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Abstract

Stereo vision camera is widely used in the robotics area for terrain map-

ping, object detection, object classification, navigation, self-localization and

so on. This thesis presents the problems that a Humanitarian Demining

Robot Gryphon meets in the field when a stereo vision camera is used for

terrain mapping: accurate Kinematic calibration and Hand-Eye calibration

and ensuring the 3D terrain model still could be well acquired with a stereo

vision camera even in the extreme light conditions. These problems are also

the common and important issues when applying stereo vision camera in

field and this thesis focuses on them. This thesis introduces a new calibra-

tion method that performs simultaneous kinematic calibration and hand-eye

calibration based on a traditional method that uses a sequence of pure ro-

tations of the manipulator links. The new method considers an additional

joint angle constraint, which improves the calibration accuracy especially

when the circular arc that can be measured by the stereo vision camera is

very limited. In addition, instead of using existing lighting enhancement

methods such as Exposure Fusion to increase the texture of 2D images, this

thesis describes a new stereo matching method that is directly done using the

images grabbed with multiple exposures. The 2D image process of exposure
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fusion is not needed. Experimental results using a manipulator developed

for humanitarian demining demonstrate that with the proposed method the

relative errors between the end-effector and the external points mapped by

the stereo vision camera are greatly reduced. Through the experiments in

laboratory and outdoors with a stereo vision camera fixed on a tripod and

held in the hand, it is verified that the proposed method consistently allowed

more valid points to be obtained and the 3D terrain model could be built

more accurately. Especially when the local window-based method was used,

the proposed method performed much better than the traditional methods.

Field experiments are planned to be conducted with the Gryphon system in

Angola in the near future to further evaluate the proposed methods. The

methods proposed and presented in this thesis can be used in other robot

platforms.
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Chapter 1

Introduction

Stereo vision camera is widely used in the robotics area for terrain map-

ping, object detection, object classification, navigation, self-localization and

so on. This thesis presents the problems that a Humanitarian Demining

Robot Gryphon meets in the field when a stereo vision camera is used for

terrain mapping: accurate Kinematic calibration and Hand-Eye calibration

and ensuring the 3D terrain model still could be well acquired with a stereo

vision camera even in the extreme light conditions. These problems are also

the common and important issues when applying stereo vision camera in

field and this thesis focuses on them. The methods proposed and presented

in this thesis can be used in other robot platforms.

1.1 Description of the Humanitarian

Demining Robot Gryphon

Humanitarian demining is the action of clearing a land area of mines and

unexploded ordnance (UXO) to allow local population to safely return liv-

ing there. In manual demining operations, a human deminer systematically

scans the ground with a mine metal detector (MMD). This process is time

consuming, expensive and can be dangerous to the deminers. The actual

clearing of a minefield is a very risky task even for highly trained profes-

sionals. Most automatic demining systems tend to explode the ordnances
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Figure 1.1: Overview of Gryphon platform.

without defusing them and this method is not totally safe and always be

followed by a careful manual inspection afterwards. A mechanical system to

assist human deminers, presented in Figure 1.1 and named Gryphon [1], has

been developed at the Tokyo Institute of Technology since 2002. Gryphon

platform is in fact an advanced mine detector, which is able to autonomously

scan the interested area (namely a lane), and mark the suspected spots with

a marking system or internally for a later inspection.

The terrains in which it has to operate are very inhomogeneous in their

characteristics, as they can be hard, muddy, sandy, and with temperatures

ranging from below zero levels to very hot and humid weather. The control

system of the Gryphon platform was developed to be as easy as possible

to be used, because it is not feasible to use highly trained engineers in the

field. This leads to the fact that Gryphon platform was intended to be

used by personnel with a minimum basic training, working for governments

of humanitarian agencies. The consequence for the fact is that the entire

platform must be cheap, robust, and easy to maintain. The robot also ensures



Description of the Humanitarian Demining Robot Gryphon 3

Figure 1.2: Remote Control Unit.

safe operations because the operator never needs entering the minefield, as

neither the robot. In fact, Gryphon platform is able to perform scanning

from the outside of the minefield, thanks to its long arm.

As presented in Figure 1.1, the Gryphon platform consists of an all-terrain

vehicle (ATV), mounted with a robotic manipulator that carries a MMD. It

can be remotely supervised by an operator with a Remote Control Unit

as shown in Figure 1.2. To ensure high detection rate, the MMD must

be scanned as close as possible to the soil, so a precise calibration of the

system is needed for ensuring precise positioning. It is expected to achieve a

positioning error smaller than 20.0 mm.

Laser range finder and stereo vision camera have been widely used for

terrain mapping and obstacle avoidance in robotics area for many years.

In [2], a comparison of the advantages and limitations of stereo vision camera
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Figure 1.3: Point Grey BumblebeeTM stereo vision camera.

Figure 1.4: The automatically scanning operation based on the height map.

and laser range finder was presented.

First, the characters of laser range finder are listed [2].

• Its accuracy decreases only slightly with range and it is typically more

accurate than stereo vision camera. The user calibration is not needed.
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• It is insensitive to lighting and can operate at night or in sunlight.

However, it can be affected by direct sunlight.

• It requires little processing power and outputs range values directly.

• Its scan is produced incrementally, so it is susceptible to errors during

rapid motion. Besides, since it contains sensitive optics and mirrors, it

is susceptible to shock and vibration problems.

• It produces only a 2D cross section and no color information is returned.

• Its range measurements are sparse compared to stereo vision camera.

Besides, its measures may give 0 meters (bad or no reflection) or be

ambiguous (like lower parts of moving chairs) [3].

• It is effective when the environment has unique physical structure or

shape. Unfortunately, the laser range finder with limited range can fail

around homogeneous building structures such as long corridors [4].

• It is active sensing and requires power. Laser beams could be detected

by others.

Next, the characters of stereo vision camera are presented [2].

• Its range accuracy decreases with range and it has limited field of view.

The user calibration is required.

• It depends on adequate lighting and texture of the scene, and requires

the environment to contain unique visual features based on variable

appearance.

• It requires significant processing for correspondence matching and is

computationally intensive to work with.

• It produces an “instantaneous” snapshot of the environment and does

not have the moving parts. So it is more robust to shock and vibration.
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• It produces dense range information and is particularly useful for pro-

viding rich 3D information. Color information can be associated with

range data.

• It is passive sensing and no energy is emitted into the environment.

Considering robustness to various field conditions, cost, precision and pro-

cessing speed, an industrial stereo vision camera, the Point GreyBumblebeeTM

stereo vision camera, was selected. This stereo vision camera is shown in

Figure 1.3, and it is based on a rigid aluminum body to avoid shocks and

vibrations to move the two inner cameras from their perfect parallel align-

ment. As presented in Figure 1.1, the stereo vision camera is attached to the

manipulator link and used to map the terrain. As shown in Figure 1.4, the

3D terrain model can be built using the stereo vision camera and the Hu-

manitarian Demining Robot Gryphon can automatically scan the interested

area with a MMD at a constant distances from the ground.

1.2 Problem description

The Gryphon platform shown in Figure 1.1 is proven to be better than

human operators. However, there are still some issues needed to be solved

and the improvements are necessary.

1.2.1 Background and motivation of the Kinematic

calibration and Hand-Eye calibration for the

Humanitarian Demining Robot

For the Gryphon platform, a precise kinematic calibration and hand-

eye calibration is fundamental to scan as close as possible to the soil and

it is expected to achieve a positioning error smaller than 20.0 mm. An

initial calibration may be performed in a laboratory/factory environment

using customized calibration tools and/or high-precision external sensors, but

the implementation of an in-field self-calibration method is still necessary for

the following main reasons.
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1. System health-status auto-check: to assure high reliability of the sys-

tem throughout its lifetime use, a self-calibration method can be used

to compare the joint initial angles and camera position and orienta-

tion parameters calibrated from self-calibration and from the original

laboratory/factory pre-calibration.

2. Re-calibration after in-field maintenance: re-calibration is needed when

the counterweight holder fixing position is changed, or the stereo vision

camera is replaced.

(a) Initial position errors: the manipulator joint angles are measured

by incremental encoders that are initialized with the manipulator’s

counterweight at its resting position, which is defined to be the

counterweight holder fixing position, and small initial positioning

errors cause large errors in the manipulator’s tip.

(b) Counterweight holder assembly precision: the counterweight holder

fixing position can slightly differ from one ATV to another.

(c) Stereo vision camera position and orientation errors: the stereo

vision camera can be replaced by other stereo vision camera, or

its position and orientation can be different from one manipulator

to another. Small stereo vision camera position and orientation

errors cause large errors in terrain mapping.

In fact, the “re-calibration after in-field maintenance”is a major challenge

if it is assured high precision positioning without using a high-precision ex-

ternal sensor.

1.2.2 Terrain mapping in extreme light conditions

Since no assumption of the ground’s shape can be made a priori, it is

necessary that a system is able to perform 3D acquisition of the scene even

in extreme light conditions. The luminance of an object is measured in lux

or candelas per square meter (1lux = 1cd/m2). The range of the luminance

of an object is called the dynamic range and it is defined as the ratio of
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Figure 1.5: The scene with extreme light conditions.

the maximum luminance value to the minimum luminance value within the

specimen. Intensity values of scenes in the real world can have a very broad

dynamic range, and from outdoor shade to outdoor sunlight, the scene lu-

minance could be changed from 100 lux to 100000 lux. For a digital camera

it is possible that the image acquired with auto exposure saturates in some

areas while keeping others visibly underexposed. This is particularly true for

scenes that have areas of both low and high illumination. As shown in the

auto exposure image of Figure 1.5, the upper part is overexposed. The lim-

itation comes from the camera’s dynamic range, which represents the limits

of luminance range that a given device can capture. The dynamic range of

cameras is limited by the charge-coupled devices (CCD), analog-to-digital
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conversion (ADC) and film characteristics [32]. For some lighting conditions

in field, the stereo correspondence algorithm is unable to find enough fea-

tures to perform a depth analysis. The scan can become totally impossible

or even more, the manipulator is wrongly positioned and hits obstacles or

mines. The problem was reproduced in laboratory and reported in [33]. The

depth map calculated from the stereo pair lacked so many features that only

a small fraction of it was actually used to compute the 3D information.

1.3 Related work

The related work is surveyed and briefly described in this section.

1.3.1 Kinematic calibration and Hand-Eye calibration

The purpose of robot calibration is to improve robot accuracy through

software rather than changing the mechanical structure or design of the robot

and minimize the risk of having to change application programs due to slight

changes or drifts (such as wear of parts, dimensional drifts and tolerances, and

component replacement effects) in the robot system [5]. The robot calibration

is a deeply treated subject with an extensive list of supporting publications

and a good overview of robot calibration was given in [5]. In an effort to

classify most of the approaches for the robot calibration, three levels of robot

calibration are defined.

Level 1 Calibration. Its goal is to ensure that the reading from a joint

sensor yields the correct joint displacement.

Level 2 Calibration. Its goal is to improve the accuracy of the kine-

matic model of the manipulator as well as the relationship between the joint

transducers and the actual joint displacement.

Level 3 Calibration. it is defined as “non-kinematic” calibration. At

this level, a number of effects exist which may be modelled. For example, de-

flection of the robot links or the effects of joint compliance and gear backlash

may be significant.

In the robot calibration, the internal reference point fixed on the robot
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is used and its position could be obtained from sensor. This thesis mainly

focuses on the Level 2 Calibration, which is also referred to as “Kinematic

calibration” and whose objective is to determine the spatial kinematic re-

lationship between the joints and links [5]. Determining these parameters

can be undertaken with two different procedures. The first corresponds to

open or closed loop methods, which are based on minimizing the errors be-

tween the measured positions by sensor and the predefined positions of the

robot. The second consists of the screw axis measurement methods, which

seek to accurately determine the real positions of the robot’s articulation

axes, to later obtain the kinematic parameters by means of the algebraic re-

lations existing between the axes [6]. Many robot calibration methods have

already been studied in the literature, such as: nonlinear least squares esti-

mation [7], plane constraint [8], interpolation of joint angles considering joint

compliance [9], consideration of non-geometric parameters [10], pure rotation

of the links and circle-point analysis technique [7, 12,13].

In [7], a nonlinear least squares estimation with Levenberg-Marquardt

Algorithm was introduced, where the parameters are obtained through mini-

mizing the errors between the measured positions and the predicted positions

based on the kinematic model. Neural network has also been used by several

researches for robot calibration [9], [10]. In [9], it was used for interpolating

the relationship between joint angles and their errors due to joint compliance.

In [10], a laser tracking system was employed for measuring robot arm’s tip

with high accuracy and residual errors caused by non-geometric parameters

were further reduced by using neural network. In [11], the authors presented

an automatic approach for the kinematic calibration of the humanoid robot

NAO.

In [12–15], pure rotation method, or circle-point analysis method, was

used for Robot calibration. This method was introduced in detail in [7]. For

the circle-point analysis method, it involves freezing all joints except one,

and rotating that joint through a range of angles. The resulting end-effector

positions nominally describe an arc, whose center point lies on the rotational

axis of that joint and whose normal vector describes the direction of the ro-

tational axis [13]. A collection of such arcs uniquely defines the parameters
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of the robot. In [13], a high precision SMX laser-tracking coordinate mea-

suring machine was used to successfully calibrate an industrial robot and it

was shown that through the measurements obtained using the circle-point

analysis technique and the highly accurate SMX coordinate measuring device

an industrial robot was successfully calibrated. In [16], with the circle-point

analysis method, the authors obtained a combination of real kinematic and

dynamic parameters which describe the robots movement, improving its pre-

cision with a physical understanding of the errors.

Whenever a sensor such as a stereo vision camera is mounted on a robot

manipulator, it is important to know the relationship between the sensor

and manipulator. The problem of determining this relationship is referred

to as the hand-eye calibration problem [17]. The main task of hand-eye

calibration is to find the position and orientation of the sensor relative to

the manipulator [18]. A vast amount of literature is available on the topic

of hand-eye calibration. In the hand-eye calibration, the external reference

point in the calibration frame is used and its position could be obtained

from sensor. There are two main approaches to estimate the hand-eye trans-

formation. One is the classical formulation AX = XB, which is based on

“move the hand and observe/perceive the movement of the eye”and another

approach is to use AX = Y B, which is based on “simultaneous estimation

of the hand-eye transformation and the pose of the robot in the world” [18].

In [19], AX = XB was solved by separating the problem into its orientational

component and positional component. A linear solution was made in [20] to

solve AX = Y B, where rotation quaternion was used for the rotation part.

In [21], manifolds such as circles were used for the hand-eye calibration us-

ing a relatively large number of poses to estimate a single circle, improving

the overall accuracy of calibration. In [22], the authors presented several

formulations of Hand-Eye calibration that lead to multivariate polynomial

optimization problems, and it was shown that the method of convex linear

matrix inequality relaxations can be used to effectively solve these problems

and obtain globally optimal solutions.

Manufacturing/assembly precision of mechanical parts, initial positioning

and/or sensor reading errors can cause undesirable end-effector tip position-
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ing errors in robotic manipulators. This is also the case for the Gryphon

platform. With a sequence of pure rotations of the manipulator links, the

real positions of the robot’s articulation axes could be accurately determined,

and the Kinematic calibration and Hand-Eye calibration can be performed

simultaneously. However, in field it is not practical to calibrate the Gryphon

platform with a high-precision external sensor, and the self-calibration with

the stereo vision camera which is already attached to the manipulator link

of the Gryphon platform is necessary. Former methods cannot perform as

well as expected when the joint motion that can be measured is limited by

the Field of View (FOV) of camera.

