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Abstract 

To address a neural basis of robust behavioral control in the natural 

environment, I focused on the motion perception in Drosophila melanogaster. 

First, to reveal how the fly brain processes a noisy wide-field motion 

stimulus and guarantees robust reactions, I measured and compared the 

optomotor response and the activity of motion sensitive neurons. Second, to 

reveal how ego-motion is encoded by the bilateral network of the neurons, I 

constructed an accurate model of the neural network and simulated its 

activity. From these two studies I found that the robust motion perception 

emerges from an early stage of visual system prior to the bilateral network 

and the network more efficiently encodes a rotational ego-motion than 

translational one by binocular integration.  
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1 Introduction 

1-1 General Introduction 

 The brain controls behavior and is involved in mind, cognition and 

emotion. To uncover a central enigma of the brain function, how does the 

brain work to accomplish such difficult tasks, has been attracting interest 

from many people not just scientists. However, it is not so easy to reveal the 

human brain function because of the complexity of the brain that is 

constructed by the estimated 100 billion neurons. To uncover the function of 

the brain, we also need to directly measure the activity of neurons in vivo. 

Since Hodgkin and Huxley measured action potentials from a squid giant 

axon in 1939 (Hodgkin and Huxley, 1939), several methods of measuring the 

activity of neuron or neurons have been developed. Examples are patch 

clamp or intracellular recording and Ca2+ imaging technic which allow us to 

measure the membrane potential of single neuron and the intracellular 

concentration of Ca2+ around a large numbers of neurons, respectively. 

However, of course, it is hard to observe the activities of human brain by 
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such techniques, and there is an ethical problem also here. 

 In such situation, various animals except for human, such as 

monkey, mouse, zebrafish, Caenorhabditis elegans and Drosophila 

melanogaster, have been used as model animals for neuroscience. Among 

these animals, Drosophila melanogaster (D.melanogaster or fruit fly) is one 

of the especially successful animal in neuroscience. Fruit fly is a tiny insect 

that is about 5 mm in body length and has two major nerve tissues that are 

the brain involved in sensory information processing and ventral nerve code 

(VNC). The fly brain is constructed by the approximately 10 million neurons 

and the size is approximately 600 !". In spite of tiny size of the brain, there 

is remarkable diversity in their behavior. For example, they have an ability 

to do associative learning between odor (de Belle and Heisenberg, 1994; 

Waddell and Quinn, 2001), color (Vogt et al., 2014), space (Neuser et al., 

2008; Ofstad et al., 2011), visual features (Liu et al., 2006) and an attractive 

or aversive stimulus, to mate with complicated courtship song, and to also do 

same decision making tasks (Tang, 2001; van Swinderen, 2007; van 
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Swinderen and Flores, 2007; van Swinderen et al., 2009; Zhang et al., 2007). 

 The greatest cause of fruit fly’s success as model system is a large 

variety of molecular and genetic tools available to visualize and manipulate 

neurons. Although it is also possible to use same genetic tools in mice or 

other model animals, we can easily introduce powerful genetic tools in fruit 

fly than the other animals because of simplicity breeding, its short lifespan 

and brief interbreeding. One of the most useful genetic tool in Drosophila is 

GAL4/UAS system (Brand and Perrimon, 1993). This system enables us to 

express an arbitrary protein in an arbitrary part of brain. And, we can also 

genetically manipulate a ‘single’ neuron by combining such genetic tools. By 

this system, we can visualize specific neurons and manipulate its membrane 

properties such as channel expression pattern. For example, we are able to 

clarify a causal relationship between specific behavior and neural activities 

exceed a correlation by expressing a heat or light activated ion-channel to 

manipulate membrane potentials. It is called ‘optogenetics’, and it became a 

powerful tool for neuroscience. 
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1-2 Application to robotics 

 Recently, the concern with applying knowledge from the insect 

brain research to robotics has been growing. Although the insect brain so 

much smaller than any microcomputer we know, it has amazingly high 

ability to process information and use a lot less energy. If we can develop 

‘artificial insect brain’, it makes a substantial contribution for human society. 

In this trend, scientists of University of Sheffield and Sussex launched a 

project called ‘Green Brain’ (see references "Green Brain Project"). This 

project aim to create a robot that thinks, sense, and acts like a honeybee by 

combining computational modeling, learning and decision theory, computing 

methods, and robotics with data from neurobiological experiments in Apis 

mellifera. Another similar project called ‘Robobees’ also started up in 

Harvard University (see references "Robobees"). And furthermore, recently, 

a several number of studies have been conducted on applying neural 

algorithms of visual processing in fruit fly to controlling an autonomous 
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flight robot ‘drone’ (Beyeler et al., 2009; Moeckel and Liu, 2007; 2010; 

Reichel et al., 2005). Autonomous flight is one of the most attractive 

technique in a broad range of fields, such as disaster rescue robot and space 

plane. To automatically control the drone appropriately and robustly, in 

general, visual images from cameras have to be processed at ultra high speed. 

In fruit fly, they can processed visual image from compound eyes and control 

there posture by impossible speed at any our visual processing algorithm 

(Muijres et al., 2014; Reyn et al., 2014). Therefore, uncovering how does the 

fly brain such fast and robustly process visual information may contribute to 

the development of robot control, and its demand rises. 

 

1-3 Goal and Methodology 

 As mentioned above, the fly brain has ability to fast and robustly 

process information from the outside world. However, as a matter of course, 

not only fly but also any other animals have this amazing ability. Because 

sensory stimuli often became noisy in nature, animals have to response 
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appropriately and robustly even to such unapparent stimuli. Therefore, this 

issue is one of most important problem in neuroscience, how the brain 

processes unapparent information and guarantees robust behavioral 

reactions. Answering these questions will provide a better understanding of 

the neural mechanisms controlling behavior in natural environments, and 

may also contribute to the development of robust robot control. 

 The goal of this study is to uncover the neural mechanisms 

underling robust information processing. In this study, I focused on the 

‘ego-motion’ perception in visual system of Drosophila melanogaster as a 

model system. ‘Ego-motion’ is defined as the motion around their body axis 

within an environment. The details are to be mentioned later (see section 

3-1). In most sight reliant animals not just fly, ego-motion is estimated by 

visual images from eyes, and it plays dominant role in their motion control. 

There are two major neuroscientific problems or difficulties from receiving 

visual information to ego-motion estimation. First, the perception of the 

wide-field motion direction in a receptive field of each eye. Second, the 
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estimation of ego-motion by integrating the wide-field motion information 

from the two eyes. 

 In this study, I have a question and an objective for each problem 

mentioned above. First, how is the wide-field motion direction robustly 

perceived in the fly visual system? To reveal this question, I measured and 

compared the optomotor response and the activity of motion sensitive 

neurons to unapparent motion stimuli (section 2). Second, how dose the 

bilateral network of the neurons integrate the motion information from 

respective eyes? To unclear this question, I constructed an accurate model of 

the neural network and simulated its activity (section 3).  
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2 Robust recognition of wide-field motion direction and 
its underlying neural mechanisms 

2-1 Fly optomotor response 

 The optomotor response (OMR) is an important behavioral reaction 

to a sensory stimulus; it is observed in most sight-reliant animals, from 

vertebrates to invertebrates. The OMR is a compensatory reaction to 

wide-field motion or ego-motion to stabilize a retinal image and is crucial for 

course control during flight (Fry et al., 2009; Kirchner and Srinivasan, 1989; 

Srinivasan et al., 1996), walking (Seelig et al., 2010; van Swinderen and 

Flores, 2007), swimming (Jones, 1963), and also escaping (Fotowat et al., 

2009). A considerable number of studies have been conducted on the neural 

and computational mechanisms underlying the OMR in the blowfly visual 

system (Egelhaaf and Borst, 1993), and more recently in Drosophila 

melanogaster (Joesch et al., 2008). Both systems possess almost the same 

neural structures and functions (Borst et al., 2010). Retinotopically 

processed motion information converges in a set of wide-field 

motion-sensitive neurons called lobula plate tangential cells (LPTCs) (Borst 
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and Euler, 2011; Borst et al., 2010). LPTCs involve three horizontal system 

(HS) cells that respond to horizontal wide-field motion stimuli (Hausen, 

1982; Joesch et al., 2008). During preferred direction (PD) motion 

stimulation, HS cell membrane potentials are depolarized, whereas they are 

hyperpolarized during antipreferred or null direction (ND). Previous studies 

have shown that HS cells activation induces head yaw, flight, and walking 

OMR (Blondeau, 1981; Haikala et al., 2013; Heisenberg et al., 1978), 

suggesting a strong association between HS cell activity and the OMR. 

Response properties of either HS cells or the OMR to several stimulus  

features such as speed, contrast, and pattern of motion stimulus have been 

thoroughly investigated. However, few studies have simultaneously 

investigated both the OMR and HS cell activity in response to motion stimuli 

with motion noise, and the relationship between the OMR and HS activity in 

this context remains poorly understood. 

 Here, we studied the properties of the OMR to wide-field motion 

stimuli with random dot noise and compared it with the neural activity of HS 
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cells. Our results obtained with signal classification theory, receiver 

operating characteristic (ROC) analysis, revealed that flies robustly perceive 

wide-field motion direction even in the stimulus contains a considerable 

amount of noise, and HS cell activity accounts for this noise-robustness. 

Direct comparisons between behavior and neural activity by ROC analysis 

could reveal the quantitative correspondence of robust performance under 

the noisy condition. Furthermore, we performed simulation studies to 

examine the possible neural mechanisms underlying this feature of HS 

activity. This study provides a physiological basis for robust perception of 

wide-field motion stimuli with noise.  



 15 

2-2 Materials and Methods 

2-2-1 Flies 

 Fly stocks were reared on conventional medium that included 

cornmeal (Oriental Yeast Inc., Tokyo, Japan), yeast (Asahi Food and Health 

Care, Tokyo, Japan), and agar (Ina, Nagano, Japan) at 24°C under a 12:12-h 

light/dark schedule. Female adult flies 1–4 days after eclosion were selected 

for use in all experiments. I used wild-type Canton-S for behavioral 

experiments and UAS-GCamp3; R27B03-Gal4 (a generous gift from Dr. 

Vivek Jayaraman) for electrophysiological studies to label all HS cells. 

 

2-2-2 Visual Display and Stimuli 

 I used a LED insect arena system (Metrix Technology Corp., New 

York, NY, USA (Reiser and Dickinson, 2008)). The system consists of a green 

LED display spanning 360° in azimuth ±60° (96 × 16 pixels) for behavioral 

experiments and spanning 300° in azimuth and ±60° (80 × 16 pixels) for 

electrophysiological studies to present flies with horizontally moving stripe 
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patterns. These patterns were moved by turning the LED light on and off, 

therefore, they did not move continuously. Because of this, spike-like 

changes in membrane potentials were often elicited (Schnell et al., 2014). To 

build motion stimuli with noise, we superimposed a random dot pattern 

independent from frame to frame on CW- and CCW-moving vertically striped 

square-wave gratings (8 pixels, approximately 30° per cycle). I modified a 

specific intensity of random dots (!!: 0.2, 0.4, 0.6, 0.8, 1.0) to control an SNR 

of visual motion. In each frame, an LED is selected at the probability of 0.4 

and turned on as a random dot. If the “random dot” LED is placed on the 

bright bar in the original stripe pattern, the intensity of random dot (!!) is 

subtracted from the bright bar. Thus, the total luminance of the LED display 

is kept constant. I defined SNR for motion stimulus as  

!"# = 10 log!"
1+ 0.4!!
0.4!!

 

 

2-2-3 Behavioral experiments 

 I measured the head yaw angle as an indicator of the OMR as 
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described previously (Kikuchi et al., 2013). Briefly, cold-anesthetized flies 

were tethered at the thorax to a steel pin with glue. To minimize body 

movement without affecting head movement, the legs were stuck together 

with nail polish. The fly was placed in the center of LED arena. Head 

movements were recorded with a CCD camera (Hamamatsu Photonics Inc., 

Hamamatsu, Japan). Images were collected at a frame rate of 25 or 30 Hz. 

After video recording, we used tracing software (PTV, Digimo, Japan) to 

measure the head yaw angle around the dorsoventral axis as the OMR. The 

stripe pattern was turning for 10 s each in CW and CCW directions. The 

optimal frequency to elicit an Drosophila OMR is around 4 Hz (Duistermars 

et al., 2007; Kikuchi et al., 2013; Schnell et al., 2014). In this study, we used 

1 and 4 Hz. The intervals for each trial were not less than 5 s. 

