
論文 / 著書情報
Article / Book Information

題目(和文)

Title(English) Parallel Distributed Optimization with Diffusion Based Stopping
Criterion

著者(和文) AYKENTAYLAN

Author(English) Taylan Ayken

出典(和文) 学位:博士（工学）,
 学位授与機関:東京工業大学,
 報告番号:甲第10012号,
 授与年月日:2015年9月25日,
 学位の種別:課程博士,
 審査員:井村　順一,天谷　賢治,中島　求,早川　朋久,畑中　健志

Citation(English) Degree:,
 Conferring organization: Tokyo Institute of Technology,
 Report number:甲第10012号,
 Conferred date:2015/9/25,
 Degree Type:Course doctor,
 Examiner:,,,,

学位種別(和文) 博士論文

Type(English) Doctoral Thesis

Powered by T2R2 (Science Tokyo Research Repository)

http://t2r2.star.titech.ac.jp/

Tokyo Institute of Technology

Doctoral Thesis

Parallel Distributed Optimization with
Diffusion Based Stopping Criterion

Author:

Taylan Ayken

Supervisor:

Dr. Jun-ichi Imura

August 2015

To my wife and parents

i

Abstract

As the size of systems to be controlled gets larger, distributed optimization is becoming

one of the significant topics. This is because large systems take longer to solve in a cen-

tralized manner. With distributed optimization, the large system is divided into smaller

subsystems and each local optimization problem is solved by an individual computer.

This solution is then used by a lover level controller as reference. However distribution,

by itself, is not enough as the subsystems have to share calculation results at each it-

eration and work in a synchronized manner. Former increases the communication costs

which can affect systems where communication is handled via radio frequency commu-

nication protocols. Latter results in wasted calculation capability as simpler subsystems

can solve their local optimization problem faster and have to wait for slower subsystems.

Also clock synchronization in networked systems is hard and is another research topic by

itself. Finally these systems require a supervisor which collects the convergence status

of individual algorithms and signals the whole system to stop optimization if a certain

criteria is met.

We can solve the first problem by using event-triggered communication where subsystems

only communicate if a certain communication criteria is met. The second problem can be

solved by extending the event-triggered algorithm to run asynchronously. Last problem

can be solved by using a new stopping criterion called diffusion based stopping criterion.

In this thesis, we propose three parallel distributed optimization algorithms: dual de-

composition based distributed optimization, the same algorithm with event-triggered

communication and an asynchronous optimization algorithm based on event-triggered

communication. We also propose a novel stopping criterion called diffusion based stop-

ping criterion. We then compare all three parallel distributed optimization methods and

two stopping criteria by numerical simulations.

Acknowledgements

First and foremost, I would like to express my gratitude to my supervisor, Prof. Jun-

ichi Imura, for his guidance, advice and making time in his busy schedule to discuss my

research. Without his advice and comments this thesis would not have been possible.

I would like to thank Prof. Tomohisa Hayakawa for his valuable criticisms, Ahmet

Cetinkaya for our discussion sessions and all other members of Imura, Hayakawa and

Nakadai Laboratories for their questions and comments during research presentations.

Their feedback helped me to clarify my expressions.

I would like to acknowledge Prof. Koji Tsumura of University of Tokyo and Prof. Takeshi

Hatanaka of Tokyo Institute of Technology for their valuable advices during discussion

sessions. Their comments provided me with the means to improve my research.

I would also like to thank my wife, Ozgu, for giving me the strength to finish my research

and my thesis, my parents for always standing behind me with their support, and my

friends for their encouragement.

Taylan Ayken

Tokyo Institute of Technology

iii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Purpose of this thesis . 2

1.3 Outline . 3

2 Problem Description 5

2.1 Single Commodity Network Flow Problems 5

2.2 Problem Formulation . 6

2.3 Example . 8

3 Distributed Optimization 10

3.1 Distributed Optimization Based on Dual Decomposition 10

3.2 Event-Triggered Distributed Optimization 13

3.2.1 Example . 16

4 Asynchronous Optimization 20

5 Stopping Criteria 24

5.1 Supervisor Based Stopping Criterion . 24

5.2 Diffusion Based Stopping Criterion . 25

5.2.1 Communication Graph and Stopping Criterion Matrix 25

5.2.2 Algorithm . 27

5.2.3 Example . 29

6 Numerical Simulations 32

6.1 Problem Settings of Numerical Simulation 32

6.2 Comparison Between Algorithms . 36

7 Conclusion 40

7.1 Summary . 40

7.2 Future Works . 42

Appendix 42

A Decomposition Explanation 43

A.1 Primal Decomposition . 43

iv

v

A.2 Dual Decomposition . 44

B MPC Implementation with Dual Decomposition 47

B.1 Step 1: . 47

B.2 Step 2: . 48

B.3 Step 3: . 48

B.4 Step 4: . 49

Bibliography 51

Chapter 1

Introduction

1.1 Motivation

Increase in computational power has led to more attention on complex models and

controlling large-scale networked systems with many subsystems. One of the methods

employed for solving such difficult control problems is Model Predictive Control (MPC),

as it can take physical constraints on the system into account. However, as the size of

systems gets larger and control problems get more complex, it requires longer time to

solve these problems in a centralized manner if not impossible due to real time deadlines,

increased memory, and processor usage. In addition, in a centralized system, the system

itself is not robust to changes in the network graph, due to failure of subsystems or

loss of connections between subsystems. Such scenarios can be prevented by using a

switched model control system which stores multiple models of the system and uses the

correct one according to the situation. However, although this option is feasible for

small-scale and relatively simple systems, it is not really feasible for large-scale systems

as the number of failure possibilities and model representations increase exponentially,

which requires more effort for modeling and more storage space in the controller.

Distributed optimization methods have been researched extensively since at least 1980s,

i.e. [1, 2] with wide array of applications such as power systems [3–5], water distribution

[6], temperature control [7, 8], groups of aircraft [9, 10] and even medical decision making

[11]. Distributed MPC is one of the effective methods for solving this kind of problems

as the system is divided into smaller subsystems and a controller for each subsystem

solves its own optimization problem in a distributed way, which results in the global

optimum solution, see e.g., [12–25] for different methods. Dual Decomposition method,

see e.g., [26] and [27], is one of the most efficient methods, which decomposes the general

cost function into multiple local cost functions which, in turn, can be solved on local

1

Chapter 1. Introduction 2

controllers relatively easily. Advantage of it is that as each controller is solving a smaller

part of the bigger problem, the optimum solution requires computation power for each

controller. Also this method is robust to subsystem failures, similar to [28], as each

subsystem, which is a part of the network and the computer system used for running the

optimization algorithm on that part, is calculating the solution to the local optimization

problem only. If a subsystem failure is detected by neighboring subsystems, they can

make the necessary adjustments to their model.

But, the existing distributed algorithms require synchronous calculations followed by

broadcasting their results at each iteration, which increases the communication cost.

In [29] a solution to this problem is presented, but this approach is not suitable to be

applied to single commodity network flow problems and the function used for triggering

the update events is directly tied to system dynamics, which complicates the imple-

mentation. Also synchronization in networked systems is hard to implement and is a

research topic on its own. Furthermore this synchronization means that some subsys-

tems are staying idle, waiting for other subsystems to finish their calculation, which

leads to unused processing power.

Also all of these methods require a supervisor, which collects the information about the

convergence status of each subsystem and stops the optimization algorithms running on

the subsystems when all of them satisfy a certain convergence criteria. This means the

supervisor uses global information which contradicts with the essence of distribution.

Finally this supervisor is connected to all subsystems with communication lines, which

increases system setup cost and introduces a single point of failure to the system: If the

supervisor malfunctions, the whole system malfunctions as subsystems will not be able

to stop and get stuck in an infinite loop.

1.2 Purpose of this thesis

In this thesis we propose a novel asynchronous optimization method that solves the above

mentioned problems: communication cost increase, implementation of synchronization

and idle processes. We show a conventional dual decomposition based optimization

method as a basis and identify its shortcomings. Then we implement event-triggered

communication so that we can decrease the communication costs by disposing the need

to announce new results to all neighbors by using local estimates. This novel method

is still synchronous so we eliminate the need for synchronization and finally present our

novel asynchronous optimization method. First two methods have been presented in our

conference paper, [30], and journal paper, [31].

Chapter 1. Introduction 3

Also this thesis proposes a new stopping criterion for distributed systems, called diffusion

based stopping criterion which eliminates the need for a supervisor. This way we truly

implement a distributed optimization method where there is no need for the conventional

supervisor which requires global information. In this method subsystems can determine

the convergence status of the whole network. A preliminary version of this has been

presented in our conference paper, [32]. In [33], we further developed and applied this

method to event-triggered communication method and it is expected to be published

shortly.

Although we focus on single commodity network flow problems, we believe with minor

modifications these methods can be applied to a diverse selection of large-scale networked

system optimization problems.

1.3 Outline

This thesis is organized as follows.

In chapter 2, first, we introduce single commodity network flow problems, then show

the problem formulation that we will use throughout this thesis. We present possible

connections types between subsystems and the exogenous signal that we are trying to

satisfy. We also present some properties of the matrices that mathematically define these

connections. We then define the problem and finally show a simple example system to

show how the connections between subsystems are translated to mathematical equations.

In chapter 3, we introduce the dual decomposition based optimization method that will

form the basis of other methods we developed. We show how we can modify the problem

we are trying to solve so that all equations are decoupled and can be solved by individual

subsystems. We then define a convergence criterion that is used for detecting when a

solution has been found. Afterward we present the algorithm in easily understandable

steps. However, this basic method has some shortcomings so we introduce the event-

triggered communication method that can solve some of the problems of the previous

method. We define local estimates, when and how they will be updated and show a

simple example for the update operation. Finally we present the algorithm in steps.

In chapter 4, we talk about possible problems related to synchronization requirement of

the previous methods and present the asynchronous optimization method as a solution.

We redefine our local estimates by using local iterations and modify the update operation

to use the local iteration. We then show the step by step algorithm for this method.

Chapter 1. Introduction 4

In chapter 5, we analyze the supervisor based stopping criterion that is used by almost

all distributed optimization methods. As it requires global information, we define a new

method named diffusion based stopping criterion that only uses local information and

can determine the convergence status of all subsystems. We define the communication

graph and the stopping criterion matrix that is used by this method. Then we show

the algorithm for this new method and give an example that shows the changes on the

stopping criterion matrices of a system as each subsystem converges.

In chapter 6, we combine these three distributed optimization methods and two stopping

criteria and get six algorithms that we will analyze with numerical simulations. We show

an example system and present the methods used to write the simulation codes. Finally

we analyze calculation time, number of iterations, number of update events and cost at

each time step.

Chapter 2

Problem Description

2.1 Single Commodity Network Flow Problems

In single commodity network flow problems we try to satisfy the demand created by

users for a certain commodity. This commodity can be electricity, water, gas or other

possible demanded good. Even car traffic can be used. User demand is already known

or estimated for a certain horizon and the optimization algorithm tries to satisfy this de-

mand while minimizing cost related to transporting the commodity and taking network

constraints into account.

As an example if we look at a water system for a small town we can see that there

are houses, businesses and other consumers which create the demand. This demand

can be estimated by the water company by using past usage trends, weather reports

and other available data. Then this system should be able to generate this commodity.

