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Abstract

With the rapid development of information technology, gesture com-

munication systems become more and more popular in the last two

decades. In gesture communication systems, detecting face and hands

is particularly important. Compared with face detection, hand detec-

tion is far more difficult because hands are highly deformable.

There are many approaches for detecting hands. These approaches

can be roughly divided into two categories. One is device-based and

another is vision-based. Device-based methods detect hands based on

the data obtained from some specific devices such as data gloves, sen-

sors, Kinect, and so on. In this case, hands positions can be detected

correctly. However, wearing specific devices may cause troublesome

and uncomfortableness. Furthermore, processing massive data from

these devices could lead to a large amount of calculation. By con-

trast, vision-based techniques process 2D images captured by cam-

eras. They are more natural and suitable for real-time applications

compared with device-based methods. Nevertheless, it is difficult to

detect hands positions precisely by utilizing only 2D information.

Our research focuses on improving the accuracy of vision-based hand

detection systems. In our work, we detect the face first, and then use

the face information to improve the performance of hand detector.

We train the face and hand detectors based on Haar-like features

by AdaBoost, which is a machine learning method. To reduce the

false positive rate and the number of hand training instances, we

propose a novel technique called ”background-masking” which applies

the face information to the training of hand detector. In addition, we

devise a new AdaBoost variant which we call ”Penalized AdaBoost” to



improve the performance of the face and hand detectors. Experiments

show that our detection system based on background-masking and

Penalized AdaBoost not only achieves high accuracy, but also saves

a lot training and detection time compared with other vision-based

approaches.
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Chapter 1

Introduction

1.1 Objective

Face and hands detection is crucial to gesture communication systems because

they carry a lot important information that signers are conveying. Nowadays,

vision-based methods are preferable since device-based approaches may lead to

troublesome and tremendous calculation. Among many vision-based object de-

tection techniques, Viola-Jones method has gained its popularity rapidly due to

its high performance on both the speed and accuracy. It combines Haar-like fea-

tures with AdaBoost. Haar-like features are proved robust against illumination

and scale changes whereas AdaBoost is a machine learning method for classifi-

cation. Viola-Jones method achieved considerable success in face detection [1].

However, it is difficult to apply this approach to hand detection due to the high

deformability of hands. If we train one detector for one kind of hand shape,

we can not handle many hand shapes in real time because many detectors are

required simultaneously. If we train one detector for many hand shapes, the de-

tection system can run in real-time. However, the false positive rate will be high

due to the diversity of training instances.

To solve the above problem, we propose a novel hand detection system which

trains one detector for multiple hand shapes. Our detection system combines a

new AdaBoost variant (Penalized AdaBoost), a novel training technique (background-

masking), and motion filtering together. The main objective of our research is

accomplished by addressing the following three sub-goals.

1



1. Introduction

• Decreasing the false positive rate of our trained hand detector.

• Reducing the number of hand training instances to speed up the training

process of hand detector.

• Improving the classification performance of AdaBoost to increase the recall

of our detection system.

1.2 Motivation

A gesture is a type of non-verbal communication language which consists of sev-

eral visible body actions. Gestures usually include both face and hands move-

ments. Differently from other physical body movements, gestures convey partic-

ular messages. A combination of hand trajectory, hand shape, face expression,

the distance between face and hands represents various meaningful words and

sentences. Gesture communication systems (also called gesture recognition sys-

tems) translate visible gestures into verbal language. Gesture communication

systems provide a platform for an arbitrary communication between hearing im-

paired people and non-deaf people. Furthermore, they can be assistant tools for

learning sign languages. For gesture communication systems, accuracy and speed

are two crucial requirements.

Machine learning algorithms are widely used in gesture communication sys-

tems due to their rapidity and efficiency. Among these methods, HMM (Hidden

Markov Model) is most popular because it builds a statistical model for temporal

pattern recognition [2–4]. However, this technique requires a tremendous training

data set [3]. For each sign language word which is a sequence of actions, many

training instances are needed. Therefore, collecting training instances becomes a

laborious and time-consuming task. To solve this problem, many researchers try

to break down gestures into monotonous movements. Since many gestures share

similar basic movements, recognition systems based on these basic movements

require far less training instances than those based on gestures.

In our research, we want to break down monotonous movements into smaller

parts such as hand shapes, hand positions, hand trajectories, relative distance

between face and hands, and so on. Since a lot of monotonous movements share

2



1.3 Approach

similar hand shapes and moving styles, our proposal can compress the training

data set more than those movements based approaches. Our research is valuable

because it can train a statistical gesture recognition model based on limited train-

ing data. Furthermore, our idea makes it possible to deal with a large vocabulary

of sign language in real-time. Because our research is based on face and hand

information, detecting face and hands position precisely and extracting face and

hands patches in proper size are most important. In this dissertation, we focus

on devising a novel face-hand detection system that can run in real-time with

high accuracy.

1.3 Approach

As we discussed above, vision-based detection approaches are more natural and

suitable for real-time applications. However, they are more difficult to achieve

high accuracy than device-based methods especially in hand detection because

hands are highly deformable. In this paper, we propose a novel vision-based

face-hand detection system which has strong robustness against rotation, scale

change, illumination change, and background change. Our detection system is

based on Haar-like features and AdaBoost. Nevertheless, differently from Viola-

Jones method [1], we propose background-masking [5], motion filtering [6] and

Penalized AdaBoost [7] to improve the performance of our detection system.

As a general rule, training instances with diverse backgrounds are required to

train a hand detector. However, using training instances in various backgrounds

not only leads to a long training time, but also causes background noise which

may degrade the performance of the trained hand detector. background-masking

effectively solves this problem by a skin color segmentation technique. As we

know, face detection is more advanced than hand detection because faces share

similar patterns. Thus, we can detect the face first, and then use the face infor-

mation to do a skin color segmentation. background-masking does the skin color

segmentation for both training instances and test images. Thereby, it can train

the hand detector based on training instances in only one background.

3



1. Introduction

Motion filtering aims at improving the performance of background-masking.

Motion filtering combined with background-masking excludes non-skin-color parts

and non-moving part efficiently.

Penalized AdaBoost is proposed to improve the performance of our face and

hand detectors. It is a variant of AdaBoost which utilizes the margin distribution

to restrain the misclassification of small-margin instances. Moreover, it introduces

an adaptive reweighting technique which can reduce the influence from noise-like

instances. Our face-hand detection system is built by the following steps:

(1) To train the face detector, first we extract Haar-like features from face

training instances. Then we utilize Penalized AdaBoost to train the face classi-

fiers. Finally we combine these trained classifiers into one face detector.

(2) To train the hand detector, first we extract Haar-like features from the

background-masked hand instances. Then we train hand classifiers by Penalized

AdaBoost. Finally we combine the trained classifiers into one hand detector.

(3) First we utilize background-masking and motion filtering to process the

test images. Then we use the trained face and hand detectors to detect face and

hands in the processed images.

1.4 Contributions

The novel contributions of our research are listed as follow:

• We proposed background-masking which introduces a new training style

for machine learning methods. It utilizes the background-masked hand

instances instead of 2D hand images. background-masking removes the

background part of training instances. Thus, it can avoid the influence of

background noise. On the other hand, instead of using training instances

in diverse backgrounds, we can create the background-masked instances

from hand images in only one background. Therefore, background-masking

decreases the number of training instances effectively [5].

• We proposed Penalized AdaBoost to improve the classification performance

of our detection system. It penalizes the misclassification of small-margin

4



1.5 Outline

instances in the current loop by analyzing the margin distribution in the pre-

vious loop. Furthermore, it reinitialize the weights of noise-like instances to

reduce their influence on the training. Our experiments show that Penalized

AdaBoost is more robust than other AdaBoost variants. As a new machine

learning approach, Penalized AdaBoost not only achieves high performance

in our detection system, it can also be applied to improve the classification

performance of other systems [7].

• We proposed a novel face-hand detection system which is a combination

of Haar-like features, background-masking, motion filtering, and Penalized

AdaBoost. Our experiments show that this detection system can run in

real-time, and is robust to scale change, illumination change, background

change, and rotation [6].

• We also proposed another AdaBoost variant which we call Parameterized

AdaBoost. Although it is not related to our detection system, it proves a

new theory that the decreasing of training error can be speed up by reducing

the sum of sample weights explicitly [8].

• We analyzed the generalization abilities of many AdaBoost variants. Differ-

ently from other comparison studies, our work compare the generalization

abilities of different AdaBoost variants by analyzing the weak hypotheses

and margin distributions. Our comparison shows statistical proof to explain

why this variant is better than that one. Our study is useful for researchers

who want to improve the performance of their applications by switching to

another AdaBoost variant [9].

In general, our research not only contributes to face and hand detection in

gesture communication systems, but also contributes to the field of artificial in-

telligence.

1.5 Outline

This dissertation includes 8 chapters. This first chapter is the introduction. Chap-

ter 2 describes the basic ideas related to our research, including the introduction

5



1. Introduction

of different AdaBoost variants, the meaning of face and hand detection in gesture

communication systems, previous research in vision-based face detection, and

previous research in vision-based hand detection. Chapter 3 explains our novel

AdaBoost variant: Penalized AdaBoost. Also it shows the statistical proof that

Penalized AdaBoost is more robust than other variants with respect to the gen-

eralization errors. Chapter 4 describes our proposed face-hand detection system.

In this chapter, background-masking and motion filtering are introduced in great

detail. Chapter 5 presents our another AdaBoost variant called Parameterized

AdaBoost, and shows how Parameterized AdaBoost speeds up the training pro-

cess. Chapter 6 shows experimental results with respect to Penalized AdaBoost,

our face-hand detection system, and Parameterized AdaBoost. Chapter 7 is a

comparison study of different AdaBoost variants and Chapter 8 concludes our

entire research with values, limitations, and future work.

6



Chapter 2

Related Work

2.1 Training instances and weak classifiers

In this section, we briefly describe the training instances and weak classifiers

used in our research. We suppose that S ={(x1, y1), (x2, y2), . . . , (xN , yN)} is a

training set, where N is the number of training instances. We set yi to be 1 if

xi is positive, otherwise, we set yi to be -1. In this dissertation, we focus on

solving binary classification problems. In our research, CART (Classification and

Regression Tree) is utilized as weak classifiers. Figure 2.1 shows an example of

CART. It is a decision tree whose leaves produce the classification results and

inner nodes split the tree to minimize the error rate. In Fig.2.1, the feature vector

of instance xi is represented by Xi = [xi,1, xi,2, ..., xi,m].

2.2 AdaBoost and its variants

AdaBoost is a machine learning method for binary classification. At each itera-

tion, it increases the weights of misclassified instances and decreases the weights

of correctly classified instances. This type of weight adjustment is most impor-

tant because AdaBoost can emphasize more on difficult-to-classify instances [10].

As the popularity of AdaBoost increases, many different variants were proposed

for diverse purposes. In recent years, AdaBoost and its variant are widely utilized

in data classification and object detection.

7



2. Related Work

Figure 2.1: An example of CART

2.2.1 Real AdaBoost

The weak classifiers in AdaBoost (also called Discrete AdaBoost) output +1 or

−1 to predict the class of instances. To analyze this method mathematically,

a generalized version called Real AdaBoost is proposed by Schapire and Singer

[11]. Differently from AdaBoost, each weak hypothesis in Real AdaBoost pro-

duces real numbers. The sign of the weak hypothesis predicts the class of the

weighted majority of instances falls into the same partition divided by CART,

and the absolute value of the weak hypothesis shows a predication confidence.

Real AdaBoost is explained as follows:

——————————————————————————————–——————————————————————————————–
Real AdaBoost

——————————————————————————————–
1. Assign the initial weights wi,1 = 1/N , where i = 1, 2, ..., N .

2. Repeat the following tasks for t = 1, 2, ..., T :

(a) Train a CART to classify the training set S into L partitions. Each leaf of

the CART represents one partition. For each partition Sj
t where j ∈ {1, 2, ..., L},

compute W j
t+ and W j

t− as follows:

W j
t+ =

∑
i:xi∈Sj

t∧yi=1
wi,t. (2.1)

8
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W j
t− =

∑
i:xi∈Sj

t∧yi=−1
wi,t. (2.2)

(b) Compute the weak hypothesis for every partition Sj
t as

f j
t (x) = 1/2× ln(W j

t+/W
j
t−). (2.3)

For each training instance xi, its weak hypothesis equals to fp
t (x), where p is the

index of partition which xi falls into.

(c) Update the weights of all instances by

wi,t+1 = wi,texp[−yift(xi)]/Gt. (2.4)

Gt =
∑

i
wi,texp[−yift(xi)]. (2.5)

3. Set FT (xi) =
∑T

t=1 ft(xi), and then output the strong classifier H(xi) =

sign[FT (xi)].
——————————————————————————————–

2.2.2 Gentle AdaBoost

In order to improve the classification performance of AdaBoost, Friedman et al.

analyzed the relationship between additive logistic models and AdaBoost, and

then proposed Gentle AdaBoost that calculates weak hypotheses by optimizing

the weighted least square errors [12]. Since Gentle AdaBoost tries to reduce the

variance of its weak hypotheses, it is more robust and stable than AdaBoost and

Real AdaBoost [12]. Next we describe Gentle AdaBoost as follows:

——————————————————————————————–——————————————————————————————–

Gentle AdaBoost
——————————————————————————————–

1. Assign the initial weights wi,1 = 1/N , where i = 1, 2, ..., N .

2. Repeat the following tasks for t = 1, 2, ..., T :

(a) Train a CART, and then compute W j
t+ and W j

t− for every partition Sj
t the

same as in Step 2(a) of Real AdaBoost.

9
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(b) Calculate the weak hypothesis for each partition Sj
t by

f j
t (x) = [(W j

t+ −W
j
t−)/(W j

t+ +W j
t−)]. (2.6)

For any training instance xi, Set its weak hypothesis to be fp
t (x). Here p is the

index of partition which xi belongs to.

(c) Update the weights for all instances by (2.4) and (2.5).