 

2-2-4 Whole-cell patch clamp recordings 

 Preparation of flies and recording protocols were modified a 

previously published protocol (Maimon et al., 2010). Briefly, flies were 
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cold-anesthetized and attached to a hole in the center of Palafilm sheet with 

the head bent down using two component silicon glues (KWIK-SIL, WPI, 

Sarasota, FL, USA). To reduce the stress caused by the restraint, I did not 

clip all six legs or glue the proboscis to the head. After attaching to the 

holder, a portion of cuticle was removed in saline (130 mM NaCl, 5 mM KCl, 

2 mM MgCl2[6H2O], 2 mM CaCl2[2H2O], 36 mM saccharose, and 5 mM 

HEPES [pH 7.3]). To remove the rest of the covering tissue, collagenase (0.5 

mg/ml, Yakult, Tokyo, Japan) dissolved in extracellular saline was added 

locally just above the HS cell somata with a micropipette using positive 

pressure for approximately 30 s. I performed whole-cell patch-clamp 

recordings on HS cells in the right brain hemisphere. The membrane 

potential was recorded by the patch-clamp amplifier (Axopatch 1D, Axon 

Instruments, Foster City, CA, USA). The recording electrode had 7–12 MΩ 

resistance, and the sampling frequency was 10 kHz. HS cells were observed 

using a 40× water-immersion objective (RAMPlan FL N; Olympus, Tokyo, 

Japan), a microscope (BX51WI, Olympus). Patch-clamp electrodes contained 
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an intracellular solution comprised of 140 mM K-aspartate, 10 mM HEPES, 

1 mM KCl, 4 mM MgATP, 1 mM EGTA, and 0.5 mM NaGTP (pH 7.3). In the 

experiment shown in Figure 3B, the intracellular solution included 6 mM 

biocytin-hydrazide to visualize the HS cell’s morphology. Because we did not 

include biocytin for other experiments, we could not identify whether the 

recorded cell was one of the three HS cell types. However, no obvious 

differences were observed in the physiological responses in individual 

recordings. The stripe pattern turned for 1 s each CW (PD) or CCW (ND) 

direction at 1 Hz of temporal frequency, which is near the optimal frequency 

for Drosophila tangential cells (Schnell et al., 2010; 2014). A total of 12 

motion patterns were presented in a pseudorandom order. The same 

stimulation pattern was given at least eight times for each cell. 

 

2-2-5 Immunohistochemistry 

 Figure 3 shows the visualization of a biocytin-filled neuron. After 

recordings, the brain was fixed with 4% paraformaldehyde for 30 min at 4°C 
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and washed three times with PBST (0.1 M phosphate-buffered saline 

containing 0.2% Triton X-100). It was blocked with 5% normal goat serum 

(NGS) for 1 h and then incubated with a primary antibody solution 

containing 1:30 mouse anti-nc82 (Hybridoma Bank, Iowa City, IA, USA) at 

4°C for 2 days. After washing with PBST, the brain was incubated with a 

secondary antibody solution containing 1:200 goat anti-mouse Alexa 633 and 

1:500 streptavidin Alexa 555 (Molecular Probes, Eugene, OR, USA) at 4°C 

for 2 days. After washing with PBST, it was mounted in 400 µl Vectorshield 

(Vector Laboratories, Burlingame, CA, USA). Confocal images were acquired 

with an Olympus FV1000D IX81 confocal laser scanning microscope under 

40× magnification. 

 

2-2-6 Computer simulations 

 I constructed the 2-Quadrant-Detector model (Eichner et al., 2011) 

to reproduce HS activities in response to wide-field noisy motion stimuli. 

Reportedly, this model can semi-qualitatively reproduce a variety of 
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experimental data measured from Drosophila tangential cells (Eichner et al., 

2011; Joesch et al., 2013). 

 To synthesize visual stimuli for the model, I needed to estimate how 

the image of the LED display device is projected onto the fly retina. As 

shown in Figure 5, the retinal projected image is calculated from the actual 

geometric arrangement of the LED display device. In each frame of the 

synthesized visual stimuli, the luminance of each pixel is represented by a 

dimensionless integer value ranging from 0 to 5. The image of each frame is 

filtered by a 2D Gaussian function with a 7.5° deviation of standard to 

mimic the receptive fields of lamina cells, which are formed by lateral inputs 

from different retina cells of six neighboring ommatidia (Sanes and Zipursky, 

2010). After spatial filtering, the filtered signal is passed through a sigmoid 

transfer function that represents typical non-linear properties including cell 

membrane potential responses, synaptic transmission, and habituation to 

stimuli in the fly’s visual system. I used the sigmoid transfer function 

defined as ! = !
!!!!(!!!!), where ! is the filtered signal, ! is a scaring factor, 
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!! is a threshold, and ! is a gain. The parameters of this function were 

estimated by manual fitting to the results illustrated in Figure 3 (! = 5, ! = 

2, !! = 2.5). 

 The sigmoid output was processed by the 2-Quadrant-Detector 

model composed of a 2D motion detector array, which consisted of two 

subunits of horizontal and vertical local motion detectors located at lattice 

points in the 2D-array. Figure 5a shows the architecture of each motion 

detector. In Figure 5a, HP is a temporal first-order high-pass filter (! = 250 

ms), and DC is a direct connection that passes 10% of the original signal. The 

sum of these is passed through two kinds of half-wave rectifiers that mimic 

the response properties of L1 and L2 cells (Joesch et al., 2010; Maisak et al., 

2013). The ON and OFF pass-ways correspond to the L1 and L2 cells in the 

lamina, respectively. Note that a clip point of OFF pass rectifier slightly 

shifted to positive 0.05 with reference to Eichner et al. (2011). Therefore, the 

OFF pass-way signal involves a small amount of the ON signal. The outputs 

of the rectifiers are sent to the next process stage composed of the standard 
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Reihardt model (EMD), which consists of a first-order low pass-filter (! = 

150 ms), a multiplication, and an imbalanced subtraction (The 

positive:negative ratio is 1.0:0.8). The parameters of this stage were also 

estimated by manual fitting to the results illustrated in Figure 3. Compared 

to the parameters used in Eichner et al. (2011), the time constant of the 

low-pass filter is slightly larger, and the negative proportion in the 

imbalanced subtraction is slightly smaller. If I select the parameters used in 

Eichner et al. (2011), the model’s residual activity after PD stimulation and 

ND stimulus response are not matched to our experimental results. 

 Tangential cells spatially integrate the output of local motion 

detectors on their dendrites and have receptive fields with a characteristic 

sensitivity distribution (Huston and Jayaraman, 2011; Krapp, 2009). To 

keep the model relatively simple, the receptive field was approximated by 

the weighed summation of the horizontal and vertical local motion detector 

outputs. The membrane potential of the model, ! , was determined by the 

following formula:  
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! ! = ! !"#$!"!!"#$!%&'( ! !! + !"#$"#!"#$%&'( ! !! + !(!), 

where !"#$"#!!"#$!%&'( and !"#$"#!"#$%&'( are the outputs of the horizontal 

and vertical local motion detectors, and !! and !! denote the weights of 

the horizontal and vertical components, respectively. !(!)  denotes a 

fluctuation of membrane potential described as follows. Figure 5b shows a 

vector field of the weight vectors [!! ,!!] depending on the position, which 

were determined to reproduce the receptive field of the actual HS cell (Krapp 

et al., 2001). A is a scaling factor, which was determined as ! = 0.004. 

 To reproduce the fluctuation of membrane potential observed at the 

HS cells, I added a colored noise to the model output. I generated the colored 

noise signal using a first-order autoregressive (AR) model expressed as: 

! ! = ! ! − 1 + !! , where !(!)  is the noise at time ! , !  is a damping 

parameter determining the correlation length of the generated noise, and !! 

is a white noise with variance !! . I recorded the spontaneous membrane 

activity of the HS cell for 5 s and estimated these parameters by fitting to the 

spontaneous activity with the Yule-Walker method. The estimates of these 
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are ! = 0.9974 and !! = 0.0022, respectively. Numerical simulations were 

carried out with MATLAB (MathWorks, Inc., Natick, MA, USA). 

 

2-2-7 Data analysis 

 To quantify the behavioral and neuronal discrimination 

performances between PD and ND, I obtained histograms of both head yaw 

rotation and HS cell membrane potential in response to PD and ND motion 

stimuli and calculated ROC curves for the PD and ND response histograms. 

In the behavioral experiments, the histograms in Figure 2a to certain stimuli 

were calculated from data in the last 4 s during stimulus presentation for all 

flies. For electrophysiology, the histograms in Figure 3e were calculated by 

data from all trials in each cell. To cancel the variance in each trial, I 

subtracted the baseline from the raw data in each trial for both the 

behavioral and electrophysiological experiments. I defined the baseline as 

the average head yaw angle during the total experimental time in each trial 

and defined it as the average membrane potential in the 5 s before motion 
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stimuli onset in each electrophysiological trial. 

 Then I calculated the area under the ROC curve (AUC). Because the 

AUC is mathematically equal to the probability of getting the correct answer 

in a two-alternative forced choice test, it is a good indicator for quantifying 

the discrimination performance. When the ROC curve lies along the diagonal, 

the AUC is 0.5, suggesting that the fly cannot distinguish between two 

directions. When the ROC curve hugs the left axis and upper limit, the AUC 

approaches 1.0, indicating that the fly can fully distinguish between the two 

directions. These calculations were carried out with the Perfcurve function of 

MATLAB.  
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2-3 Results 

2-3-1 Robust perception of wide-field motion with strong noise 

 I tested the OMR to motion stimuli with a computer-controlled LED 

display (Figure 1a). As shown in Figure 1b, flies turn their head to the 

direction of motion during the stimulus presentation. In order to quantify 

the response, I measured the head yaw angle, which was been established as 

an index of the OMR (Duistermars et al., 2012; Kikuchi et al., 2013; Zhu et 

al., 2009). To test the effects of reduced reliability of stimuli on wide-field 

motion perception, we need to precisely control a signal-to-noise ratio (SNR) 

of motion in the stimulus. Therefore, horizontally rotating vertical stripes 

superimposed with several intensities of random dot noise were used as the 

motion stimuli. The pattern was turned in clockwise (CW) and 

counter-clockwise (CCW) directions. I used two different temporal 

frequencies (1 and 4 Hz, Figure 1c and see Materials and Methods). 

I evaluated the head yaw response over a range of SNRs (Figure 2). Flies 

obviously react to motion stimuli including substantial amounts of noise 
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(SNR = 3.274) at both temporal frequencies. However, when the SNR of the 

stimulus <3.274, flies no longer react (Figure 2a). In order to quantify how 

accurately flies could discriminate the two directions of the moving stimuli, I 

showed distributions of the head yaw response during the stimulus 

presentation (Figure 2 bottom panel and see Materials and Methods) and 

applied a ROC analysis to these distributions. The ROC analysis is a 

classical and commonly used method to evaluate the performance of 

perceptual detection, and it allowed us to directly and quantitatively 

compare the discriminative capacity of the behavior to that of the neural 

activity (Britten et al., 1992). The distributions of head yaw responses to CW 

or CCW motion directions are separate until SNR reached a moderate level 

(SNR = 5.006), and these two distributions became closer with an increase in 

noise. When the SNR reaches the strongest noise level, the distributions 

were no longer distinguishable (right, Figure 2a). As a result, the deflection 

of the ROC curves away from the diagonal until the moderate noise level 

(SNR = 5.006) and approaches the diagonal with increasing noise levels 
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(Figure 2b). Next, we calculated the area under the ROC curve (AUC). At 

both temporal frequencies, the AUC value remained with the value under 

stripe pattern until the critical noise level and then rapidly decreased 

(Figure 2c). These results indicate that flies can correctly discriminate 

rotating wide-field motion directions even though the SNR of the motion 

stimulus is quite low. 

