T2R2 東京科学大学 リサーチリポジトリ Science Tokyo Research Repository

論文 / 著書情報 Article / Book Information

題目(和文)	 光学計測による自動車用エンジンの筒内流動特性解明と燃焼促進に関 する研究
Title(English)	
著者(和文)	大倉康裕
Author(English)	Yasuhiro Okura
出典(和文)	学位:博士(工学), 学位授与機関:東京工業大学, 報告番号:甲第9970号, 授与年月日:2015年9月25日, 学位の種別:課程博士, 審査員:店橋 護,花村 克悟,小酒 英範,村上 陽一,志村 祐康
Citation(English)	Degree:, Conferring organization: Tokyo Institute of Technology, Report number:甲第9970号, Conferred date:2015/9/25, Degree Type:Course doctor, Examiner:,,,,
 学位種別(和文)	
Type(English)	Doctoral Thesis

平成 27 年度 学位論文

光学計測による

自動車用エンジンの筒内流動特性解明と 燃焼促進に関する研究

指導教員 店橋 護 教授

東京工業大学大学院理工学研究科

機械宇宙システム専攻

大倉 康裕

目次

第1章	緒論	1
1.1.	研究の背景	2
1.2.	従来の研究	6
	1.2.1. 超高回転エンジンにおける流動解析	7
	1.2.2. 筒内乱流解析	7
1.3.	本論文の構成	8
第2章	超高回転域でのエンジン筒内の流動解析	14
2.1.	はじめに	15
2.2.	超高回転可視化エンジンの開発	16
2.3.	計測原理	17
	2.3.1. 粒子画像流速計 (PIV)	17
2.4.	実験装置,計測条件	19
	2.4.1. エンジン諸元	19
	2.4.2. 計測装置	19
	2.4.3. 計測条件	20
2.5.	超高回転域での筒内流動特性	20
	2.5.1. 大域的流動特性	20
	2.5.2. 乱流特性とその強化	
2.6.	本章の結論	
第3章	エンジン燃焼室内の乱流変動分離法	36
3.1.	はじめに	
3.2.	実験装置・計測条件	
	3.2.1. エンジン諸元	
	3.2.2. 計測装置	
	3.2.3. 計測条件	
3.3.	時間フィルター法	41
	3.3.1. 速度分布	41
	3.3.2. 乱流変動の分離法	
	3.3.3. 乱流強度特性	46
	3.3.4. 乱流特性と燃焼特性の関係	47
3.4.	本章の結論	

第4章	過給 GDI エンジンの筒内流動解析	64
4.1.	はじめに	65
4.2.	実験装置・計測条件	65
	4.2.1. エンジン諸元	65
	4.2.2. 計測装置	66
	4.2.3. 計測条件	67
4.3.	過給 GDI エンジン筒内の流動特性	
	4.3.1. 大域的流動特性	
	4.3.2. 乱流成分分離法に対する時間分解能の影響	69
	4.3.3. 乱流特性に対するピストントップ形状の影響	73
4.4.	本章の結論	74
第5章	吸気切換えデバイスによる筒内乱流強化と燃焼促進	86
5.1.	はじめに	
5.2.	実験装置・計測条件	
	5.2.1. エンジン諸元	
	5.2.2. 計測装置	
	5.2.3. 計測条件	
5.3.	吸気切換えデバイスによる筒内流動強化	
	5.3.1. TCV による大域的流動特性の変化	
	5.3.2. TCV による乱流特性の変化	92
	5.3.3. TCV による乱流特性変化と燃焼特性の関係	97
5.4.	本章の結論	100
第6章	結論	120
付章 A	PIV 計測の誤差解析	124
A.1	計測・解析パラメーターがおよぼす速度誤差への影響	125
A.2	2時刻の時間間隔がおよぼす速度誤差への影響	127
付章 B	乱流運動エネルギー方程式の導出	133
付章 C	混合気の物性推算	142
参考了	文 献	147
謝 辞		154

第1章

緒論

1.1. 研究の背景

近年,人間の経済活動によって排出された CO₂による地球温暖化やそれに ともなう気候変動が問題になっている.気候変動に関する政府間パネル IPCC(Intergovernmental Panel on Climate Change)の第5次調査報告によると, 観測事実として,「1880~2012 年において,世界平均地上気温は0.85(0.65~ 1.06) ℃上昇しており,最近 30 年の各 10 年間の世界平均地上気温は,1850 年以降のどの 10 年間よりも高温である」と報告されている.さらに温暖化 の要因として,「人間活動が 20 世紀半ば以降に観測された温暖化の主な要因 であった可能性が極めて高い」ことが指摘されている.また, IEA(International Energy Agency)によると石油の生産量は年々増加しており, 石油の生産量と経済活動による消費量から決定されるピークは,今後の経済 成長割合により,いくつかの予測があるものの 2025~2050 年と予測されている.

図 1.1 に自動車産業を取り巻く環境と課題の大きさを示す. 自動車産業を 取り巻く環境は、時代とともに大きく変化している. 1970 年代には、自動 車から排出される排ガス等による大気汚染問題に代表される都市環境問題 が深刻となっていた.この課題をクリアするために、エンジンにおいては、 主副ふたつの燃焼室を持つ CVCC(Compound Vortex Controlled Combustion)エ ンジンや燃料噴射を高精度で制御する電子制御システム[1]などの開発によ り、自動車から排出される CO や NO_x等に代表される有害物質を低減した. 1990 年代からは, CO₂ 排出による地球温暖化等の地球環境問題が社会的に注 目され、この課題をクリアするために燃費向上(CO2排出低減)を目的とし たポート噴射や直噴による成層リーンバーンエンジン[2][3][4]が開発され, 自動車用エンジンの効率向上が行われた.自動車用エンジン技術は、このよ うに時代とともに大きく変化する要求に応えてきた歴史がある. 今後, 化石 燃料枯渇によるエネルギーが大きな問題になると考えられ、この課題をクリ アするためにバイオ燃料や水素エンジン[5]などの再生可能エネルギーへの 転換や,自動車用エンジンのさらなる効率向上が,今でも求められている. これらの社会問題を背景に、自動車の法規制も年々厳しくなっている.ア

メリカでは、企業平均燃費 CAFE(Corporate Average Fuel Efficiency)による燃 費基準の適用が行われている. 欧州では、従来から規制されている排ガス成 分(CO, HC, NOx, PM)に加えて、2014 年からガソリン直噴エンジンを対象 として粒子数 PN が規制対象に加えられている. また、NEDC(New European Driving Cycle)や WLTC(Worldwide harmonized Light-duty Test Cycle)などの固 定モード以外に、リアルワールドでの排出ガスを規制する RDE(Real Drive

Emission)の導入が検討されており、これに必要な自動車搭載用小型排ガス分析装置 PEMS(Portable Emission Measurement System)の開発も並行して行われている.これらの法規制の運用は先進国で開始された後、中国など新興国にも導入が予定されている.

以上のような社会的背景をもとに,自動車用エンジンに対する改善要求が 高まっており,その要求に応えるための早急な技術革新が求められている.

ガソリンエンジンの理論熱効率 η_{th} はオットーサイクルに従っており,式 (1.1)に示すように比熱比 κ と圧縮比 ϵ のみで決定される.

$$\eta_{th} = \left(1 - \frac{1}{\varepsilon^{\kappa - 1}}\right) \tag{1.1}$$

正味熱効率 n_eは,理論熱効率 n_{th}の式には現れない各種の損失が存在する ため,理論値より減少する.図 1.2 に筒内圧力 P と容積 V で示した燃料空 気サイクルと実際のサイクルの比較を示す[6].また,図 1.3 には熱効率へ 影響をおよぼす因子の要因分析を示す.主な損失として,燃焼の時間遅れに よる【時間損失】,シリンダー壁面等への熱移動による【熱損失】,吸排気ポ ートやバルブの流動抵抗による【ポンプ損失】,十分な排ガス交換のために 下死点手前で排気バルブを開くことよる【排気損失】やピストンリングとス リーブ間の摩擦等による【機械損失】が挙げられる.他にも不完全燃焼によ る燃料の排出や熱かい離による損失なども存在する.

エンジン開発においては、これらの損失をいかに低減できるかが熱効率向上のキーとなる.熱損失低減には、燃焼最高温度を減少させることが有効であり、空燃比 A/F を増加させるリーン燃焼や大量 EGR (Exhaust Gas Recirculation)による希釈燃焼が手段として挙げられる.さらにリーン燃焼は、理論 A/F に対して相対的に空気量を増加させているため、ポンプ損失低減や比熱比増加による急速燃焼が有効であり、一般的に吸気ポート断面積を減少させて流入速度を増加させる手段が用いられる.ガソリンエンジンでは筒内にタンブル流と呼ばれる縦渦を形成させることが多いが、時間損失を低減できる反面、過度にポート断面積を減少させるとポンプ損失の増加や高回転域での出力低下が課題となる.また、圧縮比増加は熱率向上に有効な手段であるが、高負荷域で発生するノッキング回避のため、点火時期の遅角が必要となり、結果、時間損失増加により熱効率悪化が発生する.

以上のように,正味熱効率向上の手段は数多く挙げられるが,ある損失を 低減させるためのエンジン諸元や運転パラメーターを選択すると別の損失 が増加する「トレードオフ関係」が存在する.このため,正味熱効率の向上 は容易ではない.

自動車用エンジンに求められる要求として,前述のような燃費(熱効率) 向上や排ガス低減などが挙げられるが,一方では,自動車にはクオリティー オブライフを向上させるという社会的要求も本質的に求められており,それ は「走りの楽しさ」として社会生活の向上に寄与している.図 1.4 に,これ らの要求と,その要求に応えるエンジン燃焼技術を模式的に示す.

従来エンジンに対して,「高効率・低排出ガス」の要求に応えるためのエ ンジン燃焼技術として, HCCI(Homogeneous Charge Compression Ignition)燃焼 や大量 EGR 燃焼が挙げられる. HCCI 燃焼は高効率と低 NOx の両立が可能 な燃焼形態であることから研究が盛んに行われている。HCCI 燃焼は火炎伝 播できないリーン混合気を、高圧縮比化や負のオーバーラップによる内部 EGR 増加により自己着火温度まで増加させ、燃焼室全体の混合気を、ほぼ 同時期に燃焼させる方式である[7][8]. リーン混合気による比熱比増加と高 圧縮比化による高効率燃焼が可能となり, さらにスロットルによる絞りが無 いこと、燃焼室全体を同時期に燃焼させることにより、ポンプ損失と時間損 失の低減が可能となる、しかし、低負荷側では混合気が自己着火温度に達し ないことによる失火の発生、また、高負荷側では急激な圧力上昇によるノッ ク発生により運転範囲が限定されるため、燃焼制御のむつかしさと運転可能 範囲の狭さにより,未だ実用化に至っていない.高負荷側での運転範囲を増 加するために、他気筒のブローダウンを利用して EGR を過給する方式[9]や EGR による筒内温度や燃料による成層化を行い,着火タイミングを空間的 にずらす手法などが試みられている[10].また、可変圧縮比機構を採用する ことにより, 運転条件に応じた最適な圧縮比設定による運転範囲の増加が試 みられている[11]. HCCI 燃焼等のリーン燃焼においては,3元触媒が動作し ないため、NOx 触媒等の排ガス処理装置が別途必要となる.この追加デバ イス設置を回避するために、大量 EGR 燃焼が研究・開発されている.大量 EGR 燃焼は、外部 EGR 導入によるポンプ損失低減、未燃焼ガス温度減少に よるノック回避や熱損失低減等により正味熱効率の向上を可能とする.しか し, EGR 導入により燃焼速度が減少し,時間損失が増加する.この課題を クリアするために,吸気ポート形状やピストン形状を最適化し,流動強化を 行う対策が施されている[12][13][14].

「走りの楽しさ」の要求に応えるためのエンジンとして,高回転高出力型 エンジンが挙げられる.スポーツカー用自然吸気エンジンとして,ビッグボ ア,ショートストロークによる高回転化や吸気バルブ径拡大による体積効率 向上が行われ,排気量 1L(1000cm³)当たりの出力が 125PS(92kW)とな

4

るエンジンが開発された[15]. このエンジンは最高出力 250PS (184kW),最高回転数 8300rpm の出力性能を有しており,「走りの楽しさ」の要求に応えるスポーツカーにふさわしいエンジンとなっている.「走りの楽しさ」の極限に位置するエンジンは,F1 (Formula 1) に代表されるレース用エンジンである.レース用エンジンの開発は高出力化を主眼として進められ,ビッグボア,ショートストロークによる高回転化と吸気バルブ径の拡大による体積効率向上が主な開発項目であった[16][17][18].しかし,燃焼室は極端に扁平化し,火炎伝播距離の増加や高回転による時間損失の増加など,燃焼に対してより厳しい条件となった.そのため,エンジンのさらなる高出力化を行う上で,流動強化が燃焼速度向上の重要なキー技術となっており,高回転域における筒内流動の解析が必要となってきた.

SI(Spark Ignition)エンジンにおいて、外部 EGR 導入やアトキンソンサイク ルによる熱効率向上の研究開発が行われている[13]. これらの技術は高い熱 効率が得られることから燃費向上に寄与するものの、効率の良い運転範囲が 部分負荷領域に限られるため、HEV (Hybrid Electric Vehicle) に搭載された モーターとの組み合わせにより、「高効率」と「走りの楽しさ」の両立を図 っている. 一方、エンジンシステムのみで、「高効率」と「走りの楽しさ」 の両立を目的とした過給ダウンサイジングエンジンが開発されている [19][20]. このエンジンのコンセプトは、図 1.5 に示すように自然吸気エン ジンに対してターボチャージャーなどの過給機を用いることにより、低回転 高負荷領域の熱効率が高い領域を拡大・多用することである. 低回転高負荷 運転では機械損失とポンプ損失が減少するため、高トルク化と効率の良い運 転範囲の増加により、「高効率」と「走りの楽しさ」の両立が可能である.

過給ダウンサイジングエンジンの主な技術課題として,特に低回転高負荷 領域ではノックが発生し易く,熱効率の向上が期待できないことが挙げられ る.ノック改善の手段として,燃焼室,吸気ポート形状の最適化[21][22]に よるエンジン筒内の流動強化が以前から行われており,急速燃焼による等容 度の向上が検討されている.流動強化の手段として,一般的に吸気ポート断 面積を減少させて,燃焼室へ流入する速度を増加させる.エンジン筒内に生 成される流動パターンは大きく分けて,タンブル流と呼ばれる縦渦とスワー ル流と呼ばれる横渦の2種類ある.吸気行程で生成されたタンブル流は圧縮 行程後半まで保存され,圧縮上死点付近で崩壊することにより,スワール流 よりも効率的に乱れの生成が可能であると考えられている[23].そのため, SI エンジンにはタンブルポートの採用が多くみられる.しかし,過度な吸気 ポート等による絞りは,高回転域でチョーキングを発生させ,吸入空気量が 制限されることから出力の低下を招く.この課題をクリアするため,タンブ

5

ルコントールバルブ TCV (Tumble Control Valve) [19][24][25]やスワールコ ントロールバルブ[26]などの吸気切換えデバイスが研究・開発されている. TCV は,吸気ポートを上下に分離するためのプレート(隔壁)と片方の通 路を塞ぐためのフラップで構成されており,フラップを開閉することにより, ポート断面積を自在に変更することが可能である.TCV は過給 GDI(Gasoline Direct Injection) エンジンに適用され,タンブル流の強化を目的としていた [19]が,フラップの一部を切り欠いて斜めスワール流を生成する機構[27]や 冷間時の始動性向上[28][29]へと,その適用範囲は拡大している.

以上のことから, SI エンジンのノック低減を行う上で,流動強化がキー技術となり, 筒内の詳細な乱流解析が必要となってきた.

1.2. 従来の研究

自動車の開発は,設計工程とテスト工程の対応関係が段階的に整理された Vフロープロセスと CAE (Computer Aided Engineering) によるモデルベース 開発 MBD(Model-Based Development)を組み合わせて進められている[30]. エ ンジン開発における Vフロープロセスを図 1.6 に模式的に示す. Vフロー の左側は設計工程,右側はテスト工程を示す.開発の段階は,上から自動車 1 台分,エンジン単体,エンジン機能,エンジン部品の大きく4つに分けら れ,設計工程における自動車1 台分の目標(燃費性能等)は,自動車を構成 するサブシステムの1つであるエンジン単体へ要求として分配される.この 要求を達成するために,蓄積されたデータや CAE をもとにした流動や混合 気分布などの燃焼コンセプトがエンジン機能として設計される.さらに,こ の要求を達成するために,燃焼室形状やインジェクター諸元等のエンジン部 品が設計される.設計された機能や部品は,Vフロープロセスの右側に示さ れたテスト工程において,設計された同じ階層にて検証される.

エンジン機能の検証において、燃焼コンセプトが正しく設計できているこ とを確認するために可視化エンジンが必要となってきた.可視化エンジンと は、燃焼室内を可視化できるように燃焼室やピストントップなどに石英やサ ファイア等の透明な窓が設置された特殊エンジンである.可視化エンジンは、 1990 年代から独自に開発され、筒内上部のみの観察が可能な「サイドウィ ンドウタイプ」や「ショートスリーブタイプ」、全ストロークの観察が可能 な「ロングスリーブタイプ」など、用途に応じた様々な機能を有している[31].

1.2.1. 超高回転エンジンにおける流動解析

SI エンジンは、回転数が増加しても低回転域と同程度のクランン角度範囲 で燃焼を完了することが可能である.これは、エンジン回転数の増加にとも ない乱流強度が増加し、それにより燃焼速度が増加するためだと考えられて いる.すなわち、エンジンの火炎伝播燃焼を促進するためには、乱流を強く することが有効であることを示唆している.

従来,超高回転用エンジンの形状最適化や筒内流動解析を行う場合,定常 流場における実験を主として実施しており,試行錯誤による諸元決定を行っ てきた.より実機に近い非定常流場での筒内流動解析を行うためには,可視 化エンジンを用いた計測が必要である.しかしながら,可視化エンジンを用 いた筒内流動解析は乗用車用エンジンを対象として進められており, 1000rpm 程度の低回転域でのみ行われていた[32].レースエンジンを対象と した超高回転域での計測・解析において,実機のプラグ穴に熱線流速計を設 置し,点火プラグ近傍の局所的な流動解析を行った例[33]は報告されている が,筒内全体の流動解析を行った例はまだ無い.また,レースエンジン以外 の領域において,Fuyuto et al.[34]により開発された単気筒可視化エンジンは, 6000rpm でのファイアリング運転を可能としているが,この回転数を上まわ る可視化エンジンでの計測・解析についての報告はない.そのため, CFD(Computational Fluid Dynamics)は,超高回転域の流動検証が不十分なま ま,エンジン設計に活用されていた.また,燃焼解析は筒内圧によるマクロ 的なデータでのみ行われていた[35][36].

以上のことから、レースエンジンのような超高回転域において、どのよう な速度分布が形成され、さらに流動強化が燃焼速度の増加に対して有効であ るのか不明であった.

1.2.2. 筒内乱流解析

エンジン筒内の乱流計測手法として,熱線流速計や LDV(Laser Doppler Velocimetry)による計測が古くから行われてきたが,点計測であるため燃焼 場全体を評価することが必ずしも容易ではない.近年,粒子画像流速計 (Particle Image Velocimetry: PIV)がエンジン燃焼室内の流速計測に数多く適 用されている. PIV により得られる結果は速度分布を与えることから LDV に比べて情報量が多く,エンジン燃焼室内の流動をより詳細に評価できる. 一方,計測された速度から乱流成分を分離する手法は,以前から多くの研 究者により検討されてきた.城戸ら[37]は,熱線流速計を用いて計測された 圧縮行程中の速度から,サイクル平均した速度を平均流成分とするアンサン

ブル平均法により乱れを分離している.ここで,アンサンブル平均法により 得られる乱流成分には平均流のサイクル毎の変動が合算されることが指摘 されている. 脇坂ら[38]や浜本ら[39]は、熱線流速計を用いて計測された圧 縮上死点付近の速度から,定常的時間平均法を用いて1サイクル毎に平均流 成分と乱流成分の分離を行っている. 定常時間平均法とは, 圧縮上死点付近 において各サイクルの短い期間ではガス流を定常流とみなせると仮定した もので、圧縮上死点を中心として圧縮行程と膨張行程に平均化時間 Δt (ま たは、平均化クランク角度幅 $\Delta \theta$)をそれぞれ設定し、その区間の平均速度 を平均流成分として取り扱う手法である.しかしながら,平均化時間に関す る明確な物理的定義は与えられていない.神本ら[40]や大谷ら[41]は、LDV により計測された速度をもとに、サイクル平均された速度の積分パワースペ クトルが 90%以上となる周波数をカットオフ周波数とすることを提案して いるが、カットオフ周波数には任意性があるとしている.また、近年行われ ている PIV 計測結果においてもアンサンブル平均された速度を平均流とし、 この平均流に対する変動成分を乱流成分とする場合が多い[42][43].他の方 法としてカットオフ長さを導入し,空間フィルターを用いて乱流成分を分離 する試みも報告されている[44][45]が、カットオフ長さの決定法は必ずしも 明確でない.このように、乱流成分の分離に関しては種々の手法が提案され ているが,異なるエンジン諸元や運転条件に対してこれらの手法の適用性は 明らかではない.

乱流計測を行う際に重要となる時間分解能について,国内外の自動車メー カーより高速 PIV システムを用いたエンジン筒内の時系列流動計測・解析の 報告はない.また,比較的新しい報告においても,通常の PIV システムを用 いたクランク角度 30deg 毎の流動計測が行われている[46].海外の大学では, 高速 PIV システムによるエンジン筒内の時系列流動計測・解析は,すでに行 われており,Jakob et al.[47]と Muller et al.[43]は 6kHz で,Ghandhi et al.[48] は 1kHz での時系列流動計測・解析を行った結果が報告されている.しかし, これを上回る時間分解能で計測された研究についての報告はない.

1.3. 本論文の構成

本論文では、各種自動車用エンジンを模擬した可視化エンジンを対象とし て PIV 計測を行い、エンジン筒内の流動特性解明と燃焼促進効果を明らかに することを目的としている.すなわち、高効率かつ高出力の自動車用次世代 エンジンとして高過給ダウンサイジングエンジンが有望であるが、これを実 現するには高回転域におけるエンジン筒内流動計測技術と乱流燃焼速度に

寄与する乱流成分の分離法の確立が必要である.本論文では,それらを実現 し,過給ダウンサイジングエンジンにおける強流動ポートとピストントップ 形状が流動・燃焼特性に与える影響,及び高回転域での出力低下を低減させ る吸気切換えデバイスによる乱流強化と燃焼促進効果との関係を明らかに することを目的としている.

第2章では、レース用エンジンの高出力化においてキー技術である流動を 対象とし、超高回転域における可視化技術の確立と流動特性の解明を目的と する.超高回転域で運転可能な可視化エンジンは存在しないため、まず、可 視化エンジンの開発を行い、超高回転可視化エンジンの製作に必要な技術を 明らかにする.次に、超高回転域にて PIV 計測を行い、世界で初めてエンジ ン回転数 10000rpm における流動分布や流入速度などの流動特性を明らかに する.最後に吸気 1 バルブ休止運転により流動特性を大きく変化させ、PIV により得られた流動特性と実機における燃焼特性を比較し、超高回転時の流 動と燃焼の相関性を明らかにする.

第3章では、筒内における平均流成分と乱流成分の分離法の確立を目的と する.従来型のエンジンにタンブルプレートを取り付けることにより疑似的 に流動強化を行い、第2章で構築した可視化技術を高時間分解能に拡張した 高速 PIV により速度分布の計測を行う.従来行われてきたサイクル平均法で は、平均流成分のサイクル変動も乱流成分に含まれる可能性があることから、 高速 PIV による時間分解能の高さを利用した時間フィルター法を新たな分 離法として提案する.まず、2つの手法により得られる速度や乱流エネルギ ーの特性について明らかにする.次に、時間フィルター法により得られる乱 流特性と燃焼特性の相関性を検証し、時間フィルター法の有効性を明らかに する.

第4章では、強流動ポートを持つ過給ダウンサイジングエンジンに、第3 章で開発した時間フィルター法を適用し、強流動場における乱流特性の解明 を目的とする.エンジン筒内では世界初となる高速 PIV による時間分解能 10kHz で計測された速度をもとにして、乱流解析に必要な時間分解能を明ら かにする.また、時間フィルター法で用いるカットオフ周波数について考察 を行い、その物理的意味を明らかにする.最後に、エンジン回転数やピスト ントップ形状が乱流特性へおよぼす影響を解析し、過給ダウンサイジングエ ンジンの筒内乱流特性を解明するとともに、時間フィルター法の強流動場適 用への有用性を明らかにする.

第5章では、高回転域でチョーキングによる最大出力低下を低減させるための吸気切換えデバイスであるタンブルコントロールバルブ TCV の乱流特性を明らかにすることを目的としている.高速 PIV により計測された速度分

9

布より,隔壁長さやフラップ位置等のTCV 諸元変更により変化する流動・ 乱流特性を明らかにする.また,同一諸元を持つ実機用4気筒エンジンの燃 焼特性と時間フィルター法により得られた乱流特性の間の相関性を明らか にし,TCV が燃焼促進に対して有効なデバイスであることを明らかにする. 第6章は,第2章から第5章までの結論である.

<u>第1章 緒論</u>

図 1.1: 自動車産業を取り巻く環境と課題の大きさ.

図 1.2: 燃料空気サイクルと実際のサイクルの比較[6].

図 1.3: 熱効率へ影響をおよぼす因子の要因分析.

図 1.4: 自動車用エンジンに求められる要求.

13

第2章

超高回転域でのエンジン筒内の流動解析

2.1. はじめに

「走りの楽しさ」の要求に応えるためのエンジンとして、高回転高出力型 エンジンが挙げられる.その極限に位置するエンジンは、F1 に代表される レース用エンジンである.レース用エンジンの開発は高出力化を主眼として 進められ、ビッグボア、ショートストロークによる高回転化と吸気バルブ径 の拡大による体積効率向上が主な開発項目であった[16][17][18].しかし、燃 焼室は極端に扁平化し、火炎伝播距離の増加や高回転による時間損失の増加 など、燃焼に対してより厳しい条件となった.そのため、エンジンのさらな る高出力化を行う上で流動強化が燃焼速度向上の重要なキー技術となって おり、高回転域における筒内流動の解析が必要となってきた.

従来,超高回転用エンジンの形状最適化や筒内流動解析を行う場合,定常 流場における実験を主として実施しており,試行錯誤による諸元決定を行っ てきた.より実機に近い非定常流場での筒内流動解析を行うためには,可視 化エンジンを用いた計測が必要である.レースエンジンを対象とした超高回 転域での計測・解析において,実機のプラグ穴に熱線流速計を設置し,点火 プラグ近傍の局所的な流動解析を行った例[33]は報告されているが,筒内全 体の流動解析を行った例はまだ無い.また,レースエンジン以外の領域にお いて,Fuyuto et al.[34]により開発された単気筒可視化エンジンは,6000rpm でのファイアリング運転を可能としているが,この回転数を上まわる可視化 エンジンでの計測・解析についての報告はない.そのため,CFD は,超高 回転域の流動検証が不十分なまま,エンジン設計に活用されていた.以上の ことから,レースエンジンのような超高回転域において,どのような速度分 布が形成され,さらに流動強化が燃焼速度の増加に対して有効であるのか不 明であった.

本章では、レース用エンジンの高出力化において、キー技術である流動を 対象とし、超高回転域における可視化技術の確立と流動特性の解明を目的と する.超高回転で運転可能な可視化エンジンは存在しないため、まず、可視 化エンジンの開発を行い、超高回転可視化エンジンの製作に必要な技術を明 らかにする.次に、超高回転にて PIV 計測を行い、世界で初めて超高回転域 における流動分布や流入速度などの流動特性を明らかにする.最後に吸気1 バルブ休止運転により流動特性を大きく変化させ、PIV により得られた流動 特性と実機における燃焼特性を比較し、超高回転時の流動と燃焼の相関性を 明らかにする.