This is usually done by wells, water purification and reverse osmosis plants. There

are also storage subsystems in place as water tanks at houses, water towers for certain

neighborhoods and cisterns. This system also has some constraints associated with

it: Water pipes connecting these subsystems have a certain maximum flow capacity,

generator subsystems have a certain limit they can produce at a certain time and storage

subsystems can store a certain amount before filling their capacity. There may be

even minimum storage limits in cases of emergencies. Finally there is a cost function

associated with this system: Pumps use electricity to circulate water, reverse osmosis

requires huge amounts of electricity to convert sea water to drinking water, everything

in the system has to be periodically maintained and damaged parts need to be replaced.

Such a system is the perfect candidate for optimal control.

5

Chapter 2. Problem Description 6

2.2 Problem Formulation

We can represent a static optimization problem on a network system composed of M

subsystems as,

f(x) =
M∑
i=1

fi(xi), (2.1)

gi(xi) ≤ 0mi , i = 1, . . . ,M, (2.2)
M∑
i=1

Fixi +Gd = 0p, (2.3)

x = [xT1 , . . . , x
T
M]T ,

xi ∈ Rni ,

d = [d1, . . . , dr]
T ,

dj ∈ R,

f : R
∑
ni → R,

fi : Rni → R,

gi : Rni → Rmi ,

Fi ∈ {0, 1}p×ni ,

G ∈ {0, 1}p×r,

where (2.1) shows the cost function that we are trying to minimize, (2.2) shows the

inequality constraints each subsystem has, (2.3) shows the equality constraints that

connect the subsystems, dj is the demand we are trying to satisfy, and 0p denotes the

zero column vector with p elements.

In addition, for constructing Fi and G matrices, that define the equality constraints, we

consider here the two connection types shown in Fig. 2.1 because any network can be

represented by some combinations of these two cases:

Fig. 2.1(a) This means there is an equality relationship that can be shown as xi,a +

xj,b = 0, where xi,a is the ath element of xi. Thus both Fi and Fj have an element

of 1 on the same row of their ath and bth columns, respectively, but G doesn’t

have an element of 1 on the same row.

Fig. 2.1(b) This means there is an equality relationship that can be shown as xi,a +

xj,b + dc = 0, where dc is the cth element of d. Thus Fi and Fj have an element

Chapter 2. Problem Description 7

of 1 on the same row of their ath and bth columns, respectively, and G has an

element of 1 on the same row of the kth column.

For any and every network, all elements of Fi and G are given by 0 or 1. The circles

and square represent the subsystems and the demander, respectively.

Lemma 2.1. Fi and G matrices have the following properties where ‖...‖p is the p-norm,

Ni represents the set of neighbors for subsystem i and 0a×b represents the a-by-b zero

matrix.

(i) ‖Fi‖1 = 1 and ‖Fi‖∞ = 1.

(ii) F Ti is the Moore-Penrose pseudoinverse of Fi for all i = 1, . . . ,M .

(iii) F Ti Fj = 0ni×nj if j /∈ Ni.

(iv) ‖G‖1 = 1 and ‖G‖∞ = 1.

(v) G is full rank and semi-orthogonal, i.e., a non-square matrix where the columns

are orthonormal vectors.

Proof. (i) means that any row or column of Fi has a maximum of one element of 1. This

is related to the construction method of Fi. (ii) means FiF
T
i maps all column vectors of

Fi to themselves. This also means F Ti Fi maps all column vectors of F Ti to themselves.

This is also related to the construction method of Fi. (iii) follows from how Fi matrices

(a) Subsystem to subsystem connection.

(b) Subsystems to user connection.

Figure 2.1: Connection types that define (2.3).

Chapter 2. Problem Description 8

are constructed. If j /∈ Ni, that means that either Fi or Fj or none has an element of

1 on each row. This means when we multiply F Ti with Fj , elements of 1 do not line up

and the result is a matrix with all 0 elements. (iv) means that any row or column of Gi

has a maximum of one element of 1. This is related to the construction method of Gi.

(v) means that rank(Gi) = r and GTi Gi = Ir as the number of demand signals are less

than the number of inequality constraints, r ≤ p. This is also related to the construction

method of Gi.

We then consider the following problem:

Problem 1. Given d, find x minimizing f(x) while satisfying (2.2) and (2.3).

2.3 Example

To better represent the problem, we can show a simple example for the system in Fig. 2.2.

Assume that subsystem 1 is a source, which supplies commodity such as a water well.

It can be expressed by:

x1(k + 1) = A1x1(k) +B1u1(k),

0 ≤ x11(k) + x12(k) ≤ 800,

where x1(k) = [x11(k) x12(k)]T is the state vector denoting the supplied water and u1(k)

is the control variables such as the speed of the pump and valve settings.

Figure 2.2: A simple example of three nodes.

Chapter 2. Problem Description 9

In a similar way, suppose that subsystem 2 is a storage subsystem, which stores the

commodity such as a water tower. It can be expressed by:

x2(k + 1) = A2x2(k) +B2

u21(k)

u22(k)

u23(k)

 ,
−1000 ≤ u21(k) + u22(k) + u23(k) ≤ 1000,

100 ≤ x2(k) ≤ 5000,

where x2(k) represents the stored commodity and u2(k) = [u21(k) u22(k) u23(k)]T is the

control variable such as the water discharge rate at a certain pipe.

Finally, suppose that nodes D1 and D2 represent the demanders and contain the de-

mands d1(k) and d2(k) respectively. In addition, we have the following equality con-

straints:

x11(k) + u21(k) = 0,

x12(k) + u22(k) + d1(k) = 0,

u23(k) + d2(k) = 0.

We can rewrite this in the matrix form as:
1 0 0|u1|

0 1 0|u1|

0 0 0|u1|

︸ ︷︷ ︸

F1

[
x1(k)

u1(k)

]
+

0 1 0 0

0 0 1 0

0 0 0 1

︸ ︷︷ ︸

F2

[
x2(k)

u2(k)

]
+

0 0

1 0

0 1

︸ ︷︷ ︸

G

d(k) = 0.

Chapter 3

Distributed Optimization

3.1 Distributed Optimization Based on Dual Decomposi-

tion

In this section, we focus on a dual decomposition based distributed optimization method

[26] that will form the basis of our other optimization methods. We begin by writing

the Lagrangian of the cost function by merging the cost function f(x) in (2.1) and the

equality constraints in (2.3):

L =
M∑
i=1

fi(xi) + λT

(
M∑
i=1

Fixi +Gd

)
(3.1)

where the vector λ ∈ Rp denotes the Lagrange variables (also called dual variables or

“price”).

Then we change the order of summation of (3.1) to get:

L =
M∑
i=1

(
fi(xi) + λTi xi

)
+ λTGd (3.2)

where λi = F Ti λ ∈ Rni is the Lagrange variable for subsystem i.

From this, we can get the part inside the parentheses and use it as the local cost function

as it contains only variables for subsystem i. So if we define the local cost function as

Li = fi(xi) + λTi xi, (3.3)

we get

10

Chapter 3. Distributed Optimization 11

L =
M∑
i=1

Li + λTGd (3.4)

for the global cost function.

Then instead of Problem 1, we consider the following local optimization problem for

given λi:

Problem 2. Given λi, find xi minimizing Li in (3.3) while satisfying (2.2).

If the solution x∗i to Problem 2 which minimizes the local cost functions Li in (3.3)

while satisfying the inequality constraint (2.2) for given λi, i = 0, . . . ,M , also satisfies

the equality constraint (2.3), then it is also a solution to Problem 1 that minimizes the

original cost function (2.1) while satisfying constraints (2.2) and (2.3).

Now, λi should also be optimized in order for the solutions x∗i to satisfy the equality

constraint (2.3). As the result of each optimization depends on the result of the other

optimization, this requires using an iterative method for xi and λi. As we start using

an iterative method, xi and λi depend on the iteration τ ∈ {1, . . .}. So the local cost

function (3.3) becomes

Li(τ) = fi(xi(τ)) + λTi (τ)xi(τ). (3.5)

Because of this iteration process, the equality constraint in (2.3) will not be satisfied at

every iteration. We can define an error related to the equality constraint in (2.3) as

η(τ) :=

M∑
i=1

Fixi(τ) +Gd. (3.6)

Next for given xi(τ), we have to update λi(τ), for each subsystem at each iteration

τ ∈ {1, . . .}. For this, we start with using a subgradient update rule for the global

Lagrange variable λ(τ) as

λ(τ + 1) = λ(τ) + αη(τ), (3.7)

where α expresses the step size for our subgradient update rule. There are many different

methods for defining the step size, some depend on the iteration, τ . But for simplicity,

we are using a fixed step size. Also there are different methods for updating λ(τ) but

we use subgradient method as we base our approach on the dual decomposition method

presented in [26].

Chapter 3. Distributed Optimization 12

By modifying (3.6), we can define a localized version of the equality constraint error in

such a way that subsystem i only has to use xi and xj , where j ∈ Ni, for calculating

(3.7). We know that F Ti Fj = 0ni×nj when j /∈ Ni from Lemma 2.1(iii). So now we can

define the localized equality constraint error as

ηi(τ) := F Ti

Fixi(τ) +
∑
j∈Ni

Fjxj(τ) +Gd

 , (3.8)

and if we multiply both sides of (3.7) with F Ti we find the localized gradient descent

update rule for the Lagrange variable λi(τ):

λi(τ + 1) = λi(τ) + αηi(τ). (3.9)

As this is an iterative process, we have to define a stopping criterion for the iteration to

stop so that we guarantee to get a result in finite time. Some algorithms define this as

a certain threshold for the iteration, τ , but using the equality constraint error is better

as the gradient descent is an asymptotically decreasing function and a limit on the error

can be used for tuning between speed and accuracy of the optimization algorithm. So

as a stopping criterion, we consider whether the global equality constraint in (2.3) is

satisfied with a minimal relaxation parameter, ε. Now the convergence criterion can be

defined as

‖η(τend)‖∞ < ε, (3.10)

where ‖...‖∞ is the infinity norm of a vector. Also, τend denotes the final iteration when

the convergence criterion has been satisfied.

We can modify (3.10) and write a convergence criterion for each subsystem i as:

‖ηi(τend)‖∞ < ε. (3.11)

Then this convergence criterion can be used by subsystem i to decide whether it con-

verged to a valid solution or not. Then it checks whether the stopping criterion is

satisfied and if so it stops the optimization algorithm and prepares for the next time

step, k.

Lemma 3.1. (3.10) is satisfied iff (3.11) is satisfied for all i = 1, . . . ,M .

Chapter 3. Distributed Optimization 13

Proof. First we prove that (3.10) is satisfied if (3.11) is satisfied for all i = 1, . . . ,M .

Let’s define F = diag(F1, . . . , FM) and η̂(τ) = [ηT1 (τ), . . . , ηTM (τ)]T . Due to the definition

of ηi(τ), we can say that F η̂(τ) = FF T η̃(τ), where η̃(τ) = 1M ⊗ η(τ) and 1M is the

all-ones column vector with M elements. We have rank(FF T) ≥ p as rank(FF T) =

rank(F) and rank(F) =
M∑
i=1

rank(Fi). This means that each element of η(τ) will

appear at least once in F η̂(τ) and in FF T η̃(τ). If ‖ηi(τ)‖∞ < ε for all i = 1, . . . ,M ,

then ‖η̂(τ)‖∞ < ε. Due to the properties of Fi in Lemma 2.1(i), we can say that

‖F η̂(τ)‖∞ = ‖F‖∞ ‖η̂(τ)‖∞ < ε is also true. Using the equalities above, we can rewrite

it as
∥∥FF T η̃(τ)

∥∥
∞ < ε. As we know each row of η(τ) will appear at least once in

FF T η̃(τ) and using
∥∥FF T η̃(τ)

∥∥
∞ = ‖F‖∞

∥∥F T∥∥∞ ‖η̃(τ)‖∞, we can say that ‖η̃(τ)‖∞ <

ε is satisfied, so ‖η(τ)‖∞ < ε is satisfied.