3. Set FT (xi) =
∑T

t=1 ft(xi), and then output the strong classifier H(xi) =

sign[FT (xi)].
——————————————————————————————–

2.2.3 Modest AdaBoost

In order to reduce the generalization error of Gentle AdaBoost, Vezhnevets and

Vezhnevets introduced Modest AdaBoost which utilizes an “inverted” distribu-

tion to increase the contribution of weak hypotheses that work well on instances

with large weights [13]. Modest AdaBoost obtains better generalization errors

than Gentle AdaBoost in some data sets [14]. Nevertheless, it performs worse than

Gentle AdaBoost occasionally with respect to the generalization errors. Modest

AdaBoost is introduced by the following algorithm.

——————————————————————————————–——————————————————————————————–
Modest AdaBoost

——————————————————————————————–
1. Assign the initial weights wi,1 = 1/N , where i = 1, 2, ..., N .

2. Repeat the following tasks for t = 1, 2, ..., T :

(a) Train a CART, and then compute W j
t+ and W j

t− for every partition Sj
t the

same as in Step 2(a) of Real AdaBoost.

(b) Compute an inverted weight wi,t as

wi,t = (1− wi,t)/Ut. (2.7)

Here Ut =
∑

i(1− wi,t). Next calculate W
j

t+ and W
j

t− for every partition Sj
t by

W
j

t+ =
∑

i:xi∈Sj
t∧yi=1

wi,t. (2.8)

10
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W
j

t− =
∑

i:xi∈Sj
t∧yi=−1

wi,t. (2.9)

(c) Calculate the weak hypothesis for each partition Sj
t by

f j
t (x) = [W j

t+(1−W j

t+)−W j
t−(1−W j

t−)]. (2.10)

For any instance xi, its weak hypothesis is fp
t (x), where p is the index of partition

which xi belongs to.

(c) Update the weights for all instances by (2.4) and (2.5).

3. Set FT (xi) =
∑T

t=1 ft(xi), and then output the strong classifier H(xi) =

sign[FT (xi)].

——————————————————————————————–

2.2.4 Other AdaBoost variants

Except Real, Gentle, and Modest AdaBoost, there are many other variants pro-

posed recently. For example, BrownBoost was proposed to reduce the influence

of outliers in training [15]. LPBoost was created to optimize the minimal margin

of training instances by utilizing linear programming [16]. Unfortunately, a com-

parison study showed that LPBoost overall performs worse than AdaBoost [17].

MadaBoost and SmoothBoost were proposed to improve the robustness against

malicious noise data [18, 19]. Other AdaBoost variants such as AdaC1, AdaC2,

AdaC3, AdaCost, CSB0, CSB1, CSB2, and RareBoost assign weights to positive

training data and negative training data differently to achieve a better perfor-

mance on imbalanced data sets [20–23]. There are also some variants which trade

off the integrity of the training set for faster training [24–27]. SoftBoost, Soft-

LPBoost, ReweightBoost, Interactive Boosting, and RobustBoost were proposed

to suppress the generalization ability of AdaBoost [28–33]. SoftBoost optimizes

a soft margin instead of the hard margin used in AdaBoost [28, 29]. While

Soft-LPBoost is a combination of SoftBoost and LPBoost [30]. ReweightBoost

establishes a tree structure by reusing the selected weak classifiers. However, it

can not use other structures as its weak classifiers except stump decision trees

[31]. Interactive Boosting assigns weights to both features and training data [32].

11



2. Related Work

RobustBoost is an improvement of BrownBoost [33]. The above five AdaBoost

variants actually achieve better generalization errors than AdaBoost. Neverthe-

less, they increase the amount of complicated calculation, which may cause a

longer training time. AdaTree is another AdaBoost variant which aims at speed-

ing up the training process. It selects weak classifiers the same as in AdaBoost,

but combines them non-linearly [34]. FM-AdaBoost and FloatBoost delete the

less effective weak classifiers so that they outperform AdaBoost if they have the

same number of weak classifiers as AdaBoost [35, 36]. However, they require

more training cycles compared with AdaBoost. On the other hand, Filterboost

and Regularized AdaBoost were introduced to solve overfitting problems [37, 38].

Filterboost utilizes a new logistic regression technique whereas Regularized Ad-

aBoost needs validation subsets to identify and regulate the overfitting iteratively.

In the last decade, A novel boosting algorithm called SemiBoost has been devel-

oped extensively. It integrates supervised learning with semi-supervised learning

by utilizing both labelled and unlabelled training data [39]. Its purpose is to

improve the robustness when the labelled training data are not sufficient [40].

Besides the above discussed variants, Conservative.2 AdaBoost, AdaBoost.M1,

and Aggressive AdaBoost were proposed to handle multiple classification prob-

lems [41].

2.2.5 Margins in AdaBoost variants

In AdaBoost and its variants, the classification margin of an instance xi is re-

garded as the difference between prediction confidence of weak hypotheses pro-

ducing correct classification and that of weak hypotheses causing misclassification

[42]. It is in the range [−1, 1]. The instance xi is correctly classified if and only if

its margin is positive [42]. The margin of an instance xi in AdaBoost is defined

by [42]:

MarginT (xi) =
yi
∑T

1 αtht(xi)∑T
1 αt

. (2.11)

Here
∑T

1 αtht(xi) is the final strong classifier, and ht(xi) is the weak classifier at

t-th iteration.
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Differently from AdaBoost, Most variants such as Real, Gentle, and Modest

AdaBoost fold the parameter αt into the weak hypothesis. For example, for an

instance xi, the value of its weak hypothesis at the t-th iteration ft(xi) is a real

number whose sign represents the class of the weighted majority of training data

in the partition xi belongs to, and the absolute value |ft(xi)| shows a prediction

confidence. The larger its prediction confidence is, the higher classification ability

the weak hypothesis has. Then we can deduce the following equation by utilizing

weak hypotheses with prediction confidence [7].

MarginT (xi) =
yi
∑T

1 ft(xi)∑T
1 |ft(xi)|

, (2.12)

where ft(xi) denotes the weak hypothesis of instance xi at t-th iteration. In

(2.12), T is the number of iterations, and the weak hypothesis ft(xi) is actually a

function from instance space X to real numbers. Figure 2.2 shows the cumulative

margin distributions of Real AdaBoost in a data set Ionosphere at Iteration 10

and 100. From Fig. 2.2, we can see that the margins of more and more instances

become positive as the number of iterations increases. This means more and more

instances are correctly classified when the number of weak classifiers is increased.

(a) Margin distribution at Iteration 10 (b) Margin distribution at Iteration 100

Figure 2.2: Cumulative margin distributions of Real AdaBoost
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2.3 Face detection in gesture communication

In a gesture communication system, face also carries some particular messages.

In most cases, the relative distance between hands and face plays an important

role in sign language recognition. Moreover, face expression is also important to

some kinds of sign languages like Japanese Sign Language. To obtain the face

information correctly, first we need to detect the face position and extract the

face patch. Face detection is more advanced than hand detection since faces of

different people share a similar pattern as Fig. 2.3 shows. This pattern includes

two parts, one is that the eye areas are always darker than nose area. Another

is the eye areas are always darker than the area below two eyes. There are many

Figure 2.3: Face pattern shared by different faces

features can be utilized to recognize a face, such as SIFT (Scale invariant feature

transform), HOG (Histogram oriented gradients), LBP (Local binary patterns),

Haar-like features and so on. On the other hand, a lot of algorithms are also

applied to face detection, such as SVM (Support vector machine), PCA(Principal

Component Analysis), Random forest, AdaBoost, GMM, and so on. Among these

features and algorithms, Viola-Jones method which combines Haar-like features

with AdaBoost achieved high accuracy in face detection [1]. This method also

computationally outperforms other approaches that are based on SIFT or HOG.

In recent years, many researchers improved Viola-Jones face detector by various

techniques [43, 44].
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2.4 Hand detection in gesture communication

In this section, first we compare device-based hand detection with vision-based

hand detection. Then we discuss the features and algorithms currently used in

vision-based hand detection.

2.4.1 Device-based vs vision-based hand detection

Hand detection approaches can be divided into two categories according to the

way how the hand information is collected. One category is device-based, and

another is vision-based. Device-based methods collect the hand information via

specific devices like data glove, sensor, and kinect. Data glove shown in Fig. 2.4

(a) can not only locate the positions of hands, but also the positions of fingers.

It is easy to get the detail information of hands with data gloves [45]. However,

wearing data gloves may cause uncomfortableness or troublesome. Researchers

also use sensors as shown in Fig. 2.4 (b) to transmit the information of hands [46].

Unfortunately, sensors suffer from the same problem as data gloves does. Fur-

thermore, selecting useful data from the information transmitted by data gloves

or sensors may be also a tough task in sign language recognition. Nowadays, A

novel device called Kinect as shown in Fig. 2.4 (c) becomes more and more pop-

ular. It builds the 3D human body first, and then precisely locates each human

part such as face, hand, arm, and so on [47–49]. However, Kinect has a distance

limit and requires a large amount of computation.

(a) Data glove (b) Sensor (c) Kinect

Figure 2.4: Devices for collecting data from hands

Differently from device-based approaches, vision-based methods use 2D im-

ages captured by cameras. Compared with multidimensional data captured by
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specific devices, 2D information is easier to be processed. Furthermore, vision-

based methods do not have the problem caused by wearing. Nevertheless, vision-

based methods detect the hand positions more difficultly compared with device-

based techniques.

2.4.2 Vision-based hand detection approaches

In vision-based hand detection, many features and techniques are applied to rec-

ognize hands. Among these features, skin color is widely used to show the po-

tential area of hands. A technique called skin-color segmentation was often con-

ducted to deflate the range for hand detection [50]. In recent years, researchers

prefer to combine skin-color segmentation with other algorithms to improve the

robustness of hand detection systems. Skin-color segmentation was combined

with optical flow [51]. While Wen and Zhan combined skin-color segmentation

with Camshift [52, 53]. Camshift is an object tracking algorithm based on his-

tograms of color components. Francke et al. applied GMMs (Guassian Mixture

Models) to the skin-color segmentation, and then they utilized Meanshift to track

hands [54].

Besides skin color, motion information is also used in vision-based hand detec-

tion. Cisneros and Rodriguez devised a detection system which is based on frame

difference [55]. While Alsoos and Joukhadar combined skin-color segmentation

with Motion History Images (MHI) [56]. A novel hand detection system which

integrates skin-color segmentation, frame difference, and gradient tracking was

proposed in [57].

Contours and shapes are also discriminant features for vision-based hand de-

tection systems. Ong and Rowden utilized Shape-context to detect hands. Their

system achieved a 99.8% detection rate in videos with simple background [58].

Other researchers combined skin-color segmentation with hand shape matching

[59, 60]. A new approach which integrates skin-color segmentation, hand shape

detection, and context recognition together to detect hands was proposed in [61].

Actually, motion, gradient, skin-color, context, shape, and contour are very

important features for detecting hands. However, they are not robust sufficiently

against background change, illumination change, and rotation. To devise hand
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detection systems with high accuracy, many researchers applied more robust fea-

tures such as SIFT and HOG. For example, Wang and Wang combined SIFT

with AdaBoost in [62]; it performed very well in hand detection. HOG-based al-

gorithms were also introduced to hand detection systems [63–65]. A novel system

combined HOG with LTP (Local trinary patterns) features whereas another one

integrated HOG with LBP features [66, 67]. HOG and SIFT features were proved

more robust than others like skin color, gradient, and so on. However, processing

these features is computationally expensive.

Statistical models were also applied to detect hands [68, 69]. Nevertheless,

they can only deal with limited hand shapes. If we apply this technique to

handle many hand shapes, it is difficult to implement it in real time because

many hand models should be loaded simultaneously. Some researchers used wrist

or finger detection to locate hand positions [70–72]. Unfortunately, they have to

combine other techniques to extract the hand patches in proper size. A pixel-

level hand detection approach utilized 200 million labelled hand pixels to train

the hand detector [73]. This method obtained strong robustness to rotation and

illumination change. However, its ability of classifying hands from other skin

color parts is unclear because videos contain faces or arms were not tested in the

experiments. It is showed that approaches based on robust features and machine

learning algorithms are more suitable for detecting multivariate hands [74, 75].

Recently, Viola-Jones method which is based on Haar-like features and AdaBoost

was introduced to face detection [1]. As the popularity of Viola-Jones method

increased, many improvements were also proposed. For example, Mustafa et al.

improved Viola-Jones method by utilizing Gentle AdaBoost instead of AdaBoost

[76].

Viola-Jones method was first applied to hand detection by Kolsch and Turk.

They trained 8 hand detectors to recognize 8 hand shapes [77]. Kolsch and Turk

proved that their approach is robust enough to background and illumination

changes, but not robust against rotation [78]. To detect rotated hands, Barczak

and Dadgostar utilized rotated hand instances for training the detectors [79].

In addition, a hybrid method which combines Haar-like features with skin-color

segmentation was also introduced to detect hands [80]. For reducing the detection

area of Viola-Jones hand detector, Canalis et al. utilized face detection to predict
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the potential positions of hands [81]. On the other hand, Guo et al. utilized

pixel-based hierarchical features instead of Haar-like features in hand detection

to improve the accuracy [82].

Viola-Jones method is proved suitable for real-time hand detection systems.

However, it is confined to detect limited hand shapes since each hand shape needs

one trained detector and many instances for training. To solve this problem, Wu

and Nagahashi utilized training instances in multiple hand shapes to train one

detector [83]. However, it needs a lot of training time, and causes a high false

positive rate. To decrease the false positive rate, Wu and Nagahashi proposed

a new preprocessing technique that uses small hand parts instead of the whole

hand images as training instances [84]. Unfortunately, it requires test images in

high resolution and other approaches to bound the hand area in proper size.

In this dissertation, we also utilize training instances in multiple hand shapes

to train one hand detector. However, we propose background-masking method to

reduce the false positive rate and training time. Furthermore, we devise Penalized

AdaBoost to replace AdaBoost for a better classification performance. In next

chapter, we will explain Penalized AdaBoost in details.
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Chapter 3

Proposed Penalized AdaBoost

3.1 Basic knowledge: Gentle AdaBoost

Since Penalized AdaBoost is based on Gentle AdaBoost, we briefly review the

basic idea of Gentle AdaBoost in this section. Gentle AdaBoost is an AdaBoost

variant which calculates its weak hypothesis by minimizing the weighted least

square error in each iteration. In this dissertation, we use CART as weak classi-

fiers. Nevertheless, the weak hypotheses are not identically CART. Next we will

introduce the weak hypotheses in Gentle AdaBoost in details.

