
論文 / 著書情報
Article / Book Information

Title Accordion: An Efficient Gear-Shifting for a Power-Proportional
Distributed Data-Placement Method

Authors Hieu Hanh Le, Satoshi Hikida, Haruo Yokota

出典 / Citation IEICE Transactions on Information and Systems, Vol. E98-D, No. 5,
pp. 1013-1026

発行日 / Pub. date 2015, 5

URL http://search.ieice.org/

権利情報 / Copyright 本著作物の著作権は電子情報通信学会に帰属します。
 Copyright (c) 2015 Institute of Electronics, Information and
Communication Engineers.

Powered by T2R2 (Science Tokyo Research Repository)

http://search.ieice.org/
http://t2r2.star.titech.ac.jp/

IEICE TRANS. INF. & SYST., VOL.E98–D, NO.5 MAY 2015
1013

PAPER Special Section on Data Engineering and Information Management

Accordion: An Efficient Gear-Shifting for a Power-Proportional
Distributed Data-Placement Method∗∗

Hieu Hanh LE†∗a), Satoshi HIKIDA†, Nonmembers, and Haruo YOKOTA†, Member

SUMMARY Power-aware distributed file systems for efficient Big Data
processing are increasingly moving towards power-proportional designs.
However, current data placement methods for such systems have not given
careful consideration to the effect of gear-shifting during operations. If
the system wants to shift to a higher gear, it must reallocate the updated
datasets that were modified in a lower gear when a subset of the nodes
was inactive, but without disrupting the servicing of requests from clients.
Inefficient gear-shifting that requires a large amount of data reallocation
greatly degrades the system performance. To address this challenge, this
paper proposes a data placement method known as Accordion, which uses
data replication to arrange the data layout comprehensively and provide ef-
ficient gear-shifting. Compared with current methods, Accordion reduces
the amount of data transferred, which significantly shortens the period re-
quired to reallocate the updated data during gear-shifting then able to im-
prove the performance of the systems. The effect of this reduction is larger
with higher gears, so Accordion is suitable for smooth gear-shifting in
multigear systems. Moreover, the times when the active nodes serve the
requests are well distributed, so Accordion is capable of higher scalability
than existing methods based on the I/O throughput performance. Accor-
dion does not require any strict constraint on the number of nodes in the
system therefore our proposed method is expected to work well in practi-
cal environments. Extensive empirical experiments using actual machines
with an Accordion prototype based on the Hadoop Distributed File System
demonstrated that our proposed method significantly reduced the period
required to transfer updated data, i.e., by 66% compared with an existing
method.
key words: energy-aware, power-proportionality, data-placement, HDFS

1. Introduction

In the era of Big Data, distributed file systems, such as
Google File System [2] and Hadoop Distributed File Sys-
tem (HDFS) [3], have been widely used for efficient pro-
cessing over a huge amount of unstructured data. In such
systems, not only high performance but also power con-
sumption have gained much attention from both academia
and industry. Among this, power-aware distributed file sys-
tems are progressively moving towards power-proportional
design [4]. The power-proportionality in these systems can
be achieved using well designed data placement methods to
control the total number of active nodes to store and retrieve
the data [5]–[7]. The common idea in these methods is to

Manuscript received July 27, 2014.
Manuscript revised November 28, 2014.
Manuscript publicized January 21, 2015.
†The authors are with the Department of Computer Science,

Tokyo Institute of Technology, Tokyo, 152–8552 Japan.
∗Presently, with Yokohama Research Laboratory, Hitachi Ltd.
∗∗This paper is an extended version based on our paper pro-

posed in BigData 2013 [1].
a) E-mail: hanhlh@de.cs.titech.ac.jp

DOI: 10.1587/transinf.2014DAP0007

carefully place the data’s replicas at organized nodes. The
system divides all of the nodes into a set of small separated
groups. These groups are then configured to operate in mul-
tiple gears where each gear contains a different number of
groups, and offers a different level of parallelism and aggre-
gate IO [5]. A higher gear has a larger number of groups
of active nodes. For example, if there is a 30-node system
which is managed to operate in three gears. Gear 1 contains
10 active nodes, Gear 2 contains 20 active nodes and Gear
3 contains 30 active nodes. Accordingly, in a higher gear,
the system consumes more power, although it can deliver
higher performance with suitable processing. Leveraging
this mechanism, the system can manage its power consump-
tion and performance so it can deliver power proportionality.

However, the current power-proportional data place-
ment methods do not well consider the effects of gear-
shifting on the performance of the system. During oper-
ations, the system may have to update the datasets modi-
fied in a low gear when a subset of the nodes was powered
off. When the system moves to a higher gear to gain a bet-
ter power-proportionality by reactivating inactive nodes, it
needs to provide the new power proportionality in serving
the requests from clients. Therefore, in the background,
the system has to internally re-transfer the updated data
to the reactivated nodes to share the load equally among
all of the active nodes in order the obtain better perfor-
mance. Inefficient gear-shifting with the large amount of
re-transferred data is believed to greatly degrade the perfor-
mance of power-proportional distributed file systems.

To address this problem, in this paper, we propose
an efficient and flexible power-proportional data placement
method known as Accordion, which aims to improve the
efficiency of gear-shifting by reducing the amount of re-
transferred data. Accordion shares the node organization of
other methods because it supports a multigear operational
mode where each gear is combined from different numbers
of different groups of nodes. However, the locations of the
primary data in the dataset are different with Accordion.
At first, the primary data in the dataset are located equally
among all of the nodes in the system. Next, the data are
replicated so each of its replicas is located on nodes that be-
long to different groups. As the primary data are located
at all nodes, when the modified dataset is updated (or ap-
pended) in low gear, part of the primary data in the updated
dataset is already stored on the active nodes. Hence, only
the remainder of the updated dataset, which can be assumed
to be written to the deactivated nodes, needs to be written

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers

1014
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.5 MAY 2015

temporally. Consequently, only this temporal part of the
updated dataset needs to be re-transferred when the system
shifts to a higher gear. In other existing methods, the overall
updated dataset needs to be reallocated during gear-shifting.
As a result, Accordion is expected to reduce the cost of up-
dating during gear-shifting because it reduces the period of
data movement.

Furthermore, the efficiency of this reduction is in-
creased when gear-shifting is performed in a high gear.
In such situation, with a lower number of inactive nodes,
the amount of data reallocated is reduced, then shortens
the gear-shifting period further. It restricts the degradation
of the system performance when Accordion-based systems
shift to a higher gear. Consequently, Accordion is capa-
ble of providing smooth gear-shifting for multigear power-
proportional distributed file systems. This feature of Ac-
cordion is well analyzed by numerical analysis and verified
through our empirical experiments.

Moreover, Accordion also benefits from a load bal-
ancer that aims to share the workload among all of the active
nodes. One of the main goals of the load balancer is to al-
low all of the active nodes to serve the same amount of data
when responding to requests. However, another important
factor that highly affects the performance of the file system
is the timing distribution when active nodes serve requests.
It should be well balanced in order to provide a higher I/O
throughput performance. For example, if two nodes serve 20
GB of data, generally it would be more efficient if two nodes
served 10 GB simultaneously rather than sequentially. The
different locations of the primary data mean that Accordion
can both balance the amount of data requested and the ser-
vice timing on the active nodes. It is observed through our
empirical experiments based on actual machines.

Additionally, it is easier to apply Accordion in a practi-
cal environment as the configuration, such as the number of
active nodes in each gear, is more flexible. Although Rab-
bit [6] is the first method to achieve power proportionality
in a HDFS, in addition to the inefficient gear-shifting due
to the large amount of moving data, it also has a strict con-
straint where the number of nodes in each group is defined
by an exponential function. In Accordion, this constraint is
more flexible because there is only a simple constraint that
the total number of nodes in the system should be an even
number.