2.2. 超高回転可視化エンジンの開発

可視化エンジン製作に当たり,まず,基本コンセプトを以下のように決定 した.

- 実機エンジンと同一諸元
- 超高回転運転での計測(目標回転数 15000rpm)
- ピストンストローク全域の視野確保
- 可視化ウィンドウ脱着の簡易化

図 2.1(a)に単気筒可視化エンジンの概観を示す.本可視化エンジンは直立 した単気筒エンジンで、石英スリーブをヘッドとブロックの間に挟み込む構 造である. ヘッドの締付力が直接石英スリーブに掛からないように、ブロッ クに配置した4つの支柱によって、ヘッドは支えられている. 石英スリーブ の厚さは11.3mmで、モータリング時の筒内圧力から安全率3で設計を行っ た. ヘッド締付ボルトは、ヘッドカバーやカムを取り外すことなく石英スリ ーブの脱着が可能となるようにヘッドの外側に配置し、メンテナンス性を確 保した.これにより、石英スリーブの清掃時間は約20分で行うことが可能 である.図 2.1(b)の上図に延長ピストンの外観,下図に断面図を示す.ピス トントップランドは、ピストンストローク全域の視野確保を目的とした石英 スリーブ取り付けによりヘッド方向へ延長される. さらに, 延長されたピス トントップランド内部を中空構造にすることにより軽量化を図り、超高回転 域での運転を可能とした.また、石英スリーブの耐久性を確保するため、延 長したピストントップランドは, 石英スリーブに接触しないクリアランスを 保ち、 ピストンリングも延長したトップランドには設置せず、 通常の位置に あるピストンリングのみで筒内のガスシールを行った.

石英スリーブの支持方法を図 2.2 に示す.スリーブが直接ヘッドとブロックの金属面に接触しないように、ヘッド側はゴム製 O リング、ブロック側はゴム付きメタルシートで、スリーブ支持とガスシールの両立を図った.また、スリーブ中心の位置出しは、スリーブ外側に配置したゴム製 O リングにより行われた.初期のモータリング運転では、クランクケースからピストンリングを通過して筒内へ浸入したオイルが石英スリーブ内部に付着し、クリアな視野の確保が困難であった.主な原因として、低フリクションを目的としたピストンリングの1本化が考えられたが、ピストンリングをさらに追加するスペースが無いため、図 2.3 に示す通り、スリーブ側にリングを追加してオイル付着防止対策を行った.スリーブリングは、石英スリーブとブロ

ックの間に取り付けられた金属製リングであり, 延長ピストンのトップラン ドに付着しているオイルを掻き落とす構造である. 通常, ピストンリングは オイルにより潤滑摺動しているが, このスリーブリングは無潤滑に近い状態 で摺動している. そのため, 図 2.1 に示したピストントップランド延長部分 に, DLC(Diamond Like Carbon)コートを施すことにより, 耐久性の確保を行 った.

図 2.4に筒内スリーブ壁面へのオイル付着に対するスリーブリングの効果 を示す. 画像は CCD カメラとストロボにより撮影されたもので,条件はエ ンジン回転数 Ne=10000rpm, WOT (Wide Open Throttle),ピストン位置は下 死点(クランク角度 θ=180deg BTDC)である.スリーブリング無しの場合, クランクケースから筒内へオイルが浸入し,石英スリーブの内側に付着して いる様子が見られる.これに対してスリーブリング有りの場合,クランクケ ースから筒内へのオイル浸入は無く,クリアな視界の確保が可能である.

以上のような改良を施すことにより, Ne=10000rpm で約 10 秒間のモータ リング運転が可能な可視化エンジンが完成し,実機と同一諸元での筒内流動 や混合気分布計測が可能になった. なお, 10000rpm を超えるエンジン回転 数では,延長されたピストントップランドと石英製スリーブの接触が発生し, 目標とする 15000rpm での計測は達成できなかった. 要因として, トップラ ンド延長によるピストン挙動の悪化が考えられる. しかし, 10000rpm は乗 用車エンジンで計測される回転数に対して約 10 倍大きく, 超高回転域の筒 内流動の解析は十分可能であると考えられることから計測・解析を実施した.

2.3. 計測原理

2.3.1. 粒子画像流速計(PIV)

PIV の計測原理を以下に示す[49].速度計測において,流れ場に微細なトレーサー粒子を混入させ,これをパルスレーザーなどの光源で瞬間的にシート状に照明する.この照明は流れの面内で2時刻行われ,トレーサー粒子からの散乱光は,カメラにより連続する2時刻の粒子画像として記録される. トレーサー粒子は流れに十分追従しているとし,連続する2時刻の画像上のトレーサー粒子移動量 ΔX と画像入力の時間間隔(レーザー照射間隔) Δt ,および画像の変換係数 α から,式(2.1)より流れ場の局所速度を計算する.

$$u = \alpha \frac{\Delta X}{\Delta t} \tag{2.1}$$

画像上のトレーサー移動量 ΔX を求めるために画像解析が行われる.画像 解析の手法として、1時刻目の画像(第1画像)に任意に設定した検査領域 の輝度値パターンが、2時刻目の画像(第2画像)の、どの位置に移動した かを求める相互相関法が用いられる.このため、画像上の粒子1つ1つが認 識される必要はない.相互相関法には、相互相関値の算出に直接的な相互相 関関数を用いる直接相互相関法や、相互相関値の算出にフーリエ変換を用い る FFT 相互相関法 (Fast Fourier Transform : FFT) などが用いられる.本研究 で用いた FFT 相互相関法は、検査領域内の輝度値パターンが検査領域外に 周期的に繰り返されていることを仮定して FFT 処理される.この輝度値パ ターンの周期性は必ずしも確保されていないので、測定精度の点では直接相 互相関法に対してやや不利であるが、計算量が少ないために高速で処理でき る利点がある.第1画像および第2画像の候補領域の輝度値パターンをそれ ぞれ f(X,Y), g(X,Y)とし、そのフーリエ変換を $F{f(X,Y)}, F{g(X,Y)}$ とすると、 クロススペクトル S_{fg} は式(2.2)により得ることができる.

 $S_{fg}(\xi,\eta) = \mathcal{F}^*\{f(X,Y)\}\mathcal{F}\{g(X,Y)\}$

ここで、上付き添え字*はフーリエ変換の共役形式である. このクロススペクトル*S_{fg}*に逆フーリエ変換を施すことにより、*f(X,Y)、g(X,Y)*の間の相互相 関関数 *C_{fg}*を式(2.3)より得ることができる.

$$C_{fa}(X,Y) = \mathcal{F}^{-1}\{S_{fa}(\xi,\eta)\}$$

ここで、 \mathcal{F}^{-1} はフーリエ逆変換を表す.相互相関法により得られた相関係数 分布から、最も係数の高い座標へ粒子が移動したとして、 ΔX が決定される. また、相関係数の分布にガウス分布や2次曲線などを当てはめて、そのピー ク値を求めることにより、1pixel以下の移動量を求めることが可能となる(サ ブピクセル解析).この解析を粒子画像全体に施すことにより、速度分布が 得られる.ただし、得られた局所速度は検査領域内における空間平均速度と なることから、検査領域以下のスケールを持つ流れは検出できない.

得られた速度分布において,実際とは異なる粒子対応付けが行われてしま うことにより,非常に大きな誤差を含むベクトルが現れる.流体の速度分布 は,空間的に滑らかに分布するはずであり,局所的に大きさや方向の異なる 速度ベクトルは,突如として表れないと考えられる.このことから,このよ うなベクトルを誤ベクトルと呼び,周囲ベクトルとの統計量に基づいて除去 する手法が確立されている.この手法として,メディアンフィルター法など が代表として挙げられる.これは,ある速度ベクトルの周囲8点から中央値 ベクトルを求め,中央値ベクトルとの差が閾値以上である場合,このベクト

(2.2)

(2.3)

ルを除去する手法である.本研究では,閾値を一般的に用いられる周囲8点の速度ベクトルの標準偏差の3倍とした.

2.4. 実験装置, 計測条件

2.4.1.エンジン諸元

単気筒可視化エンジンの主要諸元を表 2.1 に示す. ボア 97mm, ストローク 40.5mm で排気量は 300cm³ である. 圧縮比は 12.2 (設計値) で燃焼室, 吸気排気ポート形状は実機エンジンと同一である. バルブは吸気, 排気ともに 2 バルブであり, 最大リフトはそれぞれ 14.5mm, 14.0mm である. 図 2.5 にバルブリフトカーブを示す. 吸気バルブタイミングは 1mm リフト時でオープン 381deg BTDC, クローズは 116deg BTDC である.

2.4.2. 計測装置

速度の計測手法には PIV システムを用いた. PIV システムの主要な仕様を 表 2.2, 概略を図 2.6 に示す. 光源には, ダブルパルス Nd: YAG レーザー(New Wave Research, Solo PIV Ⅲ-15) を用い, 波長 *l*=532nm, 出力 50mJ/shot で ある. レーザーより発振された光は、光学系により幅 100mm、厚さ 1mm の シート状に引き伸ばされた後、エンジン横方向から筒内へ照射される.カメ ラにはダブルシャッターCCD カメラ(TSI, PIVCAM 10-30)を用い,解像度は 1008×1018pixel である. PC によって制御されたシンクロナイザーにより, レーザーとカメラの同期撮影が行われる.撮影には、第1フレームの後半に 1回目のレーザー照射,第2フレームの前半に2回目のレーザー照射を行う フレームストラドリング撮影を行った.レーザー照射の時間間隔 Δt は、計 測条件に応じて $\Delta t = 6 \sim 8 \mu s$ の範囲で調整した. トレーサーは粒径 $\phi 2.5 \mu m$ の SiO₂(東ソ・シリカ工業, E200-A)を用い,エンジン上部にある吸気チャン バーに接続されたトレーサー供給装置から供給され,できるだけ均一に分布 するように配慮した.なお、トレーサー供給量は、装置の出口にあるバルブ の開度により調整した.任意のクランク角度で発振されるトリガー信号をシ ンクロナイザーに入力し, エンジンと PIV システムの同期を行った. トリガ ー信号はレーザーとカメラの作動周波数 15Hz 以下で安定して計測できるよ うに 13 サイクルに 1 回発振させた.カメラにより計測された画像は PC に 保存された後,画像解析ソフト(TSI, Insight Ver3)により速度ベクトル抽出 処理を行った.解析アルゴリズムは FFT 相互相関法を用い,検査領域 32×

32pixel, オーバーラップ 50%にて計算を行った. 燃焼室撮影領域の空間分解 能は 1.6mm である. 燃焼室ボア方向の速度を *u* 速度成分, ストローク方向 の速度を *v* 速度成分とする.

2.4.3. 計測条件

表 2.3 に計測条件を示す. エンジン回転数 Ne は 10000rpm で,スロットル は WOT とした.同じ回転数にて慣性過給効果が最大に得られるように吸気 ポート長 Linport=200mm とした.また,流動強化による燃焼改善効果を確認 するため,吸気 2 バルブ運転をベースとし,簡易的に流動強化が可能な吸気 1 バルブ休止運転を行った.可視化エンジンにて体積効率 n_v を計測したと ころ,2 バルブ運転時の n_v =100%に対して,吸気 1 バルブ休止時は n_v =94.2% となり,その差は 5.8% であった.吸気 1 バルブ休止により吸気断面積をお およそ 1/2 に減少させているが, n_v の大きな減少は認められない.このこ とから,吸気 1 バルブ休止による流動強化が有効となる回転域は,吸気断面積の変化を考慮して 10000rpm までと考えられる.撮影は,吸気行程である θ =270deg BTDC から圧縮行程である θ =60deg BTDC まで 30deg 毎に行い,各 クランク角度で 100 サイクル計測した.ここで,多数の独立したサイクルで 計測されたデータを同一クランク角度でアンサンブル平均することをサイ クル平均と定義する.

図 2.7 に計測断面位置を示す.レーザーシートを排気側から入射させて, エンジン前側から撮影を行った.計測断面は,燃焼室中央であるボアセンタ ー断面と吸気バルブ中央である吸気バルブセンター断面の2断面である.な お,吸気1バルブ休止運転時,カメラ側の吸気バルブを休止させた.

2.5. 超高回転域での筒内流動特性

2.5.1. 大域的流動特性

ボアセンター断面と吸気バルブセンター断面のサイクル平均された速度 分布を図 2.8 に示す. ボアセンター断面において,吸気行程で筒内へ流入す る速度は約 70m/s で,ピストンの降下にともない速度は増加する (θ =270 ~240deg BTDC). 下死点付近で燃焼室中心付近を渦中心とするタンブル流 が形成され (θ =210~180deg BTDC), 圧縮行程前半ではピストンの上昇と ともにタンブル流は上方に移動しながら徐々に減衰する(θ =150~90deg

BTDC). 圧縮行程後半では、さらにタンブル流が減衰し、吸気バルブ下側の 上昇流のみが観察される(*θ*=90~60deg BTDC). 吸気バルブセンター断面 において、吸気行程で吸気バルブから筒内へ流入する速度は約 80m/s である (*θ*=270~240deg BTDC). この時、燃焼室中央側と吸気側のシリンダー壁 面側の両方から流入した流れがバルブ下側へ巻き込む 2 対の渦が形成され る. この渦は下死点付近でさらに明確になり(*θ*=210~150deg BTDC), 圧 縮行程においても維持されたまま、ピストンの上昇とともに上方へ移動する (*θ*=90~60deg BTDC). 一般的に、排気側へ向かう流れを強めるような強 タンブルポート形状では、吸気ポートの有効開口面積が減少し、体積効率の 低下を招く. 本エンジンの吸気ポート形状は、高い体積効率が得られるよう に吸気バルブ全周より空気を流入させる形状であり、吸気バルブ下の 2 対の 渦はその特徴的な流れである.

図 2.9 にボアセンター断面における PIV 計測と CFD により得られた速度 分布の比較を示す. CFD の計算には,汎用流体ソフト(Ricardo, VECTIS) を用い,乱流モデルは標準 κ-εモデルで,作動流体は空気とした. 3D 形状 モデルは吸気チャンバーから排気管までのすべてを含むフルモデルであり, *nv*や吸気排気管内の圧力脈動を収束させるために 4 サイクルの連続計算を 行った.最初の 3 サイクルはメッシュ 2mm,残りの 1 サイクルはメッシュ 1mm で計算することによって,計算時間の短縮と計算精度維持の両立を図 った.計算時間は,1条件で 8CPU(Pentium4, 2.4GHz)を用いた場合,約5 日である. PIV 計測結果は 100 サイクル平均したものを用いた.ボアセンタ 一断面において,燃焼室に流入する速度,他の流れとの境界位置や *θ*=180deg BTDC で形成されるタンブル流の渦中心位置など,PIV と CFD の速度分布は 良く一致している.

吸気バルブセンター断面における吸気バルブ上面から筒内へ流入する速度 U_{valve} とし、PIV と CFD で比較した結果を図 2.10 に示す. PIV の U_{valve} は θ =270deg BTDC で 50m/s であり、吸気バルブリフトが最大となる θ =240deg BTDC で最大値 80m/s となる. 吸気行程後半になるにしたがい U_{valve} は減少し、 θ =180deg BTDC で約 40m/s となる. CFD の U_{valve} も PIV とおおむね同 じ傾向を示しており、両者の間に良い一致が見られた.

以上のように、ボアセンター断面における速度分布やバルブ断面における 流入速度の比較から、3D フルモデルを用いた CFD 計算を行うことで *Ne*=10000rpm の超高回転域においても筒内の流動状態が予測可能であるこ とが明らかになった.

吸気バルブセンター断面における吸気バルブ上面から筒内へ流入する最 大速度を Uvalve_max とし, Uvalve_max と平均ピストン速度 Upの関係を図 2.11 に

示す. CFD の結果は,図 2.9 で用いたモデルを用い,エンジン回転数を変 化させることにより,異なるエンジン回転数における Uvalve_max を求めた.PIV 計測結果は,図 2.10 の結果に加えて,乗用車エンジン(排気量 2L,4 バル ブ,ガソリンエンジン)の計測結果も合わせてプロットした.なお,各プロ ットの横にエンジン回転数を併記する.エンジン回転数が大きく異なる乗用 車エンジンを含め,Uvalve_max は Up の増加に対してほぼ線形的に増加してお り,傾向を Up で整理できることがわかる.実機エンジンの最高出力回転数 に近い Ne=18000rpm の Uvalve_max は 185m/s であり,15℃における音速 340m/s 以下である.吸気系内部の絞りにより局所速度が音速に近づくとチョーキン グが発生し,吸入空気量が制限されるが,F1 エンジンも同様の物理現象に より,最高回転域で高い流量係数が得られるような吸気ポートが設計されて いることが明らかとなった.また,このような最高回転域の流動についても, CFD を用いたエンジン設計が可能であることが明らかになった.

2.5.2. 乱流特性とその強化

超高回転域での燃焼促進に対する流動強化の有効性を明らかにするため, 簡易的に流動強化が可能な吸気1バルブ休止運転を行い, PIV 計測を行なっ た. ボアセンター断面における2バルブ運転と吸気1バルブ休止運転した場 合の速度分布比較を図 2.12 に示す.速度分布は平均的な1 サイクルを選択 した.また、休止した吸気バルブは図 2.7 に示すように計測断面の手前側に 設置されたバルブである. 吸気行程で, 吸気1バルブ休止運転時に筒内へ流 入する速度は 2 バルブ運転時の速度より速く,100m/s を超える速度も見ら れる.また,吸気1バルブ休止運転時の速度分布には,排気側に1つの渦が 見られる (*θ*=240deg BTDC). 下死点で,2バルブ運転時にはタンブル流が 生成されているのに対して, 吸気 1 バルブ休止運転時では 2 つの対抗する渦 が生成しており、その速度は約 100m/s である (θ =180deg BTDC). 圧縮行 程では,2バルブ運転に対して吸気1バルブ休止運転時の速度は速く,また, その分布も複雑となっている(θ=90deg BTDC). ここで,乗用車用エンジン において,吸気1バルブ休止運転を行うことによりエンジン筒内に斜めスワ ール流が形成されていることが知られており[32],本エンジンにおいても同 様に斜めスワール流が生成されていると推測される.

空間スケールの大きい流動を主流成分,小さい流動を乱流成分とすると, エンジンのような流動場においては,主流成分(空間スケール大の流動)自 身もサイクル毎に変動すると考えられる.そのため,サイクル平均から得ら れる速度を平均流成分とし,そこから各サイクルの瞬時速度を差し引いた成

分を乱流成分(空間スケール小流動)とした場合,この乱流成分に主流であ る平均流成分のサイクル変動が含まれると考えられる[37][50].そこで,瞬 時サイクルの速度分布を用いて,空間スケールの大きい流動と空間スケール の小さい流動に分離することにより,2バルブ運転と吸気1バルブ休止運転 の乱流特性の比較を行う.平均流成分と乱流成分を分離するにあたり,その 空間スケールを決定するため,流れの積分長さスケールの計算を行った[48]. 式(2.4)より,流れの自己相関係数の計算を行った.

$$R_{uu}(\Delta x) = \frac{1}{u(x)^2} \sum u(x)u(x + \Delta x)$$
(2.4)

ここで、xはボア方向を示しており、uはx方向の速度成分である.次に、流れの積分長さスケール L_E を、式(2.5)を用いて計算を行った.なお、積分範囲は自己相関係数が 0 となるまでとした.

$$L_E = \int R_{uu}(\Delta x) \tag{2.5}$$

ここでは、u 速度成分の縦方向(x 方向)に関して計算式を示したが、横方 向(y方向)に関しても同様に計算を行った.これを、 $R_{uu}(\Delta y)$ と表記する. また,ストローク方向の速度成分であるv速度成分にも同様の手法を用いて L_E の計算を行っている.ここで、 L_E の計算を行う場合、空間分解能 1.6mm では分離される流動のスケールに対してやや大きいと考えられるため,同一 画像を用いて空間分解能の増加を図った. PIV 解析アルゴリズムを再帰的 FFT 相互相関法(TSI, Insight Ver5)に変更し、開始検査領域 32×32pixel から、 最終検査領域 16×16pixel まで2 段階に検査領域を小さくした. この時の空 間分解能は 0.8mm である. なお, 最終検査領域内にトレーサーは存在する ことは、事前に確認を行った.この速度分布をもとにして得られた θ =90deg BTDC における L_E の計算結果を表 2.4 に示す. いずれの値も 1 サイクル毎 に計算した後、100 サイクル平均した値である.2 バルブ運転の場合、ボア 方向(x 方向)の L_E[R_{uu}(Δx)]と L_E[R_{vv}(Δx)]に対して,ストローク方向(y 方 向)の $L_E[R_{uu}(\Delta y)], L_E[R_{vv}(\Delta y)]$ は小さい値を示している.これは、ボアに 対してストロークが極端に短いため, ストローク方向に大きなスケールの流 動が維持されないためだと考えられる.次に,吸気 1 バルブ休止運転の L_E は,2バルブ運転と比較して全体的に小さい値を示す.この要因として,吸 気1バルブ休止運転では2対の渦が生成される複雑な流動場(図 2.12参照) となっており、渦のスケールが小さいためと考えられる.

次に乱れ強さの計算を以下の手順で行った.速度分布をフーリエ変換により各波数成分に分離する.その後、カットオフ長さ *L_c*より小さいスケールを乱流速度成分 *u'*、*v'*とし、*u'*、*v'*の速度分布から式(2.6)を用いて、乱れ強さの空間平均 *u'*Aveを求めた.

$$u'_{Ave} = \sqrt{u'^2 + v'^2}$$

(2.6)

 $\theta = 90 \text{deg BTDC}$ で、 u'_{Ave} が平均に近いサイクルを1サイクル選択して、カットオフ長さ L_c と乱流強度 u'_{Ave} の関係を図 2.13に示す.全体的な傾向として、 L_c の増加にともない乱流速度成分u、v'に含まれる速度の割合が増加するため、 u'_{Ave} は増加する.また、2バルブ運転時の u'_{Ave} に対して吸気1バルブ体止運転時の u'_{Ave} は全体的に大きい. $R_{uu}(\Delta x)$ により計算された L_E における u'_{Ave} を比較すると、2バルブ運転時の $L_E=15.3$ mmに対して吸気1バルブ体止運転の $L_E=9.9$ mmは小さいにも関わらず、吸気1バルブ体止時の u'_{Ave} は2バルブ運転時に対して約3倍大きい.

同一諸元を持つ単気筒性能エンジンで計測された 2 バルブ運転時と吸気 1 バルブ休止運転時の燃焼質量割合 MBF(Mass Burned Fraction)の比較を図 2.14 に示す.計測条件は,エンジン回転数 Ne=10000rpm, A/F=12.3 である. また,点火時期 θ_{ig} は,2バルブ運転時に θ_{ig} =70deg BTDC,1バルブ運転時 に θ_{ig} =58deg BTDC で,それぞれ最適点火時期 MBT(Minimum advance for Best Torque)とした.なお,250 サイクル平均した筒内圧と熱力学第一法則から MBFを計算した.横軸には点火からのクランク角度,縦軸には MBFを示す. θ_{ig} から MBFが 10% となるまでのクランク角度を初期燃焼期間,MBFが 10% から 90% となるまでを主燃焼期間と定義すると,吸気1バルブ休止運転する ことにより,初期燃焼期間は-13.2deg,主燃焼期間は-5.8deg の結果を得た. 以上のことから,超高回転域においても流動強化により燃焼促進効果が得 られることが,可視化・実機エンジンの結果から明らかになった.

2.6. 本章の結論

本章では、レース用エンジンの高出力化においてキー技術である流動を対象とし、超高回転域における可視化技術の確立と流動特性の解明を目的とした. F1 エンジンの吸気行程から圧縮行程の筒内可視化を目的とした可視化 エンジンの開発を行い、さらに、PIV により超高回転域で形成される流動場の解析を行った結果、以下の結論を得た.

- 1. 中空構造の延長ピストンとスリーブリング採用により F1 エンジンと同 一諸元を持つ10000rpm まで計測可能な単気筒可視化エンジンを開発し, 超高回転域での筒内解析が,世界で初めて可能となった.
- 流動解析の結果,吸気バルブ下に生成される 2 対の渦が観察された. 本エンジンの吸気ポート形状は高い体積効率が得られるように吸気バルブ全周より空気を流入させる形状であり,2 対の渦はその特徴的な流れである.
- 3D モデルをフルモデルとし、適切なメッシュサイズと連続多サイクル 計算による収束を行うことにより、F1 エンジンのような超高回転域で も CFD による筒内流動の予測が可能である.
- 4. 吸気 1 バルブ休止により簡易的に筒内流動強化を行った結果,流動強 化による超高回転域の燃焼促進効果が確認された.

Engine	An optical single cylinder engine	
Bore×Stroke	97mm×40.5mm	
Displacement volume	300cm ³	
Compression ratio	12.2	
Number of valve	In : 2, Ex : 2	
Valve timing	IVO : 381 deg BTDC	
at 1mm lift	IVC : 116 deg BTDC	
Max valve lift	In : 14.5mm, Ex : 14.0mm	

表 2.1: 単気筒可視化エンジンの主要諸元.

表 2.2: PIV システムの主要な仕様.

	Double pulse Nd:YAG	
Laser	New Wave Research, Solo PIV III-15	
	$\lambda = 532$ nm, 50mJ/shot, $\Delta t = 6 \sim 8 \mu$ s	
	Double shutter CCD	
Camera	TSI, PIVCAM 10-30	
	1008×1018 pixel	
Тиссон	SiO ₂ , $\phi = 2.5 \ \mu \ m$	
Iracer	TOSOH, E200-A	
PIV algorithm	FFT-based cross correlation	
	TSI, Insight ver3	
	Interrogation window 32×32pixel	
	Overlap 50%	

Engine speed	10000rpm, Motoring	
Throttle	WOT	
Intake port length	Linport=200mm	
Measurement range and	$\theta = 270 \sim 60 \text{deg BTDC}$	
interval	30deg	
Operation mode	2 valves	
Operation mode	1 valve deactivation	

表 2.3 計測条件.

表 2.4: 2 バルブと吸気 1 バルブ休止の流れの積分長さスケール比較(θ =90deg BTDC).

	2 valve	1valve deactivation
$L_E[R_{uu}(\Delta x)]$	15.3	9.9
$L_E[R_{vv}(\Delta x)]$	17.1	4.6
$L_E[R_{uu}(\Delta y)]$	4.3	3.4
$L_E[R_{vv}(\Delta y)]$	5.3	3.2

図 2.1: (a)単気筒可視化エンジン外観, (b)延長ピストン外観と断面図.

図 2.3: スリーブリング構造の概略図.

図 2.4: 筒内スリーブ壁面へのオイル付着に対するスリーブリングの効果 (*θ*=180deg BTDC), (a)スリーブリング無し, (b)スリーブリング有り.

図 2.5: バルブリフトカーブ.

図 2.6: PIV システムの概略図.

図 2.7: 計測断面, (a)ボアセンター断面, (b)吸気バルブセンター断面.

図 2.8: (a)ボアセンター断面と(b)吸気バルブセンター断面における速度分布 の比較(100サイクル平均).
第2章 超高回転域でのエンジン筒内の流動解析

図 2.9: ボアセンター断面における(a)PIV 計測と(b)CFD 計算結果の速度分布 比較.

図 2.10:吸気バルブセンター断面における吸気バルブ上面から筒内へ流入する速度 Uvalve の比較.

第2章 超高回転域でのエンジン筒内の流動解析

図 2.11: 吸気バルブセンター断面における吸気バルブ上面から筒内へ流入 する最大速度 Uvalve max と平均ピストン速度 Up の関係.