3.1.1 Weak hypotheses

The weak hypotheses of Gentle AdaBoost are calculated by (2.6). From (2.6), we

can see that the value of the weak hypothesis of each partition shows a trend of the

prior probability. For example, we suppose f 1
t (x) is the weak hypothesis of parti-

tion S1
t , then we can see that W 1

t+/(W
1
t+ +W 1

t−) is the weighted prior probability

that an instance in partition S1
t is positive. On the other hand, W 1

t−/(W
1
t++W 1

t−)

shows the weighted prior probability that an instance in partition S1
t is negative.

Gentle AdaBoost utilizes the prior probability to do a prediction. Thus, it is

more robust than AdaBoost.
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3.1.2 Generalization error and margins

The margins denotes the classification margins of training instances. As the

number of weak hypotheses increases, the margins of more and more training

instances are increased to be positive. That is why the training error can be de-

creased gradually. The training error reaches to 0 if and only if the margins of all

training instances become positive. Reducing the number of negative margins is

crucial to the convergence of training error. However, there is no direct relation-

ship between the margins of training instances and generalization errors which

are usually measured by the classification errors on test sets. But still we can

find a clue between the margins and generalization errors. Freund and Schapire

calculated the upper bound of generalization error as [10]

Ut = Pr(Margint(x) ≤ θ) +O(

√
d

mθ2
). (3.1)

Where Pr means the empirical probability on the training instances, m is the size

of training set, d denotes the VC-dimension of weak hypotheses space, and θ is a

number larger than 0. For a given training set, m is fixed, and d is related to the

number of iterations. If we want to optimize this upper bound in each iteration,

we need choose a proper θ. Although there is no approach to optimize this upper

bound [10], we can suppress Pr(Margint(x) ≤ θ) for all values of θ by improving

the margin distributions as we demonstrate below: Figure 3.1 shows two different

margin distributions. From Fig. 3.1, we can see that Pr(Margint(x) ≤ θ) in the

blue curve is always smaller than that in the red curve for any θ > 0. This means

the method which produces the blue curve is better than that creates the red

curve in terms of generalization errors. Fig. 3.1 shows a perfect example, in fact,

it is difficult to improve the margin distribution for all values of θ. Nevertheless,

we can improve the cumulative distribution for most values of θ. In this case,

there is a large chance that the generalization error will be reduced according to

the improvement of margin distribution.
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Figure 3.1: Comparison of cumulative margin distributions

3.1.3 Classifier distortion

In this section, we explain the problem of Gentle AdaBoost, and show why it need

to be improved. As we know, Gentle AdaBoost increases the weight of instance

xi if it is misclassified by the current weak hypothesis. This kind of weight adjust-

ment encourages Gentle AdaBoost to focus more on small-margin instances and

try to correctly classify them in future iterations. Nevertheless, misclassification

of small-margin instances could still happen in future loops especially when the

data set contains some noise-like instances. If the misclassification occurs, the

weights of these noise-like instances will be increased exponentially no matter

how large or small their margins are. Accordingly, their margin will be decreased

smaller. If these instances are misclassified many times, their weights will become

larger and larger. By contrast, the weights of other instances will become smaller

and smaller. Finally several large-weight instances will dominate the whole weight

distribution to force Gentle AdaBoost to choose weak classifiers that can correctly

classify them. Nevertheless, the late selected weak classifiers are more likely to

fit these large-weight instances only. Thus the performance of the final strong
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hypothesis on other instances will be deteriorated. This phenomenon which is

known as “classifier distortion”, degrades the generalization error of the strong

hypothesis because the deviation of the selected weak classifiers is increased in

the late training phase as Gentle AdaBoost tries to fit large-weight instances.

Therefore, mitigating the increase of large weight is necessary for improving the

classification performance of the final strong hypothesis.

3.2 Margin-pruning Boost

In order to solve the classifier distortion discussed above, we proposed a new

method which we call Margin-pruning Boost [85]. This algorithm filters instances

with large weights, and then resets their weights to be 1. Next we explain Margin-

pruning Boost as follows:

——————————————————————————————–——————————————————————————————–
Margin-pruning Boost

——————————————————————————————–

1. Assign initial weights wi,1 = 1/N , where i = 1, 2, ..., N .

2. Repeat the following tasks for t = 1, 2, ..., T :

(a) Train a CART, and then calculate W j
t+ and W j

t− for every partition Sj
t the

same as in Step 2(a) of Real AdaBoost.

(b) Calculate the weak hypothesis for each partition Sj
t by (2.6).

(c) Update the weights of all instances as

wi,t+1 = exp[−yi
∑
t

ft(xi)]. (3.2)

(d) The threshold Rt+1 is set as follows:

Rt+1 = maxi{wi,t+1} −
maxi{wi,t+1} −mini{wi,t+1}

50
. (3.3)

For each instance xi, if wi,t+1 > Rt+1, reset wi,t+1 = 1 and
∑

t ft(xi) = 0. Then

do normalization for all instances by setting wi,t+1 = wi,t+1/Gt, where Gt =∑
iwi,t+1.

3. Set FT (xi) =
∑T

t=1 ft(xi), and then output the strong classifier H(xi) =

sign[FT (xi)].
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——————————————————————————————–

In Step 2(d), we can see that Margin-pruning Boost resets the summed weak

hypotheses and weights for instances whose weights are larger than the threshold

at the current loop. This technique is effective at restraining the increase of

large weight in the early training phase because most of instances filtered by

the thresholding have a weight larger than 1. In this situation, the resetting

actually reduces the influence of large-weight instances on the training. After

resetting, the weights of these filtered instances become smaller than the original

ones. Then in future iterations, we still calculate weak hypotheses for these

instances. If their weights exceed the threshold in any future loop, they will

be reset again. In Margin-pruning Boost, we do not exclude these large-weight

instances completely since they are not necessarily noise data. In order to avoid

the classifier distortion, we just keep the weights of these noise-like instances small

by dynamically resetting them. Nevertheless, the weights of instances filtered by

the thresholding are not larger than 1 necessarily as the number of iterations

increases. If the filtered instances have a weight smaller than 1, resetting their

weights to be 1 actually increases the influence of these instances.

On the other hand, from (2.12), we can see that the resetting initializes the

margins of these filtered instances to 0. From this point of view, Margin-pruning

Boost improves the margin distribution in the early training phase since most

filtered instances have negative margins. Unfortunately, it does not work well as

the number of loops increases because the margins of most filtered instances will

become positive in the late training phase.

In general, Margin-pruning Boost succeeds in reducing the generalization error

in the early training phase, but fails in the late training phase. We can also see

this point from the following margin distributions in Fig. 3.2. To create the

margin distributions, we use 2/3 of the data for training. Figs. 3.2 (a) and 3.2

(b) show the margin distributions of a data set Ionosphere at round 10 and 100

separately. From Fig. 3.2, we notice that Margin-pruning Boost performs better

than Gentle AdaBoost at round 10. Nevertheless, the performance drops when

the number of iterations reaches to 100. To solve the problem of Margin-pruning

Boost, we propose another variant called Penalized AdaBoost, and then we will

introduce it in the next section.
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(a) Margin distribution at Iteration 10 (b) Margin distribution at Iteration 100

Figure 3.2: Cumulative margin distributions of the data set Ionosphere

3.3 Penalized AdaBoost: the algorithm

Penalized AdaBoost is an improvement of Margin-pruning Boost. It not only

solves the problem of Margin-pruning Boost we discussed above, but also utilizes a

margin feedback factor to penalize the misclassification of small-margin instances.

——————————————————————————————–——————————————————————————————–
Penalized AdaBoost

——————————————————————————————–
1. Assign the initial weights wi,1 = 1/N , where i = 1, 2, ..., N .

2. Repeat the following tasks for t = 1, 2, ..., T :

(a) Train a CART, and then calculate W j
t+ and W j

t− for each partition Sj
t the

same as in Step 2(a) in Real AdaBoost.

(b) Compute a margin feedback factor di,t as

di,t = exp(−Margint−1(xi))/Dt, (3.4)

where Dt equals to
∑

i exp(−Margint−1(xi)). Then compute Dj
t+ and Dj

t− of each

partition Sj
t by

Dj
t+ =

∑
i:xi∈Sj

t∧yi=1
di,t. (3.5)

Dj
t− =

∑
i:xi∈Sj

t∧yi=−1
di,t. (3.6)
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(c) Calculate the weak hypothesis for every Sj
t by

f j
t (x) =

{
(W j

t+ −W
j
t−)(1−Dj

t−), if W j
t+ > W j

t−

(W j
t+ −W

j
t−)(1−Dj

t+), otherwise
. (3.7)

For any instance xi, set its weak hypothesis to be fp
t (x), where p is the index of

partition which xi falls into.

(d) Update the weights for all instances as

wi,t+1 = exp[−yi ×
∑

t
ft(xi)]. (3.8)

(e) For any instance xi, if wi,t+1 > Rt+1 and Margint(xi) < 0, reinitialize instance

xi as follows:

wi,t+1 = 1,
∑

t
ft(xi) = 0. (3.9)

Rt+1 = maxi{wi,t+1} −
maxi{wi,t+1} −mini{wi,t+1}

β
. (3.10)

Then do the normalization by setting
∑

iwi,t+1 = 1.

3. Set FT (x) =
∑T

t=1 ft(x), and then output the strong classifier H(x) =

sign[FT (x)].

——————————————————————————————–

Penalized AdaBoost is introduced by the above algorithm. It computes the

weak hypotheses by utilizing a margin feedback factor in Step 2(b) and 2(c).

Furthermore, it improves the thresholding technique of Margin-pruning Boost in

Step 2(e). Here we tune the parameter β in (22) as follows: first we evaluate the

classification performances on 5 data sets with different values of β (β = 10, 30,

50, 70, 90), and then we choose the value with the best performance for β.

3.4 Weight increase limit in Penalized AdaBoost

In this section, we discuss how Penalized AdaBoost limits the weight increase

of noise-like data comparing with Gentle AdaBoost and Margin-pruning Boost.
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From Step 2(e) in Penalized AdaBoost, we can see that only instances whose mar-

gins are negative and whose weights exceed the threshold Rt+1 are reset. This

means that Penalized AdaBoost resets the weights of noise-like instances to be

smaller under all circumstances. Compared with Gentle AdaBoost and Margin-

pruning Boost, Penalized AdaBoost always keeps the weights of the noise-like

instances small during the whole training. Therefore, it can reduce the bad in-

fluence from these noise-like data. Furthermore, differently from Margin-pruning

Boost, Penalized AdaBoost tunes the parameter β by empirical studies.

With respect to the margins, Penalized AdaBoost only reinitializes the nega-

tive margins to 0 during the training. Thus, it can enlarge the margin distribution

more than Gentle AdaBoost and Margin-pruning Boost especially when the num-

ber of loops increases.

In summary, the weight updating policy in Penalized AdaBoost is more ef-

ficient at suppressing the generalization errors. We can also see the same point

from the cumulative margin distributions shown in Fig. 3.3. Figs. 3.3 (a) and

3.3 (b) show the margin distributions of the data set Ionosphere at iteration 10

and 100. In Fig. 3.3, the blue curves are results of Penalized AdaBoost. Figure

3.4 shows the generalization errors of the same data set. We notice that Penal-

ized AdaBoost enlarges the margin distributions more than Gentle AdaBoost and

Margin-pruning Boost as the number of loops increases. That can explain why

it achieves the best generalization error in Fig. 3.4.

3.5 Penal policy in Penalized AdaBoost

In this section, we explain how Penalized AdaBoost restrains the misclassification

of small-margin instances. Compared with Gentle AdaBoost and Margin-pruning

Boost, it utilizes the margins in the previous loop to restrict the misclassifica-

tion of small-margin instances in the current loop. In Step 2(c) of Penalized

AdaBoost, we notice that Dj
t+ and Dj

t− are calculated from the margin feedback

factors of misclassified instances. We conclude that (1 − Dj
t+) and (1 − Dj

t−)

are proportional to the margins according to (2.12), (3.5), (3.6) and (3.7). That

means a misclassification of small-margin instances will result in small (1−Dj
t+)
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3.5 Penal policy in Penalized AdaBoost

(a) Margin distribution at Iteration 10 (b) Margin distribution at Iteration 100

Figure 3.3: Comparison of cumulative margin distributions on Ionosphere

Figure 3.4: Comparison of generalization errors in data set Ionosphere

and (1 − Dj
t−). Then they will degrade the prediction confidence of the current

weak hypothesis f j
t (x). Therefore, the misclassification of small-margin instances

is easier to be corrected in Penalized AdaBoost, compared with the case without

27



3. Proposed Penalized AdaBoost

(1−Dj
t+) and (1−Dj

t−) in Gentle AdaBoost and Margin-pruning Boost.

By contrast, a misclassification of instances with large margins will lead to

large (1−Dj
t+) and (1−Dj

t−). Then the prediction confidence of the current weak

hypothesis will be increased relatively. That means weak hypotheses misclassify-

ing large-margin instances are more competent than those misclassifying small-

margin instances. Although the weights of large-margin instances are increased

due to the misclassification, they can not contribute to the classifier distortion

because they were small in previous loops.

On the other hand, we know that the margin will be decreased if the mis-

classification occurs. However, in Penalized AdaBoost, the margin reduction of

instances with small margins is mitigated by reducing the prediction confidence of

the current weak hypothesis. Therefore, Penalized AdaBoost enlarges the margin

distribution more than Gentle AdaBoost and Margin-pruning Boost due to the

penal policy.

In general, both the weight updating and penal policy of Penalized AdaBoost

can contribute to the improvement of margin distributions. Furthermore, they

are effective at avoiding the classifier distortion. Therefore, Penalized AdaBoost

is more robust than Gentle AdaBoost and Margin-pruning Boost.

3.6 Margins in Penalized AdaBoost

In this section, we compare the margin distributions of Gentle AdaBoost, Margin-

pruning Boost, and Penalized AdaBoost in other data sets except Ionosphere.

These margin distributions are computed by using 2/3 of the data in each data

set as training instances.