Last but not least, it is recognized that the advantage of
Accordion is vital especially for commodity-off-the-shelf-
based systems in which the power consumption has not been
well optimized. In such systems, the power consumption of
the systems generally has not gained enough support from
modern technologies such as low energy CPU, memory or
disk. For example, the power consumption of the investi-
gated file server in idle time is still large compared with in
active time (more than 75% as in [8]).

Our contributions are summarized as follows.

• We propose a distributed data placement method
known as Accordion, which utilizes data replication

to deliver efficient gear-shifting in power-proportional
distributed file systems. The different approach of
locating the primary data in Accordion reduces the
amount of data updated during gear-shifting, hence
shortens the time required to reallocate data.
• Accordion is applicable to smooth gear-shifting in

multigear systems because it increases the performance
efficiency when gear-shifting is performed in a higher
gear.
• Accordion increases the I/O throughput performance

because it improve the parallelism effectively dis-
tributes both the timing of serving requests and the
amount of data requested.
• Accordion is expected to work well in practical envi-

ronments because it does not require a strict constraint
on the number of nodes in file systems.
• In order to evaluate the efficiency of Accordion, we

performed extensive empirical experiments using a
maximum of 24 nodes with an Accordion prototype on
HDFS, which is widely used as the distributed file sys-
tems to support MapReduce [9] for efficient Big Data
processing. The empirical experimental results showed
that Accordion significantly improved the performance
by 66% compared with Rabbit and Sierra [7], two of
the most standard power-proportional data placement
methods.

This paper is an extended version of [1] as it included
the important parts of reporting the empirically experimen-
tal results which show the applicability of Accordion to pro-
vide the smooth gear-shifting in high-gear distributed file
systems. Furthermore, the high efficiency of Accordion re-
lating to the time to reallocate data is furthered compared
with Sierra, which was newly implemented to HDFS.

The remainder of this paper is organized as follows.
Related studies are discussed in Sect. 2 and the design of
Accordion is described in Sect. 3. Section 4 presents a per-
formance evaluation of our proposed method. Our conclu-
sions and future work are discussed in Sect. 5.

2. Related Work

In this section, at first we reviewed some of the existing data
placement methods in the field. Then, we described in more
detail Rabbit and Sierra because they are used as compara-
tive methods in the experiments.

Rabbit [6] was the first method to provide power pro-
portionality to an HDFS by focusing on the read perfor-
mance. Rabbit uses an equal work–data-layout policy based
on data replication. The primary replicas are stored evenly
among the primary nodes. The remaining replicas are stored
on additional and increasingly large subsets of nodes. Each
node in the subsets has a fixed order and it stores a number
of blocks that is inversely related to its order, which guar-
antees that the system can distribute the workload equally
among all of the active nodes. However, Rabbit still does
not support the write workload so it cannot consider the cost

LE et al.: ACCORDION: AN EFFICIENT GEAR-SHIFTING FOR A POWER-PROPORTIONAL DISTRIBUTED DATA-PLACEMENT METHOD
1015

of reflecting the updated data in a low gear.
Sierra [7] was designed as a power-proportional dis-

tributed storage system for general data centers where a
replicated object store supports the write-and-read work-
loads during multigear operations. This method guarantees
the write availability in a low gear by exploiting the con-
cept of write off-loading [10], which was motivated origi-
nally by the aim of saving power by spinning down unneces-
sary disks. This method allows write requests on spun-down
disks to be redirected to other active disks in the file sys-
tem. Thus, this technique increases the spin-down duration,
thereby providing additional power savings. This method
may be considered as a solution for multigear file systems
to deal with updated data in a low gear. Sierra can deal with
write requests in a low gear, but it is still not optimized to
reflect the updated data efficiently when the system moves
to a higher gear.

In previous studies [11], we conducted a simple evalu-
ation of Rabbit and PARAID [5] to identify an appropriate
data placement approach to support efficient gear-shifting in
power-proportional systems. PARAID uses a skewed pat-
tern to replicate and stripe data blocks to the disks. This fa-
cilitates adaptation to the system load by varying the number
of active disks in the system. PARAID focuses only on the
RAID unit and it is unreliable when adapting to a distributed
environment.

We also proposed an architecture known as NDCou-
plingHDFS [12], [13] to facilitate the efficient reflection
of updated data in a power-proportional HDFS. NDCou-
plingHDFS focuses on coupled metadata management and
data management on each HDFS node, which localizes the
range of data maintained by the metadata in an efficient
manner. This reduces the cost of managing the metadata
generated during changes in the system configuration. How-
ever, the data placement method was not considered in this
study.

Other studies, rather than power-proportional designs,
have aimed to reduce the total power consumption based on
a trade-offwith performance in general storage system [14]–
[17].

GRAID [14] is similar to PARAID because it is also a
green storage architecture that aims to improve the energy
efficiency and reliability of a RAID unit. In this study, the
data-mirroring redundancy of RAID10 has been extended
by incorporating a dedicated log disk, which stores all of
the updates since the last mirror disk update. Using this
log disk information, the system only needs to update the
mirroring disks periodically so it can spin down all of the
mirroring disks in a low-power mode for most of the time,
which saves energy.

Kim et al. [17] proposed a fractional replication method
to balance the power consumption and system performance.
In this method, the data placement layout was inspired by
PARAID where fractional replication and downshifting of
the operational modes to a lower gear saved power using a
probabilistic prediction model based on historical observa-
tions.

One of the first attempts to improve the energy effi-
ciency of HDFS was performed by Leverich et al. [15] who
showed that it was possible to recast the data layout and task
distribution of HDFS to allow significant portions of a clus-
ter to be powered down while still fully operational. They
also confirmed that the energy could be conserved at the ex-
pense of performance so there was a trade-off between the
two.

Later, Kaushik et al. [16] proposed an energy-
conserving multiple zone approach for HDFS, which uti-
lized life cycle information as data. They divided the stor-
age clusters of the HDFS into hot and cold zones. The fre-
quently accessed data were placed in the hot zone where
all of the data nodes were active so they consumed power.
The less frequently accessed data were placed in the cold
zone, which allowed data nodes to be inactive. Thus, the
power consumption was lower in the cold zone than in the
hot zone. Some power savings were achieved in HDFS us-
ing this method. These techniques are able to be combined
with our method.

2.1 Rabbit

Rabbit is a data placement for a power-proportional dis-
tributed file system that uses a data replication to control
the power and performance of the system by achieving the
the equal–work-policy in which the workload is evenly dis-
tributed among all active nodes.

In Rabbit, the nodes in the system are divided into a
number of separated groups and the replicas of the dataset
are stored in a group unit. Assume that r replicas of B blocks
of dataset D are to be stored in n nodes using G groups.
Here, each node is numbering from 1 to n. Initially, a replica
of all B blocks is evenly stored in the first primary p nodes
in Group1 (also called the primary group). Consequently,
each node in Group1 will contain B

p blocks. The remaining
(r− 1) replicas are distributed to the (N − p) nodes such that
a node n(g,i), where g > 2 and p < i ≤ N, stores B

i blocks.
Here, using the constraint of keeping the number of replicas
r small for a fixed number of nodes, Rabbit can guarantee
that the number of blocks stored by the i-th node must not
be less than B

n for all i ≤ n when n nodes are active. Obeying
this constraint makes it possible for the load to be shared
equally among the active nodes. The performance of the
system is therefore expected to be linear with the number
of powered nodes, thereby fulfill the idea of equal–work-
policy. However, this constraint also leads to the constraint
of the number of nodes in groups from Group2 to GroupG,
as the number of nodes in each group is determined through
an exponential function of r and p. The detail calculation
can be found from [6].