図 2.12: ボアセンター断面における(a)2 バルブ運転と(b)吸気 1 バルブ休止 運転した場合の速度分布比較(任意1サイクル).

第2章 超高回転域でのエンジン筒内の流動解析

図 2.13: カットオフ長さ L_c と乱流強度 u'aveの関係(θ=90deg BTDC).

図 2.14:単気筒性能エンジンにおける 2 バルブ運転と吸気 1 バルブ休止運転 の燃焼質量割合 MBF の比較.

第3章

エンジン燃焼室内の乱流変動分離法

3.1. はじめに

SI(Spark Ignition)エンジンにおいて,外部 EGR 導入やアトキンソンサイク ルによる熱効率向上の研究開発が行われている[13]が,効率の良い運転範囲 が部分負荷領域に限られるため,HEV に搭載されたモーターとの組み合わ せにより,「走りの楽しさ」との両立を図っている.一方,エンジンシステ ムのみで,「高効率」と「走りの楽しさ」の両立を目的とした過給ダウンサ イジングエンジンが開発されている[19][20].このエンジンのコンセプトは, 自然吸気エンジンに対して過給機を用いることにより,低回転高負荷領域の 熱効率が高い領域を拡大・多用することである.

主な技術課題として,低回転高負荷領域ではノックが発生し易いことが挙 げられ,その改善手段としてエンジン筒内の流動強化が行われている.エン ジン筒内の乱流計測手法として,LDV 等による計測が古くから行われてき たが,点計測であるため燃焼場全体を評価することが必ずしも容易ではない. また,乱流成分の分離に関しては種々の手法が提案されているが,異なるエ ンジン諸元や運転条件に対してこれらの手法の適用性は明らかではない.

本章では、筒内における平均流成分と乱流成分の分離法の確立を目的とする.従来型のエンジンにタンブルプレートを取り付けることにより疑似的に 流動強化を行い、第2章で構築した可視化技術を高時間分解能に拡張した高 速 PIV により速度分布の計測を行う.従来行われてきたサイクル平均法では、 平均流成分のサイクル変動も乱流成分に含まれる可能性があることから、高 速 PIV による時間分解能の高さを利用した時間フィルター法を新たな分離 法として提案する.まず、2つの手法により得られる速度や乱流エネルギー の特性について明らかにする.次に時間フィルター法により得られる乱流特 性と燃焼特性の相関性を検証し、時間フィルター法の有効性を明らかにする.

3.2. 実験装置·計測条件

3.2.1.エンジン諸元

単気筒可視化エンジンの主要諸元を表 3.1 に,その外観を図 3.1 に示す. ボアとストロークはともに 86mm であり,燃焼室内を可視化できるように, エンジンヘッドに石英製サイドウィンドウを設置している.ヘッドとブロッ クの間には伸長スリーブと伸長ピストンを設置し,石英製ピストンウィンド ウと 45°アルミ蒸着ミラーにより燃焼室下側からの可視化も可能としてい る.設計バルブリフトカーブを図 3.2 に示す.横軸にクランク角度,縦軸に

バルブリフト量を示し,吸気バルブと排気バルブの最大リフトはそれぞれ 7.9mm,8.8mmである.バルブタイミングは表 3.1に示している通りであり, 有効バルブリフト高さを 1mm と定義した場合,バルブのオーバーラップは 無い.

本章では,簡易的に燃焼室内の流動を変化させるためにタンブルプレート を吸気ポート内に挿入した(図 3.1 参照).図 3.3 にタンブルプレート挿入 によるポート形状の変化とそれに伴う燃焼室内の流動様式の変化を模式的 に示す.タンブルプレートを挿入しない場合,吸気バルブ全周より空気が流 入するため,吸気ポート上側からの流入(赤線)と下側からの流入(青線) が存在する.タンブルプレートを挿入すると吸気ポートの下側が絞られるた め,吸気ポート下側から燃焼室への流入(青線)が抑制され,吸気ポート上 側からの流入が支配的になる.定常流の状態において両仕様のタンブル比を 計測した結果,タンブル比はタンブルプレートを挿入することによって 0.59 から 1.0 へと約 70%増加し,タンブル流が強くなっていることが事前に確認 されている.

3.2.2. 計測装置

実験・計測装置の概要を図 3.4 に示す.速度の計測手法には高速 PIV シス テムを用いた.光源に高繰り返しダブルパルス Nd:YAG レーザー(Lee, LDP-50MQG)を用い,レーザー光の波長は 532nm である.粒子画像の撮影に は高速度 CMOS カメラ(Photron, SA1.1)を用い, 1024×1024pixel の解像度で 撮影を行った.カメラレンズには焦点距離 50mm(Nikon, Nikkor 50mm f/1.2S) を用い,計測条件により絞り値を 1.4~2.0 の間で調整して使用した.レーザ ー光はシリンドリカルレンズにより,厚さ 1mm のシート状に引き伸ばされ た後,45° ミラーとピストンウィンドウを介して燃焼室下側からボア中心位 置に照射される.なお,図 3.4(a)に示したカメラとレーザーシートの位置関 係は模式的なものであり,実際のカメラ位置は,図 3.4(b)に示すようにレー ザーシートに対して 90° の方向である.

トレーサーに粒径 $\phi=3\mu$ mのSiO₂(鈴木油脂工業, ゴッドボール B-6C) を用い,スロットル直後の吸気チャンバーからエンジン内に吸入させ,でき るだけ均一に分布するように配慮した.ここで,トレーサー粒子の流体追従 性として,トレーサー粒子の周波数応答性[51]を評価する.これは,流体速 度 u_{fluid} が角速度 ω (=2 πf , f:角周波数)で変動する時,球形粒子の速度 $u_{particle}$ の u_{fluid} に対する追従性を $u_{particle}$ と u_{fluid} の速度比として表したものである. トレーサー平均粒径 $\phi3\mu$ m,トレーサーかさ密度 $\rho_{particle}=180$ kg/m³とし,吸

気行程における空気密度 ρ_{fluid} =1.09kg/m³(圧力:92kPa,温度:26℃)との 比 $\rho_{particle}/\rho_{fluid}$ =165, 圧縮 TDC(Top Dead Center)における空気密度 ρ_{fluid} =8.72kg/m³(圧力:1268kPa,240℃)との比 $\rho_{particle}/\rho_{fluid}$ =21 の 2 つの場 合に見積もられた流体の角周波数 f に対する $u_{particle}/u_{fluid}$ を図 3.5 に示す.こ れより,流体の角周波数 f の増加にともない, $u_{particle}/u_{fluid}$ は減少するが,ト レーサーの流体追従性は 1kHz の速度変動に対して 99%以上を示す.しかし, 回転場におかれたトレーサー粒子は,流体との密度差により遠心力が働き, トレーサー粒子の追従性が悪化する.これより,遠心力が働いた場合の流体 に対するトレーサー粒子の追従性を,式(3.1)に示すストークス数 St_f に見積 もる.

$$St_f = \frac{\tau_{particle}}{\tau_{fluid}} \tag{3.1}$$

ここで, $\tau_{particle}$ は粒子応答時間であり,式(3.2)で示すことができる.

$$\tau_{particle} = \frac{\rho_{particle} d_{particle}^2}{18\mu}$$
(3.2)

ここで、 $\rho_{particle}$ はトレーサー密度、 $d_{particle}$ はトレーサー粒子径、 μ は流体の粘性係数である. $\rho_{particle}$ 、 $d_{particle}$ は前述のかさ密度と平均粒径を用い、また、流体の粘性係数は、空気の粘性を物性推算法で計算した値を用いた[52]. τ_{fluid} は流体特性時間であり、コロモゴロフ時間スケール τ_n 、テイラーマイクロ時間スケール τ_λ 、積分時間スケール τ_1 などが用いられることから、これら3つの時間スケールに基づく流体特性時間について、トレーサー粒子の流体追従性の評価を行う.まず、積分時間スケール τ_1 は、後述する第5章の燃焼室内において時間フィルター法により得られた圧縮上死点における乱流強度 u' から求めた.次に、テイラーマイクロ時間スケール τ_λ は、積分長さスケール Iとの関係式(3.3)よりテイラーマイクロスケール λ を u' で除することにより求めた.

$$\frac{\lambda}{l} = \left(\frac{15}{A}\right)^{\frac{1}{2}} \left(\frac{u'l}{v}\right)^{-\frac{1}{2}} \tag{3.3}$$

ここで、A は 1 のオーダーの定数であることから A=1 とした. また、 ν は 流体の動粘性係数である.最後に、コロモゴロフ時間スケール τ_n は、 λ と の関係式(3.4)より、コロモゴロフ長さスケール η を求め、 η をコロモゴロフ 速度スケール u_k で除することにより求めた.

$$\frac{\lambda}{\eta} = 15^{\frac{1}{4}} R e_{\lambda}^{\frac{1}{2}} = 15^{\frac{1}{4}} \left(\frac{u'\lambda}{\nu}\right)^{\frac{1}{2}}$$

(3.4)

なお、 u_k は、動粘性係数 ν と乱れの消散率 ϵ より、 $u_k = (\epsilon/\nu)^{1/4}$ を用いて求 めた. さらに、乱れの消散率 ϵ の計算には、 $\epsilon = 15\nu u'^2/\lambda^2$ を用いた. 結果を 表 3.2に示す.積分時間スケールに基づくストース数 $St_l=1.57\times10^3$ となり、 1より 3 桁小さい値となる. また、テイラーマイクロ時間スケールに基づく ストークス数 $St_{\lambda}=2.01\times10^{-2}$ となり、1より 2 桁小さい値を示すが、コロモ ゴロフ時間スケールに基づくストークス数 $St_n=9.04\times10^{-2}$ となり、1より約 1 桁程度小さい値となる. ストークス数が 1よりも十分小さい場合、流れに トレーサー粒子が追従していると考えられることから、1よりも 2 桁以下を 十分小さいと仮定する. これより、本トレーサー粒子は、テイラーマイクロ スケール程度まで追従していると考えられる.

高速 PIV システムの高速度カメラとレーザーの同期はタイミングコント ローラー(Labsmith, LC880)により行われ,エンジンクランクに取り付けられ たエンコーダーの角度信号を基準に撮影を行った.計測タイミングチャート を図 3.6 に示す.レーザーの発振周波数を 1.1kHz,カメラの撮影速度を 2.2kHz とし,第1フレームの後半に1回目のレーザー照射,第2フレーム の前半に2回目のレーザー照射を行うフレームストラドリング撮影を行っ た.この手法は,PIV 計測において撮影用カメラの画像取得周波数では粒子 運動に追随できないような高速流体を対象とする場合に用いられるもので ある.レーザー照射間隔Δtを計測条件により,10~14μsの範囲で調整した.

計測および解析領域を図 3.7 に示す. 黄色で示した領域がサイドウィンド ウにより可視化可能な領域である. 通常は排気バルブ間に点火プラグが設置 されているが,点火プラグ周りの流動特性を計測・解析するために点火プラ グを取り外して計測を行った. 乱流解析が行われた領域は燃焼室内の横 30mm,縦7mmであるが,本章では,通常,点火プラグにより着火される位 置での解析を主として行った. 得られた粒子画像は市販の PIV 解析ソフト (西華産業,Koncert ver1.0) により解析された. 解析アルゴリズムには再帰 的 FFT 相互相関法を用い,検査領域を 32×32pixel から 16×16pixel まで 2 段階に変化させ,オーバーラップを 50%とした. 得られた速度ベクトルの 時間分解能は 1.1kHz,空間分解能は 0.6mm である. ここで,時間分解能は カメラの撮影速度の 1/2,レーザーの発振周波数に相当する (図 3.6 参照). 本研究では,燃焼室ボア方向の速度を u 成分,ピストンストローク方向の速 度を v 成分とする.

3.2.3. 計測条件

計測条件を表 3.3 に示す. エンジン回転数 Ne は 700rpm と 1500rpm とし, スロットル開度は WOT(Wide Open Throttle)とした. この状態でタンブルプ レートを吸気ポートに挿入することによりタンブル比を変化させた. Ne=1500rpm でタンブルポート有無の効果を検討したが,タンブルプレート 無し (W/O) に対してタンブルプレート有り (W/T) の体積効率 η_v の減少は ほとんど認められず,いずれも約 75%であった.時間分解能は前述の通りで あるが,クランク角度にして Ne=700 rpm の場合で 4deg, Ne=1500 rpm の場 合で 8deg の分解能である.計測したサイクル数は,いずれの条件について も 100 サイクルである.ここで,多数の独立したサイクルで計測されたデー タを同一クランク角度でアンサンブル平均することをサイクル平均と定義 する.

3.3. 時間フィルター法

3.3.1. 速度分布

タンブルプレート有無による平均的な流動様式の差を比較するために、サ イクル平均された速度分布を図 3.8 に示す. 図中の赤丸はタンブルの渦中心 位置を示す. タンブルプレート無しの場合, 吸気行程である θ=303~183deg BTDC では吸気バルブ全体から空気が流入しており、 θ =271deg BTDC の流 入速度は最大で約26m/sである.この流れはピストンの下降とともに下方向 へ移動し、圧縮行程である θ =151~31deg BTDC で燃焼室に帰ってくる.し かし, 流れは大きく減速されており, θ =31deg BTDC の速度は最大で約 3m/s である. タンブルプレート有りの場合, 吸気行程である θ = 303~183deg BTDC で,吸気ポート下側からの流入が抑制されるため排気側への流入が支 配的になる. *θ*=271deg BTDC の流入速度は最大で約 32m/s であり, タンブ ルプレート無しの場合と比べて増加している.タンブルプレート無しの場合 と同様、この流れはピストンの下降とともに下方向へ移動し、 圧縮行程で燃 焼室に帰ってくる.しかし、タンブル流が保存されており、 θ =31deg BTDC の速度は最大で約 9m/s とタンブルプレート無しの場合よりも増加している. このようにタンブルプレート有りの場合, 圧縮上死点付近でもタンブル流は 崩壊せず,流れは維持されていることが確認された.

3.3.2. 乱流変動の分離法

瞬時の速度成分 u, v を, サイクル平均された速度成分 \bar{u} , \bar{v} とそれからの 変動成分 u'_c , v'_c の和として, それぞれ式(3.5), 式(3.6)のように表す.

$$u = \bar{u} + u'_c \tag{3.5}$$

$$v = \bar{v} + v'_c \tag{3.6}$$

ここで,サイクル平均された速度成分を平均流として取り扱うことをサイク ル平均法と定義し,この場合の変動成分は下付き添え字 c で表現する.

点火プラグ着火点位置(図 3.7 参照)での代表的な5 サイクル分の瞬時速 度成分 u, vとサイクル平均された速度成分 \bar{u} , \bar{v} を図 3.9 に示す. 図示した 条件は, Ne=1500rpm WOT with tumble plate で, 横軸と縦軸はそれぞれクラ ンク角度と速度を示している. これより, \bar{u} , \bar{v} に対して u, vはともにサイ クル変動を有しており, 特に吸気行程での変動が大きいことが分かる.

次に、速度変動の特性を詳細に解析するために、吸気から圧縮行程を1周 期として、離散フーリエ変換を施し、周波数特性を調査した.離散フーリエ 変換には、それぞれ式(3.7)、式(3.8)を用いた.

$$\hat{u}(f) = \sum u(\theta) e^{-i2\pi f\theta} \, d\theta \tag{3.7}$$

$$\hat{v}(f) = \sum v(\theta) e^{-i2\pi f\theta} \, d\theta \tag{3.8}$$

ここで、 θ はクランク角度、fは周波数、iは虚数である。得られた流れの周 波数特性を図 3.10 に示す. ここで横軸に周波数, 縦軸に離散フーリエ係数 の絶対値を示している. 太線は1サイクル毎に得られた結果をサイクル平均 したものであり、細線は、その標準偏差を示す.これより、u成分、v成分 ともにサイクル平均された速度に対して、すべての周波数帯でサイクル変動 を有していることが分かる.一般に,エンジン燃焼室内の火炎形態はしわ状 層流火炎片領域に分類されると考えられている.この領域では、流れの時間 および空間スケールが大きいと火炎片は輸送されるのみで燃焼速度は増加 しないと予測され、逆にスケールが小さいと火炎面のしわが増加し、燃焼速 度も増加すると考えられる[53].通常,エンジン燃焼室の流動解析を行う場 合, サイクル平均された速度を平均流成分とし, それからの変動を乱流成分 と定義する場合が多い[25][42][43]. しかし,この方法では,燃焼速度の増大 に寄与しないと考えられる時間スケールの大きな速度変動も乱流成分に含 まれることになり、乱流強度を過大評価してしまう可能性がある[54].ここ で、平均流成分と乱流成分に分離するためのスケール(時間周波数、あるい は空間波数)を決定できれば、両者を分離でき、乱流燃焼速度の増大に寄与

する乱流成分のみを抽出できると考えられる.本章では,高速 PIV を用いて 流動場を計測しており,特徴として高時間分解能の速度データが得られてい る.この特徴を活かして1サイクル中で時間スケールの大きな流動(主流成 分)を平均流成分と考え,それより小さなスケールの流動を乱流成分として 分離することを検討した.

図 3.11 に各計測条件で得られた流れの周波数特性を示す.太線は u 成分, 細線は v 成分を示し,いずれもサイクル平均された結果である.まず,タン ブルプレート無しでエンジン回転数 Ne を 700rpm から 1500rpm へ増加させ た場合の周波数特性は,周波数と速度がともに増加しているため,全体的に 右上へシフトしている.これはエンジン回転数の増加に伴う流入速度の増加 と乱流強度の増大を意味する.さらに,Ne=1500rpm でタンブルプレートを 挿入した場合の周波数特性は,u 成分では低周波成分の増加,v 成分では全 体的な増加が見られる.これはタンブルプレートによる流入速度増加により, サイクル中の速度が上昇し,乱流としての Reynolds 数が高くなったことを 意味する.

図 3.11 の結果から、いずれの計測条件でも周波数特性において傾きが変 化する周波数が存在している.これは、この周波数を境にして変動特性が変 化していることを示唆している.本研究では、この傾きが変わる周波数をカ ットオフ周波数 f_c と決定し、瞬時速度を平均流成分と乱流成分に分離した. 表 3.4 に選択したカットオフ周波数 f_c を示す.エンジン回転数の増加により f_c は増加するが、タンブルプレート有無による f_c の変化はほとんど無い.エ ンジンが 1 回転する周期に対応する周波数 f_{ENG} で f_c を正規化した f_c/f_{ENG} は 6 ~7 とほぼ同じ値を示すことから、 f_c の増加はエンジン回転数の増加による ものと予測される.ここで、時系列の速度データから求められる自己相関係 数をもとに、流れの積分時間スケールの計算を行った.計測条件が、 *Ne*=1500rpm WOT with tumble plate の場合、吸気行程中盤から圧縮行程後半 である $\theta=271$ ~7deg BTDC での流れの積分時間スケールτは 5.5ms となり、 その周波数 f_r は 181.8Hz となる.本解析で得られた f_c は 175Hz であり、 f_r と 近い値を示すことから、 f_c は吸気により生成される比較的大きな時間スケー ルの速度変動に相当するものと考えられる.

本解析により得られた f_c を、過去に検討された手法により得られるカット オフ周波数と比較する、神本ら[40]は、サイクル平均された流速の積分パワ ースペクトルが 90%以上となる周波数を f_c とすることを提案している、彼ら の手法を本計測結果に適用すると、計測条件が *Ne*=1500rpm WOT with tumble plate の場合、 f_c =97.8Hz となり、本研究で提案している手法よりも低い周波 数を与える、神本らの手法では、サイクル平均された速度に基づいて f_c を決

43

(3.10)

定しているため, 燃焼に寄与しない時間スケールの大きな速度変動成分を乱 流成分に含めるようなカットオフ周波数の設定となっている可能性がある と推測される.

平均流成分と乱流成分の分離には離散逆フーリエ変換を用い,以後,本手 法を時間フィルター法と定義し,瞬時の速度成分 *u*, *v* を,この手法で得ら れる平均流成分*ũ*, *v*を用いて,それぞれ式(3.9),式(3.10)のように表現する.

$$u = \tilde{u} + u'_f \tag{3.9}$$

$$v = \tilde{v} + v'_f$$

ここで,時間フィルター法により得られる変動成分は下付き添え字fで表現 する.

図 3.12 に各計測条件で計測された代表的な1 サイクルの瞬時速度と時間 フィルター法により得られた平均流成分の比較を示す.細線は瞬時速度,太 線は平均流成分を示している.これより,いずれの運転条件においても瞬時 速度は本手法により分離した平均流まわりで変動している.

次に, 瞬時速度, 時間フィルター法とサイクル平均法により得られた平均 流成分の比較を図 3.13 に示す.計測条件は *Ne*=1500rpm WOT with tumble plate であり, 瞬時速度と時間フィルター法による平均流成分は任意の 1 サ イクルの結果である. *u* 成分 (左図)の吸気行程である *θ*=330~180deg BTDC や*v* 成分 (右図)の圧縮行程である *θ*=90~30deg BTDC など, サイクル平均 法により得られた平均流成分は, 瞬時速度, および時間フィルター法に基づ く平均流成分から大きくかい離している.すなわち, この領域では, ある 1 サイクル中で乱流生成に寄与する低周波の平均流成分がサイクル毎に大き く変動しており, サイクル平均法では, この平均流成分のサイクル変動を乱 流成分として取り扱っている.

本研究で提案している時間フィルター法を用いる際には計測条件の設定 が重要となり、それが計測精度にも大きな影響を与えると考えられる.時間 分解能については、まず、サイクル毎に異なる低周波数成分を高精度に計測 する必要があることから、最低でもサイクル変動の原因と成る低周波数成分 を捕らえるだけの時間分解能が必要となる.本研究では 1.1kHz での計測を 行っているが、図 3.10 に示したように低周波数領域に対して高周波数領域 のフーリエ係数絶対値は一桁程度小さいことから、十分に低周波数成分の変 動を捕らえていると考えられる.次に、時間フィルター法により乱流成分を 高精度に見積もるためには、乱流変動を捕らえるのに十分高い時間分解能が 必要となる.本論文では、サイクル変動成分と燃焼特性に寄与する乱流変動 成分の分離法に関して時間フィルター法を導入することに主眼が置かれて

おり、1.1kHz と比較的低い時間分解能での計測となっている.このため、 この時間分解能よりも高い周波数の乱流変動は計測できていない. それらの 成分は打ち切り誤差となり,周波数空間上ではエイリアス誤差と直交する関 係にあるため、図 3.10 に示した周波数特性に含まれることとなる. 空間分 解能については、本研究の計測条件ではレーザーシート厚さ 1mm、レーザ ーシート平面内の空間分解能 0.6mm であり, 測定体積は 0.36mm³となる. 一般に、特別な光学系を用いない限り LDV の測定体積は約 0.02mm³(長さ 1.6mm, 幅 0.2mm, 高さ 0.2mm 程度) であるため, 本研究の計測条件は LDV に比べて1桁程度空間解像度が低いこととなる.本研究で得られた速度は検 査体積内の平均速度であり, 検査体積の大きさよりも小さな空間スケールの 速度変動は計測できないため、乱流運動エネルギーが小さく見積もられるこ ととなる.本研究で提案している時間フィルター法は時系列データからの速 度分離を試みており, 圧縮上死点近傍を除けば, 過小評価される乱流運動エ ネルギーは本手法で分離されている乱流燃焼速度に寄与する乱流変動成分 に含まれるべきものである. すなわち, 空間分解能の効果は結果的に乱流燃 焼速度に寄与する乱流運動エネルギーを減少させるだけだと考えられるた め、本研究で提案している分離法自体への影響は小さいと考えられる.

時間フィルター法により得られた高周波成分を乱流成分とした場合の乱流運動エネルギー k_f とサイクル平均法により得られた乱流運動エネルギー k_c の比較を図 3.14 に示す. 乱流運動エネルギー k_f と k_c の計算には, それぞれ式(3.11)と式(3.12)を用いた.

$$k_f = \frac{1}{2} \left({u'_f}^2 + {v'_f}^2 \right) \tag{3.11}$$

 $k_{c} = \frac{1}{2} \left(u'_{c}^{2} + v'_{c}^{2} \right)$ (3.12)

計測条件は Ne=1500rpm WOT with tumble plate で, $k_f \geq k_c$ のいずれも1サイ クル毎に計算した後,サイクル平均を行った.全体的な傾向として, k_c は $k_f \geq$ 比較して常に高い値を示している.特に吸気行程である θ =300~270deg BTDC で $k_c \geq k_f$ の差が大きくなる.また,圧縮行程後半である θ =30deg BTDC 付近で k_c にピークが表れるのに対して, k_f は θ =0deg BTDC に向かって単調 に増加している.これらの要因として,前述したようにサイクル平均法では 平均流成分(低周波成分)のサイクル変動が乱流成分に含まれるため,結果 として, k_c が過大評価されたためだと考えられる.これらのことから,エン

ジン燃焼室内の流動解析を行う場合,サイクル平均した流速を平均流成分と することは適切でないと考えられる.これより以後,時間フィルター法によ る解析結果を示す.

3.3.3. 乱流強度特性

図 3.15 に各計測条件の平均流成分と乱流成分の運動エネルギーを示す. 平均流成分の運動エネルギー*K_f*を以下に示す式(3.13)で,乱流運動エネルギ ー*k_f*を前述の式(3.11)により計算した.

$$K_f = \frac{1}{2}(\tilde{u}^2 + \tilde{v}^2)$$
(3.13)

いずれも点火プラグ着火点の速度について算出し、サイクル平均を行った. エンジン回転数 Ne を 700rpm から 1500rpm に増加させるとKfは全体的に増 加し, それに伴いk_fも全体的に増加している. これはエンジン回転数の増加 により流入速度が増加したためである.次に Ne=1500rpm でタンブルプレー トを挿入すると吸気行程である θ =300~180deg BTDC の間で K_f はさらに増加 する. この場合, K_f は θ =180deg BTDC でタンブルプレート無しの K_f と同程 度まで減少するものの θ=60deg BTDC で再びピークを示し, その後減少する. これは、吸気行程時に生成されたタンブル流が残存しており、ピストンの上 昇とともに燃焼室の計測領域エリアに帰ってくるためである.一方, k_fはタ ンブルプレートを挿入しても θ=180deg BTDC まではタンブルプレート無し の場合と大きな差は無いが、それ以降、k_fはタンブルプレート無しの場合に 対して大きい値を示し, θ=0deg BTDC 付近まで増加し続けている.また, θ =60deg BTDC 以降, K_f は減少しているのに対して k_f はその後も増加してい る.これは、圧縮上死点付近でのタンブル流により、高周波数の乱流変動が 生じるためであると考えられ、タンブルプレート有りの条件では乱流による 燃焼促進が期待される.

サイクル平均された平均流成分の速度とその変動係数 COV(Coefficient Of Variation)を図 3.16(a)(c)に、サイクル平均された乱流強度 u'とその変動係数 を図 3.16(b)(d)にそれぞれ示す.なお、乱流強度は式(3.11)の平方根とし、変 動係数は、標準偏差をその平均値で除して求めた.エンジン回転数 Ne の増 加やタンブルプレート取り付けにより、平均流と乱流強度は増加する.平均 流の変動係数はクランク角度が TDC である θ=0deg BTDC に近づくにつれ て増加する傾向にあるものの、いずれの条件においても 0.2~0.3 の値を示し

ている.これは,流動強化のために平均流成分の速度を増加させると,その サイクル変動も増加することを意味している.サイクル平均法では,この変 動が乱流成分に含まれていると考えられる.また,乱流強度の変動係数はク ランク角度に対してほぼ一定の値で,いずれの条件においても約0.1を示す.