1.3.2 Stereo matching under extreme light conditions

By using a reduced exposure time, one may sacrifice lowlight detail in

exchange for improved detail in areas of high illumination and this is demon-

strated in the short exposure image of Figure 1.5. Similarly, by increasing

exposure time, a better representation of lowlight areas may be gotten, at

the cost of losing information in areas of high illumination and an example

of this is shown in the long exposure image of Figure 1.5. Through mul-

tiple exposures, the dynamic range of images could be increased. The 2D

images captured under multiple exposures are processed with two known

techniques: HDR imaging [35] and Exposure Fusion [36]. In [35], the al-

gorithm uses these differently exposed photographs to recover the response

function of the imaging process, up to factor of scale, using the assumption

of reciprocity. With the known response function, the algorithm can fuse the

multiple photographs into a single, high dynamic range radiance map whose

pixel values are proportional to the true radiance values in the scene. In [36],

the authors proposed a technique for fusing a bracketed exposure sequence

into a high quality image, without converting to HDR first. This avoids cam-

era response curve calibration and is computationally efficient. In [37], an

approach was presented to improve the effective dynamic range of cameras

by using multiple photographs of the same scene taken with different expo-

sure times. In [38], a image-based technique was proposed for enhancing the
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shape and surface details of an object and the input to this system is a small

set of photographs taken from a fixed viewpoint, but under varying lighting

conditions.

In the real application, it is possible that the camera is moved when the

images are grabbed with multiple exposures and it becomes crucial to prop-

erly align the input images before fusing a high dynamic range (HDR) image.

Image registration is the process of overlaying images (two or more) of the

same scene taken at different times, from different viewpoints, and/or by dif-

ferent sensors. The registration geometrically align two images (the reference

and sensed images) [40]. A review of the classic image registration meth-

ods is presented in [40]. There are two major image alignment algorithms:

pixel-based methods and feature-based alignment methods. The image align-

ment and image stitching algorithms are reviewed in [41]. Feature-based ap-

proaches have the advantage of being more robust against scene movement,

and are potentially faster if implemented the right way [41]. In [43], the

image alignment was formulated as a multi-image matching problem and

the invariant local features were used to find matches between all of the im-

ages. Since the invariant local features are used to detect the key-points,

this method is insensitive to the ordering, orientation, scale and illumination

of the input images and can recognise multiple panoramas in an unordered

image dataset. In [45], the direct featureless projective parameter estimation

approach was applied to image resolution enhancement and compositing, and

the pairs of images were registered. The simultaneous registration of multi-

ple images was proposed in [46]. In [44], a method for alignment of images

acquired by sensors of different modalities was presented. In [47], a compu-

tationally simple method was proposed to jointly estimate the registration

parameters and the parameters describing the exposure correction, directly

from the image intensity values. In [48], after capturing high dynamic range

images from a set of photographs taken at different exposures, the key-points

or feature-points in these images were searched. The key-points were used to

find matrices, which transform a set of images to a single coordinate system.

Determination of three dimensional (3D) data from images is of central

importance in the field of machine vision and one of the most direct way
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of achieving this from image data is stereo vision. Stereo matching is one

of the most active research areas in computer vision [49]. In [50], a taxon-

omy of dense, two-frame stereo methods was presented and this taxonomy is

designed to assess the different components and design decisions made in in-

dividual stereo algorithms. The stereo algorithms generally perform (subsets

of) the following four steps [50]:

• Matching cost computation;

• Cost (support) aggregation;

• Disparity computation or optimization;

• Disparity refinement.

Normally, there are two different stereo matching algorithms: local window-

based method and global method. For the local window-based algorithms,

the disparity computation at a given point depends only on intensity val-

ues within a finite window. In [51], the authors propose an area-based local

stereo matching algorithm for accurate disparity estimation across all image

regions. In [52], a real-time local stereo matching using guided image filtering

was presented and it is reported that the GPU implementation of the stereo

algorithm can process stereo images with a resolution of 640 x 480 pixels and

a disparity range of 26 pixels at 25 fps. The global algorithms, which make

explicit smoothness assumptions and then solve an optimization problem,

typically seek a disparity assignment that minimizes a global cost function

that combines data and smoothness terms [50]. The global stereo matching

methods, such as Graph Cuts [54] and Simulated Annealing [55], have been

proposed. In [53], a GPU-based stereo matching system was presented.

One of the biggest problems of applying stereo vision techniques in field

robotics is how to acquire 3D terrain maps under extreme light conditions.

Through multiple exposures, the dynamic range of images could be increased.

A system architecture was introduced in [34] for terrain mapping using stereo

vision camera. Traditionally, the 2D images captured with multiple exposures

are processed with exposure fusion [36]. With the resulting fused images, the

disparity image is calculated with stereo matching method and the 3D terrain
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Figure 1.6: The main research work of the thesis.

is reconstructed. However, it is possible that some information is lost when

the images are fused with exposure fusion and the stereo matching result

with the fused images is not as good as expected.

1.4 Thesis outline and contribution

The main research work of this thesis is presented in Figure 1.6. This

thesis mainly focuses on the method of Kinematic calibration and Hand-Eye

calibration and the terrain mapping under extreme light conditions. The

method introduced in this thesis uses a sequence of pure rotations of the

manipulator links and the Kinematic calibration and Hand-Eye calibration

are performed simultaneously. Previous methods do not have a good perfor-

mance when the joint motion that can be measured is limited by the FOV of

camera, and/or no external sensor is available, which is the case studied in

this thesis. In this thesis, the joint angle, which can be measured by a high-

precision sensor, is added as a constraint to fit a circular arc and compared to

the previous methods the calibration accuracy is improved. Through multiple
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exposures, the dynamic range of images could be increased. Instead of using

existing lighting enhancement methods such as Exposure Fusion to increase

the texture of 2D image, in this thesis the stereo matching was directly done

using the images grabbed with multiple exposures and the 2D image process

of exposure fusion is not needed. Compared to the previous methods, the

3D terrain model could be built more accurately with the proposed method.

First, Chapter 2 introduces the proposed Kinematic calibration and Hand-

Eye calibration method: Pure Rotation through Fitting Circular Arc in 2D

Space with Joint Angle Constraint. In this Chapter, a self-calibration scheme

using the stereo vision system already included in the system was introduced,

and the Kinematic calibration and Hand-Eye calibration were performed si-

multaneously. The introduced calibration methodology relies on a sequence

of pure rotations of the manipulator links, while tracking the manipulator’s

tip and an external arbitrary fixed reference point by the stereo vision cam-

era. The new method considers an additional joint angle constraint, which

improves the calibration accuracy especially when the circular arc that can be

measured by the stereo vision camera is very limited. Experimental results

using a manipulator developed for humanitarian demining demonstrate that

with the proposed method the relative errors between the end effector and

the external points mapped by the stereo vision camera are greatly reduced.

Next, Chapter 3 presents the proposed Hand-Eye calibration method:

Pure Rotation through Directly Fitting Circular Arc in 3D Space with Joint

Angle Constraint. A camera mounted on a Pan-Tilt unit requires the so

called Hand-Eye calibration to calibrate its assembling position and orien-

tation. In the literature, the method that uses a sequence of pure rotations

through the pan motion and tilt motion was presented to solve the Hand-

Eye calibration problem. However, the calibration accuracy degrades when

the circular arc that can be measured by the camera is quite limited. This

Chapter extends the circular arc fitting method described in Chapter 2 that

solves this problem by adding a joint angle constraint, and introduces a new

method that directly fits a circular arc in 3D space with joint angle con-

straint. Compared to the traditional methods, simulations results showed

the improved performance of the proposed methods, and experimental results
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using a Pan-Tilt-Camera system confirmed that with the proposed methods

a better calibration result can be obtained.

Then, Chapter 4 introduces the algorithm of Terrain Mapping under Ex-

treme Light Conditions with Direct Stereo Matching Method. Through mul-

tiple exposures, the dynamic range of images could be increased. Since it is

possible that the camera is moved when the images are grabbed with multiple

exposures, the images grabbed with short and long exposures were aligned

to the image captured with auto exposure. In this Chapter, instead of using

existing lighting enhancement methods such as exposure fusion to increase

the texture of 2D image, the stereo matching is directly done using the im-

ages captured with multiple exposures and the matching costs of the images

grabbed with multiple exposures are directly summed by weight. Compared

with the previous methods such as exposure fusion, it is not necessary to

fuse the images grabbed with multiple exposures, and for each pixel of the

matching image the local information in its local window acquired from the

images grabbed with multiple exposures could be better retained. In order

to evaluate the performance of the proposed method, two different stereo

matching algorithms were used: a local window-based method and semi-

global method. Through the experiments in laboratory and outdoors with a

stereo vision camera fixed on a tripod and held in the hand, it was verified

that the proposed method consistently allowed more valid points to be ob-

tained and the 3D terrain model could be built more accurately. Especially

when the local window-based method was used, compared to the traditional

methods, the proposed method performed much better.

Finally, Chapter 5 presents the conclusion of this thesis. A summary

of the achievements and the future work are shown. Field experiments are

planned to be conducted with the Gryphon system in Angola in the near

future to further evaluate the proposed methods. The proposed methods

can be used in other robot platforms.
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Chapter 2

Kinematic Calibration and

Hand-Eye Calibration with

Pure Rotation Method by

Fitting Circular Arc in 2D

Space with Joint Angle

Constraint

The pure rotation calibration method relies on a sequence of rotations

of the manipulator links, while using a camera to track an internal fixed

reference point on the manipulator’s tip and an external arbitrary reference

point fixed in the robot coordinate frame. In the camera coordinate frame,

the resulting reference point positions measured by camera are nominally

located in a plane whose normal vector is the direction of the rotational axis

and describe a circular arc whose center lies on the rotational axis of that

joint. The process to identify the calibration parameters of the kinematic

calibration and hand-eye calibration is divided into two procedures.

• Procedure 1. Using the resulting reference point positions measured

by camera in each single-joint rotation, the normal vector, center and
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Figure 2.1: Best-fit plane estimation in the 3D space. In the camera coor-
dinate frame, For the circular arc, n is its estimated normal vector, C is its
estimated center and r is its estimated radius.

radius of the circular arc are estimated in the camera coordinate frame.

• Procedure 2. Based on the estimated normal vectors, centers and radii

of all these single-joint rotations, and using their geometry relationship

to the calibration parameters, the calibration parameters are solved

[7, 13,21].

For the pure rotation calibration method, it is critical to accurately esti-

mate the normal vector, center and radius of the circular arc. In this Chapter,

the focus is mainly on the Procedure 1.

2.1 Fitting a circular arc in 2D space with

joint angle constraint

As shown in Figure 2.1, in 3D space, given N(N ≥ 3) points P t, t =

1, 2, . . . , N , which are nominally located in a plane that can be defined by

a normal vector n and a signed distance d from the origin, a circular arc is
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constructed and defined by three parameters: normal vector n, center C and

radius r.

Note: P t = [Pxt Pyt Pzt]
T , the Euclidean norm |P | =

√
Px

2 + Py
2 + Pz

2,

C = [Cx Cy Cz]
T , n = [nx ny nz]

T with nTn = 1.

Traditionally it is divided into two steps to fit a circular arc in 3D space

[7, 13].

• Step 1. Fitting the resulting reference point positions to an optimal

3D plane to compute the normal vector n of the circular arc in a least-

squares sense.

• Step 2. Projecting the resulting reference point positions onto the opti-

mal plane and within the identified 2D plane fitting the projected point

positions to a circular arc to estimate the center C and radius r of the

circular arc in a least-squares sense.

2.1.1 Best-fit plane estimation

In each single-joint rotation, as shown in Figure 2.1, point P t is nominally

located in a plane which can be defined by a normal vector n and a signed

distance d from the origin. With Random Sample Consensus (RANSAC) [25],

the best-fit plane is estimated and the normal vector n is calculated. When

fitting the plane with RANSAC, the optimization problem defined with (2.1)

and solved with Least Squares Method is used for the parameters estimation

and the point-plane distance error DEt defined with (2.2) is used for error

estimation.

min
N∑
t=1

(nTP t + d)
2

(2.1)

DEt = |nTP t + d| (2.2)

The distance threshold DT is defined with (2.3). Sd is the scale factor of

the distance threshold and DTMin is the minimum distance threshold.

DT = max(
Sd

N

N∑
t=1

DEt, DTMin) (2.3)
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After the best-fit plane is estimated with RANSAC, the “inliers”points

are obtained. NP is defined as the minimum number of points to fit the

plane. The plane where the circular arc is located is successfully estimated

if both of the following conditions are met:

• The number of the “inliers”points is larger than the threshold NP .

• For each “inliers”point, its point-plane distance error DEt is smaller

than the distance threshold DT .

Otherwise the data to estimate the plane is considered invalid and needs

to be measured again.

As shown in Figure 2.1, after estimating the normal vector n, the camera

coordinate frame XY Z is rotated into a new coordinate frame such that its

Y ′Z ′ plane is parallel to the estimated plane and n becomes the X ′ axis.

For the remaining “inliers”point P t, its position in the new coordinate frame

is denoted as P ′t(P
′
t = [P ′xt P ′yt P ′zt]

T ). The traditional and proposed

methods of fitting the circular arc in 2D space are described in detail.

2.1.2 Traditional method of fitting a circular arc in

2D space

For the circular arc fitted with the remaining points after the best-fit

plane estimation, in the new coordinate frame its center is set to be C ′(C ′ =

[C ′x C ′y C ′z]
T ).

In the 2D space, the equation of the circle is defined as (2.4) and the

Euclidean (geometric) distance gt from the data point to the fitting circular

arc is defined as (2.5) [30]. The optimization problem is defined with (2.6),

where M is the number of remaining points to fit the circular arc. The min-

imum and maximum values of the variable C ′v(v = y, z) are defined to be

C ′Lv and C ′Hv respectively. Similarly, the minimum and maximum values of

the variable r are defined to be rL and rH respectively. Traditionally, The

center C ′y, C
′
z and radius r of the circular arc can be calculated by solving

the optimization problem defined with (2.6) using Levenberg-Marquardt Al-

gorithm (LMA) [26–28]. C ′x is solved with (2.7). After C ′ is obtained, C
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can be calculated through the rigid transform matrix between the camera

coordinate frame and new coordinate frame.

(P ′yt − C ′y)
2

+ (P ′zt − C ′z)
2

= r2 (2.4)

gt = |
√

(P ′yt − C ′y)
2 + (P ′zt − C ′z)

2 − r| (2.5)

min
M∑
t=1

gt
2 (2.6)

s.t.

C ′Ly ≤ C ′y ≤ C ′Hy

C ′Lz ≤ C ′z ≤ C ′Hz

rL ≤ r ≤ rH

C ′x =
1

M

M∑
t=1

P ′xt (2.7)

However, when the rotation range of the manipulator’s link is small, in

the camera coordinate frame the trajectory of the reference point is a short

arc. The traditional method does not perform well when fitting a short arc.

2.1.3 Proposed method: Fitting a circular arc in 2D

space with joint angle constraint

In order to accurately fit a short arc, in this Chapter the joint angle

measured by high-precision sensor (e.g. encoder) is added as a constraint to

fit the circular arc in the 2D space. θ̃u(t) denotes the joint angle measured by

sensor, where u is the number of the joint which is rotated in the single-joint

rotation and t is the number of the reference point position in the single-joint

rotation.

Point P ′t meets the equation of the circle (2.4). Besides, as shown in

Figure 2.2, for points P ′t−1 and P ′t, they nominally meet the joint angle
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Figure 2.2: Fitting the center and radius of the circular arc in 2D space. In
the new coordinate frame, for the circular arc, C ′ is its estimated center and
r is its estimated radius.

constraint (2.8).