Figure 1 depicts a heuristic illustration of a multigear
system with Rabbit data placement. Here, the system has 3
groups of nodes and 3 gears. In Gear 1, only the nodes in
Group1 are active. The nodes in Group1 and Group2 are
active in Gear 2. And all the nodes in Group1, Group2 and
Group3 are power on in Gear 3. The primary replicas of the

1016
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.5 MAY 2015

Fig. 1 An example of a three-gear system based on Rabbit data place-
ment.

Fig. 2 An example of a three-gear system based on Sierra data place-
ment.

dataset are stored on nodes on Group1, the second replicas
are maintained by nodes in Group2 and the tertiary replicas
are dedicated to nodes in Group3. It should noted that the
nodes in Group1 stored the same amount of data while the
other nodes contain a different amount of data.

2.2 Sierra

Like Rabbit, Sierra is also a data placement for a power-
proportional distributed file system by leveraging the data
replication. Sierra also organizes the replicas of the dataset
such that, each replica of the dataset is stored in a group of
nodes. The primary replicas are stored on a specific sub-
set of nodes, called primary nodes (Group1). Then, the
secondary replicas are stored on a different group of nodes
(Group2) and so on. Sierra differs from Rabbit that each
replica of the dataset is evenly distributed to all the nodes in
each group. As a result, there is no constraint of the number
of nodes in each group like in Rabbit.

Figure 2 shows an illustration of a multigear distributed
file system based on the data placement in Sierra with 3
groups of nodes and 3 gears. It is recognized that all nodes
in the same group store the same amount of data, which dif-
fers from Rabbit.

3. Efficient Gear-Shifting Method

In this section, at first, we describe the replication-based
data placement method used by Accordion in detail. Next,
we explain the load balancer for reads, which aims to dis-
tribute the workload among all of the active nodes and pro-
vide power proportionality. Finally, we present the pro-
cesses that reflect updated data, which are written to the sys-
tem in a low gear, when the system performs gear-shifting.

3.1 Accordion Design

Accordion was designed to provide power proportionality
and a high data I/O throughput in cluster file systems that
use commodity computer servers such as HDFS , Google
File System. In Accordion, the files are divided into a large
number of blocks and a number of replicas of each data
block are distributed among the nodes of the cluster. The
mapping of the file names to block identifiers and of the
block to the block’s locations are maintained by a separate
metadata service.

Like other approaches, Accordion aims to control the
power consumption of the system by dividing the nodes in
a cluster into several separate groups. A system that uses
the Accordion data placement layout can then operate in a
multigear mode where each gear contains a different number
of groups. The higher gears have more groups of nodes.

Power proportionality is achieved by Accordion’s data
placement policy, which is based on skewed replication, and
a careful consideration of the effects of reflecting the modi-
fied dataset when the system moves from low to high gears.
We describe the data placement policy in detail in the fol-
lowing parts and summarize the symbols used in Table 1.

3.1.1 Node Role Assignment

In a system that uses Accordion, changes in the operational
modes of nodes are associated with changes in the shape
of the bellows of an Accordion (musical instrument) after
adjusting for effects on the transitions of a note or between
multiple notes. When the system moves up to higher gears
or down to lower gears, the active node ranges are expanded
or reduced centrally.

In our method, the nodes are arranged geometrically in
a horizontal array because the nodes that belong to lower
groups are bounded by the nodes of higher groups. Groupa

is higher than Groupb if a > b. For example, we as-
sume that a system is operating in a two-gear mode with
two groups of nodes, i.e., Group1 and Group2. The nodes
from Group1 are activated in Gear 1 and the nodes from
Group1 and Group2 are turned on in Gear 2. In this case,
Group2 is higher than Group1. Thus, the nodes of Group1

are bounded by the nodes of Group2.
Each node in the system is assigned its correspond-

ing role in the group to perform data replication among the
nodes in the system, i.e., to identify the destination nodes for

LE et al.: ACCORDION: AN EFFICIENT GEAR-SHIFTING FOR A POWER-PROPORTIONAL DISTRIBUTED DATA-PLACEMENT METHOD
1017

Table 1 Notations.

Symbol Description

N Number of nodes in the cluster
G Number of groups in the cluster
Groupg A group of nodes with index g (g ∈ [1,G])
Ng Number of nodes in group Gg

Nodei
g A node with index i in group Gg (i ∈ [1,Ng])

Role(Nodei
g) The role of a node Nodei

g, is Partorderi
g , where Part is Le f t or Right

Le f tg Le f tg = ∀Nodei
g ∈ Groupg,Role(Nodei

g) = Le f tg orderi

Rightg Rightg = ∀Nodei
g ∈ Groupg,Role(Nodei

g) = Rightorderi
g

B Total number of blocks in a dataset
V(B) Storage requirements to store a dataset with B blocks
V(B)g Storage requirements to store a dataset with B blocks in Groupg

Algorithm 1 Algorithm used to assign roles to nodes in the
cluster.
Require: All the nodes of the system which are organized in G groups (Nodei

g, g ∈
[1,G], i ∈ [1,Ng])

Ensure: Role(Nodei
g)

1: for all Groupg from Group1 to GroupG do
2: if Ng is even then

3: middle =
Ng
2

4: for all i from middle to 1 do
5: order = middle − i + 1
6: Role(Nodei

g) = Le f torder
g

7: end for
8: for all i from middle + 1 to NG do
9: order = i − middle

10: Role(Nodei
g) = Rightorder

g

11: end for
12: else if Ng is odd then

13: middle =
Ng
2 + 1

14: for all i from middle to 1 do
15: order = middle − i + 1
16: Role(Nodei

g) = Le f torder
g

17: end for
18: for all i from middle to NG do
19: order = i − middle
20: Role(Nodei

g) = Rightorder
g

21: end for
22: end if
23: end for

storing the backup data of a specific node. The role of each
node is determined by the configuration in terms of the num-
ber of groups and the total number of nodes in each group.
Algorithm 1 describes the function used to assign the roles
to nodes:

Role(Nodei
g) = Partorder

g , (1)

where Part is either Le f t or Right and order ∈ [1,Ng + 1].

Definition 1: For a GroupgA that contains an odd number
of nodes (NgA is an odd number), there is a node that has
two roles, i.e., Le f t1

gA and Right1
gA.

An image of a multigear system using Accordion with
organized nodes and roles are shown in Fig. 3. Gear 1 re-
quires the nodes from Group1 (a set of Le f t1 and Right1)
to be activated while Gear 2 requires the nodes from both
Group1 and Group2 to be activated.

3.1.2 Skewed Data Replication in Accordion

The three goals of Accordion are to provide power propor-

Fig. 3 Example of a two-gear system using Accordion where two groups
of nodes have roles, where G = 2, N1 = 4, N2 = 8, and N = 12.

tionality in the read performance, reduce the cost of reflect-
ing updated data when the system changes gear, and guar-
antee the data reliability in all file system operating modes.
Thus, the below policies are applied to satisfy these goals.

(1) Location of primary data

First, the primary data in the dataset are distributed to all of
the nodes in the system. This means that each node stores
the same amount of data.

(2) Location of backup data

Starting with the highest GroupG, the data stored in this
group are replicated to the next lower group GroupG−1.
Thus, the node with the role Partorder

G−1 in GroupG−1 is al-
located to the backup data for the data from the nodes in
GroupG, which have roles in the following range, if they
exist.

