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1 Background

Secret Sharing (SS) was proposed by Blakley [6] and Shamir [32]. In the
SS model, a dealer first divides a secret into shares and distributes them
among parties. A qualified coalition of parties can reconstruct the secret,
and unqualified coalition of parties can obtain information about that secret.
The (¢,n)-threshold SS is a common class of SS. In this class, the number of
shares is n, any coalition of more than ¢ shares can reconstruct the secret,!
and t or fewer shares are independent of the secret.

SS has been studied as not only a way to store data securely but also
a primitive of other cryptographic protocols such as threshold cryptosys-
tems [18] and fuzzy identity-based encryption for biometrics [31]. Among
such applications, multiparty computation (MPC) has been well studied.
An MPC aims to compute a function of inputs such as statistical analysis
and data mining while any party obtain only the output of the function. Al-
though there are many techniques to construct MPC, we focus on SS-based
MPC and we use the term, MPC, as SS-based MPC in the thesis. MPC is
typically executed as follows. First, input data are distributed to the par-
ties via SS. When the parties want to compute the function, they interact
with each other and obtain a share of the function result. Then the result
is reconstructed if needed. Throughout the above steps, the input data are

!Notice that t + 1 shares are required to reconstruct the secret. In the latter sentences
of the thesis, we use t as the maximal number of corrupted parties.



never reconstructed. Therefore, by using MPC, the parties can analyze data
without leaking any information of the data except the output.

Although MPC has such attractive sense, early studies on MPC [4, 11]
had been mainly considered as theoretical interest due to its inefficiency.
However, there have been many studies on MPC e.g., [2,3,5,9,13,16,17,
20, 22-24,27-29], and recently MPC is considered as practical interest. In
fact, some practical implementations have been published and confirmed
that MPC is efficient enough for certain applications [8-10].

2 QOur Application Scenario

Let us consider the system that uses SS to secure data storage with MPC,
which is a common model for MPC. For example, a data aggregation of
network traffic statistics [10] belongs to the model. In this application, one
first shares data for storing securely, and performs MPC that computes
statistical analysis when it is needed. In other words, the system has two
roles: Secure data storage and secure analyzing system. From the viewpoint
of the secure data storage, the storage-size is desired to be small. It means
that the share-size of SS should be small. On the other hand, from the
viewpoint of the secure analyzing system, it is essential that the parties can
perform MPC on the SS efficiently.

Another application is an MPC system with backup. In the application,
one shares data via SS and performs MPC by ordinary. When the data are
renewed, old shares are still stored for some purpose such as audit. Also
in the application, the share-size of SS should be small and the parties can
perform MPC on the SS efficiently.

3 Compatibility of Small Share-size and Efficient
MPC

We call an SS whose share-size is small as compact and an SS on which
the parties can perform MPC efficiently as MPC-friendly. Our application
scenario requires a compact and MPC-friendly SS. We survey existing SSs
and discuss if an SS satisfies both simultaneously.

3.1 Compact SS

Several compact SSs have been proposed. One of them is a computationally
secure SS. Krawczyk [26] proposed a computationally secure SS that uses
symmetric-key encryption and information dispersal algorithm (IDA) [30].
In Krawczyk’s scheme, a dealer encrypts a secret with the symmetric-key
encryption, the key is distributed through some SS, and the ciphertext is
distributed through IDA. If the key size is much smaller than the size of the



secret, Krawczyk’s scheme is compact. Although a computationally secure
SS such as Krawczyk’s scheme is secure against only polynomially bounded
adversaries, the share-size is almost the same as the optimum one B
where ||.7|| denotes the size of the secret.

Another compact SS is a ramp scheme that was independently proposed
by Blakley and Meadows [7], and Yamamoto [34]. In the ramp scheme, one
share can contain multiple secrets so the share-size is small in total. If we
set parameters of the ramp scheme so that one share contains L secrets, the
share-size is 7 [|.7].
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3.2 MPC-Friendly SS

Next we discuss an SS on which the parties can perform MPC efficiently.
Cramer et al. [15] showed that MPC can be conducted on a wide class of
SSs called linear SS. However, most practical results of MPC are on the spe-
cific SSs, Shamir’s SS or replicated SS [14,25]. They have certain preferred
properties, perfect privacy, homomorphicity, and simple arithmetic struc-
ture. There have been many practically useful protocols that compute not
an arithmetic circuit but a “high-level” function such as bit-decomposition
[16,29], comparison [16,29], devision [9], shuffling [28], sorting [22], floating
point [9] and join [27]. These protocols are based on Shamir’s SS, replicated
SS, or linear SS including both Shamir’s and replicated SSs. Therefore,
Shamir’s SS and replicated SS are MPC-friendly. In fact, to our knowledge,
all implementation results of MPC have been constructed based on either
these two SSs [8-10].