Figure 3.5 shows the comparison results. In Fig. 3.5, the red, green, and blue

curve show the results of Gentle AdaBoost, Margin-pruning Boost, and Penalized

AdaBoost respectively. From Fig. 3.5, we can conclude that Penalized AdaBoost

outperforms Gentle AdaBoost and Margin-pruning Boost with respect to the en-

largement of margin distributions. Penalized AdaBoost also proves that reducing

the importance of difficult-to classify instances properly actually is necessary for

improving the generalization errors.
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Figure 3.5: Cumulative margin distributions
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Chapter 4

Proposed Face and Hand

Detection System

4.1 Viola-Jones Method

Nowadays, Viola-Jones method and its variants are widely utilized in gesture

communication systems because of their high performance on both the speed and

accuracy [86–89]. Viola-Jones detector is a combination of Haar-like features and

AdaBoost classifier. Haar-like features can be computed from a set of rectangle

masks as shown in Fig. 4.1. which include line features, edge features, and

Figure 4.1: Haar-like features

center-surrounded features. The value of each feature equals to the sum of pixel
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4. Proposed Face and Hand Detection System

intensities within the white rectangle subtracted by the sum of pixel intensities

within the black rectangle.

For an instance xi which is a 20× 20 pixels sub-window of an image, its weak

classifier Sj(xi) is defined by the following equation with parameters fj, θj and

pj. Here fj is a Haar-like feature, θj is a threshold and pj is a sign which belongs

to {+1, -1}.

Sj(xi) =

{
1, ifPjfj(xi) ≤ Pjθj

0, otherwise
. (4.1)

In Viola-Jones method, each Haar-like feature can create one weak classi-

fier. Then these weak classifiers will be integrated into one strong classifier by

AdaBoost or its variants. In addition, Viola-Jones method improves the preci-

sion and detection speed by a cascading scheme. The framework of Viola-Jones

method is shown in Fig. 4.2. From Fig. 4.2, we can see that only the instances

Figure 4.2: Framework of Viola-Jones method
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which pass the previous classifiers can be processed by the next classifier. This

kind of cascading structure reduces the false positive rate of the final detector

effectively.

4.2 Face detection based on Penalized AdaBoost

Although Viola-Jones method has already achieved considerable success in face

detection, we can still improves its performance by utilizing our new proposed

Penalized AdaBoost.

4.2.1 Training data collection

With respect to the training data in face detection, we uses face images from

MIT data set as positive instances, and images without any face as negative

instances. Figures 4.3 and 4.4 show the positive examples and negative examples

respectively.

Figure 4.3: Positive training instances in face detection
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Figure 4.4: Negative training instances in face detection

The positive instances are 20×20 pixels images whereas the negative instances

are images with 640× 480 pixels.

4.2.2 Face detection system

Our face detector is trained by the proposed Penalized AdaBoost (explained in

Chapter 3) instead of Discrete AdaBoost which was used in Viola-Jones method.

The framework of our face training mechanism is shown in Fig. 4.5.

In Fig. 4.5, the Haar-like features are computed from the positive and nega-

tive images. Thus, the trained face detector can distinguish faces from non-faces.

Furthermore, our trained face detector is more robust than Viola-Jones face de-

tector because Penalized AdaBoost used in our system is proved better than other

AdaBoost variants with respect to generalization errors.
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4.3 Hand detection based on Penalized AdaBoost

Figure 4.5: Training system using Penalized AdaBoost

4.3 Hand detection based on Penalized AdaBoost

In this section, first we describe how we collect training data for training a hand

detector. Then we explain the problem of Viola-Jones hand detector. Finally we

show how we improve the Viola-Jones hand detector by combining the proposed

background-masking, Motion filtering, and Penalized AdaBoost.

4.3.1 Training data collection

Our hand detector totally handles 27 kinds of hand shapes as shown in Fig. 4.6.

Thus, we collect the positive instances based on the 27 hand shapes.

In our hand detection system, each hand shape shown in Fig. 4.6 is captured

from three different viewpoints by parallel moving the camera in X axis as shown

in Fig. 4.7, in five directions (−45o, 0o, 45o, 90o, 135o) by counter-clockwise ro-

tating our camera in X-Z plane as shown in Fig. 4.8, and in both left and right

hands [6]. Therefore, we totally collect 30 (3× 5× 2) training instances for each

hand shape [6]. Figure 4.9 shows an example of the collection for one hand shape.
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4. Proposed Face and Hand Detection System

Figure 4.6: Hand shapes
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4.3 Hand detection based on Penalized AdaBoost

Figure 4.7: Three different viewpoints

Figure 4.8: Five different directions

In Fig. 4.8, we notice that the five directions almost contain the moving range

of a human hand.
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4. Proposed Face and Hand Detection System

Figure 4.9: Training instances for one hand shape

4.3.2 Analysis of Viola-Jones hand detector

If we use Viola-Jones method to train a hand detector which can deal with dif-

ferent backgrounds, we need positive training instances in diverse backgrounds.

Here we suppose that the Viola-Jones hand detector is designed to handle images

in the three different backgrounds as shown in Fig. 4.10. Then for each hand

shape in Fig. 4.6, we need collect 30 × 3 = 90 training instances. Obviously

it will result in laborious labelling work and a long training time. Furthermore,

Figure 4.10: Training instances with three different backgrounds
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4.3 Hand detection based on Penalized AdaBoost

when we used the positive instances in different backgrounds to train the hand

detector, we found that the false positive rate is almost 100% [83]. Next we will

analyze the reason for high false positive rate. In the training of the hand detec-

tor, Haar-like features of instances in different backgrounds should be calculated.

This process may lead to the high false positive rate because of the background

noise. For example, as we calculate the value of one Haar-like feature from the

rectangle area in different backgrounds as shown in Fig. 4.11, we have to in-

clude non-hand pixels since there is a background part in every training instance.

Therefore, according to different backgrounds, the value of the same Haar-like

Figure 4.11: Haar-like feature computed from instances in three backgrounds

feature from the same hand shape varies. Then Viola-Jones method has to set

loose thresholds to tolerate diverse values of the same Haar-like feature due to

the various backgrounds. These loose thresholds will cause a high false positive

rate of the hand detector.

4.3.3 Background-masking

In order to reduce the training time and false positive rate, we propose a new

technique which we call background-masking. It utilizes training instances in only

one background (Here we use the black background to stand out hand pixels).

This method has two parts. One part is for training instances, and another is for

test images. For training instances, we combine HSV and YCrCb color spaces to
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4. Proposed Face and Hand Detection System

do a skin color segmentation. Figure 4.12 shows the processing of background-

masking for training instances. In Fig. 4.12, we set the pixel intensities of non-

hand area to be 0 to remove the background noise.

Figure 4.12: The process of background-masking for training instances

The second part of background-masking is for test images, the process is

introduced as follows: we first detect the face area because face detection is far

advanced than hand detection. Then we utilize a 3 × 3 window to extract skin

color pixels in the cheek areas as shown in Fig. 4.13, and then we can get the

thresholds of Y, Cr, Cb, H, S, and V using the extracted skin color pixels. Finally

we implement the skin color segmentation for test images by these thresholds [6].

Figure 4.14 shows the result of background-masking for a test image.

Figure 4.13: Skin color pixels in two checks

We apply background-masking to both the training instances and test images.

Thus, the trained hand detector can recognize hands in background-masked test

images. Since background-masking utilizes positive training instances with only
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4.3 Hand detection based on Penalized AdaBoost

one background, it requires far less training time when compared with Viola-

Jones method which use instances in diverse backgrounds. Moreover, background-

masking can reduce the false positive rate because it removes background noise

effectively. Nevertheless, the hand detector is also required to distinguish hands

from the face in Fig. 4.14. Furthermore, background-masking fails when the test

images include some skin-color-like backgrounds. In section 4.3.5, we will explain

how we solve the problem of background-masking.

Figure 4.14: The result of background-masking for a test image

4.3.4 Hand training system based on Penalized AdaBoost

Since Penalized AdaBoost is proved more robust than other AdaBoost variants

in Chapter 3, we use it to train the hand detector. The training mechanism for

hand detector is shown in Fig. 4.15. In Fig. 4.15, we utilize background-masked

hand patches as positive training instances, and non-hand images as negative

training instances. The weak classifiers are computed based on Haar-like features

of both the positive and negative training instances. In the training system,

Penalized AdaBoost is applied to boost several weak classifiers into one strong

classifier. Similarly to Viola-Jones method, strong classifiers in our system are

also organized by a cascading scheme. On one hand, background-masking reduces

both the training instances and false positive rate. On the other hand, Penalized

AdaBoost improves the classification performance of the trained hand detector.
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4. Proposed Face and Hand Detection System

Figure 4.15: Training mechanism for training the hand detector

4.3.5 Hand detection system

In this section, we describe the proposed hand detection system which is based

on the trained detector shown in Fig. 4.15. In the hand detection system, first we

utilize background-masking to process the test frame, and then we adopt a motion

filter which is based on frame difference to reduce the detection range. Figure

4.16 shows the structure of our hand detection system. From Fig. 4.16, we can

see that the motion filter solves the problems of background-masking discussed

in Section 4.3.3.

The motion filter can exclude non-moving parts effectively. Nevertheless, the

hand areas may be also removed if the motion is not large sufficiently. To solve

the problem, we check whether a hand is detected in each iteration [6]. If a hand

is detected, we move to process the next frame; otherwise, the frame difference

between f and f + 2 frames will be used to enlarge the moving part in the frame-

differenced image [6]. Figure 4.17 shows one example of hand detection by our

proposed system [6]. In Fig. 4.17 (b), we notice that background-masking fails
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4.3 Hand detection based on Penalized AdaBoost

Figure 4.16: The structure of the proposed hand detection system

(a) Frame f + 1 (b) Frame f + 1 after
background-masking

(c) Frame-differenced im-
age of Frame f and f + 1

(d) In (b), removes intensi-
ties of pixels dark in (c)

(e) The result after doing
hand detection in (d)

(f) The result of face and
hand detection

Figure 4.17: An example of hand detecting
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because of the illumination change and complicated background in the test frame.

However, the motion filter efficiently excludes non-hand parts in the background-

masked image as shown in Fig. 4.17 (d). Our hand detection system performs

well in test images in diverse backgrounds, even in skin-color-like backgrounds as

long as these backgrounds are stationary.

Our hand detection system is different from Viola-Jones method in the fol-

lowing points.

• Differently from Viola-Jones method which is based on Discrete AdaBoost,

our system utilizes the new proposed Penalized AdaBoost to train the face

and hand detectors. Penalized AdaBoost can improve the classification

performance of the trained detectors.

• Compared with Viola-Jones method, our system adopts background-masking

for both training instances and test images. The proposed background-

masking not only saves a lot training time, but also reduces the false positive

rate significantly.

• Our detection system applies a motion filter to distinguish hands from other

skin color parts. However, Viola-Jones method does not use any motion

information.
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Chapter 5

Proposed Parameterized

AdaBoost

5.1 Relationship between margins and weight

updating in Real AdaBoost

Parameterized AdaBoost was proposed to speed up the training process of Real

AdaBoost [8]. In this section, we will briefly introduce some basic ideas of Real

AdaBoost. Real AdaBoost can enlarge the margins of training data iteratively

because there is a relationship between the weight updating policy and the mar-

gins of training instances. According to (2.4) and (2.5), the updated weight of

an instance xi can be computed by

wi,t+1 =
wi,te

−yift(xi)∑
iwi,te−yift(xi)

. (5.1)

Similarly, we can calculate wi,t as

wi,t =
wi,t−1e

−yift−1(xi)∑
iwi,t−1e−yift−1(xi)

. (5.2)
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Then substitute (5.2) for wi,t in (5.1), we get

wi,t+1 =
wi,t−1exp[−yi

∑t
t−1 ft(xi)]∑

iwi,t−1exp[−yi
∑t

t−1 ft(xi)]
. (5.3)

In the same way, the updated weight can be deduced by

wi,t+1 =
wi,1 × exp[−yiFt(xi)]∑
iwi,1 × exp[−yiFt(xi)]

=
exp[−yiFt(xi)]∑
i exp[−yiFt(xi)]

. (5.4)

Where Ft(xi) =
∑t

t=1 ft(xi) and
∑

i exp[−yiFt(xi)] is a normalizer. From (2.12)

and (5.4), we find that wi,t+1 is inversely exponentially proportional to the mar-

gins. This means that Real AdaBoost assigns larger weights to small-margin

instances. Focusing on increasing small margins is effective at reducing the train-

ing error. Nevertheless, it may lead to the misclassification of other instances

whose margins are positive, but near to 0. The margins of these instances are

probably changed from positive into negative due to the misclassification. If we

can curb the misclassification of instances whose margins are slightly larger than

0 on the premise that large weights are assigned to instances with small margins,

we can speed up the decreasing of training error.

5.2 Parameterized AdaBoost

In this section, we describe Parameterized AdaBoost which introduces a parame-

ter to penalize the misclassification of already correctly classified instances. Since

Parameterized AdaBoost prevents positive margins that are slightly larger than

0 from being turned into negative. It can obtain a faster convergence of training

error when compared with Real AdaBoost.

5.2.1 Basic algorithm

Parameterized AdaBoost is introduced as follows:

——————————————————————————————–——————————————————————————————–

Parameterized AdaBoost
——————————————————————————————–
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1. Set initial conditions: wi,1 = 1/N and F0(xi) = 0, where i = 1, 2, ..., N .

2. Repeat the following steps for t = 1, 2, ..., T :

(a) Train a CART, and then compute W j
t+ and W j

t− for every partition Sj
t the

same as in Step 2(a) of Real AdaBoost.

(b) Set the weak hypotheses by (2.3).

(c) Set Ft(xi) = Ft−1(xi) + ft(xi) and α ∈ (0, 1). Then update the weights of all

instances as

wi,t+1 = exp[−yiFt(xi)− α|yiFt(xi)|]/Gt. (5.5)

Gt =
∑
i

exp[−yiFt(xi)− α|yiFt(xi)|]. (5.6)

3. Finally output the strong classifier H(xi) = sign[FT (xi)].

——————————————————————————————–

From the above algorithm, we can see that the difference between Real and Pa-

rameterized AdaBoost is the weight updating policy. In Parameterized AdaBoost,

we add a parameter α and an absolute item |yiFt(xi)| to curb the misclassification

of instances whose margins are slightly larger than 0.