[Part(middle−order)scaleG+1
G , Part(middle−order+1)scaleG

G],
where Part is Le f t or Right, scaleG =

NG

NG−1
, and

middle =

{ NG

2 NG is even
�NG

2 � + 1 NG is odd
(2)

For example, in Fig. 3, the data from the range [Le f t3
2,

Le f t4
2] are replicated in the node with the role Le f t2

1. This
means that the data in Node1

2 and Node2
2 are replicated in

Node1
1.
The process is finished when the backup data for the

nodes in Group2 are replicated to the nodes in Group1, the
lowest group.

(3) Chained declustering at the smallest group

Chained declustering has been proved to provide superior

1018
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.5 MAY 2015

Fig. 4 An example of a three-gear system based on Accordion data
placement.

performance in the event of failure while maintaining a very
high degree of data availability [18]. As a result, to guaran-
tee the data reliability in the lowest gear, the chained declus-
tering policy is applied to the smallest group (Group1).
Each node replicates its data to its neighbor node, which
guarantees that all of the data in the dataset are replicated
in the two neighbor nodes. In Fig. 3, the data (the primary
data and the backup data) in Node1

1 are replicated in Node2
1,

then from Node2
1 to Node3

1, and so on. In other power-
proportional approaches, the data reliability in the lowest
gear is often omitted because the data are not replicated.

Figure 4 shows an example of a three-gear system
based on Accordion data placement described above where
B = 600, G = 3, and N = 60 (N1 = N2 = N3 = 20). Groupi

contains the nodes of Le f ti and Righti. Gear 1 contains only
the nodes in Group1. To serve a request, Gear 2 requires the
nodes in Group1 and Group2 to be activated, while Gear 3
requires all of the nodes in Group1, Group2, and Group3

to be activated. The primary data in 600 blocks are stored
equally among all of the nodes so each group locates 100
blocks initially. Next, the data in Group3 are replicated in
Group2 and the data in Group2 are replicated in Group1.
Finally, the chained declustering method is used to replicate
the data in Group1. Thus, the three groups contain 1200,
400, and 200 blocks.

3.1.3 Physical Data Placement on a Node Using Accor-
dion

In Accordion, each node stores the primary data (the origi-
nal data allocated) and the backup data (replicas of the data
from other nodes) so the physical locations of these two
types of data in the disks should be well designed. Normally,
the data are stored physically in a number of sectors of the

disks. The complexity of writing and replicating the data
means that the orderless arrival timing of writing requests
on each node promotes the discreteness of the physical lo-
cations of the sectors for the primary and backup data on
the disks. However, on current disks, the seek time required
to allocate the responsible sectors still degrades the I/O per-
formance greatly, especially for discretely located sectors.
Therefore, it is preferable to allocate the responsible sectors
to sequential locations on the physical disks.

In this paper, we also propose an optimized ver-
sion of Accordion known as Accordion-with-Disk-Partition
(Accordion-DP) that uses a partitioning technique on each
node, which logically locates the primary data and backup
data in two separate parts of the disks. For example, in
Fig. 4, in Le f t1, P3, B1–B2 and B4–B6 are stored in sep-
arated partitions of the disks. Accordion-DP is expected to
improve the I/O throughput performance of file systems be-
cause it reduces the seek time on the disks.

3.1.4 Storage Requirements

This section describes the total storage requirements for
storing a dataset based on the skewed data replication policy
used by Accordion. The total of blocks in a dataset is B and
there are G groups, where each group contains Ng nodes.
The total amount of data blocks V(B) stored is calculated
as:

V(B) =
G∑

g=1

V(B)g, (3)

where V(B)g is the number of data blocks located on the
nodes of Groupg, g ∈ [1,G]. Initially, all of the blocks
are stored equally among all of the nodes in the cluster so
V(B)G = B × NG

N , where N =
∑G

g=1 Ng is the total number
of nodes in the system. In addition to the original data, the
nodes in GroupG−1 are also used to locate the replication
data from the nodes in GroupG. Thus,

V(B)G−1 = B
NG−1

N
+ B

NG

N
= B(

NG−1

N
+

NG

N
). (4)

The amount of data in the remaining groups from
Group(G−2) to Group1 are similarly calculated. Finally,
chained declustering is applied to Group1 so the storage re-
quired by Group1 is as follows:

V(B)1 = 2
B
N

(
G∑

g=1

Ng) = 2B. (5)

Substituting the values of V(B)g into (3) yields the fol-
lowing:

V(B) = B(2 +
NG

N
+ (

NG−1

N
+

NG

N
) + . . . +

G−i+1∑
i=2

Ni

N
)

= B
G∑

g=1

(g + 1)Ng

N
. (6)

LE et al.: ACCORDION: AN EFFICIENT GEAR-SHIFTING FOR A POWER-PROPORTIONAL DISTRIBUTED DATA-PLACEMENT METHOD
1019

Fig. 5 The normalized amount of data transferred when gear-shifting is
performed in each gear.

3.1.5 The Amount of Data Transferred During Gear-
Shifting

In this section, we calculate and compare the amount of data
that is transferred internally when the system changes its
configuration using Accordion and other methods such as
Rabbit and Sierra. In such methods, as each group con-
tains one replica of the dataset, the entire updated dataset
is transferred during each gear-shifting. In Accordion, how-
ever, shifting between each gear in the system only leads to
variation in the subpart of the dataset located on the nodes
that are reactivated during transitions.

From the calculations in Sect. 3.1.4, the amount of data
moved when the system changes from Gear g to Gear (g+1)
is,

Vg(D) = D
G∑

i=g+1

Ni

N
, (7)

where G is the number of groups, Ni is the number of
active nodes in Groupi, N is the total number of nodes, and
D is the number of blocks updated in the dataset in Gear
g. A constraint on Accordion is that the preferred number
of nodes in Groupg is a multiple of the number of nodes
in Groupg−1. For a clearer understanding, we consider a

simple case where ∀g ∈ [1,G], Ng+1

Ng
= scale (scale ≥ 1).

Substituting into (7), we obtain the following:

Vg(D) = D

∑G
i=g+1 scalei

∑G−1
i=0 scalei

. (8)

Figure 5 shows the amount of data moved, which was
normalized against the amount of the dataset that was up-
dated during each gear shift with Accordion and other meth-
ods (Rabbit and Sierra), where the systems were config-
ured to operate using five gears. The amount moved was
always smaller in Accordion than Rabbit or Sierra and it be-
came smaller when the system performed gear-shifting in a

higher gear. The degradation of the system performance was
reduced so Accordion may be applicable to smooth gear-
shifting in multigear power-proportional file systems where
the number of gears is high.

3.1.6 Skewed Dataset Distribution in Accordion

The skewed data replication in Accordion leads to an im-
balance in the amount of data stored on each node. Like in
Rabbit and Sierra, some nodes (in the smaller groups) store
considerably more data than others (in the higher groups).
However, this imbalance does not lead to considerable prob-
lem to the overall I/O performance as current hard disk
drives normally make use only part of the capacity other
than full of the capacity to provide the I/O requests. Given
that the amount of unused storage is increasing [19] and
that the energy problem is a greater focus, the provision
of smooth gear-shifting is more important when delivering
power-proportional systems.

3.1.7 Fault Tolerance

A specific algorithm to deal with node failures in a system
is beyond the scope of this study. When a node fails, how-
ever, all of the nodes in the system are reactivated and the
data from a failure node can be reconstructed based on the
backup data. In a future study, we plan to provide a specific
solution to this problem in more detail.

