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Comparing vortex methods and finite difference methods in a
homogeneous shear flow

R. Yokota∗† and S. Obi

Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama, 223-8522,
Japan

SUMMARY

The vortex method is applied to the calculation of a homogeneous shear turbulence, and compared
with a finite difference code using identical calculation conditions. The core spreading method with
spatial adaptation is selected as the viscous diffusion scheme of the vortex method. The shear rate
is chosen so that it matches the maximum value observed in a fully developed channel flow. The
isosurface, anisotropy tensors, and joint probability density functions reflect the ability of the present
vortex method to quantitatively reproduce the anisotropic nature of strongly sheared turbulence, both
instantaneously and statistically. Copyright c© 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Recent interest in vortex method studies has been focused on the development of essential
tools, such as fast N-body solvers [1], high order convergent diffusion schemes [2] [3], and
rigorous three-dimensional near wall treatments [4]. The maturation of each of these tools has
allowed the vortex method to overcome most of its conventional weaknesses, thus making it a
reliable alternative to finite difference methods for flows with a compact domain of vorticity.
However, the lack of validation in canonical turbulent flows has left the overall reliability of
vortex methods in question. The independent sources of errors must be investigated in simple
flows, despite the fact that such flows are not always suitable for showing the advantage of
vortex methods.

Like all numerical methods, vortex methods have multiple sources of numerical errors. First,
even if a high order convergent diffusion scheme is used, the diffusion term calculation still
contains a finite amount of error. The quantity of this error depends on the spatial resolution,
the overlap ratio of vortex elements [5], and the frequency of remeshing [6], and cannot be
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2 R. YOKOTA AND S. OBI

neglected. Another source of error is the stretching term calculation, which is highly sensitive
to the spatial and temporal resolution due to its non-linearity [7]. Also, for the regions with
high shear, the stretching becomes intense and the flow field becomes highly anisotropic. This
may impose additional constraints on the spatial and temporal resolution [6]. It is important to
determine the relation between the shear-rate and the constraints on resolution in the absence
of a solid boundary. Finally, for regions near a solid boundary, a high spatial resolution in
the direction normal to the wall is required. This imposes another restriction on the spatial
resolution of vortex elements. It is possible to find an optimum value for the spatial resolution,
temporal resolution, remeshing frequency, element anisotropy, and spatial variation of the
element size if, and only if, the sources of these errors are considered independently.

There have been a few attempts to systematically investigate the independent sources of the
errors mentioned above. The two-dimensional isotropic turbulence was calculated by Totsuka
& Obi [8] using a vortex method and pseudo-spectral method. The rate of energy decay had
good agreement with the pseudo-spectral method when spatial adaptation was implemented
for their vortex method calculation. Following that, the three-dimensional isotropic turbulence
was calculated by Yokota et al. [9] using the vortex method and pseudo-spectral method. The
kinetic energy decay was in good accordance with that of the pseudo-spectral method when the
spatial resolution was sufficient and spatial adaptation [5] was used. In this case, the energy
spectrum matched that of the pseudo-spectral method up to the dissipation wavenumber.
A related effort was made by Cottet et al. [10] by comparing the vortex-in-cell method
to a pseudo-spectral method for the homogeneous isotropic turbulence. Their results also
showed good quantitative agreement between the vortex method and pseudo-spectral method
calculation, for both the decay of kinetic energy and the energy spectrum. Thus, it is fair to
say that the diffusion and stretching calculation have been validated so far.

In the present study, the homogeneous shear flow is considered. A novel technique for
calculating the FMM under shear periodic boundary conditions is presented. Using this
technique, the vortex method calculation of the homogeneous shear flow is performed and
compared with a finite difference method. The focus of this study is on the ability of vortex
methods to reproduce the anisotropy of turbulence, i.e. the ability of spherical vortex blobs
to reproduce streaky global vortex structures. We select a shear-rate that is comparable to
the maximum shear-rate observed at y+ ≈ 10 in near wall flows [11]. Another objective is
the assessment of the production of turbulence in vortex methods, i.e. the validation of the
vortex stretching term calculation for strongly strained flows. The present calculation of the
homogeneous shear flow may be considered as an intermediate validation step, which will fill
the gap between the calculation of isotropic turbulence and wall bounded flows.