 

2-3-2 HS cell activities 

 To investigate the neural basis underlying the robustness of the 

OMR, I recorded membrane potentials of HS cells to wide-field motion 

stimuli with noise using a whole-cell patch clamp technique (Figure 3a). As 

reported previously, I also observed that HS cells depolarized or 

hyperpolarized during the presentation of an ipsilateral front-to-back 

preferred direction (PD) or back-to-front null direction (ND) horizontal 

motion stimulus, respectively (Figure 3d). PD motion stimuli elicited 

increases in membrane potential, including spike-like transient 
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depolarization. These spike-like changes in membrane potentials were often 

elicited by the moving patterns we used (see Materials and Methods). As 

indicated in Figure 3e, I presented flies with a rotational motion of the same 

range of SNR as used in our behavioral experiments described above with 1 

Hz temporal frequency. The amplitude of membrane potential changes in 

response to PD motions decreased with an increase in the noise level (Figure 

3e). To quantify the discriminative performance of HS cell activities, I 

analyzed the distributions of HS cell membrane potentials from which 

baseline amplitude was subtracted during the stimulus presentation and 

computed the ROC for each pair of two distributions (Figure 3e, bottom 

panel, and 3f). The ROC curve rises rapidly from the origin in Figure 3f until 

the moderate noise level (SNR = 5.006) because there is minimal overlap in 

the two distributions of membrane potentials in response to PD and ND 

motion stimuli. However, when the SNR of stimulus decreases, the ROC 

curve rises more slowly and approaches the diagonal because the 

distributions are overlapping. The value of AUC kept with the value under 
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the stripe condition until the moderate noise level and the rapidly decreases 

(Figure 3g). It was remarkably similar to the robust performance of the 

behavioral response (Figure 2c and 3g). 

 However, I found that HS cells’ response to noisy motion stimuli 

was proportionally reduced with increased noise intensity (Figure 3h and i). 

Considering the spike-like response, the analysis based on the mean 

amplitude of membrane potential changes during stimulation was not 

appropriate to quantify HS cell response in our case. Therefore, I analyzed 

the response by integrating a baseline-subtracted mean membrane potential 

during motion stimulus presentation. The responses to both PD and ND 

motion increased with increasing SNR (Figure 3h). In addition, the 

differences between responses to PD and ND stimuli (mean response 

difference, MRD) linearly decreased with a greater noise level (Figure 3i). 

These results indicate that HS cells can robustly discriminate wide-field 

motion directions even though the stimulus contains considerable amount of 

noise and MRD was easily affected by noise. The behavioral discriminative 
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capacity can be accounted for by the neuronal discriminative capacity. 

 

2-3-3 Effects of binocular vision 

 Previous studies have reported that binocular integration of 

wide-field motion via interhemispheric couplings modulates the flow field 

selectivity of LPTCs in blowflies (Farrow et al., 2006; Haag and Borst, 2001; 

Horstmann et al., 2000; Krapp et al., 2001; Suzuki et al., 2014). It is 

considered that LPTC activity in response to wide-field motion is influenced 

by binocular visual input. Therefore, binocular visual input might be 

necessary to produce the two distinct features of HS activity: robust 

discriminative capacity and MRD proportionally reduced with increased 

noise. To examine this view, I recorded HS cell activities while covering the 

opposite compound eye with a barrier that interrupted visual inputs (Figure 

4a). Figure 4b shows the average membrane potentials of HS cells to motion 

stimuli under covered and uncovered conditions over the same of SNR as 

used in Figures 2 and 3. I found no significant differences between the 
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activities of HS cells recorded under both conditions in response to the 

wide-field motion stimulus (Figure 4b). Furthermore, there were no 

significant changes in the AUC or MRD of HS cells’ response to motion 

stimuli under the covered condition compared to the uncovered condition 

(Figure 4c–e). These results indicate that ipsilateral visual inputs are 

sufficient to generate the distinctive features of HS activities in response to 

noisy motion stimuli. 

 

2-3-4 Neural algorithms underling robust motion perception 

 Next, I focused on neural architectures and implementations 

underling HS cell coding. To address this problem, I used a mathematical 

modeling approach and used an elementary motion detector (EMD) model 

that is thought to reproduce LPTCs activities in facing wide-field motion 

stimuli (Borst et al., 2010; Reichardt, 1987). In this study, I built a spatial 

filter and sigmoidal threshold function into the EMD model (Figure 5a). The 

spatial filter was added to represent the receptive field properties of lamina 
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cells. The sigmoidal function was used to represent typical non-linear 

properties of neural cell membrane potential and synaptic transmission in 

the fly visual system. As indicated in Figure 5c, my model was applied to 

both PD and ND motion stimuli over the same range of SNR as in our 

experiments described above. The activities of HS cells observed in our 

experiments were successfully reproduced by our model simulations. To 

demonstrate the effectiveness of the spatial filter and threshold function, I 

compared the performance of models with and without these components. To 

quantify the discrimination performance of these different cases, I computed 

the AUC. The AUC of the model with both components kept with the value 

under the stripe condition until the critical noise level and then rapidly 

decreased as observed in the real HS activities (Figure 5d). The model with 

either one of the components was more sensitive to noise than the model 

with both modifications. Next, to investigate how the MRD of these models 

was affected by the increase in noise, I normalized MRD against that to the 

stripe. As shown in Figure 5e, in the models with threshold function only or 
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with spatial filter only, the normalized MRD values markedly fell as the 

SNR decreased. However, the model with both modifications qualitatively 

reproduced the normalized MRD value in the experimental result as a 

function of the SNR. Thus, the model with the spatial filter and threshold 

function accurately reproduced HS cell activities elicited by motion stimuli 

with random dot noise.  
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2-4 Conclusions and Discussion 

 Robust and reliable behavioral performance in a noisy environment 

and the underlying neural mechanisms have been attractive subjects for 

studying the function of the neural system. A number of studies of the visual 

system have focused on robust information processing by investigating the 

effects of photon and motion noise (Grewe et al., 2003; 2006; Warrant, 2004). 

These studies mainly observed the effects of noise on either behavioral 

aspects or neural activity. Few studies investigated both behavior and the 

underlying neural activity, although primate studies reported effects of the 

motion-noise on motion perception and neural activity (Britten et al., 1992; 

Newsome et al., 1989). However, because of the huge number of neural cells 

and the complexity of the primate neural system, it might be difficult to 

uncover the precise response properties of the behavior and its relationship 

with neural activity in such a large brain. 

 Here, I investigated the discriminative capacity of panoramic 

motion direction embedded in random dot noise with regard to both behavior 



 37 

and neural activity levels in the tiny Drosophila brain. I showed the robust 

ability of flies to discriminate wide-field motion directions under 

considerable amount of noise (Figure 2). Moreover, the discriminative 

capacity of HS cells for moving direction strongly correlated with these 

behavioral performances of the OMR (Figure 3). This robust discriminative 

capacity of HS cells could only be revealed by ROC analysis because the 

membrane potential changes of the HS cells were proportionally reduced 

with increased noise. Our results provide the first evidence that a fly, which 

has a tiny brain, can correctly and robustly react to motion stimuli buried in 

noisy outside environment at both behavioral and neural levels. 

 I demonstrated that the neural network in the fly’s tiny brain was 

sufficient to robustly respond to wide-field motion stimuli with strong noise. 

To clarify the neural and computational mechanisms underlying the 

robustness, I studied the impact of binocular integration on HS cell activity 

in response to motion stimuli with noise. There were no significant changes 

in HS cell activity between binocular and monocular motion stimulation 
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(Figure 4), indicating that ipsilateral visual input is sufficient to generate 

the distinctive HS activities to motion stimuli with noise. This finding is 

noteworthy because several studies have shown the necessity of binocular 

integration of LPTCs network for stimulus selectivity (Haag and Borst, 2001; 

Horstmann et al., 2000; Krapp et al., 2001). Conversely, HSE cells are much 

less affected by contralateral input (Farrow et al., 2006), which is consistent 

with our result. The response properties of HS cells might be minimally 

influenced by contralateral input because of their positions in the LPTCs 

network and their membrane properties. 

 Furthermore, I investigated neural architectures and 

implementations in HS cell coding with a mathematical modeling approach. 

In general, the local motion detector model is highly influenced and 

vulnerable to local noise in motion stimuli because it extracts motion 

information from temporal patterns of light intensity at adjacent locations 

within narrow regions. Therefore, the local motion detector model severely 

underestimates the response to motion stimuli with noise (Verghese et al., 
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1999; Watamaniuk et al., 1995). In order to elucidate which mechanisms 

facilitate the noise-robust discriminative performance of HS cell activities, I 

added a Gaussian spatial filter and imaginary threshold function to the local 

motion detector model. We successfully reproduced the experimental results 

when we added a spatial filter and threshold function to the EMD model 

(Figure 5). These results suggest that spatial filtering and binarization of 

visual inputs are essential to generate the distinctive features of HS cell 

activities elicited by motion stimulus with noise. The spatial filter smoothed 

the stochastic signal fluctuations with a weighted average and reduced the 

contrast of visual patterns, while the threshold function emphasized and 

reconstructed the contrast reduced by spatial filtering. Thus, I think that 

smoothing out noise and contrast enhancement, which are accomplished by 

these two components, improve the SNR of visual inputs, which allows our 

model to account for the response properties of HS cells to noisy motion 

stimuli. With regard to the response of LPTCs, (Schnell et al., 2010) showed 

that the response amplitudes of HS cells to PD motion saturated when the 
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visual pattern contrast was high. In this study, I also observed the saturated 

response to the high SNR stimulus. The saturation property of the threshold 

function in our model is also required to explain the response properties of 

HS cell activity. 

 What are the physiological entities of these two components in the 

real fly visual system? Lamina monopolar cells are one candidate for the 

spatial filter. In Drosophila, one lamina cell receives visual channel outputs 

from six neighboring retina cells (Sanes and Zipursky, 2010) and seems to be 

involved in spatial summation. It is well known that in the visual systems of 

animals living in dark habitats, several interneurons and ganglion cells, 

each of which has a wide dendritic field, achieve spatial summation to 

improve visual performance in dim light conditions (Warrant, 1999). For the 

threshold function, candidates in the fly visual system would have typical 

properties of neural cells, such as non-linear neural responses to light 

intensity and non-linear synaptic transformation (Belusic et al., 2010; 

Juusola and Hardie, 2001; Juusola et al., 1996). Further anatomical and 
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functional analysis of motion visual networks will shed light on the 

physiological mechanisms of these two components. 

 Previous studies have demonstrated that HS cells in fact control the 

OMR (Blondeau, 1981; Haikala et al., 2013; Heisenberg et al., 1978). 

Recently, Haikala et al. (2013) showed that optogenetic activation of HS cells 

located in one hemisphere of the brain elicited a head yaw response in 

Drosophila, suggesting that HS cell activity is sufficient to evoke this 

response. However, the precise quantitative relationship between changes in 

the membrane potential of HS cells and the OMR had been poorly 

understood. In this study, I showed that the membrane potential changes of 

HS cells in response to noisy motion stimuli showed proportional reductions 

with an increase in noise intensity, that is, it dose not resemble the 

noise-robust discriminative performance of the OMR to the same stimuli. 

One possible explanation for this discrepancy is that synaptic outputs of HS 

cells could have different dynamics from the membrane potential of cell 

bodies. It was recently reported that the change in HS cell membrane 
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potential disagrees with the behavioral flight turning responses, but the 

calcium accumulation in its terminal is consistent with the behavioral 

response (Schnell et al., 2014). They also proposed that this accumulation 

provide a mechanism for temporal integration of sensory input. Their results 

imply that the calcium level in terminal is not proportional to its membrane 

potential changes. Further, there is a linear relationship between calcium 

level in terminals of VS cells and postsynaptic spike rates in V1 cells in the 

blowfly (Kurtz et al., 2001). Presumably, non-linear and noise-robust 

neurotransmitter release depending on presynaptic calcium levels might 

linearly modulate the postsynaptic spike rate. Such molecular mechanisms 

might provide the robust OMR to noisy motion stimuli. 

 In this study, I used ROC analysis to quantify the discriminative 

capacity instead of other statistical values, such as the mean of head turning 

angles or the mean of membrane potential changes. With this approach, I 

was able to show the robust discriminative performance to noisy stimuli and 

quantitatively compare neural activity with behavior. ROC analysis is 
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commonly used to directly compare neural activities and psychophysical 

decisions in primates (Britten et al., 1992). Previously, correspondence 

between neural activities and behavioral or psychophysical judgments has 

been also reported for the two-alternative forced choice test of stochastic 

motion stimuli in macaque monkeys (Britten et al., 1992; Newsome et al., 

1989). These results are qualitatively similar to ours. Unlike primates, the 

precise neural network of the Drosophila visual system has been 

morphologically and functionally identified, so I was able to apply 

physiological approaches such as whole-cell recording in vivo. Due to the 

relatively small number of neurons compared to primates and the abundance 

of helpful genetic tools, Drosophila provides an ideal model system to 

investigate the detailed neuronal mechanisms underlying the processing and 

representation of unreliable information and its transformation to 

appropriate psychophysical decisions. Further research on robust perception 

in both vision and other sensory modalities, such as olfaction and audition, 

would enhance our understanding of the neural mechanisms required to 
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achieve robust information processing in the brain.  
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3 Effects of binocular integration on ego-motion 
estimation 

3-1 Ego-motion 

 For many living beings, binocular visual perception is one of the 

most important functions of their visual systems. For example, the retinal 

images in the eyes are slightly different from each other, which is referred to 

as binocular disparity, and this difference provides information that the 

brain can use to calculate the depth of objects in the visual field. In monkey’s 

visual cortex has been reported to have binocular depth neurons that are 

tuned to different ranges of binocular disparity (Hubel and Wiesel, 1970). 