3.3.4. 乱流特性と燃焼特性の関係

上述の解析により明らかになった時間フィルター法による乱流特性と燃 焼特性の関係を明らかにするために,同一の可視化エンジンにおいて燃焼テ ストを行った.図 3.17 左に各計測条件でファイアリングにより得られた筒 内圧力 P_{cvl},右に燃焼質量割合 MBF(Mass Burned Fraction)[または, MFB(Mass Fraction Burned)]を示す. なお,可視化エンジンでファイアリング計測を行 ったため, 部分負荷である図示平均有効圧 IMEP.H=400kPa でテストを行っ た. IMEP.H は圧縮から膨張行程のみの計算結果である. 燃料に日本レギュ ラーガソリン(RON90)を用い、ポート噴射(燃料噴射圧力 0.3MPa)によ り燃料供給を行った. 排ガス分析計により計測される排気 3 成分(CO, CO₂, Total HC)の濃度から計算した空燃比が 14.7 になるように空気量と燃料量を 制御した.得られた P_{cvl}と熱力学第一法則より MBF の計算を行った.各計 測条件でエンジン回転数 Ne や点火時期が異なるため, MBF の横軸は点火か らの時間で整理を行った.これより, Ne を 700rpm から 1500rpm へ増加させ ると、P_{cvl}の立ち上がり時期が早くなり、また、MBFの増加も急峻になって いる. Ne=1500rpm でタンブルプレートを挿入すると P_{cvl}の立ち上がり時期 がさらに早くなり, MBF の増加もさらに急峻となっている.

燃焼初期である点火から燃焼質量割合が 10%となるまで期間の温度上昇 はそれほど大きくなく 330K 程度であり,その間の平均ガス温度は約 990K である.ファイアリング時では,燃料の供給により比熱が大きくなるためモ ータリング時に比べて温度が低下する.モータリング時の場合,この区間の 平均ガス温度は 1080K であり,ファイアリング時との温度差は約 90K とわ ずかである. 圧力 1MPa において,温度 990K と 1080K の空気の動粘性係数 は,それぞれ 12.2, 14.8mm²/s であり,ファイアリング時の乱流レイノルズ 数はモータリング時に比べて約 20%増加すると予想される.これらのことか ら,モータリング時の乱流運動エネルギーはファイアリング時に比べてやや 小さい値を示すものの,それほど大きな差ではないと予想され,燃焼初期に おいてはモータリング時に計測される乱流運動エネルギーの特性がファイ アリング時の乱流運動エネルギーを決定する支配的な要素と考えられる.図 3.18(a)に点火時期における乱流運動エネルギーkfと初期燃焼期間として点

火時期 t_{ig} から MBF がx% となるまでの時間(t_{ig} -MBFx)の関係を示す. さらに, 図 3.18(b)に k_f と主燃焼期間として MBF=10% から 90% となるまでの時間 (MBF10-90)の関係を示す. これらの結果から, Ne を 700rpm から 1500rpm に 増加させると k_f が増加し,それにともない(t_{ig} -MBF10)と(MBF10-90)はとも に減少していることがわかる. Ne=1500rpm でタンブルプレートを挿入する と,さらに k_f が増加し,それに伴って(t_{ig} -MBF10)と(MBF10-90)が減少して いる.また,(t_{ig} -MBF20)や(t_{ig} -MBF50)で比較を行っても,(t_{ig} -MBF10)と ほぼ同様の傾向を示している.これらのことから,乱流が強くなると燃焼が 速くなる傾向となっており,一般的に信じられている乱流と燃焼特性の相関 性が確認できる.

本研究ではモータリングのみでの計測であるため、トレーサー粒子を混入 させたことによる燃焼への影響を解析できていない.実際に燃焼実験を行っ た場合,混入したトレーサー粒子は、高温である既燃焼ガスの膨張により、 既燃焼ガス中のトレーサー濃度が低下すると考えられる.しかし、未燃焼ガ ス中に存在する乱流が、燃焼室中を伝播する火炎面に作用することにより燃 焼速度の増減に影響を与えることから、乱流による燃焼促進効果の評価にお いては未燃焼ガス領域の乱流解析が重要となる.すなわち、既燃焼ガス中の トレーサー濃度低下は解析結果に大きく影響しないと考えられ、ファイアリ ング時にトレーサー粒子を混入した場合においても、同様の乱流特性が得ら れると考えられる.

図 3.19 に燃焼質量割合 MBF と直接撮影された火炎画像を示す.火炎撮影 に際しては図 3.4 のレーザー位置に高速度カメラ (Photron, FASTCAM-MAX 120K)を設置し,ボトムビュー撮影を行った.火炎の撮影速度は 6kfps(frame per second)で,512×584pixelの解像度である.同時に筒内圧力も計測を行っ た.下図にはサイクル平均された MBF,上図には平均的な燃焼サイクルの 火炎画像を示す.これより,MBF が 5%未満ではタンブルプレート有無によ る火炎の大きさに差が無いことが分かる.しかし,MBF が 10%となる付近 からタンブルプレート有りの場合の火炎がタンブルプレート無しの場合に 対して大きくなっており,わずかではあるが火炎の凹凸も増加しているよう に観察される.このことから,乱流が強くなると火炎の成長が速くなり,燃 焼が急峻に行われることが確認できる.また,MBF=10%程度の燃焼初期に おいても乱流が火炎に影響を及ぼしていることが分かる.

図 3.20 に圧縮行程後半におけるサイクル平均された速度,平均流成分の 速度と乱流運動エネルギー k_f の分布を示す.計測条件は Ne=1500rpm WOT with tumble plate である.平均流成分と乱流運動エネルギーは速度分布内(左 図)に明記した解析領域内の分布である.これより,圧縮行程中のピストン

48

上昇によりタンブル渦中心が排気側から燃焼室中央へ移動しており,それに ともないk_fの分布も変化している.渦の中心は平均速度が遅く,k_fは高いが, 逆に渦の中心から離れると平均速度が速く,k_fが低い.これより,点火プラ グ近傍にタンブル渦中心が位置するようにすれば,強流動による初期火炎の 吹き飛びが抑制され,かつ,高い乱流強度により燃焼が促進されると考えら れる.すなわち,強流動ポート適用にあたって点火時期にタンブル渦中心を 点火プラグ近傍へ適切に制御できるような吸気ポート・燃焼室の設計が必要 である.

3.4. 本章の結論

本章では, 筒内における平均流成分と乱流成分の分離法の確立を目的とした. 簡易的に燃焼室内の流動を変化させて, 第2章で構築した可視化技術を 高時間分解能に拡張した高速 PIV 計測を行い, 得られた瞬時速度から平均流 成分と乱流成分に分離する手法を検討した結果, 以下の結論を得た.

- 吸気から圧縮行程を1周期とする流れの周波数特性で、スペクトルの 傾きが変化する周波数が存在する.この周波数をカットオフ周波数と して瞬時速度から平均流成分と乱流成分に分離する時間フィルター法 を開発した.
- 2. 本章で開発した時間フィルター法により,計測条件の違いから予想される乱流運動エネルギーの特性が抽出でき,燃焼速度との相関性が確認された.
- タンブル渦中心は乱流運動エネルギーが高いことから強流動ポートの 適用にあたって、タンブル渦中心を点火プラグ近傍へ適切に制御でき るような吸気ポートや燃焼室の設計が必要である。

Engine	An optical single cylinder engine	
Bore×Stroke	86mm×86mm	
Compression ratio	8.2	
Volvo diamotor / Numbor	In : φ32mm / 2	
valve diameter / Number	Ex : ϕ 26mm / 2	
	IVO : 12deg ATDC	
Valve timing	IVC : 196deg ATDC	
at 1mm lift	EVO : -199deg ATDC	
	EVC : -29deg ATDC	
Max valve lift	In : 7.9mm, Ex : 8.8mm	

表 3.1: 単気筒可視化エンジンの主要諸元.

表 3.2: 回転場におけるトレーサー粒子の流体追従性(第5章 TCV 無し θ =0.4degBTDC のデータより推算)

	S 4	Scale		
	51	Time[ms]	Spatial[mm]	Velocity[m/s]
Integral scale	1.57×10 ⁻³	2.07	3.75	1.81
Taylor microscale	2.01×10 ⁻²	0.16	0.29	1.81
Kolmogorov scale	9.04×10 ⁻²	0.395×10 ⁻³	0.01	0.279

Engine speed	Throttle	Tumble plate	η_v	Time resolution
	opening	rumore plate		(Crank angle)
700rpm	WOT	W/O	70.9%	4deg.
1500rpm	WOT	W/O	74.7%	8deg.
	WOT	W/T	75.4%	

表 3.3: 計測条件.

表 3.4: 時間フィルター法で用いたカットオフ周波数.

Test condition	Tumble plate	f _c	f_c/f_{ENG}
700rpm WOT	W/O	69Hz	5.9
1500rpm WOT	W/O	175Hz	7.0
1500rpm WOT	W/T	175Hz	7.0

図 3.1: 単気筒可視化エンジンの外観.

図 3.2: バルブリフトカーブ.

図 3.3: タンブルプレートによるポート形状の変化と流動様式の変化, (a)タンブルプレート無し, (b)タンブルプレート有り.

図 3.5: トレーサー粒子の周波数応答性(平均粒径 φ=3 μm, かさ密度 ρ particle=180kg/m³).

図 3.6: 高速 PIV システムにおける計測タイミングチャート.

図 3.7: 計測および解析領域.

図 3.8: タンブルプレート有無による筒内速度分布比較, (a)タンブルプレート無し, (b)タンブルプレート有り.

 図 3.9: 代表的な 5 サイクル分の瞬時速度とサイクル平均された速度成分の 比較(点火プラグ着火点位置, Ne=1500rpm WOT with tumble), (a)u 速度成分, (b)v 速度成分.

図 3.10: 流れの周波数特性(点火プラグ着火点, *Ne*=1500rpm WOT with tumble).

図 3.11: 各計測条件における流れの周波数特性(点火プラグ着火点).

図 3.12:代表的な 1 サイクルの瞬時速度と時間フィルター法で得られた平均 流成分の比較(点火プラグ着火点), (a)*Ne*=700rpm WOT without tumble plate, (b)*Ne*=1500rpm WOT without tumble plate, (c)*Ne*=1500rpm WOT with tumble plate.

図 3.13:時間フィルター法とサイクル平均法により得られた平均流成分の比較(点火プラグ着火点, Ne=1500rpm WOT with tumble plate), (a)u 速度成分, (b)v 速度成分.

図 3.14:サイクル平均法と時間フィルター法により得られた乱流運動エネル ギーk の比較(点火プラグ着火点, *Ne*=1500rpm WOT with tumble plate).

図 3.15: (a)平均流成分と(b)乱流成分の運動エネルギー比較 (点火プラグ着 火点).

図 3.16:時間フィルター法により得られた平均流成分と乱流成分のサイク ル変動,(a)平均流成分のサイクル平均速度,(b)乱流強度のサイクル 平均値,(c)平均流成分の速度変動係数,(d)乱流強度の変動係数.

図 3.17: ファイアリングにより得られた(a)筒内圧力 P_{cyl} と(b)燃焼質量割合 MBF(IMEP.H=400kPa A/F=14.7).

 図 3.18: モータリング条件で計測された点火プラグ着火点における乱流運 動エネルギーk_fとファイアリング条件により得られた燃焼期間の関 係, (a)初期燃焼期間 t_{ig}-MBFx, (b)主燃焼期間 MBF10-90.

図 3.19: 燃焼質量割合 MBF(下図)と直接撮影された火炎画像(上図)の 関係(IMEP.H=400kPa A/F=14.7).

図 3.20: 圧縮行程後半におけるタンブル渦中心と乱流運動エネルギーの関係(Ne=1500rpm WOT with tumble plate), (a)サイクル平均された速度分布, (b)平均流成分の速度分布, (c)乱流運動エネルギー分布.

第4章

過給 GDI エンジンの筒内流動解析

第4章 過給 GDI エンジンの筒内流動解析

4.1. はじめに

第3章では、筒内における平均流成分と乱流成分の分離法の確立を目的と し、従来型のエンジンにタンブルプレートを取り付けることにより疑似的に 流動強化を行い、第2章で構築した可視化技術を高時間分解能に拡張した高 速 PIV により速度分布の計測を行った.従来行われてきたサイクル平均法で は、平均流成分のサイクル変動も乱流成分に含まれる可能性があることから、 新たな乱流成分分離法として高速 PIV による時間分解能の高さを利用した 時間フィルター法の適用性を検討し、2つの手法により得られる速度や乱流 エネルギーの特性について明らかにした.また、時間フィルター法により得 られた乱流特性と燃焼特性の相関性を検証し、時間フィルター法の有効性を 明らかにした.

本章では、強流動ポートを持つ過給ダウンサイジングエンジンに、第3章 で開発した時間フィルター法を適用し、強流動場における乱流特性の解明を 目的とする.エンジン筒内では世界初となる高速 PIV による時間分解能 10kHz で計測された速度をもとにして、乱流解析に必要な時間分解能を明ら かにする.また、時間フィルター法で用いるカットオフ周波数について考察 を行い、その物理的意味を明らかにする.最後にエンジン回転数やピストン トップ形状が乱流特性へおよぼす影響を解析し、過給ダウンサイジングエン ジンの筒内乱流特性を解明するとともに、時間フィルター法の強流動場適用 への有用性を明らかにする[55].

4.2. 実験装置·計測条件

4.2.1.エンジン諸元

表 4.1 に単気筒可視化エンジンの主要諸元,図 4.1(a)にその外観を示す. エンジンは石英製の透明スリーブを有する可視化エンジン(小山ガレージ製) で,ボア径は 73mm,ストロークは 89.4mm で吸気と排気バルブはそれぞれ 2 つずつ備えている. ヘッドとブロックの間には透明スリーブが設置されて おり,吸気行程から圧縮行程中の流動の様子を可視化することが可能となっ ている.吸気ポートはタンブル流を生成しやすい形状となっており,定常流 の状態において計測された平均タンブル比は 1.93 であり,自然吸気ポート の平均タンブル比 0.59[56]に対して大きい.図 4.1(b)に計測・解析領域を示 す.ガスケット面より下側のスリーブ内を可視化することが可能であり,視 野はボア方向に 65mm,ストローク方向に 75mm で,透明スリーブを保持し

第4章 過給 GDI エンジンの筒内流動解析

ているホルダにより制限されている.なお,高時間分解能で計測する場合, シリンダー上部の横 36mm,縦 6mm の範囲に限定して計測を行った.

4.2.2. 計測装置

実験・計測装置の概要を図 4.2 に示す.速度の計測には高速 PIV システム を用いた.光源に高繰り返しダブルパルス Nd:YAG レーザー(Lee, LDP-50MQG)を用い,レーザーの波長は 532nm である.粒子画像の撮影には 高速度 CMOS カメラ(Photron, APX-RS)を用いた.シリンダー全体の速度分布 を計測する場合,撮影速度を 6kfps,空間解像度を 768×656pixel として撮影 を行った.また,高時間分解能で撮影する場合,撮影速度を最高で 20kfps, 空間解像度を 512×256pixel として撮影を行った.レーザー光はシリンドリ カルレンズにより,厚さ 0.5mm のシート状に引き伸ばされた後,エンジン 側面から透明スリーブを通過させてシリンダー内へ照射される.計測位置は ボアセンターである.

高時間分解能 10kHz での計測を可能とするために,事前にレーザー発振条 件について検討を行った. 高繰り返しレーザーは定格出力が決まっているた め、発振周波数の増加にともない1ショット当たりのエネルギーが減少する. 本研究で用いたレーザーの定格出力は 25W であるため、レーザー発振周波 数 3kHz でシリンダー全体の流れ場を計測した場合の 1 ショット当たりのエ ネルギーは 8.3mJ となる.ここで、単位測定体積当たりのレーザーエネルギ 一密度は粒子画像の明るさに影響し、この時のエネルギー密度は 2.6 µ J/mm³ (レーザーシート幅 100mm, 厚さ 0.5mm, ボア径 65mm) となる. 次に, レ ーザー発振周波数を 10kHz に増加させると、1 ショット当たりのエネルギー は 2.5mJ と約 70%減少する. レーザー発振周波数 3kHz の場合と同程度の明 るさの粒子画像を得るためには、レーザーエネルギー密度を前述の値まで近 づける必要がある. すなわち, レーザーシート幅を 100mm から 30mm まで 減少し,同一のレーザーエネルギー密度とすれば,解析可能な粒子画像を得 ることができると考えられる.この時,計測可能な領域は狭くなるため,燃 焼特性の評価可能なシリンダー上部[図 4.1(b)参照]の範囲に限定して計測を 行う.

トレーサーに粒径 Ø=3µm の SiO₂(鈴木油脂工業, ゴッドボール B-6C)を 用い,スロットル直後の吸気チャンバーからエンジン内に吸入させ,できる だけ均一に分布するように配慮した.トレーサーの流体追従性として,トレ ーサー粒子の周波数応答性は 10kHz の速度変動に対して約 94%である(図 3.5 参照).また,遠心力が働いた場合の流体に対するトレーサー粒子の追従

<u>第4章 過給 GDI エンジンの筒内流動解析</u>

性をストークス数により評価した結果, テイラーマイクロスケール程度まで 追従していると考えられることから, 乱流計測まで可能であると考えられる (3.2.2 項参照). 計測を行ったクランク角度範囲を図 4.3 に示す. ここで, 吸気バルブリフト, 筒内圧 *P*_{cyl}, 吸気管内圧力 *P*_{intake} を参考として, 合わせ て図に加えた. 計測クランク角度は, 吸気 TDC(Top Dead Center)であるクラ ンク角度 *θ*=360deg BTDC から圧縮 TDC である *θ*=0deg BTDC までとし, こ れを複数サイクルにわたり計測した. 得られた粒子画像は市販の PIV 解析ソ フト (西華産業, Koncert ver1.0) により解析された. 解析アルゴリズムには 再帰的 FFT 相互相関法を用い, 検査領域を 64×64pixel から 16×16pixel ま で 3 段階に変化させ, オーバーラップを 50%とした. 得られた速度ベクト ルの時間分解能は, シリンダー全体の場合, 3kHz, シリンダー上部のみの場 合, 10kHz である. また, 空間分解能はそれぞれ, 1.1mm と 0.6mm である. 本研究では, 図 4.1(b)に示すように燃焼室ボア方向の速度を u 成分, ピスト ンストローク方向の速度を v 成分と定義する. また, 複数サイクルの計測デ ータを同一クランク角度で平均することをサイクル平均と定義する.

ここで、面外方向速度の影響は、本エンジンを対象とした CFD 解析の結 果を用いて評価している. Ne=1500rpm の場合、CFD 解析から予測される最 大面外方向速度は、クランク角度 θ=310deg BTDC において最大で約 12m/s と予測されており、本実験で用いた連続画像のレーザー照射間隔 Δ t=15 μ s での面外方向へのトレーサー粒子の移動量は、レーザーシート幅 0.5mm の 約 1/3 である.通常、面外へのトレーサー粒子移動量はレーザーシート厚さ の 1/4 以下であれば計測精度に影響しないことが知られている[57].面外方 向速度の最大値は吸気行程前半で観察され、その後急速に小さくなるため、 吸気行程の極前半以外はこの条件が十分満足されている.

4.2.3. 計測条件

計測条件を表 4.2 に示す. エンジン回転数 Ne は 700rpm, 1500rpm と 2000rpm とし, スロットル開度は, いずれのエンジン回転数においても WOT(Wide Open Throttle)とした. 計測サイクル数は, カメラに搭載されたメ モリにより制限され, Ne=700rpmの場合, 28 サイクル, Ne=1500rpm と 2000rpm の場合, 50 サイクルである. レーザー照射間隔 Δt は, 各エンジン回転数において, 10~25µs の範囲で調整した.

図 4.4 にピストントップ形状の変更と、それにより予想される流動の様式 を模式的に示す. 流入した流れを効率良く上昇流に変換し、強タンブル流の 生成を狙いとした円筒形状を持つキャビティピストン[図 4.4(a)]と、その効

第4章 過給 GDI エンジンの筒内流動解析

果を比較するためのフラットピストン[図 4.4(b)]の2種類で計測を行った. 以後,特別にことわらない限り,キャビティピストンでの計測結果を示す.

4.3. 過給 GDI エンジン筒内の流動特性

4.3.1. 大域的流動特性

平均的な流動様式を解析するために、シリンダー全体の流動解析を行った. サイクル平均された速度分布を図 4.5 に示す.ボア方向の座標を x,ストロ ーク方向の座標を y とし、それぞれ、ボア中心を x=0mm、ガスケット位置 を y=0mm とした.計測条件は Ne=1500rpm WOT で、時間分解能は 3kHz で ある.吸気行程前半である θ =299.5deg BTDC では、流入速度が最大で約 30m/s である.吸気行程中盤である θ =269.5deg BTDC では、排気側へ向かう 速い流れが見られ、すでにシリンダー中央付近にタンブル流が生成されてい る.その後、流入した流れはピストンの下降とともに下側へ移動し、タンブ ル渦中心は吸気側へ移動する.下死点付近である θ =179.5deg BTDC では、 ピストンに衝突した流れがシリンダー上部に帰ってきており、圧縮行程後半 である θ =59.5deg BTDC においてもタンブル渦中心が左上に観察され、タン ブル流が圧縮行程後半まで保存されていることが分かる.

サイクル平均された速度分布から求めたタンブル渦中心の軌道を図 4.6に 示す.タンブル渦中心は以下の手順で決定した.まず,ある座標点を軸中心 としたタンブル比を計算し[58],その軸中心を移動させることにより,タン ブル比の空間分布を得る.次にタンブル比が最大値の 75%以上となる領域で, かつ,速度が最も低い座標をタンブル渦中心として定義した.ここで,空間 ローパスフィルターにより分離された速度場において,速度と渦度の分布か ら求める手法も提案されている[43].その際に重要となるカットオフ長さに ついて,本研究では十分に検討できていないため,この決定手法を用いなか った.本決定手法では、タンブル渦中心のサイクル変動評価を行うことはで きないが、サイクル平均された速度分布から比較的簡単に渦中心を決定でき る利点がある.これより、吸気行程前半に排気側で生成された渦中心はピス トンの下降とともに吸気側へ移動しながら下降し、圧縮行程でピストンの上 昇とともに排気側へ向かって上昇することがわかる.本過給エンジンのタン ブル渦中心は、シリンダー内を時計回りに移動することが確認された.
4.3.2. 乱流成分分離法に対する時間分解能の影響

第3章で平均流成分と乱流成分を分離する手法として時間フィルター法を 提案しており[56],本分離法にとって重要と考えられる時間分解能とカット オフ周波数 f_c について解析を行った.まず,時間分解能について解析を行っ た.計測領域をシリンダー全体から図 4.1(b)で示した解析領域に限定し,時 間分解能を 10kHz に変更した.図 4.7 に解析ポイントにおける u, v成分の サイクル平均された速度を示す.計測条件は, Ne=1500rpm WOT である. θ =360~330deg BTDC と 30~0deg BTDC の範囲は,ピストンにより解析領域 が隠されるため,解析から除外した.これより,吸気行程で速度は最大とな り,u成分の最大速度は, θ =300deg BTDC 付近で約 22m/s である. θ =180deg BTDC で u, v成分の速度はともに約 3m/s まで低下するが,その後,圧縮行 程後半に向かって再び増加する.これは,図 4.5 で示した様に吸気行程で流 入した流れがピストンに衝突し,シリンダー上部にある解析領域へ帰ってく るためである.

図 4.8(a)にu速度成分のエネルギースペクトルE_uに対する時間分解能の影響を示す.ここで,E_uは,まず, *θ*=330~30deg BTDC を1周期とする速度 プロフィールに対してフーリエ変換を施すことによりエネルギースペクト ルを得た後,それをサイクル平均して求めた.また,時間分解能は,同一計 測データをクランク角度方向に間引いて用いることにより,疑似的に減少さ せた.ここで,計測される筒内速度分布の時間分解能は,図 3.6 で示した高 速 PIV システムの計測タイミングチャートより,カメラ撮影周波数(撮影速 度)の 1/2,または、レーザー発振周波数となる.すなわち,疑似的にデー タを間引いた解析を行うことは,高速度カメラの撮影周波数やレーザー発振 周波数を減少することと等価であり,時間分解能を変化させたことに相当す る.これより,時間分解能が減少すると,E_uの最大周波数が減少し,高周波 成分(乱流成分)に時間分解能の影響はほとんど見られないが,高周波成分 (乱流成分)に時間分解能の影響はほとんど見られないが,高周波成分

時間フィルター法により得られた平均流の運動エネルギー K_f と乱流運動 エネルギー k_f へおよぼす時間分解能の影響を図 4.9 に示す. カットオフ周波 数 f_c は 360Hz 一定とした. 平均流の運動エネルギー K_f と乱流運動エネルギ ー k_f には, それぞれ式(4.1),式(4.2)を用いて1サイクル毎に計算した後,サ イクル平均を行った.

$$K_f = \frac{1}{2}(\tilde{u}^2 + \tilde{v}^2)$$
(4.1)

$$k_f = \frac{1}{2} \left(u_f'^2 + v_f'^2 \right) \tag{4.2}$$

ここで、 \tilde{u} 、 \tilde{v} は時間フィルター法により分離された平均流成分の速度、 u_{f} 、 v_{f} 、 v_{f} 、は乱流成分の速度を示す.これより、時間分解能を 10kHz から 5kHz に低下させても K_{f} と k_{f} にほとんど変化は見られない.時間分解能を 2.5kHz まで低下させると、 K_{f} に大きな変化は見られないものの、 k_{f} は吸気行程でやや減少する.さらに時間分解能を 1kHz まで低下させると、 K_{f} は吸気行程で増加し、 k_{f} は全体的に減少する.以上のことから、本過給エンジンの流動場において、吸気から圧縮行程の k_{f} を評価する場合には、5kHz 以上の時間分解能が必要である.

ここで、PIV 計測原理より検査領域より小さなスケールの流れは計測でき ない. そのため,時間分解能が 5~10kHz で,空間分解能により,見かけ上, 収束した可能性がある.これについて考察を行う.異なる空間分解能データ において時間分解能がおよぼす周波数特性の影響を図 4.10 に示す.図 4.10(a)は、図 4.8(a)で示した空間分解能が 0.6mm における流れの周波数特性 である. 図 4.10(b)は, 図 4.10(a)で解析に用いた同一の粒子画像をもとに, 検査領域を 64×64 pixel にすることにより得られた空間分解能が 2.4 mm にお ける流れの周波数特性である.これより,空間分解能を 2.4mm へと大きく 悪化させた場合においても,時間分解能の低下により,打切り誤差やエイリ アス誤差が発生しており、空間分解能 0.6mm の場合と同様の傾向を示して いる.次に,異なる空間分解能データにおける時間分解能がおよぼす高周波 成分エネルギーの影響を図 4.11 に示す.時間分解能の低下による打切り誤 差とエイリアス誤差は、周波数空間上では直交する関係となることから、カ ットオフ周波数以上のエネルギーを積分し、時間分解能の影響を評価する. カットオフ周波数は 360Hz とし、縦軸は、u、v 速度成分のエネルギー積分 値を合算し、さらに時間分解能 10kHz のエネルギー積分値に対する変化率と した.これより,空間分解能 0.6mm の場合,時間分解能の増加にともない, エネルギーが増加するが,時間分解能 5kHz 以上ではその傾きは非常に緩や かになっており、おおむね一定となる. 空間分解能 2.4mm の場合、時間分 解能 10kHz から 5kHz へ減少させた場合の変化率は,空間分解能 0.6mm と同 様であり、さらに時間分解能を 5kHz より小さくすると、エネルギーは大き

く減少する傾向を示す.以上のことから,本流動場に時間フィルター法を適用し,吸気から圧縮行程まで乱流評価を行う場合には,5kHz以上の時間分解能が必要であることが明らかとなり,時間分解能は空間分解能に影響を受けないと考えられる.