3.2 Load Balancer

When a request for a block is received from a client, the
file system has to select the node that will serve the re-
quest because the block is replicated in multiple nodes in
the system. To provide power proportionality when serving
a dataset with multiple blocks, it is preferable to balance the
load among all of the available nodes. The load balancing
mechanism used in Accordion is basically the same as that
employed by Rabbit. If n nodes are active when serving a B-
block dataset, the goal of the load balancer is to make each
node serve B

n blocks. Similar to Rabbit, we define an ideal
value for each node where Nodei

g equals B
n×containi

g
. When

the dataset is being read, the current hit of the node Nodei
g

is
servedi

g

1×containi
g
, where containi

g is the number of blocks stored

locally on Nodei
g, and servedi

g is the number of blocks al-
ready served by Nodei

g. From the possible nodes that may
store a requested block, the load balancer greedily selects
the node where the distance between the current hit and the
ideal value is the largest.

Although this mechanism is similar to Rabbit, the dif-
ferent policy of locating the primary data makes Accordion
preferable to Rabbit. In Rabbit, each of the replica set of
the whole dataset is stored separately in each group’s node
while in Accordion, there is always part of the dataset that is
stored only in the lowest group’s nodes. Consequently, the

1020
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.5 MAY 2015

lowest group’s nodes can serve the request from the begin-
ning and hence it leads to less skew in distributing the load
among nodes in Accordion than in Rabbit. It is explained
in more detail and clearer in Sect. 4.4.2 through utilizing an
empirical experiment.

3.3 Writing Data Using Write Off-Loading

When a subset of a group of nodes is deactivated in a low
gear, the system can accept write requests from clients us-
ing the write off-loading technique. Next, when the system
moves to a higher gear by reactivating nodes, it transfers the
updated data internally in the background without stopping
the processing of read serves from clients.

3.3.1 Writing New Data Using the Write Off-Loading
Technique

When the system is in a low gear and it has to deal with re-
quests to write new data to a previously stored dataset, the
placement of data is performed according to its original pol-
icy. Because the system operates in low gear, certain parts of
the new data cannot be written to their corresponding deac-
tivated nodes. Hence, the system selects another node ran-
domly from the active nodes to serve this request. Informa-
tion about the data, the temporary node, and the intended
node are saved in a log file. An example of the write off-
loading process is shown in Fig. 6. In this example, Node2

2
should serve the write request for data E according to the
original data placement policy. However, it is powered off
in a low gear so the system decides to use an alternative
node, i.e., Node1

1 is selected in this case.

3.3.2 Reflecting Updated Data

When the system changes to a high gear to serve a request
for high-performance processing with the newly updated
dataset, it needs to perform two functions. The first function
is to transfer the data written in temporary nodes to their
actual intended nodes. This can be achieved by reading the
information in the log files. In Fig. 6, Node1

1 is set to transfer
data E to Node2

2. The second function is to serve a request
by scanning the new dataset in the storage system. When
there is no need to correct the data layout, compared with a

Fig. 6 Updated data reflection using write off-loading.

normal service in a high gear, the cost of allowing the sys-
tem to operate in multiple modes to save power will depend
greatly on the quantity of data that needs to be transferred.

4. Experiments

We conducted an empirical experiment using actual ma-
chines to verify the methods proposed in this study. We
chose Rabbit and Sierra, two of the de facto power-
proportional data placement methods for distributed file sys-
tems as the comparative methods. First, we evaluated the
efficiency of Accordion for smooth gear-shifting in multi-
gear systems. Next, we compared Accordion with Rabbit
and Sierra with respect to power proportionality during the
performance of reads. Finally, we evaluated the power pro-
portionality of Accordion using several configurations.

4.1 Implementation

In this study, we implemented a prototype of the power-
proportional distributed file system Accordion based on
a modified HDFS. For comparison evaluation, we imple-
mented the data placements in Rabbit and Sierra from the
scratch based on their published papers. We changed the
current class used to select block locations via an interface
where different data-layout policies can be performed. We
also added the load balancing mechanism in to HDFS. The
write off-loading policy was implemented in the low-power
mode, which selects the temporal nodes for writing the new
data for the currently turned off nodes. To guarantee the data
reliability, block replicas were written to distinct nodes in all
of the operation modes.

4.2 Framework Used for the Experiments

Our test-bed for the experiments comprised dozens of com-
modity nodes, which was based on the HDFS architecture
with one NameNode, and a cluster of nodes for storing data.
We were focused on the energy-aware commodity system
so we used low power consumption ASUS Eeebox EB1007
machines, the specifications for which are provided in Ta-
ble 2. In the experiments, The power consumption of the
cluster of data storage nodes was measured using an AC/DC
Power HiTESTER 3334 [20]. The interconnect was a 1000
Mbps switching hub and all of the inactive nodes were hi-
bernating.

4.3 The Smoothness of Accordion in Multigear Systems

In this part, we verified the efficiency of Accordion relating

Table 2 Specification of a node.

CPU TM8600 1.0 GHz
Memory DRAM 4 GB
NIC 1000 Mb/s
OS Linux 3.0 64-bit
Java JDK-1.7.0

LE et al.: ACCORDION: AN EFFICIENT GEAR-SHIFTING FOR A POWER-PROPORTIONAL DISTRIBUTED DATA-PLACEMENT METHOD
1021

Table 3 Experimental environment.

#gears 6
#active nodes from Gear 1 to Gear 6 4, 8, 12, 16, 20 and 24
#files 420
File size [MB] 64
HDFS version 0.20.2
Block size [MB] 16, 32 and 64

to reflecting the updated data in multigear systems in which
the number of gears is high. As discussed by the numerical
analysis in Sect. 3.1.5, Accordion is believed to be applica-
ble to perform smoother gear-shiftings than other existing
methods as the amount of reflected data is thoroughly con-
sidered. This result is verified by the empirical experiments
performed in this section.

4.3.1 Experimental Environments and Method

We compared Accordion with Sierra in terms of their exe-
cution times needed to reflect updated data when the system
moved from a low gear to a higher gear. The reason we
choose Sierra as a comparative method is that Sierra and
Accordion shares a common feature of flexible configura-
tion of the multigear systems, especially when the number
of gear is high. In contrast, Rabbit requires very large num-
bers of nodes in higher gears because the number of nodes
in each gear is determined through an exponential function.

The systems used in this experiment were operated us-
ing a six-gear configuration based on six groups of nodes.
The numbers of active nodes from Gear 1 to Gear 6 were set
to 4, 8, 12, 16, 20 and 24 consequently. The data set con-
tained 420 files in which the file’s size was fixed to 64MB.
The block size used in HDFS was varied to 16 MB, 32 MB
and 64 MB. Here, it is noted that, when the system achieves
gear-shifting, the whole dataset is updated. As the number
of files are 420, the size for the whole dataset is 26880 MB.
We also perform another experiment reported in Sect. 4.5
to evaluate Accordion with varying the size of the updated
data. Table 3 summarizes the above experiment settings.

Using write off-loading described in Sect. 3.3, the
dataset is written when the systems operated in Gear 2.
Specifically, the replicas of files that should be written to
deactivated nodes would be temporally sent to other activat-
ing nodes. Here, from the fault tolerance point of view, we
guaranteed the constraint that the replicas of the same file
are not written to the same node. Next, we consequently
shifted the systems to higher gears, step by step from Gear
3 to Gear 6. During each shift, the temporal data were re-
transferred from temporal nodes to original nodes that were
reactivated according to each data placement method, Sierra
or Accordion. The average execution times for reflecting the
temporal data at each shift were measured and reported.