6 P ′t−1C
′P ′t = ∆θ̃u(t) = θ̃u(t)− θ̃u(t− 1) (2.8)

ϕ0 is defined as the artificial initial angle of the circular arc. Since point

P ′t satisfies the equation of the circle (2.4) and the joint angle constraint (2.8),

its position can be defined as (2.9). The Euclidean (geometric) distances from

the data point to the fitting circular arc, yht and zht, are defined with (2.10).
P ′yt = C ′y + r cos(θ̃u(t) + ϕ0)

P ′zt = C ′z + r sin(θ̃u(t) + ϕ0)

(2.9)


yht = |P ′yt − C ′y − r cos(θ̃u(t) + ϕ0)|

zht = |P ′zt − C ′z − r sin(θ̃u(t) + ϕ0)|
(2.10)

For the circular arc, its artificial initial angle ϕ0, its radius r and its center
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C ′y, C
′
z can be calculated through solving the optimization problem defined

with (2.11).

min
M∑
t=1

(yht
2 + zht

2) (2.11)

s.t.

C ′Ly ≤ C ′y ≤ C ′Hy

C ′Lz ≤ C ′z ≤ C ′Hz

rL ≤ r ≤ rH

−π ≤ ϕ0 ≤ π

For point P ′t, its radius error REt is defined with (2.12). The function

atan2(y, x) is used to calculate the arc tangent of y/x using the signs of

arguments to determine the correct quadrant. For point P ′t, its angle error

AEt is defined with (2.13).

REt = |
√

(P ′yt − C ′y)
2 + (P ′zt − C ′z)

2 − r| (2.12)

AEt = |atan2((P ′zt − C ′z), (P ′yt − C ′y))− θ̃u(t)− ϕ0| (2.13)

With RANSAC, the circular arc is estimated and its artificial initial angle

ϕ0, its radius r and its center C ′y, C
′
z are solved. When fitting the circular

arc with RANSAC, for estimating the parameters, the optimization problem

defined with (2.11) is solved with LMA and the parameters ϕ0, C
′
y, C

′
z, r are

obtained. The radius error REt and the angle error AEt are used to estimate

the error.

The radius error threshold RT is defined with (2.14), where Sr is the

scale factor of radius error threshold and RTMin is the minimum radius error

threshold. The angle threshold AT is defined with (2.15), where Sa is the

scale factor of angle error threshold and ATMin is the minimum angle error

threshold.

RT = max(
Sr

M

M∑
t=1

REt, RTMin) (2.14)
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AT = max(
Sa

M

M∑
t=1

AEt, ATMin) (2.15)

After a circular arc is fitted with RANSAC, the “inliers”points are ob-

tained. NC is set to be the minimum number of points to fit the circular

arc. The circular arc is successfully fitted if all of the following conditions

are met:

• The number of the “inliers”points is larger than the threshold NC .

• For each “inliers”point, its radius error REt is smaller than the radius

threshold RT .

• For each “inliers”point, its angle error AEt is smaller than the angle

threshold AT .

Otherwise the data to estimate the circular arc is invalid and needs to be

measured again. Similarly, C ′x is solved with (2.7), and after C ′ is obtained,

C can be calculated through the rigid transform matrix between the camera

coordinate frame and new coordinate frame.

The method proposed in this Chapter was evaluated through simulation.

In simulation, the center and radius of the circular arc were set to be: C ′y

= 200.0 mm, C ′z = -300.0 mm, r = 2250.0 mm. It is noted that the results

do not depend on the radius or the center of the circle or the location of

the circular arc where the data are sampled. Tests with the circular arcs of

different central angles were performed. Only the result from the circular

arcs with the central angle of 20.000 deg is reported. One thousand circular

arcs with the central angle of 20.000 deg were simulated. Each circular arc

has 21 data points with the step angle of 1.000 deg and Gaussian noises with

zero mean and different standard deviation σ were added to the positions of

the data points. ∆C denotes the absolute Euclidean distance of the centers

between the ground truth and the fitting result. ∆r denotes the absolute

radius difference between the ground truth and the fitting result. The circular

arc was fitted in the following three conditions.

• Condition A: The circular arc was fitted with the traditional method

(without joint angle constraint).
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(a) The absolute Euclidean distance of the centers between the ground truth
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Figure 2.3: Fitting circular arc in 2D space. One thousand circular arcs
with the central angle of 20.000 deg and the step angle of 1.000 deg were
simulated. Gaussian noises with zero mean and different standard deviation
σ were added to the positions of the data points. The circular arc was fitted
in three conditions and the averaged results from the 1000 data sets are
presented.
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• Condition B: There was no joint angle error. The circular arc was fitted

with the proposed method (with joint constraint).

• Condition C: Gaussian noises with the zero mean and standard devia-

tion of 0.020 deg were added to the joint angle. The circular arc was

fitted with the proposed method (with joint constraint).

Figure 2.3 shows the averaged results from these 1000 data sets in three

different conditions and illustrates that with the joint angle constraint the

radius and center of the circular arc can be estimated more accurately. Even

when Gaussian noises with zero mean and standard deviation of 0.020 deg

were added to the joint angle, the circular arc can still be estimated more

accurately than without joint angle constraint.

2.2 Kinematic calibration and hand-eye

calibration for the humanitarian

demining robot through pure rotation

method with joint angle constraint

2.2.1 Description of the system

The manipulator model of the Humanitarian Demining Robot is shown in

Figure 2.4. The main parameters used to model the system are summarized

in Table 2.1 and listed below.

θCx, θCy, θCz are the stereo vision camera fixing orientation on the first

link of manipulator, θC = [θCx, θCy, θCz].

PCx, PCy, PCz are the stereo vision camera fixing position on the first link

of manipulator, P C = [PCx, PCy, PCz].

θTx, θTy, θTz are the orientation of the rigid transfer matrix from external

sensor coordinate frame to robot coordinate frame.

PTx, PTy, PTz are the position of the rigid transfer matrix from external

sensor coordinate frame to robot coordinate frame.
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Figure 2.4: The manipulator model of the Humanitarian Demining Robot.

APB
t denotes that in the coordinate frame A(A ∈ {R,C,O}) as shown in

Figure 2.4, the position of the reference point with the sequence number t,

and the position is measured from B(B ∈ {SE, SC, SO}).
A∆PB,D

t denotes that in the coordinate frame A(A ∈ {R,C,O}), for the

reference point with the sequence number t, its position difference between

its positions measured from B and D(B,D ∈ {SE, SC, SO}).
ACB

m denotes that in the coordinate frame A(A ∈ {R,C,O}), the esti-

mated center of the circular arc in the motion sequence m(m = 1, 2, 3) and

its reference point positions are measured from B(B ∈ {SE, SC, SO}).
CT

m is the theoretical center of the motion sequence m(m = 1, 2, 3).

AnB
m denotes that in the coordinate frame A(A ∈ {R,C,O}), the esti-

mated norm vector of the circular arc in the motion sequence m(m = 1, 2, 3)

and its reference point positions are measured from B(B ∈ {SE, SC, SO}).
nT

m is the theoretical norm vector of the motion sequence m(m = 1, 2, 3).

RP SE
t denotes the reference point position in the robot coordinate frame

and is calculated through the kinematic model with joint the angle values

measured by sensors.
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Table 2.1: Main parameters
Symbol Description

XRYRZR(R) Robot coordinate frame
XCYCZC(C) Camera coordinate frame
XOYOZO(O) External sensor coordinate frame

SE
Reference point position is calculated from kinematic
model with joint angles measured by sensors

SC Reference point position is detected by stereo vision camera
SO Reference point position is obtained by external sensor

θ̃u
Measured joint angle (with sensor) of joint
u(u = 1, 2, . . . , 5)

θ̂u Initial joint angle of joint u(u = 1, 2, . . . , 5)

θu
Actual joint angle of joint u(u = 1, 2, . . . , 5),

θu = θ̃u + θ̂u, θ = [θ1, θ2, θ3, θ4, θ5]

Nm
Number of the measured reference points in the motion
sequence m(m = 1, 2, 3)

CP SC
t denotes the reference point position in the camera coordinate frame

and is measured by stereo vision camera.

OP SO
t denotes the reference point position in the external sensor coordi-

nate frame and is detected by external sensor.

The link lengths L1, L2, L3 and L4 are 1300.0 mm, 2105.0 mm, 25.0 mm

and 76.0 mm respectively. The manufacturing error and assembly error of

the manipulator are smaller than 1.0 millimeter. A stereo vision camera is

attached to the first link of the manipulator and its position and orientation

are defined as (P C ,θC) ∈ R6. PB ∈ R3 represents the counterweight initial

fixing position and defines the initial angles of joint 1, 2 and 3.

Furthermore, the manipulator has a total of 5 degrees of freedom (DOF),

represented by the joint angles θ ∈ R5. It is composed of a 3-DOF pan-

tographic manipulator with a counterweight (battery inside) that balances

the total structure regardless of change in joint angles, thus reducing power

consumption and ensuring the ATV’s stability [24]. The joint angles of active

joints 1, 2 and 3 are measured by resolvers with the resolution of 7.85× 10−5

deg. A MMD is mounted on a 2-DOF wrist at the end of the manipulator.
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2.2.2 Formulation of the calibration problem

In the robot coordinate frame, the reference point position RP SC
t is cal-

culated with (2.16) using its position CP SC
t detected by stereo vision camera.

For the reference point on the manipulator’s tip, the value ECE defined with

(2.17) is in terms of Root Mean Square (RMS) difference between RP SC
t and

RP SE
t of the entire set of N data points.

RP SC
t = R(z, θ1)R(x, θ2)(R(x, (θCx + π/2))R(y, θCy)R(z, (θCz + π))CP SC

t

+T (PCx, PCy, PCz))

(2.16)

ECE =

√∑N
t=1 |RP

SC
t − RP SE

t |
2

N
(2.17)

Table 2.2: The sensitivity of ECE to parameters θ̂u(u = 1, 2, . . . , 5) and
(P C ,θC)

u
|∂ECE/∂θ̂u| v

|∂ECE/∂θCv| |∂ECE/∂PCv|
[mm/mrad] [mm/mrad] [mm/mm]

1 0.00 x 2.20 1.00
2 2.20 y 1.64 1.00
3 2.20 z 1.49 1.00
4 0.10
5 0.08

Through simulated measurements, the sensitivity of ECE to the param-

eters θ̂u(u = 1, 2, . . . , 5) and (P C ,θC) is shown in Table 2.2. It is noticed

that parameters P C have nearly unity sensitivity with respect to RMS error.

Most of the angular errors have balanced sensitivities with the exception of

θ̂1, θ̂4, θ̂5 and the nominal values are chosen for these parameters. Because

the stereo vision camera is fixed on the first link of the manipulator, ECE is

not sensitive to θ̂1. As L3 and L4 are shorter than L1 and L2 and they are

not on the same order, θ̂4 and θ̂5 have less influence on ECE. In summary,
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the parameters to be identified in the kinematic calibration and hand-eye

calibration are chosen as p = {θ̂2, θ̂3, θCx, θCy, θCz, PCx, PCy, PCz}.

2.2.3 Calibration using pure rotation method with

joint angle constraint method

In the camera coordinate frame, when the stereo vision camera views a

reference point on the ground it is a 2-DOF system and when it views at

a reference point on manipulator’s tip with active joint 4 and active joint 5

fixed and it is only 1-DOF system. In order to obtain all the parameters p,

two additional reference points are needed: a fixed internal reference point

on manipulator’s tip, and another external arbitrary reference point fixed

in the robot coordinate frame. With stereo vision camera, the position of

the reference point can be detected in the camera coordinate. Hence, the

proposed calibration method, Pure Rotation with Joint Angle Constraint

Method, is applied to the Humanitarian Demining Robot with the following

steps.

• Step 1. Data acquisition.

For each motion sequence m, the reference point position CP SC
m,t is mea-

sured by stereo vision camera and the joint angles θ̃u(m, t) are measured

with the high-precision resolvers of the Humanitarian Demining Robot

system.

– Step 1.1. Trajectory of internal reference point.

Rotate the active joint 3 with N1(N1 ≥ 3) steps, while keep-

ing all other active joints unchanged. The stereo vision camera

views the fixed internal reference point on manipulator’s tip. The

trajectory of the reference point measured by stereo vision cam-

era is defined as motion sequence 1 and described with points
CP SC

1,t , t = 1, 2, . . . , N1.

– Step 1.2. Trajectories of external reference point.

Rotate the active joint 2 and active joint 1 one at a time with

Nm(Nm ≥ 3,m = 2, 3) steps, while freezing all other active joints.
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The camera views an external arbitrary reference point fixed in

the robot coordinate frame. The trajectory of the reference point

measured by stereo vision camera is called motion sequence m and

described with points CP SC
m,t, t = 1, 2, . . . , Nm.

• Step 2. Parameters calculation.

In the camera coordinate frame, for each motion sequence m(m =

1, 2, 3), using its data set of the reference point positions CP SC
m,t and

joint angles θ̃u(m, t), with the proposed Pure Rotation with Joint An-

gle Constraint Method, the normal vector CnSC
m and center CCSC

m of

the circular arc are solved. Since the joint axis of the moved joint

must pass through the center of this circular arc, from the mechani-

cal structure, the theoretical rotation axis nT
m and theoretical rotation

center CT
m of the motion sequence m are known. For the motion se-

quence m, it meets (2.18) and (2.19). Gm(p, CnSC
m ) represents the

relationship between nT
m and CnSC

m . Fm(p, CCSC
m ) represents the re-

lationship between CT
m and CCSC

m . Gm(p, CnSC
m ) and Fm(p, CCSC

m )

can be obtained through the geometry principles of robot configura-

tion. After the normal vectors and centers of the circular arcs in the

motion sequence 1, 2 and 3 are estimated, the calibration parameters

p = {θ̂2, θ̂3, θCx, θCy, θCz, PCx, PCy, PCz} can be solved. In Appendix B,

this process is described in detail.

nT
m = Gm(p, CnSC

m ) (2.18)

CT
m = Fm(p, CCSC

m ) (2.19)

2.3 Experimental results

In this section, the proposed calibration method, Pure Rotation with

Joint Angle Constraint Method, was applied to the Humanitarian Demining
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Figure 2.5: Chessboard with the squares of the same size was used in this
Chapter. In the camera coordinate frame, the positions of the corners S1
to S12 were measured with stereo vision camera, and the center CP SC was
calculated with the positions of S1 to S12. The markers of the Optotrak
3020 were attached to the corners of chessboard. In the Optotrak coordinate
frame, the positions of the markers O1 to O6 were detected with Optotrak
3020, and the center OP SO of the chessboard was calculated with the posi-
tions of O1 to O6.

Robot. It was verified and compared with other commonly used calibration

methods.

2.3.1 Calibration using stereo vision camera

The Point Grey Research’s BumblebeeTM stereo vision camera, which

has a rigid aluminum body to resist shocks and vibrations, was used in this

Chapter. The focal length of its lenses is 6.0 mm and its Horizontal Field

of View (HFOV) is 50.0 deg. It is pre-calibrated for lens distortions and

camera misalignments. Besides, it doesn’t require in-field calibration and is

guaranteed to stay calibrated. The chessboard shown in Figure 2.5 was used

in the experiment and its center was considered as the reference point. In

the camera coordinate frame, the positions of its corners S1 to S12 can be
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Figure 2.6: The view range of stereo vision camera.

measured with the BumblebeeTM stereo vision camera and its center CP SC

is calculated with the positions of S1 to S12. The chessboard was attached

to the manipulator’s tip and the internal fixed reference point was obtained.