2. NUMERICAL METHOD

2.1. Vortex methods for homogeneous shear flows

We consider an incompressible, turbulent shear flow subject to a mean shear. In the present
calculation, the instantaneous velocity and vorticity are decomposed into the time-averaged
component and the fluctuating component.

ũi = Ui + ui, (1)
ω̃i = Ωi + ωi. (2)
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VORTEX METHOD CALCULATION OF HOMOGENEOUS SHEAR FLOWS 3

Without loss of generality, we may assume that the mean velocity is unidirectional in the
downstream direction x1 and has a constant shear-rate S in the vertical direction x3.

Ui = Sx3δi1. (3)

The corresponding transport equation for the fluctuating component of vorticity can be written
as

Dωi

Dt
= ωj

∂ui

∂xj
+ S

∂ui

∂x2
+ Sω3δi1 + ν

∂2ωi

∂xj∂xj
, (4)

where u is also the fluctuating component of velocity. The second and third term on the right
hand side of Eq. (4) are the additional stretching terms, which reflect the effect of mean shear.

In the present vortex method, Eq. (4) is discretized by expressing the vorticity field as a
superposition of Gaussian distributions,

ζσ =
1

(2πσ2)3/2
exp

(
−|x|2

2σ2

)
, (5)

where σ is the core radius of the vortex element, and |x| is the distance between two vortex
elements. Thus, the vorticity vector at point p is calculated by summing the influence of all
particles q, each having a Gaussian distribution,

ωp
i =

N∑
q=1

ζσαq
i , (6)

where α is the strength of the vortex element.
The velocity is calculated as the sum of the Biot-Savart velocity and the mean shear,

up
i =

N∑
q=1

εijkαq
jgσ

∂G

∂xq
k

+ Sxp
3δi1, (7)

where xi = xp
i − xq

i is the distance vector and gσ is the cutoff function, which has the form

gσ = erf
(
|x|
2σ

)
−

√
2
π

|x|
σ

exp
(
−|x|2

2σ2

)
. (8)

G is the free space Green’s function of the Laplace equation, and its dipole and quadrupole
are

∂G

∂xi
= − xi

4π|x|3
, (9)

∂2G

∂xi∂xj
= − 1

4π

(
δij

|x|3
− 3xixj

|x|5

)
. (10)

Similarly, the vorticity stretching terms of Eq. (4) can be written as

Dαp
i

Dt
=

N∑
q=1

εijkαp
l α

q
j

∂

∂xp
l

(
gσ

∂G

∂xq
k

)
+ Sεijkαq

j

∂

∂xp
2

(
gσ

∂G

∂xq
k

)
+ Sαp

3δi1. (11)

The diffusion term of Eq. (4) is solved by the core spreading method with spatial adaptation
[9].
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Figure 1. Schematic of element shifting in shear periodic FMM

For the calculation of Eq. (7) and Eq. (11), the shear periodic boundary condition is enforced
by using a shear periodic FMM mentioned in section 2.2. Upon calculating the convection,
the shear periodic boundary condition requires the elements that move out of the domain
in the vertical direction x3 to consider the shear when re-entering from the other side. For
example, the elements that move out of the domain from (x1, x2, π) re-enter the domain from
(x1−2πSt, x2,−π), where S is the shear-rate and t is time. The elements that move out of the
domain in other directions re-enter from the opposite side by adding or subtracting 2π from
the coordinates.

2.2. Shear periodic fast multipole method

The fast multipole method (FMM) has been extended to periodic boundary conditions by
Lambert et al. [12], where the boundary condition is approximated by using a finite number
of periodic images. However, to the authors’ knowledge, there have been no extensions of the
FMM to shear periodic boundary conditions. We introduce a novel technique to extend the
FMM to shear periodic boundary conditions.