4.3.2 Experimental Results

Figure 7 describes the average execution time needed to
move the updated data at several configurations of both

Fig. 7 Execution time for reflecting updated data.

Fig. 8 Size of transferred data.

Sierra and Accordion. From this figure, at each block size
setting, it is seen that the measured execution times in Sierra
were almost unchanged in all configurations. However, it
could be also derived that Accordion outperformed Sierra in
all configurations. Furthermore, the effect of Accordion be-
came larger in the configurations in which the gear-shifting
was performed at higher gears as the execution time be-
comes shorter. Accordion gained highest result in config-
uration Gear 5 to Gear 6 where it improved the execution
time by 91% compared to Sierra when the block size was 16
MB.

The reason of the above results is shown in Fig. 8 which
presents the amount of reflected data at each configuration.
In Sierra, the amount of reflected data are the same and equal
the size of the dataset. When the system in Sierra shift to a
higher gear through reactivating a group of nodes, it has to
reflect all the updated data of that group. Due to the fact that
each group contain one replica of the dataset, the amount
of the updated data equals to the dataset’s size. In contrast,
the experimental results reported in this figure verified the
numerical analysis that in Accordion, the size of reflect data
always smaller than Sierra and becomes smaller when the
gear-shifting is perform at higher gears. As a result, Accor-

1022
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.5 MAY 2015

Table 4 Experimental environment.

#gears 3
#active nodes (Accordion, Accordion-DP, Sierra) 2, 8, 20
#active nodes (Rabbit) 2, 7, 21
#files 420
File size [MB] 64
Block size [MB] 32

dion is believed to be applicable to smooth gear-shifting in
multiple power-proportional file systems where the number
of gears is high.

By changing the value of the block size, we could eval-
uate the effect of the number of blocks to the performance
of Accordion during gear-shifting. Figure 7 also describes
that in both Sierra and Accordion, the execution times were
shorter with larger block size. The reason is mainly owing
to the metadata management cost in HDFS. Larger block
size, which leads to smaller the number of blocks in HDFS,
decreased the cost of the metadata management in our ex-
periments.

4.4 Power Proportionality of Accordion, Rabbit and Sierra

We evaluated the effectiveness of Accordion by determin-
ing the ratio of the throughput when reading a dataset and
the power consumption of the cluster of data-storing nodes.
We decided to elect two of the most state-of-the-art power-
proportional data placement methods, Rabbit and Sierra, as
two comparative methods.

4.4.1 Experimental Environments

We compared Accordion and Accordion-DP with Rabbit
and Sierra in terms of their power proportionality when per-
forming reads. These systems were operated using a three-
gear configuration based on three groups of nodes. The
constraint on the number of nodes in the gear configuration
meant that the three gears in Rabbit contained 2, 7, and 21
nodes. To ensure a fair evaluation, the three gears in Sierra,
Accordion and Accordion-DP had 2, 8, and 20 nodes. In this
experiment, as in Rabbit, the read performance of scanning
all the dataset is focused, then all 420 files of the dataset are
read and each file is read once. The workload is distributed
uniformly to all of the 21 clients as each client sequentially
sends the requests of reading 20 separated files to the file
systems. Here, the size of each file is 64 [MB]. The other
information can be referred from Table 4.

4.4.2 Experimental Results

Figure 9 shows the throughput per watt to compare the read
performance using the aforementioned dataset with three
power-setting modes: Gear 1, Gear 2, and Gear 3. The re-
sults were the averages of five runs and the Linux buffer
cache was cleared between runs.

There were not much differences in the results in Gear
1 and Gear 2 of the three configurations Rabbit, Sierra and

Fig. 9 Throughput per watt using Accordion, Accordion-DP, Rabbit and
Sierra with various power settings.

Fig. 10 Read performance using Accordion, Accordion-DP, Rabbit, and
Sierra with various power settings.

Accordion. However, in Gear 3, it is seen that Accordion
delivered approximately 10% better results than Rabbit be-
cause it gained better throughput as can be seen in Fig. 10
which shows the average throughputs for the configurations.
The reason was that the better load balancer in Accordion-
based increased the throughput while consuming less power
(20 nodes vs 21 nodes in Rabbit).

The load balancer was the same in all configurations so
the differences is explained by the timing distribution when
each node served the requested blocks. Figure 11 shows
the timing distribution of serving blocks at active nodes in
the system for Rabbit and Accordion in Gear 2 and Gear
3. The blank part of the graphs at a node shows that the
node does not serve any block. The results of Sierra were
similar to the results of Rabbit. In each graph, the verti-
cal axis is the NodeID while the horizontal axis shows the
BlockID of the dataset. In Rabbit, the nodes in ranges [1, 2],
[3, 7] and [8, 21] consequently belong to Group1, Group2

and Group3. In Accordion, the corresponding ranges are
[1, 2], [3, 8] and [9, 20]. In Gear 2 of Rabbit, as there are
only 7 active nodes from NodeID 1 to NodeID 7, there were
no result of NodeID 8. The other blank parts of the graphs

LE et al.: ACCORDION: AN EFFICIENT GEAR-SHIFTING FOR A POWER-PROPORTIONAL DISTRIBUTED DATA-PLACEMENT METHOD
1023

Fig. 11 Distribution of timing on the nodes when serving the blocks in
Gear 2 and Gear 3 using Rabbit and Accordion.

of Rabbit at some nodes show that those nodes do not serve
any block. The reason of this result lays in the data place-
ment in Rabbit because both Rabbit and Accordion used the
same load balancer.

In Rabbit and Accordion, the load balancer as de-
scribed in Sect. 3.2, to guarantee that all the active nodes
serve the same blocks from the dataset, determines the ideal
value for each node. This ideal value for each nodes depends
on the total number of blocks of the serving dataset and the
number of the blocks stored at this node. Because the to-
tal number of blocks of the dataset is fixed, the decision of
choosing which node will serve the block from the nodes
that storing the replicas of the requested block, is depended
on the number of blocks storing at those nodes. As a result,
the common load balancer utilized in Rabbit and Accordion
generally chooses the nodes of higher gear groups, which
store less blocks than the nodes of smaller gear groups.

For example, in Rabbit the replicas of BlockID 100 are
stored at NodeID 1 of Group1, NodeID 3 of Group2 and
NodeID 10 of Group3. Here, Group3 is the highest gear
group and Group2 is higher gear group than Group1. As
a result, when the system operates in Gear 3, NodeID 10
is chosen; in Gear 2, NodeID 3 is chosen and in Gear 1,
NodeID 1 is chosen to serve the BlockID 100.

Although Rabbit and Accordion utilize the common
load balancer described above, it is the data placement that
generated a different result in Fig. 10. In Rabbit, because
replicas of the dataset are stored in group unit, it is ensured
that a replica of every block is stored in a node of every
group, as in the above example. However, it is different
in Accordion as there exists a number of blocks that theirs
replicas are not stored at every group of the system. In the
example described in Fig. 4, the replicas of blocks in P3 and
P4 are only stored in nodes of Group1 and the replicas of
blocks in P2 and P5 are not stored in nodes of Group3.

As a result, in Rabbit, the nodes in higher groups
more aggressively serve the requests than the nodes in lower
group at the start of the experiment (with smaller BlockIDs),
and the nodes in lower group have to wait until the late of the

experiment (with higher BlockIDs) to join the work. Whilst
in Accordion, because there are blocks whose replicas only
stored at nodes of lower groups, such nodes are forced to
serve those blocks whenever they are called.