It is trivial to prove that (3.11) is satisfied for all i = 1, . . . ,M if (3.10) is satisfied.

We summarize this method with the following algorithm:

Algorithm 1 (Distributed Algorithm).

[Updating the solution candidates]

Each subsystem i, i = 0, . . . ,M , performs the following steps with the initial condition

τ ← 1, λi(1)← 0ni.

U1. xi(τ)← minxiLi(τ) given λi(τ).

U2. Send xi(τ) to subsystem j ∀j ∈ Ni, receive xj(τ) from all subsystems j ∈ Ni.

U3. ηi(τ)← F Ti

Fixi(τ) +
∑
j∈Ni

Fjxj(τ) +Gd

.

U4. λi(τ + 1)← λi(τ) + αηi(τ).

[Check if the algorithm is terminated]

According to Algorithm 4 or 5.

3.2 Event-Triggered Distributed Optimization

With normal distributed optimization, there are a few shortcomings. One of them is

that at each iteration all subsystems exchange xi(τ). This increases the communication

cost dramatically and if the subsystems are using radio communications, keeping the

Chapter 3. Distributed Optimization 14

communication at a minimum is essential for reducing power requirements. Also this al-

gorithm is synchronous, some subsystems have to wait for more slower nodes which leads

to wasted processing power. In addition to that, synchronization can be hard to imple-

ment in some networks. We can solve the first problem by using state value estimates

and then updating these estimates when required. This way we can decrease the num-

ber of communication events. We presented this approach, event-triggered distributed

optimization, in [31].

For this approach to work, each neighboring subsystem j ∈ Ni, requires an estimate of

the state of subsystem i. We can define this as:

x̂i(0) = 0ni ,

x̂i(τ) =

{
xi(τ) if updated,

x̂i(τ − 1) if not updated

(3.12)

where x̂i(τ) is the estimate for subsystem i during iteration τ , time step k.

This information must be common to subsystems i and j ∈ Ni as subsystems j ∈ Ni will

use this estimate in their localized equality constraint error calculations and subsystem

i will use it to calculate the deviation from the actual value xi(τ) in order to update

it when required. To update it we can define an error related to the state estimate

and update it when a threshold value is reached. We represent the estimation error

threshold function for subsystem i as δi(τ). Whenever the estimation error is greater

than the value of δi(τ) at iteration τ , subsystem i will send a message to all j ∈ Ni at

iteration τ to update x̂i(τ) so that

‖xi(τ)− x̂i(τ)‖∞ ≤ δi(τ) (3.13)

is satisfied at each iteration τ . We can guarantee this if the following condition is used

to check if the estimate is within limits:

‖xi(τ)− x̂i(τ − 1)‖∞ ≤ δi(τ). (3.14)

If this condition is satisfied, we don’t have to update, which means x̂i(τ) = x̂i(τ − 1) so

(3.14) becomes the same as (3.13) which means our condition is met. If, however, (3.14)

is not satisfied, x̂i(τ) = xi(τ) according to the update rules. If we plug this into (3.13),

we get ‖0ni‖∞ ≤ δi(τ) which is always true.

Now the only requirement for the estimation error threshold function is that it should

be a positive and decreasing function. The simplest candidate is in the form of:

Chapter 3. Distributed Optimization 15

δi(τ) =
K

τ
(3.15)

where K is a constant.

Let’s consider the optimization procedure at subsystem i. If we use the estimates

x̂j(τ), j ∈ Ni for the local equality constraint in (3.8) we get:

η̂i(τ) := F Ti

Fixi(τ) +
∑
j∈Ni

Fj x̂j(τ) +Gd

 , (3.16)

where η̂i(τ) is called local equality constrain error estimate for subsystem i during iter-

ation τ , time step k.

Also instead of the actual error, we now use this error estimate in the new convergence

criterion for each subsystem i:

‖η̂i(τend)‖∞ < ε. (3.17)

Then this convergence criterion can be used by subsystem i to decide whether it con-

verged to a valid solution or not. Then it checks whether the stopping criterion is

satisfied and if so it stops the optimization algorithm and prepares for the next time

step, k.

However, there will be differences between the Lagrange variable vectors of the neigh-

boring subsystems as we are using the estimate, x̂j(τ), instead of the actual value, xj(τ),

which will lead to big calculation errors as we iterate. To solve this problem, we can use

an averaging operation:

λi(τ)← F Ti W

Fiλi(τ) +
∑
j∈Ni

Fjλj(τ)

 , (3.18)

where W is a unique diagonal weight matrix, satisfying the following property:

W

M∑
i=1

Fi1
ni = 1p. (3.19)

where 1p denotes the all ones column vector with p elements.

After subsystem i updates its Lagrange variable vector, λi(τ), its neighboring subsystems

j ∈ Ni have to update the corresponding values in their Lagrange variable vectors, λj(τ),

so that the values are synchronized. This is done by the following replacement operation:

Chapter 3. Distributed Optimization 16

λj(τ)← F Tj Fiλi(τ) + λj(τ)− F Tj FiF Ti Fjλj(τ). (3.20)

As this replacement operation seems complex, it is best to show an example to better

explain how this operation works.

3.2.1 Example

As an example, assume that we have a system with the following Fi matrices:

F1 =

1 0

0 1

0 0

 , F2 =

1 0 0

0 1 0

0 0 1

 ,

F3 =

0 0

0 0

1 0

 , F4 =

0

0

1

 .
(3.21)

Let’s use the following λi vectors:

λ1(τ) =

[
λ1,1

λ1,2

]
, λ2(τ) =

λ2,1

λ2,2

λ2,3

 ,
λ3(τ) =

[
λ3,1

λ3,2

]
, λ4(τ) =

[
λ4,1

]
.

(3.22)

By using (3.19), we can find a unique W matrix for this system:

W =

1
2 0 0

0 1
2 0

0 0 1
3

 . (3.23)

Now assume subsystem 2 had an update event. This results in an averaging operation

presented in (3.18). At the end of this operation λ2 becomes

λ2(τ) =

λ1,1+λ2,1

2
λ1,2+λ2,2

2
λ2,3+λ3,1+λ4,1

3

 . (3.24)

Chapter 3. Distributed Optimization 17

Then, as N2 = {1, 3, 4}, subsystems 1, 3 and 4 execute the replacement operation shown

in (3.20). At the end of this operation we get

λ1(τ) =

[
λ1,1+λ2,1

2
λ1,2+λ2,2

2

]
, (3.25)

λ3(τ) =

[
λ2,3+λ3,1+λ4,1

3

λ3,2

]
, (3.26)

λ4(τ) =
[
λ2,3+λ3,1+λ4,1

3

]
. (3.27)

We can summarize this method with the following algorithm:

Algorithm 2 (Event-Triggered Distributed Algorithm).

[Updating the solution candidates]

Each subsystem i, i = 0, . . . ,M , performs the following steps with the initial condition

τ ← 1, λi(1)← 0ni, x̂i(0)← 0ni, x̂j(0)← 0nj ∀j ∈ Ni.

U1. xi(τ)← minxiLi(τ) given λi(τ).

U2. Check if ‖xi(τ)− x̂i(τ − 1)‖∞ ≤ δi(τ):

(a) If true: x̂i(τ) = x̂i(τ − 1).

(b) Else: x̂i(τ) = xi(τ). Send xi(τ) to subsystem j ∀j ∈ Ni, and get λj(τ) from

subsystem j ∀j ∈ Ni. Calculate new λi(τ) using

λi(τ) ← F Ti W

Fiλi(τ) +
∑
j∈Ni

Fjλj(τ)

. Send λi(τ) to subsystem j ∀j ∈

Ni,

U3. Check if new xj(τ) was received from subsystem j j ∈ Ni:

(a) If new xj(τ) was received: x̂j(τ) = xj(τ). Send λi(τ) and receive λj(τ).

Calculate new λi(τ) using

λi(τ)← F Ti Fjλj(τ) + λi(τ)− F Ti FjF Tj Fiλi(τ).

(b) Else: x̂j(τ) = x̂j(τ − 1).

U4. η̂i(τ)← F Ti

Fixi(τ) +
∑
j∈Ni

Fj x̂j(τ) +Gd

.

U5. λi(τ + 1)← λi(τ) + αη̂i(τ).

[Check if the algorithm is terminated]

According to Algorithm 4 or 5.

Chapter 3. Distributed Optimization 18

This algorithm works as long as the estimation error threshold function diminishes to

0.. We can prove this with the following theorem.

Theorem 3.2. If δi(τ), i ∈ {1, . . . ,M}, satisfies limτ→∞ δi(τ) = 0 and δi(τ+1) < δi(τ)

for all τ ≥ 1. Suppose that the current time is k. Then the above Event-Triggered

Distributed Algorithm stops at a finite iteration τ .

Proof. As the update rule is ‖xi(τ)− x̂i(τ − 1)‖ ≤ δi(τ), after the update we have

the inequality ‖xi(τ)− x̂i(τ)‖ ≤ δi(τ). As ‖xi(τ)− x̂i(τ)‖ ≤ δi(τ) we can say that

x̂i(τ) = xi(τ) + Oi(δi(τ)) where Oi(δi(τ)) is an error vector that shows the difference

between the estimate and the real values. It has a lower bound of −δi(τ) and an upper

bound of δi(τ). Then we can calculate the equality condition by

η̂i(τ) = F̄ Ti F̄ixi(τ) +
∑
j∈Ni

F̄ Ti F̄jxj(τ)

+
∑
j∈Ni

F̄ Ti F̄jOj(δi(τ)) +

r∑
j=1

F̄ Ti Hjdj .

Our stopping criteria is ‖η̂i(τ)‖ < ε, k = k0, . . . , k0 + N − 1. We can easily see that

η̂i(τ) = ηi(τ) +
∑
j∈Ni

F̄ Ti F̄jOj(δi(τ)) By using the triangle inequality, we can rewrite it as

‖η̂i(τ)‖ ≤ ‖ηi(τ)‖+

∥∥∥∥∥∥
∑
j∈Ni

F̄ Ti F̄jOj(δi(τ))

∥∥∥∥∥∥ . (3.28)

The boundaries of Oi(δi(τ)) can be used to find the boundaries of
∑
j∈Ni

F̄ Ti F̄jOj(δi(τ))

∥∥∥∥∥∥
∑
j∈Ni

F̄ Ti F̄jOj(δi(τ))

∥∥∥∥∥∥ < |Ni| δi(τ),

where |Ni| is the number of neighbors node i has. Then we can rewrite (3.28) as

‖η̂i(τ)‖ < ‖ηi(τ)‖+ |Ni| δi(τ). (3.29)

For any ε > 0, there exists a finite τ ′ such that

|Ni| δi(τ) <
ε

2
∀τ > τ ′ (3.30)

Chapter 3. Distributed Optimization 19

Also for any ε > 0, there exists a finite τ ′′ such that

‖ηi(τ)‖ < ε

2
∀τ > τ ′′ (3.31)

Eqs. (3.30) and (3.31) imply that Eq. (3.29) holds true for all τ > max(τ ′, τ ′′).