Besides depth perception, visual ego-motion perception is an out standing 

function of binocular vision. For almost every animal, including vertebrates 

and invertebrates, ego-motion perception plays a dominant role in their 

motion control (Borst and Bahde, 1988; Jones, 1963; Kimmerle et al., 1996; 

Kirchner and Srinivasan, 1989; Reichardt et al., 1983). The direction of optic 

flow fields in the eyes depends on the type of ego-motion. Yaw-rotational 

motion of animals (rotational ego-motion) elicits two distinct optic flows 
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directed from front-to-back and from back-to-front on each eye. In contrast, 

forward or backward translation of animals (translational ego-motion) elicits 

an optic flow directed either from front-to-back or from back-to-front on both 

eyes. Motion stimuli caused by rotational ego-motion are referred to as 

in-phase motion stimuli, whereas ones caused by translational ego-motion 

are referred to as out-of-phase motion stimuli. Thus, the combination of optic 

flow fields in the eyes provides information that the brain can use to 

distinguish whether they are rotating or translating. To achieve this 

computation, motion information from the eyes has to be integrated in the 

brain. 

 

3-2 Wide-field motion sensitive neurons 

 Motion-sensitive neurons that analyze optic flow fields and often 

have complex receptive fields are found at higher orders of processing in the 

visual systems of many species (Borst et al., 2010; Rauschecker et al., 1987; 

Schlotterer, 2011; Tanaka and Saito, 1989; Wylie and Frost, 1990). These 
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neurons are involved in the visual perception of orientation, locomotion tasks, 

and head movements. The neural mechanisms underlying optic flow analysis 

have been studied especially well in flies. In the visual system of the blowfly 

Calliphoravicina, there are the hierarchical structures consisting of four 

neuropils in the left and right hemispheres, and these neuropils 

retinotopically process motion information from the left and right eyes, 

respectively. After retinotopic processing, visual information converges in 

the lobula complex, which subsequently receive the signal processed by the 

medulla (Figure 6A). It contains a set of wide-field motion-sensitive neurons 

called lobula plate tangential cells (LPTCs) (Borst and Euler, 2011; Borst et 

al., 2010). LPTCs have complex receptive fields that cover a large part of the 

ipsilateral visual hemi-field and show directional-selective motion responses 

by shifting their membrane potential as well as evoking an action potential 

(Borst and Weber, 2011; Borst et al., 2010; Elyada et al., 2009; Farrow et al., 

2005; Haag and Borst, 1997; Haag et al., 1997; 1999). Some of these cells 

have been also found in Drosophila (Fischbach and Dittrich, 1989; Joesch et 
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al., 2008). The LPTCs are grouped into horizontal and vertical cells that 

predominantly respond to horizontal (front-to-back or back-to-front) and 

vertical (upward or downward) motion stimulus on the ipsilateral visual 

hemi-field. The LPTCs include eight horizontal cells in each hemisphere of 

the blowfly’s brain, of which three are named HS cells (HSN, HSE and HSS 

(Hausen, 1982)), two are named CH cells (dCH and vCH (Eckert and Dvorak, 

1983; Gauck et al., 1997)), and the others are named Hu, H1 and H2 (Farrow 

et al., 2006; Haag and Borst, 2001; Horstmann et al., 2000). The H1, H2 and 

Hu cells are spiking neurons, whereas HS and CH cells are graded-potential 

neurons. 

 

3-3 Bilateral network of wide-field motion sensitive neurons 

 Previous studies have identified the bilateral network of LPTCs 

(Farrow et al., 2006; Haag and Borst, 2001; 2003; 2002; 2008). It has been 

reported that the LPTCs make the intrahemispheric and interhemispheric 

connections and have the possibility to integrate the binocular motion 
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information in the network. Some of the horizontal LPTCs have been 

reported to have larger responses to in-phase motion than to out-of-phase 

motion (Eckert and Dvorak, 1983; Farrow et al., 2006; Haag and Borst, 2001; 

Horstmann et al., 2000; Krapp et al., 2001). Farrow et al. (2006) studied the 

cooperative behavior of H2 and contralateral HSE cells and demonstrated 

that an interhemispheric electrical coupling between the H2 cell and its 

contralateral HSE cell is an important factor in determining the sensitivity 

of the H2 cell to binocular motion stimuli. This was a pioneering study 

revealing that the response properties originated from not a single-cell 

behavior but a cooperative behavior with another LPTC in the network. 

However, whereas these studies focused on parts of the network, there has 

been no work as yet on cooperative integration of binocular motion 

performed by the whole LPTC network. Here, I reveal how the whole LPTC 

network works to integrate the binocular motion information and how the 

information are encoded by neural activity at all levels from a single cell up 

to the population of cells. 
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 To address this problem, I took a mathematical modeling approach. 

It is technically difficult to record the membrane potentials of many cells 

simultaneously in vivo, and hence, it is difficult to ascertain data about the 

cooperative behavior of the whole network through measurements. However, 

it is possible to construct an accurate model of the bilateral LPTC network 

because a complete picture of its synaptic interactions has been 

experimentally identified. In this study, I focused on the network of 

horizontal LPTCs that mainly contributes to binocular motion integration 

and constructed a bilateral network model that takes into account all 

synaptic connections that have experimentally identified in the actual 

network. 

 First, I qualitatively reproduced the in-phase motion-sensitive 

response of the H2 cell that had been previously reported and made sure that 

it could be accounted for by the cooperative behavior of the bilateral network 

mainly via interhemispheric electrical coupling. I also found that the 

response properties of single H1 and Hu cells, unlike H2 cell, are not 
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influenced by motion stimuli in the contralateral visual hemi-field, but that 

correlations between these cell activities are enhanced by the in- phase 

motion stimulus. Next, to reveal the coding properties of a population of 

spiking LPTCs, I performed principal component analysis (PCA) on the 

firing rates of all spiking LPTCs. I showed that the two orthogonal patterns 

of correlated population activities given by the first two principal 

components represent the in-phase and out-of-phase motions, respectively, 

and the population activity is more sensitive to the in-phase motion stimuli. 

Furthermore, I found that these population-coding properties are strongly 

influenced by the interhemispheric electrical coupling. Finally, by 

reproducing these population-coding properties with a reduced model, I 

confirmed that the numerical results are not specific to the network model I 

constructed.  



 52 

3-4 Materials and Methods 

3-4-1 Fly visual system 

 The fly visual system consists of four neuropils called the lamina, 

medulla, lobula, and lobula plate that exhibit the same columnar structure 

as the retina and are retinotopically organized in both hemispheres. Visual 

motion information from each side of the visual field is retinotopically 

processed and converges on the lobula complex comprised of the lobula and 

lobula plate (Figure 6A). This complex contains a set of large 

motion-sensitive neurons, called lobula plate tangential cells (LPTCs). A 

total of 60 different cells exist in the blowfly, all of which show 

directional-selective motion responses by shifting their membrane potential 

as well as their action potentials (Borst et al., 2010). During preferred 

direction (PD) motion stimulation, the cells in each hemisphere are 

depolarized or generate action potentials, whereas during antipreferred or 

null direction (ND) motion stimulation, the cells in each hemisphere are 

hyperpolarized. 
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3-4-2 Bilateral horizontal LPTCs network 

 The LPTCs are grouped into horizontal and vertical cells that 

predominantly respond to horizontal and vertical motion stimuli, 

respectively. As mentioned above, I will focus on the horizontal cells. Each 

hemisphere consists of eight horizontal cells (Figure 6B). H1, H2 and Hu 

cells produce action potentials during PD motion stimulations (i.e., spiking 

cells). HS and CH cells respond to PD motion stimuli in a graded way (i.e., 

graded-potential cells). These horizontal LPTCs are mutually coupled 

through intrahemispheric and interhemispheric connections with various 

electrical and chemical synapses, as shown in Figure 6B. The experimental 

findings on these couplings have been reported in (Borst and Weber, 2011; 

Borst et al., 2010; Farrow et al., 2006; Haag and Borst, 2001). I constructed a 

network model of horizontal LPTCs by mainly referring to Borst et al. (2011). 
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3-4-3 Conductance-based model (Detailed model) 

 To keep the model relatively simple, I decided that the morphology 

of each model cell would be a simple long cylinder. Here, the model cells do 

not have dendritic branches as in the real cells. The HS and CH cells are 

modeled as one passive compartment (gray cylinders in Figure 6B), and the 

H1, H2 and Hu cells are modeled as one active compartment capable of 

producing action potentials (colored cylinders in Figure 6B). I ascertained 

that the behaviors of the single compartment model are much the same as 

the ones of the multi compartment model (data not shown). The 

morphological parameters of each model cell are listed in Table 1. The 

properties and distribution of ion-conductances in LPTCs are still unknown 

(but see also Haag et al., 1997; Torben-Nielsen and Stiefel, 2010). Thus, 

instead of high-dimensional conductance-based models, the type-I 

Morris-Lecar (ML) model is used to describe membrane currents in the 

active compartments. The ML model is one of the simplest 

conductance-based models capable of reproducing the variety of oscillatory 
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behaviors found in various excitatory membranes (Morris and Lecar, 1981). 

The ML model and simple passive model used here are uniformly described 

in terms of the following ordinary differential equations: 

!!
!"
!" = −!!"#$!! ! − !!"#$ − !!"#$! ! − !!"#$  

          −!!"#$ ! − !!"#$ + !!"# + !!""         (1) 

!"
!" =

!(!! − !)
!  

where the conductances gfast, gslow and gleak are for the fast, slow and the 

leak channels, respectively. Note that when gfast and gslow are zero, these 

equations are equivalent to a simple passive model. The passive electrical 

parameters including the leak parameters of the ML model are listed in 

Table 1. In this paper, the fast and slow channels are not specified as specific 

ion channels, whereas in the original ML model, the fast and slow channels 

are respectively calcium and potassium channels. The functions !! and ! 

are the equilibrium open fractions for the fast and slow channels, and t is the 

activation time constant for the slow channel. These functions are 
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!! = 0.5[1+ tanh{(! − !!)/!!}] 

!! = 0.5[1+ tanh(! − !!)/!!] 

! = 1/ cos{(! − !!)/2!!} 

The parameters of the type-I ML model are listed in Table 2. !!"" denotes 

the total postsynaptic current from motion-sensitive cells in the first-order 

neuropils (medulla and lobula), and !!"# is the total postsynaptic current 

from the other horizontal LPTCs. A detailed explanation of !!"" and !!"# is 

given in the following subsections. Numerical simulations were carried out 

with the NEURON simulator. 

 

3-4-4 Mimicking visual stimuli 

 I used four different binocular motion stimuli: clockwise(C), 

counterclockwise(CC), front-to-back(FB) and back-to-front(BF). The 

clockwise and counterclockwise motion stimuli are classified as in-phase 

horizontal binocular motion stimuli that are elicited when a fly rotates about 
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its vertical body axis (yaw). The front-to- back and back-to-front stimuli are 

classified as out-of-phase horizontal binocular motion stimuli that are 

elicited by forward and backward translation. By using these four motion 

stimuli, we can verify the response properties of the horizontal LPTCs 

network for all possible combinations of directions of stimuli for each eye. A 

simple way to simulate the responses of the LPTCs to the stimuli is to mimic 

the total postsynaptic current from the earlier neuropils, !!"", with either a 

depolarizing or hyperpolarizing DC current depending on whether each 

stimulus direction is preferred or not by each cell. In this way, !!""is 

determined by the following formula: 

!!"" = !! + ! 