In this experiment, the benefit of the partitioning tech-
nique for separating the primary and backup data areas on
nodes was confirmed as Accordion-DP yielded approxi-
mately 10% better results than Accordion (Gear 3). From
the latter experiments, Accordion-DP was used to evaluate
the effectiveness of Accordion.

4.5 Effect of Reflecting the Updated Data on the Perfor-
mance

The goal of the experiment in this section is to evaluate the
effect of the proposal in the event that when the system shifts
from a low gear to a high gear, it serves the workload of read
request of reading all the dataset while performing reflection
of updated data in the background. Here, the workload of
read request was the same as the workload used in Sect. 4.4
because we wanted to verify how the read performance is
affected by the updated data reflection. It is achieved by
comparing with the results of Rabbit, Sierra, Accordion-DP
at Gear 3 reported in Fig. 10 in Sect. 4.4 in which no data
reflection is occurred.

4.5.1 Experimental Method

The workloads are generated that they are closed to the
actual operation of the multiple-gear distributed file sys-
tems, like HDFS. It is assumed that initially the file system
was operated in a High gear and stored an initial dataset.
Then, the system shifts to a Low gear for a specified power-
proportional service agreements. During this period, this
dataset was updated as new files are appended from the
clients. The systems have to apply the write-offloading tech-
nique to serve this update. Next, the systems are shifted
to the High gear in order to satisfy the higher throughput
performance on reading the whole dataset from the clients.
Here, the systems have to serve the reading request from the
client while performing updated data reflection in the back-
ground. In this assumption, as we focused on the applica-
tions on the distributed file systems like HDFS, we choose
the method to update the dataset as appending new files to
the dataset and to read the dataset as scanning all the files in
the dataset, which are considered very closed to the actual
deployments of HDFS.

In order to realize the above descriptions, three kinds of
workloads are used in this experiment. The first workload is
for the data storing process, in which an initial dataset was
written to the file systems when it operates in Gear 3. The
second workload is for the data update process, in which an
updated dataset was written to the file system when it oper-
ates in Gear 2. The third workload is for the data reading
process, in which a reading dataset, which contains the ini-
tial dataset and the updated dataset, are read from the clients
when the file system operates in Gear 3.

1024
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.5 MAY 2015

Table 5 Number of files in each dataset used in configurations.

Configuration Small Medium Large
Updated dataset 70 140 210
Initial dataset 350 280 210

Fig. 12 Average throughput for scanning the dataset.

Because the performance degradation of reading
throughput over the whole dataset is evaluated, the size of
the reading dataset in the third workload is fixed to the
same as in the workload used in the previous experiment
(Section 4.4). As a result, the reading dataset contain 420
files, each file is 64 [MB]. Furthermore, as the effect of
the updated data reflection, which is performed in the back-
ground when the systems serve the read request from the
clients is evaluated, the sizes of the initial dataset and the
updated dataset in three configurations are varied. In Small,
Medium, Large configuration, the numbers of files of the
initial dataset and the updated dataset are consequently set
as (350, 70), (280, 140) and (210, 210) (Table 5).

The third workload for the data reading process is gen-
erated similarly as in the previous experiment (Section 4.4),
i.e. uniformly distributed to clients. Here, the number of
clients is 21, which equals the maximum number of active
nodes in Rabbit for a fair evaluation. Each client queried
separated and unique 20 files and the order of the files is
randomly created.

4.5.2 Experimental Results

Figure 12 shows the experimental results as the average
throughput while scanning the dataset in three cases: small,
medium, and large amounts of transferred data. The results
were compared with the results when the system performed
the read requests in Gear 3 (without updated data), which
were the same as the previous experiment. It is seen that
configurations based on all of Accordion-DP, Rabbit and
Sierra were affected significantly by the updated data re-
flection. The throughputs were degraded significantly by
more than 20% (approximately 20% for Accordion-DP and
30% for Rabbit and Sierra). It became worse with higher
amounts of re-transferred data. This confirmed the need to

Fig. 13 The amount of data that had to be re-transferred when the system
moved from Gear 2 to Gear 3.

Fig. 14 The execution time for the data-re-transfer process when the sys-
tem moved from Gear 2 to Gear 3.

design the data placement method carefully to ensure effi-
cient gear-shifting in power-proportional file systems.

The results also indicated that Accordion-DP improved
the performance by 30% compared with Rabbit. The rea-
son is with Accordion-DP, the amount of data re-transfer
required was less than that with Rabbit and Sierra. With
Accordion-DP, only part of the dataset written when the sys-
tem operated in Gear 2 had to be re-transferred when the
system moved to Gear 3. By contrast, the whole dataset had
to be re-transferred with Rabbit as the placement policy lo-
cated replicas of the dataset in each group.

Figures 13 and 14 show the amounts of re-transferred
data and the execution times required to finish the re-transfer
process. Figure 13 shows that with Rabbit and Sierra, the
amounts of data in the small, medium, and large cases were
4480 MB, 8960 MB, and 13440 MB; while with Accordion-
DP were 2688 MB, 5376 MB, and 8064 MB, respectively.
As shown in Fig. 14, Accordion-DP significantly reduced
the time required to finish the updated data-re-transfer pro-
cess by up to 66% (Small case) compared with Rabbit and
Sierra.

LE et al.: ACCORDION: AN EFFICIENT GEAR-SHIFTING FOR A POWER-PROPORTIONAL DISTRIBUTED DATA-PLACEMENT METHOD
1025

Table 6 Experimental environment.

#Gears 3
#active nodes Accordion-DP (4, 8, 12) 4, 8, 12
#active nodes Accordion-DP (4, 12, 20) 4, 12, 20
#active nodes Accordion-DP (8, 16, 24) 8, 16, 24
Number of files 420
File size 64 MB

Fig. 15 The throughput per watt with Accordion-DP in several configu-
rations.

4.6 Effects of Different Configurations of Accordion-DP

We also performed an experiment to evaluate the effects of
different configurations of Accordion-DP on the power pro-
portionality of the system. We used three configurations
with different numbers of active nodes. The system was as-
sumed to operate in a three-gear mode: Gear 1, Gear 2, and
Gear 3. In the configuration Accordion-DP (x, y, z), x, y,
and z indicate the number of active nodes in Gear 1, Gear 2,
and Gear 3, respectively. The other environments were the
same as those used in the previous experiment in Table 6.

Figure 15 shows the performance (throughput per watt)
for the three configurations we evaluated. It is seen that
larger configuration gained better throughput per Watt re-
sults at all power settings. The considerable reason is that
the load at each node in larger configuration is lighter as the
number of serving data becomes smaller. As a result, it can
be suggested that Accordion is able to perform well with the
high number of active nodes. In a future work, we want to
verify this assumption by further experiments using a more
number of nodes.

4.7 Discussion

The data placement strategy used by Accordion-DP ensures
high power-proportionality performance of systems, espe-
cially when systems operate in a high gear mode with a
larger amount of active nodes. It was well modeled through
numerical analysis and verified through the empirical exper-
iments. In Accordion-DP, the amount of data requested and
the access timing of the active nodes are well distributed

among all the active nodes so the I/O throughput perfor-
mance scales well with the system’s size. Furthermore,
Accordion-DP was highly effective at reducing the cost of
gear-shifting because it improved the performance by 66%
when transferring the updated data.

Benefit from the smaller amount of the updated data,
Accordion is believed to perform well for the write-intensive
applications, in which the larger amount of re-transferred
data will occur because of write-offloading. Moreover, al-
though large amount of transferred data will occur, regard-
ing to the primary data is focused, the write throughput for
the applications when the system operates in a lower gear
is improved compare with Rabbit and Sierra. As the pri-
mary data are also managed by higher gear groups instead
of only the lowest gear group as in Rabbit and Sierra, the
write throughput becomes larger as there are more nodes to
serve writing the primary data.

