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Hierarchical N -body simulations with
auto-tuning for heterogeneous systems

Algorithms designed to efficiently solve this classical problem of physics fit very well
on GPU hardware, and exhibit excellent scalability on many GPUs. Their com-
putational intensity makes them a promising approach for many other applications
amenable to an N-body formulation. Adding features such as auto-tuning makes
multipole-type algorithms ideal for heterogeneous computing environments.

Rio Yokota, Lorena A. Barba
Mechanical Engineering Dept., Boston University, Boston MA 02215

T he classic N -body problem of mechan-
ics solves for the motion of N bodies
interacting via the force of gravitation.
Beyond gravitational masses, a variety

of physical systems can be modeled by the in-
teraction of N particles, e.g., atoms or ions un-
der electrostatics and van der Waals forces lead
to molecular dynamics. Also, the integral for-
mulation of problems modeled by elliptic partial
differential equations leads to numerical integra-
tion having the same form, computationally, as
an N -body interaction. Astrophysics and molec-
ular dynamics problems rely on the Laplace po-
tentials, while Helmholtz potentials have appli-
cations in acoustics and electromagnetics, and
Stokes potentials can be found in elasticity and
geophysics. Adding to this diversity of applica-
tions, radiosity algorithms for global illumination
problems in computer graphics also benefit from
N -body methods.

In the absence of a closed-form solution be-
yond 3 bodies, N -body problems require a nu-
merical approach. The direct simulation of the all-
pairs interaction results in a computational com-
plexity of order N2, which becomes too expen-
sive to compute for large N . Nevertheless, the
simplicity of direct integration admits ease of
use of hardware accelerators leading to a promi-
nent branch of research in this area. Beyond this
approach, many notable algorithmic inventions
bear on fast computation of N -body interactions.
Among them, multipole-based methods are gain-
ing traction as ideally placed for the heteroge-
neous, many-core hardware environment emerg-

ing beyond the petascale computing era. As we
show below, fast algorithms such as treecodes
and the fast multipole method are characterized
by a high computational intensity, as measured
using the roofline model. This reflects on their
excellent performance on GPU hardware.

History of direct N-body simulation &
special-purpose machines
Numerical simulation of many-body dynamics
on digital computers began in the early 60’s
in two distinct fields of physics: astrophysics
and molecular dynamics. These first simula-
tions were able to compute only in the order of
a 100 particles. Since then, the N -body commu-
nity has done so much more than simply rely on
half a century’s worth of Moore’s law-governed
performance improvements. Considerable effort
has been dedicated to algorithmic innovations,
special-purpose hardware, and performance op-
timizations.

The N -body problem of astrophysics was such
a strong motivator in computational science, that
it drove the creation of a special-purpose super-
computer consisting of dedicated pipelines forN -
body simulations. GRAPE-1 was the first of its
kind and achieved a performance comparable to
the CRAY-XMP/1 at 1/10,000 the cost. The 4th

generation GRAPE-4 was the first computer to
reach 1 teraflop/s, but without being able to per-
form the LINPACK benchmark, it could not be so
recognized in the Top500 list. The GRAPE ma-
chines were dedicated to gravitational N -body
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simulations, but were later extended to perform
molecular dynamics computations and given the
name MDGRAPE. However, as the cost of fab-
ricating a micro-processor became exceedingly
high, it became difficult for a single research
group to produce its own processor. This sit-
uation was exacerbated by the arrival of GPUs,
which by providing the same capability at much
lower cost have emerged as a disruptive technol-
ogy for N -body simulations.

Gordon Bell prize record
N -body simulations have persistently been at
the forefront of high-performance computing in
terms of the flop/s that they deliver. Ground-
breaking N -body simulations have won the cov-
eted Gordon Bell prize of computing fourteen
times from 1992 to 2010. Some may argue that
it is not the achieved flop/s that counts, but the
science that they deliver. This is a valid assertion,
in the same sense that reaching exaflop/s in itself
should not be the purpose of high-performance
computing. The maximum flop/s for N -body
simulations is obtained with the pleasingly paral-
lelO(N2) all-pairs summation, whereas the maxi-
mum amount of science will often be delivered by
a fast algorithm. Many of the award-winning N -
body simulations have used hierarchical N -body
algorithms, discussed next, and not the all-pairs
summation.