The flow of calculation of the shear periodic FMM is analogous to that of the periodic FMM.
One major difference between the periodic FMM and shear periodic FMM is the treatment
of periodic images in the sheared direction. In the case of a non-sheared periodic FMM, the
multipole expansions for the periodic image cells are identical to that of the original cell. In
other words, the periodicity of the field allows one to use the multipole expansions of the
original domain to consider the contribution of the periodic images. However, for the shear
periodic FMM, the multipole expansions of the periodic image cells in the sheared direction
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Figure 2. Flow of calculation in shear periodic FMM

are not identical to those of the original cell. We shall refer to these cells as “shear periodic
image cells”.

A schematic of the shear periodic image cells is shown in Fig. 1. The solid lines represent the
boundary of the original domain [−π, π]. The dashed lines represent the boundary of the shear
periodic image cells. Figure (a) describes how the elements inside the shear periodic image
cells are shifted. Figure (b) shows how the multipole expansions are calculated on an aligned
cell structure. Thus, the elements that fall outside of the domain when shifted, are moved to
the other side to fill the cell structure. It is necessary to calculate the multipole expansion for
2×2k periodic image cells in the x3 direction, each with a different shifting distance. The Nth
shear periodic image cell in the ±x3 direction is shifted by ±2πNSt.

A schematic of the flow of calculation is shown in Fig. 2. The heavy lines represent the
boundary of the original domain [−π, π]. In step 1, the original calculation domain is repeatedly
divided into smaller cells until the optimum level is reached. In step 2, the multipole expansion
is calculated at the center of each cell. In steps 3 and 4, the upward sweep is performed to
shift the multipole expansion to the center of the larger cells. Steps 1 through 4 are repeated
for all shear periodic image cells.

In step 5, the cells are further grouped and the multipole expansions are shifted to the
center of larger cells. The cells may be grouped further to account for a larger number of
periodic images. In step 6, the multipole expansions are translated to local expansions for
non-neighboring cells. For example, the local expansions of the dark gray cell are calculated
from the multipole expansions of the light gray cells. The colored boxes are a representation of
one interaction list. During the downward sweep in steps 7, 8, and 9, the cells are repeatedly
divided, and the local expansions are translated to the center of these cells. At the same time,
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Figure 3. Relative error of the Biot-Savart calculation for a different number of shear periodic image
cells

the multipole expansions of the newly non-neighboring cells (shown in light gray) are also
translated to the divided cells (shown in dark gray). In step 10, the effect of the neighboring
cells at the bottom level is calculated by a direct interaction of the particles. If the neighboring
cell happens to be a member of the shear periodic image cell, the coordinates of the elements
in the cell are accordingly shifted.

We will now examine how the number of periodic image cells and the order of the multipole
expansion affect the accuracy. N = 100 particles with random coordinates and random strength
are placed within a [−π, π]3 domain and calculated for 2k×2k×2k periodic images . The result
of the direct calculation for k = 8 is used as a reference value. The relative velocity difference
from this reference value is shown in Fig. 3, where p is the order of multipole expansions.
The relative velocity difference is calculated by taking the L2 norm of the difference from
the reference value. The relative velocity difference decreases as k is increased until it reaches
the accuracy limit of the FMM for the given order of multipole expansions. The results are
identical to that of the periodic FMM in Yokota et al. [9], which is expected since shifting
elements to account for the shear should not introduce additional error to the periodic FMM.
For the homogeneous shear flow calculations we select p = 10 and k = 4, which have an L2

error that is less than 10−3.
The breakdown of the calculation time of the shear periodic FMM is shown in Fig. 4.

Fig. 4(a) and Fig. 4(b) are the results for k = 4 and k = 5, respectively. N is the number
of particles. P2M, M2L, direct, and others are the cumulative CPU-time of the particle to
multipole translation, the multipole to local translation, direct summation, and everything
else. The order of the multipole expansion is set to p = 10. For a standard periodic FMM the
multipole to local translation and direct summation will take up most of the calculation time.
However, since the shear periodic FMM requires the particle to multipole translation to be
performed for all shear periodic image cells, its percentage rises to 25% and 30% of the total
for k = 4 and k = 5, respectively.
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Figure 4. Breakdown of CPU-time for Different k

In summary, the present shear periodic FMM adds no further errors to the non-shear periodic
FMM, and is able to calculate at this accuracy with only a 30% increase in CPU-time.