本研究では、スペクトルの傾きが変化する周波数をカットオフ周波数 fc と しているが, fc は吸気行程中盤から圧縮行程後半の流れの積分時間スケール に近い値を示している[56].流れの積分時間スケールについての考察を行い, fcの物理的な意味について解析を行った.解析領域内の空間平均された流れ の積分時間スケールとピストン速度に関する特性時間 au_p の比較を図 4.12 に 示す. 流れの積分時間スケールは, 瞬時速度から自己相関係数を計算した後, 自己相関係数が 0 となるまで積分して求めた. u, v 速度成分から得られた 流れの積分時間スケールをτ_u, τ_vと定義する. また, τ_vは, 任意のクランク 角度 θでの, ボア中心における燃焼室上面からピストントップまでの燃焼室 高さ h_p[図 4.1(b)]を瞬時ピストン速度 u_pで除した値と定義した. TDC での h_p は 15mm である.これより、 τ_u は吸気行程から圧縮行程に向かって減少す る傾向にあるが、その減少は θ =180deg BTDC 付近で、一旦緩やかになる. τ_{ν} は、 θ =240deg BTDC まで減少した後、 θ =150deg BTDC に向かって再び増 加し、その後、減少する. τ_u や τ_v の変化が θ =180deg BTDC 付近で変化する 要因として,図 4.5 で示したように吸気行程で流入した流れがピストンに衝 突し,シリンダー上部にある解析領域へ帰ってくるためであると考えられる. 次に,τ_νのθに対する変化は,τ_νとほぼ同じ傾向を示していることから,ピ ストン速度の変化は流れの速度変動のうち,比較的大きな時間スケールに影 響を与えていることを示していると考えられる. 本研究で提案している fc は,吸気行程中盤の流れの積分時間スケールと近い値を示していることから, fc は吸気行程時にピストン挙動で生成される比較的大きい流れの時間スケ ール(周波数)に相当するものと考えられる.これ以降, f_c は,吸気行程中 盤である θ =270deg BTDC の τ_u , τ_v の平均値の逆数とする.

ここで、カットオフ周波数を求めるための積分時間スケールが、吸気行程 中盤のクランク角度である *θ*=270degBTDC に相当する物理的な必然性につ いて考察を行う.流れの積分時間スケールは、燃焼室高さと瞬時ピストン速 度から決定されるピストン速度特性時間と関係性が見られることから、燃焼 室・吸気ポート形状とピストン速度により誘起される大スケールの流れであ ると考えられる.この流れは、吸気行程でピストンが下降することにより誘 起されるため、吸気行程中盤である *θ*=270degBTDC の積分時間スケールよ り求めた周波数を代表として用いている.まず、*θ*=270degBTDC が吸気行 程の代表と成りえるかについて考察を行う.図 4.13(a)に、吸気行程である

 θ =360~180degBTDC の積分時間スケールの平均値から求めた周波数を縦軸, 横軸に吸気行程中盤である θ =270degBTDC の積分時間スケールより求めた 周波数を示す.これより、 θ =270degBTDC におけるカットオフ周波数は, 吸気行程の積分スケールの平均値から求めた周波数とほぼ同じ値となり,両 者の相関係数は 0.99 と非常に高い値を示す.すなわち、 θ =270degBTDC は, 吸気行程を代表するクランク角度であると考えられる.次に,図 4.13(b)に クランク角度に対する瞬時ピストン速度 u_p と平均ピストン速度 U_p の比を示 す.これより,吸気行程中盤である θ =270degBTDC 付近において u_p は最大 となる.ここで,ピストン速度が増加すると流入速度が増加することから(図 2.11 参照),吸気行程中盤である θ =270debTDC が流入速度に対して最も影 響を与えるクランク角度であると考えられる.以上のことから,吸気行程中 にピストンの下降により誘起される大スケールの流れは,ピストン速度の最 も速いクランク角度である θ =270deBTDC の積分時間スケールで代表する ことができ,これをカットオフ周波数として平均流成分(大スケール)と乱 流成分(小スケール)の分離を行っていることになる.

さらに、第3章でカットオフ周波数として用いた流れの周波数特性におい て、傾きの変わる周波数 fslope と本章でカットオフ周波数として用いる θ =270degBTDC の積分時間スケールより求めたカットオフ周波数 fc の関連性 についても考察を行う. fslope と fc の比較を図 4.14 に示す. これより、fslope と fc の間に高い相関が見られ、相関係数は 0.877 となる. 別の観点で両者を 比較すると、fc は、吸気行程から圧縮行程を 1 周期とした流れの自己相関か ら得られる積分時間スケールから計算している. 一方、fslope は、吸気行程か ら圧縮行程を 1 周期としたフーリエ変換により得られる流れの周波数特性 (スペクトル)から求めている. ここで、自己相関関数とパワースペクトル はフーリエ変換・逆フーリエ変換の関係[59]があることが知られており、こ れからも、fc と fslope の相関があることが予想される.

流れの積分時間スケールを、流れの積分長さスケールと比較することで別 の観点からも解析を行った.流れの積分空間スケールは、瞬時速度分布から 空間方向に自己相関係数を計算した後、自己相関係数が0となるまで積分し て求めた. u速度成分をボア方向に求めた長さスケールを L_x 、v速度成分を ストローク方向に求めた長さスケールを L_y と定義する. また、カットオフ 周波数 f_c の逆数と乱流強度の積から求めた長さスケール L_z とし、 L_z と L_x 、 L_y の比較を図 4.15 に示す. なお、乱流強度は式(4.2)で計算された乱流運動 エネルギー k_f の平方根とした. 吸気行程において、 L_x 、 L_y は L_z に対して小さ い値を示す. この要因として、解析領域が流れの積分長さスケールに対して 小さいため、 L_x 、 L_y が過小評価されたためと考えられる. 圧縮行程において、

 L_x は L_z に対して近い値を示す.図 4.16に、 θ =40.0deg BTDC における時間 フィルター法と空間フィルター法により得られた平均流と乱流強度の分布 を示す.ここで、空間フィルター法は、カットオフ長さ L_c より小さいスケ ールを乱流成分、大きいスケールを平均流成分に分離する手法である. θ =40deg BTDC における L_x と L_y の平均値を L_c とし、 L_c =8.1mm とした.時間 フィルター法により計算された平均流と乱流強度の分布は、空間フィルター 法により計算された分布と概ね一致している.よって、流れの自己相関から 決定された時間、または、空間スケールにより同程度のスケールの乱流成分 を分離できていると考えられる.

4.3.3. 乱流特性に対するピストントップ形状の影響

時間フィルター法を用いて、種々の運転条件にて本過給エンジンの乱流特 性を解析した.エンジン回転数 Ne が異なる場合のK_fとk_fの比較を図 4.17(a)(b)にそれぞれ示す. 運転条件は, Ne=700rpm, 1500rpm と 2000rpm WOT で、fcは222Hz、360Hz と 640Hz とした. また、Kfとkfは、図 4.1(b)に示し た解析領域の空間平均を1サイクル毎に計算した後,サイクル平均を行った. これより、Neの増加によりKfとkfはともに増加しており、一般的に言われ ているエンジン回転数が増加すると乱流が強くなる傾向が見られる.次に, θ に対する傾向として, K_f は θ = 300 ~ 270 deg BTDC で最大となった後に減少 し、 θ =40deg BTDC 付近で再び最大となり、その後、減少する. k_f もほぼ同 様の変化を示すが、 θ =40deg BTDC 付近で K_f が減少した後に k_f は増加してお り, 圧縮行程後半において, やや傾向が異なる. これは, 圧縮行程後半にお いて, 平均流成分から乱流成分へエネルギーが移動していることを示してお り、乱れの生成が行われていると考えられる.以上のことから、エンジン回 転数の違いにより予想される乱流特性が得られており, 過給エンジンのよう な強流動場においても、本手法による平均流と乱流の分離が可能であると考 えられる.

燃焼促進に有効である流動強化法の1つとして、ピストントップ形状の最 適化が挙げられる[24]. ピストントップ形状がおよぼす流動への影響を図 4.18 に示す.キャビティピストン、フラットピストンの形状はともに図 4.4 に示したものを用いた.上段に速度、中段に平均流成分の速度、下段に*k_fを* 示しており、いずれもサイクル平均した結果である.これより、*θ*=180deg BTDC で、キャビティピストンの場合[図 4.18(a)]、吸気側にピストントップ により上昇流に変換されたと考えられる流れが観察される.平均流成分の速 度分布もほぼ同様の傾向を示す.フラットピストンの場合[図 4.18(b)]、前述

の上昇流は観察されず,吸気バルブから流入する流れのみが存在する. 平均 流成分もほぼ同様の分布であり,キャビティピストンに対しては全体的に速 度が遅い. 圧縮行程後半である *θ*=40deg BTDC で,キャビティピストンの場 合,排気側から吸気側へ向かう速い流れが存在する. フラットピストンの場 合,この流れは存在するものの,速度は遅い.また,平均流成分も同様の傾 向である. *k*fを比較すると,フラットピストンに対してキャビティピストン の*k*fは *θ*=40deg BTDC で約 2 倍の値を示す. 燃焼室内の流動はエンジン構造 上の制約により計測を行えてないが, 燃焼室内においてもキャビティピスト ンの*k*fは,フラットピストンより高い値を示すと予想され,キャビティピスト トンによる燃焼促進が予想される.

4.4. 本章の結論

本章では, 強流動ポートと透明スリーブを有する可視化エンジンに, 第3 章で開発した時間フィルター法を適用し, 強流動場における乱流特性の解析 を行った結果, 以下の結論を得た.

- 吸気行程で生成されたタンブル流は圧縮行程後半まで保存されており、 タンブル渦中心の軌道はシリンダー内を時計回りに移動する.
- エンジン筒内において、時間分解能 10kHz もの高速による乱流分布計 測を世界で初めて実施した.本流動場に時間フィルター法を適用し、 吸気から圧縮行程まで乱流評価を行う場合には、5kHz 以上の時間分解 能が必要である.
- 時間フィルター法で提案しているカットオフ周波数は、吸気行程時に ピストン挙動で生成される比較的大きい流れのスケール(周波数)に 相当する.
- エンジン回転数の違いにより予想される乱流特性が得られていることから、過給エンジンのような強流動場においても本手法による平均流と乱流の分離が可能である.
- 5. 流動強化に対しては,吸気行程で生成された流れを効率良くタンブル 流に変換するピストントップ形状が有効である.

<u>第4章 過給 GDI エンジンの筒内流動解析</u>

Engine	An optical single cylinder engine		
Engine	with a quartz sleeve		
Bore×Stroke	73mm×89.4mm		
Displacement	374cm ³		
Valve train	DOHC 4valves		

表 4.1: 単気筒可視化エンジンの主要諸元.

表 4.2: 計測条件.

Engine speed	Throttle opening	Cycle number	Δ <i>t</i> [μs]		
700rpm	WOT	28	25		
1500rpm	WOT	50	15		
2000rpm	WOT	50	10		

図 4.1: (a)単気筒可視化エンジンの外観, (b)計測・解析領域.

図 4.2: 計測装置の概要, (a)側面図, (b)上面図.

図 4.4: ピストントップ形状と予想される筒内流動パターン, (a)キャビティ ピストン, (b)フラットピストン.

<u>第4章 過給 GDI エンジンの筒内流動解析</u>

図 4.5: 筒内速度分布 (Ne=1500rpm WOT, 時間分解能 3kHz).

図 4.6: タンブル渦中心の軌道 (Ne=1500rpm WOT).

図 4.7:サイクル平均速度(解析ポイント, Ne=1500rpm WOT).

図 4.8:エネルギースペクトルへおよぼす時間分解能の影響(解析ポイント), (a)u 速度成分, (b)v 速度成分.

図 4.9:運動エネルギーへおよぼす時間分解能の影響(解析ポイント,カット オフ周波数 *f*_c=360Hz), (a)平均流成分の運動エネルギー*K*_f, (b)乱流 運動エネルギー*k*_f.

図 4.10: 異なる空間分解能データにおける時間分解能がおよぼす周波数特 性への影響(解析ポイント, *u* 速度成分), (a)空間分解能 0.6mm, (b) 空間分解能 2.4mm.

図 4.11: 異なる空間分解能データにおける時間分解能がおよぼす高周波成 分エネルギーへの影響(解析ポイント,カットオフ周波数 fc=360Hz).

図 4.12:流れの積分時間スケール τ_u , τ_v とピストン速度に関する特性時間 τ_p の関係(空間平均).

 図 4.13: (a)吸気行程中盤の積分時間スケールより求めたカットオフ周波数 f_c(θ=270degBTDC)と吸気行程平均値 f_c(θ=360-180degBTDC)の関係, (b)クランク角度θと瞬時ピストン速度 u_pの関係.

図 4.14: 流れの周波数特性で傾きの変わる周波数 f_{slope} と θ =270degBTDC に おける流れの積分時間スケールより求めたカットオフ周波数 f_c の 関係.

図 4.15. 時間フィルター法により得られた積分長さスケール L_z と空間フィ ルターより得られた積分長さスケール L_x , L_y の比較(空間平均).

図 4.16: 時間フィルター法と空間フィルター法により得られた平均流速度 と乱流強度の分布 (カットオフ周波数 360Hz, カットオフ長さ 8.1mm, *Ne*=1500rpm WOT, θ=40.0deg BTDC).

図 4.17: 異なるエンジン回転数におけるエネルギーの比較(空間平均), (a) 平均流成分の運動エネルギー*K_f*, (b)乱流運動エネルギー*k_f*.

図 4.18: ピストントップ形状がおよぼす流動への影響 (*Ne*=1500rpm WOT), (a)キャビティピストン,(b)フラットピストン.

第5章

吸気切換えデバイスによる筒内乱流強化と

燃焼促進

5.1. はじめに

第4章では、強流動ポートを持つ過給ダウンサイジングエンジンに、第3 章で開発した時間フィルター法を適用し、強流動場における乱流特性の解明 を行った.エンジン筒内では世界初となる高速 PIV による時間分解能 10kHz で計測された速度をもとにして、乱流解析に必要な時間分解能を明らかにし た.また、時間フィルター法で用いるカットオフ周波数について考察を行い、 その物理的意味を明らかにした.最後に、エンジン回転数やピストントップ 形状が乱流特性へおよぼす影響を解析し、過給ダウンサイジングエンジンの 筒内乱流特性を解明し、時間フィルター法の強流動場適用への有用性を明ら かにした.

本章では、過給ダウンサイジングエンジンにおいて、高回転域でチョーキ ングによる最大出力低下を低減させるための吸気切換えデバイスであるタ ンブルコントロールバルブ TCV の乱流特性を明らかにすることを目的とす る.まず、高速 PIV により計測された速度分布より、隔壁長さやフラップ位 置等の TCV 諸元変更による流動・乱流特性を明らかにする.次に、得られ た乱流特性と同諸元を持つ実機エンジンの燃焼特性の相関性を比較し、TCV が燃焼促進に対して有効なデバイスであることを証明する.

5.2. 実験装置·計測条件

5.2.1.エンジン諸元

表 5.1 に単気筒可視化エンジン主要諸元,図 5.1 にその外観を示す.エン ジンは石英製の透明スリーブを有する単気筒可視化エンジン(小山ガレージ 製)である.ボア径は 73mm,ストロークは 89.4mm で,吸気と排気バルブ はそれぞれ 2 つずつ備えている.ヘッドとブロックの間には透明スリーブが 設置されている.第4章で用いた可視化エンジンに対して,ヘッドをガスケ ット面から燃焼室方向へ削り込むことによりガスケット面をエンジン上方 へ移動させ,さらに透明スリーブをヘッド方向へ延長させることにより,シ リンダーから燃焼室をつなぎ目無く可視化することが可能となっている(図 5.2).ピストントップには石英製ピストンウィンドウが設置されており,延 長ピストンの内側に設置された角度 45°のミラー(以下,45°ミラー)に より燃焼室下側からの可視化も可能である.

TCV の部品構成を図 5.3 に示す. 隔壁は吸気ポート内の中心位置で, ポートを上下に分割するように挿入され, 仕様の変更は差し替えにより行われる.

フラップはスペーサー内に設置され、スペーサーを交換することにより、 TCV 有無やフラップ形状の仕様変更が行われる.

5.2.2. 計測装置

実験・計測装置の概要を図 5.4 に示す.速度の計測には高速 PIV システム を用いた.光源に高繰り返しダブルパルス Nd:YAG レーザー(Lee, LDP-50MQG)を用い,レーザー光の波長は 532nm である.粒子画像の撮影に は高速度 CMOS カメラ(Photron, APX-RS)を用いた.撮影速度を 20kfps,空間 解像度を 512×256pixel で撮影を行った.レーザー光はシリンドリカルレン ズにより,厚さ 0.5mm のシート状に引き伸ばされた後,45°ミラーとピス トンウィンドウを通過させて,下側から燃焼室内へ照射される.計測位置は ボアセンターである.トレーサーに粒径 φ=3 μ m の SiO₂ (鈴木油脂工業,ゴ ッドボール B-6C)を用い,スロットル直後の吸気チャンバーからエンジン 内に吸入させ,できるだけ均一に分布するように配慮した.トレーサーの流 体追従性として,トレーサー粒子の周波数応答性は 10kHz の速度変動に対し て約 94%である (図 3.5 参照).また,遠心力が働いた場合の流体に対する トレーサー粒子の追従性をストークス数により評価した結果,テイラーマイ クロスケール程度まで追従していると考えられる (3.2.2 項参照).

計測・解析領域を図 5.5 に示す.計測範囲は燃焼室内の横 46.6mm,縦 24mm である.計測時,点火プラグは取り外され,先端が燃焼室壁面と同じ位置と なるダミープラグが取り付けられる.参考として,点火プラグの着火位置を 赤丸で図中に示す.空間平均する場合,吸気バルブにより隠されない横 8mm, 縦 4mm の範囲を対象とした.計測クランク角度は,吸気 TDC(Top Dead Center)付近であるクランク角度 *θ*=360deg BTDC から圧縮 TDC 後である *θ*=-62.6deg BTDC までとし,これを複数サイクルにわたり計測した.得られ た粒子画像は市販の PIV 解析ソフト (西華産業,Koncert ver2.0) により解析 された.解析アルゴリズムには再帰的 FFT 相互相関法を用い,検査領域を 64×64pixel から 16×16pixel まで3 段階に変化させ,オーバーラップを 50% とした.得られた速度ベクトルの時間分解能は 10kHz で,空間分解能は 1.6mm である. 燃焼室ボア方向の速度をu成分,ピストンストローク方向の 速度をv成分と定義する.また,複数サイクルの計測データを同一クランク 角度で平均することをサイクル平均と定義する.なお,計測サイクル数は,カメラに搭載されたメモリにより制限され,50 サイクルである.

5.2.3. 計測条件

TCV の主要諸元を表 5.2 に示す. フラップにより隔壁の下側通路を塞いだ 場合,空気は隔壁の上側通路を流れることから,この仕様を「上流し」と呼 び、UF (Upper Flow)と表記する.逆に、フラップにより隔壁の上側通路を 塞いだ場合,空気は隔壁の下側通路を流れることから「下流し」と呼び、LF (Lower Flow)と表記する.隔壁長さ L_{Plate} は、45mm、69.9mm、92.8mmの 3 種類である. L_{Plate} が長い程,隔壁の先端位置が吸気バルブステムに近づく ため,隔壁先端から吸気バルブステムまでの距離 G_{Plate} は、50mm、25mm、 2mm と小さくなる.以後,隔壁先端から吸気バルブステムまでの距離を TCV の代表的な諸元として、「上流し」で G_{Plate} =2mmの場合、フラップと隔壁の 仕様をまとめて UF2mm と表記する.

計測条件を表 5.3 に示す. エンジン回転数 Ne=1500rpm, スロットル開度 は WOT (Wide Open Throttle) である. 吸入空気量は, スーパーチャージャ ーによる過給で変化させた. TCV 全仕様の流動特性を解析する場合, 過給 無しでテストを行い, その時の吸気管内圧力 P_{intake} =95kPa, 体積効率 η_v =45% であった.吸入空気量の影響を解析する場合, TCV は UF2mm の1仕様とし, P_{intake} =100kPa と 140kPa に設定し, 体積効率はそれぞれ η_v =72%, 135%であ った.

5.3. 吸気切換えデバイスによる筒内流動強化

5.3.1. TCV による大域的流動特性の変化

TCVにより, さらなる流動強化を行った場合, 吸気ポート絞りにより吸気 抵抗が増えることから, トータルのエンジンシステム性能に大きな影響をお よぼす.この影響を明らかにするため, 定常流にてタンブル比と流量係数の 特性を解析した.まず, 流動強化の特性を解析するために定常流におけるタ ンブル比の計測を行った.エンジンヘッド下側に取り付けられたアクリル製 透明スリーブ内の定常的な流れを, ステレオ PIV システム(Flowtech Research, FtrLFV E1000)により, 200 ペアの粒子画像を計測した.図 5.6 に定常流にお けるタンブル比の計算方法を模式的に示す.計測断面はガスケット面より下 方へ 36.5mm (ボアの 1/2)の位置である.200 ペアの粒子画像により得られ た速度分布から平均速度分布を求め, その速度 3 成分のうち計測断面を鉛直 方向に横切る速度成分 wを用いて, 各バルブリフトにおけるタンブル比 TR_{lift} と計測場の角速度 ω_{lift}を求めた.計算には, それぞれ式(5.1),式(5.2)を用い た[60][61].

$$TR_{lift} = \frac{\omega_{lift}}{\omega_{mot}}$$
(5.1)

$$\omega_{lift} = \frac{\sum (w_i - \overline{w}) r_i A_i}{\sum (r_i^2 A_i)}$$
(5.2)

ここで、 ω_{mot} は基準となる角速度である.また、*i*は PIV 解析格子を示し、 *r*は回転中心からの距離、*A*は格子面積、 \overline{w} は*w*の空間平均値である.なお、 回転中心はボアセンターとした.通常、 ω_{mot} の計算にはエンジンクランク 角速度を用いるが、定常流における ω_{mot} は \overline{w} とエンジンストローク*s*を用い て、式(5.3)より求めた.

$$\omega_{mot} = \frac{\pi \overline{w}}{s} \tag{5.3}$$

次に、TCV によるポート絞りがエンジンシステム性能へ与える影響として、流量係数低下によりエンジン回転数を増加させても出力が増加しないことが挙げられる.流量係数は値が大きいほど吸気抵抗が小さいことを意味するが、よりエンジンへ与える影響を想像しやすくするために、流量係数から限界回転数 Nelimit を計算する.ここで、吸入通路抵抗と成りえる最小断面積は吸入空気速度により異なり、式(5.4)により得られる吸入空気速度と音速の比である吸気速度係数 M_i が 0.5 を超えると、体積効率が減少することが経験的に知られている[62][63].

$$M_i = \frac{U_p A_p}{a_i A_v C_{fm}} \tag{5.4}$$

ここで、 U_p は平均ピストン速度、 A_p はピストン面積、 A_v は吸気バルブ面積、 C_{fm} は平均流量係数、 a_i は吸気管内音速である。平均ピストン速度は、スト ローク s とエンジン回転数 Ne を用いて、 $U_p=(s \times Ne)/30$ で表すことができる ことから、 M_i は式(5.5)のように変形することができる。

$$M_{i} = \frac{U_{p}A_{p}}{a_{i}A_{\nu}C_{fm}} = \frac{V_{s}}{a_{i}A_{\nu}C_{fm}\frac{30}{Ne}}$$
(5.5)

ここで、 V_s は排気量で、 $V_{s=s} \times A_p$ の関係より計算を行った.前述したように、 吸気速度係数 M_i が 0.5 を超えると体積効率の減少が起こるため、 $M_i=0.5$ と なる回転数を限界回転数 Ne_{limit} と定義する.

定常流における平均タンブル比 TR_m ,平均流量係数 C_{fm} と限界回転数 Ne_{limit} の関係を図 5.7 に示す. TR_m は、クランク角度 θ におけるバルブリフトカーブと、それに対応するタンブル比 TR_{lift} から、式(5.6)により計算を行った.

$$TR_m = \frac{1}{180} \int TR_{lift} \left(\frac{u_p(\theta)}{U_p}\right)^2 d\theta$$
(5.6)

ここで、積分範囲は吸気行程(クランク角度 180°)とし、 u_p は瞬時ピストン速度、 U_p は平均ピストン速度である.また、平均流量係数は、同時に計測された各バルブリフトにおける流量係数とバルブリフトカーブより計算を行った.これより、全体的な傾向として、TCV により TR_m を増加させると、それにともなって C_{fm} が減少する.これは、吸気ポート断面積の減少により、筒内への流入速度が増加するが、その反面、吸気抵抗が増加することを意味する.平均タンブル比に着目すると、TCV 無しの場合、 $TR_m=1.7$ 、TCV UF2mm の場合、 $TR_m=3.2$ となる.TCV UF2mm の仕様が最も高い平均タンブル比を示すが、 Ne_{limit} は 3895rpm となり、エンジン回転数をこれ以上増加させてもチョーキングによる出力低下が発生する.そのため、TCV のフラップを高回転時に開くことにより、 Ne_{limit} を 5800rpm 程度まで増加することができ、出力低下を抑制することが可能となる.以上のことから、TCV により、流動強化による熱効率向上と吸気抵抗低減による出力向上の両立が可能になると考えられる.

ここから、可視化エンジンを用いて TCV の流動特性を解析する. TCV 無 し、TCV UF2mm と TCV LF2mm の場合の可視化エンジンにて計測された速 度分布を図 5.8(a)(b)(c)にそれぞれ示す. いずれもサイクル平均された分布 であり、渦中心を赤丸で図中に示している. 計測条件は過給無し (*P_{intake}=95kPa*)である.吸気行程前半である *θ*=300.1deg BTDC で、TCV 無 しの場合、バルブ全周より空気が流入している.これに対して、TCV UF2mm の場合、吸気バルブ下側からの流入が抑制され、排気側へ向かう流れが支配 的となっている.TCV LF2mm の場合、吸気バルブ下側からの流れが見られ、 排気側へ向かう流れは見られない.吸気行程中盤である *θ*=270.4deg BTDC で、TCV UF2mm の場合、ピストンに衝突して上昇流に変換された流れが見 られるが、TCV LF2mm の場合、排気側から吸気側へ回転する流れ(逆タン ブル流)が見られる.吸気行程後半である *θ*=180.4deb BTDC で、TCV UF2mm

の場合,ピストンに衝突した上昇流はさらに顕著となり,TCV 無しに対し て速度が速い.TCV LF2mm の場合,TCV UF2mm に見られるような速い流 れは見られない. 圧縮行程中盤である *θ*=90.4deg BTDC で,TCV 無しの場合, ボアセンターよりやや排気側へオフセットした渦中心を持つタンブル流が 見られる.TCV UF2mm の場合も同様にタンブル流が生成されているが,そ の渦中心はボアセンター付近に存在し,速度が速い.以上のことから,隔壁 の上側通路を流すと排気側へ流入する流れが支配的となり,圧縮行程の速度 が増加する.また,隔壁の下側通路を流すと吸気バルブ下側からの流入が支 配的となり,逆タンブル流の形成により圧縮行程後半の速度が減少すること が明らかになった.