With respect to the tuning of parameter α, we measure the training and test

errors on a data set Gamma Telescope which includes nearly 20000 instances by

using different values of α (α = 0.1, 0.3, 0.5, 0.7, 0.9). Finally we find that α = 0.5

has the best overall performance. The values smaller than 0.5 can not obtain

a sufficient improvement of training errors whereas the values larger than 0.5 is

prone to overfiting [8].

5.2.2 Comparison of Real and Parameterized AdaBoost

In this section, first we demonstrate that Parameterized AdaBoost is as effective

as Real AdaBoost because it also assigns larger weights to small-margin instances.

We notice that the weight updating equation (5.5) in Parameterized AdaBoost

can be replaced with

wi,t+1 =

{
exp[−(1 + α)yiFt(xi)]/Gt, if yiFt(xi) > 0

exp[−(1− α)yiFt(xi)]/Gt, otherwise
(5.7)
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From (5.7), we can conclude that the weight of an instance xi reduces as its margin

increases as long as 0 < α < 1. Therefore, small-margin instances in Parameter-

ized AdaBoost can always get larger weights the same as in Real AdaBoost. We

notice that this condition can be guaranteed if and only if α ∈ (−1,+1). Never-

theless, we need α > 0 to curb the misclassification of instances whose margins

are near 0. In (5.5), α|yiFt(xi)| is positive if and only if α > 0. Moreover, the

value of α|yiFt(xi)| is large when the margin of xi is far from 0. On the contrary,

this value is small when the margin of xi is near 0. This means instances whose

margins are near 0 can obtain more weight than those whose margins are far

from 0. Because Parameterized AdaBoost focuses more on instances whose mar-

gins are near 0, it can curb the misclassification of these instances. By assigning

more weight to these instances, Parameterized AdaBoost can prevent the margins

which are slightly larger than 0 from being turned into negative, and encourage

the margins which are slightly smaller than 0 to become positive. Therefore, it

can reduce the training error more than Real AdaBoost.

5.2.3 Margins in Parameterized AdaBoost

From the above analysis, we can conclude that Parameterized AdaBoost increases

the number of positive margins more than Real AdaBoost in each iteration. We

compare the cumulative margin distributions in Parameterized AdaBoost with

those in Real AdaBoost. Figures. 5.1 (a), 5.1 (b), and 5.1 (c) show the results

on a data set Gamma Telescope after 500, 2000, and 4000 iterations respectively

[8]. While Fig. 5.1 (d) shows the convergence of training error in Parameterized

AdaBoost compared with that in Real AdaBoost [8]. In Fig. 5.1, the dashed

curves represent Real AdaBoost whereas the solid curves represent Parameterized

AdaBoost. To produce these margin distributions, we use CART-2 as the weak

classifiers since it can show the difference of Parameterized and Real AdaBoost

clearly (Boosting with CART-1 converges too slow and boosting with CART-3

converges too fast).

From Fig. 5.1, we can see that Parameterized AdaBoost has less training

instances with negative margins than Real AdaBoost at the same round. Thus

it can obtain a faster convergence of training error than Real AdaBoost [8].
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(a) Margin distribution at run 500 (b) Margin distribution at run 2000

(c) Margin distribution at run 4000 (d) Convergence of training error

Figure 5.1: (a)–(c) Cumulative distributions of margins, and (d) Training errors

5.3 Discussion

Real AdaBoost reduces the training errors faster than other AdaBoost variants

because it directly optimizes the upper bound of training errors [90]. To speed

up the training process of Real AdaBoost, we propose Parameterized AdaBoost

which adopts a new weight adjustment policy. Parameterized AdaBoost is as

effective as Real AdaBoost since it gives more weight to small-margin instances.

However, differently from Real AdaBoost, Parameterized AdaBoost focuses more

on instances whose margins are near 0 and tries to keep their margins positive in

future loops. Thus, it increases the number of positive margins more than Real
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AdaBoost in each loop. This kind of weight updating is not only suitable for Real

AdaBoost, but also easy to be applied to other AdaBoost variants such as Gentle

AdaBoost, Modest AdaBoost, Float AdaBoost, and so on [8].
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Chapter 6

Experiments

6.1 For Penalized AdaBoost

This section evaluates the performance of our proposed Penalized AdaBoost.

First we explain the instructions of our experiments, and then we show the experi-

mental results, finally we discuss the generalization ability of Penalized AdaBoost

by analyzing these experimental results.

6.1.1 Experiments setting

In this experiment, we compare Penalized AdaBoost with Gentle AdaBoost, Mod-

est AdaBoost, and Margin-pruning Boost by using 26 binary classification data

sets from UCI repository [91]. In this dissertation, we use Matlab AdaBoost

Toolbox provided in [92] to run AdaBoost variants. To evaluate the test errors,

we use 3-fold cross-validation. Next we will explain what a cross-validation is. A

k-fold cross-validation means the training data is randomly divided into k equal

size sub sets. Then one of the k sub sets is retained for testing, and the other

k−1 sub sets are used for training. The cross-validation process will be repeated

k times by utilizing each of the k sub sets as test data. Finally we can get k test

errors, and then the final generalization error is the average of the k test errors.
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6.1.2 Results evaluation

This section shows the experimental results. Figures. 6.1 (a) and 6.1 (b) show

the comparison results of training and generalization errors on a data set Indian

Diabetes [7]. We also evaluate the generalization errors in other data sets after

200 iterations. Table. 6.1 summarizes the results [7]. In addition, we measure

the generalization errors on the total 26 data sets after 500 iterations. Table. 6.2

shows the comparison results [7]. In Tabs. 6.1 and 6.2, No.S and No.F denote the

number of instances and number of features, GAB, MAB, MPB, and PAB repre-

sent Gentle AdaBoost, Modest AdaBoost, Margin-pruning Boost and Penalized

AdaBoost separately; and the underlined numbers shows the best performance.

(a) Training errors (b) Generalization errors

Figure 6.1: Comparison of training and generalization errors

6.1.3 Analysis and discussion

From Fig. 6.1, we can see that the proposed Penalized AdaBoost outperforms

other three AdaBoost variants in terms of the generalization errors which are

measured by the classification error on the test data. On the other hand, we

can conclude that Modest AdaBoost can hardly reduce the training error from

Fig. 6.1 (a). Nevertheless, the training error in Penalized AdaBoost is decreased

gradually. We also notice that Penalized AdaBoost decreases the training error

slower than Gentle AdaBoost and Margin-pruning Boost.
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Table 6.1: Comparison results of generalization errors after 200 iterations

Data sets:26 No.S No.F GAB MAB MPB PAB
Banana 5000 2 0.2713 0.2804 0.2526 0.2809
Bankruptcy 175 6 0.0400 0.0344 0.0400 0.0286
Australian 690 14 0.1435 0.1435 0.1391 0.1304
Banknote 1372 4 0.0022 0.0372 0.0058 0.0080
Breast Cancer 569 4 0.0246 0.0422 0.0669 0.0281
Blood
Transfusion 748 4 0.2312 0.2352 0.2218 0.2298
Climate model 540 20 0.0593 0.0963 0.0704 0.0630
Glass 214 10 0.0560 0.0701 0.0886 0.0653
Gamma
Telescope 19020 10 0.1546 0.2297 0.1454 0.1548
German 1000 24 0.2580 0.2950 0.2470 0.2450
Heart Disease 270 13 0.2333 0.1704 0.2000 0.1630
Hepatitis 155 19 0.2130 0.2515 0.2129 0.1869
Indian Diabetes 768 8 0.2578 0.2383 0.2318 0.2253
Indian Liver 579 9 0.3005 0.3230 0.2850 0.3126
Ionosphere 351 34 0.0969 0.0684 0.0997 0.0826
Parkinsons 195 22 0.0872 0.1692 0.0974 0.0923
Planning Relax 182 12 0.4012 0.3519 0.4175 0.3186
Ringnorm 7400 20 0.0268 0.0470 0.0277 0.0509
Spambase 4601 57 0.0546 0.0895 0.0528 0.0617
SPECTFHeart 267 44 0.2285 0.2472 0.2584 0.1985
Splice 2991 60 0.0675 0.0919 0.0612 0.0639
Steel Plates 1941 27 0.2324 0.2751 0.2318 0.2421
Twonorm 7400 20 0.0305 0.0315 0.0292 0.0304
Waveform 3304 21 0.0975 0.0962 0.0917 0.0853
Wine Quality 6497 11 0.0054 0.0240 0.0052 0.0054
WPBC 198 34 0.2727 0.3030 0.3081 0.2323
Sum 3.8465 4.2421 3.8880 3.5857
Comparison to GAB 0.0000 0.3956 0.0415 0.2608
Comparison to GAB improved degraded degraded improved

From Tabs 6.1 and 6.2, we can see that Penalized AdaBoost achieves better

generalization errors than the other three variants. Furthermore, It obtains the

best performance in 10 data sets in Tab. 6.1, and in 16 data sets in Tab. 6.2.

Comparing the results in Tab. 6.1 with that in Tab. 6.2, we also conclude that
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Table 6.2: Comparison results of generalization errors after 500 iterations

Data sets:26 GAB MAB MPB PAB
Banana 0.2725 0.2804 0.2547 0.2738
Bankruptcy 0.0400 0.0344 0.0400 0.0458
Australian 0.1638 0.1435 0.1377 0.1333
Banknote 0.0036 0.0372 0.0058 0.0058
Breast Cancer 0.0246 0.0369 0.0756 0.0246
Blood Transfusion 0.2540 0.2352 0.2272 0.2258
Climate model 0.0648 0.0963 0.0722 0.0593
Glass 0.0607 0.0748 0.1025 0.0606
Gamma Telescope 0.1519 0.2292 0.1424 0.1473
German 0.2730 0.2950 0.2490 0.2430
Heart Disease 0.2481 0.1704 0.2000 0.1852
Hepatitis 0.2130 0.2515 0.2129 0.2128
Indian Diabetes 0.2526 0.2383 0.2409 0.2266
Indian Liver 0.3074 0.3558 0.2953 0.3057
Ionosphere 0.0940 0.0627 0.0997 0.0912
Parkinsons 0.0974 0.1641 0.0974 0.0872
Planning Relax 0.4397 0.3519 0.4175 0.3462
Ringnorm 0.0249 0.0309 0.0251 0.0318
Spambase 0.0574 0.0895 0.0517 0.0572
SPECTFHeart 0.2285 0.2584 0.2772 0.2022
Splice 0.0746 0.0919 0.0622 0.0605
Steel Plates 0.2293 0.2777 0.2267 0.2334
Twonorm 0.0296 0.0286 0.0296 0.0276
Waveform 0.0984 0.0962 0.095 0.0881
Wine Quality 0.0054 0.0231 0.0060 0.0051
WPBC 0.2828 0.3030 0.3081 0.2374
Sum 3.9920 4.2569 3.9524 3.6175
Comparison to GAB 0.0000 0.2649 0.0396 0.3745
Comparison to GAB improved degraded improved improved
Parallel comparison to Tab.1 0.1455 0.0148 0.0644 0.0318
Parallel comparison to Tab.1 degraded degraded degraded degraded

Penalized and Modest AdaBoost are more robust against overfitting than Gen-

tle AdaBoost and Margin-pruning Boost [7]. In general, Penalized AdaBoost is

more robust and stable than other compared variants. Moreover, its performance

improves as the number of iterations increases.

54



6.2 For face and hand detection system

6.2 For face and hand detection system

In this section, we evaluate the performance of our face-hand detection system.

Here we test the face detector and hand detector respectively.

6.2.1 Experiments setting

First we evaluate our face detector (trained by our proposed Penalized AdaBoost)

by comparing it with other detectors trained by Gentle and Modest AdaBoost.

Here we use 4 kinds of data sets to test the three different face detectors. The 4

kinds of data sets are listed as follows:

• Dataset 1: one-face images in Bao database [93].

• Dataset 2: multiple-face images in Bao database [93].

• Dataset 3: CMU-MIT database [94].

• Dataset 4: sign language video signed by different signers.

Secondly, we evaluate the proposed hand detection system which is a combi-

nation of Haar-like features, background-masking, motion filtering, and Penalized

AdaBoost. Here we test the following hand detectors under five different circum-

stances [6]:

• Detector 1: hand detector trained by Gentle AdaBoost; using positive in-

stances that are collected in three different backgrounds shown in Fig. 4.10

(Totally 27 hand types × 5 directions × 3 viewpoints × 2 both hands ×
3 backgrounds = 2430 instances), and 4860 negative instances.

• Detector 2: hand detector trained by Gentle AdaBoost; using background-

masked hand images (Totally 27 hand types×5 directions×3 viewpoints×
2 both hands × 1 backgrounds = 810 instances), and 1620 negative in-

stances.

• Detector 3: hand detector trained by Gentle AdaBoost; using positive and

negative training data the same as Detector 2, and using the proposed hand

detection system (shown in Fig. 4.16).
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• Detector 4: hand detector trained by Modest AdaBoost; using positive and

negative training data the same as Detector 2, and using the proposed hand

detection system (shown in Fig. 4.16).

• Detector 5: hand detector trained by the proposed training system as shown

in Fig. 4.15 (based on Penalized AdaBoost); and using the proposed hand

detection system (shown in Fig. 4.16).

For each hand detector, we train 16 cascaded strong classifiers. The size of

each training instance is 20× 20 pixels. To compare the five detectors, we use 4

kinds of videos, and they are listed as follows:

• Video 1: video in a simple background; signed by two signers; including

both long and short sleeves scenes; and totally 381 frames.

• Video 2: video in a skin-color-like background; signed by two signers; in-

cluding both long and short sleeves scenes; and totally 421 frames.

• Video 3: video in a complicated background; signed by one signer; including

long sleeves scene; and totally 880 frames.

• Video 4: video in a complicated background with illumination change;

signed by one signer; including long sleeves scene, and totally 1081 frames.

The frame size of all the four videos is 480× 270 pixels.

6.2.2 Results evaluation in face detection

We compare the face detector train by our Penalized AdaBoost with those trained

by Gentle and Modest AdaBoost. Tables 6.3, 6.4, 6.5, and 6.6 shows the com-

parison results in four face data sets respectively.