2.3. Finite difference method

In our present calculations, the finite difference method with shear periodic boundary
conditions was used as a reference [13]. When we consider the same mean shear as in Eq.(3),
the Navier-Stokes equation for the fluctuating component of velocity becomes

∂ui

∂t
+ uj

∂ui

∂xj
+ Sx3

∂ui

∂x1
+ Su3δi1 = −1

ρ

∂p

∂xi
+ ν

∂2ui

∂xj∂xj
. (12)

This equation was solved on a staggered grid using the SMAC method. The fourth-order
central difference method was used for the spatial discretization, and the third-order low
storage Runge-Kutta method [15] was used for the temporal discretization.

3. HOMOGENEOUS SHEAR FLOW

The homogeneous shear flow was calculated by the vortex method and the finite difference
method, using N = 643, 1283 points. The initial Reynolds number based on Taylor’s micro
scale was Reλ = 25. The calculation domain was [−π, π]3 for both methods.

3.1. Initial condition

The initial conditions of the homogeneous shear flow calculation (for both the vortex method
and the finite difference method) were generated from an isotropic turbulence calculation using
the finite difference method. First, the initial condition for the isotropic turbulence calculation
was generated in Fourier space as a solenoidal isotropic velocity field with random phases
and a prescribed energy spectrum [14]. After transforming the velocity to physical space, the
isotropic turbulence calculation was performed using the finite difference method until the
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skewness of the velocity derivative reached a steady-state value of −0.5. The finite difference
calculation used this initial condition directly.

The initial condition for the vortex method was generated as follows. First, the vortex
elements were placed on the nodes of the finite difference method grid. Then, the vorticity
at the grid points was calculated from the initial velocity field using a fourth order central
difference method. Following that, the strength of the vortex elements was calculated from the
vorticity by using a radial basis function interpolation [5]. The BICGSTAB method without
preconditioning was used to solve the system of equations for the RBF interpolation. Instead
of performing an actual matrix-vector multiplication, Eq. (6) is solved during the BICGSTAB
iteration. Upon solving Eq. (6), the FMM neighbor list was used to determine the interacting
particles. The particles outside the FMM neighbor region were neglected, and the FMM
neighbor region was approximately 10σ. The core radius of the vortex elements were set
to 2π/N so that the overlap ratio became σ/dx = 1. The homogeneity of the present flow
field permits the use of a rather small overlap ratio, which allows us to achieve a high spatial
resolution using minimum calculation effort.

3.2. Test for S = 0

In order to verify the codes used in the present calculation, the isotropic turbulence calculation
was performed using the following four codes; the pseudo-spectral method code used in the
isotropic turbulence calculation by Yokota et al. [9] (PSM), the vortex method code used in
the isotropic turbulence calculation (VM1), the present finite difference method code for the
homogeneous shear flow with S = 0 (FDM), and the present vortex method code for the
homogeneous shear flow with S = 0 (VM2). The initial Reynolds number was Reλ = 25 and
the number of calculation points was N = 643. The time increment was ∆t = 0.005 for all
calculations, which corresponds to t = 0.25τ , where τ is the Kolmogorov time scale.

The decay of kinetic energy for the four cases is shown in Fig. 5(a). The results of the two
vortex method calculations are almost identical. The difference between the pseudo-spectral
method and finite difference method is also very small. The energy spectrum at t/T = 10 is
shown in Fig. 5(b), where T is the eddy turnover time T = 0.25. There is a visible difference
between the results of the vortex methods and the grid-based methods. This is considered to
be the result of the cumulative errors in the vortex method calculations. However, considering
the fact that the Kolmogorov wavenumber is kη ≈ 20 for this flow, the discrepancies at the
higher wavenumbers do not pose a serious problem to the overall kinetic energy balance.

In summary, the pseudo-spectral method, finite difference method, and vortex method
produce similar results for the decaying isotropic turbulence. The match in the kinetic energy
decay rate indicates the correctness of the present calculation codes.