It was put to an arbitrary position fixed in the robot coordinate frame and

the external arbitrary fixed reference point was obtained. With the data

acquirement method described in Section 2.2.3, the BumblebeeTM stereo

vision camera was used to acquire the positions of the internal and external

reference points. As shown in Figure 2.6, due to the limitation of the camera

view range, to ensure the chessboard is viewed by stereo vision camera in

each motion sequence, the motion range of the active joint that rotates in

the single-joint rotation is quite limited. The joint motion range and the

number of measured points in each motion sequence are shown in Table 2.3.

The calibration parameters p were solved with the following methods.

• Method A. Calibration with the proposed method (Pure Rotation with

Joint Angle Constraint Method), which is described in Section 2.1 and
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Section 2.2.

• Method B. Calibration with pure rotation using traditional method. As

described in Section 2.1 the joint angle constraint was not used to fit

the circular arc and the calibration parameters were solved with the

parameters calculation method described in Section 2.2.

• Method C. Calibration with LMA [7], which is a commonly used cal-

ibration method. For the internal reference point in motion sequence

1, its position differences are defined with (2.20). In the robot coordi-

nate frame, since the external reference point is fixed, with its positions

measured in motion sequence 2 and 3, its averaged position RP SC
ext can

be estimated with (2.21). For the external reference point in motion

sequence 2 and 3, its position differences are defined with (2.22). The

minimum and maximum values of the variable θ̂u(u = 2, 3) are de-

fined to be θLu and θHu respectively. Similarly, the minimum and max-

imum values of the variable θCv(v = x, y, z) are defined to be θLCv and

θHCv respectively. The minimum and maximum values of the variable

PCv(v = x, y, z) are defined to be PL
Cv and PH

Cv respectively. The op-

timization problem defined with (2.23) was solved with LMA and the

calibration parameters p were calculated.

Eint =
1

N1

N1∑
t=1

|RP SC
1,t − RP SE

1,t |
2

(2.20)

RP SC
ext =

1∑3
m=2Nm

3∑
m=2

Nm∑
t=1

RP SC
m,t (2.21)

Eext =
1∑3

m=2Nm

3∑
m=2

Nm∑
t=1

|RP SC
m,t − RP SC

ext|
2

(2.22)

min (Eint + Eext) (2.23)

s.t.

θLu ≤ θ̂u ≤ θHu , u = 2, 3
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Figure 2.7: A circular arc measured in experiment was fitted with the pro-
posed method (Pure Rotation with Joint Angle Constraint Method) and its
point-plane distance error DEt, its radius error REt and its angle error AEt

are presented. The parameters: N = 15, Sd = 2.0, DTMin = 0.5 mm,
NP = 13, Sr = 2.0, RTMin = 5.0 mm, Sa = 2.0, ATMin = 0.050 deg,
NC = 13.

θLCv ≤ θCv ≤ θHCv, v = x, y, z

PL
Cv ≤ PCv ≤ PH

Cv, v = x, y, z

The performance of the proposed calibration method was evaluated with

data measured in experiment. A circular arc measured in experiment was

fitted with the proposed method and its point-plane distance error DEt, its

radius error REt and its angle error AEt are shown in Figure 2.7.

The point-plane distance error DEt is defined with (2.2) and the RMS

of point-plane distance error DS is defined as (2.24). The radius error REt

is defined with (2.12) and the RMS of radius error RS is defined as (2.25).

The angle error AEt is defined with (2.13) and the RMS of angle error AS is
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Table 2.3: The experimental settings of the calibration and the calibration
results of the proposed method (Pure Rotation with Joint Angle Constraint
Method)

Sequence 1 Sequence 2 Sequence 3
Number of measured points 15 15 15

Joint motion range [deg] 18.204 24.498 34.968
Estimated radius [mm] 1989.7 2257.9 1990.8

RMS of DEt [mm] 0.1 0.2 5.7
RMS of REt [mm] 1.5 2.4 4.5
RMS of AEt [deg] 0.017 0.036 0.013

Table 2.4: With pure rotation, the theoretical centers and estimated centers
of the circular arc in each motion sequence

Theoretical value [mm] Proposed method [mm]
Cx Cy Cz Cx Cy Cz

Sequence 1 # 0.0 1300.0 # 0.0 1283.1
Sequence 2 # 0.0 0.0 # 0.0 16.9
Sequence 3 0.0 0.0 # -0.5 12.3 #

Traditional method [mm]
Cx Cy Cz

Sequence 1 # 0.0 1271.1
Sequence 2 # 0.0 28.9
Sequence 3 -0.6 -31.4 #

Note:
# denotes the value unknown, hereafter it refers to the same meaning.

defined as (2.26).

DS =

√√√√ 1

N

N∑
t=1

DEt
2 (2.24)

RS =

√√√√ 1

N

N∑
t=1

REt
2 (2.25)
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AS =

√√√√ 1

N

N∑
t=1

AEt
2 (2.26)

After fitting the circular arcs with the proposed calibration method, for

each motion sequence, the estimated radius of the circular arc, the RMS of

point-plane distance error DS, the RMS of radius error RS and the RMS

of angle error AS are summarized in Table 2.3. The theoretical centers and

estimated centers of the circular arc in each motion sequence are summarized

in Table 2.4. The estimated centers were obtained with the proposed cali-

bration method and traditional calibration method. From this table, it can

be concluded that with the joint angle constraint the center of the circular

arc can be estimated more accurately even though the joint motion range is

small and the radius of the circular arc is large as shown in Table 2.3.

2.3.2 Verifying and comparing the calibration results

Optotrak 3020 (Northern Digital Inc.) was used as an external hardware

to verify the calibration results solved in Section 2.3.1 due to its high pre-

cision, repeatability and accuracy [23]. As reported by the manufacturer,

the RMS accuracy of the system at 2.25 m distance was 0.1 mm for x, y

coordinates and 0.15 mm for z coordinate.

A. Results of the kinematic calibration

In order to check the result of kinematic calibration, the marker of Opto-

trak 3020 was attached to manipulator’ tip (Figure 2.8) and it was considered

as the reference point. In the robot coordinate frame, for the marker on the

manipulator’s tip, its trajectories of rectangle motion and circle motion were

generated through inverse kinematics with setting the joint initial angles to

be the nominal value. As shown in Figure 2.9, the rectangle motion with the

area of 1000.0 mm x 2000.0 mm at different heights with the increment of

100.0 mm was done and described with points OP SO
4,t , t = 1, 2, . . . , N4 (N4 is

264 in this Chapter). As presented in Figure 2.10, the circle motion with the

diameter of 1000.0 mm at different heights with the increment of 100.0 mm
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Figure 2.8: Manipulator’s tip. The markers of Optotrak 3020 were attached
to the manipulator.

was done and described with points OP SO
5,t , t = 1, 2, . . . , N5 (N5 is 160 in this

Chapter). The joint initial angles θ̂2 and θ̂3 were set to the following values

solved in Section 2.3.1.

• Before calibration. Nominal value.

• Method A. Calibration with the proposed method (Pure Rotation with

Joint Angle Constraint Method).

• Method B. Calibration with pure rotation using traditional method (the

joint angle constraint is not used to fit the circular arc).

• Method C. Calibration with LMA.

In the robot coordinate frame, the reference point position RP SO
t is cal-

culated with (2.27) using its position OP SO
t measured by Optotrak 3020 and
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Figure 2.9: Rectangle motion. Four rectangles with the area of 1000.0 mm
x 2000.0 mm were at different heights with the increment of 100.0 mm. For
each rectangle, the grid point number was defined same as the Rectangle 4.

the reference point position error |R∆P SE,SO
t | is defined with (2.28).

RP SO
t = R(x, θTx)R(y, θTy)R(z, θTz)

OP SO
t + T (PTx, PTy, PTz) (2.27)

|R∆P SE,SO
t | = |RP SE

t − RP SO
t | (2.28)

For the circle motion and rectangle motion, the reference point position

errors |R∆P SE,SO
t | are shown in Figure 2.11. From the experimental results,

it is noticed Method A performs better than Method B and Method C. Using

the proposed method, the joint initial angles θ̂2 and θ̂3 were well calibrated

with the reference point position errors at the manipulator’s tip smaller than

11.0 mm which meet the error requirement of the Humanitarian Demining

Robot system.
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B. Comparing with the calibration result of an external

high-precision calibration tool

To further verify the calibration method described in this Chapter, in

laboratory, the Optotrak 3020 was used as an external high-precision cali-

bration tool to calibrate the joint initial angles θ̂2 and θ̂3. The joint initial

angles θ̂2 and θ̂3 were set to the following values.

• Method A. Using stereo vision camera, calibration with the proposed

method (Pure Rotation with Joint Angle Constraint Method).

• Method D. Using Optotrak 3020, calibration with LMA. Using the data

acquired in Section 2.3.2 (the rectangle motion shown in Figure 2.9 and

the circle motion shown in Figure 2.10), the joint initial angles θ̂2 and θ̂3

were obtained by solving the optimization problem defined with (2.29)
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Figure 2.11: The reference point position errors caused by the joint initial an-
gles θ̂2 and θ̂3. Before calibration, nominal value. Method A, calibration with
the proposed method (Pure Rotation with Joint Angle Constraint Method).
Method B, calibration with pure rotation using traditional method (the joint
angle constraint is not used to fit the circular arc). Method C, calibration
with LMA.
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Figure 2.12: The reference point position errors caused by the joint initial
angles θ̂2 and θ̂3 when comparing with the calibration result of an exter-
nal high-precision calibration tool. Method A, using stereo vision camera,
calibration with the proposed method (Pure Rotation with Joint Angle Con-
straint Method). Method D, using Optotrak 3020, calibration with LMA.
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using LMA.

min (

N4∑
t=1

|RP SE
4,t − RP SO

4,t |
2

+

N5∑
t=1

|RP SE
5,t − RP SO

5,t |
2
) (2.29)

s.t.

θLu ≤ θ̂u ≤ θHu , u = 2, 3

With the data acquired in Section 2.3.2, for the rectangle motion shown

in Figure 2.9 and circle motion shown in Figure 2.10, in the robot coordinate

frame the reference point position errors |R∆P SE,SO
t | defined with (2.28) are

shown in Figure 2.12. Since the external high-precision calibration tool was

used in Method D to acquire the calibration data in the space of 1000.0

mm x 2000.0 mm x 300.0 mm, the calibration result of Method D is better

than the result of Method A. However it is not practical to calibrate the

Humanitarian Demining Robot system with Optotrak 3020 in field. With

the proposed method the reference point position errors at the manipulator’s

tip were smaller than 11.0 mm and quite close to the calibration result of

Method D.

C. Results of the kinematic calibration and hand-eye calibration

In order to check calibration result of the kinematic calibration and hand-

eye calibration, the center of the chessboard (Figure 2.5) is considered as the

reference point. As shown in Figure 2.13(a), the chessboard was placed

to 21 different random positions on ground within the area of 500.0 mm x

1200.0 mm. Because of the limited view range of the BumblebeeTM stereo

vision camera, it was needed to rotate the manipulator to 3 different poses to

ensure the stereo vision camera can view the chessboard at these 21 random

positions. In the Optotrak coordinate frame, the positions of markers O1

to O6 can be accurately detected by Optotrak 3020 and the chessboard’s

center OP SO
t was calculated with the positions of O1 to O6. The calibration

parameters p were set to the following values solved in Section 2.3.1.

• Before calibration. Nominal value.
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Figure 2.13: Checking the reference point position errors caused by joint
initial angles and camera fixing position and orientation.
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• Method A. Calibration with the proposed method (Pure Rotation with

Joint Angle Constraint Method).

• Method B. Calibration with pure rotation using traditional method (the

joint angle constraint is not used to fit the circular arc).

• Method C. Calibration with LMA.

In the robot coordinate frame, the reference point position error |R∆P SC,SO
t |

is defined with (2.30) and presented in Figure 2.13(b). It illustrates Method

A performs better than Method B and Method C. After calibration with the

proposed method, the stereo vision camera can map the terrain with the

position errors smaller than 16.0 mm which meet the error requirement of

the Humanitarian Demining Robot system.

|R∆P SC,SO
t | = |RP SC

t − RP SO
t | (2.30)

2.3.3 Discussion

Through experiments, it is verified that Method A proposed in this Chap-

ter has better performance than Method B and Method C for the reason that

as shown in Table 2.4 when the joint angle is added as a constraint the circu-

lar arc can be fitted more accurately. The calibration result of the proposed

calibration method is quite close to the calibration result of the external

high-precision calibration tool (Optotrak 3020) even though the joint motion

range in each motion sequence is limited and the accuracy of the stereo vi-

sion camera used in the experiments is lower than the external high-precision

calibration tool (Optotrak 3020).

2.4 Conclusion

With the proposed method (Pure Rotation with Joint Angle Constraint

Method), the kinematic calibration and hand-eye calibration are performed

simultaneously. The proposed calibration method was compared and veri-

fied with other calibration methods by experiments using an external high-

precision hardware. Through the experiments, it is verified that the proposed



48
Kinematic Calibration and Hand-Eye Calibration with Pure Rotation

Method by Fitting Circular Arc in 2D Space with Joint Angle Constraint

calibration method performs better than the traditional pure rotation cal-

ibration method (the joint angle constraint is not used to fit the circular

arc) and the commonly used calibration method (nonlinear least squares es-

timation with LMA) because with the proposed calibration method a short

circular arc could be fitted more accurately and the actual position of the

robot’s articulation axis could be accurately determined for the reason that

the joint angle is added as a constraint when fitting the circular arc. With

the proposed calibration method, the joint initial angles of the manipulator

are calibrated with the reference point position error at the manipulator’s tip

smaller than 11.0 mm and the stereo vision camera can map the terrain with

the position error smaller than 16.0 mm which meet the error requirement

of the Humanitarian Demining Robot system. The calibration method de-

scribed in this Chapter can be used to other robot platforms to do kinematic

calibration and hand-eye calibration.



Chapter 3

Hand-Eye Calibration with

Pure Rotation Method through

Directly Fitting Circular Arc in

3D Space with Joint Angle

Constraint

In this Chapter, the Pure Rotation Calibration Method described in

Chapter 2 is improved and the circular arc is directly fitted in 3D space

with joint angle constraint. The Chapter is organized as follows: in Section

3.1 the traditional methods of fitting the circular arc in 3D space are intro-

duced and the proposed method of directly fitting the circular arc in 3D space

is described in detail. The simulation results are shown in Section 3.2. In

Section 3.3, for a Pan-Tilt-Camera system, the Hand-Eye Calibration with

the proposed method is introduced and the experimental results are shown.

Finally, a conclusion is given in Section 3.4.
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Figure 3.1: Circular arc estimation in 3D space. In the XY Z coordinate
frame, for the circular arc, n is its estimated normal vector, C is its estimated
center and r is its estimated radius.

3.1 Directly fitting a circular arc in 3D

space

As shown in Figure 3.1, in the 3D space, given N(N ≥ 3) points P i,

i = 1, 2, . . . , N , which are nominally located in a plane that can be defined

by a normal vector n and a signed distance d from the origin, a circular arc

is constructed and defined by three parameters: normal vector n, center C

and radius r.

Note: P i = [Pxi Pyi Pzi]
T , the Euclidean norm |P | =

√
Px

2 + Py
2 + Pz

2,

C = [Cx Cy Cz]
T , n = [nx ny nz]

T with nTn = 1.