Chapter 4

Asynchronous Optimization

With event-triggered communication, we were able to solve the communication cost

problem. However, it was still a synchronous method, leading to wasted processing

power and requirement for hard to implement synchronization. We can get remove the

synchronization requirement and design an asynchronous optimization method to solve

these problems.

For this approach to work, each neighboring subsystem j ∈ Ni, requires an estimate of

the state of subsystem i. We can define this as:

x̂i(0) = 0ni ,

x̂i(τi) =

{
xi(τi) if updated,

x̂i(τi − 1) if not updated

(4.1)

where x̂i(τi) is the estimate for subsystem i during iteration τi. The important difference

here is that the network wide iteration number τ is replaced with local iteration number

τi.

Similar to event-triggered communication, we define an error related to the state estimate

and update it when a threshold value is reached. This threshold function must use the

local iteration number, so the estimation error threshold function for subsystem i is

represented as δi(τi). Whenever the estimation error is greater than the value of δi(τi)

at iteration τi, subsystem i will send a message to all j ∈ Ni at iteration τi so that

‖xi(τi)− x̂i(τi)‖∞ ≤ δi(τi) (4.2)

is satisfied instead of 3.13. To satisfy this condition we modify and get

20

Chapter 4. Asynchronous Optimization 21

‖xi(τi)− x̂i(τi − 1)‖∞ ≤ δi(τi). (4.3)

Again, the only requirement for the estimation error threshold function is that it should

be a positive and decreasing function. The simplest candidate is similar to 3.15:

δi(τi) =
K

τi
(4.4)

where K is a constant.

As subsystem i also has the estimates of each neighboring subsystem j ∈ Ni, we define

the initialization and update rules as:

x̂j(0) = 0nj ,

x̂j(τi) =

{
xj(τj) if updated,

x̂j(τi − 1) if not updated

(4.5)

The important part here is that the estimate is represented as x̂j(τi), which means it

now depends on the local iteration number of subsystem i, τi. But when we are updating

it, we get the actual value from subsystem j at τj .

Now we consider the procedure at subsystem i. If we use the estimates x̂j(τi), j ∈ Ni
for the local equality constraint in (3.8) we get:

η̂i(τi) := F Ti

Fixi(τi) +
∑
j∈Ni

Fj x̂j(τi) +Gd

 , (4.6)

where η̂i(τi) is called local equality constrain error estimate for subsystem i during

iteration τi.

Also, similar to 3.17, we use this error estimate in the new convergence criterion for each

subsystem i:

‖η̂i(τi,end)‖∞ < ε (4.7)

where τi,end denotes the final iteration number of subsystem i when the convergence

criterion has been satisfied.

Then this convergence criterion can be used by subsystem i to decide whether it con-

verged to a valid solution or not. Then it checks whether the stopping criterion is

satisfied and if so it stops the optimization algorithm.

Chapter 4. Asynchronous Optimization 22

Again, there will be differences between the Lagrange variable vectors of the neighboring

subsystems as we are using the estimate, x̂j(τi), instead of the actual value, xj(τj),

which will lead to bigger calculation errors as we iterate as now the iteration numbers

are different. So, we modify the averaging operation in 3.18 and get:

λi(τi)← F Ti W

Fiλi(τi) +
∑
j∈Ni

Fjλj(τj)

 . (4.8)

One thigh to consider here is that we are using λj(τj) as we require the Lagrange variable

vector used by subsystem j at that iteration.

Again, after this update operation, the neighboring subsystems j ∈ Ni have to update

the corresponding values in their Lagrange variable vectors, λj(τj), so that the values

are synchronized. So, we modify the replacement operation in 3.20 and get:

λj(τj)← F Tj Fiλi(τi) + λj(τj)− F Tj FiF Ti Fjλj(τj). (4.9)

Another important thing to consider is Algorithm 2, subsystem i waits indefinitely at

step U2.b until it gets λj(τ) from subsystem j ∀j ∈ Ni. But as the iterations are not

synchronized, a neighboring subsystem j ∈ Ni may have already stopped the iteration

algorithm if subsystem i send a message stating that it converged to a solution at the

previous iteration. This means that subsystem i will enter an infinite loop and never

reach a solution. To solve this problem we have to check if the stopping criterion is

satisfied while we are waiting for λj(τ) and terminate the optimization if it is satisfied.

That means some parts of the stopping criterion algorithm is working in parallel to our

optimization algorithm. We will talk more about these in the next chapter.

Now, we can summarize this method with the following algorithm:

Algorithm 3 (Asynchronous Algorithm).

[Updating the solution candidates]

Each subsystem i, i = 0, . . . ,M , performs the following steps with the initial condition

τi ← 1, λi(1)← 0ni, x̂i(0)← 0ni, x̂j(0)← 0nj ∀j ∈ Ni.

U1. xi(τi)← minxiLi(τi) given λi(τi).

U2. Check if ‖xi(τi)− x̂i(τi − 1)‖∞ ≤ δi(τi):

(a) If true: x̂i(τi) = x̂i(τi − 1).

Chapter 4. Asynchronous Optimization 23

(b) Else: x̂i(τi) = xi(τi). Send xi(τi) to subsystem j ∀j ∈ Ni, and wait for

λj(τj) from subsystem j ∀j ∈ Ni. Check if the stopping criterion is satisfied

according to Algorithm 4 or 5, if so, go to their last step. If not, calculate

new λi(τi) using

λi(τi) ← F Ti W

Fiλi(τi) +
∑
j∈Ni

Fjλj(τj)

. Send λi(τi) to subsystem j ∀j ∈

Ni,

U3. Check if new xj(τj) was received from subsystem j j ∈ Ni:

(a) If new xj(τj) was received: x̂j(τi) = xj(τj). Send λi(τi) and receive λj(τj).

Calculate new λi(τi) using

λi(τi)← F Ti Fjλj(τj) + λi(τi)− F Ti FjF Tj Fiλi(τi).

(b) Else: x̂j(τi) = x̂j(τi − 1).

U4. η̂i(τi)← F Ti

Fixi(τi) +
∑
j∈Ni

Fj x̂j(τi) +Gd

.

U5. λi(τi + 1)← λi(τi) + αη̂i(τi).

[Check if the algorithm is terminated]

According to Algorithm 4 or 5 where τ is replaced by τi.

Chapter 5

Stopping Criteria

5.1 Supervisor Based Stopping Criterion

Supervisor based stopping criterion is the default stopping criterion that’s used by nearly

all distributed methods. The reason for that is its simplicity as single master–multiple

slave systems are trivial to develop at this point. When the convergence criterion, (3.11)

or (3.17), is satisfied for subsystem i, it sends a message to a supervisor stating that it

converged to a solution. The supervisor keeps track of the whole system and decides

when to stop according to the convergence messages it received. We can summarize this

method with the following stopping algorithm:

Algorithm 4 (Supervisor Stopping Algorithm).

[Checking if the update is terminated]

C1. Each i checks if ‖ηi(τ)‖∞ < ε and sends True or False to the supervisor.

C2. Supervisor checks if all received messages are True or not:

(a) If all True: Send the Stop signal to all subsystems.

(b) Else: Send the Continue signal to all subsystems.

C3. Each i checks the message sent by the supervisor:

(a) If Stop: τend = τ and xi(τend) for all i = 0, . . . ,M are solutions that minimize

the global cost function (2.1).

(b) If Continue: τ ← τ + 1, and go to step U1.

24

Chapter 5. Stopping Criteria 25

If we are using the asynchronous optimization method, there are a few minor changes.

With asynchronous optimization, the master runs a separate thread where it checks if

C2. is satisfied. Also subsystem i executes step C3. during U2.b to check if the stopping

criterion is satisfied so that it does not get stuck in an infinite loop.

5.2 Diffusion Based Stopping Criterion

5.2.1 Communication Graph and Stopping Criterion Matrix

We mentioned that, the supervisor based stopping criterion is used by nearly all dis-

tributed methods but it has several shortcomings: It requires global information in the

form of convergence criterion, causes an increase in system development costs as it re-

quires communication lines between the supervisor and all subsystems, and affects the

robustness of the whole system as the weakest link in the chain, if something happens

to this supervisor, the optimization algorithm will not work for the whole system. Be-

cause of this, we developed a new stopping criterion for distributed optimization named

diffusion based stopping criterion. This name was chosen as the convergence status of a

subsystem “diffuses” through the whole network and can be found in each subsystem’s

stopping criterion matrix not by itself but mixed with other subsystems’ convergence

statuses.

For this method to work, we are assuming that convergence status of a subsystem is sent

to only immediate neighbors. This information is considered to be local as a subsystem

i has only the convergence status information about its immediate neighbors j ∈ Ni
besides its own.

(a) G (b) G∗

Figure 5.1: An example graph G and its communication graph G∗

Chapter 5. Stopping Criteria 26

For this criterion, we create a new graph called communication graph G∗ from the

system representation G. If both subsystems i and j are connected by an edge in

graph G, similar to Fig. 2.1(a), they are also connected in the communication graph

G∗, which is fairly straightforward. But, if both subsystems i and j are connected to a

demander by an edge in graph G, they are also connected in the communication graph

G∗, similar to Fig. 2.1(b). Otherwise, they are not connected. This is because they

all have and element of 1 on the same row of Fi and Fj which means that there is an

equality constraint between their state values. An example of the communication graph

G∗ can be seen in Fig. 5.1. We can create this communication graph Fig. 5.1(b) from the

system graph Fig. 5.1(a) as subsystems 1 and 4 are both connected by an edge so they

are neighbors, and similarly for the subsystem pairs 2–5, 3–4 and 4–5. Also subsystems

1 and 2 are both connected through node U1 so they are neighbors, and similarly for

the case of subsystems 3 and 4. The resulting neighbor sets are:

N1 = {2, 4} ,
N2 = {1, 5} ,
N3 = {4, 5} ,
N4 = {1, 3, 5} ,
N5 = {2, 3, 4} ,

which satisfy Lemma 2.1(iii),

For this method, each subsystem has a stopping criterion matrix, denoted Si ∈ {0, 1}�G∗×(|Ni|+1)

for subsystem i, where �G∗ is the diameter of the communication graph G∗, defined as

the greatest shortest distance between any two subsystems, and |Ni| is the number of

neighbors of subsystem i which cannot be more than M . This matrix, Si, stores infor-

mation about the convergence status of the subsystem i and its neighboring subsystems

j ∈ Ni.

Let Si(a, b) denote the (a, b)th element of Si and [j]Ni denotes the index of subsystem

j ∈ Ni. This way the element Si(1, [j]Ni), j ∈ Ni represents the convergence status

of the subsystem j and the element Si(1, |Ni|+ 1) represents the convergence status of

the subsystem i itself. The elements of the next rows of Si represent the status of the

previous rows of Si and Sj ∀j ∈ Ni. The element Si(a + 1, [j]Ni), j ∈ Ni represents

the status of the ath row of Sj and the element Si(a+ 1, |Ni|+ 1) represents the status

of the ath row of Si. Only the elements Si(a, |Ni| + 1), a ∈ {1, . . . ,�G∗}, are sent to

the neighboring subsystems. If Si(1, |Ni| + 1) is 1, it means the convergence criterion,

(3.11) or (3.17), was satisfied for subsystem i. For a ∈ {2, . . . ,�G∗}, Si(a, |Ni| + 1) is

Chapter 5. Stopping Criteria 27

calculated by

Si(a, |Ni|+ 1) =

|Ni|+1∏
b=1

Si(a− 1, b) (5.1)

By checking the last row of Si, we can find the convergence status of all subsystems,

e.g., if some Si has elements of all 1 on its last row, it means that all subsystems of

network have converged to a solution. One can argue that this matrix contains global

information as it has information about the convergence status of all subsystems. But

only neighboring subsystems’ convergence status is represented clearly on the first row,

other rows contain the merged information ab out the other nodes and there is no way

of finding out the convergence status of a particular subsystem if that subsystem is not

a neighbor. So we say that the matrix Si has only local information.