! = ! or !, !(!) = 0, !(!)!(!′) = !!!(! − !′) 

where ! is a white noise term independent from neuron to neuron and s is 

the noise intensity. !! represents the DC signal that changes to !! or !! 

depending on whether each motion stimulus is PD or ND for each cell. The 
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cells with black arrows in Figure 6B receive projections from the first-order 

neuropils, and the direction of each arrow denotes the preferred direction of 

each cell. Table 3 shows the amplitude of the DC signal given to each 

horizontal LPTC. Note that the CH cells (not marked with black arrows in 

Figure 6B) do not directly receive projections from the earlier neuropils 

(Haag and Borst, 2001), and thus, !! of the CH cells is set to zero. Table 4 

shows all combinations of either depolarizing or hyperpolarizing current for 

representing the four stimuli. 

 To measure the robustness of neural coding, we define the signal to 

noise ratio (SNR) for !!"" as 

!"# = !!
!  

I analyzed the responses of spiking LPTCs with various SNR. 
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3-4-5 Connection properties 

 To construct a network model of the horizontal LPTCs, I connect the 

conductance-based models through electrical and chemical synapses, as 

shown in Figure 6B. In Eq. (1), Icon denotes the total postsynaptic current 

from the other horizontal LPTCs. The implementation of !!"# can be easily 

realized with the NEURON simulator. Electrical couplings can be 

implemented with the NMODL function of the NEURON simulator. This 

function makes a conductive connection between two connected 

compartments with a particular conductance. In this study, all electrical 

couplings have the same conductance (40 nS) (Farrow et al., 2006). The 

excitatory and inhibitory chemical synapses are modeled as a change in 

synaptic conductivities triggered by spike events in presynaptic cells, which 

are implemented using the ExpSyn function of the NEURON simulator. The 

reversal potentials of the excitatory and inhibitory synapses are 0 mV and 

-70 mV, respectively. The conductance of excitatory and inhibitory synapses 

is described by a simple exponential decay with a time constant of 0.3 ms and 
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amplitudes of 0.01 and 0.005 nS, respectively. I manually tuned these 

synaptic parameters to fit the simulated EPSP and IPSP to previously 

reported physiological data (Farrow et al., 2006; Haag and Borst, 2001). 

 As described above, the CH and HS cells are non-spiking. It has 

been reported that the CH cell inhabits the activities of the ipsilateral H1 

and H2 cells, and the HS cell excites the activities of the ipsilateral Hu cell. 

In this study, the excitatory postsynaptic current depending on the 

presynaptic graded-potential is de- scribed using a sigmoid function, 

! ! = !
!!!!!(!!!!)                     (2) 

where ! is the graded potential of the presynaptic neuron, i.e., the HS cell. 

The inhibitory postsynaptic current depending on the presynaptic graded 

potential is given by −!(!). The parameters used in the simulations were 

!= 0.2nA, != 0.4 and !!= -47 mV. 

 The purpose of this study is to clarify the role of the bilateral 

horizontal LPTC network in the binocular motion integration. For this 
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purpose, I compared two cases: one in which the cells are mutually connected 

as described above, the other in which the cells are isolated from each other 

without lateral connections. In the following sections, I will refer to these 

cases as the connected case and disconnected case. 

 

3-4-6 Formal neuron model (Reduced model) 

 To check the generality and robustness of the results obtained from 

the conductance-based model, I constructed a reduced model and verified 

whether or not it qualitatively reproduced the results. In this model, five 

graded-potential cells, which are coupled through electrical synapses and 

have similar response properties, are merged into a single neuron named 

HS/CH. Furthermore, I used McCulloch Pitts formal neurons instead of the 

conductance-based model. The state space equation for the reduced model is 

! !V!" = I!"" +W! V + GV− V                (3) 

! = (!!!!!!!!!!!!"#!!!"# !"#!!!!!! !!!!! !!!"# !!!"#/!"#)! 
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where T denotes matrix transposition, ! denotes the state vector consisting 

of the membrane potentials of eight cells and t is the time constant (!= 5 

msec). !(!) is the sigmoidal function defined in Eq. (2), which represents 

the transfer function of each cell. The matrix ! represents the couplings 

between these cells through chemical synapses, and the matrix ! denotes 

the electrical couplings between them. !! and !! in ! are the weights of 

the excitatory and inhibitory synapses, respectively, and ! in ! is the 

conductance of the electrical couplings. Thus, each component of the vector 

!! ! + !" describes the total postsynaptic current in each cell via lateral 

connections. 

 The vector !!"" in the state space equation denotes the input vector 

in which each component represents the total postsynaptic current of each 

cell from motion-sensitive cells in the earlier neuropils. As described in the 

detailed model, to simply simulate responses of the LPTCs to the four types 

of stimuli, !!"" is mimicked with a combination of depolarizing or 
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hyperpolarizing DC currents depending on whether each stimulus direction 

is preferred or not by each cell. !!"" is given by 

!!"" = S! + [!!!!! !⋯ !!!]! 

! = !" or !"#, !!(!) = 0, !!(!)!!(!′) = !!!(! − !′)!!,! 

where !! are white noise term independent from neuron to neuron and ! is 

the noise intensity. !!" and !!"# are the input vectors when presenting 

in-phase and out-of-phase stimuli: 

!!" = [!!!!− !!− !!− !!− !!!!!]! 

!!"# = [−!!− !!!!!!!!!!!− !!− !!]! 

where ! is a time-dependent variable taking +1 or -1. If !=1, the input 

patterns of !!" and !!"# correspond to clockwise rotation and forward 

translation motion stimuli, respectively, whereas if !=-1, the input patterns 

of !!" and !!"# correspond to counterclockwise rotation and backward 

translation motion stimuli, respectively. 
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 The parameters for the formal neuron model used in the 

simulations were !=1, !!=1, !!=-1, !=0.5, !!=0.5 and !=5. The 

simulations were carried out with MATLAB. 

 

3-4-7 Data analysis 

Cross-correlation analysis 

 Let !! and !! be the mean firing rates of different cells at time !. 

The cross-correlation between !! and !! is defined as 

! ! = !!!!
!!!!!

!!!
!! 

where ! is the length of these two sequences and ! is a time lag. For the 

cross-correlation analyses, the mean firing rate was calculated at intervals of 

10 msec. 

Principal component analysis of multi-neuronal activity 
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 The principal component analysis (PCA) is a dimensionality 

reduction technique in which high-dimensional data is linearly projected on 

an orthogonal subspace spanned by vectors representing highly correlated 

directions (Jolliffe, 2005). I tried to elucidate the correlated activities of a 

neural population coding the four types of binocular motion stimuli by 

applying PCA to simulated multi-neuronal activity data. First, I calculated 

the mean firing rates of six spiking LPTCs at intervals of 150 msec within 

non-overlapping 150 msec temporal windows, and I constructed a set of 

six-dimensional firing rate vectors, !!, !!, . . . !!, where ! denotes the 

total number of firing rate vectors (e.g. !=160 when the length of the spike 

sequence is 24 sec). Next, I performed principal component analysis (PCA) on 

the set of the firing rate vectors. The calculation was carried out with the 

princomp function of MATLAB.  
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3-5 Results 

3-5-1 Modification of H2 cell by contralateral LPTC activities 

 I carried out numerical simulations of the detailed model (see 

Material and Methods for details) to analyze how the activity of single 

LPTCs of one hemisphere in response to the PD motion stimulus presented 

in the ipsilateral visual hemi-field are modified by changes in the 

contralateral LPTCs activities depending on motion stimuli in the 

contralateral visual hemi-field. I focused on three spiking LPTCs in the left 

hemisphere, H1L, H2L and HuL. The H2L cell is directly connected with the 

HSE cell of the right hemisphere through an interhemispheric electrical 

coupling, and the H1L and HuL cells indirectly receive effects from the 

contralateral cells via other ipsilateral cells (see Figure 6B). Note that it is 

not necessary to show the activities of counterparts of these three cells in the 

right hemisphere. This is because the bilateral LPTCs network has a 

reflective symmetric structure, statistical response properties of LPTCs 

separately located on both hemispheres to pair of binocular motion stimuli 
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which are in symmetric relation are the same. Therefore, it is sufficient to 

check for the responses of LPTCs located on one hemisphere. 

 To quantify the effect of the connections among LPTCs on the 

activities of each spiking LPTC, I compared the disconnected case and the 

connected case, as described in Materials and Methods section. In the 

disconnected case, I numerically simulated the responses of single spiking 

LPTCs isolated from other cells to the PD motion stimulus only presented in 

the ipsilateral visual hemi-field. In the connected case, I numerically 

simulated the responses of single spiking LPTCs to the in-phase and 

out-of-phase motion stimuli. 

 Figure 7A shows the spike raster plots displaying the spike times of 

the H2L cell in these cases, and Figure 7B show the difference of the mean 

firing rate from spontaneous activity in the H2L cell as a function of the 

signal-to-noise ratio (SNR) (defined in Materials and Methods). I found that 

the difference in mean firing rate induced by the clockwise motion in the 

connected case is lager than in the disconnected case. In contrast, the 
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difference in mean firing rate induced by the back-to-front motion in the 

connected case is smaller than in the disconnected case. Figure 7C shows the 

distributions of inter-spike intervals (ISIs) of the H2L cell. The ISI 

distribution for the clockwise motion in the connected case is sharper than in 

the disconnected case, whereas the ISI distribution for the back-to-front 

motion in the connected case is broader than in the disconnected case. 

Therefore, though, in all these cases, the H2L cell faces the same PD motion 

stimulus in the ipsilateral visual hemi-field, the activity and regularity of 

the H2L cell are modified by the chenges in the contralateral LPTCs 

activities depending on motion stimuli in the contralateral visual hemi-field. 

Moreover, to investigate the contribution of interhemispheric electrical 

couplings between the H2 cell and contralateral HSE cell to the selectivity of 

the H2 cell, I removed the interhemispheric electrical couplings from the 

detailed model and simulated the response of the H2L cell similarly to the 

above. As shown in Figure 7D and Figure 7E, the differences in mean firing 

rate and the ISIs of the H2L cell are not altered by the type of binocular 
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motion in this situation. Therefore, I consider that the interhemispheric 

electrical coupling is a key factor in determining the responsive 

characteristics of the H2 cell to binocular motion stimuli. My numerical 

results are in accord with in-vivo experimental results indicating that the H2 

cells are more activated by an in-phase motion stimulus than by an 

out-of-phase motion stimulus (Farrow et al., 2006). 

 

3-5-2 Enhancement of synchronization between spiking LPTCs in 
the in-phase motion 

 In the previous subsection, I focused on modifications of single-cell 

activities depending on contralateral motion stimuli. Here, I tried to 

determine whether a combination of motion stimuli presented in the left and 

right visual hemi-fields affects the synchronization between spiking LPTCs. 

For this purpose, I calculated the cross-correlation between the firing rates 

of two spiking LPTCs (see Materials and Methods for details). 
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 Figures 8A and B show the cross-correlation between the H1L and 

H2L cells located in the left hemisphere when presenting clockwise and 

back-to-front motion stimuli, respectively. In both these cases, each of the 

cells is exposed to the PD motion stimulus in the left visual hemi-field. When 

the two cells are exposed to the clockwise motion stimulus, the peak of the 

cross-correlation at a lag of 0 msec is higher than the peak that occurs with 

the back-to-front motion stimulus. This is because the out-of-phase motion 

stimulus decreases both the firing rate and regularity of the H2 cell (see 

Figure 7). 

 Figure 8C shows the cross-correlation between the H1L and HuR 

cells separately located in the two hemispheres when presenting the 

clockwise motion stimulus, and Figure 8D shows the cross-correlation 

between the H1L and H1R cells separately located in the two hemispheres 

when presenting the back-to-front motion stimulus. In both cases, each cell 

is exposed to the PD motion stimulus presented in the ipsilateral visual 

hemi-field. Thus, as shown in Figure 9 and Figure 10, these cells have 
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identical differences in mean firing rate from the spontaneous activity and 

identical ISI distributions. However, as shown in Figure 8C and Figure 8D, 

the peak of the cross-correlation between the firing rates of the H1L and 

HuR cells at a lag of 0 msec when presenting the clockwise motion stimulus 

is slightly higher than that of the cross-correlation between the firing rates 

of the H1L and H1R cells when presenting the back-to-front motion stimulus. 

Therefore, the synchrony of these cells is enhanced by the in-phase motion 

stimulus. The numerical results suggest that the H1 and Hu cells, whose 

single-cell activities are independent of the motion stimuli presented in the 

contralateral visual hemi-field, could represent information on the binocular 

motion stimuli through their synchrony. 