5. Conclusion and Future Work

Recently, energy-efficient infrastructures for Big Data pro-
cessing are gaining much attention from both industrial and
academia. In this paper, we identified the issue of inef-
fective gear-shifting in power-proportional distributed file
systems and we proposed the Accordion data placement
method to address this problem. Furthermore, the Accor-
dion configuration is highly flexible because the number
of nodes in each group can be determined by a weak con-
strain. In Accordion, the data reliability in the lowest con-
figuration which is omitted in other methods, is ensured
through utilizing chained declustering. Extensive experi-
ments using actual machines with the Accordion prototype
verified the effectiveness of Accordion. Accordion also re-
duced the execution time required for updated data move-
ment by 66% and improved the power-proportional perfor-
mance by 30% compared with Rabbit and Sierra, two of
the most standard power-proportional data placement aim-
ing for Big Data. Furthermore, Accordion is applicable for
smooth gear-shifting in multigear systems, especially when
the number of gear is high. In such situation, when the gear-
shifting is occurred at a high gear, Accordion was shown to
be able to effectively shorten the execution time by at most
91% compared to Sierra. From the experiment results, Ac-
cordion is believed to be capable for deploying in real sys-
tem, especially for commodity-off-the-shelf based systems,
in which the power consumption is still not gained enough
support from modern hardware technologies.

In the future, we would like to confirm the effective-
ness of Accordion in different experimental environments,
by using actual benchmarks and with more number of nodes.
Moreover, we want to integrate Accordion with architec-
tures other than HDFS. We will also consider developing
a specific algorithm to deal with system failures.

Acknowledgments

This work was supported partly by Grants-in-Aid for Sci-

1026
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.5 MAY 2015

entific Research from the Japan Science and Technology
Agency (A) (#22240005).

References

[1] H.H. Le, S. Hikida, and H. Yokota, “Efficient gear-shifting for a
power-proportional distributed data-placement method,” Proc. 2013
IEEE International Conference on Big Data, pp.76–84, 2013.

[2] S. Ghemawat, H. Gobioff, and S.T. Leung, “The google file sys-
tem,” Proc. 19th ACM Symposium on Operating Systems Principles,
pp.29–43, 2003.

[3] Apache Hadoop, “HDFS Hadoop Wiki.” http://wiki.apache.org/
hadoop/HDFS.

[4] L.A. Barroso and U. Hölzle, “The case for energy-proportional com-
puting,” Computer, vol.40, pp.33–37, 2007.

[5] W. Charles, O. Mathew, Q. Jin, W.A.I. Andy, R. Peter, and K. Geoff,
“PARAID: A gear-shifting power-aware RAID,” ACM Trans. Stor-
age, vol.3, pp.13:1–13:33, 2007.

[6] A. Hrishikesh, C. James, G. Varun, G.R. Ganger, K. Michael A., and
S. Karsten, “Robust and flexible power-proportional storage,” Proc.
1st Symposium on Cloud Computing, pp.217–228, 2010.

[7] E. Thereska, A. Donnelly, and D. Narayanan, “Sierra: Practical
power-proportionality for data center storage,” Proc. 6th European
Conference on Computer Systems, pp.169–182, 2011.

[8] S. Priya, T. Vasily, and Z. Erez, “Evaluating performance and energy
in file system server workloads,” Proc. 8th USENIX Conference on
File and Storage Technology, pp.253–266, 2010.

[9] J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” Proc. 6th Symposium on Operating System
Design and Implementation, pp.137–150, 2004.

[10] D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading:
Practical power management for enterprise storage,” ACM Transac-
tion on Storage, vol.4, no.3, pp.10:1–10:23, 2008.

[11] H.H. Le, S. Hikida, and H. Yokota, “An evaluation of power-
proportional data placement for Hadoop distributed file systems,”
Proc. Cloud and Green Computing, pp.752–759, 2011.

[12] H.H. Le, S. Hikida, and H. Yokota, “NameNode and DataNode cou-
pling for power-proportional Hadoop distributed file system,” Proc.
18th International Conference on Database System for Advanced
Applications, Part II, pp.99–107, 2013.

[13] H.H. Le, S. Hikida, and H. Yokota, “NDCouplingHDFS: A cou-
pling architecture for a power-proportional Hadoop distributed file
system,” IEICE Trans. Inf. & Syst., vol.E97-D, no.2, pp.213–222,
Feb. 2014.

[14] B. Mao, D. Feng, H. Jiang, S. Wu, J. Chen, and L. Zeng, “GRAID:
A green RAID storage architecture with improved energy efficiency
and reliability,” Proc. 16th International Symposium on Modeling,
Analysis and Simulation of Computers and Telecommunication Sys-
tems, pp.1–8, 2008.

[15] J. Leverich and C. Kozyrakis, “On the energy (in)efficiency of
Hadoop clusters,” SIGOPS Operating System Review, vol.44,
pp.61–65, 2010.

[16] R.T. Kaushik and B. Milind, “GreenHDFS: Towards an energy-
conserving, storage-efficient, hybrid Hadoop compute cluster,” Proc.
2010 International Conference on Power Aware Computing and Sys-
tems, pp.1–9, 2010.

[17] J. Kim and D. Rotem, “Energy proportionality for disk storage us-
ing replication,” Proc. 14th International Conference on Extending
Database Technology, pp.81–92, 2011.

[18] H.I. Hsiao and D. DeWitt, “Chained declustering: A new availabil-
ity strategy for multiprocessor database machines,” Proc. 6th Inter-
national Conference on Data Engineering, pp.456–465, 1990.

[19] J. Gray, “Greetings from a filesystem user,” Proc. 4th USENIX Con-
ference on Files and Storage Techniques, 2005.

[20] “AC/DC Power HiTester 3334.” http://www.hioki.com/products/
power current sensor/power meters/402.

Hieu Hanh Le received his B.E., and M.E.
degree from Tokyo Institute of Technology in
2008, and 2010, respectively. He is currently a
researcher at Yokohama Research Laboratory of
Hitachi. He is interested in research on data en-
gineering, information storage systems, and net-
work engineering. He is a member of IPSJ.

Satoshi Hikida received his M.E. degree
from Tokyo Institute of Technology in 2011. He
is currently a Ph.D student at Tokyo Institute of
Technology. He is engaged in research on data
engineering, and information storage systems.
He is a student member of IPSJ.

Haruo Yokota received his B.E., M.E. and
Dr.Eng. degrees from Tokyo Institute of Tech-
nology in 1980, 1982, and 1991, respectively.
He joined Fujitsu Ltd. in 1982, and was a re-
searcher at ICOT for the Japanese 5th Genera-
tion Computer Project from 1982 to 1986, and
at Fujitsu Laboratories Ltd. from 1986 to 1992.
From 1992 to 1998, he was an Associate Profes-
sor at Japan Advanced Institute of Science and
Technology (JAIST). He is currently a Profes-
sor at the Department of Computer Science in

Tokyo Institute of Technology. His research interests include the general
research areas of data engineering, information storage systems, and the
dependable computing. He was a chair of ACM SIGMOD Japan Chap-
ter, a trustee board member of IPSJ and the DBSJ, and the Editor-in-Chief
of Journal of Information Processing. He is a Vice Chair of DBSJ, an as-
sociate editor of the VLDB Journal, a fellow of IEICE and IPSJ, senior
member of IEEE, and a member of JSAI, ACM, and ACM-SIGMOD.