Table 6.3: Comparison results on face Dataset 1

Dataset 1: 150 faces Recall (%) Precision (%) F-measure (%)
Detector-GAB 47.33 98.61 63.96
Detector-MAB 54.67 94.25 69.20
Detector-PAB 53.33 98.77 69.26
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Table 6.4: Comparison results on face Dataset 2

Dataset 2: 1258 faces Recall (%) Precision (%) F-measure (%)
Detector-GAB 55.25 91.69 68.95
Detector-MAB 65.50 84.86 73.93
Detector-PAB 65.10 91.82 76.19

Table 6.5: Comparison results on face Dataset 3

Dataset 3: 182 faces Recall (%) Precision (%) F-measure (%)
Detector-GAB 54.40 97.06 69.72
Detector-MAB 57.69 92.11 70.95
Detector-PAB 59.34 97.30 73.72

Table 6.6: Comparison results on face Dataset 4

Dataset 4: 1483 faces Recall (%) Precision (%) F-measure (%)
Detector-GAB 69.05 97.80 80.95
Detector-MAB 81.86 97.50 90.00
Detector-PAB 88.20 99.47 93.50

In tabs. 6.3, 6.4, 6.5, and 6.6, Detector-GAB, Detector-MAB, and Detector-

PAB denote the hand detectors trained by Gentle, Modest, and Penalized Ad-

aBoost respectively. The bold numbers show the best results whereas the tilted

numbers show the worst results.

Figure 6.2: Examples of test results on Dataset 1
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Figures. 6.2, 6.3, 6.4, and 6.5 shows some examples of test results on Datasets

1, 2, 3, and 4 separately. Here GAB, MAB, and PAB means Gentle, Modest, and

Penalized AdaBoost respectively.

Figure 6.3: Examples of test results on Dataset 2

6.2.3 Results evaluation in hand detection

This section evaluates the performance of the five detectors mentioned in Section

6.2.1 in both the training and test phases. Figure 6.6 shows the ROC curves of

the five detectors in the training [6]. While Tab. 6.7 shows the required training

time of the five hand detectors [6].
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Figure 6.4: Examples of test results on Dataset 3

Figure 6.5: Examples of test results on Dataset 4

In this dissertation, we test the five hand detectors by four videos. Tables.
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Figure 6.6: ROC curves of the five detectors

Table 6.7: Required training time of the five detectors

Detector-1 Detector-2 Detector-3 Detector-4 Detector-5
19 hours and 22 minutes 27 minutes 27 minutes 43 minutes 41 minutes

6.8, 6.9, 6.10, and 6.11 show the comparison results in Videos. 1, 2, 3, and 4

respectively [6]. Here the bold values represent the best results whereas the tilted

values stand for the worst results. Figure 6.7 shows some examples of the test

results in hand detection.

Table 6.8: Comparison results of the five detectors on Video 1

Video 1: 697 hands Recall(%) Precision(%) F-measure(%)
Detector-1 78.48 45.36 57.49
Detector-2 80.92 92.46 86.31
Detector-3 83.79 89.02 86.33
Detector-4 86.94 95.28 90.92
Detector-5 86.51 95.87 90.95

60



6.2 For face and hand detection system

Table 6.9: Comparison results of the five detectors on Video 2

Video 2: 657 hands Recall(%) Precision(%) F-measure(%)
Detector-1 55.71 37.42 44.77
Detector-2 78.23 78.71 78.47
Detector-3 78.54 87.46 82.76
Detector-4 78.39 80.47 79.42
Detector-5 82.04 86.10 84.02

Table 6.10: Comparison results of the five detectors on Video 3

Video 3: 1232 hands Recall(%) Precision(%) F-measure(%)
Detector-1 55.93 29.22 38.39
Detector-2 81.33 84.27 82.77
Detector-3 78.65 84.19 81.33
Detector-4 79.14 90.11 84.27
Detector-5 81.66 89.50 85.40

Table 6.11: Comparison results of the five detectors on Video 4

Video 4: 1512 hands Recall(%) Precision(%) F-measure(%)
Detector-1 41.73 32.98 36.84
Detector-2 73.48 79.02 76.15
Detector-3 64.29 88.69 74.54
Detector-4 77.45 91.06 83.71
Detector-5 78.57 94.96 86.00

In Fig. 6.7, the red rectangle represents the face, and the green and blue

rectangles represent two different hands respectively.

6.2.4 Analysis and discussion

First we analyze the performance of face detectors. From Tabs. 6.3 and 6.4,

we can see that the face detector trained by Modest AdaBoost obtains the best

recall. While the face detector trained by our Penalized AdaBoost achieves the

best precision and F-measure. From Tabs. 6.5 and 6.6, we notice that the face

detector trained by our Penalized AdaBoost overall outperform those trained

by Gentle and Modest AdaBoost. Furthermore, the precision of face detector

trained by Modest AdaBoost is worst in all four test data sets. From Figs.
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Figure 6.7: Examples of test results in hand detection

6.2, 6.3, 6.4, and 6.5, we can conclude that the face detector trained by our

Penalized AdaBoost not only improves the detection rate, but also reduces the

false positive rate significantly when compared with those trained by Gentle and

Modest AdaBoost.

Secondly, we discuss the performance of hand detectors. From Fig. 6.6 and

Tab. 6.7, we notice that hand detectors based on the proposed background-

masking (Detectors 2, 3, 4, and 5) not only reduce a lot training time, but also

suppress the false positive rate considerably [6]. Furthermore, the hand detector

trained by Penalized AdaBoost achieves a lowest false positive rate [6].
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From Tabs. 6.8, 6.9, 6.10, and 6.11, we find that Detector 1 which is based

on Haar-like features and Gentle AdaBoost has the worst performance. When

comparing Detectors 1 and 2, we notice that our proposed background-masking

improves the recall and precision significantly. Nevertheless, from Tabs. 6.9

and 6.11, we find that background-masking performs not so well because of the

skin-color-like background and illumination change [6]. Comparing Detectors

2 and 3, we can see that the motion filter improves the precision effectively

even in videos have skin-color-like backgrounds [6]. We also find that the hand

detector trained by Penalized AdaBoost overall outperforms those trained by

Gentle and Modest AdaBoost by comparing Detectors 3, 4, and 5. From Fig.

6.7, we conclude that our proposed hand detection system improves the recall

and precision considerably. Furthermore, it can extract the hand patches in

proper size [6].

In general, our proposed AdaBoost variant Penalized AdaBoost improves the

classification performance significantly in both face and hand detection. More-

over, our proposed hand detection system which integrates Haar-like features,

background-masking, motion filtering, and Penalized AdaBoost achieves the best

performance [6].

6.3 For Parameterized AdaBoost

This section evaluates the performance of our proposed Parameterized AdaBoost

by comparing it with Real AdaBoost.

6.3.1 Experiments setting

We compare Parameterized and Real AdaBoost on totally 18 binary classification

data sets from UCI repository [91]. Here we use CART-2 as weak classifiers for

both Real and Parameterized AdaBoost. For each data set, we train the classifiers

using 2/3 of its data, and test the trained classifier using 1/3 of its data. The

training of classifiers terminates when the training error reaches to 0. In this

experiments, we also use Matlab AdaBoost Toolbox [92]. To evaluate the training

errors and test errors more fairly, we use 3-fold cross-validation.
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6.3.2 Results evaluation

Table 6.12 summarizes the comparison results of Real and Parameterized Ad-

aBoost on 18 data sets [8]. In Tab. 6.12, Convergence-Cost denote the numbers

of iterations until the training errors converge to 0 or a constant value, Test-Error

denotes the classification errors of the converged strong classifiers in test subsets.

In this table, RAB and PAB denote Real AdaBoost and Parameterized AdaBoost

respectively, and the bold numbers represent the best performance.

Table 6.12: Comparison results on 18 data sets

Convergence-Cost Test-Error
Data sets:18 RAB PAB RAB PAB
Bankruptcy 5 5 0.0343 0.0343
Banknote 11 9 0.01093 0.0066
BreastCancer(WDBC) 9 7 0.04223 0.0422
Fertility 8 7 0.21953 0.21003
Glass 5 4 0.05163 0.03757
German Numeric 410 291 0.27603 0.27803
Haberman’s Survival 230 173 0.29737 0.29083
Heart Disease 29 24 0.23703 0.24447
Ionosphere 9 10 0.1111 0.11396
Indian Liver 106 95 0.28843 0.2936
Diabetes 155 131 0.29817 0.27993
Planning Relax 24 22 0.35727 0.36283
Ringnorm 116 98 0.02973 0.032
Spambase 520 376 0.0563 0.05346
Sonar 8 10 0.21663 0.21166
Twonorm 121 108 0.03147 0.03553
Wine Quality 40 38 0.00523 0.00507
Wisconsin Prognostic 12 12 0.2677 0.26766
Sum 1818 1420 2.80135 2.76773
Comparison 21.9% improved 1.2% improved

6.3.3 Analysis and discussion

From Table 6.12, we find that our proposed Parameterized AdaBoost improves

the training speed significantly when compared with Real AdaBoost. Moreover,
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the test errors of Parameterized AdaBoost are better than, or similar to those of

Real AdaBoost in almost data sets [8].
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Chapter 7

Comparison of AdaBoost

Variants

In this chapter, we compare our proposed AdaBoost variants Parameterized Ad-

aBoost, Margin-pruning Boost, and Penalized AdaBoost with three traditional

ones (Real, Gentle, and Modest AdaBoost). Differently from other comparison

studies, we compare these variants by analyzing the classification margins math-

ematically.

7.1 Statistical analysis

7.1.1 Real AdaBoost vs. Gentle AdaBoost

In Real AdaBoost, the upper bound of training error is optimized directly in

each iteration. In contrast, Gentle AdaBoost optimizes the weighted least square

error iteratively. Since Real AdaBoost decreases the training error exponentially,

its training error converges faster than that of Gentle AdaBoost in most cases.

On the other hand, Gentle AdaBoost are trying to reduce the variance of its

weak hypotheses by minimizing the weighted least square error at each round.

Therefore, it is more stable and robust than Real AdaBoost in terms of the

generalization errors [9].

67



7. Comparison of AdaBoost Variants

7.1.2 Real AdaBoost vs. Parameterized AdaBoost

Parameterized AdaBoost is proposed to speed up the training process of Real

AdaBoost. It calculates the weak hypotheses the same as Real AdaBoost, but

updates the weights of instances differently. In the boosting process, there are

some instances whose margins are near 0. These instances could easily increase

the training error if they are misclassified in the next iteration. on the contrary,

they could decrease the training error significantly if they are correctly classified

at the next round. In order to correctly classify instances whose margins are near

0 in future loops, Parameterized AdaBoost focuses more on these instances by

introducing a parameter α. From (5.5), we notice that α × |yiFt(xi)| decreases

more weight for instances whose margins are far from 0 and less weight for in-

stances whose margins are near 0. Thereby, instances whose margins are near 0 in

Parameterized AdaBoost can obtain more weight than those in Real AdaBoost.

Therefore, Parameterized AdaBoost can converge its training error faster than

Real AdaBoost. However, Parameterized AdaBoost is more prone to overfitting

than Real AdaBoost because it focuses more on instances whose margins are near

0 at the cost of focusing less on instances with minimal margins. Nevertheless,

experimental results in Chapter 6 shows that Parameterized AdaBoost can per-

form very similarly to, or slightly better than Real AdaBoost with respect to the

generalization errors if it uses stump decision trees as weak classifiers because

stump decision trees are more resistant to overfitting than CART with a lot of

inner nodes [9].

7.1.3 Gentle AdaBoost vs. Modest AdaBoost

In order to reduce the generalization error, Modest AdaBoost adopts an inverted

weight distribution to stand out weak hypotheses which can correctly classify

instances with small margins. However, we find that the performance of Modest

AdaBoost is not stable because its accuracy drops sharply in some data sets.

Next we will give an example to illustrate the reason. When W j
t+ > W j

t−, if

W j
t+(1 − W

j

t+) > W j
t−(1 − W

j

t−) also holds, the factor (1 − W
j

t+) gives higher

prediction confidence to the weak hypotheses which can correctly classify small-

margin instances. Similarly, the factor (1 −W j

t−) decreases the prediction con-
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fidence of weak hypotheses that misclassify small-margin instances. Under this

circumstance, Modest AdaBoost can outperform Gentle AdaBoost with respect

to the generalization errors. Nevertheless, if W j
t+(1 − W

j

t+) < W j
t−(1 − W

j

t−)

holds in the case W j
t+ > W j

t−, the sign of the weak hypothesis will go to opposite.

Thus, the factor (1 −W j

t−) will decrease the prediction confidence of weak hy-

potheses which correctly classify small-margin instances. At the same time, the

factor (1−W j

t+) will increase the prediction confidence of weak hypotheses that

misclassify small-margin instances. If this happens, Modest AdaBoost will lead

to far worse generalization errors when compared with Gentle AdaBoost [9].

7.1.4 Gentle AdaBoost vs. Margin-pruning Boost

Margin-pruning Boost is proposed to solve the overfitting problem of Gentle Ad-

aBoost. In Gentle AdaBoost, the weights of misclassified instances are increased

and the weights of correctly classified instances are decreased iteratively. This

type of weight updating encourages Gentle AdaBoost to focus more on difficult-

to-classify instances. However, it could easily lead to the classifier distortion

because the performance of the final strong classifier is degraded by these difficult-

to-classify instances especially when these instances are noise data. To solve this

problem, Margin-pruning Boost introduces a threshold to filter instances whose

weights are too large, and resets their weights to be 1 [85].

Margin-pruning Boost is effective at reducing the influence from noise-like

instances in the early training phase. Nevertheless, its performance drops as

the number of iteration increases because the weights of instances filtered by

the thresholding become smaller and smaller. Especially in the late training

phase, the weights of the filtered instances are probably reduced smaller than

1. Thereby, resetting their weights to be 1 will increase the influence of these

noise-like instances [9].