For Fig. 5.1(b), the stopping criterion matrices are:

S1 =

[
S2(1, 3) S4(1, 4) S1(1, 3)

S2(2, 3) S4(2, 4) S1(2, 3)

]
,

S2 =

[
S1(1, 3) S5(1, 4) S2(1, 3)

S1(2, 3) S5(2, 4) S2(2, 3)

]
,

S3 =

[
S4(1, 4) S5(1, 4) S3(1, 3)

S4(2, 4) S5(2, 4) S3(2, 3)

]
,

S4 =

[
S1(1, 3) S3(1, 3) S5(1, 4) S4(1, 4)

S1(2, 3) S3(2, 3) S5(2, 4) S4(2, 4)

]
,

S5 =

[
S2(1, 3) S3(1, 3) S4(1, 4) S5(1, 4)

S2(2, 3) S3(2, 3) S4(2, 4) S5(2, 4)

]
,

(5.2)

where S1(1, 3), S2(1, 3), S3(1, 3), S4(1, 3) and S5(1, 4) are 1 if the convergence criterion

in (3.11), (3.17) or (4.7) is satisfied and 0 otherwise. Also

S1(2, 3) = S2(1, 3)S4(1, 4)S1(1, 3),

S2(2, 3) = S1(1, 3)S5(1, 4)S2(1, 3),

S3(2, 3) = S4(1, 4)S5(1, 4)S3(1, 3),

S4(2, 4) = S1(1, 3)S3(1, 3)S5(1, 4)S4(1, 4),

S5(2, 4) = S2(1, 3)S3(1, 3)S4(1, 4)S5(1, 4).

(5.3)

5.2.2 Algorithm

For writing the algorithms, we need the following definitions:

Definition 5.1. Define the following messages from subsystem i with the stopping

criteria matrix Si:

Chapter 5. Stopping Criteria 28

1. convergence event message: an arbitrary message stating that convergence

criterion in (3.11) or (3.17) is satisfied for subsystem i. It sets Si(1, |Ni|+ 1).

2. convergence event break message: an arbitrary message stating that the con-

vergence criterion in (3.11) or (3.17) is not satisfied for subsystem i. It resets

Si(1, |Ni|+ 1).

3. ath row event message: an arbitrary message stating that the ath row contains

all elements of 1s. It sets Si(a+ 1, |Ni|+ 1).

4. ath row event break message: an arbitrary message stating that the ath row

does not contain all elements of 1s. It resets Si(a+ 1, |Ni|+ 1).

We can write down the algorithm for distributed optimization with the diffusion based

stopping criterion for subsystem i with the stopping criterion matrix Si as:

Algorithm 5 (Distributed Algorithm with Diffusion Based Stopping Criterion).

[Checking if the update is terminated]

Each subsystem i, i = 0, . . . ,M , performs the following steps with the initial condition

Si ← 0�G∗×(|Ni|+1):

C1. If ‖ηi(τ)‖∞ < ε:

Si(1, |Ni| + 1) ← 1, send convergence event message to all subsystems

j ∈ Ni.
Else:

Si(1, |Ni|+ 1)← 0, send convergence event break message to all subsys-

tems j ∈ Ni, τ ← τ + 1, and go to step U1.

C2. If subsystem i receives convergence event message from subsystem j ∈ Ni:
Si(1, [j]Ni)← 1.

Else if subsystem i receives convergence event break message from subsystem

j ∈ Ni:
Si(1, [j]Ni)← 0, τ ← τ + 1, and go to step U1.

C3. For a ∈ {1, . . . ,�G∗ − 1}:

(a) If

|Ni|+1∏
b=1

Si(a, b) = 1:

Si(a+ 1, |Ni|+ 1)← 1 and send ath row event message to all subsys-

tems j ∈ Ni.
Else:

Si(a+ 1, |Ni|+ 1)← 0 and send ath row event break message to all

subsystems j ∈ Ni, τ ← τ + 1, and go to step U1.

Chapter 5. Stopping Criteria 29

(b) If subsystem i receives ath row event message from a subsystem j ∈ Ni:
Si(a+ 1, [j]Ni)← 1.

Else if receives ath row event break message from a subsystem j ∈ Ni:
Si(a+ 1, [j]Ni)← 0, τ ← τ + 1, and go to step U1.

C4. If

|Ni|+1∏
b=1

Si(�G∗, b) = 1:

τend = τ and xi(τend) are solutions that minimize the global cost function.

Else:

τ ← τ + 1, and go to step U1.

If we are using the asynchronous optimization method, again there are a few minor

changes. With asynchronous optimization, all subsystems run a separate thread where

they execute steps C2. and C3.b. Also subsystem i executes step C4. during U2.b to

check if the stopping criterion is satisfied so that it does not get stuck in an infinite loop.

To guarantee that our algorithms stop if all subsystems have converged to a solution,

we need the following theorem.

Theorem 5.2. In the above algorithms, an arbitrarily chosen Si

|Ni|+1∏
b=1

Si(�G∗, b) = 1 if

and only if the algorithm of all subsystems have converged to a solution.

Proof. Suppose that there is some i such that

|Ni|+1∏
b=1

Si(�G∗, b) = 1 and there is subsys-

tem j in which the solution of the corresponding algorithm did not converge at iteration

τ . This means that all subsystems k ∈ Nj have Sk(1, [j]Ni) = 0. This, in turn, makes

Sk(2, |Nk| + 1) = 0 for all subsystems k ∈ Nj . This effect cascades in the whole graph

and makes at least one of the elements of the �G∗th row of Si 0. This contradicts with

the assumption of

|Ni|+1∏
b=1

Si(�G∗, b) = 1. The converse is obvious. This completes the

proof.

As we already showed the convergence of the optimization methods, this theorem is

enough to show that our algorithms using the diffusion based stopping criterion converge

in finite iteration.

5.2.3 Example

As an example, consider the graph G∗ in Fig. 5.1, where the resulting �G∗ is 2. That

means we have S1 = 02×3 for subsystem 1, S2 = 02×3 for subsystem 2, S3 = 02×3 for

Chapter 5. Stopping Criteria 30

S1 =

[
0 0 0
0 0 0

]
S2 =

[
0 0 0
0 0 0

]
S3 =

[
0 0 0
0 0 0

]
S4 =

[
0 0 0 0
0 0 0 0

]
S5 =

[
0 0 0 0
0 0 0 0

]
Step 1−−−−→

[
0 0 1
0 0 0

]
[
1 0 0
0 0 0

]
[
0 0 0
0 0 0

]
[
1 0 0 0
0 0 0 0

]
[
0 0 0 0
0 0 0 0

]
Step 2−−−−→

[
1 0 1
0 0 0

]
[
1 0 1
0 0 0

]
[
0 0 0
0 0 0

]
[
1 0 0 0
0 0 0 0

]
[
1 0 0 0
0 0 0 0

]
Step 3−−−−→

[
1 0 1
1 0 0

]
[
1 1 1
0 0 1

]
[
0 1 0
0 0 0

]
[
1 0 1 0
0 0 0 0

]
[

1 0 0 1
1 0 0 0

]
Step 4−−−−→

[
1 0 1
1 0 0

]
[
1 1 1
0 0 1

]
[
0 1 1
0 0 0

]
[
1 1 1 0
0 0 0 0

]
[
1 1 0 1
1 0 0 0

]

Step 5−−−−→

[
1 0 0
0 0 0

]
[
0 1 1
0 0 0

]
[
0 1 1
0 0 0

]
[
0 1 1 0
0 0 0 0

]
[

1 1 0 1
0 0 0 0

]
Step 6−−−−→

[
1 1 0
0 0 0

]
[
0 1 1
0 1 0

]
[
1 1 1
0 1 1

]
[
0 1 1 1
0 1 1 0

]
[
1 1 1 1
0 1 0 1

]
Step 7−−−−→

[
1 1 1
1 1 1

]
[
1 1 1
1 1 1

]
[

1 1 1
1 1 1

]
[
1 1 1 1
1 1 1 1

]
[

1 1 1 1
1 1 1 1

]
Figure 5.2: Example of behavior of stopping criterion matrices of subsystems.

subsystem 3, S4 = 02×4 for subsystem 4 and S5 = 02×4 for subsystem 5 initially. Let’s

follow stopping criterion matrices of all subsystems, as shown in Fig. 5.2. The stopping

criterion matrices have the elements represented in (5.2).

Initially suppose that Si for all subsystems i have all zero. Then let us explain how

stopping criterion matrices behave under the following fictional story:

Step 1 (Subsystem 1 converges) S1(1, 3) becomes 1. Subsystem 1 sends out convergence

event message, which causes S2(1, 1) and S4(1, 1) to become 1.

Step 2 (Subsystem 2 converges) S2(1, 3) becomes 1. Subsystem 2 sends out convergence

event message, which causes S1(1, 1) and S5(1, 1) to become 1.

Step 3 (Subsystem 5 converges) S5(1, 4) becomes 1. Subsystem 5 sends out convergence

event message, which causes S2(1, 2), S3(1, 2) and S4(1, 3) to become 1. At this

time, S2(2, 3) becomes 1 as all elements in the first row of S2 are 1, it sends out

1st row event message, which causes S1(2, 1) and S5(2, 1) to become 1.

Step 4 (Subsystem 3 converges) S3(1, 3) becomes 1. Subsystem 3 sends out convergence

event message, which causes S4(1, 2) and S5(1, 2) to become 1.

Step 5 (Subsystem 1 stops satisfying (3.11)) S1(1, 3) becomes 0. Subsystem 1 sends

out convergence event break message, which causes S2(1, 1) and S4(1, 1) to become

0. At this time S2(2, 3) becomes 0 as not all elements in the first row of S2 are

1, it sends out 1st row event break message, which causes S1(2, 1) and S5(2, 1) to

become 0.

Chapter 5. Stopping Criteria 31

Step 6 (Subsystem 4 converges) S4(1, 4) becomes 1. Subsystem 4 sends out convergence

event message, which causes S1(1, 2), S3(1, 1) and S5(1, 3) to become 1. At this

time, S3(2, 3) becomes 1 as all elements in the first row of S3 are 1, it sends out 1st

row event message, which causes S4(2, 2) and S5(2, 2) to become 1. Also, S5(2, 4)

becomes 1 as all elements in the first row of S5 are 1, it sends out 1st row event

message, which causes S2(2, 2), S3(2, 2) and S4(2, 3) to become 1.