 

3-5-3 Synchronous activities of the bilateral network represent 
binocular stimuli 

 In the previous subsections, I examined the modifications of the 

single-cell activities and synchronies in spiking LPTCs in relation to 

binocular motion stimuli. Here, I use principal component analysis (PCA) to 
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reveal the properties of population activities of spiking LPTCs in response to 

four different motion stimuli. First, I calculated the mean firing rates of six 

spiking cells and construct a set of six-dimensional firing rate vectors (see 

Materials and Methods for details). Then, by applying PCA to the set of 

firing rate vectors, I projected them onto a two- dimensional space spanned 

by the first and second principal components, PC1 and PC2. PC1 and PC2 

were found by calculating the two eigenvectors associated with the first- and 

second-largest eigenvalues of the correlation matrix obtained from the firing 

rate vectors. Thus, the principal components represent highly correlated or 

synchronous activity patterns of the spiking LPTCs. This analysis 

incorporated the correlation analysis carried out in the previous subsection. 

 The upper and lower parts of Figure 11A show examples of 

simulated spike sequences of six spiking LPTCs (denoted by raster plots) in 

the disconnected and connected cases for four different motion stimuli. 

Figure 11B shows the results obtained by applying PCA to these simulated 

spike sequences. In the disconnected case, four clusters of firing rate vectors 
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corresponding to four different stimuli are respectively separated into the 

four quadrants in the PC1–PC2 space (left panel in Figure 11B). Clusters 

corresponding to the clockwise and back-to-front motion stimuli are 

distributed within the right half plane of the PC1–PC2 space. These two 

stimuli share the same visual motion in the left visual hemi-field. On the 

other hand, the clusters of the counterclockwise and front- to-back motion 

stimuli are distributed within the left half plane of the PC1–PC2 space. 

These two stimuli also share the same visual motion in the left visual 

hemi-field. Therefore, PC1 represents a population activity coding the left 

monocular visual motion. In the same way, each pair of clusters distributed 

within the upper or lower half plane of the PC1–PC2 space corresponds to 

the same visual motion in the right visual hemi-field. Thus, PC2 represents 

a population activity pattern that codes the right monocular motions. This 

result is trivial because in the disconnected case, the cells are isolated from 

each other without lateral connections. Figure 12 shows the values of each 

element of PC1 and PC2 in five trials of numerical simulations with different 
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random seeds for noise, and it also presents what each principle component 

codes in the five trials. It shows that PC1 and PC2 are randomly assigned to 

either left or right monocular motion. Thus, there is no eye dominance in the 

disconnected case. In the connected case, on the other hand, two pairs of 

clusters corresponding to the in-phase and out-of-phase motion stimuli are 

distributed along the PC1 and PC2 axes, respectively (right panel in Figure 

11B). Therefore, the PC1 and PC2 represent population activity patterns 

that code the in-phase and out-of-phase motions, respectively. I also found 

that PC1 and PC2 stably represent the in-phase and out-of-phase motions 

with different random seeds for noise (Figure 12). Figure 11C shows the 

contribution ratio of PC1 and PC2 and the cumulative contribution ratio in 

the connected and disconnected cases. The difference between the 

contributions of PC1 and PC2 in the connected case is larger than those of 

the disconnected case. 

 To check whether or not the neuronal morphologies affect on the 

coding properties, I carried out an additional simulation under conditions in 
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which the length of each LPTC is two-third that of the original model. I 

obtained the same results as those obtained by the original model (Figure 13). 

Therefore, I speculate that the neuronal morphologies do not strongly affect 

on the coding properties. 

 

3-5-4 Effect of interhemispheric electrical couplings on population 
coding in the bilateral network 

 Here, I evaluated the effect of the interhemispheric electrical 

coupling between the H2 cell and contralateral HSE cell on population 

coding in the bilateral network. I carried out numerical simulations on the 

detailed model using several different conductances of the interhemispheric 

electrical coupling, and I applied PCA to the simulated spike sequences, as in 

Figure 11. I used four different conductances: 0, 33.3, 50 and 100 nS. The 

parameters used in this simulation, except for the electrical coupling, were 

the same as in the previous simulations. 
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 As shown in Figure 14A, in the case of no electrical coupling (0 nS), 

four clusters of firing rate vectors corresponding to four different motion 

stimuli are respectively separated into the four quadrants of the PC1–PC2 

space. This result conforms to that of the disconnected case shown in Figure 

11B. Furthermore, as shown in Figure 14B, the difference in the contribution 

ratios of PC1 and PC2 is relatively small compared with those of the other 

nonzero cases, which is also similar to the disconnected case. When the 

electrical coupling between the H2 and HSE cells exists, two pairs of clusters 

corresponding to the in-phase and the out-of-phase motion stimuli are 

respectively distributed along the PC1 and PC2 axes (Figure 14A). The 

difference between the contribution ratios of PC1 and PC2 increases with the 

conductance of the electrical coupling (Figure 14B). These results suggest 

that the interhemi- spheric electrical coupling between the H2 and HSE cells 

strongly contributes to the coding properties of a population of LPTCs in the 

network. 
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3-5-5 Properties of population coding in the reduced model 

 To check whether or not the numerical results are specific to the 

network model I constructed, I construct a reduced model and tried to 

reproduce the results of Figure 11. To simplify the structure of the LPTC 

network, in each hemisphere, I merged five graded- potential neurons, which 

are coupled through electrical synapses, into a single neuron named HS/CH, 

as shown in Figure 15A. Furthermore, to simplify the activity properties of 

cells, I described all LPTCs in the network by using the McClloch-Pitts 

model instead of the conductance-based model (see Materials and Methods 

for details). 

 The left and right panels of Figure 15B show examples of the 

activities of three LPTCs corresponding to the spiking cells in the left 

hemisphere in response to the four different motion stimuli in the connected 

and disconnected cases. Figure 15C shows results obtained by applying PCA 

to a set of six-dimensional state vectors consisting of the responses of six 

spiking LPTCs in both hemispheres. In the disconnected case (left panel in 
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Figure 15C), four clusters of state vectors corresponding to four different 

motion stimuli are respectively separated into the four quadrants of the 

PC1–PC2 space, whereas in the connected case (right panel in Figure 15C), 

two pairs of clusters corresponding to the in-phase and the out-of-phase 

motion stimuli are distributed along the PC1 and PC2 axes. Figure 15D 

shows the contribution ratio of PC1 and PC2 and the cumulative 

contribution ratio in the connected and disconnected cases. The difference 

between the contributions of PC1 and PC2 in the connected case is larger 

than in the disconnected case. Figure 16 shows the values of each element of 

PC1 and PC2. The principal components of the reduced model qualitatively 

correspond to those of the detailed model. Therefore, the results obtained 

from the reduced model qualitatively conform to those of the detailed model 

in Figure 11.  
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3-6 Conclusions and Discussion 

3-6-1 Summary of results and conclusion 

 I investigated the cooperative behavior of the LPTCs underlying the 

integration of binocular motion information and the information 

representation in the bilateral LPTC network through numerical 

simulations. First, I showed that the cooperative activities of cells in the 

bilateral network via interhemispheric couplings, especially 

interhemispheric electrical couplings, could account for the in-phase 

sensitive response of the H2 cells that was previously reported (Figure 7). 

Moreover, the results of cross- correlation analyses suggested that the other 

spiking LPTCs, H1 and Hu, might be involved in representing binocular 

motion in a manner that is a synchrony of these activities (Figure 8). I also 

applied PCA to the firing rates of all spiking LPTCs and found that when the 

LPTCs are isolated from each other; two orthogonal patterns of correlated 

population activities given by PC1 and PC2 represent the monocular motions, 

whereas when the LPTCs are connected to each other, two orthogonal 
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patterns of correlated population activities respectively represent the 

in-phase and out-of- phase motions, and the population activity is more 

sensitive to the in-phase motion stimuli (Figure 11). Moreover, I found that 

the inter- hemispheric electrical couplings strongly influence these 

population- coding properties (Figure 14). Finally, I confirmed the generality 

and robustness of these results by using a reduced model (Figure 15). 

 

3-6-2 Intuitive explanation of the binocular motion integration 

 Let us try to intuitively understand the cooperative behavior of the 

LPTCs underlying binocular motion integration by referring to the reduced 

model. Figure 7 illustrates the activity patterns of the cells responding to the 

in-phase and out-of-phase motion stimuli and the synaptic connections of the 

network. In the case of the in-phase motion stimulus, the polarity of each cell 

depending on the PD motion matches the polarity of each lateral synaptic 

connection (Figure 17A), resulting in an enhancement of each cell’s 

sensitivity to the PD motion. In this situation, cells cooperatively integrate 
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the motion information in the bilateral network. On the other hand, in case 

of the out-of-phase motion stimulus, the polarity of each cell depending on its 

PD motion is somewhat mismatched to the polarity of the lateral synaptic 

connections (Figure 17B and Figure 17C), resulting in a decrease in 

sensitivity. This mechanism can account for the increase in the response of 

some LPTCs during the in-phase motion stimulation reported in previous in 

vivo experiments (Eckert and Dvorak, 1983; Farrow et al., 2006; Haag and 

Borst, 2001; Horstmann et al., 2000; Krapp et al., 2001). Furthermore, it is 

known that mismatches between cell polarity and lateral synaptic polarity, 

which are referred to as frustration, induce asynchronous cell activities in a 

general class of networks. Thus, this mechanism can also account for the 

greater synchrony among LPTCs in response to in-phase motion compared 

with the response to the out-of-phase motion (Figure 8 and Figure 11). 
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3-6-3 Reliability of modeling with the ML model 

 Through in vivo experiments, Farrow et al. (2006) suggested 

the possibility that the interhemispheric electrical coupling between H2 and 

contralateral HSE cells is involved in the flow field selectivity of H2 cells. 

Moreover, they indicated through numerical simulations that the electrical 

couplings can quantitatively account for the selectivity of the H2 cell. In the 

simulations, they used a simplified neural network of the horizontal LPTCs, 

which consisted of four horizontal cells, H1, H2, HS and CH cells in each 

hemisphere. In contrast, my neural network model (the detailed model) has 

a more anatomically accurate structure, in which I modeled all of horizontal 

LPTCs that include cells ignored in Farrow et al. (2006). I demonstrated that 

the in-phase sensitive response of H2 cells can also be qualitatively 

reproduced by our detailed model and that it can be accounted for by 

the interhemispheric electrical coupling (Figure 7). My numerical results are 

consistent with the results of Farrow et al. (2006), and this consistency 

ensures the reliability of the results obtained from our model. 
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 Farrow et al. (2006) used the Hodgkin-Huxley model for the spiking 

LPTCs. At present, however, the properties and distribu- tion of the 

ion-channels of spiking LPTCs are not well understood. Hence, the 

Hodgkin-Huxley model is not the only way to model spiking LPTCs. In this 

paper, I used the Morris-Lecar (ML) model for the spiking LPTCs in the 

detailed model. The ML model, which has a two-dimensional state space, 

shares a common bifurcation structure with other high-dimensional 

Hodgkin- Huxley type models classified into types I and II, and it can 

reproduce electrical responsiveness of typical neurons. Therefore (invoking 

Occam’s razor), in circumstances where the properties of the membrane 

ion-conductances of the cell that we want to model are unknown, a lower 

dimensional model with high explanatory power should be used. However, in 

the ML model, the firing rate is limited to less than 30 Hz. The firing rate of 

the real spiking LPTCs, for example, the H2 cell, is more than 50 Hz, or even 

100 Hz in some circumstances. Thus, the ML model cannot adequately 

reproduce the firing rate of spiking LPTCs. Despite this, the numerical 
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results obtained from the ML model qualitatively conform to results 

observed in vivo (Farrow et al., 2006; Haag and Borst, 2001). Moreover, as 

shown in Figure 6, I confirmed that the results of simulation are not 

dependent on the conductance-based model we used by testing the more 

simplified model consisting of McCulloch Pitts units. According to the 

consistent results obtained from the two models, we conclude that the 

spiking mechanism based on the properties of the membrane ion-channels do 

not affect properties of population coding in the network sensitively. 

Accordingly, I consider that the ML model is able to capture the mechanism 

of binocular motion integration. 