3.3 Compatibility

To our knowledge, no efficient MPC based on computationally secure SSs
such as Krawczyk’s SS has been proposed since most of them have no homo-
morphism. On the other hands, some MPCs based on the ramp scheme have
been proposed so far. Franklin and Yung [19] proposed the protocol that
computes parallel multiplications (agbo,...,arbr), where (ag,...,ar) and
(bo,...,br) are secretly shared via the ramp scheme. However, the compu-
tation is restricted to the pair-wise multiplication, i.e., we cannot compute
a;by (i # ') with this protocol. Cramer et al. [12] presented the proto-
col that computes (3, ;_qaibj,..., > j_oy aibj), where (ao,...,ar) and
(bo, ..., br) are secretly shared via the ramp scheme. This protocol can per-
form wider class of computations compared to [19]. However, their protocol
only computes arithmetic circuits. For practical use, protocols that compute
high-level functions are essential but have not been proposed on the ramp
scheme. Therefore, the compact SSs are not MPC-friendly.

On the other hand, the share-size of Shamir’s SS is ||.||, which is larger
than the ones of the compact SSs. The share-size of Replicated SS is much



larger than the ones of the compact SSs since it is (nzl) |-7]|. Therefore,
the MPC friendly SSs are not compact.
Consequently, there is no SS that is both compact and MPC-friendly.

4 Our Contribution

4.1 Approaches

For our application scenarios, we take an approach that one switches two
SSs, a compact SS and an MPC-friendly SS, depending on scenes. We adopt
the approach in the secure storage with MPC as follows.

e Each user uses an compact SS to store his data in the system.

e When a user wishes to perform MPC, servers perform a conversion
protocol that converts stored shares of the compact SS to those of an
MPC-friendly SS, and perform MPC on it.

o After performing MPC, the servers perform another conversion proto-
col that converts shares of the MPC-friendly SS to those of the compact
SS.

We also adopt the conversion protocol in the MPC system with backup as
follows.

e Each user shares his data via an MPC-friendly SS and performs MPC
on it.

e When the data are renewed, the user shares the renewed data via the
MPC-friendly SS.

e The servers perform a conversion protocol that converts the old shares
of the MPC-friendly SS to those of an compact SS, and keep them for
backup.

As a compact SS, we consider a computationally secure SS and the ramp
scheme. As an MPC-friendly SS, we consider homomorphic SS and linear
SS, which are classes of SSs and both contain Shamir’s SS and replicated
SS.

4.2 New Compact SS: Variants of Krawczyk’s Scheme

Although Krawczyk’s scheme is compact, we propose two variants of Krawczyk’s
scheme, (t,n)-Comp and (t,n)-Comp2. The reason why we show the variants
of Krawczyk’s scheme is that Krawczyk’s scheme cannot be easily converted.
Suppose a is distributed through Krawczyk’s scheme with the key key. In
this situation, Encyey(a) is distributed via IDA and key is distributed via



an SS, where Enc is the encryption algorithm of a symmetric-key encryp-
tion. To convert to an MPC-friendly SS, we have to decrypt Encjey(a) but
the decrypted value should be kept secret. One approach is masking with
a randomness: Generate Encye, () and compute Ency.,(a — r) before the
decryption. However, this approach cannot be used since a ciphertext is
not homomorphic.? Another approach is performing the protocol that com-
putes the decryption algorithm. However, it tends to be inefficient since the
decryption algorithm should not have a simple arithmetic structure.

Therefore, we propose the variants of Krawczyk’s scheme so as to convert
their shares to MPC-friendly SSs efficiently. Our approach is making use of
multiple secret keys and distribute them so that an adversary cannot obtain
all keys.

4.3 Conversion Protocol

We propose several conversion protocols between compact SS and MPC-
friendly SS. Before explaining individual protocols, we introduce two evalu-
ation criteria of the conversion protocol.

The first criterion is the computational power of adversaries. There are
mainly two types of the adversary’s computational power, computational
and information-theoretical security. The former means that the protocol is
secure against only polynomially bounded adversaries, and the latter means
that the protocol is secure against any (unbounded) adversaries. The latter
is stronger security notion so information-theoretical security is preferable
from the viewpoint of security. On the other hand, the share-size of a
compact SS with computational security tends to be smaller than that of a
compact SS with information-theoretic security.

The second criterion is adversary’s behavior. There are mainly two types
of the adversary’s behavior,? called passive and active security. The passive
security means that the protocol is secure against only restricted adversaries
that follow the protocol. If the protocol is actively secure, it is secure against
adversaries whose behavior is not restricted at all. Passively secure conver-
sion protocols are more efficient than actively secure ones so the passively
secure ones are preferable if the passive security is enough. For example, if
MPC performed after/before conversion are passively secure such as [8-10],
passively secure conversion protocols are suitable. On the other hand, if
MPC are actively secure such as [5,20,24], actively secure conversion proto-
cols are suitable to achieve the active security in the whole system.

From the above criteria, we have four settings: Computational and

2Note that even if the symmetric key encryption is a stream cipher, a ciphertext is
homomorphic only when the key is the same.

3Covert security [1] that is an emerging notion, weaker than active security and stronger
than the passive security, have been proposed. However, in the thesis we focus on active
and the passive security.



passive, computational and active, information-theoretic and passive, and
information-theoretic and active. For each setting, we propose two conver-
sion protocols. One converts a compact SS to MPC-friendly SS and the
other is its converse. Therefore, we propose eight conversion protocols in
total.
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