Step 7 (Subsystem 1 converges) S1(1, 3) becomes 1. Subsystem 1 sends out convergence

event message, which causes S2(1, 1) and S4(1, 1) to become 1. At this time,

S1(2, 3) becomes 1 as all elements in the first row of S1 is 1, it sends out 1st

row event message, which causes S2(2, 1) and S4(2, 1) to become 1. Also, S2(2, 3)

becomes 1 as all elements in the first row of S2 is 1, it sends out 1st row event

message, which causes S1(2, 1) and S5(2, 1) to become 1. Finally, S4(2, 4) becomes

1 as all elements in the first row of S4 are 1, it sends out 1st row event message,

which causes S1(2, 2), S3(2, 1) and S5(2, 3) to become 1.

Step 8 Now

|Ni|+1∏
b=1

Si(2, b) = 1 for all subsystems i and the controllers will stop optimiz-

ing as the whole network G has converged at iteration τend = τ .

Chapter 6

Numerical Simulations

6.1 Problem Settings of Numerical Simulation

We apply the proposed algorithm to the network system in Fig. 6.1. In these simulations,

instead of solving for a single discrete time, we solve the problem for a sequence of discrete

time steps, k, by using Model Predictive Control (MPC).

In MPC we have the following equations:

xi(k + 1) = Aixi(k) +Biui(k), (6.1)

Cixi(k) +Diui(k) ≤ Ei, (6.2)
M∑
i=1

(
F̂ixi(k) + F̃iui(k)

)
+Gd(k) = 0, (6.3)

Ji,k0 =

k0+N−1∑
k=k0

xTi (k)Qixi(k) + uTi (k)Riui(k), (6.4)

where (6.1) represents the system model, i.e., xi(k+ 1) = xi(k) + ui(k); (6.2) represents

the system constraints, i.e., xi(k) − ui(k) ≤ 100, similar to (2.2); (6.3) represents the

equality constraints, similar to (2.3) and (6.4) represents the cost function, similar to

fi(xi) in (2.1). Qi is a positive semi-definite diagonal cost matrix, Ri is a positive definite

diagonal cost matrix, N is the prediction horizon and k is the discrete time. Values of

Qi and Ri are selected at random for the simulations. This problem is reduced into

Problem 1. We give more details about how these equations are modified to be solved

by CPLEX in Appendix B.

We will run six algorithms: the distributed algorithm with supervisor (denoted as Dis-

tributed in figures), the event-triggered distributed algorithm with supervisor (denoted

as Event in figures), the asynchronous algorithm with supervisor (denoted as Asynch.

32

Chapter 6. Numerical Simulations 33

Figure 6.1: Physical system used for simulation

in figures), the distributed algorithm with diffusion based stopping criterion (denoted as

Distributed D. in figures), the event-triggered distributed algorithm with diffusion based

stopping criterion (denoted as Event D. in figures), and the asynchronous algorithm with

diffusion based stopping criterion (denoted as Asynch. D. in figures).

Suppose that subsystems 1− 4 are source subsystems that supply the commodity; sub-

systems 5− 14 are storage subsystems that store the commodity and D1−D10 are con-

sumers that denote the exogenous signal. The demand profiles can be seen in Fig. 6.2,

where d6 − d10 have the exact same profile with d1 − d5. We consider Problem 1 with

randomly created cost and inequality constraint functions. To use MPC, we set the

prediction horizon, N , to 10 and x(0) = 0 for the initial time step, k = 0. For the design

parameters of the algorithm, we set α = 0.05, ε = 3 and K = 18.

For distributed and event-triggered algorithms, our simulation code is written as a se-

quential process, ie. for each subsystem we execute one step of the algorithm, switch to

the next subsystem and move onto the next step when all subsystems have completed

the same step. This sequential method ensures that only one CPLEX process is running

Chapter 6. Numerical Simulations 34

0 10 20 30 40 50 60 70 80
20

40

60

80

100

120

140

160

180

200

k

D
e
m

a
n
d
 L

e
v
e
ls

d
1
,d

6

d
2
,d

7

d
3
,d

8

d
4
,d

9

d
5
,d

10

Figure 6.2: Demand profiles used during numerical simulation.

at any given time and insures that the steps are synchronized. Also we don’t have to de-

velop a method for passing messages between subsystems. For asynchronous algorithm

executions, we have individual optimization programs for each subsystem and message

passing between them is achieved by memory maps to files. This ensures that reliable

message passing between subsystems is achieved but it forces multiple threads to be run

on the same processor, which may affect our calculation time measurements.

We will not be comparing these algorithms with the centralized method as this has been

widely investigated. However, we can quickly compare the base method, the distributed

algorithm with supervisor, with the centralized method in order to see it’s advantages.

Optimal cost value and calculation time at each time step in this case are shown in

Figs. 6.3 and 6.4, respectively. As one can see in Fig. 6.3, there is a little difference

between the centralized and distributed methods so we can say that the path taken by

the distributed method is different from the centralized one, which is expected. Also the

distributed method’s cost is usually greater than the centralized method as it cannot

reach the optimum solution due to the relaxation parameter, ε. However, an interesting

aspect is that from time to time the distributed method’s cost is less than the centralized

case. We believe the distributed method stores more commodity at certain time steps

and when it starts using this extra stored commodity, the source subsystems can provide

less commodity to satisfy the demand which lowers the cost.

For Fig. 6.4, the calculation time for the centralized method is more or less the same

during each time step. However, for a small networked system, we would expect the

calculation time of the distributed method to be greater than the calculation time of

the centralized method. This is true for the initial time step, , k = 0, and most of

Chapter 6. Numerical Simulations 35

0 5 10 15 20 25 30 35 40 45 50
0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

4

k

C
o

s
t

F
u

n
c
ti
o

n

Centralized

Distributed

Figure 6.3: Cost function comparison of centralized and distributed algorithms.

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

k

C
a
lc

u
la

ti
o
n
 T

im
e
s

Centralized

Distributed

Figure 6.4: Calculation time comparison of centralized and distributed algorithms.

the simulation. However, there are certain intervals where the calculation time of the

distributed method is less than the calculation time of the centralized method. We

believe this is due to how MPC works: After the optimal solution is found, the solution

for that time step is applied as the control output, then the result vector is shifted one

time step in order to provide the initial values for the next time step. We use this for

our Lagrange variable vectors, λi(τ), so at the end of each time step, k, we don’t have to

initialize them again. This saves some valuable time as at k = 0, the calculation time is

around 150 ms. for the distributed method but during other time steps, the calculation

time has a maximum value of about 45 ms.

Chapter 6. Numerical Simulations 36

0 5 10 15 20 25 30 35 40 45 50
0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

4

k

C
o

s
t

F
u

n
c
ti
o

n

Distributed

Distributed D.

Event

Event D.

Asynch.

Asynch. D.

Figure 6.5: Cost function comparison of algorithms.

6.2 Comparison Between Algorithms

The resulting optimal cost value and calculation time at each time step in this case are

shown in Figs. 6.5 and 6.6, respectively. As one can see in Fig. 6.5, there is little difference

between all six algorithms so we can say that the chosen algorithm has minimal effect

on the optimality of the solution, although the asynchronous algorithm with diffusion

based stopping criterion has a higher cost at certain time steps.

For Fig. 6.6, the calculation time shown for the algorithms is the time at which each

stopping criterion determines the optimization algorithm has converged without the

communication delays. One can see that the use of diffusion based stopping criterion

has no effect on the calculation time as expected for distributed and event-triggered

communication algorithms. For asynchronous algorithms, some difference is expected

as each run of the simulation is different due to asynchronous execution of optimization

algorithm. We can also see that the calculation time for asynchronous algorithms is

about three times higher than other algorithms.

Figs. 6.7 and 6.8 show the number of iterations and number of communication events,

respectively. Fig. 6.7 has the same shape as the calculation time graph in Fig. 6.6 for

distributed and event-triggered communication algorithms so we can say that calculation

time mainly depends on the number of iterations τ . For the asynchronous algorithms,

we can see that the calculation time at each iteration is higher than other algorithms.

However, in Fig. 6.8 we see that the event-triggered communication and asynchronous

algorithms have far less communication events. Also again the use of diffusion based

Chapter 6. Numerical Simulations 37

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

350

400

450

500

k

C
a
lc

u
la

ti
o
n
 T

im
e
s

Distributed

Distributed D.

Event

Event D.

Asynch.

Asynch. D.

Figure 6.6: Calculation time comparison of algorithms.

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

k

N
u
m

b
e
r

o
f
It
e
ra

ti
o
n
s

Distributed

Distributed D.

Event

Event D.

Asynch.

Asynch. D.

Figure 6.7: Number of iterations comparison of algorithms.

stopping criterion has no effect on the number of communication events as expected for

distributed and event-triggered communication algorithms.

Table 6.1 shows the sum of maximum calculation times, maximum number of iterations

and maximum number of communication events for the whole simulation excluding the

time step 0 which is the initialization part where all dual variable vectors are zero

initially. This is done in order to better judge the behavior of the algorithms during

normal operation. It also shows the average iteration time for the whole simulation to

judge how each method affects processor load. The calculation time difference between

the supervisor based stopping criterion and the diffusion based stopping criterion are

minimal for distributed and event-triggered communication algorithms and we can say

Chapter 6. Numerical Simulations 38

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

1400

k

N
u
m

b
e
r

o
f
U

p
d
a
te

s

Distributed

Distributed D.

Event

Event D.

Asynch.

Asynch. D.

Figure 6.8: Number of updates comparison of algorithms.

Table 6.1: Numerical comparison of algorithms

Algorithm Total Time Max. Iterations Max. Updates Iteration Time

Distributed 848.8 ms. 25 350 1.66 ms.

Distributed D. 741.5 ms. 25 350 1.64 ms.

Event-Triggered 1037.6 ms. 27 51 1.63 ms.

Event-Triggered D. 1043.8 ms. 27 51 1.64 ms.

Asynch. 6343.2 ms. 32 59 4.45 ms.

Asynch. D. 7810.8 ms. 108 276 3.16 ms.

that these are caused by small load changes on the simulation machine. Also we can

see that the stopping criteria has no effect on the maximum number of iterations and

maximum number of updates for the same algorithms; these metrics depend purely on

the optimization method used. If we look at average iteration time, we can see that the

asynchronous algorithms put a significant load on the processor. We believe this is one

of the reasons why the calculation time values were about three times higher than the

other algorithms in Fig. 6.6.

To estimate how long the asynchronous algorithms would take if they were running on

individual machines, we can scale the number of iterations by using the average iteration

time values in Table 6.1. If we multiply the number of iterations with the average

iteration time of 1.66 ms., we get the corrected calculation time graph in Fig. 6.9. Also

total calculation time becomes 1338 ms. for the asynchronous algorithm with supervisor

and 2732.4 ms. for the asynchronous algorithm with diffusion based stopping criterion.

From these result, we can say that two algorithms, the event-triggered distributed al-

gorithm with diffusion based stopping criterion and the asynchronous algorithm with

Chapter 6. Numerical Simulations 39

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

k

C
o
rr

e
c
te

d
 C

a
lc

u
la

ti
o
n
 T

im
e
s

Distributed

Distributed D.

Event

Event D.

Asynch.

Asynch. D.

Figure 6.9: Corrected calculation time comparison of algorithms.

supervisor, are our candidates. The former has a low calculation time, does not need

a supervisor and has a low communication cost due to low number of communication

events. However, it is still a synchronous algorithm which means that the steps should

be synchronized between subsystems. This can be advantageous as this synchronization

is enough to determine when the optimization algorithm for each time step should start.

