T2R2東京工業大学リサーチリポジトリ Tokyo Tech Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	間柱型履歴ダンパーのモデル化の違いが建物応答に与える影響,その3 時刻歴応答解析による検討
Title	
著者(和文)	松井征生,渡辺泰成,戸張涼太,佐藤利昭,北村春幸,佐藤大樹,宮川和明, 植木卓也,村上行夫
Authors	Ryota Tobari, Toshiaki Sato, Haruyuki Kitamura, Daiki Sato, Kazuaki Miyagawa, Takuya Ueki, Yukio MURAKAMI
出典 / Citation	日本建築学会大会学術講演梗概集, vol. B-2, , pp. 765-766
Citation(English)	, vol. B-2, , pp. 765-766
発行日 / Pub. date	2015, 9
rights	日本建築学会
rights	本文データは学協会の許諾に基づきCiNiiから複製したものである
relation	isVersionOf:http://ci.nii.ac.jp/naid/110010005231

間柱型履歴ダンパーのモデル化の違いが建物応答に与える影響 その3時刻歴応答解析による検討

正会員	○松井征生*1	同	渡辺泰成*1	同	戸張涼太*2
正会員	佐藤利昭*1	同	北村春幸*1	司	佐藤大樹*3
正会員	宮川和明*2	司	植木卓也*4	同	村上行夫*4
時刻歴』	芯答解析				

モデル化 反曲点位置

1. はじめに

間柱型ダンパー

本報その1,その2では、間柱型履歴ダンパーの概要とモデ ル化を示し、2種類のモデル化の違いによる差異を静的増分解 析により明らかにした。その結果、反曲点位置の移動によっ て、間柱型履歴ダンパーの付帯する梁に作用する曲げモーメ ントに違いが生じることを確認した。その3では、告示波を 用いた時刻歴応答解析より得られた建物応答やダンパーのエ ネルギー吸収量等を比較することで、間柱型履歴ダンパーの モデル化の違いが建物応答に与える影響について報告する。

履歴ダンパー

2. 解析用入力地震動の概要

解析用入力地震動は、コーナー周期 0.64 秒以降で擬似速度 応答スペクトル $_pS_v$ を 80 cm/s で一定とした告示波とし、位相 特性は、1995 年兵庫県南部地震において神戸海洋気象台で観 測された JMA KOBE の NS 成分を用いた。この地震動を ART KOBE 80 と呼ぶ。前報で行った静的増分解析で示した層間変 形角 1/50 rad 程度の大変形時の建物応答を確認するために、 ART KOBE 80 の入力加速度を 1.5 倍とした地震動も検討に用 いる。この地震動を ART KOBE 120 と呼ぶ。図 1(a)に減衰定 数 h が 0.05 の場合の $_pS_v$ 、図 1(b)に h が 0.10 の場合のエネルギ ースペクトル V_E を示す。図中には、主架構のみの 1 次固有周 期 $_fT_1 = 2.02$ 秒、間柱型履歴ダンパーを付与した場合の 1 次固 有周期 $T_1 = 1.76$ 秒をそれぞれ併記した。

3. 時刻歴応答解析結果

その1 で示したばねモデルと部材モデル,その2 で用いた 10 層の鋼構造建物を用いた時刻歴応答解析を行った結果を示 す。

The Effects of Shear Panel Damper Models on Building Responses. Part 3 Study on Time History Response Analysis.

3.1 建物応答の検討

最大層間変形角 R_{max} と最大層せん断力 Q_{max} の高さ方向分布 を図 2,3 に示す。

図 2 より, *R*max は全層で部材モデルのほうが, ばねモデルに 比べて大きいことが確認できる。*R*max は第 3 層で最大となり, ART KOBE 80 を入力した場合, ばねモデルで 1/87 rad, 部材モ デルで 1/84 rad, ART KOBE 120 を入力した場合, ばねモデルで 1/61 rad, 部材モデルで 1/60 rad となった。図 3 より, その 2 で 示した静的増分解析結果と同様に, *Q*max はばねモデルのほうが 部材モデルより小さい結果となった。

3.2 エネルギー吸収量の検討

時刻歴応答解析終了時の入力エネルギーE_{in},減衰エネルギ ーW_h,主架構の累積塑性歪エネルギー_fW_p,ダンパーの累積塑 性歪エネルギー_dW_pおよび各エネルギーの入力エネルギーに 対する割合を表1に示す。

