactions associated with a
tree data structure. This is illustrated in Figures 1
and 2. However, the access patterns could poten-
tially be non-local. An established technique is to
work with sorted particle indices, which can then
be accessed by a start/offset combination (this also
saves storage because not every index needs to be
saved). Temporal locality is especially important on
the GPU, and is moreover programmer-managed. We
have implemented a technique that improves local-
ity at a coarse level and is appropriate for GPUs,
namely, an efficient queuing of GPU tasks before ex-
ecution. The queuing is performed on the CPU, and
buffers the input and output of data making mem-
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ory access contiguous. On the other hand, locality at
a fine level is accomplished by means of memory co-
alescing; this is natural on the FMM due to the index-
sorting technique used. In conclusion, the FMM is
not a “locality-sensitive application” (Bergman et al.,
2008). This is in contrast to stencil-type calculations,
for example, where non-contiguous memory access
is unavoidable.

Global data communications and synchronization. The
overheads associated with large data transfers and
global barrier synchronization are a significant im-
pediment to scalability for many algorithms. In the
FMM, the two most time-consuming operations are
the P2P (particle-to-particle) and M2L (multipole-to-
local) kernels. The first is purely local, while the sec-
ond effectively has what we can call hierarchical syn-
chronization. The M2L operations happen simultane-
ously at every level of the hierarchical tree, without
synchronization required between levels. This is in
contrast, for example, to the situation in the multi-
grid algorithm, which requires each level to finish
before moving on to the next level. Among hierarchi-
cal algorithms, the FMM appears to have especially
favorable characteristics for “exascaling”.

Future directions

Based on the performance study reported in this pa-
per, and also the features of the FMM as mentioned
above, we plan to continue improving our FMM code
and addressing some immediate tasks. First of all,
strong scaling results in Figure 8 show that com-
munication and tree construction become a bottle-
neck for continuing to achieve strong scaling beyond
2000 processes. Therefore, improvement of the tree
construction phase is necessary, as well as overlap-
ping of the local computation and communication.
The tree construction can be accelerated by taking
the particle distribution into account. For example,
many applications in fluid dynamics and molecu-
lar dynamics have a uniform distribution of parti-
cles. For these cases, the tree structure is very easily
formed by assigning a Morton index for a prescribed
maximum level. It will be useful to have the capa-
bility to switch between uniform and adaptive tree
construction, depending on the application. The effi-
cient overlapping of communications and computa-
tions is the obvious next step. We are currently work-
ing on these improvements, and others, which will
be reported in separate publications.

These and other new features will be available in
the ExaFMM code that we are releasing on the occa-
sion of the Supercomputing conference in November
2011; for more information and access to the codes,

visit http://www.bu.edu/exafmm.

6 Conclusions

The present contribution aims to build on the mount-
ing evidence of the suitability of the fast multipole
method, FMM, and related algorithms, to reach exas-
cale. The challenges to reach that milestone, which
the community expects should be achieved by 2018,
are varied and quite severe. They include serious
technical hurdles, such as reducing the power con-
sumption for computing by a significant factor, and
dealing with frequent failures in systems involving
millions of processors. While those challenges are
recognized as the top concerns, the need for research
into the appropriate algorithms and software for ex-
ascale is equally recognized as important. We main-
tain that FMM is among the algorithms that will play
a visible role in the exascale ecosystem.

We have conducted a campaign of single-node
optimization and massively parallel scalability stud-
ies of our FMM. Intra-node performance optimiza-
tion is obtained both with multi-threading using
OpenMP, and with vectorization using inline assem-
bly for the most costly kernel. OpenMP paralleliza-
tion of all kernels achieved 78% efficiency in strong
scaling with 8 cores, while inline assembly vectoriza-
tion of only the P2P kernel provided a 4× speed-up
of the overall algorithm.

Parallel scalability was studied both in strong
and weak scaling. Strong scaling between 1 and
2048 processes obtained 93% parallel efficiency with
the non-vectorized code, and 54% efficiency with the
SIMD-capable code. The SIMD instructions sped up
the calculation by 4× when using less than a thou-
sand processes, and by 2× when using 2048 proce-
ses. In this last case, we start to see the inter-node
communications and tree construction take a signifi-
cant portion on the total runtime. However, even the
vectorized code strong scales excellently up to one
thousand processes, which is a situation rarely seen
with other popular algorithms. Weak scaling tests re-
sulted in 72% parallel efficiency on 32,768 processes
for a test problem with a million points per process,
and the largest calculation involved more than 32 bil-
lion points with a time to solution of under 40 sec-
onds.

Further work is ongoing to improve parallel effi-
ciency in strong scaling by overlapping of commu-
nications and computations and enhancing tree con-
struction. All such improvements are available on
real time in the code repository, and the code is open
for unrestricted use under the MIT License.
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