3.1.1 Traditional method of directly fitting a circular

arc in 3D space

As shown in Figure 3.1, the normal vector n can be defined with (3.1)

through the variables φy and φz, where φy is the angle between n and the XY

plane and φz is the angle between the projection of n onto the XY plane
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and the X axis [31]. The XY Z coordinate frame is transformed into the

X ′′Y ′′Z ′′ coordinate frame. In the X ′′Y ′′Z ′′ coordinate frame, the position

of point P i is defined as P ′′i (P ′′i = [P ′′xi P ′′yi P ′′zi]
T ) and can be calculated

with (3.2). 
nx = cos(φy) cos(φz)

ny = − cos(φy) sin(φz)

nz = sin(φy)

(3.1)

P ′′i = R(y, φy)R(z, φz)(P i −C) (3.2)

In the X ′′Y ′′Z ′′ coordinate frame, the reference point P ′′ nominally meets

(3.3). With (3.2) and (3.4), the optimization problem is defined with (3.5)

and kC (0 < kC < 1) is a ratio. kC was set to be 0.5 in this Chapter.

The parameters Cx, Cy, Cz, r, φy and φz are calculated through solving the

optimization problem (3.5) with LMA. P ′′xi = 0.0√
P ′′yi

2 + P ′′zi
2 = r

(3.3)


xfi = |P ′′xi|

rfi = |
√
P ′′yi

2 + P ′′zi
2 − r|

(3.4)

min
N∑
i=1

((1− kC)xfi
2 + kC

rfi
2) (3.5)

3.1.2 Proposed method: Directly fitting a circular

arc in 3D space with joint angle constraint

In this Chapter, it is proposed that a circular arc is directly fitted in 3D

space with joint angle constraint. θ̃u(t) denotes the joint angle measured by

sensor, where u is the number of the joint which is rotated in the single-joint

rotation and t is the number of the reference point position in the single-

joint rotation. ϕ0 is defined as the artificial initial angle of the circular arc.

In the X ′′Y ′′Z ′′ coordinate frame, with the joint angle constraint, point P ′′

nominally meets (3.6). So with (3.2) and (3.7), the optimization problem can
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be defined with (3.8) and kD (0 < kD < 1) is a ratio. kD was set to be 0.5

in this Chapter. The parameters Cx, Cy, Cz, r, φy, φz and ϕ0 are calculated

through solving the optimization problem (3.8) using LMA.
P ′′xi = 0.0

P ′′yi = r cos(θ̃u(t) + ϕ0)

P ′′zi = r sin(θ̃u(t) + ϕ0)

(3.6)


xgi = |P ′′xi|

ygi = |P ′′yi − r cos(θ̃u(t) + ϕ0)|
zgi = |P ′′zi − r sin(θ̃u(t) + ϕ0)|

(3.7)

min
N∑
i=1

((1− kD)xgi
2 + kD(ygi

2 + zgi
2)) (3.8)

The point-plane distance error DEi is set to be the absolute distance from

the point to the estimated plane and calculated with (3.9).

DEi = |nTP i + d| (3.9)

The function atan2(y, x) is used to calculate the arc tangent of y/x using

the signs of arguments to determine the correct quadrant. After directly

fitting the circular in 3D space, for the point P i, its radius error REi is set

to be RE ′′i calculated with (3.10) and its angle error AEi is set to be AE ′′i

computed with (3.11).

RE ′′i = |
√
P ′′yi

2 + P ′′zi
2 − r| (3.10)

AE ′′i = |(atan2(P ′′zi, P
′′
yi)− θ̃u(t))− (atan2(P ′′z1, P

′′
y1)− θ̃u(1))| (3.11)

3.1.3 Using RANSAC directly fitting a circular arc in

3D space

When the available data points are noisy and rich of outliers which cannot

be described by the associated parameters, RANSAC is one of the most
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commonly used approaches to fit the data [25].

• A. Using RANSAC directly fitting a circular arc in 3D space with

traditional method

When fitting a circular arc with RANSAC, the traditional method of

directly fitting a circular arc in 3D space, which is described in Sec-

tion 3.1.1, is used for the parameters estimation, and the point-plane

distance error DEi and the radius error RE ′′i are used for the error

estimation.

• B. Using RANSAC directly fitting a circular arc in 3D space with joint

angle constraint

When fitting a circular arc with RANSAC, the proposed method of

directly fitting a circular arc in 3D space with joint angle constraint,

which is described in Section 3.1.2, is used for the parameters estima-

tion, and the point-plane distance error DEi, the radius error RE ′′i and

the joint angle error AE ′′i are used for the error estimation.

3.2 Simulation results

To verify the methods described in this Chapter, the circular arc is fitted

in 3D space with the following methods.

• Method A. Traditional method of fitting a circular arc through estimat-

ing its parameters in 2D space.

With LMA, the optimal 3D plane can be estimated through solving

the optimization problem defined with (2.1) and the normal vector n

is obtained. As shown in Figure 2.1, the XY Z coordinate frame is

rotated into a new coordinate frame such that its Y ′Z ′ plane is parallel

to the estimated plane and n becomes the X ′ axis.

In the X ′Y ′Z ′ coordinate frame, the position of point P i is defined as

P ′i(P
′
i = [P ′xi P ′yi P ′zi]

T ) and the center of the circular arc is set to

be C ′(C ′ = [C ′x C ′y C ′z]
T ). The parameters C ′y, C

′
z and r can be
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calculated by solving the optimization problem (2.6) using LMA. C ′x is

solved with (2.7). After C ′ is obtained, the center C can be calculated

through the rigid transform matrix between the XY Z coordinate frame

and the X ′Y ′Z ′ coordinate frame.

• Method B. Fitting a circular arc through estimating its parameters in

2D space with joint angle constraint.

With the same method used in the Method A, the the normal vector

n is calculated. In the X ′Y ′Z ′ coordinate frame, with the joint angle

constraint, the parameters C ′y, C
′
z, r and ϕ0 are calculated by solving

the optimization problem (2.11) using LMA. C ′x is solved with (2.7).

After C ′ is obtained, the center C can be calculated through the rigid

transform matrix between the XY Z coordinate frame and the X ′Y ′Z ′

coordinate frame.

• Method C. Traditional method of directly fitting a circular arc in 3D

space.

• Method D. Proposed method: Directly fitting a circular arc in 3D space

with joint angle constraint.

• Method C(R). Using RANSAC directly fitting a circular arc in 3D space

with traditional method.

• Method D(R). Using RANSAC directly fitting a circular arc in 3D space

with joint angle constraint.

For Method A and Method B, after fitting a circular arc in 2D space, for

the point P i, its radius error REi is set to be RE ′i calculated with (3.12)

and its angle error AEi is set to be AE ′i computed with (3.13).

RE ′i = |
√

(P ′yi − C ′y)
2 + (P ′zi − C ′z)

2 − r| (3.12)

AE ′i = |(atan2((P ′zi − C ′z), (P ′yi − C ′y))− θ̃u(t))−

(atan2((P ′z1 − C ′z), (P ′y1 − C ′y))− θ̃u(1))|
(3.13)

The Root Mean Square (RMS) of point-plane distance error DS is defined

as (2.24) with DEi. The RMS of radius error RS is defined as (2.25) with
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REi and the RMS of joint angle error AS is defined as (2.26) with AEi.

Simulations were done to evaluate the performance of the proposed method

through comparing it with the previous methods. Besides, using RANSAC

the circular arc was fitted with 3D noisy data points. All of the simulations

were done on the Matlab platform.

In the simulation, the parameters of the circular arc were set to be: radius

r = 2000.0 mm, normal vector n = [0.9077 − 0.2432 0.3420]T , center

C = [−200.0 mm 300.0 mm 500.0 mm]T . It is noted the results do not

depend on the normal vector or the center or the radius of the circular arc, or

the location of the circular arc where the data points are sampled. ∆C and

∆r respectively denote the absolute Euclidean distance of the centers and the

absolute radius difference between the ground truth and fitting result. ∆θ

denotes the absolute difference of the angle between the normal vector of the

ground truth and fitting result. t is the computation time in milliseconds.

3.2.1 Evaluating the methods of fitting circular arc in

3D space

For the data points, Gaussian noises with zero mean and standard de-

viation of σP were added to the point positions, and Gaussian noises with

zero mean and standard deviation of σA were added to the joint angle. The

circular arcs were fitted with Method A to Method D. Simulations with the

circular arcs of different arc lengths, position noises and angle noises were

performed. Only the following results are presented.

1. The degree measure of the circular arc was set to be 45.000 deg with

the step angle of 0.500 deg and 91 data points, and σA was set to be 0.020 deg.

σP was changed from 0.5 mm to 10.0 mm. One example of the data set is

presented in Figure 3.2. For the circular arc with each standard deviation σP ,

1000 circular arcs were simulated and the averaged results from these 1000

data sets were calculated. The simulation results are shown in Figure 3.3.

2. As presented in Figure 3.4, the degree measure of the circular arc was

changed from 20.000 deg to 80.000 deg. For the circular arc of each degree

measure, 1000 circular arcs with the step angle of 0.500 deg were simulated
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Figure 3.2: A circular arc with the degree measure of 45.000 deg with the
step angle of 0.500 deg and 91 data points.

and the averaged results from these 1000 data sets were calculated. σP and

σA were set to be 6.0 mm and 0.020 deg respectively. The simulation results

are shown in Figure 3.5.

As shown in Figure 3.3 and Figure 3.5, compared with other methods,

Method D consistently demonstrates superior performance, especially when

a short circular arc is fitted and/or the standard deviation σP becomes large.

For the simulation results shown in Figure 3.5, the averaged DS and RS of

these circular arcs are presented in Figure 3.6 and the averaged AS is shown

in Figure 3.7. When the circular arc is short and/or the standard deviation

σP is large, the normal vector of the circular arc can still be well estimated

with Method C and Method D through directly fitting the circular arc in 3D

space. However, in this condition it becomes difficult to estimate the normal

vector with Method A and Method B even though their DS are still small and

quite close to the results of Method C and Method D as shown in Figure 3.6.

For Method B, since the joint angle is used as a constraint, its AS is small and
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Figure 3.3: The degree measure of the circular arc was set to be 45.000 deg.
For the circular arc with each standard deviation σP , 1000 circular arcs were
simulated with Gaussian noises added to the data points and the averaged
results from these 1000 data sets were calculated.
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Figure 3.4: The degree measure of the circular arc was changed from
20.000 deg to 80.000 deg with the step angle of 0.500 deg.

its ∆C and ∆r become smaller compared to Method A. As the joint angle

is not used as a constraint in Method C, its AS becomes larger compared to

Method D and its ∆C and ∆r are larger than the results of Method D even

though their DS and RS are quite close.

3.2.2 Fitting circular arc in 3D space with RANSAC

The degree measure of the circular arc was set to be 45.000 deg with the

step angle of 0.500 deg and 91 data points, Gaussian noises with zero mean

and standard deviation σA of 0.020 deg were added to the joint angle of the

data points, and Gaussian noises with zero mean and standard deviation σP

of 3.0 mm were added to the positions of the data points. For the “outliers”,

they are randomly located in the space of 800.0 mm x 725.0 mm x 1375.0 mm

and NO denotes the number of the outliers.

Fifty data sets were simulated with the outliers number of NO and the
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Figure 3.5: For the circular arc of each degree measure, 1000 circular arcs
were simulated with Gaussian noises added to the data points and the aver-
aged results from these 1000 data sets were calculated.
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Figure 3.7: The averaged AS of the circular arcs fitted in Figure 3.5.

averaged results from these 50 data sets were calculated. One example of the

data set is shown in Figure 3.8 with NO of 136. The data points were fitted

with Method C(R) and Method D(R). The simulation results are presented

in Table 3.1 and it shows Method D(R) performs better than Method C(R)

with smaller ∆C, ∆r and ∆θ.
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Table 3.1: Simulations results of fitting circular arc with RANSAC

Method D(R) Method C(R)

NO
∆C ∆r ∆θ ∆C ∆r ∆θ

[mm] [mm] [deg] [mm] [mm] [deg]
45 11.088 3.651 0.312 21.472 17.584 0.349
91 12.697 3.645 0.366 26.552 20.794 0.464
136 14.025 4.027 0.380 28.557 24.375 0.395

3.3 Hand-Eye Calibration for the

pan-tilt-camera system and

experimental results

Whenever a sensor such as a camera is mounted on a robot hand, its

position and orientation relative to the hand coordinate frame must be de-
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Figure 3.9: The model of the Pan-Tilt-Camera system. The Hand-Eye
calibration consists of identifying the unknown relationship between the
Hand coordinate frame FH and the Sensor coordinate frame FC , which
is denoted as HT

C and can be described with the parameters p =
{θCx, θCy, θCz, PCx, PCy, PCz}. In the Hand coordinate frame FH , θCx, θCy,
θCz are the sensor fixing orientation and PCx, PCy, PCz are the sensor fixing
position.

termined, and this is normally referred to as the Hand-Eye calibration prob-

lem [17, 18]. The model of a Pan-Tilt-Camera system is presented in Fig-

ure 3.9. FB, FH and FC are the Pan-Tilt, Hand and Sensor coordinate frame

respectively. The Hand-Eye calibration consists of identifying the unknown

relationship between the Hand coordinate frame FH and the Sensor coor-

dinate frame FC , which is denoted as HT
C and can be described with the

parameters p = {θCx, θCy, θCz, PCx, PCy, PCz}. In the Hand coordinate frame

FH , θCx, θCy, θCz are the sensor fixing orientation and PCx, PCy, PCz are the

sensor fixing position.

Pure rotation of the links and circle-point analysis technique were used in

robot calibration [7,13]. In [21], manifolds such as circles were used to do the

Hand-Eye calibration using a relatively large number of poses to estimate a
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single circle, improving the overall accuracy of calibration. The pure rotation

calibration method relies on a sequence of rotations of the links, while using

a sensor to track an external arbitrary reference point fixed in Pan-Tilt coor-

dinate frame FB. In the sensor coordinate frame FC , the resulting reference

point positions measured by sensor are nominally located in a plane whose

normal vector is the direction of the rotational axis and describe a circular

arc whose center lies on the rotational axis of that joint. The process of

identifying the parameters of the Hand-Eye calibration with pure rotation

method is divided into two procedures.

Procedure 1. Using the resulting reference point positions measured by

the sensor in each single-joint rotation, the normal vector, center and radius

of the circular arc are estimated in the sensor coordinate frame FC .

Procedure 2. Based on the estimated normal vectors, centers and radii

of all these single-joint rotations, with their geometry relationship to the

calibration parameters p, the calibration parameters p are solved [7, 13,21].

For the pure rotation calibration method, it is critical to estimate the

normal vector, center and radius of the circular arc. This Chapter is focused

on Procedure 1. Traditional methods of fitting the circular arc cannot perform

as well as expected when the joint motion that can be measured is limited

by the FOV of camera, which is the case studied in this Chapter. Based on

the traditional method that uses a sequence of pure rotations, the Hand-Eye

calibration is done for the Pan-Tilt-Camera system presented in Figure 3.9.

The proposed method of directly fitting the circular arc in 3D space with joint

angle constraint is applied in the Hand-Eye calibration process and verified

through experiments.

3.3.1 Hand-Eye Calibration using pure rotation

method for the Pan-Tilt-Camera system

The pure rotation calibration method is applied to the Pan-Tilt-Camera

system with the following steps.

Step 1. Data acquisition.

The position of the external arbitrary reference point is detected by the
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sensor and the joint angles are measured through the Pan-Tilt unit. The Tilt

angle is changed with N1(N1 ≥ 3) steps while fixing the Pan angle and the

trajectory of the reference point measured by sensor is denoted as motion

sequence 1 (Tilt motion). Similarly, the Pan angle is changed with N2(N2 ≥
3) steps while fixing the Tilt angle and the trajectory of the reference point

measured by sensor is denoted as motion sequence 2 (Pan motion).

Step 2. Parameters calculation.