7.1.5 Margin-pruning Boost vs. Penalized AdaBoost

Penalized AdaBoost is different from Margin-pruning Boost in the following two

respects.
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• (1) Penalized AdaBoost utilizes a margin feedback factor to give higher pre-

diction confidence to weak hypotheses which can correctly classify small-

margin instances. From (3.4), (3.5), (3.6) and (3.7), we notice that the

factors (1−M j
t−) and (1−M j

t+) are proportional to the margins of training

data. They are computed from the sum of margin feedback factors of mis-

classified instances in each iteration. Therefore, misclassifying small-margin

instances results in small (1−M j
t−) and (1−M j

t+). In this case, the predic-

tion confidence of weak hypotheses misclassifying small-margin instances

will be decreased. Since Penalized AdaBoost highlights more competent

weak hypotheses, it is more robust than Margin-pruning Boost. Here we

notice that Modest AdaBoost is successful in standing out more competent

weak hypotheses in some cases, but it fails in other cases. By contrast, Pe-

nalized AdaBoost can always emphasize more competent weak hypotheses.

So it is more stable than Modest AdaBoost [9].

• (2) Penalized AdaBoost solves the problem of Margin-pruning Boost by

adopting a more adaptive thresholding technique. In Penalized AdaBoost,

only instances whose weights exceed the threshold and whose margins are

negative will be reset. This process makes sure that the reset weights are

smaller than the original ones under all circumstances. For noise-like in-

stances, Penalized AdaBoost does not exclude them completely since they

are not noise necessarily. However, it keeps the weights of these noise-like

instances small to reduce their influence on the final strong classifier. Thus,

Penalized AdaBoost can achieve better generalization errors than Margin-

pruning Boost [9].

7.2 Margin distributions

Differently from other comparison work, here we compare Real AdaBoost, Gentle

AdaBoost, Modest AdaBoost, Parameterized AdaBoost, Margin-pruning Boost,

and Penalized AdaBoost by analyzing their cumulative margin distributions. In

this comparison, we utilize three types of CART as weak classifiers to evaluate the

six variants. The three types of CART include CART-1 (CART with one inner
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node), CART-2 (CART with two inner nodes), and CART-3 (CART with three

inner nodes). For each data set, we retain 2/3 of its data for training. Figure 7.1

(a) shows the margin distributions of the six variants using CART-1 in a data set

German at iteration 200. Figure 7.1 (b) shows the generalization errors of the six

variants in the same data set. In Fig. 7.1 (a), we find that Penalized AdaBoost

enlarges the whole margin distribution more than other variants. Thus, it can

obtain the best generalization error in Fig. 7.1 (b). Here we also notice that the

margin curve of Modest AdaBoost is not as smooth as those of other variants.

That may explain why its generalization error in Fig. 7.1 (b) is not decreased

gradually [9].

(a) Margin distributions using CART-1 (b) Generalization errors using CART-1

Figure 7.1: Margin distributions and generalization errors based on CART-1

We also compare margin distributions of the six variants based on CART-2

in the same data set. Figure 7.2 (a) shows the result at iteration 200. While

Fig. 7.2 (b) shows the generalization errors of the six variants using CART-2.

From Fig. 7.2, we can see that the generalization abilities of the six variants are

consistent with their performance on the margins [9].

Then we evaluate margin distributions of the six variants based on CART-3 in

the same data set. Figure 7.3 (a), (b), and (c) show the margin curves at iteration

10, 100, and 1000 respectively. From the three figures, we notice that the margins

of training data are enlarged gradually when the number of iterations increases.

Moreover, we can see that Margin-pruning Boost outperforms Gentle AdaBoost in

Figs. 7.3 (a) and 7.3 (b). Nevertheless, it performs worse than Gentle AdaBoost
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(a) Margin distributions using CART-2 (b) Generalization errors using CART-2

Figure 7.2: Margin distributions and generalization errors based on CART-2

in Fig. 7.3 (c). This phenomenon shows that the generalization ability of Margin-

pruning Boost drops as the number of iteration increases. By contrast, Penalized

AdaBoost outperforms other variants in most cases. Therefore, it is more robust

and stable than others. Figure 7.3 (d) shows the generalization errors of the six

variants based on CART-3. In Fig. 7.3 (d), Margin-pruning Boost obtains better

generalization errors than Gentle AdaBoost before iteration 500. Unfortunately,

it results in severe overfitting problem after iteration 500 [9].

Finally, we compare magrin distributions of the six variants in other data sets.

Figures 7.4 and 7.5 show the comparison results. From the two figures, we find

that Penalized AdaBoost overall outperforms other five variants on enlarging

the margins of training data. The performance of Real and Gentle AdaBoost

is very similar, and Parameterized AdaBoost performs slightly worse than Real

AdaBoost when it utilizes CART-2 and CART-3 as its weak classifiers. Margin-

pruning Boost performs worse than Gentle AdaBoost as the number of iterations

increases. Comparing with other variants, the margin curves of Modest AdaBoost

are not smooth, which may result in an unstable performance on its generalization

errors [9].
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(a) Margin distributions at iteration 10 (b) Margin distributions at iteration 100

(c) Margin distributions at iteration
1000

(d) Generalization errors based on CART-3

Figure 7.3: Margin distributions and generalization errors based on CART-3

7.3 Generalization abilities

In this section, we compare the generalization abilities of the six AdaBoost vari-

ants by experiments. We totally use 25 binary classification data sets from UCI

[91]. In each data set, we utilize Matlab AdaBoost Toolbox [92] and 3-fold cross-

validation to measure the generalization errors of the six variants. First we eval-

uate the generalization abilities of the six variants based on CART-1. Table 7.1

shows the comparison results at iteration 200 [9]. Tables 7.2 and 7.3 show the

generalization errors of the six variants based on CART-1 at iteration 500 and 800

separately [9]. We also compare the six variants based on CART-2 and CART-
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Figure 7.4: Margin distributions at iteration 200 - 1
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Figure 7.5: Margin distributions at iteration 200 - 2
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3 with respect to the generalization errors. The comparison results based on

CART-2 are shown in Tab. 7.4 [9], and the comparison results based on CART-3

are shown in Tab. 7.5 [9].

Table 7.1: Comparison results at iteration 200 based on CART-1

Data sets:25 RAB GAB MAB PAAB MPB PAB
Australian 0.1536 0.1435 0.1435 0.1449 0.1391 0.1304
Blood
Transfusion 0.2392 0.2312 0.2352 0.2392 0.2218 0.2298
Banknote 0.0029 0.0022 0.0372 0.0015 0.0058 0.0080
Breast Cancer 0.0281 0.0246 0.0422 0.0299 0.0669 0.0281
Banana 0.2732 0.2713 0.2804 0.2672 0.2526 0.2809
Climate model 0.0704 0.0593 0.0963 0.0759 0.0704 0.0630
Gamma
Telescope 0.1525 0.1546 0.2297 0.1489 0.1454 0.1548
German 0.2560 0.2580 0.2950 0.2490 0.2470 0.2450
HeartDisease 0.2259 0.2333 0.1704 0.2185 0.2000 0.1630
Hepatitis 0.2200 0.2130 0.2515 0.2065 0.2129 0.1869
ImageSegment 0.0061 0.0045 0.0076 0.0061 0.0106 0.0061
IndianDiabetes 0.2448 0.2578 0.2383 0.2539 0.2318 0.2253
IndianLiver 0.3074 0.3005 0.3230 0.3092 0.2850 0.3126
Parkinsons 0.0872 0.0872 0.1692 0.0923 0.0974 0.0923
PlanningRelax 0.4286 0.4012 0.3519 0.4448 0.4175 0.3186
Ringnorm 0.0269 0.0268 0.0470 0.0293 0.0277 0.0509
Sonar 0.1445 0.1589 0.1637 0.1540 0.2117 0.1734
Spambase 0.0580 0.0546 0.0895 0.0554 0.0528 0.0617
SPECTFHeart 0.2097 0.2285 0.2472 0.2172 0.2584 0.1985
Splice 0.0675 0.0675 0.0919 0.0685 0.0612 0.0639
SteelPlates 0.2277 0.2324 0.2751 0.2344 0.2318 0.2421
Twonorm 0.0303 0.0305 0.0315 0.0324 0.0292 0.0304
Waveform 0.0993 0.0975 0.0962 0.0996 0.0917 0.0853
WBPC 0.2475 0.2727 0.3030 0.2879 0.3081 0.2323
WineQuality 0.0055 0.0054 0.0240 0.0062 0.0052 0.0054
Sum 3.8128 3.8170 4.2405 3.8727 3.8820 3.5887
VS.GAB -0.0042 0.0000 0.4235 0.0557 0.0650 -0.2283
No.Best 3 5 0 1 8 9
No.To.GAB 11 – 5 9 15 13

In Tabs. 7.1, 7.2, 7.3, 7.4, and 7.5, RAB, GAB, MAB, PAAB, MPB, PAB
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Table 7.2: Comparison results at iteration 500 based on CART-1

Data sets:25 RAB GAB MAB PAAB MPB PAB
Australian 0.1681 0.1638 0.1435 0.1638 0.1377 0.1333
Blood
Transfusion 0.2446 0.2540 0.2352 0.2500 0.2272 0.2258
Banknote 0.0029 0.0036 0.0372 0.0022 0.0058 0.0058
BreastCancer 0.0281 0.0246 0.0369 0.0264 0.0756 0.0246
Banana 0.2734 0.2725 0.2804 0.2662 0.2547 0.2738
Climatemodel 0.0704 0.0648 0.0963 0.0741 0.0722 0.0593
Gamma
Telescope 0.1522 0.1519 0.2292 0.1479 0.1424 0.1473
German 0.2700 0.2730 0.2950 0.2710 0.2490 0.2430
HeartDisease 0.2481 0.2481 0.1704 0.2333 0.2000 0.1852
Hepatitis 0.2262 0.2130 0.2515 0.2132 0.2129 0.2128
ImageSegment 0.0045 0.0045 0.0045 0.0030 0.0061 0.0030
IndianDiabetes 0.2487 0.2526 0.2383 0.2565 0.2409 0.2266
IndianLiver 0.3005 0.3074 0.3558 0.2971 0.2953 0.3057
Parkinsons 0.0821 0.0974 0.1641 0.0923 0.0974 0.0872
PlanningRelax 0.4342 0.4397 0.3519 0.4064 0.4175 0.3462
Ringnorm 0.0264 0.0249 0.0309 0.0280 0.0251 0.0318
Sonar 0.1446 0.1638 0.1589 0.1684 0.2548 0.1734
Spambase 0.0593 0.0574 0.0895 0.0578 0.0517 0.0572
SPECTFHeart 0.2097 0.2285 0.2584 0.2060 0.2772 0.2022
Splice 0.0726 0.0746 0.0919 0.0752 0.0622 0.0605
SteelPlates 0.2318 0.2293 0.2777 0.2339 0.2267 0.2334
Twonorm 0.0291 0.0296 0.0286 0.0326 0.0296 0.0276
Waveform 0.0990 0.0984 0.0962 0.1038 0.0950 0.0881
WBPC 0.2475 0.2828 0.3030 0.2424 0.3081 0.2374
WineQuality 0.0060 0.0054 0.0231 0.0054 0.0060 0.0051
Sum 3.8800 3.9656 4.2484 3.8569 3.9711 3.5963
VS.GAB -0.0856 0.0000 0.2828 -0.1087 0.0055 -0.3693
No.Best 2 2 1 2 5 15
No.To.GAB 14 – 9 14 16 20
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Table 7.3: Comparison results at iteration 800 based on CART-1

Data sets:25 RAB GAB MAB PAAB MPB PAB
Australian 0.1754 0.1696 0.1435 0.1899 0.1362 0.1348
Blood
Transfusion 0.2487 0.2473 0.2379 0.2527 0.2272 0.2218
Banknote 0.0036 0.0044 0.0372 0.0022 0.0058 0.0036
BreastCancer 0.0246 0.0281 0.0369 0.0246 0.0774 0.0246
Banana 0.2740 0.2753 0.2804 0.2687 0.2530 0.2709
Climatemodel 0.0759 0.0685 0.0963 0.0722 0.0722 0.0611
Gamma
Telescope 0.1530 0.1531 0.2290 0.1485 0.1425 0.1448
German 0.2800 0.2770 0.2950 0.2780 0.2550 0.2430
HeartDisease 0.2519 0.2333 0.1704 0.2519 0.2000 0.2111
Hepatitis 0.2197 0.2195 0.2646 0.2068 0.2129 0.2000
ImageSegment 0.0045 0.0045 0.0045 0.0030 0.0061 0.0030
IndianDiabetes 0.2513 0.2513 0.2396 0.2591 0.2396 0.2305
IndianLiver 0.2971 0.3005 0.3592 0.2988 0.3022 0.2936
Parkinsons 0.0872 0.1026 0.1641 0.0821 0.0974 0.0923
PlanningRelax 0.4669 0.4287 0.3519 0.4230 0.4175 0.3737
Ringnorm 0.0258 0.0235 0.0273 0.0288 0.0262 0.0288
Sonar 0.1493 0.1542 0.1638 0.1732 0.2500 0.1685
Spambase 0.0593 0.0563 0.0880 0.0572 0.0517 0.0561
SPECTFHeart 0.2172 0.2247 0.2697 0.2060 0.2734 0.2135
Splice 0.0766 0.0772 0.0919 0.0772 0.0642 0.0598
SteelPlates 0.2303 0.2303 0.2736 0.2349 0.2262 0.2318
Twonorm 0.0301 0.0300 0.0286 0.0315 0.0309 0.0269
Waveform 0.0987 0.0981 0.0962 0.1065 0.0956 0.0902
WBPC 0.2424 0.2828 0.2980 0.2475 0.3081 0.2273
WineQuality 0.0057 0.0058 0.0235 0.0055 0.0072 0.0046
Sum 3.9492 3.9466 4.2711 3.9298 3.9785 3.6163
VS.GAB 0.0026 0.0000 0.3245 -0.0168 0.0319 -0.3303
No.Best 2 1 2 5 4 14
No.To.GAB 14 – 8 13 14 22
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Table 7.4: Comparison results at iteration 200 based on CART-2