Hierarchical N-body algorithms
Introduction to treecodes & FMM
The amount of computation required by a direct
N -body simulation is O(N2), which quickly be-
comes prohibitive for large N , even with special-
purpose machines. The treecode algorithm ? re-
duces the complexity to O(N logN) by cluster-
ing the remote particles into progressively larger
groups and using multipole expansions to ap-
proximate their influence on each target particle.
The fast multipole method ? , FMM, can achieve
O(N) by clustering not only the remote particles,
but also the nearby particles using local expan-
sions. We give a technical but brief overview of
the two algorithms in our chapter in the latest
GPU Gems volume ? . Both treecodes and FMM
use tree data structures to cluster particles into a
hierarchy of cells. Historically, however, the two
methods have followed separate paths of evolu-
tion, and have adopted different practices to meet
the demands of their communities of users and
their applications.

Treecodes have been popular predominantly in
the astrophysics community, where the particle
distribution is always highly non-uniform. Thus,
the treecode evolved as an inherently adaptive al-
gorithm; on the other hand, the FMM commu-
nity viewed adaptivity as an additional feature.
FMMs have not necessarily focused on a specific
application, and practitioners were often aiming
at higher accuracy than in the case of treecodes.
Typically, the series expansion truncation level
can be p = 10−15, with for example p = 10 giving
an accuracy of 4 significant digits in the poten-
tial for the Laplace kernel. As greater accuracy
is expressed by a higher truncation level for the
series, a variety of fast translation methods have
been developed for FMM (based on spherical and
plane wave expansions) that can achieve higher
accuracy at reduced cost (e.g., p4 rather than p6).
Most treecodes, in contrast, use simple Taylor se-
ries of low order in Cartesian coordinates; typi-
cally, p = 3 is used in practice. Treecodes also use
the ratio between the size of cells b and the dis-
tance l between them to construct the interaction
list. This is known as the multipole acceptance
criterion (MAC), θ = b/l, and it is used to deter-
mine if a cell should be evaluated or subdivided
further; a smaller value will increase the accuracy
of the approximation. In contrast, FMMs use par-
ent, child, and neighbor relationships to construct
the interaction list. These differences between
treecodes and FMM are mostly due to historical
reasons, rather than mathematical or algorithmic
ones. Hence, cross-fertilization of these two fields
is surely possible, and may produce an algorithm
that takes advantage of the best features of both
methods.

Hybrid treecode/FMM algorithm
One main difference between treecodes and FMM
is the fact that treecodes calculate cell-particle in-
teractions, while FMM calculates cell-cell interac-
tions for the far field. Warren & Salmon ? sug-
gested a technique to calculate cell-cell interac-
tions in treecodes, but very little emphasis was
placed on this technique in their paper. That
work was elucidated and refined by Dehnen ? ,
who introduced other techniques such as generic
tree traversals, mutual cell-cell interactions, and
error-controlled multipole acceptance criteria.

From the FMM side, Cheng et al. ? discussed
a mechanism to select between cell-particle and
cell-cell interactions that, according to the au-
thors, should always be faster than a pure
treecode or pure FMM. They also developed a
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more adaptive cell-cell interaction stencil that
considers the interaction of cells at different lev-
els in the tree; this is similar to what could be
obtained from using the MAC in FMMs, which
would naturally allow interaction between differ-
ent levels by relying on the ratio between size and
distance of cells.

The two hybrid ideas mentioned above—the
O(N) treecode by Dehnen, and the adaptive
FMM by Cheng et al.—were compared on the
same machine by Dehnen ? . The relative perfor-
mance depends on the required accuracy, where
the O(N) treecode outperforms the adaptive
FMM by an order of magnitude for 4 significant
digits of accuracy, while the FMM performs better
if the required accuracy is over 6 digits. Dehnen
attributes the inefficiency of his code at higher ac-
curacies to the fact that the order of expansions is
kept constant while accuracy control is effected
using the MAC. This suggests that adding the ca-
pability to handle variable order of expansions in
Dehnen’s framework could produce a very fast
treecode-FMM hybrid method.