隔壁先端から吸気バルブステムまでの距離 G_{Plate} を変化させた場合の速度 分布比較を図 5.9 に示す.計測条件は過給無し (P_{intake} =95kPa)で,図 5.9(a)TCV 無し,(b)TCV UF2mm,(c)TCV UF25mm,(d)TCV UF50mm をそれ ぞれ示す.吸気行程前半である θ =300.1deg BTDC で,TCV UF2mm の場合, 排気側へ向かう流れが支配的であり, G_{Plate} の増加とともに吸気バルブ下側 へ流入する流れが見られる.吸気行程中盤である θ =270.4deg BTDC で,TCV UF2mm の場合,ピストントップに衝突したと考えられる上昇流が見られる が,この上昇流は G_{Plate} の増加とともに見られなくなる. 圧縮行程後半であ る θ =30.1deg BTDC で,TCV UF2mm の場合, G_{Plate} の増加により渦中心の位 置は大きく変化しないものの速度は減少する.以上のことから,隔壁先端を 吸気バルブステムへ近づけることにより,筒内の排気側へ向かう流れが支配 的となり,圧縮行程後半の速度が増加することが明らかになった.

5.3.2. TCV による乱流特性の変化

乱流成分の分離には、第3章で提案した時間フィルター法を用いた[56]. 本手法の特徴は、カットオフ周波数 f_c より高い周波成分を乱流成分とすることにより、燃焼促進に寄与しないと考えられる平均流成分(低周波成分)のサイクル変動分を乱流成分に含めないことである.そのため、得られる乱流成分は燃焼特性との相関性が高いと考えられる. f_c は、吸気行程時にピストン挙動で生成される比較的大きい流れの時間スケールに相当し、吸気行程中盤である θ =270deg BTDC の流れの積分時間スケールの逆数としている[55]. 図 5.10(a)に隔壁先端から吸気バルブステムまでの距離である G_{Plate} を変化させた場合のu速度成分の流れのエネルギースペクトル E_u と f_c の関係を示す.ここで、 E_u はクランク角度 θ =360deg BTDC から θ =-62.6deg BTDC を1周期とし、離散フーリエ変換により1サイクル毎に計算された後、サイクル平均

して計算される.計測条件は過給無し (P_{intake} =95kPa) である. TCV 無し, TCV UF2mm, TCV UF25mm, TCV UF50mm の f_c は 267Hz, 219Hz, 185Hz, 272Hz とし, これらを図中に矢印で示す. これより,得られた f_c は, E_u の傾 きが変化する周波数におおむね相当しており,流れの変動特性が変化してい る周波数をカットオフ周波数としていることが分かる. 図 5.10(b)に v 速度 成分の流れのエネルギースペクトル $E_v \ge f_c$ の関係を示す.v 速度成分の場合 も同様に得られた f_c は E_v の傾きが変化する周波数におおむね相当している.

図 5.11(a)に,隔壁先端から吸気バルブステムまでの距離 G_{Plate} が乱流運動 エネルギー k_f におよぼす影響を示す.TCV 無し,TCV UF2mm,TCV UF25mm, TCV UF50mm の f_c は,前述の 267Hz, 219Hz, 185Hz, 272Hz をそれぞれ用い た.また, k_f は,式(5.7)を用いて1サイクル毎に計算し,空間平均を行った 後,サイクル平均を行った.

$$k_f = \frac{1}{2} \left(u_f'^2 + v_f'^2 \right) \tag{5.7}$$

ここで、 u_f' 、 v_f' は時間フィルター法により分離された乱流成分の速度を示 す.吸気行程(θ =360~180deg BTDC)で、TCV UF2mmの k_f は TCV 無しの 場合に対して減少しているが、TCV UF25mm、TCV UF50mm ~と G_{Plate} を増 加させると k_f は増加する. 圧縮行程(θ =180~0deg BTDC)で、TCV UF2mm の k_f は TCV 無しの場合に対して増加するが、TCV UF 25mm、TCV UF50mm ~と G_{Plate} を増加させると k_f は減少し、TCV 無しの場合の k_f に近づく. これ より、 G_{Plate} が小さいほど圧縮行程後半の k_f が増加する傾向にある. 次にフ ラップ位置が k_f におよぼす影響を図 5.11(b)に示す. いずれも G_{Plate} =2mm と し、TCV LF2mmのカットオフ周波数は f_c =470Hz とした. TCV LF2mmの場 合の k_f は、TCV UF2mmに対して吸気から圧縮行程の全域にかけて低い値を 示す. さらに吸気ポート断面積を約 1/2 に減少させているにも関わらず、TCV 無しの場合の k_f よりも低い.

TCV が乱流成分へおよぼす影響を明らかにするため,TCV 無し,TCV UF2mm と TCV LF2mm の場合の平均流成分の速度と乱流運動エネルギー k_f の空間分布を図 5.12(a)(b)(c)にそれぞれ示す.カットオフ周波数 f_c は、267Hz、 219Hz、470Hz とし、計測条件は過給無し (P_{intake} =95kPa)である.これより、 平均流成分の速度分布において、TCV UF2mm の速度は TCV 無しの場合に 対して速く、渦中心は燃焼室中心付近に存在する.TCV LF2mm の速度は、 TCV 無しの場合と比べておおむね同じ値を示し、分布にも大きな差は見ら れない.次に、運動エネルギー k_f の分布において、TCV UF2mm の k_f は、TCV

無しの場合に対して高い値を示しており,タンブル流の渦中心がある燃焼室 中心付近のk_fが特に高い値を示す.TCV LF2mmの k_fは,TCV 無しの場合と 比べておおむね同じ値を示し,さらに分布にも大きな差は見られない.

吸入空気量が平均流成分の速度と乱流運動エネルギーkfの空間分布へおよ ぼす影響を解析した.図 5.13(a)に過給無し(P_{intake}=95kPa),(b)(c)はそれぞ れスーパーチャージャーにより過給を行っており,吸気管内圧力はそれぞれ P_{intake}=100kPa,140kPaである.なお,TCVの仕様はUF2mmである.表 5.3 に示すように,過給を行った場合の吸入空気量は,過給無しに対して P_{intake}=100kPaで約1.8倍,P_{intake}=140kPaで約3倍となる.これより,平均流 成分の速度分布において,吸気行程前半である θ=300.1deg BTDCで,P_{intake} =140kPaの流入速度が他の条件と比べてやや遅い傾向を示すものの,クラン ク角度や過給の有無によらず速度と乱流エネルギーの分布はおおむね同じ である.以上のことから,過給による空気密度の増加により吸入空気量は増 加するが,流入速度は過給により大きく変化しないことが明らかになった.

TCV の火炎構造を乱流予混合燃焼ダイアグラム[64]により予測し,流動強 化による燃焼促進効果の有無を検討した.その結果を図 5.14 に示す.縦軸 の乱流強度u'と層流燃焼速度 S_L は,以下の手順で求めた.u'は,可視化エン ジンでモータリング時に計測された速度場をもとにして時間フィルター法 で得られた圧縮 TDC 付近である θ =0.4deg BTDC の乱流運動エネルギー k_f の 平方根とした.乱流計測時の作動流体は空気であるが、ダイアグラムにプロ ットするために当量比 1.0, EGR 率 0%の混合気と仮定して計算を行った. 燃料組成は疑似ガソリン PRF(Primary Reference Fuel)とし,層流燃焼速度 S_L は, 素反応計算により計算した値を用いた[65].横軸の乱れの積分長さスケール lと火炎帯厚さ l_F は、それぞれ式(5.8)、式(5.9)より求めた.

$$l = u' \times \tau_{u'} \tag{5.8}$$

$$l_F = \nu_F / S_L \tag{5.9}$$

ここで、 $\tau_{u'}$ は乱れの積分時間スケール、 ν_F は混合気の動粘性係数で、物性推 算法により計算した値を用いた[52](付章 C 参照). 計算により得られた乱 流特性値を表 5.4 に示す. なお、表には積分スケールに基づくレイノルズ数 Re_l 、テイラーマイクロスケールに基づくレイノルズ数 Re_l も示している. こ れより、TCV 無しと TCV UF2mm の場合の火炎構造は、いずれも「corrugated flamelets」に分類され、TCV UF2mm のu'とlは、TCV 無しに対して大きいこ とから、右上にプロットされる. この領域では火炎面にしわが形成されてい るが火炎の内部構造にまでは乱流が影響を及ぼさないと考えられており、

「wrinkled flamelets」領域より火炎面のしわが強調されている[66]. 以上の ことから, TCV により乱れが強くなれば, 燃焼促進効果を得られることが 期待される.

ここから,時間フィルター法について考察を行う.まず,カットオフ周波 数についてである.時間フィルター法において,吸気行程中盤である θ =270degBTDC の積分時間スケールを代表とし、その積分時間スケールより カットオフ周波数を求めていたが,任意クランク角度における積分時間スケ ールを,そのクランク角度におけるカットオフ周波数として分離する手法も 考えられる.これについて考察を行う.図 5.15(a)に TCV 無しと TCV UF2mm の場合のデータをもとに、カットオフ周波数 f_c を θ =270degBTDC の積分時 間スケールより求めた f_c一定とした場合と,各クランク角度における積分時 間スケールより求めた fcを用いる場合の乱流運動エネルギーの比較を示す. TCV 無しの場合, fcを一定とした場合とクランク角度毎に変化させた場合の 運動エネルギーに大きな差は見られないが,TCV UF2mm の場合,圧縮行程 後半において、 f_c をクランク角度毎に変化させた場合のエネルギーは、 f_c ー 定の場合に対して減少する.これは、圧縮行程後半に向かって積分時間スケ ールが短くなるためである.図 5.15(b)に各 TCV 仕様における圧縮 TDC(θ =0.4deg BTDC) での乱流運動エネルギーの比較を示す. これより, いずれの TCV 仕様においても f_c をクランク角度毎に変化させた場合のエネルギーは, fc一定の場合より低い値を示し、エネルギーが高いほどその影響は顕著とな る.これは、タンブル流のような強流動の場合、流入した流れが観測領域に 複数回帰ってくるため,吸気行程中盤である θ=270degBTDC の積分時間ス ケールが, 強流動ほど長くなる傾向にある. 一方, 圧縮 TDC 付近では, 強 流動ほど速度が急激に減少するために積分時間スケールが短くなる傾向に ある. すなわち, 強流動ほど両者の積分時間スケールの差が大きくなり, そ の結果, エネルギーが高いほど両手法により得られるエネルギーの差が大き くなったと考えられる.カットオフ周波数fcをクランク角度毎に変化させる ことは、流れの特性がクランク角度に応じて変化する様子を表していること から,一見良い手法のように思えるが,この手法では計測条件の制約により 生じる時間分解能や計測ウィンドウ(計測クランク角度)の関係から,圧縮 行程後半でのカットオフ周波数が非常に高くなり、これにより乱流成分の分 離ができなくなる場合がある.よって,時間分解能や計測条件による制約を 受けづらい吸気行程中盤である θ=270degBTDC を代表としたカットオフ周 波数を用いることが適当であると考えられる.

次に,従来手法であるサイクル平均法では,サイクル変動の分離ができて ないことから,これを分離可能とする手法として時間フィルター法を開発し

た. ここからは,時間フィルター法により分離されている平均流成分のサイ クル変動について考察を行う.吸気行程前半である *θ*=300.1degBTDC におけ るサイクル平均速度分布と瞬時速度分布の比較を図 5.16 に示す. なお,デ ータは第4章の時間分解能 10kHz で計測された結果を用いた(図 4.7参照). これより,図 5.16(a)に示すサイクル平均速度分布において,吸気から排気 側へ向かう流入する流れが存在し,その下方には渦中心(図中赤丸)が見ら れる.図 5.16 (b)に示す任意 6 サイクルの瞬時速度分布において,4 サイク ル目の速度分布のように吸気から排気へ向かって流入する流れが見られる サイクルもあるものの,他サイクルでは速度分布や渦中心位置が異なってお り,サイクル変動を有していることが分かる.

時間フィルター法で分離された平均流運動エネルギーK_fのサイクル平均 と任意5サイクルを図 5.17に示す.なお,任意5サイクルは図 5.16(b)の1 ~5サイクルに相当する.また,カットオフ周波数は360Hzとし,解析ポイ ントにおけるデータを用いている[図 4.1(b)参照].これより,サイクル平均 された平均流運動エネルギーに対して,任意サイクルの平均流運動エネルギ ーは変動しており,瞬時速度から分離された平均流成分自身もサイクル変動 を有していることが分かる.

時間フィルター法とサイクル平均法により得られた流れの周波数特性を 図 5.18 に示す. データは, 図 5.16 と図 5.17 で示したデータと同一である. 時間フィルター法により得られた周波数特性は 1 サイクル毎にフーリエ変 換で周波数特性を求めた後にサイクル平均処理を行った. サイクル平均法に より得られた周波数特性は、サイクル平均された速度からフーリエ変換によ り求めた、これより、時間フィルター法では、カットオフ周波数より高周波 側で囲まれた領域が乱流成分となるが、サイクル平均法では、サイクル平均 された速度から瞬時速度を差し引いた速度を乱流成分と定義しているので、 時間フィルター法とサイクル平均法で囲まれた領域が乱流成分となる(赤と 青で囲まれた領域).ここで、カットオフ周波数より低い周波数のエネルギ ー(赤で囲まれた領域)がサイクル平均法の乱流成分に合算されてしまう. 次に、時間フィルター法により得られたエネルギーのサイクル変動として、 標準偏差を平均値に加えて図 5.18 に点線で示す. ここで, 360Hz 以下の周 波数帯におけるサイクル毎の変動成分は、時間フィルター法では平均流のサ イクル変動成分と定義されているが、サイクル平均法では乱流成分に合算さ れてしまう(緑で囲まれた領域).

以上のことから,時間フィルター法では,カットオフ周波数以下の平均流 成分とそのサイクル変動分が乱流成分には含まれない手法であることが明 らかとなる.ここで,流れのサイクル変動は,吸気ポートから筒内へ流入す

る際の吸気バルブ周りで剥離した流れに起因するものと予想されるが、具体 的なメカニズム解明までは至っていない.しかし,時間フィルター法では, 吸気行程中にピストンの下降により誘起される大スケールの流れとして定 義された平均流のサイクル変動成分は乱流成分には含まれないことになる. 時間フィルター法とサイクル平均法により得られた乱流運動エネルギー の特性と予想される乱流火炎構造について考察を行う. TCV 無しと TCV UF2mmの乱流運動エネルギーの分離法による比較を図 5.19(a)に示す.これ より、分離法による運動エネルギーの差は主に圧縮行程後半で現れており、 サイクル平均法により得られた乱流運動エネルギーは,時間フィルター法に 対して高い値を示す.次に,各 TCV 仕様における圧縮行程後半である θ =0.4deg BTDC での乱流運動エネルギーの比較を図 5.19(b)に示す.いずれの TCV 仕様においても、サイクル平均法で得られた乱流運動エネルギーは 1.6~1.9 倍程度高い値を示し、その差はエネルギーが高いほど大きくなる. これは、流動強化により平均流成分の速度が増加すると、それにともないサ イクル毎の速度変動が増加するためである[図 3.16(a)(c)参照]. また, 両者 には相関が見られることから, サイクル平均法により得られた乱流特性を用 いても、エンジン仕様差における流動の良し悪しを相対的に評価することは、 一見,可能のように思える.しかし,サイクル平均法により得られる乱流特 性は過大評価されるため、図 5.20 に示すように予混合乱流燃焼ダイアグラ ム上では実際よりも上方にプロットされる.本エンジンにおいては、時間フ ィルター法とサイクル平均法のプロット位置は、ともに「corrugated flamelets」 で同じ領域であったが、今後、過給リーンバーンや大量 EGR 燃焼などの層 流燃焼速度が低下する燃焼形態においては、さらなる流動強化が予想される ため,異なる領域にプロットされる可能性がある.すなわち,正しい燃焼設 計を行うためには、より正確な乱流計測・解析が必要となるため、時間フィ ルター法の適用が必要であると考えられる.

5.3.3. TCV による乱流特性変化と燃焼特性の関係

まず,TCV が筒内噴霧挙動へおよぼす影響を解析した.TCV 無しとTCV UF2mm の場合のボアセンターにおける噴霧画像を図 5.21 の上図に,噴霧面 積比 *R_{spray_area}* を図 5.21 の下図に示す.噴霧画像は,噴霧にレーザーを照射 することにより得られる Mie 散乱光を高速度カメラで計測した.計測機は図 5.4 に示したものと同じで,筒内全体が撮影できるようにカメラ位置を調整 した.この時の空間分解能は 0.17mm/pixel,時間分解能は 6kHz である.ま た,ダブルパルスレーザーは片側のみを発振させ,カメラフレームが開いた

1μs後に,エネルギー0.4mJ/shotで筒内ヘレーザー照射を行った.計測条件 は、Ne=1500rpm、P_{intake}=130kPaである. 燃料供給は、6 噴孔を持つマルチホ ールインジェクターにより、筒内へ直接噴射により行われる.なお、燃料噴 射圧力 Pr=8MPa で噴射回数は 2 回とした. 噴射時期は, 噴射開始クランク 角度 SOI(Start Of Injection)をパラメーターとし, SOI_1=260, SOI_2=210deg BTDC で、1回当たりの噴射時間は 1.939ms とした. また、噴霧画像より噴 霧面積を抽出し、得られた噴霧面積と計測領域の面積(図中の黄色と白線で 囲まれた領域)の比を R_{sprav area}とした. 噴霧画像において,1回目の噴射直 後であるクランク角度 θ=240deg BTDC では, TCV 有無による噴霧挙動の差 は見られない. θ = 212.8 deg BTDC では, TCV UF2mm の場合に噴射された 噴霧は TCV 無しに対して筒内下方へ流されており, TCV によるスリーブを 下降する速い流れにより噴霧が流されている様子が観察された. θ =179.8deg BTDC では, TCV UF2mm の場合, 2 回目に噴射された噴霧は, タ ンブル流により燃焼室上部の排気側へ流されている様子が観察された.この 時, TCV UF2mmの1回目に噴射された噴霧は, すでに筒内を回転し, 2回 目の噴射された噴霧と同じ位置まで移動している. その後, TCV UF2mm の 場合,1回目と2回目に噴射された噴霧は重なったまま,筒内を回転する様 子が観察された. 圧縮行程後半である θ =91.2deg BTDC 以降では, TCV UF2mm の場合の噴霧散乱強度が TCV 無しに対して小さくなっており, TCV により噴霧気化が促進されていると考えられる.これは、図 5.21 の下図に 示した噴霧面積比 R_{spray_area}においても明らかであり, 圧縮行程後半である θ =30deg BTDC 付近において, TCV UF2mm の R_{spray area} は TCV 無しと比較し て小さい.以上のことから、TCV による流動強化により、噴霧の拡散・蒸 発が促進されており、より均質な混合気が形成されていると考えられる.

次に、TCVによる燃焼促進効果を明らかにするため、可視化エンジンを用 いて火炎挙動を解析した. TCV 無しと TCV UF2mm の場合の火炎挙動を図 5.22 に示す.上図に平均的な任意 1 サイクルの火炎自発光画像、下図にサイ クル平均された燃焼質量割合 MBF (Mass Burned Fraction)を示す.計測条件 は、Ne=1500rpm、図示平均有効圧 IMEP.H は 300kPa で、A/F=14.7 である. 同一の可視化エンジンでテストを行ったため、部分負荷での計測となり、そ の時の体積効率は n,=33%であった.インジェクターは、図 5.21 で使用し たマルチホールインジェクターで、燃料噴射圧力 20MPa による高燃圧化と SOI を 290deg BTDC へ進角することによる噴霧蒸発時間の確保により、混 合気ができるだけ均質になるように配慮した. 筒内圧を 200 サイクル計測し、 サイクル平均された筒内圧と熱力学第一法則より MBF の計算を行った.火 炎計測は、図 5.4 のレーザーが設置されている位置に高速度カメラ (Photorn、

SA1.1)を設置し、点火直前から膨張行程後半であるクランク角度 θ=30~ -150deg BTDC の範囲で, 撮影速度 10kHz にて 30 サイクルのボトムビュー撮 影を行った.視野はピストンウィンドウにより制限され、ピストンウィンド ウの直径は *ϕ* 47mm である. その時の空間分解能は 0.09mm/pixel で,時間分 解能は 0.9deg である. これより, TCV 無しに対して TCV UF2mm の MBF は, θ =3.9deg BTDC を超えたあたりから急激に上昇しており、TCV による燃焼 促進が可視化エンジンにて確認された.次に、火炎画像において、TCV 無 しの場合, θ =20deg BTDC で点火された後, θ =3.9deg BTDC 付近で明確な 火炎核が観察される. θ=-5.1deg BTDC では, 点火プラグから少し排気側に オフセットした位置を中心として火炎が伝播しており, θ=-14.1deg BTDC 以降では、火炎は吸気側へ向かって伝播する.これに対して、TCV UF2mm の火炎は, θ=-5.1deg BTDC で点火プラグから吸気側へ大きく流されながら 伝播しており、火炎表面の凹凸や面積は TCV 無しの場合に対して増加して いる. *θ*=-9.6deg BTDC 以降で,火炎は排気側へ伝播しており,火炎面積の 差は TCV 無しの場合に対して, さらに大きくなっている. 以上のことから, TCV UF2mm の場合, 圧縮上死点付近で筒内に存在する速い流れにより, 火 炎が吸気側へ流されているものの,高い乱流運動エネルギーにより,燃焼が 促進されることが明らかとなった.

同一諸元を持つ実機用 4 気筒エンジン(以下,実機エンジン)にて TCV の効果を確認した.可視化エンジンにてモータリング時に得られた乱流運動 エネルギー k_f と実機エンジンにてファイアリング時に得られた燃焼期間の 関係を図 5.23 に示す.実機エンジンの運転条件は,Ne=1500rpm, IMEP.H=1000kPa である.点火から MBF=10%となるまでの期間を初期燃焼 期間(θ_{ig} -MBF10), MBF が 10%から 90%となるまでの期間を主燃焼期間

(MBF10-90) と定義する. なお, k_f は点火時期 θ_{ig} の値を用いた. これより, TCV により k_f を増加させると, それにともない(θ_{ig} -MBF10) と(MBF10-90) は減少する. TCV 無しに対して,効果が大きかった TCV の仕様は UF2mm と UF25mm である. 逆に悪化した仕様は, LF2mm であった. 以上のことか ら,燃焼室形状に最適な流れを設計することが重要であり,最適な仕様を選 択することにより TCV は燃焼促進に対して有効なデバイスであることが確 認された.

最後に,各種エンジンにて得られた乱流特性を示す.まず,エンジン回転 数に対する乱流特性を図 5.24 示す.いずれのエンジンにおいても時間分解 能 10kHz で計測された速度をもとにして,時間フィルター法により分離され た乱流強度をプロットした.乱流強度は燃焼室内の吸気バルブにより隠され ない領域における空間平均値である.縦軸に圧縮 TDC における乱流強度 u',

横軸にエンジン回転数 Ne を示す. 同一エンジン回転数での複数プロットは, 吸入空気量の条件が異なる. これより, 自然吸気エンジンに対して過給エンジンの u'は高い傾向を示す. また, いずれのエンジンにおいても, エンジン回転数が増加すると, それにともない u'も増加する傾向である. また, 空気量を変化させても圧縮 TDC における u'は大きく変化しないことが明らかになった. 次に, 定常流において計測された平均タンブル比 TRm に対する乱流強度 u'の関係を図 5.25 に示す. 縦軸は, 乱流強度 u'へおよぼすエンジン回転数 Ne やエンジンストロークの影響を正規化するため, 平均ピストン速度Up で除した値を用いた. これより, いずれのエンジン諸元においても, TRm の増加にともない, u'/Up は増加する傾向にある. u'/Up と TRm の 2 つのパラメーターにより, おおむねエンジンの流動特性が整理できることが明らかになった.

5.4. 本章の結論

本章では,高回転域でチョーキングによる最大出力低下を低減させるための吸気切換えデバイスであるタンブルコントロールバルブ TCV の乱流特性を明らかにすることを目的として解析を行った結果,以下の結論を得た.

- 隔壁先端から吸気バルブステムまでの距離を減少させると排気側へ向 かう流れが支配的となり、圧縮行程後半の速度が増加し、乱流運動エ ネルギーも増加する.
- 流入する空気は、隔壁の上側通路を流すと排気側へ流入する流れが支 配的になり、圧縮行程後半の速度が増加する.隔壁の下側通路を流す と吸気バルブ下側からの流入が支配的となり、逆タンブル流の形成に より圧縮行程後半の速度が減少する.
- 3. 可視化エンジンで得られた乱流運動エネルギーと実機 4 気筒エンジン で計測された燃焼期間の間に相関性がある.
- 4. 燃焼室形状に最適な流れを設計することが必要であり、最適な仕様を 選択することにより, TCV は燃焼促進に対して有効なデバイスとなる.

Engine	An optical single cylinder engine with a quartz sleeve		
Bore×Stroke	73mm×89.4mm		
Displacement	374cm ³		
Valve train	DOHC 4valves		

表 5.1: 単気筒可視化エンジンの主要諸元.

Spec.	Flow part	G _{plate} [mm]	L _{Plate} [mm]	
UF2mm	Upper	2	92.8	
UF25mm	Upper	25	69.9	
UF50mm	Upper	50	45	
LF2mm	Lower	2	92.8	
LF25mm	nm Lower 25		69.9	
LF50mm	Lower	50	45	

表 5.2: タンブルコントロールバルブの主要諸元.

表 5.3: 計測条件.

Ne [rpm]	P _{intake} [kPa]	77 v [%]	TCV spec.	
1500	95	45	All spec.	
	100	72	UF2mm	
	140	142	UF2mm	

表 5.4: TCV における乱流特性値 (*θ*=0.4degBTDC)

	u'	τ _и ,	l	ν_F	S_L	l_F	Rei	Re .
	[m/s]	[ms]	[mm]	$[\text{mm}^2/\text{s}]$	[cm/s]	[µm]	1101	× X
W/O	1 9 1	2.07	2 7 2	2.66	28.7	6.0	2527	105
TCV	1.81	2.07	5.75	2.00	38.7	0.9	2337	195
TCV	2.14	2.08	1 15	2.02	42.2	67	2255	224
UF2mm	2.14	2.00 4.4	4.43	4.43 2.83	42.3	0.7	3333	224

図 5.1: 単気筒可視化エンジンの外観.

図 5.3: タンブルコントロールバルブの部品構成.

図 5.4: 計測装置, (a)側面図, (b)上面図.

104

u component

図 5.6: 定常流タンブル比計算方法の模式図.

図 5.7: 定常流における平均タンブル比 *TR_m*, 平均流量係数 *C_{fm}* と限界回転 数 *Ne_{limit}*の関係.

図 5.8: TCV 仕様における速度分布比較(Ne=1500rpm P_{intake}=95kPa), (a)W/O TCV, (b)TCV UF2mm, (c)TCV LF2mm.

図 5.9:隔壁先端から吸気バルブステムまでの距離 G_{plate} を変化させた場合の 速度分布 (Ne=1500rpm P_{intake}=95kPa), (a)W/O TCV, (b)TCV UF2mm, (c)UF25mm, (d)UF50mm.

図 5.10:隔壁先端から吸気バルブステムまでの距離 G_{plate} を変化させた場合のエネルギースペクトル E とカットオフ周波数 f_c (矢印位置)の関係(解析ポイント, Ne=1500rpm P_{intake}=95kPa), (a)u 速度成分, (b)v 速度成分.

図 5.11:TCV 仕様における乱流運動エネルギー比較 (Ne=1500rpm P_{intake}=95kPa), (a)隔壁先端から吸気バルブステムまでの距離 G_{plate}の影響, (b)フラップ位置の影響.

図 5.12: TCV 仕様における平均流成分の速度と乱流運動エネルギーの空間 分布比較 (Ne=1500rpm P_{intake}=95kPa), (a)W/O TCV, (b)TCV UF2mm, (c)TCV LF2mm.

図 5.13: 吸入空気量が平均流成分の速度と乱流運動エネルギーにおよぼす 影響 (*Ne*=1500rpm, TCV UF2mm), (a)*P_{intake}*=95kPa _{フν}=45%, (b)*P_{intake}*=100kPa _{フν}=72%, (c)*P_{intake}*=140kPa _{フν}=142%.