3.3. Anisotropic structures

One of the main objectives of the present study is to ascertain the magnitude of anisotropy,
which the vortex blob method can handle. Lee et al. [11] showed in their pseudo-spectral
calculation of the homogeneous shear flow, that a high shear-rate produces streaky structures
similar to those observed in the near-wall region of the channel flow DNS by Kim et al. [16].
They also investigated the suitable turbulence length scale that can be used to construct
a dimensionless and universal shear-rate parameter, which can be used as an indicator of
streaky structures for both the homogeneous shear flow and high shear regions near the wall.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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(a) t∗ = 0 (b) t∗ = 1 (c) t∗ = 2

Figure 6. Isosurface of II (Finite Difference Method)

(a) t∗ = 0 (b) t∗ = 1 (c) t∗ = 2

Figure 7. Isosurface of II (Vortex Method)

This dimensionless shear-rate parameter is defined as

S∗ ≡ 2SK

ε
(13)

where K = u2
i /2 is the turbulent kinetic energy and ε = νui,juj,i is the dissipation rate. Lee

et al. [11] applied this shear-rate parameter to the fully developed channel flow by Kim et al.
[16] and showed that the maximum is S∗ = 35 in the viscous sublayer, and decreases to about
one-sixth of the maximum in the logarithmic layer. In the present calculation the shear-rate
S = 18 is chosen so that the shear-rate parameter becomes S∗ ≈ 35.

We will first present the qualitative aspects of the present calculations. The isosurface of the
second invariant of the velocity gradient tensor II = ui,juj,i for the finite difference method
and vortex method are shown in Figs. 6 and 7, respectively. The time t∗ is normalized by the
shear-rate S. At t∗ = 0, the flow is isotropic and the structures have no directional preference.
At t∗ = 1, the vortices are strained and the structures begin to show a directional preference.
At t∗ = 2, many streaky structures can be observed. From these results, it has been confirmed
that the vortex method can reproduce the streaky structures in high shear flows very well.
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3.4. Anisotropy tensors

The anisotropy tensor of the Reynolds stress

bij =
uiuj

ukuk
− 1

3
δij . (14)

is a direct measure of the anisotropy of the velocity fluctuations, and is a more quantitative
measure of the ability to reproduce anisotropic turbulence. The normal components of the
Reynolds stress anisotropy tensor are shown in Fig. 8, while the non-normalized Reynolds
stresses are shown in Fig. 9. FDM(643), VM(643), FDM(1283), and VM(1283) are the finite
difference method using a N = 643 grid, the vortex method using N = 643 particles, the
finite difference method using a N = 1283 grid, and the vortex method using N = 1283

particles. Different markers represent the different normal components. The overall behavior
of the present vortex method is similar to that of the finite difference method. The results of the
two finite difference method calculations are indistinguishable. On the other hand, when the
spatial resolution of the vortex method is increased, the difference between the finite difference
method and vortex method decreases. This suggests that the discretization error of the finite
difference method at N = 643 is small enough to remain undetected, while the discretization
error of the vortex method at N = 643 is clearly observed. Although both methods converge to
the same results for larger N , the discretization error for a given N seems to be larger for vortex
methods, which is consistent with the observations in the isotropic turbulence calculations [9].

From these observations, it can be said that the present vortex method code can account
for strong anisotropy comparable to that in the viscous sublayer of a near wall flow if the
spatial resolution is sufficient. Though, the number of necessary vortex elements may be large
compared to grid-based methods. This is evident from the fact that the results of the finite
different method for two different spatial resolutions match, while the results of the vortex
method for two different spatial resolutions do not.

3.5. Reynolds shear stress

The probability density function (PDF) of the Reynolds shear stress u1u3 is shown for several
time steps in Fig. 10. The probability density for the product x = u1u3/〈u1u3〉 of two jointly
Gaussian distributions with zero mean is given by

Pu1u3(x) =
|r|

π
√

1 − r2
exp

(
r2x

1 − r2

)
K0

(∣∣∣∣ rx

1 − r2

∣∣∣∣) (15)

where r = 〈u1u3〉/σu1σu3 is the correlation coefficient and K0 is the zeroth order modified
Bessel function of the second kind [17]. The solid line corresponds to the PDF of (x −
〈x〉)/σx−〈x〉, while the dashed line represents the Gaussian joint PDF calculated from Eq. 15.
FDM and VM are the results of the finite difference method and vortex method both using
N = 1283 calculation points. The PDF of the solid line is slightly larger than that of the
dashed line at the tails. This is caused by the non-Gaussian distribution of the velocity, and
has been reported in previous calculations [18]. The results of the finite difference method and
vortex method seem, at first glance, quite similar. However, at t∗ = 4 the PDF of the vortex
method is close to the joint Gaussian fit, whereas the PDF of the finite difference method
remains non-Gaussian.