With the reference point positions of the motion sequence m(m = 1, 2), in

the sensor coordinate frame FC , the normal vector CnSC
m and center CCSC

m of

the circular arc are estimated with the circular arc fitting methods described

in this Chapter. As the joint axis of the moved joint must pass through

the center of this circular arc, from the mechanical structure, the theoretical

rotation axis nT
m and theoretical rotation center CT

m of the motion sequence

m are known. Using their constant geometry relationships to CnSC
m and

CnSC
m , the calibration parameters p can be solved [7, 13,21].

3.3.2 Experimental results

The Pan-Tilt-Camera system shown in Figure 3.9 was used to verify the

proposed calibration method. The Pan-Tilt unit is a Pan-Tilt Unit D48

(PTU-D48) from FLIR Motion Control Systems. The Pan resolution is

0.006 deg and the Tilt resolution is 0.003 deg. The sensor is a Bumble-

bee XB3 stereo vision camera from Point Grey Research and its HFOV is

66.0 deg. A chessboard with the size of 3 x 4 was used and its center was

considered as the external reference point.

With the Data acquisition method described in this Chapter, the Bum-

blebee XB3 stereo vision camera was used to acquire the positions of the

external reference point. The range of Tilt motion is 38.571 deg with 14

sampled points and step angle of 2.967 deg. The range of Pan motion is

48.240 deg with 16 sampled points and step angle of 3.216 deg. The circular

arcs were fitted with Method A to Method D(R) and the calibration parame-

ters p were solved with the Parameters calculation method described in this

Chapter.
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After calibration, for the identification points, their positions in the Pan-

Tilt coordinate frame are calculated and denoted as IPB
m,i. In the Pan-

Tilt coordinate frame, as the external reference point was fixed, its averaged

position IPB
ext is estimated with (3.14) and the value EI defined with (3.15)

is in terms of RMS difference between IPB
ext and IPB

m,i.

IPB
ext =

1∑2
m=1Nm

(
2∑

m=1

Nm∑
i=1

IPB
m,i) (3.14)

EI =

√√√√ 1∑2
m=1Nm

(
2∑

m=1

Nm∑
i=1

|IPB
m,i − IPB

ext|
2
) (3.15)

In order to verify the calibration results, the chessboard was placed to MV

(MV was 6 in this Chapter) different random positions. For each position,

in the range that chessboard can be detected by the stereo vision camera,

the Pan angle and Tilt angle were randomly set and the stereo vision camera

viewed the chessboard with Lk (k = 1, 2, ...,MV ) different poses (Lk was 10

in this Chapter). Similarly, in the Pan-Tilt coordinate frame, the positions

of the validation points are calculated and denoted as VPB
k,i. In the Pan-Tilt

coordinate frame, for each chessboard position, its averaged position VPB
k

is estimated with (3.16) and the value EV defined with (3.17) is in terms of

RMS difference between VPB
k and VPB

k,i.

VPB
k =

1

Lk

(

Lk∑
i=1

VPB
k,i) (3.16)

EV =

√√√√ 1∑MV

k=1 Lk

(

MV∑
k=1

Lk∑
i=1

|VPB
k,i − VPB

k |
2
) (3.17)

The experimental results are shown in Table 3.2. When the circular arcs

were fitted with Method A to Method D, it is noticed that the results of

Method B and Method D are better than the results of Method A and Method

C both for the identification data and for the validation data. Better results

are obtained when RANSAC is used in Method C(R) and Method D(R) to fit
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the circular arcs as the “outliers” could be removed. However, Method D(R)

still performs better than Method C(R) both for the identification data and

for the validation data. So when the joint angle is added as a constraint, the

result is consistently better than the results calculated without joint angle

constraint.

Table 3.2: Experimental results

Method Identification, EI [mm] Validation, EV [mm]
A 2.188 1.975
B 1.408 1.319
C 2.188 1.975
D 1.408 1.320

C(R) 1.366 1.285
D(R) 1.354 1.275

3.4 Conclusion

Through the simulation results and experimental results, it is proved

that using the proposed method of directly fitting circular arc in 3D space

with joint angle constraint, a circular arc can be fitted more precisely in

3D space compared with the traditional methods, especially when it is a

short arc and/or the measured data is noisy. When using the pure rotation

calibration method to do the Hand-Eye calibration for a Pan-Tilt-Camera

system, the proposed methods perform better than the traditional methods.

The proposed method of directly fitting a circular arc in 3D space with joint

angle constraint can be used in other applications when the actual joint angle

can be measured.



Chapter 4

Terrain Mapping under

Extreme Light Conditions with

Direct Stereo Matching

Method

As shown in Figure 4.2, through multiple exposures, the dynamic range

of images could be increased. In [34], a system architecture was introduced

for terrain mapping using stereo vision camera. As presented in Figure 4.1,

traditionally, the 2D images captured with multiple exposures are fused with

Exposure Fusion [36]. With the resulting fused images, the disparity image is

computed through stereo matching and the 3D terrain map is reconstructed.

In this Chapter, instead of using existing lighting enhancement methods such

as Exposure Fusion to increase the texture of 2D image, the stereo matching

was directly done using the images grabbed with multiple exposures and the

2D image process of exposure fusion is not needed.

Since it is possible that the camera is moved when the images are grabbed

with multiple exposures, the images grabbed with short and long exposures

are aligned to the image captured with auto exposure. The matching costs

of the resulting registered images and the image grabbed with auto exposure

are directly summed by weight. In order to evaluate the performance of
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Figure 4.1: The previous system architecture for 3D terrain mapping using
a stereo vision camera.

the proposed method, two different stereo matching algorithms were used: a

local window-based method and semi-global method. Through experiments

in laboratory and outdoors with a stereo vision camera fixed on a tripod and

held in the hand, it was verified that with the proposed method, more valid

3D points could be obtained and the terrain maps could be reconstructed

more accurately. Especially when the local window-based method was used,

the proposed method performed much better than the traditional methods.

The remainder of the Chapter is structured as follows. Section 4.1 introduces

the proposed methods in detail and the experimental results are presented

in Section 4.2. In section 4.3 the conclusion is presented.
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Figure 4.2: The images were grabbed with different shutter times. Auto
mode: 0.821 milliseconds. Short exposure: 0.755 milliseconds. Long expo-
sure: 1.806 milliseconds. With exposure fusion, these images were fused.

4.1 Proposed method

The proposed system architecture for 3D terrain mapping with a stereo

vision camera is presented in Figure 4.3 and introduced in detail in this

section. The images grabbed with multiple exposures are aligned to the image

captured with auto exposure. Compared to the previous system architecture

presented in Figure 4.1, for the proposed system architecture, stereo matching

is directly done with the resulting registered images and Exposure Fusion is

not needed.
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Figure 4.3: The proposed system architecture for 3D terrain mapping using
a stereo vision camera.

4.1.1 Acquiring images with multiple exposures

In order to acquire the images with multiple exposures, it is important

to properly set the exposure parameters of camera, alternating between a

long exposure to capture the shadows and a short exposure to capture the

highlights. Using a method similar with [39], the shutter times for short

exposure and long exposure are set. Tmin and Tmax are the available minimum

and maximum shutter times of the camera respectively. Through the API of

Bumblebee stereo vision camera from Point Grey Research, the user could

get the shutter time Tauto in auto exposure, minimum shutter time Tmin

and maximum shutter time Tmax. Based on the shutter time Tauto in auto

exposure, the shutter time Tshort of short exposure and the shutter time Tlong

of long exposure are set with (4.1) and (4.2) respectively. kmax is the user

defined maximum ratio for klong. For the short exposure, it is required that

fewer than pshort (e.g. 1%) of the pixels in the image are bright which have

values above Bshort (e.g. 217). If there are too many bright pixels, the

exposure time is decreased for the subsequent short exposures. Similarly, for

the long exposure it is required that fewer than plong (e.g. 1%) of pixels are
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dark which have values less than Blong (e.g. 38), otherwise the exposure time

is increased for the subsequent long exposures. The camera gain is kept as

low as possible to minimize noise, only raising it when the camera shutter

time setting is not available for the camera [39]. One example is shown in

Figure 4.2, and the images with the short exposure and long exposure were

grabbed with this method.

Tshort = kshortTauto (4.1)

where

0 < kshort ≤ 1, Tmin ≤ Tshort

Tlong = klongTauto (4.2)

where

1 ≤ klong ≤ kmax, Tlong ≤ Tmax

4.1.2 Image alignment

In the real application, since it is possible that the camera is moved be-

tween exposures when the images are grabbed, it is important to register the

images. With a method similar to [42, 43], the correspondence relationship

between the images grabbed with short (or long) exposure and auto exposure

are calculated with image alignment algorithm and the image acquired with

short (or long) exposure is aligned to the image acquired with auto exposure.

As shown in Figure 4.4, the key points of the images grabbed in short (or

long) exposure and auto exposure are detected with Speeded Up Robust Fea-

tures (SURF) [29]. After matching the descriptor vectors of the key points,

the key points pairs are obtained and denoted as (xi, yi) in the image with

short (or long) exposure and (x
′
i, yi)

′
in the image with auto exposure. They

are related with (4.3), where H is an arbitrary 3x3 matrix and itself homo-

geneous [41]. RANSAC is performed to estimate the homography matrix H

through solving the optimization problem (4.4), where NR is the number of

the key points pairs which are used to estimate the parameter H . The image
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Figure 4.4: The key points of the images grabbed in short (or long) exposure
and auto exposure are detected with Speeded Up Robust Features (SURF).
After matching the descriptor vectors of the key points, the key points pairs
are obtained. RANSAC is performed to estimate the homography matrix
and the image acquired with short (or long) exposure is aligned to the image
acquired with auto exposure according to the homography matrix.

acquired with short (or long) exposure is aligned to the image acquired with

auto exposure according to the homography matrix H . x
′
i

y
′
i

1

 ∼H
 xi

yi

1

 (4.3)
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with

H =

 h11 h12 h13

h21 h22 h23

h31 h32 h33



min

NR∑
i=1

(x
′

i −
h11xi + h12yi + h13
h31xi + h32yi + h33

)
2

+ (y
′

i −
h21xi + h22yi + h23
h31xi + h32yi + h33

)
2

(4.4)

4.1.3 Proposed method of matching cost aggregation:

Summing the matching costs of the images

grabbed with multiple exposures by weight

In this Chapter, the matching cost was defined based on intensity (lu-

minance) instead of colour, which were stored as 8-bit unsigned integers. It

is simple to extend this matching cost to colour by computing the costs for

each colour channel separately and then summing the matching costs over

all channels. The matching cost can be calculated with the methods such as

Absolute Difference (AD), Squared Difference (SD), Census Transform (CT)

and so on. For the image of the k− th image (auto, short and long exposures

in sequence, k = 1, 2, 3), for each pixel p (p = (x, y)), its matching cost is

defined to be Vp,k. As shown in Figure 4.5, the matching costs Vp,1, Vp,2

and Vp,3 for the images captured with auto, short and long exposures are

calculated respectively.

For the grayscale image of the k − th image, the intensity of the pixel

p is defined as I(p, k) (0 ≤ I(p, k) ≤ 255) and the exposure quality φe
p,k is

calculated based on how close it is to 127.5 with (4.5) [36]. σe was set to

be 0.2 in this Chapter. The exposure quality weight we
p,k is computed with

(4.6).

φe
p,k = exp(−(I(p, k)− 127.5)2

2(255σe)
2 ) (4.5)

we
p,k =

φe
p,k∑3

k=1 φ
e
p,k

(4.6)
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Figure 4.5: For each pixel p, the matching costs Vp,1, Vp,2 and Vp,3 for the
images captured with auto, short and long exposures can be calculated re-
spectively with the methods such as Absolute Difference (AD), Squared Dif-
ference (SD), Census Transform (CT) and so on. For the matching image,
the matching cost Vp,S is directly summed by weight.

For the pixel p, N(p) is the set of pixels surrounding it in the neighbor-

hood with the window size of Lw x Lh pixels, where Lw and Lh are the width

and height of the window in pixels respectively. For the grayscale image of

the k− th image, the intensity difference of the pixel p is defined as Sc
p,k and

calculated with (4.7) by comparing its intensity with the pixels in its local

neighborhood N(p). The intensity diversity φc
p,k is calculated with (4.8) and

σc was set to be 0.2 in this Chapter. The intensity diversity weight wc
p,k is

computed with (4.9).

Sc
p,k =

∑
q∈N(p)

f(I(p, k), I(q, k)), (4.7)

where

f(x, y) =

{
1 if x < y,

0 else.
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φc
p,k = exp(−

(Sc
p,k − 0.5Lc)

2

2(Lcσc)
2 ), (4.8)

where

Lc = LwLh − 1.

wc
p,k =

φc
p,k∑3

k=1 φ
c
p,k

(4.9)

For the pixel p in the k−th image, its weight wp,k is calculated with (4.10)

through summing the exposure quality weight we
p,k and intensity diversity

weight wc
p,k, and λc was set to be 0.1 in this Chapter. As shown in Figure 4.5,

for each pixel p, the matching cost of the matching image is defined as Vp,S

and calculated with (4.11) based on the matching costs Vp,1, Vp,2, Vp,3 and

the weights wp,1, wp,2, wp,3.

wp,k = we
p,k + λcw

c
p,k (4.10)

Vp,S =
3∑

k=1

wp,kVp,k (4.11)

One example is shown in Figure 4.6. For each pixel p of the images

grabbed with auto, short and long exposures, its weight wp,k was calculated

with the proposed method respectively. The intensity diversity weight of each

pixel was calculated with a window of 15x15 pixels. In the weight image, for

each pixel p, the red colour means that the auto exposure image has the

biggest weight, the green colour means that the short exposure image has

the biggest weight and the blue colour means that the long exposure image

has the biggest weight.

4.2 Experimental results

In order to evaluate the performance of the stereo matching algorithm

described in this Chapter, a Bumblebee XB3 stereo vision camera from Point
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Figure 4.6: For each pixel p of the images grabbed with auto, short and
long exposures, its weight wp,k was calculated with the proposed method
respectively. In the weight image, for each pixel p, the red colour means that
the auto exposure image has the biggest weight, the green colour means that
the short exposure image has the biggest weight and the blue colour means
that the long exposure image has the biggest weight. The intensity diversity
weight of each pixel was calculated with a window of 15x15 pixels.

Grey Research as shown in Figure 4.7, was used in the experiments and

the experiments were done in laboratory and outdoors. The Bumblebee

XB3 stereo vision camera is a 3-sensor multi-baseline IEEE-1394b (800Mb/s)

stereo vision camera designed for improved accuracy and pre-calibrated for

lens distortions and camera misalignments, The colour images grabbed with

stereo vision camera were converted to gray images, and the matching costs
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Figure 4.7: The Bumblebee XB3 stereo vision camera.

of the matching images were calculated with the gray images. The image size

is 640x480 pixels. The stereo matching with a disparity range of 100 pixels

was done with local window-based method and SGM respectively.

4.2.1 Stereo matching methods

Census transform was used to calculate the matching cost in this Chapter.

It is able to deal with radiometric changes since it is a non-parametric local

transform which relies on the relative ordering of local intensity values and

not on the intensity values themselves [56]. The census transform encodes the

local neighborhood (e.g. window with a window size of 11x11 pixels) around

each pixel into a bit cost that only stores whether the compared neighboring

pixel has a lower value than the center pixel or not. For the matching image

(left image or right image of a stereo pair), its matching cost between two

pixels in the matching image and reference image of a stereo pair is the

Hamming distance of their census transform in their local windows.

For each pixel p, the matching cost of the matching image is defined as

Vp,M . For the image grabbed with auto exposure, for each pixel p, its match-

ing cost Vp,1 was computed. Using the image alignment method described

in this Chapter, the images grabbed with short and long exposures were

aligned to the image grabbed with auto exposure. For the registered images

of the photographs captured with short and long exposures, its matching
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costs Vp,2 and Vp,3 were computed. The image grabbed with auto exposure

and the registered images of the photographs captured with short and long

exposures were fused with exposure fusion [36] for the resulting fused image

and the matching cost of each pixel p is defined as Vp,E. In order to evaluate

the performance of the proposed method, for each pixel p, the matching cost

Vp,M is calculated with the following four methods.