図 5.14: 予混合乱流燃焼ダイアグラム[64]による乱流火炎構造の予測 (*Ne*=1500rpm *P*_{intake}=95kPa θ=0.4deg BTDC).

図 5.15:時間フィルター法におけるカットオフ周波数を固定した場合と任意クランク角度で変化させた場合の乱流運動エネルギーの比較,
 (a)TCV 無しと TCV UF2mm の比較, (b)各 TCV 仕様における圧縮 TDC(θ=0.4deg BTDC)での比較.

図 5.16: 吸気行程前半における(a)サイクル平均速度分布と(b)瞬時速度分布 の比較(第4章, θ=300.1degBTDC).

図 5.17:時間フィルター法により得られた平均流成分の運動エネルギーK_fのサイクル変動(第4章,解析ポイント).

図 5.18: 時間フィルター法とサイクル平均法により得られた流れの周波数 特性の比較(第4章,解析ポイント).

図 5.19: 時間フィルター法とサイクル平均法により得られる乱流運動エネ ルギーの比較, (a)TCV 無しと TCV UF2mm の比較, (b)各 TCV 仕様 における圧縮 TDC(θ=0.4deg BTDC)での比較.

図 5.20: 時間フィルター法とサイクル平均法により予想される乱流火炎構造の比較(*θ*=0.4deg BTDC).

図 5.21: 噴霧挙動へおよぼす TCV の影響(*Ne*=1500rpm *P*_{intake}=130kPa 燃料 噴射圧力 8MPa 直噴用 6 噴孔インジェクターによる 2 分割噴射).

図 5.22: TCV が火炎挙動へおよぼす影響 (Ne=1500rpm IMEP.H=300kPa 燃料 噴射圧力 20MPa 直噴用 6 噴孔インジェクター SOI=290deg BTDC).

 図 5.23: 可視化エンジンで得られたモータリング時の乱流運動エネルギー (時間フィルター法)と実機エンジンで得られた燃焼期間の関係, (a)初期燃焼期間 θ_{ig}-MBF10, (b)主燃焼期間 MBF10-90.

図 5.24: 各種エンジンにおけるエンジン回転数の圧縮 TDC の乱流特性(時間フィルター法).

図 5.25: 各種エンジンにおける定常平均タンブル比 *TR_m*と圧縮 TDC における時間フィルター法により得られた乱流強度 *u*'の関係.

第6章

結論

第6章 結論

高効率かつ高出力の自動車用次世代エンジンとして高過給ダウンサイジ ングエンジンが有望であるが、これを実現するには高回転域におけるエンジ ン筒内流動計測技術と乱流燃焼速度に寄与する乱流成分の分離法の確立が 必要である.本論文では、それらを実現し、過給ダウンサイジングエンジン における強流動ポートとピストントップ形状が流動・燃焼特性に与える影響、 及び高回転域での出力低下を低減させる吸気切換えデバイスによる乱流強 化と燃焼促進効果との関係を明らかにすることを目的とした.各章で得られ た結果をまとめると、次のようになる.

第2章では、レース用エンジンの高出力化においてキー技術である流動を 対象とし、超高回転域における可視化技術の確立と流動特性の解明を目的と した. F1 エンジンの吸気行程から圧縮行程の筒内可視化を目的とした可視 化エンジンの開発を行い、さらに、PIV により超高回転域で形成される流動 場の解析を行った結果、以下の結論を得た.

- 1. 中空構造の延長ピストンとスリーブリング採用により F1 エンジンと同 一諸元を持つ 10000rpm まで計測可能な単気筒可視化エンジンを開発し, 超高回転域での筒内解析が,世界で初めて可能となった.
- 流動解析の結果,吸気バルブ下に生成される 2 対の渦が観察された. 本エンジンの吸気ポート形状は高い体積効率が得られるように吸気バルブ全周より空気を流入させる形状であり,2 対の渦はその特徴的な流れである.
- 3. 3D モデルをフルモデルとし,適切なメッシュサイズと連続多サイクル 計算による収束を行うことにより,F1 エンジンのような超高回転域で も CFD による筒内流動の予測が可能である.
- 4. 吸気 1 バルブ休止により簡易的に筒内流動強化を行った結果,流動強 化による超高回転域の燃焼促進効果が確認された.

第3章では, 筒内における平均流成分と乱流成分の分離法の確立を目的とした. 簡易的に燃焼室内の流動を変化させて, 第2章で構築した可視化技術 を高時間分解能に拡張した高速 PIV 計測を行い, 得られた瞬時速度から平均 流成分と乱流成分に分離する手法を検討した結果, 以下の結論を得た.

 吸気から圧縮行程を1周期とする流れの周波数特性で、スペクトルの 傾きが変化する周波数が存在する.この周波数をカットオフ周波数と して瞬時速度から平均流成分と乱流成分に分離する時間フィルター法 を開発した.

第6章 結論

- 2. 本章で開発した時間フィルター法により,計測条件の違いから予想される乱流運動エネルギーの特性が抽出でき,燃焼速度との相関性が確認された.
- タンブル渦中心は乱流運動エネルギーが高いことから強流動ポートの 適用にあたって、タンブル渦中心を点火プラグ近傍へ適切に制御でき るような吸気ポートや燃焼室の設計が必要である.

第4章では, 強流動ポートと透明スリーブを有する可視化エンジンに, 第 3章で開発した時間フィルター法を適用し, 強流動場における乱流特性の解 析を行った結果, 以下の結論を得た.

- 1. 吸気行程で生成されたタンブル流は圧縮行程後半まで保存されており, タンブル渦中心の軌道はシリンダー内を時計回りに移動する.
- エンジン筒内において、時間分解能 10kHz もの高速による乱流分布計 測を世界で初めて実施した.本流動場に時間フィルター法を適用し、 吸気から圧縮行程まで乱流評価を行う場合には、5kHz 以上の時間分解 能が必要である.
- 3. 時間フィルター法で提案しているカットオフ周波数は,吸気行程時に ピストン挙動で生成される比較的大きい流れのスケール(周波数)に 相当する.
- エンジン回転数の違いにより予想される乱流特性が得られていることから、過給エンジンのような強流動場においても本手法による平均流と乱流の分離が可能である.
- 5. 流動強化に対しては,吸気行程で生成された流れを効率良くタンブル 流に変換するピストントップ形状が有効である.

第5章では、高回転域でチョーキングによる最大出力低下を低減させるための吸気切換えデバイスであるタンブルコントロールバルブ TCV の乱流特性を明らかにすることを目的として解析を行った結果、以下の結論を得た.

- 隔壁先端から吸気バルブステムまでの距離を減少させると排気側へ向 かう流れが支配的となり、圧縮行程後半の速度が増加し、乱流運動エ ネルギーも増加する。
- 流入する空気は、隔壁の上側通路を流すと排気側へ流入する流れが支 配的になり、圧縮行程後半の速度が増加する.隔壁の下側通路を流す と吸気バルブ下側からの流入が支配的となり、逆タンブル流の形成に より圧縮行程後半の速度が減少する.

- 3. 可視化エンジンで得られた乱流運動エネルギーと実機 4 気筒エンジン で計測された燃焼期間の間に相関性がある.
- 燃焼室形状に最適な流れを設計することが必要であり、最適な仕様を 選択することにより、TCV は燃焼促進に対して有効なデバイスとなる.

以上のように、本論文では、各種自動車用エンジンを模擬した可視化エン ジンを対象として PIV 計測を行い, エンジン筒内の流動特性解明と燃焼促進 効果を明らかにしてきた.しかし,乱流燃焼は「乱流」と「火炎」という2 つの物理現象であるため, 今後の研究として乱流火炎の研究が必要不可欠で あると考えられる. 例えば、OH-LIF により得られる乱流火炎画像をもと にしたフラクタル解析が挙げられ、乱流による急速燃焼のメカニズムをさら に明らかにしていく.また、乱流を精度良く計測・解析を行うためには、時 間・空間分解能を高くする必要がある. PIV により得られる速度は検査体積 内の平均速度であることから,空間分解能は乱流の絶対値に影響を及ぼす. 今後,この影響について研究することが必要である.また,時間分解能に関 しては、その影響を本論文により明らかにしたが、時間分解能は高いほど良 いと考えられる.本論文で用いた高速 PIV システムは 2005 年の導入時には 最高性能を有していたが、2015年の最新システムを用いた場合には、時間 分解能 50kHz での計測・解析が可能であると考えられる.また、これら計測 機の進化は日進月歩であり,次の10年後には時間分解能100kHzでの計測も 夢ではない.

最後に、今後のエンジン燃焼技術であるが、ガソリンエンジンシステムに 付加される燃焼技術は、「直噴」、「過給」、「EGR」など、軽油を燃料とする ディーゼルエンジンとおおむね同じ構成になってきている.近い将来、ガソ リンエンジンとディーゼルエンジンの境界は少しずつ小さくなり、同一のエ ンジンシステムへと進化していくと考えられる.今後、燃料を燃やして動力 を発生するエンジンシステムは、HEV システムやバイオ燃料などの技術と 融合・進化しながら、燃料を燃やさずに動力を得る電動化時代まで主役であ り続けられるように、常に進化していく必要がある.そのためにも、エンジ ン燃焼技術を支える存在である筒内可視化技術は進化させていくべきもの である.

付章A

PIV 計測の誤差解析

付章 A PIV 計測の誤差解析

A.1 計測・解析パラメーターがおよぼす速度誤差への影響

PIV 計測において,推定される誤差要因と計測結果へおよぼす影響を明らかにし,**PIV** 計測の誤差を定量的に評価する[67].

2 時刻の連続するパルス状の照明で撮影された粒子画像の移動距離から物 理空間における速度を求める場合,物理空間における速度 *u* は式(A.1)で求め ることができる.

$$u = \alpha \frac{\Delta X}{\Delta t} + \varepsilon \tag{A.1}$$

ここで、 α は変換係数、 ΔX は画像空間における粒子移動量、 Δt は2時刻の時間間隔、 ϵ は誤差である.この誤差 ϵ を推定する.

PIV 計測の各パラメーターから生じる誤差要因が、どのように速度 $u \sim G$ 播するかを図 A.1 に模式的に示す.速度 $u \sim i$ 接影響する誤差要因として、 画像空間上での粒子移動量 ΔX 、変換係数 α ,2時刻の時間間隔 Δt に加えて、 計測原理から生じる誤差 δu の 4 つが挙げられる.トレーサーの「流体追従 性」や流れの 3 次元性から生じる「透視投影」の影響は、計測原理に起因す る誤差 δu として定義される.また、「レーザー強度の時間的・空間的な変 動」は、「トレーサー粒子の散乱光強度」に影響し、「画像上の粒子位置の誤 差」から移動量 $\Delta X \sim i$ 因する誤差として、最終的に $u \sim i$ 影響をおよぼす.

計測誤差の定義を図 A.2(a)に示す.計測の誤差は「真値との隔たり」として定義され、計測値は、ある値のまわりにバラツキをもって分布する.「計測値の平均値 \mathbf{u} と真値の隔たり」を偏り誤差 β ,「個々の値が平均値よりずれる量」を偶然誤差 ϵ_k と呼ぶ.計測値の誤差は、この偏り誤差 β と偶然誤差 ϵ_k の和 δ_K で定義される.図 A.2(b)に誤差が伝播する様子を示す.ある1つの任意パラメーターsに依存する計測値u(s)を考える.横軸にパラメーターs,その時の誤差 Eを縦軸にとると、sに誤差 ϵ_s が生じる場合、計測値は $u(s+\epsilon_s)$ となり、真値u(s)から誤差 E_ϵ を持つ.この関係を式(A.2)に示す.

$$u(s + \varepsilon_s) = u(s) + \frac{\partial u}{\partial s}\varepsilon_s + O(\varepsilon_s^2)$$
(A.2)

通常,パラメーターに含まれる誤差 ϵ_s は,パラメーターsに比べて十分小さいことから,誤差の影響のうち,2次以上の項は小さいとして無視できると考えられる.よって,真値 u(s)の近傍で,sに対する uの傾き $\partial u/\partial s$ に, ϵ_s

をかけたものを誤差として取り扱って良いと考えられる.ここで、 $\partial u/\partial s$ を 感度係数と呼ぶ.

表 A.1 に誤差解析の結果を示す.評価に用いた速度場の条件は,第3章で 計測された結果を参考とし,圧縮行程後半における速度 u=10m/s,変換係数 a=0.0903pixel/mm,粒子移動量 $\Delta X=1.11$ pixel,2時刻の時間間隔 $\Delta t=10 \mu s$ とした.なお,図 A.1 に示した中で,すべての誤差要因に対して定量的に 解析することは困難であったため,一部,経験的な値を仮定して誤差を見積 もった.また,画像解析の誤差については検討できていない.不確かさ Uを,速度の単位を持つ正確度 B_{abs} と精密度 S_{abs} を用いて,それぞれ式(A.3), 式(A.4),式(A.5)により計算を行った.

$$U = \sqrt{\left(B_{abs}^2 + S_{abs}^2\right)} \tag{A.3}$$

$$B_{abs}^{2} = \sum_{i=1}^{N} B_{abs_{i}}^{2}$$
(A.4)

$$S_{abs}^{2} = \sum_{i=1}^{N} S_{abs_{i}}^{2}$$
(A.5)

ここで,iはパラメーター,Nはパラメーターの数を示す.また,速度の単位を持つ B_{abs_i} と S_{abs_i} は,各パラメーターiに含まれる誤差の要因jの絶対正確度 B_{abs_j0} ,絶対精密度 S_{abs_j0} と感度係数 θ_j を用いて,式(A.6),式(A.7)より計算を行った.

$$B_{abs_{i}}^{2} = \sum_{j=1}^{M} (B_{abs_{j}0}\theta_{j})^{2}$$
(A.6)

$$S_{abs_{i}}^{2} = \sum_{j=1}^{N} (S_{abs_{0}j}\theta_{j})^{2}$$
(A.7)

解析の結果,不確かさ U=0.13m/s となり,速度 u=10m/s に対して約 1.3%の 誤差となる.また,本研究において,速度へおよぼす誤差として,もっとも 影響の大きいパラメーターは変換係数 α であった.

表 A.2 に誤差解析結果の詳細を示す.パラメーター*i* に含まれる誤差の要因 *j* の相対正確度 *B_{rlt}*,相対精密度 *S_{rlt}*を示す.相対正確度と相対精密度は, それぞれ式(A.8),式(A.9)より計算を行った.

$$B_{rlt_j}^{2} = \left(\frac{B_{abs_0j}\theta_j}{M_i}\right)^2 \tag{A.8}$$

$$S_{rlt_j}^2 = \left(\frac{S_{abs_0j}\theta_j}{M_i}\right)^2 \tag{A.9}$$

ここで, M_i はパラメーター*i*における速度場の条件として用いた値である. 解析を行った結果,変換係数 αにおいて,もっとも影響が大きい誤差要因は 「スケールの読み取り誤差」で、約 0.6%であった. 今回の誤差解析におい て、基準となる像長さを読み取る手法は、もっとも簡単な手法である「2 点 間の距離抽出」とし、読み取り誤差を 2.5pixel/回と仮定した.しかし、実際 は2点以上の点を読み取り、さらに最小二乗法により αを求めていることか ら、この誤差は小さいと予想される.他に、計測機を設定する際に配慮すべ き誤差要因である「レーザーシートの物体平面とカメラの画像平面の非直角 度 y | と「物体平面におけるレーザーシート面と校正用ターゲットの位置ず $\lambda \Delta Z_{s}$ 」について、それぞれ $\gamma = 2^{\circ}$ 、 $\Delta Z_{s} = 0.5$ mm と経験的な値を仮定して、 誤差を見積もった.非直角度γは,変換係数αと画像空間における粒子移動 $\equiv \Delta X$ に影響をおよぼし、 $\gamma = 2^{\circ}$ の場合、 $\alpha \sim 約 0.2\%$ 、 $\Delta X \sim 約 0.2\%$ とな り, 速度へおよぼす影響は, それぞれ小さいと考えられる. また, a へ影響 をおよぼす「レーザーシート面と校正用ターゲットの位置ずれ ΔZ_{s} 」は、 Δ Z_s=0.5mmの場合,約0.2%となり、その影響は小さい.以上のことから、計 測機の設定において、非直角度 $\gamma \leq 2^{\circ}$ 、レーザーシート位置と校正ターゲ ットの位置ずれ≦0.5mm 以内にすることで,速度へおよぼす誤差を小さくす ることができる.なお、計測の際に配慮すべき誤差要因である「流れの3次 元性に起因する透視投影」については、Δt が最適に設定されていると仮定 し、速度に影響をおよぼさないと仮定した. Δt は、レーザーシート面内の 粒子移動量のみならず,面外方向速度からも決定されるべき重要なパラメー ターであるため、次節にてさらに詳細に述べる.

A.2 2時刻の時間間隔がおよぼす速度誤差への影響

2 時刻の時間間隔は,実際のテストにおいて,レーザー照射間隔に相当する.そこで,レーザー照射間隔Δt が速度へおよぼす影響を解析する.第4章で用いた過給ダウンサイジングエンジンを対象とし,解析ポイントにおけるレーザー照射間隔Δt が速度へおよぼす影響を図 A.3 に示す.ここで,ボ

付章 A PIV 計測の誤差解析

ア方向の速度成分を *u* 速度成分, ストローク方向の速度成分を *v* 速度成分と 定義し,計測条件は 1500rpm WOT である.これより,圧縮行程である θ =180~30deg BTDC では, $\Delta t \ge 10~30 \mu s$ の間で変化させても,*u*,*v* 速度成 分に大きな差は見られない.しかし,吸気行程前半である θ =330~240deg BTDC では, $\Delta t \ge 10 \mu s$ から 30 μs へ増加させると,それにともない *u*,*v* 速度成分が減少する傾向がみられる.

レーザー照射間隔 Δt を変化させた場合の画像空間における粒子移動距離 ヘ与える影響を図 A.4 に示す.ここで、ボア方向への粒子移動量を ΔX 、ボ ア方向を ΔY と定義する. Δt を変化させると ΔX 、 ΔY ともに増加する. 図 A.3 において Δt が速度へおよぼす影響が小さい圧縮行程では、 ΔX 、 ΔY と もに 2pixel 以下である.これに対して、 Δt が速度へおよぼす影響が大きい 吸気行程前半では、 ΔX 、 ΔY ともに 2pixel を超えている.

図 A.5 に、画像処理により計算された全空間のベクトル数に対してバリデーションにより除去されなかった残存ベクトル数の比 R_{valid_vector} とレーザー照射間隔 Δt の関係を示す. なお、誤ベクトルの除去には、メディアンフィルター法用いた.これより、 Δt の影響が大きい吸気行程前半では、 Δt を増加させると R_{valid_vector} は減少する. $\Delta t=30 \mu$ s では、画像相関より計算されたベクトルの約 70% が除去されていることが分かる.

一般的に、PIV 解析において画像空間上の粒子移動量が検査領域の 1/4 以下であれば精度に影響しないことが知られている.本研究では、再帰的 FFT 相互相関法を用いており、最終検査領域は 16×16pixel である.これより、 $\Delta t=30 \mu s$ 時の粒子移動量は約 3pixel であり、最終検査領域の 1/4 である 4pixel を下回っている.しかし、バリデーションにより相当な数のベクトルが過誤ベクトルとして除去されている.この要因として、第4章で述べた面外方向速度の影響が挙げられる.吸気行程前半では、吸気バルブ全周より筒内へ空気が流入することから、非常に複雑な流れ場となっている.したがって、レーザーシート面を通過する速度(面外方向速度)が、圧縮行程より速くなり、 Δt の影響がより大きく表れると考えられる.今後、クランク角度に応じて Δt を変化させるなどの対応ができれば、さらなる誤差低減が可能となる.

付章 A PIV 計測の誤差解析

Parameter, <i>i</i>	B_{abs} [m/s]	S _{abs} [m/s]	<i>U</i> [m/s]
α	0.10399	-	0.13
ΔX	0.07037	-	
Δt	0.00054	0.00054	
δ и	0.00120	0.03000	

表 A.1: 誤差解析結果.

表 A.2: 誤差解析結果の詳細.

Parameter, <i>i</i>	Factor of error, j	B_{rlt}	S _{rlt}
α	Scale length	-0.00592	-
	Physical location	0.00184	-
	Lens distortion	-0.00754	-
	CCD element distortion	0.00000	-
	Non-orthogonal of an optical axis	-0.00246	-
	Laser sheet position	-0.00262	-
ΔX	Variation of laser intensity	0.00424	-
	CCD element distortion	0.00506	-
	Non-orthogonal of an optical axis	0.00244	-
Δt	Pulse generator jitter	0.00002	0.00004
	Light emission jitter	0.00005	0.01107
Δu	Traceability	0.00010	0.00600
	Perspective projection	0.00007	-

図 A.1: PIV 計測における各パラメーターから生じる誤差要因の伝播.

図 A.2: (a) 誤差の定義, (b) 任意パラメーターにおける誤差の伝播.

付章 A PIV 計測の誤差解析

図 A.3: レーザー照射間隔 Δt が速度へおよぼす影響(解析ポイント, *Ne*=1500rpm WOT), (a)*u* 速度成分, (b)*v* 速度成分.

図 A.4: レーザー照射間隔 Δ*t* が粒子移動量へおよぼす影響(解析ポイント, *Ne*=1500rpm WOT), (a)*u* 速度成分, (b)*v* 速度成分.

図 A.5: レーザー照射間隔 Δt とバリデーション後の残存ベクトル割合 R_{valid_vector} の関係 (Ne=1500rpm WOT).

付章B

乱流運動エネルギー方程式の導出

乱流運動エネルギーk についての輸送方程式の導出をまとめる[68].
 座標 x_i方向の速度 u_iを,式(B.1)に示すように平均流成分ū_iとその変動成分
 u_i'に分離する.

$$u_i = \overline{u_i} + u_i' \tag{B.1}$$

この式に平均操作を施せば、 $\overline{u}_i = \overline{u}_i$ であることから、式(B.1)は以下のようになる.

$$\overline{u_i} = \overline{\overline{u_i}} + \overline{u_i'} \to \overline{u_i'} = 0$$
(B.2)

ここで, 添え字 *i* についての使い方を示す.「1 つの項の中に同じ添え字が繰り返される場合, その添え字について 1~3 の総和をとることとする」という約束をアインシュタインの総和規約という.例を以下に示す.

$$a_i b_i = a_1 b_1 + a_2 b_2 + a_3 b_3$$

 $u_i^2 = u_1^2 + u_2^2 + u_3^2$

また,繰り返されていない添え字は,その添え字について 1~3 の 3 つの式が 連立することを意味する.例として以下の式の場合を示す.

$$u_j \frac{\partial u_i}{\partial x_i} = F_i$$

この場合, *j* は繰り返しているが, *i* は繰り返していないので,以下のようになることを意味する.

$$u_1\frac{\partial u_1}{\partial x_1} + u_2\frac{\partial u_1}{\partial x_2} + u_3\frac{\partial u_1}{\partial x_3} = F_1 \quad (i=1)$$

$$u_1\frac{\partial u_2}{\partial x_1} + u_2\frac{\partial u_2}{\partial x_2} + u_3\frac{\partial u_2}{\partial x_3} = F_2 \quad (i=2)$$

$$u_1\frac{\partial u_3}{\partial x_1} + u_2\frac{\partial u_3}{\partial x_2} + u_3\frac{\partial u_3}{\partial x_3} = F_3 \quad (i=3)$$

また,繰り返している添え字は,単に加え合わせることのみを意味するので, 以下のように他の文字への書き換えが可能である.

$$u_j \frac{\partial u_i}{\partial x_j} = u_k \frac{\partial u_i}{\partial x_k}$$

乱流を記述する式として,連続の式とナビエ・ストークスの式がある.流 れが非圧縮性である場合,連続の式とナビエ・ストークスの式は,それぞれ 式(B.3),式(B.4)となる.

$$\frac{\partial u_i}{\partial x_i} = 0 \tag{B.3}$$

$$\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + \nu \frac{\partial^2 u_i}{\partial x_j^2}$$
(B.4)

平均流成分と変動成分の連続の式を得るために,式(B.3)に対して,式(B.1) を用いることにより,式(B.5)に示すように流速を平均流成分と変動成分に分離する.

$$\frac{\partial u_i}{\partial x_i} = \frac{\partial \overline{u_i}}{\partial x_i} + \frac{\partial u_i'}{\partial x_i} = 0$$
(B.5)

式(B.5)に対して平均操作を施すと式(B.6)を得る.

$$\frac{\partial \overline{u}_{i}}{\partial x_{i}} + \frac{\partial u_{i}'}{\partial x_{i}} = 0$$
(B.6)

さらに、 $\overline{u_i'}=0$ 、及び、 $\overline{u_i}=\overline{u_i}$ の関係より、式(B.7)を得る.

$$\frac{\partial \overline{u_i}}{\partial x_i} = 0 \tag{B.7}$$

また,式(B.7)より,式(B.6)は式(B.8)となる.

$$\frac{\partial \overline{u_i'}}{\partial x_i} = 0 \tag{B.8}$$

これより,流速の平均流成分と変動成分のそれぞれについて連続の式が成立する.

次に,平均流成分と変動成分の運動方程式を得るために,ナビエ・ストークス方程式について平均流成分と変動成分の分離を行う.まず,式(B.4)の左辺第2項(対流項)について,式(B.3)の関係を利用して変形を行うことにより,式(B.9)を得ることができる.

$$u_j \frac{\partial u_i}{\partial x_j} = \frac{\partial}{\partial x_j} (u_i u_j) - u_i \frac{\partial u_j}{\partial x_j} = \frac{\partial}{\partial x_j} (u_i u_j)$$
(B.9)

上式に対して,式(B.1)の関係を用いて,平均流成分と変動成分の分離を行う.

$$\frac{\partial}{\partial x_j} (u_i u_j) = \frac{\partial}{\partial x_j} [(\overline{u_i} + u_i')(\overline{u_j} + u_j')]
= \frac{\partial}{\partial x_j} (\overline{u_i} \overline{u_j} + \overline{u_i} u_j' + u_i' \overline{u_j} + u_i' u_j')$$
(B.10)

これに平均操作を施すと、右辺第2項と第3項がゼロとなることから、式 (B.11)を得ることができる.

$$\overline{u_j \frac{\partial u_i}{\partial x_j}} = \frac{\partial}{\partial x_j} (\overline{u_i u_j}) + \frac{\partial}{\partial x_j} (\overline{u_i' u_j'}) = \overline{u_j} \frac{\partial \overline{u_i}}{\partial x_j} + \frac{\partial}{\partial x_j} (\overline{u_i' u_j'})$$
(B.11)

このように対流項に平均操作を施すと、変動成分の積に関する新たな項が現 れる.これは、対流項が流速に対して非線形性をもつためである.対流項以 外の項はuや圧力pに対して線形なので、平均化しても新たな項は現れない. 例えば、圧力pにおいて、 $\overline{p}+p'=p$ となる.これより、式(B.4)に平均操作 を施すことにより、平均流成分の運動方程式を得る.

$$\frac{\partial \overline{u}_{l}}{\partial t} + \overline{u}_{j} \frac{\partial \overline{u}_{l}}{\partial x_{j}} = -\frac{1}{\rho} \frac{\partial \overline{p}}{\partial x_{i}} + \frac{\partial}{\partial x_{j}} \left(\nu \frac{\partial \overline{u}_{l}}{\partial x_{j}} - \overline{u_{l}' u_{j}'} \right)$$
(B.12)

最終項に現れた $-\overline{u_i'u_j'}$ はレイノルズ応力と呼ばれる.次元的には $-\rho\overline{u_i'u_j'}$ がレイノルズ応力と呼ばれるべきであるが,通常, ρ のない形も同様に呼ばれる.平均操作により生成される未知量(レイノルズ応力)を表現するために,乱流のモデル化が必要となる.乱流モデルは,レイノルズ応力自体を直接求める「レイノルズ応力モデル」とレイノルズ応力に渦粘性の概念を導入した「渦粘性モデル」の2つに大きく分けられる.渦粘性モデルの代表例が,k- ϵ モデルである.