We have observed that the discretization error for a given number of calculation points seems
to be larger for vortex methods. The Gaussian basis function used in the present vortex method
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calculations is of second order. From the results of the present calculations, it is suggested that
fourth order basis functions [3] are necessary to compete with fourth order finite difference
methods in terms of the spatial discretization error. This is especially so if we consider the
fact that most finite difference methods used for the direct numerical simulation of turbulence
are fourth order or higher.

We will take a closer look at the correlation between u1 and u3 by examining the joint
PDF in Fig. 11. The isoprobability contours are logarithmically spaced, and are separated by
factors of 10. A strong negative correlation is observed in both the FDM and VM. The shapes
of the third and fourth contour lines from the center are slightly different, which is consistent
with the difference observed in the previous P (u1u3) plots. The skewness and flatness of u1u3

are SFDM = −4.87, FFDM = 26.3, and SV M = −4.92, FV M = 25.4 for the finite difference
method and vortex method, respectively.

In Fig. 12 the PDF of ω1, ω2 and ω3 at t∗ = 4 are shown. The dashed curve represents
the Gaussian distribution. The streamwise vorticity ω1 remains symmetric, but the spanwise
component ω2 and transverse component ω3 are skewed toward the positive direction.
Furthermore, for ω2 the negative side is steeper than the Gaussian distribution and the positive
side is flatter. The asymmetry of the PDF of ω2 reflects the generation of vorticity in the
positive direction due to the mean shear. ω3 matches the Gaussian distribution near the
origin, but deviates from the Gaussian at the tails. These characteristics are similar to the
observations made by Kida & Tanaka [19] in their pseudo-spectral method calculation. The
PDFs of vorticity shown in Fig. 12 show a close resemblance between the finite difference
method and vortex method.

From these observations we conclude that both the instantaneous and statistical features of
the anisotropy are accurately calculated in the present vortex method. Our argument that the
vortex method can reproduce globally anisotropic structures using locally isotropic elements
has been supplemented from a statistical viewpoint by confirming the reproducibility of the
global non-Gaussian turbulence using elements with local Gaussian smoothing.

3.6. Energy spectrum equation

The remaining objective of the present investigation is the quantitative assessment of the ability
of vortex methods to calculate the balance between production, transfer, and dissipation in
the homogeneous shear flow. Since the production was not present in the isotropic turbulence,
its quantitative assessment is of interest for the present homogeneous shear calculation.

The energy spectrum equation for the homogeneous shear flow can be written as

∂K

∂t
= Sk1

∂K

∂k3
− SE13︸ ︷︷ ︸

P

+ ιkkTik,i︸ ︷︷ ︸
T

− 2νk2K︸ ︷︷ ︸
ε

(16)

where Eij and Tij,k are the two point double and triple velocity correlation tensors in
wavenumber space, respectively [20]. K is the kinetic energy K ≡ 1

2Eii, S is the shear-rate
defined in Eq. (3), k is the wavenumber, and ν is the kinematic viscosity. Each term on the
right hand side of Eq. (16) is associated with an actual physical process. P represents the
production, T represents the transfer, and ε represents the dissipation of the kinetic energy.