 

3-6-4 Potential of synchronized coding of binocular motion in 
spiking LPTCs other than H2 cells 

 In the detailed model, I demonstrated that the firing rate and 

regularity of single H1 and Hu cells, unlike H2 cells, are not influenced by 

motion stimuli in the contralateral visual hemi-field (see Figure 9 and 

Figure 10). However, I showed that the correlations between these cell 
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activities are enhanced by the in- phase motion stimulus (Figure 8). From a 

structural viewpoint, there is a major difference between H2 and the other 

horizontal spiking LPTCs in the manner of their receiving inputs from the 

contralateral LPTCs. H2 cells directly receive input via the interhemispheric 

electrical coupling from the contralateral cell. Therefore, the activity of H2 

cells is strongly influenced by the contralateral motion stimulus. H1 and Hu 

cells, on the other hand, indirectly receive input from the contralateral 

hemisphere via the ipsilateral graded-potential cells, and the input is not 

strong enough to change the firing rate or regularity. The spike timings of 

H1 and Hu cells are entrained with each other through the indirect and 

weak interaction, and this makes the correlation of the activities of these 

cells dependent on the binocular motion. It is theoretically conjectured that 

the weak interaction, which is too weak to change phase trajectories in 

oscillations, enhances the synchronization of spikes across neurons (Aonishi 

et al., 1999; Kuramoto, 2003). This result suggests that H1 and Hu cells, 

unlike H2 cell, represent the binocular motions by using not the individual 
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cell activity but the correlation of activities. Little is known about the 

responsivity of H1 and Hu cells to binocular motion. To reveal the 

representation of binocular motion in these cells, the responsivity of these 

LPTCs to binocular motion will have to be recorded electro-physiologically. 

 

3-6-5 Significance of sensitive response to in-phase motion in 
OMR 

 What are the functional roles of the sensitive response to the in- 

phase motion? It has been reported that neurons sensitive to in-phase 

motion exist in other species, for instance, descending neurons (DNVII1) in 

the honeybee (Ibbotson, 1991). It is also known that many species of insect, 

crustacean, and mammal have the ability to stabilize retinal images by 

moving their eyes, head or whole body to compensate for their movements 

through the environment (Borst et al., 2010; Kern and Varjú, 1998; Kern et 

al., 1993). This motor action is referred to as the optomotor response. It can 

be thought that the neurons sensitive to the in-phase motion provide the 

most important cue for the optomotor response, because retinal image 
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motions evoked by perturbed movements of the observer’s head and body are 

the in-phase motion in most cases. 

 

3-6-6 Importance of our analysis method 

 A large number of studies have sought to reveal the coding 

properties of neural populations by using simultaneous multi- neuronal 

recordings and statistical techniques (Georgopoulos et al., 1986; Lemus et al., 

2007; Sasaki et al., 2007; Stopfer et al., 2003). However, there is a limit on 

the number of neurons that can be simultaneously recorded in vivo. Thus, I 

must infer the population-coding properties of a whole local network from 

partial data. The limitations of such a measurement make it hard to 

understand the population coding in the whole local network. 

 On the other hand, researchers are using advanced genetic tools to get a 

complete picture of synaptic interactions in the whole brain of the fly (Ito et 

al., 2013). If the synaptic interactions in local networks can be completely 
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identified, we can construct accurate models of these local networks. Then, 

by combining numerical simulations of the network model with statistical 

techniques, we can elucidate the population-coding properties of the whole 

local network. Moreover, by altering the conductance of a particular synapse 

in the network model, we can evaluate the contribution of the synapse to the 

information processing or representation of the network. In this paper, I 

showed that interhemispheric electrical couplings play a key role in the 

integration of binocular motion information. Although compared with 

chemical synapses, much less is known about how electric couplings 

contribute to information processing in a neural network, it has recently 

become recognized that the electric couplings play a significant role in 

information processing in the local network (Yaksi and Wilson, 2010). 

Present study provides an important clue to understanding the functional 

role of electrical couplings in visual information processing. Moreover, unlike 

multi-neuronal recording approaches, we can use this approach to answer a 
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big question about how the computation is implemented with neural 

interactions.  
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4 Summary 

 In this study, to address a neural basis of robust behavioral control in 

the natural environment, I investigated how noisy motion stimulus is 

processed to correctly detect the motion direction and to guarantee robust 

optomotor reactions in an early stage of fly visual system and how bilateral 

motion information is integrated for efficient estimation of an ego-motion in 

Drosophila melanogaster. 

 First, I revealed that flies are able to guarantee robust optomotor 

reaction to wide-field motion with random dot noise from behavioral 

experiments. To uncover its neural basis, I measured the activity of motion 

sensitive neurons, which might control the optomotor response. I found that 

membrane potential changes of motion sensitive neurons were not correlated 

with the behavioral reactions, however, interestingly, by applying signal 

classification theory to distributions of these neural response, I found that 

the motion direction with noise can be clearly discriminated by these 

neurons, which were quantitatively similar to that in the behavioral 
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optomotor response (Figure 2 and 3). Furthermore, I successfully reproduced 

these neural activities in response to noisy motion stimuli with the local 

motion detector model including a spatial filter and threshold function 

(Figure 5). 

 Second, I showed that the population activity of motion sensitive 

neurons is more sensitive to the in-phase than the out-of-phase motion 

stimuli from theoretical studies (Figure 11). This result indicates that flies 

became easily react to rotational wide-field motion stimuli than translational 

ones. Furthermore, I identified a key structure for the in-phase sensitive 

population activity (Figure 14). 

 From these two studies, I uncovered neural algorithms from robust 

detection of motion direction to robust control of behavioral reaction. I found 

that the robust motion sensation emerges from an early stage of visual 

system prior to the bilateral network and the network more efficiently 

encodes a rotational ego-motion than translational one by binocular 

integration. This study provides a physiological and theoretical basis for 



 92 

robust behavioral control in the tiny brain, and will contribute to develop 

robust robot control.  
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Figures 

 
 
 
 
 
 