We have recently developed a hybrid treecode-
FMM that has similar structure to Dehnen’s
method but has control over both the order of
expansion and MAC. Our kernels are based on
spherical harmonic expansions, but have the ca-
pability to switch to Cartesian expansions if the
required accuracy is lower than a certain thresh-
old; this is the key to achieving high performance
for low-accuracy calculations. In addition, we
have incorporated a key feature for achieving
high performance in today’s hardware: the ca-
pability to auto-tune the kernels on heterogenous
architectures; we will explain this feature in detail
below.

Use of GPUs for N-body simulation
Early application of GPUs
When CUDA 1.0 was released in 2007 and graph-
ics cards became programmable in C, there were
very few scientific applications that could take
advantage of this new programming paradigm.
N -body simulations were one of the first appli-
cations to extract the full compute capability of
GPUs. Hamada & Iitaka’s initial effort ? paral-
lelized the source particles among thread blocks,
which required a large reduction to be performed
at the end. Soon after that, Nyland et al. pub-
lished their chapter ? in the GPU Gems 3 book,
using the opposite approach: the target particles

were parallelized among thread blocks and no
reduction was necessary. Relying on the same
technique, Belleman et al. released in 2008 their
code named Kirin (after a Japanese beer) ? . In
2009, Gaburov et al. emulated the GRAPE-6 ma-
chine in their GPU code Sapporo (named after an-
other Japanese beer) ? , which they were able to
do thanks to the similarities between the GRAPE
and GPU architectures. The fact that special-
purpose GRAPEs were so similar to GPUs may
have given the N -body community an advan-
tage, since many techniques that were developed
a decade ago to tune the codes for GRAPE could
be used directly on GPUs.

Advantage of N-body algorithms on GPUs
Perhaps it is not a coincidence that current GPUs
turn out to have similarities to the GRAPE hard-
ware. Computation did not suddenly become
cheap, and communication did not suddenly be-
come comparatively more expensive. The trend
has always been there, and data-parallel architec-
tures like GRAPE had been performing much bet-
ter than serial processors all along. It was only a
matter of time until mass-produced data-parallel
processors appeared and took over certain ap-
plication areas. In retrospect, the late 90’s and
early 2000’s were peculiar times in the history
of high-performance computing, when even the
most data-parallel algorithms were being com-
puted on serial processors. Note that we refer
to fine-grained parallelism, and not the coarse-
gained parallelism that was properly handled in
parallel during this era with MPI.

We quantify the advantage of N -body algo-
rithms on GPUs via the roofline model ? . This
model offers a useful metric for predicting the
performance of algorithms on multicore archi-
tectures, with the number of floating-point op-
erations per byte of data transferred used to de-
termine whether the algorithm will be limited
by the floating-point performance of the proces-
sor, or by the memory bandwidth. The roofline
model for any algorithm is contingent on the
hardware used. We show the roofline on an
NVIDIA Tesla C2050 GPU in Figure ??, includ-
ing both the particle-particle and cell-cell interac-
tions of the FMM. The C2050 has a memory band-
width of 144 GB/s and a single-precision peak
performance of 1288 Gflop/s when special func-
tion units (SFU) and fused multiply-add (FMA)
operations are fully utilized. Without the use of
SFUs, the peak performance decreases to 1030.4
Gflop/s, and further down to 515.2 Gflop/s if the
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Figure 1: Roofline model of FMM kernels on an NVIDIA
C2050 GPU. The ‘SFU’ label is used to indicate the use of
special function units and ‘FMA’ indicates the use of fused
multiply-add instructions. The order of multipole expansions
was set to p = 15.

FMA is not applicable. Fortunately, N -body ker-
nels have many adjacent multiply-add operations
that can be fused.

As seen on Figure ??, the particle-particle inter-
action is pleasingly parallel, with the operational
intensity reaching 160 and well under the flat part
of the roofline. The operational intensity of the
cell-cell interaction is not as high, but it is still
much higher than most algorithms. Figure ?? in-
cludes a sparse matrix-vector multiplication (la-
belled ‘SpMV’), a multigrid method with a seven-
point stencil (‘Stencil’), and a 3D fast Fourier
transform (‘3D FFT’) under the same roofline ? . In
summary, the roofline model distinctly quantifies
the high operational intensity of fast N -body al-
gorithms, and reveals their unmistakable advan-
tage on many-core architectures.