The budget of the above mentioned energy spectrum equation at t∗ = 2 for the finite
difference method and vortex method is shown in Fig. 13. Although there are quantitative
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Figure 10. PDF of u1u3. Solid lines correspond to the PDF of (x−〈x〉)/σx−〈x〉. Dashed lines represent
the Gaussian joint PDF calculated from Eq. (15).
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Figure 11. Joint PDF of u1 and u3 at t∗ = 4

differences in the two plots, the overall tendency is very similar. First, the production has
a peak at lower wavenumbers and vanishes at higher wavenumbers. This corresponds to the
fact that the mean shear mainly influences the large structures of turbulence. Secondly, the
transfer term has a large negative value at lower wavenumbers and has a positive value at
higher wavenumbers. This reflects the fact that the energy drawn from the larger structures
is gradually cascaded down to the smaller structures. Furthermore, the dissipation term has
a negative peak at higher wavenumbers, although not too high for the present calculation
at Reλ = 25. Finally, the change rate of kinetic energy shows an energy surplus, which is
consistent with the fact that the total kinetic energy increases over time.

3.7. Production of enstrophy and strain

The turbulent dynamical quantities which have direct impacts on energy cascade and turbulent
energy dissipation are the strain production −SijSjkSki and enstrophy production ωiωjSij .
The strain production is a local self-amplification process, which contributes positively to the
transport equation of the total strain. The enstrophy production is associated with the vortex
stretching process, and acts as a source in the transport equation of enstrophy but acts as a sink
in the transport equation of the total strain. The correlation of these values is a direct measure
for evaluating the process of strain production, vortex stretching, and strain destruction.[21]

The joint PDFs of −SijSjkSki and ωiωjSij for t∗ = 0, t∗ = 2, and t∗ = 4 are shown in Fig. 14.
The initial condition of the present calculations is a homogeneous isotropic turbulence, and
both the strain production and enstrophy production are skewed heavily towards the positive
side at t∗ = 0. However, there is no particular correlation between the two at this point.
At t∗ = 2 the skewness of the individual PDFs decrease and the correlation between them
increase. At t∗ = 4 this tendency becomes even clearer. The results of the finite difference
method and vortex method a
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Figure 12. PDF of ω1, ω2 and ω3 at t∗ = 4. Solid lines represent the PDF of vorticity, while the dashed
lines represent the Gaussian distribution for the same domain.
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Figure 13. Budget of the Energy Spectrum Equation at t∗ = 2
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Figure 14. PDF of ω1, ω2 and ω3 at t∗ = 4. Solid lines represent the PDF of vorticity, while the dashed
lines represent the Gaussian distribution for the same domain.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls



VORTEX METHOD CALCULATION OF HOMOGENEOUS SHEAR FLOWS 19

4. CONCLUSIONS

The FMM has been extended to periodic boundary conditions with shear. Using this shear
periodic FMM, the core-spreading vortex method with spatial adaptation has been applied to
the calculation of a homogeneous shear turbulence, and compared with a finite difference code
under identical calculation conditions.

The asymptotic behavior of the error in the present shear periodic FMM is identical to
that of the periodic FMM without shear. The increase in CPU-time caused by the additional
calculation of the 16 × 16 × 16 shear periodic image cells is approximately 30% of the total
CPU-time of the shear periodic FMM.

The vortical structures observed in the isosurface plots of the second invariant of the velocity
derivative tensor were in good accordance between the two methods. The anisotropy of the
Reynolds stress shows that the present vortex method can quantitatively match the results
of the finite difference method if the spatial resolution is sufficient. Using isotropic vortex
blobs does not prevent the vortex method from accurately calculating anisotropic turbulence,
because the flow is, to some extent, locally isotropic.

The agreement between the finite difference method and vortex method for the probability
density functions shows that the vortex method reproduces the statistical aspects of the
strongly sheared turbulence, accurately. Furthermore, the budget of the energy spectrum
equation shows that the details of the energy transfer are also properly calculated in the
present vortex method.

From these observations, we conclude that the present vortex method is valid for solving
flows with a shear-rate parameter of S∗ ≈ 35, which is equal to the maximum value observed
in a fully developed channel flow. This allows us to rule out the possibility of any detrimental
effects caused by the mean shear, when validating the vortex method for near-wall flows in the
future.

In summary, the present comparison between finite difference methods and vortex methods
suggests that vortex methods can be used for the direct numerical simulation of highly sheared
turbulence. However, it has also been confirmed that the relative inefficiency of the spatial
discretization of vortex methods has a significant impact on the results of the simulation, and
the use of higher-order basis functions are recommended in future simulations.
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