The latter again has the low communication cost, and is an asynchronous method so it

eliminates the need for synchronizing each subsystems’ clock with each other. However,

a supervisor is needed to keep track of the convergence status of each subsystem. Using

a supervisor is not a bad thing for an asynchronous method as even when the stopping

events are detected without a supervisor, a supervisor or a master node is needed to

signal each subsystem to start the optimization algorithm for a certain time step.

Chapter 7

Conclusion

7.1 Summary

In this thesis, two new parallel distributed optimization algorithms and one novel stop-

ping criterion for optimizing large-scale networked systems has been proposed. In chap-

ter 3, we introduced the dual decomposition based optimization the event-triggered

communication methods. In chapter 4, we presented the asynchronous optimization

method by extending the previous methods. Chapter 5, focused on a new stopping cri-

terion, named diffusion based stopping criterion, that can be used instead of the usual

supervisor based stopping criterion.

In chapter 2, single commodity network flow problems have been discussed as the prob-

lem we are trying to solve. The properties of subsystem and exogenous signal connec-

tions types are shown, these connections are mathematically defined and an example to

mathematical equations derived from these connections is given.

In chapter 3, the method that forms the basis of all our distribution optimization meth-

ods, the dual decomposition based optimization method, is introduced. A convergence

criterion that can be used for detecting when a subsystem has converged to a solution

has been defined. The shortcomings of this method is analyzed and the event-triggered

communication method is introduced as a solution to some of these problems. Also step

by step algorithms for these algorithms are given.

In chapter 4, possible problems related to synchronization requirement, mainly the

tough implementation problem, are determined. A new distributed optimization method

named asynchronous optimization is proposed as a solution and its algorithm is pre-

sented. for this method.

40

Chapter 7. Conclusion 41

In chapter 5, initially, the supervisor based stopping criterion that is used by almost

all distributed optimization methods is given. As this stopping criterion opposes the

essence of distribution, a new dubbed diffusion based stopping criterion is nominated,

the algorithm is shown and a simple example is provided.

In chapter 6, combination of three distributed optimization methods and two stopping

criteria are analyzed with numerical simulations as six different algorithms. Some of the

methods used to write the simulation codes are presented. Simulations are conducted for

an arbitrary example system certain metrics are analyzed to determine the effectiveness

of these algorithms.

In this thesis we tried to develop a parallel distributed optimization method which re-

quired less communication between subsystems, is asynchronous and has a decentralized

stopping criterion. First requirement was for reducing the communication cost of the

whole system, the second one was for easy real life implementation by eliminating the

need for a synchronized clock, and the last one was for eliminating a node which re-

duced the fault tolerance of the whole system. After analyzing the simulation results,

we can say that the event-triggered distributed algorithm with diffusion based stopping

criterion and the asynchronous algorithm with supervisor are good candidates for using

in real systems. The former has a close calculation time to our base algorithm, requires

less communication events which lowers the communication cost, and does not need a

supervisor node thus being a completely decentralized method. However it has the dis-

advantage of being a synchronous method, requiring some sort of clock synchronization

between each subsystem, which itself is a widely researched topic. But if this synchro-

nization is implemented, the subsystems can use this synchronized clock to start the

optimization algorithm for each time step. The former requires nearly the same number

of communication events as the event-triggered distributed algorithm and is an asyn-

chronous method which does not require a synchronized clock so it is easier to implement

in real life. However, there is a supervisor which has to keep track of each subsystem’

convergence status and signal them to stop or continue the optimization algorithm. But

this supervisor can have other uses in the system where some events, such as starting

the optimization algorithm for a time step, should be done at the same time.

The algorithm which satisfies all the above requirements, the asynchronous algorithm

with diffusion based stopping criterion, is not suggested as some subsystems stop unex-

pectedly while others continue optimization and all the algorithms have to be restarted

from the beginning which causes the peaks in the number of iterations and calculation

cost graphs. Also real life application of this algorithm is hard as although it does not

require synchronized clocks and a supervisor for stopping the optimization algorithms,

it still needs a way to start the optimization algorithms at the same time for each time

Chapter 7. Conclusion 42

step. Falling back to either using a synchronized clock or a supervisor eliminates this

problem, which results in using one of the two algorithms that we suggest.

7.2 Future Works

Distributed optimization is an attractive topic and distributed MPC is an effective

method to solve large-scale optimization problems on networked systems. There are

many possible extensions of this research.

First, although this thesis focused on single commodity network flow problems, dis-

tributed MPC can be used to solve many other types of distributed optimization prob-

lems. We believe with some modifications to the methods presented in this thesis, many

such systems can be controlled optimally.

Another is on the simulation aspect. We have simulated only small networks due to time

constraints and simulation system limitations. Possibly larger networks and different

complex topologies can be simulated to analyze these algorithms. Also all simulations

are done on a single simulation machine. New simulations with a cluster of simulation

servers can be run for better analysis and determining the effects of communication

delays.

Also although we have developed these algorithms, we have no idea about the effect

of system size or neighbor numbers to different metrics as iteration time, number of

iterations and number of updates. It should be possible to derive relations between

system parameters and metrics by theoretical work.

Finally although the algorithms are verified by numerical simulations, application of

theoretical work is also important. Case studies where these algorithms are applied to

real world systems to optimally control them; such as utility systems, supply-demand

chains and even networked robotics systems; can be conducted.

Appendix A

Decomposition Explanation

In this appendix, we will look at two decomposition techniques, primal decomposition

and dual decomposition, and explain why dual decomposition is better for single com-

modity network flow problems. For this we will look at a real simple case, such as two

subsystems connected as shown in Fig. 2.1(a) named as subsystem 1 and subsystem 2.

A.1 Primal Decomposition

We consider an optimization problem in the form of

minimize f(x1, x2, y) = f1(x1, y) + f2(x2, y)

subject to g1(x1, y) ≤ 0, g2(x2, y) ≤ 0.
(A.1)

where xi is the local variables for subsystem i and y is the complicating variables that

couple both subsystems. If we fix y, we can divide this problem into individual subprob-

lems in the form of

minimizex1 f1(x1, y)

subject to g1(x1, y) ≤ 0,
(A.2)

minimizex2 f2(x2, y)

subject to g2(x2, y) ≤ 0,
(A.3)

and the results of this optimization are x∗1 and x∗2 respectively. Now we have another

subproblem that has to be solved in the form of

minimizey f1(x∗1, y) + f2(x∗2, y)

subject to g1(x∗1, y) ≤ 0, g2(x∗2, y) ≤ 0.
(A.4)

43

Appendix A. Decomposition Explanation 44

and the result of this optimization is y∗.

We can solve (A.2) and (A.3) individually and even at the same time, then a master

solves (A.4). After this, we plug y∗ into (A.2) and (A.3) again to find the new x∗1 and

x∗2. So our algorithm becomes:

Algorithm 6 (Primal Decomposition Algorithm).

Fix y∗ to any initial value. Each subsystem i executes the following step:

Find x∗i that minimizes fi(xi, y
∗) for a given y∗, subject to gi(xi, y

∗) ≤ 0. Send

this x∗i to the master.

The master executes the following step:

Find y∗ that minimizes f1(x∗1, y) + f2(x∗2, y) for given x∗1 and x∗2 from the previous

step, subject to gi(xi, y) ≤ 0 for all i. Send this y∗ to subsystems.

Repeat

A.2 Dual Decomposition

In primal decomposition, we give the job of calculating the complicating variable to a

master which means this method required a master. Or it has to be solved by each

subsystem which means we are not using our processing power effectively as finding a

solution to an optimization problem uses significant computation power. However, if we

were to introduce new variables y1 and y2, we can rewrite A.1 as

minimize f(x1, x2, y1, y2) = f1(x1, y1) + f2(x2, y2)

subject to g1(x1, y1) ≤ 0, g2(x2, y2) ≤ 0, y1 + y2 = 0.
(A.5)

by introducing the equality constraint y1 + y2 = 0 which requires two local versions

of the complicating variable. Now the cost equations do not contain any complicating

terms. Now we can write the Lagrangian as

L(x1, x2, y1, y2, λ) = f1(x1, y1) + f2(x2, y2) + λT y1 + λT y2, (A.6)

Appendix A. Decomposition Explanation 45

where λT is the Lagrangian variable. We can divide this problem into individual sub-

problems in the form of

minimizex1,y1 f1(x1, y1) + λT y1

subject to g1(x1, y1) ≤ 0,
(A.7)

minimizex2,y2 f2(x2, y2) + λT y2

subject to g2(x2, y2) ≤ 0,
(A.8)

and the results of this optimization are x∗1, y∗1, x∗2 and y∗2 respectively. Now we have to

update the Lagrange variable by using the subgradient of the dual problem. The dual

function can be written as

h(λ) = h1(λ) + h2(λ), (A.9)

where hi(λ) = inf
xi,yi

(
fi(xi, yi) + λT yi

)
. Then the dual problem becomes

maximize h1(λ) + h2(λ). (A.10)

which is the main problem we are trying to solve in dual decomposition.

As −hi(λ) = −sup
xi,yi

(
−λT yi − fi(xi, yi)

)
, the subgradient of −hi(λ) at λ for a given x∗i

and y∗i is −y∗i . This means the subgradient of the negative dual function −h1(λ)−h2(λ)

is equal to −y∗1 − y∗2. So we can update λ by using the subgradient method:

λ = λ+ α(y∗1 + y∗2), (A.11)

where α is the step size for the subgradient algorithm.

We can solve (A.7) and (A.8) individually and even at the same time, then either a

master or all subsystems solve (A.11). It is not a problem for all subsystems to solve

(A.11) as it contains two vector summations and one multiplication. After this, we plug

the new λ into (A.7) and (A.8) again to find the new x∗1, y∗1, x∗2 and y∗2. So our algorithm

becomes:

Algorithm 7 (Dual Decomposition Algorithm).

Fix λ to any initial value. Each subsystem i executes the following steps:

1. Find x∗i and y∗i that minimizes fi(xi, yi) + λT yi subject to gi(xi, yi) ≤ 0. Send y∗i

to other subsystem.

2. Find new λ using λ = λ+ α(y∗1 + y∗2).

Appendix A. Decomposition Explanation 46

Repeat

Appendix B

MPC Implementation with Dual

Decomposition

B.1 Step 1:

Let’s start by writing the cost function:

Li,k0 =

k0+N−1∑
k=k0

xTi (k)Qixi(k) + uTi (k)Riui(k) + λTx,i(k)xi(k) + λTu,i(k)ui(k). (B.1)

Then we can make the following definitions:

Xi,k0
4
=

xi(k0)

...

xi(k0 +N − 1)

 , Ui,k0
4
=

ui(k0)

...

ui(k0 +N − 1)

 ,

Λx,i,k0
4
=

λx,i(k0)

...

λx,i(k0 +N − 1)

 , Λu,i,k0
4
=

λu,i(k0)

...

λu,i(k0 +N − 1)

 .
(B.2)

If we plug these definitions into the (B.1), we get:

Li,k0 = XT
i,k0

Qi · · · 0
...

. . .
...

0 · · · Qi

Xi,k0 +UTi,k0

Ri · · · 0
...

. . .
...

0 · · · Ri

Ui,k0 +ΛTx,i,k0Xi,k0 +ΛTu,i,k0Ui,k0 .