Domain decomposition in fast N -body meth-
ods
Multi-GPU implementations are indispensable
for solving large-scaleN -body problems, and tra-
ditional MPI-based parallelization must be com-
bined with the GPU kernels in order to achieve
this. The key to successfully parallelizing fast
N -body algorithms on distributed memory archi-
tectures is the partitioning and communication
of the tree structure among individual processes.
Salmon & Warren ? ? made a significant contribu-
tion to this area by introducing techniques such
as orthogonal recursive bisection (ORB), the local
essential tree (LET), and N -D hypercube commu-
nication. Dubinski ? summarizes their efforts in a

concise and clear manner. A recent improvement
in this area is the balancing of linear octrees by
Sundar et al. ? , a technique to repartition the do-
main so that the per-processor partitions are bet-
ter aligned with cell boundaries at coarser levels
of the octree. This was a key technology behind
the 2010 Gordon Bell prize-winning paper ? .

Many-GPU calculations with FMM
Biomolecular electrostatics
We demonstrated the application of the FMM al-
gorithm in a multi-GPU system for biological ap-
plications in Yokota et al. ? The FMM was used
to accelerate a boundary element method solu-
tion of the continuum electrostatic model, a pop-
ular model for calculating electrostatic interac-
tions between biological molecules in solution.
Through guest access to the DEGIMA cluster at
Nagasaki University (which holds the #3 spot in
the Green500 list), we were able to test the paral-
lel FMM on hundreds of GPUs. The largest cal-
culation solved a system of over a billion bound-
ary unknowns for more than 20 million atoms, re-
quiring one minute of run time on 512 GPUs. This
work demonstrates that the FMM on GPU could
enable routine calculations that were unfeasi-
ble before, for example, for analyses of protein-
protein interactions in vital biological processes.

Fluid turbulence simulations
Recently, we applied our periodic FMM algo-
rithm to the simulation of homogeneous turbu-
lent flow in a cube, demonstrating scalable com-
putations with many GPUs. These calculations
were carried out in the TSUBAME 2.0 system,
thanks to guest access provided by the Grand
Challenge Program of TSUBAME. A total of 2048
NVIDIA M2050 GPUs were used, correspond-
ing to half of the complete system, to achieve
a sustained performance of 0.5 petaflop/s. The
peak performance of the complete system is 2.4
petaflop/s, thus we achieved excellent usage of
the computational resource in an application.

The preferred method for the simulation of
homogeneous isotropic turbulence in a peri-
odic cube has always been the pseudo-spectral
method. We compared an FMM-based vor-
tex method with an FFT-based pseudo-spectral
method for turbulence at Reλ ≈ 500 using 20483

grid points, confirming that relevant statistics
quantitatively match. The parallel scalability of
the FMM algorithm is excellent, obtaining 72%
parallel efficiency in a weak scaling test up to
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Figure 2: Weak scaling test with our FMM code on many
GPUs. The parallel efficiency with 2048 GPUs is 72%.

2048 GPUs. With this recent work, we show that
the scalability of this algorithm starts to become
an advantage over FFT-based methods beyond
2000 parallel MPI processes.

The results of a weak scaling test with 4 mil-
lion particles per process is shown in Figure ??.
The label ‘Local evaluation’ corresponds to the
particle-particle kernel, while the ‘FMM evalua-
tion’ label corresponds to the sum of all the other
kernel evaluations. The MPI communication is
overlapped with the kernel evaluations, so in the
bar plot we show the actual time for communica-
tions, and the excess time required for the FMM
evaluation obtained by subtracting the MPI com-
munications time to the total evaluation time. In
this way, the total height of the bar correctly rep-
resents the total wall-clock time of the full over-
lapped calculation.