• Auto exposure. Vp,M is set to be Vp,1.

• Exposure fusion. Vp,M is set to be Vp,E.

• Multiple images. Vp,M is set to be Vp,D, which is calculated with (4.12)

through directly summing the matching costs Vp,1, Vp,2 and Vp,3. .

Vp,D =
3∑

k=1

Vp,k (4.12)

• Multiple images by weight. Vp,M is set to be Vp,S, which is calculated

with (4.11) using the proposed method. The intensity diversity weight

of each pixel was calculated with same window size of census transform.

As the performance of a matching cost depends on the algorithm which

uses it, two different stereo algorithms were used: a local window-based

method [56] and semi-global matching (SGM) [57]. For the local window-

based method, after computing the matching costs, the disparity with the

lowest summed cost was selected with winner-takes-all. The SGM is adopted

as the optimization technique to stereo matching for it is more advantageous

since it delivers denser results with far fewer outliers. Many applications have

proved that SGM is of high quality and can reconstruct thin or small objects.

In this Chapter, the stereo matching was done with SGM by summing the

matching costs in four directions (up, down, left and right).

With the method described in [58], the sub-pixel disparity refinement is

obtained through interpolating the three matching costs (the winning cost

value and its neighbors). The occlusions and mismatches are distinguished by

the left/right consistency check, which invalidates disparities if the disparity
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with the left/right images stereo matching and its corresponding disparity of

with the right/left images stereo matching differ by more than 1 pixel. The

uniqueness check invalidates disparities if the minimum cost is not unique.

4.2.2 Experiments of mapping a flat terrain

Since the terrain for mapping is almost flat, in order to evaluate the

stereo matching result, the best-fit plane was estimated with RANSAC. The

distance of the point to the estimated plane is defined as dt. Points with

distance dt smaller than DT were considered to be valid. DT was set to be

40.0 mm in this Chapter. The number of valid points is defined to be NV ,

which is the most important criteria to evaluate the performance of the stereo

matching methods. The average distance to the estimated plane is define as

dV and calculated with (4.13) using the valid points.

dV =

√
1

NV

∑
|dt|<DT

dt
2 (4.13)

A. Experiments in laboratory with the stereo vision camera fixed

on a tripod

The experiments were done in laboratory with the stereo vision camera

fixed on a tripod and the grabbed images of the right camera are presented

in Figure 4.8(a). The image grabbed with auto, short and long exposures

were fused with exposure fusion and the resulting fused image is shown in

Figure 4.8(a). The colour images were converted to grayscale images as

shown in Figure 4.8(b). As an example, using the method described in this

Chapter, the intensity diversity weight of each pixel was calculated with a

window of 15x15 pixels and the weight image is shown in Figure 4.8(b).

First, stereo matching was done with the local window-based method.

For example, with a window of 15x15 pixels, the disparity images calculated

with four different methods are shown in Figure 4.9(a). As it is overexposure

and texture-less in the top left of the image grabbed with auto exposure,

with the method “auto exposure”, the disparity values for the pixels in this
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(a) The images were grabbed with different shutter times. Auto
exposure: 84.342 milliseconds. Short exposure: 50.605 millisec-
onds. Long exposure: 101.210 milliseconds. With exposure
fusion, these images were fused.

(b) Using the method described in this Chapter, with the inten-
sity diversity weight of each pixel was calculated with a window
of 15x15 pixels, the weight image was calculated.

Figure 4.8: The images were acquired in laboratory with the stereo vision
camera fixed on a tripod.
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(a) Using four methods to calculate the matching costs of the
matching images, the disparity images were calculated with lo-
cal window-based method. The window size is 15x15 pixels.

(b) Using four methods to calculate the matching costs of the
matching images, the disparity images were calculated with
SGM. The window size is 11x11 pixels.

Figure 4.9: For the images shown in Figure 4.8, the disparity images were
calculated.
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Figure 4.10: For the images shown in Figure 4.8, using four methods to
calculate the matching costs of the matching images, the stereo matching
was computed with local window-based method. The window size is changed
from 7x7 to 23x23 pixels.



Experimental results 83

Window width [pixels]

7 9 11 13 15

V
al

id
 p

o
in

t 
n

u
m

b
er

×10
5

2.55

2.6

2.65

2.7

2.75

Auto exposure

Exposure fusion

Multiple images

Multiple images by weight

(a) Valid point number NV .

Window width [pixels]

7 9 11 13 15

A
v

er
ag

e 
d

is
ta

n
ce

 t
o

 e
st

im
at

ed
 p

la
n

e 
[m

m
]

5.5

6.0

6.5

7.0

7.5

Auto exposure

Exposure fusion

Multiple images

Multiple images by weight
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Figure 4.11: For the images shown in Figure 4.8, using four methods to
calculate the matching costs of the matching images, the stereo matching
was done with SGM. The window size is changed from 7x7 to 15x15 pixels.



84
Terrain Mapping under Extreme Light Conditions with Direct Stereo

Matching Method

part were not calculated. With the window size changed from 7x7 to 23x23

pixels, Figure 4.10 shows the valid point number NV and the average distance

to the estimated plane dV . It shows that compared with the methods “Auto

exposure” and “Exposure fusion”, with the methods “Multiple images” and

“Multiple images by weight”, more valid points can be obtained and the aver-

aged point to estimated plane distance becomes smaller. Especially when the

window size is small, the methods “Multiple images” and “Multiple images

by weight” performed much better.

Next, stereo matching was done with SGM. For example, with a window

of 11x11 pixels, the disparity images computed with four different methods

are shown in Figure 4.9(b). Since it is overexposure in the top left of the

image grabbed with auto exposure, the disparity values for the pixels in this

part still were not calculated with the method “Auto exposure” even when

SGM was used. With the window size changed from 7x7 to 15x15 pixels,

Figure 4.11 presents the valid point number NV and the average distance

to the estimated plane dV . It shows that the NV of the methods “Expo-

sure fusion”, “Multiple images” and “Multiple images by weight” are quite

close and bigger than the result of the method “Auto exposure”. However,

the proposed method “Multiple images by weight” performs best with the

smallest dV .

B. Experiments in laboratory with the stereo vision camera held

in the hand

The experiments were done in laboratory with the stereo vision camera

held in the hand and the grabbed images of the right camera are shown

in Figure 4.12(a). As shown in Figure 4.13(a), the key points of the im-

ages grabbed with short and auto exposures were detected with SURF and

matched with RANSAC. Similarly, as presented in Figure 4.13(b), the key

points of the images grabbed with long and auto exposures were detected

with SURF and matched with RANSAC. The images grabbed with short

and long exposures were aligned to the image captured with auto exposure

and the aligned images are shown in Figure 4.12(a). The image grabbed with
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(a) The images were grabbed with different shutter times. Auto exposure: 98.342 mil-
liseconds. Short exposure: 63.405 milliseconds. Long exposure: 126.410 milliseconds. The
images grabbed with short and long exposures were aligned to the image captured with
auto exposure. With exposure fusion, the image grabbed with auto exposure and the
registered images of the photographs captured with short and long exposures were fused.

(b) Using the method described in this Chapter, with the inten-
sity diversity weight of each pixel was calculated with a window
of 15x15 pixels, the weight image was calculated.

Figure 4.12: The images were acquired in laboratory with the stereo vision
camera held in the hand.
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(a) The key points were detected and matched between the images with short and auto
exposures.

(b) The key points were detected and matched between the images with long and auto
exposures.

Figure 4.13: With SURF, the key points were detected and matched.

auto exposure and the registered images of the photographs captured with

short and long exposures were fused with exposure fusion and the resulting

fused image is shown in Figure 4.12(a). The colour images were converted to

grayscale images as shown in Figure 4.12(b). As an example, the intensity

diversity weight of each pixel was calculated with a window of 15x15 pixels

and the resulting weight image is shown in Figure 4.12(b).

First, stereo matching was done with local window-based method. For

example, with a window of 15x15 pixels, the disparity images calculated

with four different methods are shown in Figure 4.14(a). With the window

size changed from 7x7 to 23x23 pixels, Figure 4.15 presents the valid point
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(a) Using four methods to calculate the matching costs of the
matching images, the disparity images were calculated with local
window-based method. The window size is 15x15 pixels.

(b) Using four methods to calculate the matching costs of the
matching images, the disparity images were calculated with SGM.
The window size is 11x11 pixels.

Figure 4.14: For the images shown in Figure 4.12, the disparity images were
calculated.
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Figure 4.15: For the images shown in Figure 4.12, using four methods to
calculate the matching costs of the matching images, the stereo matching
was computed with local window-based method. The window size is changed
from 7x7 to 23x23 pixels.
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Figure 4.16: For the images shown in Figure 4.12, using four methods to
calculate the matching costs of the matching images, the stereo matching
was done with SGM. The window size is changed from 7x7 to 15x15 pixels.
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number NV and the average distance to the estimated plane dV . It shows

that compared with the methods “Auto exposure” and “Exposure fusion”,

with the methods “Multiple images” and “Multiple images by weight”, more

valid points are obtained and the averaged point to estimated plane distance

becomes smaller. Especially when the window size is small, the methods

“Multiple images” and “Multiple images by weight” performed much better.

Next, stereo matching was done with SGM. For example, with a window of

11x11 pixels, the disparity images computed with four different methods are

shown in Figure 4.14(b). With the window size changed from 7x7 to 15x15

pixels, Figure 4.16 illustrates the valid point number NV and the average

distance to the estimated plane dV . It shows that the proposed method

“Multiple images by weight” performs best with biggest NV and its dV is

smaller than the results of the methods “Auto exposure” and “Exposure

fusion”.

C. Outdoor experiments with the stereo vision camera fixed on a

tripod

The experiments were done outdoors with the stereo vision camera fixed

on a tripod and the grabbed images of the right camera are shown in Fig-

ure 4.17 (a). The image grabbed with auto, short and long exposures were

fused with exposure fusion and the resulting fused image is shown in Fig-

ure 4.17 (a). The colour images were converted to grayscale images as shown

in Figure 4.17(b). As an example, the intensity diversity weight of each pixel

was calculated with a window of 15x15 pixels and the resulting weight image

is shown in Figure 4.17(b).

First, stereo matching was done with local window-based method. For

example, with a window of 15x15 pixels, the disparity images computed with

four different methods are shown in Figure 4.18(a). Since it is overexposure

in the top of the image grabbed with auto exposure, the disparity values for

the pixels in this part were not calculated with the method “Auto exposure”.

With the window size changed from 7x7 to 23x23 pixels, Figure 4.19 presents

the valid point number NV and the average distance to the estimated plane
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(a) The images were grabbed with different shutter times. Auto
exposure: 2.008 milliseconds. Short exposure: 0.482 milliseconds.
Long exposure: 2.410 milliseconds. With exposure fusion, these
images were fused.

(b) Using the method described in this Chapter, with the intensity
diversity weight of each pixel was calculated with a window of 15x15
pixels, the weight image was calculated.

Figure 4.17: The images were acquired outdoors with the stereo vision camera
fixed on a tripod.
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(a) Using four methods to calculate the matching costs of the
matching images, the disparity images were calculated with local
window-based method. The window size is 15x15 pixels.

(b) Using four methods to calculate the matching costs of the
matching images, the disparity images were calculated with SGM.
The window size is 11x11 pixels.

Figure 4.18: For the images shown in Figure 4.17, the disparity images were
calculated.
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Figure 4.19: For the images shown in Figure 4.17, using four methods to
calculate the matching costs of the matching images, the stereo matching
was computed with local window-based method. The window size is changed
from 7x7 to 23x23 pixels.
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Figure 4.20: For the images shown in Figure 4.17, using four methods to
calculate the matching costs of the matching images, the stereo matching
was done with SGM. The window size is changed from 7x7 to 15x15 pixels.
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dV . It depicts that compared with the method “Exposure fusion”, with the

methods “Multiple images” and “Multiple images by weight”, more valid

points are obtained and the averaged point to estimated plane distance is

smaller. Especially when the window size is small, the methods “Multiple

images” and “Multiple images by weight” performed much better. It is no-

ticed that in some window sizes it appears that the dV calculated with the

method “Auto exposure” is smallest and the method “Auto exposure” per-

forms “best”. However, compared with other methods, its NV is smallest.

Besides, since the disparity values for the pixels in the top of the image were

not calculated with the method “Auto exposure” as shown in Figure 4.18(a),

the top part of the image was not used to calculated its dV . For these reasons,

the method “Auto exposure” actually performs worst.

Next, stereo matching was done with SGM. For example, with a window of

11x11 pixels, the disparity images calculated with four different methods are

shown in Figure 4.18(b). As it is overexposure in the top of the image grabbed

with auto exposure, the disparity values for the pixels in this part still were

not calculated with the method “Auto exposure” even when SGM was used.

With the window size changed from 7x7 to 15x15 pixels, Figure 4.20 presents

the valid point number NV and the average distance to the estimated plane

dV . It shows that the NV of the methods “Exposure fusion”, “Multiple

images” and “Multiple images by weight” are quite close and bigger than

the result of the method “Auto exposure”. However, the methods “Multiple

images” and “Multiple images by weight” perform better than the method

“Exposure fusion” with a smaller averaged distances to the estimated plane.

D. Outdoor experiments with the stereo vision camera held in the

hand

The experiments were done outdoors with the stereo vision camera held

in the hand and the grabbed images of the right camera are shown in Fig-

ure 4.21(a). The images grabbed with short and long exposures were aligned

to the image captured with auto exposure and the aligned images are shown

in Figure 4.21(a). The image grabbed with auto exposure and the regis-
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(a) The images were grabbed with different shutter times. Auto exposure: 2.008 millisec-
onds. Short exposure: 0.482 milliseconds. Long exposure: 2.410 milliseconds. The images
grabbed with short and long exposures were aligned to the image captured with auto ex-
posure. With exposure fusion, the image grabbed with auto exposure and the registered
images of the photographs captured with short and long exposures were fused.

(b) Using the method described in this Chapter, with the inten-
sity diversity weight of each pixel was calculated with a window
of 15x15 pixels, the weight image was calculated.

Figure 4.21: The images were acquired outdoors with the stereo vision camera
held in the hand.
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(a) Using four methods to calculate the matching costs of the
matching images, the disparity images were calculated with local
window-based method. The window size is 15x15 pixels.

(b) Using four methods to calculate the matching costs of the
matching images, the disparity images were calculated with SGM.
The window size is 11x11 pixels.

Figure 4.22: For the images shown in Figure 4.21, the disparity images were
calculated.
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Figure 4.23: For the images shown in Figure 4.21, using four methods to
calculate the matching costs of the matching images, the stereo matching
was computed with local window-based method. The window size is changed
from 7x7 to 23x23 pixels.
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Figure 4.24: For the images shown in Figure 4.21, using four methods to
calculate the matching costs of the matching images, the stereo matching
was done with SGM. The window size is changed from 7x7 to 15x15 pixels.
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tered images of the photographs captured with short and long exposures

were fused with exposure fusion and the resulting fused image is shown in

Figure 4.21(a). The colour images were converted to grayscale images as

shown in Figure 4.21(b). As an example, the intensity diversity weight of

each pixel was calculated with a window of 15x15 pixels and the weight image

is shown in Figure 4.21(b).