表1 地震終了時のエネルギー

(a) ART KOD			- 80 - 耳	皂位:kN m
	$E_{ m in}$	W_h	$_{f}W_{p}$	$_dW_p$
ばねモデル	6,252	3,670 (58.7 %)	460 (7.4%)	2,122 (33.9%)
部材モデル	6,160	3,602 (58.5 %)	655 (10.6 %)	1,903 (30.9 %)

(b) ART KOBE 120 単位: kN m

	$E_{ m in}$	W_h	$_{f}W_{p}$	$_dW_p$
ばねモデル	12,309	5,466 (44.4 %)	3,448 (28.0%)	3,395 (27.6%)
部材モデル	12,147	5,206 (42.9 %)	3,814 (31.4 %)	3,127 (25.7 %)

MATSUI Masaki, WATANABE Yasunari, TOBARI Ryota SATO Toshiaki, KITAMURA Haruyuki, SATO Daiki MIYAGAWA Kazuaki, UEKI Takuya, MURAKAMI Yukio 表1より、ART KOBE 80 が入力した場合に、 dW_p は E_{in} の 30% 程度、ART KOBE 120 が入力した場合に、 dW_p は E_{in} の 25% 程度 であることが確認できる。ばねモデルと部材モデルの E_{in} , W_h に大きな差はないが、 fW_p は部材モデルのほうが大きく、 dW_p は ばねモデルのほうが大きい。部材モデルは、反曲点位置が移 動することで、ダンパー部に曲げモーメントが作用し、ダン パー部に曲げ変形が生じるため、ダンパーに寄与するせん断 変形が小さくなり、 dW_p が小さくなったと考えられる。

3.3 部材の応答の検討

図4に、A通り1~5階の梁の塑性ヒンジ発生箇所を最大塑 性率と共に示す。図4(a)より、ART KOBE 80が入力した場合、 部材モデルのほうがばねモデルと比較して、梁に発生した塑 性ヒンジの数が多く、最大塑性率が大きい。図4(b)より、ART KOBE 120が入力した場合、ばねモデルのみに、2-3通り間、5 -6通り間の3、4階の梁に塑性ヒンジが形成されている。こ れは、前報の静的増分解析結果で述べたように、ばねモデル は、反曲点が常に中央に位置することで、間柱型履歴ダンパーが付帯する梁に、部材モデルよりも大きな曲げモーメント が作用するためだと考えられる。間柱型履歴ダンパーが付帯 していない梁の最大塑性率は、ART KOBE 80を入力した場合 と同様に、部材モデルのほうがばねモデルよりも大きい。

4. まとめ

本報その3では、その1で示した、反曲点位置の移動が考慮 されないせん断ばねで置換する方法と、考慮される部材レベ ルで設定する方法によりモデル化した間柱型履歴ダンパーを 10層の鋼構造建物に設置し、時刻歴応答解析を行った結果か ら、モデル化の違いが建物応答に与える影響を検討した。以 下に得られた知見を示す。

- 最大層間変形角、最大層せん断力は部材レベルでモデル 化をした場合のほうが大きくなった。
- ダンパーのエネルギー吸収量は、せん断ばねでモデル化した場合のほうが大きくなった。
- 間柱型履歴ダンパーが付帯しない梁の最大塑性率は、部 材レベルでモデル化をした場合のほうが大きくなった。
- 4) 擬似速度応答スペクトルが120 cm/s で一定の告示波入力 時は、せん断ばねでモデル化した場合のみ、間柱型履歴 ダンパーが付帯する梁に塑性ヒンジが発生した。

謝辞

本研究は, JFE スチール(株), JFE シビル(株), 東京工業 大学佐藤研究室, 東京理科大学北村研究室による共同研究の 成果の一部を用いたものです。ここに記して, 感謝の意を表 します。

梁の塑性ヒンジ発生箇所(梁の最大塑性率併記)

- *1 東京理科大学
- *2 JFE シビル
- *3 東京工業大学
- *4 JFE スチール

- *1 Tokyo University of Science
- *2 JFE Civil Engineering & Construction Corp.
- *3 Tokyo Institute of Technology
- *4 JFE Steel Corp.