Data sets:25 RAB GAB MAB PAAB MPB PAB
Australian 0.1449 0.1478 0.1420 0.1580 0.1420 0.1246
Blood
Transfusion 0.2581 0.2540 0.2366 0.2608 0.2419 0.2204
Banknote 0.0051 0.0022 0.0058 0.0022 0.0044 0.0029
BreastCancer 0.0264 0.0229 0.0387 0.0299 0.0316 0.0246
Banana 0.1021 0.1002 0.2430 0.1006 0.1045 0.1479
Climatemodel 0.0574 0.0574 0.0944 0.0593 0.1019 0.0519
Gamma
Telescope 0.1301 0.1317 0.2006 0.1295 0.1320 0.1426
German 0.2710 0.2690 0.2890 0.2850 0.2580 0.2380
HeartDisease 0.2667 0.2000 0.2074 0.2556 0.2889 0.2037
Hepatitis 0.1934 0.2001 0.2320 0.1675 0.2709 0.1934
ImageSegment 0.0091 0.0061 0.0045 0.0045 0.0091 0.0045
IndianDiabetes 0.2591 0.2682 0.2357 0.2839 0.2500 0.2370
IndianLiver 0.2953 0.2815 0.3592 0.3005 0.2694 0.3057
Parkinsons 0.0667 0.0564 0.1385 0.0667 0.0974 0.0769
PlanningRelax 0.4117 0.3791 0.3352 0.3731 0.4392 0.3573
Ringnorm 0.0288 0.0284 0.0312 0.0311 0.0276 0.0343
Sonar 0.1396 0.1397 0.1493 0.1443 0.1395 0.1491
Spambase 0.0511 0.0506 0.0798 0.0550 0.0476 0.0546
SPECTFHeart 0.2060 0.2135 0.2472 0.2060 0.2434 0.2135
Splice 0.0431 0.0408 0.0368 0.0481 0.0408 0.0381
SteelPlates 0.2102 0.2020 0.2694 0.2184 0.1999 0.2123
Twonorm 0.0300 0.0303 0.0297 0.0342 0.0288 0.0270
Waveform 0.0908 0.1008 0.0920 0.1032 0.0935 0.0860
WBPC 0.2424 0.2424 0.3030 0.2374 0.2525 0.2222
WineQuality 0.0051 0.0038 0.0149 0.0042 0.0060 0.0045
Sum 3.5442 3.4289 4.0159 3.5590 3.7208 3.3730
VS.GAB 0.1153 0.0000 0.5870 0.1301 0.2919 -0.0559
No.Best 1 6 4 5 5 8
No.To.GAB 10 – 8 7 12 13
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Table 7.5: Comparison results at iteration 200 based on CART-3

Data sets:25 RAB GAB MAB PAAB MPB PAB
Australian 0.1478 0.1536 0.1333 0.1594 0.1522 0.1203
Blood
Transfusion 0.2863 0.2715 0.2392 0.2984 0.2527 0.2245
Banknote 0.0036 0.0022 0.0029 0.0015 0.0051 0.0022
BreastCancer 0.0334 0.0281 0.0246 0.0281 0.0281 0.0281
Banana 0.1040 0.1028 0.2142 0.1047 0.1002 0.1132
Climatemodel 0.0611 0.0519 0.0944 0.0593 0.0722 0.0500
Gamma
Telescope 0.1300 0.1305 0.1770 0.1316 0.1278 0.1360
German 0.2870 0.2660 0.2780 0.2920 0.2750 0.2440
HeartDisease 0.2074 0.2185 0.2074 0.2074 0.2593 0.2000
Hepatitis 0.1932 0.1933 0.2252 0.1998 0.1934 0.2127
ImageSegment 0.0015 0.0015 0.0030 0.0030 0.0061 0.0030
IndianDiabetes 0.2513 0.2552 0.2357 0.2695 0.2643 0.2344
IndianLiver 0.2781 0.2781 0.3437 0.3092 0.2867 0.2971
Parkinsons 0.0718 0.0615 0.1026 0.0821 0.0769 0.0769
PlanningRelax 0.3514 0.3844 0.3518 0.3459 0.3899 0.3682
Ringnorm 0.0277 0.0266 0.0296 0.0295 0.0296 0.0309
Sonar 0.1202 0.1395 0.1637 0.1636 0.1347 0.1349
Spambase 0.0528 0.0454 0.0728 0.0519 0.0476 0.0500
SPECTFHeart 0.2210 0.2022 0.2472 0.1948 0.2285 0.1948
Splice 0.0321 0.0361 0.0294 0.0428 0.0428 0.0308
SteelPlates 0.2030 0.2020 0.2653 0.2138 0.2035 0.1999
Twonorm 0.0319 0.0301 0.0288 0.0299 0.0304 0.0265
Waveform 0.1029 0.0972 0.0890 0.1053 0.1038 0.0872
WBPC 0.2323 0.2172 0.3030 0.2525 0.2273 0.2172
WineQuality 0.0051 0.0038 0.0125 0.0048 0.0042 0.0038
Sum 3.4369 3.3992 3.8743 3.5808 3.5423 3.2866
VS.GAB 0.0377 0.0000 0.4751 0.1816 0.1431 -0.1126
No.Best 4 7 2 3 2 12
No.To.GAB 10 – 9 6 6 17
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represent Real AdaBoost, Gentle AdaBoost, Modest AdaBoost, Parameterized

AdaBoost, Margin-pruning Boost, and Penalized AdaBoost respectively. While

VS.GAB denotes the residues that the sum of generalization errors of other vari-

ants subtracts that of Gentle AdaBoost [9]. In Tabs. 7.1, 7.2, 7.3, 7.4, and

7.5, the bold values show the best generalization error and No.Best denotes the

number of best generalization errors. No.To.GAB means the number of data sets

on which Gentle AdaBoost are outperformed by other variants [9]. From Tabs.

7.1, 7.2, and 7.3, we notice that Real, Gentle, and Parameterized AdaBoost per-

form similarly when they utilize CART-1 as their weak classifiers. By contrast,

Modest AdaBoost mostly performs worse than other variants. Furthermore, its

generalization errors are hardly reduced even as the number of loops increases.

When we compare the No.Best of Margin-pruning Boost in Tabs. 7.1, 7.2, and

7.3, we can see that its performance drops sharply when the number of iterations

increases. We also notice that Penalized AdaBoost completely outperforms other

five variants on VS.GAB, No.Best, and No.To.GAB. From Tabs. 7.1, 7.4, and

7.5, we can see that the number of inner nodes of CART is important to the gen-

eralization errors. We also notice that Gentle AdaBoost is slightly better than

Real AdaBoost especially using CART-2 and CART-3. On the other hand, the

performance of Parameterized AdaBoost and Margin-pruning Boost drop sharply

when using CART-2 and CART-3. This suggests that the two variants are more

suitable for CART-1. We also see that Modest AdaBoost based on CART-2 or

CART-3 performs better than that based on CART-1. This may suggest that

Modest AdaBoost is more suitable for CART with many inner nodes. From all

the five tables, we can conclude that the performance of Gentle and Penalized

AdaBoost is not influenced by neither the number of inner nodes of CART or the

number of iterations. However, Penalized AdaBoost is significantly better than

Gentle AdaBoost under most circumstances [9].
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Chapter 8

Conclusion

8.1 Observations

Hand and face detection is an essential prerequisite of gesture communication

systems. Among current object detection methods, vision-based approaches are

preferable because they are most natural and comfortable for people who are ges-

turing. As a vision-based object detection technique, Viola-Jones method which

combines Haar-like features with AdaBoost has achieved substantial success in

face detection. Nevertheless, it is difficult to detect hands precisely by Viola-Jones

method because hands are highly deformable compared with faces.

Our research aims at improving the accuracy of Viola-Jones method. In our

work, we first detect the face part because face detection is far more advanced

than hand detection, and then use the face information to improve the false pos-

itive rate of the hand detector. In addition, we devise a new AdaBoost variant

which we call Penalized AdaBoost to improve the classification performance in

both face and hand detection. This dissertation describes our proposed system

in details. For example, Chapter 3 explains our proposed AdaBoost variant Pe-

nalized AdaBoost. It aims at solving classifier-distortion of Gentle AdaBoost.

Compared with Gentle AdaBoost, Penalized AdaBoost selects more competent

weak learners in each iterations. At the same time, it restrains the weight in-

crease of noise-like instances. Penalized AdaBoost enlarges the whole margin

distribution more than other AdaBoost variants such as Real AdaBoost, Mod-
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est AdaBoost, and so on. Therefore, it is most robust among these compared

variants.

Chapter 4 describes our proposed face and hand detection systems. The

training processes of our face and hand detectors are based on Penalized Ad-

aBoost. Moreover, we devise a new skin-color segmentation technique which we

call background-masking to remove the background part of both training and

test data. This technique not only reduces the number of training instances sig-

nificantly, but also decreases the false positive rate of our trained hand detector.

On the other hand, the face and hand detectors trained by Penalized AdaBoost

are proved more robust and stable than those trained by other variants like Real,

Gentle, and Modest AdaBoost.

Chapter 5 explains our other contribution Parameterized AdaBoost. It is an

improvement of Real AdaBoost. Compared with Real AdaBoost, Parameterized

AdaBoost focuses more on instances whose margins are near 0 and tries to cor-

rectly classify them in future loops. Parameterized AdaBoost can achieve a faster

convergence of training error than Real AdaBoost. Furthermore, it proves that

decreasing the sum of instance weights explicitly can speed up the training pro-

cess. Because Parameterized AdaBoost improves the training error rather than

the generalization error, we did not apply this method to our detection system.

Chapter 7 analyzes the generalization abilities of several different AdaBoost

variants by comparing their margin distributions. This chapter provides a clue be-

tween the margin distributions of training data and generalization errors. More-

over, it shows a direction for improving generalization errors. On the other hand,

Chapter 8 describes the process of feature extraction for gesture communication

systems after face and hand detection. This chapter shows that gesture com-

munication systems based on our proposed detection approach can achieve high

accuracy using only hand images instead of sign language words as training data.

8.2 Limitation

In our research, background-masking is used for both training instances and test

images. It suggests a skin-color segmentation based on face information. This

process may lead to two limitations as we listed below:
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• Background-masking fails when the faces in test images can not be detected.

This could happen in the case that test images do not contain face parts,

or test images have severe bad illumination in face area.

• Background masking fails when the illumination of face area is severely

different from that of hand area because skin-color segmentation based on

face information may totally exclude the hand area.

8.3 Future works

In future, we intend to apply our proposed detection approach to a sign language

recognition system. Our future work can be described as follows:

• Collect sign language videos by different signers in different backgrounds.

For example, collect 100 sign language words by Signer A in Background

A, and then collect the same 100 sign language words by Signer B in Back-

ground B, and so on, finally use one scenario of collection as the standard

data.

• Extract features for every frame of the standard data. These features in-

clude hand positions, face position, hand shape, the distance between face

and hands.

• Train a temporal sign language recognition model based on the extracted

features in the above step.

• Use other scenarios of collection except the standard data as test data, and

then compare our recognition model with the current sign language recog-

nition approaches such as HMM (Hidden Markov Model), ANNs (Artificial

Neural Networks), and ART (Adaptive Resonance Theory).
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Appendix A

Other features in hand detection

In this part, we explain other features used in hand detection such as LBP, SIFT,

and HOG.

A.1 LBP

Local binary patterns (LBP) is a type of features which can clearly describe the

local texture of images. It has been widely used in image classification and object

detection [95]. A 8-neighbours LBP vector can be created by the following steps:

• First divide the test image into several cells, e.g., 32×32 pixels in each cell.

• For each cell, process all its pixels as follows: pick any pixel, compare its in-

tensity with those of its 8 neighbours (left-top, left-middle, left-bottom, top,

right-top, right-middle, right-bottom, bottom). If its intensity is greater

than the neighbour’s intensity, use 1 to replace the intensity of its neigh-

bour; otherwise, use 0. Finally an 8-digit binary number shows the pixel

intensities of its 8 neighbours. Then change the binary digit number into a

decimal digit number.

• Compute the histogram of the decimal digit numbers obtained in above

step for each cell. After we calculate the histograms for all cells, we can get

the 8-neighbours LBP vector of the image.
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A 16-neighbours LBP vector can be created similarly to the above steps. The

calculation of LBP features is slightly shower than that of Haar-like features which

we used in our work. Similarly to Haar-like features, LBP features are also not

robust to background noise and hand shape change.

A.2 SIFT

Scale-invariant feature transform (SIFT) describes the local features of images by

key points and the corresponding eigenvalues [96].

First SIFT creates a set of key points from the images of an object in different

scales. Then for each key point, an eigenvalue which describes the neighbourhood

information around the key point is computed. Finally, these key points and

corresponding eigenvalues are used to identify the object in a test image. Since

the extracted key points are extreme points, they can robustly describe the high-

contrast regions of an image. SIFT is proved invariant to scale change, rotation,

illumination change, affine transformation, and background noise [96].

In hand detection systems, SIFT features are more robust than LBP and

Haar-like features. Nevertheless, the computation of SIFT features is rather

time-consuming. This suggests that SIFT features may be not suitable for real

time applications especially when the size of test images are large. On the other

hand, it is difficult to distinguish hands from arms by SIFT features because the

extracted key points from hands and arms are highly similar.

A.3 HOG

Histogram of Oriented Gradients (HOG) is a kind of feature descriptors which

calculates occurrences of gradient orientation in localized portions of an image

[97]. HOG has achieved considerable success in object detection especially in

human detection [97].

The calculation of HOG features can be explained briefly as follows:

• Divide an image into several blocks.

• Divide an block into several small regions which are called cells.
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A.3 HOG

• For each cell, compute gradient directions for all pixels within the cell, and

then get the local histogram of these computed gradient directions.

• For each block, do normalization for all local histograms within the block.

Finally the combination of all normalized local histograms is the HOG de-

scriptor of the block.

• The HOG feature of an image consists of HOG descriptors of all blocks.

Because HOG features operate on localized small cells, they are invariant to

geometric transformations such as affine transformation and orientation change.

Moreover, the normalization for cells in one block makes HOG features invari-

ant to illumination changes. HOG feature is suitable for detecting fixed shapes

like pedestrians since it highlights edges and corners in an test image. Many re-

searchers also utilized HOG features in hand detection systems. Nevertheless, the

high computational cost of HOG features is still a problem because most hand

detection systems are required to run in real-time.
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