A new hybrid treecode-FMM with auto-
tuning
The purpose of auto-tuning
Like most algorithms, hierarchichal N -body
methods permit a wide variety of mathemati-
cal formulations and computational implementa-
tions, some of which are better suited for a partic-
ular architecture and not for others. Some of the
available choices are: use of Cartesian vs. spher-
ical expansions, rotation-based vs. plane wave-
based translations, cell-cell vs. cell-particle inter-

actions for the far field, and choice of order of ex-
pansion vs. MAC-based error optimization. For
each of these choices, the option that will be most
efficient depends on (i) the required accuracy, (ii)
the hardware and, unfortunately, (iii) the imple-
mentation/tuning of kernels. The hardware de-
pendence is particularly problematic when het-
erogeneous architectures come into the equation.
The reason is that the various algorithmic ker-
nels (e.g., cell-cell and cell-particle interaction)
achieve different levels of performance measured
in flop/s on different hardware. Thus, a well-
balanced FMM calculation on one type of hard-
ware might be unbalanced with the same param-
eters when moving to a different hardware. A
simple solution to this problem would be to time
all kernels on each hardware, and use this in-
formation to select the optimal combination dur-
ing runtime. For example, if the GPU can per-
form cell-particle interactions faster than cell-cell
interactions for a certain number of particles per
cell, our hybrid treecode-FMM will shift more to-
wards treecodes automatically.

Kernel pre-calculation
The key for auto-tuning in our hybrid fast N -
body method is the pre-calculation of the ker-
nels. All kernels are evaluated using artificial co-
ordinates, mass/charges, multipole coefficients,
and their execution time is measured. This infor-
mation is then used to select the optimum ker-
nel during the dual tree traversal (described be-
low), choosing between cell-cell, cell-particle, and
particle-particle interactions. Certain kernels can
achieve higher flop/s than others, which the ini-
tial timings will reflect, so that the selection of
kernels will be optimized for the architecture au-
tomatically. Therefore, any manual parameter
tuning associated with hybridizing treecodes and
FMMs is rendered unnecessary.

Dual tree traversal
Auto-tuning of a treecode-FMM hybrid method
by dynamically selecting kernels during runtime
requires a generic and flexible O(N) algorithm
for traversing the tree. We now describe such
a generic tree traversal algorithm, illustrated in
Figure ??. This algorithm can be viewed as a
dual tree traversal for the target tree and source
tree, which results in O(N) complexity. In most
cases the targets and sources are identical, but the
present method can also handle cases where they
are not.
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The dual tree traversal uses a typical “last in,
first out” stack data structure that holds pairs
of cells: one target cell and one source cell. As
shown on the left panel of Figure ??, once the tree
is constructed, the pair of root cells is pushed into
an empty stack. After this initial step, the follow-
ing iterative procedure is applied—as illustrated
on the right side of Figure ??. First, a pair of
cells is popped from the stack, and the larger of
the two cells is subdivided. Always splitting the
larger of the two cells guarantees that the pairs
in the stack consist of cells of somewhat similar
size, which is a necessary condition for achieving
O(N). Let us assume, without loss of general-
ity, that the source cell was subdivided (as shown
in the Figure). Next, its offspring are matched
with the target cell to form new pairs. If a match-
ing set is composed of leaf cells (at the termi-
nal level of the tree), a direct summation is per-
formed between all particles in the cells. If not,
the multipole acceptance criterion is used to ex-
amine each of the newly created pairs of cells. If
the cells in a new pair are far/small enough, the
interaction between the two cells is immediately
calculated. The type of interaction—cell-cell vs.
cell-particle, rotation-based vs. plane wave-based
translation—is then chosen to optimize the per-
formance. If the cells are too close/large, then the
pair of cells is pushed to the top of the stack. This
procedure then starts again and is repeated until
the stack is empty.

The procedure described is a simple but highly
adaptive and flexible way of performing anO(N)
tree traversal. Interestingly, traditional FMMs do
not rely on such algorithms; they construct in-
stead a rigid interaction list for every target cell
using parent, child, and neighbor relationships.
This in turn requires the kinship in the tree to be
directly associated to the geometrical proximity
of the cells, i.e., all cells must be perfect cubes.
In contrast, the dual tree traversal can be applied
to adaptive k-d trees with rectangular cells, since
the proximity of cells is handled by the MAC,
and is unrelated to the tree structure. In other
words, the dual tree traversal provides a simple
bookkeeping strategy for constructing a MAC-
based interaction stencil that is mutually exclu-
sive at each level, by letting the target cells inherit
a unique stack of source cells from their parents.