(B.3)

47

Appendix B. MPC Implementation with Dual Decomposition 48

We can rewrite it as:

Li,k0 = XT
i,k0Q̄iXi,k0 + UTi,k0R̄iUi,k0 + ΛTx,i,k0Xi,k0 + ΛTu,i,k0Ui,k0 . (B.4)

B.2 Step 2:

Let’s open all the individual system models and write them in terms of xi(k0) and ui(k0):

xi(k0) = Ixi(k0)

xi(k0 + 1) = Aixi(k0) +Biui(k0)

xi(k0 + 2) = Aixi(k0 + 1) +Biui(k0 + 1)

= A2
ixi(k0) +AiBiui(k0) +Biui(k0 + 1)

...

(B.5)

If we write (B.5) in matrix form, we get:

xi(k0)

xi(k0 + 1)

xi(k0 + 2)
...

xi(k0 +N − 1)

=

I

Ai

A2
i

...

AN−1
i

xi(k0)+

0 0 · · · 0 0

Bi 0 · · · 0 0

AiBi Bi · · · 0 0
...

...
. . .

...
...

AN−2
i Bi AN−3

i Bi · · · Bi 0

ui(k0)

ui(k0 + 1)

ui(k0 + 2)
...

ui(k0 +N − 1)

.

(B.6)

We can rewrite it as:

Xi,k0 = Gi,0xi(k0) +Gi,1Ui,k0 . (B.7)

B.3 Step 3:

From (B.4), we have:

Li,k0 = XT
i,k0Q̄iXi,k0 + UTi,k0R̄iUi,k0 + ΛTx,i,k0Xi,k0 + ΛTu,i,k0Ui,k0 .

Also from (B.7), we have:

Xi,k0 = Gi,0xi(k0) +Gi,1Ui,k0 .

Appendix B. MPC Implementation with Dual Decomposition 49

If we plug (B.7) into (B.4), we get:

Li,k0 = (Gi,0xi(k0) +Gi,1Ui,k0)T Q̄i(Gi,0xi(k0) +Gi,1Ui,k0) + UTi,k0R̄iUi,k0+

ΛTx,i,k0(Gi,0xi(k0) +Gi,1Ui,k0) + ΛTu,i,k0Ui,k0 .
(B.8)

Let’s rearrange the terms:

Li,k0 = UTi,k0(GTi,1Q̄iGi,1 + R̄i)Ui,k0+

2UTi,k0(GTi,1Q̄iGi,0xi(k0) +GTi,1Λx,i,k0/2 + Λu,i,k0/2)+

xTi (k0)(GTi,0Q̄iGi,0)xi(k0) + ΛTx,i,k0Gi,0xi(k0).

(B.9)

We can rewrite it as:

Li,k0 = UTi,k0MUi,k0 + 2UTi,k0(Lxi(k0) +GTi,1Λx,i,k0/2 + Λu,i,k0/2)+

xTi (k0)Nxi(k0) + ΛTx,i,k0Gi,0xi(k0).
(B.10)

This is the QP problem that we are trying to solve.

B.4 Step 4:

We now have to write our inequality constraints for our QP problem. Let’s start by

writing the inequality constraint for the whole prediction horizon:

Cixi(k0) +Diui(k0) ≤ Ei
Cixi(k0 + 1) +Diui(k0 + 1) ≤ Ei
Cixi(k0 + 2) +Diui(k0 + 2) ≤ Ei

...

Cixi(k0 +N − 1) +Diui(k0 +N − 1) ≤ Ei.

(B.11)

This can be rewritten by using the definitions in (B.2) as:
Ci · · · 0
...

. . .
...

0 · · · Ci

︸ ︷︷ ︸

C̄i

Xi,k0 +

Di · · · 0
...

. . .
...

0 · · · Di

︸ ︷︷ ︸

D̄i

Ui,k0 ≤

Ei
...

Ei

︸ ︷︷ ︸
Ēi

(B.12)

If we plug in (B.7), we get:

C̄i(Gi,0xi(k0) +Gi,1Ui,k0) + D̄iUi,k0 ≤ Ēi (B.13)

Appendix B. MPC Implementation with Dual Decomposition 50

Let’s rearrange the terms:

(
C̄iGi,1 + D̄i

)
Ui,k0 ≤ Ēi − C̄iGi,0xi(k0) (B.14)

We can rewrite it as:

SiUi,k0 ≤ Γi + Tixi(k0) (B.15)

This is the inequality constraint for our QP problem.

Bibliography

[1] John N. Tsitsiklis, Dimitri P. Bertsekas, and Michael Athans. Distributed asyn-

chronous deterministic and stochastic gradient optimization algorithms. IEEE

Transactions on Automatic Control, 31(9):803–812, 1986.

[2] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Computation:

Numerical Methods. Prentice-Hall, Englewood Cliffs, 1989.

[3] K. Mani Chandy, Steven H. Low, Ufuk Topcu, and Huan Xu. A simple optimal

power flow model with energy storage. In Proceedings of the 49th IEEE Conference

on Decision and Control, pages 1051–1057, 2010.

[4] Huan Xu, Ufuk Topcu, Steven H. Low, Christopher R. Clarke, and K. Mani Chandy.

Load-shedding probabilities with hybrid renewable power generation and energy

storage. In Proceedings of the 48th Annual Allerton Conference on Communication,

Control, and Computing, pages 233–239, 2010.

[5] Huan Xu, Ufuk Topcu, Steven H. Low, Christopher R. Clarke, and K. Mani Chandy.

Distributed subgradient-based coordination of multiple renewable generators in a

microgrid. IEEE Transactions on Power Systems, 29(1):23–33, 2014.

[6] Sebastian Hentzelt, Andreas Klingler, and Knut Graichen. Experimental results

for distributed model predictive control applied to a water distribution system. In

ISIC, pages 1100–1106. IEEE, 2014.

[7] Sarah Koehler and Francesco Borrelli. Building temperature distributed control via

explicit mpc and ”trim and respond” methods. In Proceedings of European Control

Conference, pages 4334–4339, 2013.

[8] Zhe Liu, Xi Chen, Xingtian Xu, and Xiaohong Guan. A decentralized optimization

method for energy saving of hvac systems. In CASE, pages 225–230. IEEE, 2013.

[9] Yoshiaki Kuwata and Jonathan How. Decentralized cooperative trajectory opti-

mization for uavs with coupling constraints. In Proceedings of the 45th IEEE Con-

ference on Decision and Control, pages 6820–6825, 2006.

51

Bibliography 52

[10] Gokhan Inalhan, Dusan M. Stipanovic, and Claire J. Tomlin. Decentralized opti-

mization, with application to multiple aircraft coordination. In Proceedings of the

41st IEEE Conference on Decision and Control, pages 1147 – 1155, 2002.

[11] David Mateos-Nunez and Jorge Cortes. Distributed online convex optimization over

jointly connected digraphs. IEEE Transactions on Network Science and Engineer-

ing, 1(1):23–37, 2014.

[12] Angelia Nedic and Asuman E. Ozdaglar. Distributed subgradient methods for

multi-agent optimization. IEEE Transactions on Automatic Control, 54(1):48–61,

2009.

[13] Bjorn Johansson, Tamas Keviczky, Mikael Johansson, and Karl Henrik Johansson.

Subgradient methods and consensus algorithms for solving convex optimization

problems. In Proceedings of the 47th IEEE Conference on Decision and Control,

pages 4185–4190, 2008.

[14] Angelia Nedic, Asuman E. Ozdaglar, and Pablo A. Parrilo. Constrained consen-

sus and optimization in multi-agent networks. IEEE Transactions on Automatic

Control, 55(4):922–938, 2010.

[15] Ermin Wei, Asuman E. Ozdaglar, and Ali Jadbabaie. A distributed newton method

for network utility maximization. In Proceedings of the 49th IEEE Conference on

Decision and Control, pages 1816–1821, 2010.

[16] Pontus Giselsson and Anders Rantzer. Distributed model predictive control with

suboptimality and stability guarantees. In Proceedings of the 49th IEEE Conference

on Decision and Control, pages 7272–7277, 2010.

[17] Yudong Ma, Garrett Anderson, and Francesco Borrelli Borrelli. A distributed pre-

dictive control approach to building temperature regulation. In American Control

Conference (ACC), pages 2089–2094, 2011.

[18] Masahiro Ono and Brian C. Williams. Decentralized chance-constrained finite-

horizon optimal control for multi-agent systems. In Proceedings of the 49th IEEE

Conference on Decision and Control, pages 138–145, 2010.

[19] Minghui Zhu and Sonia Mart́ınez. On distributed convex optimization under in-

equality and equality constraints. IEEE Transactions on Automatic Control, 57(1):

151–164, 2012.

[20] Dusan Jakovetic, João Manuel Freitas Xavier, and José M. F. Moura. Fast dis-

tributed gradient methods. IEEE Trans. Automat. Contr., 59(5):1131–1146, 2014.

Bibliography 53

[21] Guodong Shi, Alexandre Proutiere, and Karl Henrik Johansson. Continuous-time

distributed optimization of homogenous dynamics. In Allerton, pages 520–527.

IEEE, 2013.

[22] Minghui Zhu and Sonia Mart́ınez. An approximate dual subgradient algorithm for

multi-agent non-convex optimization. IEEE Trans. Automat. Contr., 58(6):1534–

1539, 2013.

[23] Ruggero Carli and Giuseppe Notarstefano. Distributed partition-based optimization

via dual decomposition. In CDC, pages 2979–2984. IEEE, 2013.

[24] Ermin Wei, Asuman E. Ozdaglar, and Ali Jadbabaie. A distributed newton method

for network utility maximization-i: Algorithm. IEEE Trans. Automat. Contr., 58

(9):2162–2175, 2013.

[25] Nader Motee and Ali Jadbabaie. Distributed multi-parametric quadratic program-

ming. IEEE Transactions on Automatic Control, 54(10):2279–2289, 2009.

[26] Stephen Boyd, Lin Xiao, Almir Mutapcic, and Mattingley Jacob. Notes on

decomposition methods. Available at http://see.stanford.edu/materials/

lsocoee364b/08-decomposition_notes.pdf, 2008.

[27] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Dis-

tributed optimization and statistical learning via the alternating direction method

of multipliers. Foundations and Trends in Machine Learning, 3(1):1–122, 2011.

[28] Jing Wang and Nicola Elia. Distributed averaging under constraints on information

exchange: Emergence of lévy flights. IEEE Transactions on Automatic Control, 57

(10):2435–2449, 2012.

[29] Minyi Zhong and Christos G. Cassandras. Asynchronous distributed optimization

with event-driven communication. IEEE Transactions on Automatic Control, 55

(12):2735–2750, 2010.

[30] Taylan Ayken and Jun-ichi Imura. Asynchronous distributed optimization of smart

grid. In Proceedings of SICE Annual Conference (SICE), pages 2098–2102, 2012.

[31] Taylan Ayken and Jun-ichi Imura. Event triggered distributed optimization based

on dual decomposition. SICE Journal of Control, Measurement, and System Inte-

gration, 8(3):221–227, 2015.

[32] Taylan Ayken and Jun-ichi Imura. Diffusion based stopping criterion for distributed

optimization. In Proceedings of the 19th IFAC World Congress, pages 10512–10517,

2014.

http://see.stanford.edu/materials/lsocoee364b/08-decomposition_notes.pdf
http://see.stanford.edu/materials/lsocoee364b/08-decomposition_notes.pdf

Bibliography 54

[33] Taylan Ayken and Jun-ichi Imura. Diffusion based stopping criterion for event-

triggered distributed optimization. SICE Journal of Control, Measurement, and

System Integration, 2015. Accepted.