Figure 1 Behavioral experiment in a tethered fly. 
(a) Schematic diagram of the apparatus. A fly is fixed to a steel pin and 
placed in the center of an LED arena that displays visual stimuli controlled 
by a PC. Head movements are recorded on a CCD camera above the arena to 
measure the OMR. (b) When presented with a yaw rotation motion stimulus, 
a fly rotates its head to follow the motion (top). The head yawing angles can 
be computed from videos recorded by the camera. Examples of two individual 
traces of the head yaw response during CW and CCW motion (bottom). The 
original position is not always centered because flies move their heads freely 
before stimulus presentation. (c) Visual stimuli are constructed by the 
superimposition of random dot noise independently added from frame to 
frame on a panoramic vertically striped square-wave grating. When a 
‘random dot’ LED was placed on a bright bar of the original stripe pattern, 
the intensity of the random dot was subtracted from the bright bar. Thus, 
the total LED display intensity was kept constant in each frame. The 
temporal sequence of an individual trial is shown (bottom).  
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Figure 2 Flies can robustly discriminate wide-field motion 
directions under noisy conditions. 
(a) Average of head yaw responses ± s.e.m. (upper panels) and distributions 
of head angle (lower panels) shown over a range of SNR at 1 and 4 Hz 
temporal frequencies. Stimulus patterns and SNR are as depicted above 
each figure. Stripe denotes the stripe pattern without noise. (red, CCW 
rotation; blue, CW rotation; n = 20 flies, 36 trials at 1 Hz temporal frequency; 
n = 9 flies, 17 trials at 4 Hz). (b) ROCs for the six pairs of CCW-CW response 
distributions illustrated in a. Increased separation of CCW and CW response 
distributions in a leads to an increased deflection of the ROC away from the 
diagonal. (c) Area under the ROC curves (AUC) illustrated in b. When the 
ROC curve lies along the diagonal, which indicates that the fly cannot 
distinguish between CCW and CW rotations, the AUC is 0.5. When the ROC 
curve approaches the left axis and upper limit, which indicates that fly fully 
distinguishes between CCW and CW, the AUC is 1.0.  
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Figure 3 Strong correlation between the discriminative capacity 
of the OMR and HS cells to motion stimuli with noise. 
(a) Schematic diagram of the recording apparatus. (b) A recorded 
biocytin-filled HS cell (green) located in the right hemisphere (posterior 
view). Scale bar = 100 m m. OL, optic lobe (c) A space-time plot of the 
rotation stimuli. Each bar is 15 ° in azimuthal extent, and the temporal 
frequency is 1 Hz. (d) Example of response of a single right HS cell to a stripe 
pattern moving PD (CW) or ND (CCW) at a temporal frequency of 1 Hz. The 
gray-shaded region indicates the period when visual stimuli were in motion 
(1 s). HS cell are depolarized or hyperpolarized during PD or ND, 
respectively. (e) Average membrane potentials ± s.e.m. of an HS cell to 
visual stimuli of different SNR moving in PD and ND (top panel). The 
bottom panel shows the distributions of baseline-subtracted membrane 
potentials during stimulus presentation (red, ND; blue, PD). We noted that 
HS cells also depolarized during ND motion stimulation even when the SNR 
of the stimulus is at a low level. This is speculated to be due to random dot 
blinking because the random dot pattern becomes a dominant component in 
the visual pattern at low SNR levels. (f) ROCs for the five pairs of PD-ND 
response distributions illustrated in e. (g) Mean ± s.e.m. of AUC (red, HS 
cell, n = 10 cells; gray, behavior). The same behavioral data from Figure 2c 
(at 1 Hz) is also presented. (h) Mean ± s.e.m. of baseline-subtracted 
responses to PD and ND directions over a range of SNR. Responses of 
individual cells were calculated by integrating baseline-subtracted mean 
membrane potentials over the trials during motion presentation. (n = 10 
cells) (i) Mean ± s.e.m. of difference between the PD and ND responses 
illustrated in h (MRD, mean response difference).  
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Figure 4 Unilateral visual input is sufficient to generate the 
features of HS activities in response to motion stimuli with noise. 
(a) Schematic diagram of the experimental condition. One side of fly’s 
compound eyes was covered with an aluminum foil barrier to block visual 
inputs from the contralateral side of the recorded HS cell. (b) Average 
membrane potentials of 6 cells (red, covered) and 10 cells (black, uncovered) 
that responded to visual stimuli with different SNR moving in PD and ND at 
a temporal frequency of 1 Hz. The gray-shaded region indicates when the 
visual stimulus was in motion. (c) Mean ± s.e.m. of AUC (red, covered, n = 6 
cells; gray, uncovered cell data from Figure 3g; p > 0.05, two-way ANOVA) 
(d) Mean ± s.e.m. of baseline-subtracted responses to PD or ND motion 
obtained from covered HS cells at different SNR. Responses of an individual 
cell were calculated by baseline-subtracted mean membrane potentials over 
trials integrated during motion (n = 6 cells). (e) Mean ± s.e.m. of MRD (blue, 
covered; gray, uncovered. The uncovered data are the same as in Figure 3i (p 
> 0.05, two-way ANOVA).  
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Figure 5 An EMD model that adds a spatial filter and threshold 
function reproduces the experimental results. 
(a) The structure of our model. First, the visual stimulus is filtered with a 2D 
Gaussian function (! = 7.5O), and the filtered signal is passed through a 
sigmoid function (threshold function). The sigmoidal output is processed by 
the 2D array of a 2-Quadrant-Detector model (see Methods). HP, temporal 
first-order high-pass filter (! = 250 ms); DC, passing 10% of the original 
signal; LP, temporal first-order low-pass filter ( !  = 150 ms); M, 
multiplication; Sigma (Σ), nonlinear integration. (b) Putative 2D appearance 
of the LED display from the tethered fly (top). The spatial distribution of 
dendritic integration for the model cells (bottom). We constructed the vector 
field of spatial weight factors [!! ,!!] adjusted for the receptive field of the 
right HS cell (Krapp et al., 2001). The length and orientation of each vector 
indicates the level of sensitivity and the preferred direction of local motion 
detector, respectively. (c) Average responses of the model cell (10 trials) to 
visual stimuli with various SNR in both PD and ND stimulations at a 
temporal frequency of 1 Hz. The gray-shaded region indicates when visual 
stimuli were in motion. (d) Mean AUC (red, contained both the spatial filter 
and threshold function as illustrated in a; gray, contained either the spatial 
filter or threshold function). (e) Mean normalized response difference 
(normalized MRD) between PD and ND motion stimulus for each model (10 
trials). MRDs were normalized by the response to the stripe motion stimulus 
for each condition (blue, contained both the spatial filter and threshold 
function [filled circles] and HS cells calculated from the in Figure 3i [open 
circles]; gray, contained either the spatial filter or threshold function).  
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Figure 6 Schematic diagrams of the fly optic lobe and circuit of 
LPTCs with horizontal preferred directions. 
A: Fly visual system consisting of neuropils called the lamina, medulla, and 
lobula complex in the two hemispheres. Visual motion information on each 
side of the visual field is retinotopically processed through the lamina and 
medulla and converges on the lobula complex in the ipsilateral hemisphere. 
The complex contains a set of wide-field motion-sensitive neurons, called 
lobula plate tangential cells (LPTCs). B: Bilateral network of the LPTCs 
with horizontal preferred directions. Each hemisphere consists of eight cells: 
those named Hu, H1 and H2 are spiking neurons (colored), whereas the 
others named HS and CH are graded-potential neurons (gray). These LPTCs 
are mutually coupled through intrahemispheric and interhemispheric 
connections. Open triangles, bars and resister symbols indicate excitatory, 
inhibitory and electrical synapses, respectively. The cells with black arrows 
receive projections from the first-order neuropils, and the direction of each 
arrow denotes the preferred direction of each cell. dCH and vCH (without 
black arrows) do not directly receive projections from the first-order 
neuropils.  
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Figure 7 Activities of the H2 cell strongly depend on 
interhemispheric couplings between H2 and contralateral HSE. 
Gray in all figures: Responses of the H2L cell to the ipsilateral PD motion 
stimulus in the disconnected case. Red and blue: Responses of the H2L cell to 
the clockwise and back-to-front motion stimuli in the connected case (A, B 
and C) and the case without the interhemispheric electrical couplings (D and 
E). A: Raster plots showing locations of action potentials of the H2L cell in 
time for a single trial (SNR = 0.166). B: Differences in mean firing rate from 
spontaneous activity in the H2L cell in response to these motion stimuli with 
different noise levels. The abscissa indicates the signal-to-noise ratio of 
motion stimuli. The ordinate indicates difference between firing rates during 
stimulations and spontaneous activity. (Mean ± s.e.m., 8 trials) C: ISI 
distributions of the H2L cell in response to PD motion stimuli (SNR=0.166). 
D: Differences in mean firing rates of the H2L cell without the 
interhemispheric electrical couplings. (Mean ±!s.e.m., 8 trials) E: ISI 
distributions of the H2L cell without the electrical couplings. (SNR = 0.166). 
As shown in B and C, although the H2L cell directly faces the PD motion 
stimuli in the clockwise and back-to-front cases, the activity and regularity 
of the H2L cell for the clockwise motion stimulus are higher than those of the 
back-to-front stimulus because of the modification by contralateral LPTC 
activities. If the interhemispheric electrical couplings are only cut off and 
other connections remain in the bilateral network, as revealed in D and E, 
the activity and regularity of the H2L cell in this case is almost same as that 
in the disconnected case. Thus, these results suggest that the 
interhemispheric electrical couplings are a key factor to determining the 
responsive characteristics of the H2 cell to the binocular motion stimuli.  
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Figure 8 Change in firing-rate correlations between two spiking 
LPTCs depending on binocular stimuli. 
Left column: In- phase motion stimulus (clockwise). Right column: 
Out-of-phase motion stimulus (back-to-front). A and B: Cross-correlations 
between the H1 and H2 cells located in the left hemisphere. C: 
Cross-correlation between the H1 and Hu cells separately located in two 
hemispheres. D: Cross-correlation between two H1 cells separately located in 
two hemispheres. Note that the two LPTCs in each pair shown in these 
graphs receive PD motion stimuli in the in-phase and out-of-phase cases, 
respectively. The peak of the cross-correlations of the H1 and H2 cells at a 
lag of 0 sec for the in-phase motion stimulus is higher than that of the 
out-of-phase motion stimulus. Whereas the responsiveness of single H1 and 
Hu cells does not change with the contralateral motion stimuli (Figure 9 and 
10), the peak of the cross-correlations of these for the in-phase motion 
stimulus is higher than that of the out-of- phase motion stimulus.  
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Figure 9 Activities of the H1L cell in response to PD motion 
stimuli are not modified by contralateral LPTC activities. 
(gray) Responses of the H1L cell to the ipsilateral PD motion stimulus in the 
disconnected case. (red) Responses of the H1L cell to the clockwise motion 
stimulus in the connected case. (blue) Responses of the H1L cell to the 
back-to-front motion stimulus in the connected case. A: Differences in mean 
firing rate from spontaneous activity in the H1L cell in response to these 
motion stimuli with different noise levels. The abscissa is the signal-to- noise 
ratio of the motion stimuli. The ordinate is the difference between firing 
rates during stimulation and spontaneous activity. (Mean ± s.e.m., 8 trials) 
B: ISI distributions of the H1L cell in response to PD motion stimuli (SNR = 
0.166). The activity and regularity of the H1L cell when the facing of the 
clockwise motion stimulus is almost the same as that of the back-to-front 
stimulus.  
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Figure 10 Activities of the HuL cell in response to PD motion 
stimuli are not modified by contralateral LPTC activities. 
(gray) Responses of the HuL cell to the ipsilateral PD motion stimulus in the 
disconnected case. (red) Responses of the HuL cell to the counterclockwise 
motion stimulus in the connected case. (blue) Responses of the HuL cell to 
the front-to-back motion stimulus in the connected case. A: Differences in 
mean firing rate from spontaneous activity in the HuL cell in response to 
stimuli with different noise levels. The abscissa indicates the signal-to-noise 
ratio of motion stimuli. The ordinate indicates differences between firing 
rates during stimulations and spontaneous ones. (Mean ± s.e.m., 8 trials) B: 
ISI distributions of the HuL cell in response to PD motion stimuli 
(SNR=0.166). The activity and regularity of the HuL cell when the facing of 
the counterclockwise motion stimulus is almost same as that of the 
front-to-back stimulus.  
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Figure 11 Coding properties of a population of LPTCs in a 
bilateral network. 
A: Raster plots showing locations of action potentials of all six spiking 
LPTCs in time for a single trial with the four different stimuli. Red plots 
indicate responses of spiking LPTCs in the connected case, and black plots 
present responses of spiking LPTCs in the disconnected case. B: Principal 
component analysis (PCA) for population activities shown in A. The firing 
rate vectors are projected onto a two-dimensional space spanned by the first 
and second principal components, PC1 and PC2. Colors indicate different 
stimuli. In the disconnected case, four clusters of the firing rate vectors 
corresponding to the four different stimuli are respectively separated into 
the four quadrants, whereas in the connected case, clusters of the firing rate 
vectors corresponding to the in-phase and out-of-phase stimuli are 
respectively distributed along the PC1 and PC2 axes. C: Contribution ratio of 
PC1 and PC2 (bars) and cumulative contribution ratio (dots) in the 
connected and disconnected cases. (Mean ± s.e.m., 10 trials).  
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Figure 12 Each element of the first two principal components, PC1 
and PC2, in five trials of numerical simulations for the detailed 
model with different random seeds for noise. 
The upper table is the disconnected case, and the lower table is the 
connected case. What each principle component codes in the five trials is 
presented on the margins of these tables. In the connected case, PC1 and 
PC2 stably represent the in-phase and out-phase motions, whereas in the 
disconnected case, PC1 and PC2 are randomly assigned to either left or right 
monocular motion.  
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Figure 13 The neuronal morphologies do not affect on the 
population coding properties. 
A: Principal component analysis (PCA) for population activities. I analyzed 
population coding properties under conditions in which the length of each 
LPTC is two-third that of the original model. The firing rate vectors are 
projected onto a two-dimensional space spanned by the first and second 
principal components, PC1 and PC2. Colors indicate different stimuli. 
Clusters of the firing rate vectors corresponding to the in-phase and 
out-of-phase stimuli are respectively distributed along the PC1 and PC2 axes. 
This result is the qualitatively same as those shown in Figure 11B. B: 
Contribution ratio of PC1 and PC2 (bars) and cumulative contribution ratio 
(dots). (Mean ± s.e.m., 10 trials).  
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Figure 14 Interhemispheric couplings between H2 and HSE cells 
mainly affect the coding properties of population activities. 
A: PCAs for population activities using different values of the conductance of 
the electrical coupling. As in Figure 11B, the firing rate vectors are projected 
onto a two-dimensional space spanned by PC1 and PC2. Colors indicate 
different stimuli. B: Contribution ratio of PC1 and PC2 as a function of the 
conductance of the electrical coupling. For comparison, the contribution ratio 
in the disconnected case is superimposed on this graph. As the conductance 
of the electrical coupling increases, the difference between contribution rates 
of PC1 and PC2 becomes larger. In the disconnected case and the case with 
the electrical coupling of 0 nS, the differences are relatively small, and four 
clusters of population activities corresponding to the four different stimuli 
are separated into the four quadrants, as shown in Figs. 11A and 11B. (Mean 
± s.e.m., 10 trials).  



 130 

 
 
 
 
 
 
 
 

  



 131 

 
 
 
 
 
 
Figure 15 Coding properties are conserved in the reduced model. 
A: Summary diagram of the reduced model. For simplicity, in each 
hemisphere, five graded-potential cells are merged into a single cell named 
HS/CH. All cells are described using the McCulloch-Pitts model instead of 
the conductance-based model. B: Activities of three LPTCs corresponding to 
the spiking cells on the left side in response to the four different stimuli. 
Black and red lines denote the disconnected and connected cases, 
respectively. C: PCA for population activities shown in B. By applying PCA 
to activity vectors whose elements correspond to activities of six LPTCs on 
the left and right hemispheres, we projected the activity vectors onto a two- 
dimensional space spanned by the first and second principal components, 
PC1 and PC2. Colors indicate different stimuli. In the disconnected case, 
four clusters of the activity vectors corresponding to the four different 
stimuli are respectively separated into the four quadrants, whereas in the 
connected case, clusters of the activity vectors corresponding to the in-phase 
and out-of-phase stimuli are respectively distributed along the PC1 and PC2 
axes. D: Contribution ratio of PC1 and PC2 (bars) and cumulative 
contribution ratio (dots) in the connected and disconnected cases. (Mean ± 
s.e.m., 10 trials).  
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Figure 16 Each element of the first two principal components, PC1 
and PC2, in five trials of numerical simulations for the reduced 
model with different random seeds for noise. 
The upper table is the disconnected case, and the lower table is the 
connected case. What each principle component codes in the five trials is 
presented on the margins of these tables. In the connected case, PC1 and 
PC2 stably represent the in-phase and out-phase motions, whereas in the 
disconnected case, PC1 and PC2 are randomly assigned to either left or right 
monocular motion.  
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Figure 17 Mechanisms of binocular integration of visual 
information. 

Red and blue circles indicate depolarized and hyperpolarized cells in 
response to ipsilateral PD and ND motion stimuli, respectively. A: In the 

in-phase case, the cells responding to ipsilateral PD stimuli receive 
excitatory inputs from contralateral and ipsilateral LPTCs, and the cells 

responding to ipsilateral ND stimuli receive inhibitory inputs from the other 
LPTCs. The cells integrate the in-phase motion stimuli through their 

cooperative behavior. B, C: In the out-of-phase case, some cells responding to 
ipsilateral PD stimuli receive inhibitory inputs from the other LPTCs, and 
some cells responding to ipsilateral ND stimuli receive excitatory inputs 

from the other LPTCs. Thus, there is a frustration in the out-of-phase case 
because the activities of the neurons interfere with the mutual interactions.  
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Tables 

Table 1 Morphological parameters and passive electrical parameters of each. 

Cell type Length!!" Diameter !" !!!!"/!!! !!" !!" !!"#$ !!/!!! 

H1 1000 5 20  0.002 
H2 200 5 20  0.002 
Hu 200 5 20  0.002 
HS 250 15 1 -50 0.001 
CH 250 15 1 -50 0.001 
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Table 2 Parameters of the type-I Morris-Lecar model. 

!!"#$!!" !!"#$!!/!!! !!"#$ !!" !!"#$ !!/!!! !!"#$ !!" 
120 0.004 -84 0.008 -60 
!!!!" !!!!" !!!!" !!!!" !/!"#$ 
-1.2 18 12 17.4 0066 
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Table 3 Amplitude of the DC signal corresponding to PD and ND motion 
stimulus. 

 H1 H2 HS 

!!!!" 10 2 3.6 

!!!!" -1 -0.2 -1.3 
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Table 4 Combinations of either depolarizing or hyperpolarizing current for 
representing the four types of stimuli. 

 C CC FB BF 

H1L P N N P 

H2L P N N P 

HuL N P P N 

HSL N P P N 

H1R N P N P 

H2R N P N P 

HuR P N P N 

HSR P N P N 

 