Results with the auto-tuning hybrid
treecode/FMM method
The hardware used for these experiments was:
Intel Xeon X5650 2.67GHz CPU, and NVIDIA
GeForce GTX590 GPU. In most cases, particles
are randomly distributed in a cube of size [−1, 1]3
with the number of particles in the range N =
104 − 106 for the CPU runs, and N = 105 − 107

for the GPU runs. The calculations were per-
formed for the Laplace kernel potential and force.
Treecode, FMM, and hybrid method all use the
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treecode, FMM and hybrid method, with particles randomly placed in a cube; (B) FMM and hybrid method with different values
of Ncrit; (C) particles randomly placed on a spherical shell.

same adaptive tree structure, dual tree traver-
sals, and MAC-based interaction lists. We define
the MAC as θ = (rt + rs)/R, where rt and rs
are the radius of the target cell and source cell,
respectively, and R is the distance between the
cell centers. We set θ = 0.5, which is equiva-
lent to a typical FMM with a 3 × 3 × 3 neighbor
list. The only difference between treecode, FMM,
and hybrid method is that the treecode always
performs cell-particle interactions, and the FMM
always performs cell-cell interactions, while the
hybrid can choose between cell-cell, cell-particle,
and particle-particle interactions. All methods in-
cluding the treecode use spherical harmonic ex-
pansions, and auto-tuning was not applied for
the selection between different fast translation
schemes at this time. Auto-tuning was only used
to optimize the selection between, cell-cell, cell-
particle, and particle-particle interactions in the
hybrid method.

The timings on a single CPU core for treecode,
FMM, and hybrid method are shown in Figure
??(A). The order of expansions is p = 5 for the
treecode and p = 8 for the FMM, which yields
an accuracy of 4 significant digits for the force.
The results indicate that the hybrid method is al-
ways favoring cell-cell interactions and does not
provide a visible advantage over the pure FMM.
This seems to contradict previous works argu-
ing that a mechanism to choose between cell-
cell and cell-particle interactions should be op-
timal ? . But since the treecode is implemented
here using spherical expansions, the performance
at low accuracy may be suboptimal compared to
highly tuned Cartesian treecodes. Thus, we con-
clude that a hybrid method that is faster than
pure FMM may have to include more flexibility
than just the dynamic choice of the type of inter-
actions.

In treecodes and FMMs, the maximum number
of particles per cell Ncrit is set (by the user) such
that the loads of near-field evaluation and far-
field evaluation are balanced. Setting this num-
ber to be too small will result in a very deep tree
structure with a disproportionately large amount
of far-field and too few near-field evaluations.
Conversely, if Ncrit is set to be too large, the re-
sulting tree structure will be too shallow and a
large amount of time will be spent in the near-
field evaluation. The advantage of the hybrid
method becomes clear when we compare for two
different values of Ncrit in Figure ??(B). The first
two legend entries are identical to those in Fig-
ure ??(A), where a well-chosen value Ncrit = 200
was used. The latter two entries are the same
tests, but with Ncrit = 50. In this case, the FMM
suffers from load imbalance between the near-
field and far-field evaluations, while the hybrid
method does not because it can choose to perform
particle-particle interactions even if the cell is not
at the leaf-level.

To investigate the effect of adaptive distribu-
tions of particles, we performed additional tests
with a random distribution of particles placed on
a spherical shell. Figure ??(C) shows the calcula-
tion time against the number of particles for this
case. The maximum number of particles per cell
was set to Ncrit = 20, a value that was as close to
the optimum as we could get by manual adjust-
ment, yet the hybrid method produced a better
result by automatically fine-tuning the balance
between the particle-particle and cell-cell inter-
actions throughout the adaptive tree. We moni-
tored the number of cell pairs which performed
particle-particle, cell-particle, and cell-cell inter-
actions. At N = 105, the treecode executed 5
times more cell-particle interactions than particle-
particle interactions, the FMM executed 3 times
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more cell-cell interactions than particle-particle
interactions, and the hybrid executed two times
more particle-particle interactions than cell-cell
interactions. In conclusion, the cell-particle in-
teraction never seems to give an advantage on
CPUs, which means that the FMM is always
faster than the treecode on CPUs for any given
accuracy. The common belief that treecodes are
faster for low accuracy must stem from the fact
that typical implementations use Cartesian ex-
pansions for the treecode and spherical expan-
sions for the FMM, and thus has nothing to do
with the choice of cell-particle vs. cell-cell opera-
tions.