First, stereo matching was done with local window-based method. For

example, with a window of 15x15 pixels, the disparity images calculated with

four different methods are shown in Figure 4.22(a). With the window size

changed from 7x7 to 23x23 pixels, Figure 4.23 shows the valid point number

NV and the average distance to the estimated plane dV . It illustrates that

with the proposed method “Multiple images by weight”, more valid points

can be obtained and the averaged point to estimated plane distance becomes

smaller compared with the methods “Auto exposure” and “Exposure fusion”.

Especially when the window size is small, the proposed method “Multiple

images by weight” performed much better.

Next, stereo matching was done with SGM. For example, with a window

of 11x11 pixels, the disparity images computed with four different methods

are shown in Figure 4.22(b). With the window size changed from 7x7 to

15x15 pixels, Figure 4.24 presents the valid point number NV and the average

distance to the estimated plane dV . It shows that the NV of the methods

“Exposure fusion” and “Multiple images by weight” are quite close and bigger

than the results of the methods “Auto exposure” and “Multiple images”.

However, the proposed method “Multiple images by weight” performs better

than the method “Exposure fusion” with a smaller dV .

4.2.3 Experiment of environment perception

The experiments were done for the environment perception and the grabbed

images of the right camera are shown in Figure 4.25(a). The image grabbed

with auto, short and long exposures were fused with exposure fusion and the

resulting fused image is shown in Figure 4.25 (a). The colour images were

converted to grayscale images as shown in Figure 4.25(b). As an example,
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(a) The images were grabbed with different shutter times. Auto
mode: 164.842 milliseconds. Short exposure: 59.343 millisec-
onds. Long exposure: 708.819 milliseconds. With exposure fu-
sion, these images were fused.

(b) Using the method described in this Chapter, with the inten-
sity diversity weight of each pixel was calculated with a window
of 15x15 pixels, the weight image was calculated.

Figure 4.25: The images were acquired for environment perception.
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(a) Using four methods to calculate the matching costs of the
matching images, the disparity images were calculated with local
window-based method. The window size is 15x15 pixels.

(b) Using four methods to calculate the matching costs of the
matching images, the disparity images were calculated with SGM.
The window size is 11x11 pixels.

Figure 4.26: For the images shown in Figure 4.25, the disparity images were
calculated.
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Figure 4.27: For the images shown in Figure 4.25, using four methods to
calculate the matching costs of the matching images, the valid point numbers
were presented and the stereo matching was computed with local window-
based method. The window size is changed from 7x7 to 23x23 pixels.

the intensity diversity weight of each pixel was calculated with a window of

15x15 pixels and the resulting weight image is shown in Figure 4.25(b).

First, stereo matching was done with local window-based method. For

example, with a window of 15x15 pixels, the disparity images calculated with

four different methods are shown in Figure 4.26(a). With the window size

changed from 7x7 to 23x23 pixels, Figure 4.27 shows the valid point number.

It illustrates that with proposed method “Multiple images by weight”, more

valid points can be obtained, especially when the window size is small.

Next, stereo matching was done with SGM. For example, with a window

of 11x11 pixels, the disparity images computed with four different methods

are shown in Figure 4.26(b). With the window size changed from 7x7 to 15x15

pixels, the valid point number is shown in Figure 4.28. From Figure 4.28,

it shows that the proposed method “Multiple images by weight” performs

better than other methods with more valid points.
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Figure 4.28: For the images shown in Figure 4.25, using four methods to
calculate the matching costs of the matching images, the valid point numbers
were presented and the stereo matching was done with SGM. The window
size is changed from 7x7 to 15x15 pixels.

4.2.4 Discussion

Compared to the method “Exposure fusion”, for each pixel of the match-

ing image, the local information in its local window acquired from the im-

ages grabbed with auto, short and long exposures is better retained when

the matching cost is aggregated with the methods “Multiple images” and

“Multiple images by weight”. As an example, for the pixel p(50, 125) shown

in Figure 4.29, with a window of 15x15 pixels, its matching costs computed

with local window-based method and SGM are shown in Figure 4.30(a) and

Figure 4.30(b) respectively. It is noticed that compared with the methods

“Auto exposure” and “Exposure fusion”, the matching costs computed with

the methods “Multiple images” and “Multiple images by weight” show dis-

tinct minima. With the proposed method “Multiple images by weight”, the

matching cost value obtained from the pixel which is well exposed and has

significantly different intensity values in its local window becomes dominant
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Figure 4.29: For the images shown in Figure 4.8, the pixel p(50, 125) was
circled.

and the useful information in the local window is well retained. For this rea-

son, the experimental results show that compared with the methods “Auto

exposure” and “Exposure fusion”, the proposed method consistently allowed

more valid points to be obtained and the 3D terrain model could be built

more accurately. Since the matching cost is not smoothed when it is com-

puted with the method “Multiple images”, the method “Multiple images”

performed worse than the proposed method with less valid points.

4.3 Conclusion

In order to apply stereo vision techniques in field robotics to acquire 3D

terrain maps in extreme light conditions, a series of photographs are taken
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(a) Using four methods, the matching costs were computed with window-
based method.
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(b) Using four methods, the matching costs were computed with SGM.

Figure 4.30: For the pixel p(50, 125) shown in Figure 4.29, its matching costs
were calculated with a window of 15x15 pixels.
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with multiple exposures. Since it is possible that the camera is moved when

the images are grabbed with multiple exposures, the images acquired with

short and long exposures are aligned to the image grabbed with auto expo-

sure. A stereo matching algorithm, the matching costs of the images grabbed

with multiple exposures are directly summed by weight, is proposed in this

Chapter. Compared to the traditional methods such as “Exposure fusion”,

with the proposed method, it is not needed to fuse the images grabbed with

multiple exposures, and for each pixel of the matching image, the local infor-

mation in its local window acquired from the images grabbed with multiple

exposures could be better retained. Experiments were done in laboratory

and outdoors with a stereo vision camera fixed on a tripod and held in the

hand, and the stereo matching were done with a local window-based method

and SGM. Through the experiments, it was verified that compared with the

methods “Auto exposure”, “Exposure fusion” and “Multiple images”, the

proposed method consistently allowed more valid points to be obtained and

the 3D terrain model could be built more accurately. Especially when the

local window-based method was used, compared to other methods, the pro-

posed method performed much better compared to the traditional methods.
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Chapter 5

Conclusion and future work

5.1 Conclusion

Stereo vision camera is widely used in the robotics area for terrain map-

ping, object detection, object classification, navigation and so on. This the-

sis presents the problems that the Humanitarian Demining Robot Gryphon

meets in the field when a stereo vision camera is used for terrain mapping:

accurate Kinematic calibration and Hand-Eye calibration and ensuring the

3D terrain model still could be well acquired with a stereo vision camera

even in the extreme light conditions. These problems are also the basic and

important issues when applying the stereo vision camera in the field and this

thesis focuses on them.

First, the Pure Rotation with Joint Angle Constraint Method, which re-

lies on a sequence of pure rotations of the manipulator links, while using a

stereo vision camera to track an internal fixed reference point on the ma-

nipulator’s tip and an external arbitrary reference point fixed in the robot

coordinate frame, is proposed and introduced in detail. With the proposed

method, the kinematic calibration and hand-eye calibration can be performed

simultaneously. The Humanitarian Demining Robot system was used as a

platform to verify it. The proposed calibration method was compared with

other calibration methods and verified by experiments using an external high-

precision hardware. Through experiments, it is verified that the proposed
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calibration method performs better than the traditional pure rotation cali-

bration method (the joint angle constraint is not used to fit the circular arc)

and the commonly used calibration method (nonlinear least squares estima-

tion with LMA) for the reason that with the proposed calibration method

a short circular arc can be fitted more accurately because the joint angle

is added as a constraint to fit the circular arc. With the proposed calibra-

tion method, the joint initial angles of the manipulator are calibrated with

the reference point position error at the manipulator’s tip smaller than 11.0

mm and the stereo vision camera can map the terrain with the position error

smaller than 16.0 mm which meet the error requirement of the Humanitarian

Demining Robot system. The calibration method described in this thesis can

be used in other robot platforms to do kinematic calibration and hand-eye

calibration.

Next, the Pure Rotation with Joint Angle Constraint Method is improved

and the circular arc is directly fitted in 3D space with joint angle constraint.

Through the simulation results and experimental results, it is proved that

compared to the traditional methods, in 3D space a circular arc can be fitted

more precisely with the proposed method, especially when a short arc is fitted

and/or the measured data is noisy. The pure rotation calibration method was

used to do the Hand-Eye calibration for a Pan-Tilt-Camera system, and it

was verified that the proposed methods performed better than the traditional

methods. The proposed method of directly fitting a circular arc in 3D space

can be used to other application when the actual joint angle can be measured.

Finally, a stereo matching algorithm, which is directly done using the

images grabbed with multiple exposures, is proposed and presented in de-

tail. In order to apply the stereo vision techniques in field to acquire 3D

terrain maps in extreme light conditions, a series of photographs are taken

through multiple exposures. Since it is possible that the camera is moved

when the images are grabbed with multiple exposures, the images acquired

with short and long exposures are aligned to the image grabbed with auto

exposure. The matching costs of the resulting registered images and the im-

age grabbed with auto exposure are directly summed by weight. Compared

with the traditional methods such as “Exposure fusion”, with the proposed
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method, it is not needed to fuse the images grabbed with multiple expo-

sures. When the matching cost is computed with the proposed method, for

each pixel of the matching image, the local information in its local window

acquired from the images grabbed with multiple exposures could be better

retained. Experiments were done in laboratory and outdoors with a stereo

vision camera fixed on a tripod and held in the hand, and stereo matching

were done with a local window-based method and SGM. Through the exper-

iments, it is verified that compared to the traditional methods such as “Auto

exposure” and “Exposure fusion”, the proposed method consistently allowed

more valid points to be obtained and the 3D terrain model could be built

more accurately. Especially when the local window-based method was used,

the proposed method performed much better than the traditional methods.

Field experiments are planned to be conducted with the Gryphon system

in Angola in the near future to further evaluate the proposed methods. The

proposed methods can be used in other robot platforms.

5.2 Future work

In the future, there are some issues that could be studied to further im-

prove the performance of the Humanitarian Demining Robot system. First,

the On-line Calibration could be used for the Kinematic calibration and Hand-

Eye calibration. As presented in Figure 5.1, when a stereo vision camera is

moved from one position to the next position, the 3D maps are acquired in

these two positions. Through the point clouds in these two different posi-

tions, the transfer matrix between them, R and T , could be obtained and

the point clouds are fused. As shown in Figure 5.2, with the transfer ma-

trix R and T , the parameters of the Kinematic calibration and Hand-Eye

calibration could be calibrated and checked on-line.

Next, the Humanitarian Demining Robot system could work as an au-

tonomous system. Currently, it is remotely controlled. With the stereo vi-

sion camera, Inertial Measurement Unit (IMU), Global Positioning System

(GPS) and so on, for the Humanitarian Demining Robot system, the local

and global maps could be built. With the global 3D map, the robot could
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Figure 5.1: 3D maps are acquired in two different positions. Through the
point clouds in these two different positions, the transfer matrix between
them, R and T , could be obtained.
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Figure 5.2: On-line Calibration.

automatically scan the ground. Besides, with the global 3D map obtained

by one robot, many robots could be placed at different positions and they

could automatically scan the ground at the same time.

Finally, the sensor fusion of stereo vision camera and laser range finder

could be applied for terrain mapping. Currently, the stereo vision camera is

used for terrain mapping. However, the laser range finder is still considered

as an options. With the sensor fusion of stereo vision camera and laser range

finder, a 3D map could be generated more robustly.
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Appendix A

Notation

R(x, φx) =

 1 0 0

0 cos(φx) −sin(φx)

0 sin(φx) cos(φx)



R(y, φy) =

 cos(φy) 0 sin(φy)

0 1 0

−sin(φy) 0 cos(φy)



R(z, φz) =

 cos(φz) −sin(φz) 0

sin(φz) cos(φz) 0

0 0 1


T (Px, Py, Pz) = [Px Py Pz]

T
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Appendix B

Parameters calculation of

Humanitarian Demining Robot

system

Using the reference point positions measured by stereo vision camera in

the motion sequence m(m = 1, 2, 3), with the calibration method (Pure Ro-

tation with Joint Constraint Method) described in this paper, in the camera

coordinate frame, the estimated normal vector CnSC
m and center CCSC

m of the

circular arc can be solved. Since the joint axis of the moved joint must pass

through the center of the circular arc, from the mechanical structure, the

theoretical rotation axis nT
m and rotation center CT

m of the motion sequence

m are known. For the motion sequence 1, 2 and 3, they meet (B.1) to (B.6).

CT
1 = R(x, (θCx + π/2))R(y, θCy)R(z, (θCz + π))CCSC

1 + T (PCx, PCy, PCz)

(B.1)

nT
1 = R(y, θCy)R(z, (θCz + π))CnSC

1 (B.2)

CT
2 = R(x, (θCx + π/2))R(y, θCy)R(z, (θCz + π))CCSC

2 + T (PCx, PCy, PCz)

(B.3)

nT
2 = R(y, θCy)R(z, (θCz + π))CnSC

2 (B.4)

CT
3 = R(x, θ2)(R(x, (θCx + π/2))R(y, θCy)R(z, (θCz + π))CCSC

3 +

T (PCx, PCy, PCz))
(B.5)



126 Parameters calculation of Humanitarian Demining Robot system

nT
3 = R(x, θ2)R(x, (θCx + π/2))R(y, θCy)R(z, (θCz + π))CnSC

3 (B.6)

Note:

1. CCSC
m = [CCSC

xm
CCSC

ym
CCSC

zm ]
T

, m = 1, 2, 3

2. CnSC
m = [CnSC

xm
CnSC

ym
CnSC

zm]
T

, |CnSC
m | = 1, m = 1, 2, 3

3. CT
1 = [# 0 L1]

T , nT
1 = [−1 0 0]T

4. CT
2 = [# 0 0]T , nT

2 = [−1 0 0]T

5. CT
3 = [0 0 #]T , nT

3 = [0 0 − 1]T

After the normal vectors and centers of the circular arcs in the mo-

tion sequence 1, 2 and 3 are estimated, the calibration parameters p =

{θ̂2, θ̂3, θCx, θCy, θCz, PCx, PCy, PCz} can be computed.

Firstly, with (B.2) and (B.4), the parameters θCy and θCz are solved.

Next, the parameters θCx,PCx,PCy,PCz,θ̂2 are calculated with (B.1), (B.3),

(B.5) and (B.6).

Finally, with the internal reference point positions in motion sequence 1,

by solving the optimization problem defined with (B.7), the parameter θ̂3 is

solved.

min

N1∑
t=1

|RP SC
1,t − RP SE

1,t |
2

(B.7)

s.t.

θL3 ≤ θ̂3 ≤ θH3



Appendix C

Manipulator inclination

In order to check the manipulator inclination, setting the joint initial

angles to be the nominal values, for the marker on the manipulator’s tip

(Figure 2.8), in the robot coordinate frame, the trajectory of rectangle motion

was generated with inverse kinematics. The rectangle motion with an area

of 1000.0 mm x 2000.0 mm at different heights is shown in Figure 2.9. The

digital angle gauge with the resolution of 0.1 degrees was placed on the

manipulator base to measure the manipulator inclination angle in X direction

and Y direction respectively. The results are shown in Figure C.1. From the

experiment results, it is noticed that the inclination to the manipulator base

was not larger than 0.1 degrees when moving the manipulator in its working

space. When there is inclination of 0.1 degrees, the maximum position error

at the manipulator’s tip is 5.9 mm which meets the error requirement of

Humanitarian Demining Robot system. So it is safe to not take into account

the inclination effect.
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(a) Manipulator inclination angles in X direction.
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(b) Manipulator inclination angles in Y direction.

Figure C.1: Checking manipulator inclination.
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