In similar experiments on GPU, all interactions
are computed on the device (in single-precision)
but tree construction is done on the CPU. Un-
like the CPU case, where the treecode was signif-
icantly slower, the run times of the three method
were very similar on GPU, and an equivalent plot
to Figure ??(C) is uninteresting. Figure ?? shows
the breakdown of the calculation time on GPU
for N = 107, revealing that a large proportion of
the time is being spent on particle-particle inter-
actions. On GPU, it is relatively more costly to
perform cell-cell interactions and shifting more
work to the particle-particle interactions results
in shorter runtime. Furthermore, auto-tuning on
GPUs faces the following problem: the calcula-
tion time is not proportional to the problem size
because larger problems are able to utilize more
threads, and thus run more efficiently on GPUs.
This makes it very difficult to predict the execu-
tion time of each kernel by running a small test in
the beginning. Hence, the optimization between
cell-cell, cell-particle, and particle-particle kernels
may not function properly.

In order to confirm that the auto-tuning capa-
bility is functioning on GPUs, we performed, as
before, a test with different values of the maxi-
mum number of particles per cell, Ncrit. As seen
in Figure ??(A), for a choice of Ncrit = 100 the
FMM experiences an imbalance between particle-
particle and cell-cell interactions. In contrast,
the hybrid method optimizes the balance be-
tween particle-particle and cell-cell interactions
and achieves optimum performance for allN . We
conclude that the auto-tuning mechanism is func-
tioning on GPUs.

The accuracy dependence of our hybrid
treecode-FMM is shown in Figure ??(B). The cal-
culation conditions are identical to the previ-
ous calculations except the order of expansion is

tree fmm hybrid0
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CudaMemcpy
Tree construction

Figure 5: Breakdown of the run time on GPU for the three
methods. N = 107 particles randomly placed in a cube,
Laplace kernel potential+force, p = 5 for the treecode and
p = 8 for FMM and hybrid.

changed from p = 5 to p = 15. The p-dependence
is rather small considering the fact that we are us-
ing a O(p4) cell-cell interaction kernel. One rea-
son for this is that at the considered range of p
a smaller constant in front of the p4 term allows
the lower order terms to dominate. Another rea-
son is the GPU being able to process the kernels
with larger p more efficiently, because they have
a higher flop/byte rate. Our code is able to calcu-
late the Laplace potential and force for N = 107

particles with p = 15 in approximately 23 seconds
on a single GPU.

W ith the current hybridization of
treecode and FMM, combined
with auto-tuning capabilities on
heterogeneous architectures, the

flexibility of fast N -body methods has been
greatly enhanced. The fact that the current
method can automatically choose the optimal in-
teractions, on a given heterogeneous system, al-
leviates the user from two major burdens. Firstly,
the user does not need to decide among treecode
or FMM, predicting which algorithm will be
faster for a particular application given the accu-
racy requirements—they are now one algorithm.
Secondly, there is no need to tweak parameters,
e.g., particles per cell, in order to achieve optimal
performance on GPUs—the same code can run on
any machine without changing anything. This
feature is a requirement to developing a black-
box software library for fast N -body algorithms
on heterogeneous systems, which is our goal.
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Figure 6: Timings on GPU for Laplace kernel (potential+force) with particles randomly placed in a cube—(A) FMM and hybrid
method for different values of Ncrit, p = 8; (B) hybrid method using different orders of expansion p.

Our codes are available for unrestricted use,
under the MIT license; to obtain the codes
and run the tests in this paper, the reader
may follow instructions in the website at
www.bu.edu/exafmm.
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