次に,変動成分の運動方程式を得るために,ナビエ・ストークス方程式である式(B.4)の*u*_iに式(B.1)を代入し,平均流成分と変動成分に分離する.

$$\frac{\partial}{\partial t}(\overline{u_i} + u_i') + (\overline{u_k} + u_k')\frac{\partial}{\partial x_k}(\overline{u_i} + u_i') = -\frac{1}{\rho}\frac{\partial}{\partial x_i}(\overline{p} + p') + \nu\frac{\partial^2}{\partial x_k^2}(\overline{u_i} + u_i')$$
(B.13)

式(B.13)から, 添え字 *j* を *k* に変更した式(B.12)を差し引くことにより, 変動 成分の運動方程式を得る.

$$\frac{\partial u_i'}{\partial t} + u_k' \frac{\partial \overline{u}_i}{\partial x_k} + \overline{u_k} \frac{\partial u_i'}{\partial x_k} + \frac{\partial}{\partial x_k} \left(u_i' u_k' - \overline{u_i' u_k'} \right) = -\frac{1}{\rho} \frac{\partial p'}{\partial x_i} + \nu \frac{\partial^2 u_i'}{\partial x_k^2}$$
(B.14)

さらに、変動成分の運動エネルギー方程式を得るため、式(B.14)に u_i'をかけて、平均操作を施すことにより以下の式を得ることができる.

$$\overline{u_{i}'\frac{\partial u_{i}'}{\partial t}} + \overline{u_{i}'u_{k}'\frac{\partial \overline{u_{i}}}{\partial x_{k}}} + \overline{u_{i}'\overline{u_{k}}\frac{\partial u_{i}'}{\partial x_{k}}} + \overline{u_{i}'\frac{\partial (u_{k}')}{\partial x_{k}}} + \overline{u_{i}'\frac{\partial (u_{k}')}{\partial x_{k}}} = \overline{-\frac{1}{\rho}u_{i}'\frac{\partial (u_{k}')}{\partial x_{i}}} + \overline{-\frac{1}{\rho}u_{i}'\frac{\partial (u_{k}')}{\partial x_{k}}}$$
(B.15)

整理しやすいように各項毎に書き出して変形を行う. 左辺第1項は以下のように変形できる.

$$\overline{u_{\iota}'\frac{\partial u_{\iota}'}{\partial t}} = \frac{\overline{1}\frac{\partial u_{\iota}'^2}}{\overline{2}\frac{\partial t}{\partial t}} = \frac{\partial}{\partial t}\frac{1}{\overline{2}}\overline{u_{\iota}'^2} = \frac{\partial k}{\partial t}$$
(B.16)

$$k = \frac{1}{2} \overline{u_{\iota}}^{\prime 2} \tag{B.17}$$

ここで, *k* は乱流運動エネルギーである. さらに左辺第 2~5 項は, それぞ れ以下のように変形できる.

$$\overline{u_{i}'u_{k}'\frac{\partial\overline{u_{i}}}{\partial x_{k}}} = \overline{u_{i}'u_{k}'}\frac{\partial\overline{u_{i}}}{\partial x_{k}}$$
(B.18)

$$\overline{u_{l}'\overline{u_{k}}\frac{\partial u_{l}'}{\partial x_{k}}} = \overline{u_{k}}\overline{u_{l}'}\frac{\partial u_{l}'}{\partial x_{k}} = \overline{u_{k}}\frac{\overline{1}}{2}\frac{\partial u_{l}'^{2}}{\partial x_{k}} = \overline{u_{k}}\frac{\partial k}{\partial x_{k}}$$
(B.19)

$$\overline{u_{i}'\frac{\partial u_{i}'u_{k}'}{\partial x_{k}}} = \overline{u_{i}'u_{k}'\frac{\partial u_{i}'}{\partial x_{k}} + u_{i}'u_{i}'\frac{\partial u_{k}'}{\partial x_{k}}} = \overline{u_{i}'u_{k}'\frac{\partial u_{i}'}{\partial x_{k}}} = \frac{1}{2}\frac{\partial\overline{u_{i}'^{2}u_{k}'}}{\partial x_{k}}$$
(B.20)

$$\overline{u_{i}'\frac{\partial}{\partial x_{k}}\overline{u_{i}'u_{k}'}} = \overline{u_{i}'}\frac{\partial\overline{u_{i}'u_{k}}'}{\partial x_{k}} = 0$$
(B.21)

ここで, 左辺第5項は式(B.2)の関係を用いた. また, 右辺第1~2項は, それぞれ以下のように変形できる.

$$\overline{-\frac{1}{\rho}u_{\iota}'\frac{\partial p'}{\partial x_{\iota}}} = -\frac{1}{\rho}\overline{\frac{\partial u_{\iota}'p'}{\partial x_{\iota}}} = -\frac{1}{\rho}\overline{\frac{\partial u_{k}'p'}{\partial x_{k}}}$$
(B.22)
$$\overline{vu_{\iota}'\frac{\partial^{2}u_{\iota}'}{\partial x_{k}^{2}}} = \frac{v}{2}\frac{\partial^{2}\overline{u_{\iota}'^{2}}}{\partial x_{k}^{2}} - v\left(\overline{\frac{\partial u_{\iota}'}{\partial x_{k}}}\right)^{2}$$
(B.23)

式(B.15)に式(B.16)~式(B.23)を代入し、整理することにより、変動成分のエネルギー方程式(乱流運動エネルギーの方程式)を得ることができる

$$\frac{\partial k}{\partial t} + \overline{u_k} \frac{\partial k}{\partial x_k} = -\frac{1}{\rho} \frac{\overline{\partial u'_k p'}}{\partial x_k} - \frac{1}{2} \frac{\partial \overline{u'_l u_k'}}{\partial x_k} + \frac{\nu}{2} \frac{\partial^2 \overline{u'_l}}{\partial x_k^2} - \overline{u'_l u'_k} \frac{\partial \overline{u_l}}{\partial x_k} - \nu \left(\frac{\partial u'_l}{\partial x_k}\right)^2$$
(B.24)

ここで,左辺の第1項を非定常項,第2項を対流項,右辺の第1項を圧力拡 散項,第2項を乱流拡散項,第3項を粘性拡散項,第4項を生成項,第5項 を消散項と呼ぶ.

レイノルズ応力の輸送方程式を得るために、変動成分の運動方程式である式(B.14)に u_j を書けた後に平均操作を施すことにより、以下の式を得ることができる.

$$\overline{u_{j}'\frac{\partial u_{i}'}{\partial t}} + \overline{u_{j}'u_{k}'\frac{\partial \overline{u_{i}}}{\partial x_{k}}} + \overline{u_{j}'\overline{u_{k}}\frac{\partial u_{i}'}{\partial x_{k}}} + \overline{u_{j}'\frac{\partial}{\partial x_{k}}(u_{i}'u_{k}' - \overline{u_{i}'u_{k}'})} = -\frac{1}{\rho}\overline{u_{j}'\frac{\partial p'}{\partial x_{i}}} + \overline{vu_{j}'\frac{\partial^{2}u_{i}'}{\partial x_{k}^{2}}}$$

$$\overline{u_{j}'\frac{\partial u_{i}'}{\partial t}} + \overline{u_{j}'u_{k}'}\frac{\partial \overline{u_{l}}}{\partial x_{k}} + \overline{u_{k}}\overline{u_{j}'\frac{\partial u_{i}'}{\partial x_{k}}} + \overline{u_{j}'\frac{\partial u_{i}'u_{k}'}{\partial x_{k}}} = -\frac{1}{\rho}\overline{u_{j}'\frac{\partial p'}{\partial x_{l}}} + \overline{vu_{j}'\frac{\partial^{2}u_{i}'}{\partial x_{k}^{2}}}$$
(B.25)

式(B.25)の *i* と *j* を入れ替えた式と式(B.25)を加えた後,整理しやすいように 各項毎に書き出して変形を行う.右辺第 1~4 項までは,以下のようにそれ ぞれ変形できる.

$$\overline{u_{j}'\frac{\partial u_{i}'}{\partial t}} + \overline{u_{i}'\frac{\partial u_{j}'}{\partial t}} = \frac{\overline{\partial u_{i}'u_{j}'}}{\partial t}$$
(B.26)

$$\overline{u_j'u_k'}\frac{\partial \overline{u_l}}{\partial x_k} + \overline{u_l'u_k'}\frac{\partial \overline{u_j}}{\partial x_k}$$
(B.27)

$$\overline{u_k}\overline{u_j'}\frac{\partial u_i'}{\partial x_k} + \overline{u_k}\overline{u_i'}\frac{\partial u_j'}{\partial x_k} = \overline{u_k}\frac{\partial u_i'u_j'}{\partial x_k}$$
(B.28)

$$\overline{u_{j}'\frac{\partial u_{i}'u_{k}'}{\partial x_{k}}} + \overline{u_{i}'\frac{\partial u_{j}'u_{k}'}{\partial x_{k}}} = \frac{\partial \overline{u_{i}'u_{j}'u_{k}'}}{\partial x_{k}}$$
(B.29)

同様にして、右辺第1項と第2項は以下のように、それぞれ変形できる. $-\frac{1}{\rho}\overline{u_{j}'\frac{\partial p'}{\partial x_{i}}} - \frac{1}{\rho}\overline{u_{i}'\frac{\partial p'}{\partial x_{j}}} = -\frac{1}{\rho}\left(\frac{\partial\overline{u_{j}'p'}}{\partial x_{i}} - \overline{p'}\frac{\partial\overline{u_{j}'}}{\partial x_{i}}\right) - \frac{1}{\rho}\left(\frac{\partial\overline{u_{i}'p'}}{\partial x_{j}} - \overline{p'}\frac{\partial\overline{u_{i}'}}{\partial x_{j}}\right)$ $= -\frac{1}{\rho}\left(\frac{\partial\overline{u_{i}'p'}}{\partial x_{j}} + \frac{\partial\overline{u_{j}'p'}}{\partial x_{i}}\right) + \frac{\overline{p'}\left(\frac{\partial u_{i}'}{\partial x_{j}} + \frac{\partial u_{j}'}{\partial x_{i}}\right)}{\rho\left(\frac{\partial u_{i}'}{\partial x_{k}} - \overline{p'}\frac{\partial u_{i}'}{\partial x_{i}}\right)} \qquad (B.30)$ $\overline{vu_{j}'\frac{\partial^{2}u_{i}'}{\partial x_{k}^{2}}} + \overline{vu_{i}'\frac{\partial^{2}u_{j}'}{\partial x_{k}^{2}}} = v\left(\frac{1}{2}\frac{\partial^{2}\overline{u_{i}'u_{j}'}}{\partial x_{k}^{2}} - \frac{\overline{\partial u_{i}'}\partial u_{j}'}{\partial x_{k}\partial x_{k}}\right) + v\left(\frac{1}{2}\frac{\partial^{2}\overline{u_{i}'u_{j}'}}{\partial x_{k}^{2}} - \frac{\overline{\partial u_{i}'u_{j}'}}{\partial x_{k}}\right)$ $= v\frac{\partial^{2}\overline{u_{i}'u_{j}'}}{\partial x_{k}^{2}} - 2v\left(\frac{\overline{\partial u_{i}'}}{\partial x_{k}}\right)\left(\frac{\partial u_{j}'}{\partial x_{k}}\right) \qquad (B.31)$

式(B.26)~(B.31)を整理すると、以下に示すようなレイノルズ応力の輸送方 程式を得ることができる.

$$\frac{\overline{\partial u_{\iota}' u_{j}'}}{\partial t} + \overline{u_{k}} \frac{\overline{\partial u_{\iota}' u_{j}'}}{\partial x_{k}} = -\frac{1}{\rho} \left(\frac{\partial \overline{u_{\iota}' p'}}{\partial x_{j}} + \frac{\partial \overline{u_{j}' p'}}{\partial x_{i}} \right) + \frac{\overline{p'}}{\rho} \left(\frac{\partial u_{\iota}'}{\partial x_{j}} + \frac{\partial u_{j}'}{\partial x_{\iota}} \right) - \frac{\partial \overline{u_{\iota}' u_{j}' u_{k}'}}{\partial x_{k}} + \nu \frac{\partial^{2} \overline{u_{\iota}' u_{j}'}}{\partial x_{k}^{2}} - \left(\overline{u_{j}' u_{k}'} \frac{\partial \overline{u_{\iota}}}{\partial x_{k}} + \overline{u_{\iota}' u_{k}'} \frac{\partial \overline{u_{j}}}{\partial x_{k}} \right) - 2\nu \left(\overline{\frac{\partial u_{\iota}'}{\partial x_{k}}} \right) \left(\frac{\partial u_{j}'}{\partial x_{k}} \right) \right) \tag{B.32}$$

ここで, *i=j* とすると式(B.24)の乱流運動エネルギーの方程式となる. その場合,右辺第2項の圧力ひずみ相関項はゼロとなるため,乱流運動エネルギーの方程式には表れない.

最後に、平均流成分の運動エネルギー方程式を得るために、平均流成分の 運動方程式である式(B.12)の両辺に*ū*,をかける.

$$\overline{u_i}\frac{\partial \overline{u_i}}{\partial t} + \overline{u_i}\overline{u_j}\frac{\partial \overline{u_i}}{\partial x_j} = -\frac{1}{\rho}\overline{u_i}\frac{\partial \overline{p}}{\partial x_i} + \overline{u_i}\frac{\partial}{\partial x_j}\left(\nu\frac{\partial \overline{u_i}}{\partial x_j} - \overline{u_i'u_j'}\right)$$
(B.33)

整理しやすいように各項毎に書き出して変形を行う. 左辺第1項は以下のように変形できる.

$$\overline{u}_{l}\frac{\partial\overline{u}_{l}}{\partial t} = \frac{1}{2}\frac{\partial\overline{u}_{l}\overline{u}_{l}}{\partial t} = \frac{\partial}{\partial t}\frac{1}{2}\overline{u_{l}}^{2} = \frac{\partial K}{\partial t}$$
(B.34)

$$K = \frac{1}{2}\overline{u_i^2} \tag{B.35}$$

ここで, *K* は平均流成分の運動エネルギーである. 左辺第2項は以下のよう に変形できる.

$$\overline{u_i u_j} \frac{\partial \overline{u_i}}{\partial x_j} = \overline{u_j} \left(\frac{\partial}{\partial x_j} \frac{1}{2} \overline{u_i u_i} \right) = \overline{u_j} \frac{\partial K}{\partial x_j}$$
(B.36)

右辺第1項~第3項は以下のように、それぞれ変形できる.
付章 B 乱流運動エネルギー方程式の導出

$$-\frac{1}{\rho}\overline{u}_{i}\frac{\partial\overline{p}}{\partial x_{i}} = -\frac{1}{\rho}\left(\frac{\partial\overline{u}_{i}\overline{p}}{\partial x_{i}} - \overline{p}\frac{\partial\overline{u}_{i}}{\partial x_{i}}\right) = -\frac{1}{\rho}\frac{\partial\overline{u}_{i}\overline{p}}{\partial x_{i}}$$
(B.37)

$$\overline{u_i}\frac{\partial}{\partial x_j}\left(\nu\frac{\partial\overline{u_i}}{\partial x_j}\right) = \nu\overline{u_i}\frac{\partial^2\overline{u_i}}{\partial x_j^2} = \nu\frac{1}{2}\frac{\partial^2\overline{u_i^2}}{\partial x_j^2} - \nu\left(\frac{\partial\overline{u_i}}{\partial x_j}\right)^2$$
(B.38)

$$\overline{u_i}\frac{\partial}{\partial x_j}\left(\overline{u_i'u_j'}\right) = \frac{\partial\overline{u_i'u_j'\overline{u_i}}}{\partial x_j} - \overline{u_i'u_j'}\frac{\partial\overline{u_i}}{\partial x_j}$$
(B.39)

式(B.33)に式(B.34)~(B.39)を代入し,整理すると平均流成分の運動エネルギ ー方程式を得ることができる.

$$\frac{\partial K}{\partial t} + \bar{u}_{j} \frac{\partial K}{\partial x_{j}} = -\frac{1}{\rho} \frac{\partial \bar{u}_{i} \bar{p}}{\partial x_{i}} - \frac{\partial \overline{u_{i}' u_{j}'} \bar{u}_{i}}{\partial x_{j}} + \frac{\nu}{2} \frac{\partial^{2} \overline{u_{i}^{2}}}{\partial x_{j}^{2}} + \overline{u_{i}' u_{j}'} \frac{\partial \bar{u}_{i}}{\partial x_{j}} - \nu \left(\frac{\partial \bar{u}_{i}}{\partial x_{j}}\right)^{2}$$
(B.40)
ここで、比較のため、乱流運動エネルギーの方程式[式(B.24)]を以下に示す.

$$\frac{\partial k}{\partial t} + \overline{u_k} \frac{\partial k}{\partial x_k} = -\frac{1}{\rho} \frac{\overline{\partial u'_k p'}}{\partial x_k} - \frac{1}{2} \frac{\overline{\partial \overline{u'_k u'_k}}}{\partial x_k} + \frac{\nu}{2} \frac{\partial^2 \overline{u'_k}}{\partial x_k^2} - \overline{u'_k u'_k} \frac{\partial \overline{u_l}}{\partial x_k} - \nu \left(\frac{\partial u'_l}{\partial x_k}\right)^2$$

右辺第4項は,平均流成分の運動エネルギーと乱流運動エネルギーの両方の 方程式に表れている.また,この項の符号は,両方程式の間で異なることか ら,平均流と乱流の間でのエネルギーのやり取りを示す.通常,平均流から 乱流へエネルギーが渡されることから,この項は乱れの生成項と呼ばれる.

付章C

混合気の物性推算

付章 C 混合気の物性推算

混合気の物性を物性推算法により推算を行った[52].物性定数は,一般的 に温度および圧力の関数である.物性定数の数値は物性により異なるが,温 度・圧力による変化には共通性がみられる.この共通性に関する原理を「対 応状態原理」と言う.

定圧における対応状態理論を適用した無極性の純粋気体粘度 η の推算式 は式(C.1)で示される.

$$\eta \xi = 4.610T_r^{0.618} - 2.04e^{-0.449T_r} + 1.94e^{-4.058T_r} + 0.1$$
(C.1)

ここで、 η の単位はマイクロポアズ[μ **P**]であり、 ξ は粘度パラメーター、 *T*_rは対臨界温度である. ξ は式(C.2)により求めることができる.

$$\xi = \frac{T_c^{1/6}}{M^{1/2} P_c^{2/3}} \tag{C.2}$$

ここで, T_c は臨界温度[K], P_c は臨界圧力[atm],Mは分子量である.また,対臨界温度 T_r は以下の式(C.3)により求めることができる.

$$T_r = \frac{T}{T_c} \tag{C.3}$$

ここで、T は気体の温度[K]である. 低圧における混合気体の粘度 η_m° は、式(C.1)に示した純粋気体の粘度を用いて、以下の式(C.4)~(C.6)により求めることができる.

$$\eta_m^{\ 0} = \sum_{i=1}^n \frac{y_i \eta_i}{\sum_{i=1}^n y_i \phi_{ij}} \tag{C.4}$$

$$\phi_{ij} = \frac{\left[1 + \left(\eta_i/\eta_j\right)^{1/2} \left(M_j/M_i\right)^{1/4}\right]^2}{\left[8\left(1 + M_i/M_j\right)\right]^{1/2}}$$
(C.5)

$$\phi_{ji} = \frac{\eta_j}{\eta_i} \frac{M_i}{M_j} \phi_{ij} \tag{C.6}$$

ここで、下添え字の*i*および*j*は、*n*成分中の*i*番目および*j*番目の成分を表す.さらに、臨界温度・臨界圧力よりも高い状態においては、混合気体の粘

付章 C 混合気の物性推算

度の圧力補正が必要性となる.高圧における混合気体の粘度 nm は以下の式 (C.7)より求めることができる.

$$(\eta_m - \eta_m^{0})\xi_m = (1.08)[exp(1.439\rho_{rm}) - exp(-1.111\rho_{rm}^{1.858})]$$
(C.7)

ここで, ρ_{rm}は混合気体の擬対臨界密度である. ρ_{rm}は以下の式(C.8)で表される.

$$\rho_{rm} = \frac{\rho_m}{\rho_{cm}} \tag{C.8}$$

ここで, ρ_mは混合気体の密度, ρ_{cm}は混合気体の擬臨界密度で,以下の式 (C.9)より求めることができる.

$$\rho_{cm} = \frac{P_{cm}}{Z_{cm}RT_{cm}} \tag{C.9}$$

ここで, R はガス定数である.また,式(C.7)の混合気体の粘度パラメーター ξ は,以下の式(C.10)より求めることができる.

$$\xi_m = \frac{T_{cm}^{1/6}}{M_m^{1/2} P_{cm}^{2/3}} \tag{C.10}$$

n 成分の混合気の平均臨界定数は以下の式(C.11)~(C.14)により求めることができる.

$$T_{cm} = \sum_{i=1}^{n} T_{c_i} y_i \tag{C.11}$$

$$z_{cm} = \sum_{i=1}^{n} z_{c_i} y_i$$
 (C.12)

$$V_{cm} = \sum_{i=1}^{n} V_{c_i} y_i$$
(C.13)

付章 C 混合気の物性推算

$$P_{cm} = \frac{Z_{cm}RT_{cm}}{V_{cm}} \tag{C.14}$$

ここで、 T_{cm} は平均臨界温度、 V_{cm} は平均臨界容積、 P_{cm} は平均臨界圧力、 y_i は *i* 番目の成分のモル分率、 z_{cm} は擬臨界圧縮係数である。擬臨界圧縮係数 z_{cm} は以下の式(C.15)により求めることができる。

$$z_c = \frac{P_c V_c}{RT_c} \tag{C.15}$$

ここで、Vcは臨界容積である.

以上のように,式(C.7)より,疑似燃料 PRF の粘性係数を求めることができる.また,計算に使用した値を表 C.1 にまとめる.

<u>付章 C</u> 混合気の物性推算

Component	M [kg/kmol]	<i>T_c</i> [K]	P_c [atm]	V _c [ml/mol]	у	Z_{c}
Air	29	132.5	37.2	92.7	0.98302	0.313
i-octane	114.2	544.3	25.5	468	0.01128	0.264
n-heptane	100.2	540.2	27	432	0.00310	0.260
Toluene	92.1	591.7	40	316	0.00261	0.257

表 C.1: 疑似燃料 PRF による混合気の粘性係数を計算するための物性値.

参考文献

- [1]川合誠,橋本英樹,赤崎修介,西村要一,大保慎一,上田伸一,"Ultra Low Emission Vehicle のための高精度空燃比制御 ECU", Honda R&D Technical Review, Vol.9(1997), pp.100-110.
- [2]西澤一俊, 堀江薫, 三浦啓二, 荻原秀実, 田中力, 山田範之, "VTEC-E リ ーンバーンエンジンの開発", Honda R&D Technical Review, Vol.4(1992), pp.22-31.
- [3]甲田豊, 菅波友二, 小林裕幸, 小川賢, "高性能・低エミッション 2.0L 直 噴ガソリンエンジンの開発", Honda R&D Technical Review, Vol.16, No.1(2004), pp.39-46.
- [4]山田卓也, 溝田新, 武田真明, 森田照義, "スプレーガイド直噴エンジンの混合気形成に関する研究", 第 47 回燃焼シンポジウム講演論文集, E135(2009).
- [5]高倉史郎,高橋真嘉,石賀雅浩,中村勝則,秋元茂,"予混合水素エンジンにおける異常燃焼の要因解析と抑制手法",第21回内燃機関シンポジウム講演論文集,C1-3 (2010), pp. 171-176.
- [6]長尾不二夫,内燃機関講義,第3次改著(1996), pp.36-39, 養賢堂.
- [7]Urata, Y., Awasaka, M., Takanashi, J., Kakinuma, T., Hakozaki, T., Umemoto, A., "Study of Gasoline-fueled HCCI Engine Equipped with an Electromagnetic Valve train", *SAE technical paper*, 2004-01-1898(2004).
- [8]猪原建彦,飯田実,デイビッド E.フォスター,"負のオーバーラップに よるガソリン HCCI の吸気バルブタイミングと燃焼の性質",YAMAHA MOTOR TECHNICAL REVIEW(2007), pp.1-10.
- [9]窪山達也,森吉泰生,山田敏生,高梨淳一,鈴木正剛,畑村耕一,"筒内 温度・燃料濃度分布がブローダウン過給 HCCI ガソリン機関の燃焼特性に 与える影響",第20回内燃機関シンポジウム,20090052(2009).

- [10]代田大祐,飯田訓正,"温度および当量比の層状化による HCCI 燃焼時の圧力上昇率低減効果に関する研究",第 20 回内燃機関シンポジウム, 20090028(2009).
- [11]Hyvonen, J., Haraldsson, G., Johansson, B., "Operating Range in a Multi Cylinder HCCI Engine Using Variable Compression Ratio", JSAE/SAE international Spring Fuels & Lubricants Meeting, JSAE 20030178, SAE 2003-01-1829(2003), pp.1-11.
- [12]田岸竜太郎,池谷健一郎,高沢正信,山田健人,"ガソリンエンジンの熱 効率追求",自動車技術会講演論文集,146-20145712(20015).
- [13]鈴木雅樹,早川修一,石原祥道,進藤俊洋,"小型車用 新 L4 ガソリン エンジンの開発",自動車技術会学術講演会前刷集,20145057(2014), pp.9-12.
- [14]倉内孝,山田哲,高木功, "ESTEC 1NR-FKE エンジン開発",自動車技 術会学術講演会前刷集, 20145224(2014), pp.19-22.
- [15]明本禧洙,上島英夫,川口仁,天川豊,松本誠司,中村健佐,佐藤利行,
 "S2000 用 高出力 低エミッション DOHC-VTEC エンジンの開発",
 HONDA R&D Technical Review, Vol.11, No.1(1999), pp.29-38.
- [16]本田技術研究所編, F1 Special (The Third Era Activities), Technical Review(2009),本田技術研究所.
- [17]藤吉美広,北山拓, "F1 エンジンにおけるエンジン技術",エンジンテク ノロジー,第4巻,第2号,通巻19号(2002), pp. 8-13,山海堂.
- [18]高橋真嘉,大倉康裕,花田尚喜,三浦啓二,"F1 エンジンにおける吸気圧 力干渉を利用したトルク特性開発手法の構築",第20回内燃機関シンポジ ウム講演論文集,20090084(2009).
- [19]Middendoft, H., Krebs, R., Szengel, R., Pott, E., Fleib, M., Hagelstein, D., "Volkswagen introduces the worlds first double charge air direct injection petrol engine", 14th Aachen Colloquium (2005), p.961-986.

- [20]Szengel, R., Middendorf, H., Pott, E., Theobald, J., Etzrodt, T., Krebs, R., "The TSI with 90 kW – the Expansion of the Volkswagen Family of Fuel Efficient Gasoline Engines", 28th International Wiener Motor Symposium (2007).
- [21]小島晋爾,勝見則和,宮川浩,奥村猛,植田貴宣,"斜めスキッシュ形燃
 焼室のノック抑制機構(燃焼後半の火炎加速によるノック抑制)",日本
 機械学会論文集 B 編, Vol.65, No.638(1990), pp.3523-3529.
- [22]佐々木潤三,志々目宏二,藤川竜也,佐藤圭峰,和田好隆,大森秀樹,小田祐介,"高圧縮比エンジンの出力改善について",第 21 回内燃機関シンポジウム講演論文集,B1-2(2010),pp.99-104.
- [23]漆原友則,村山太一,李奇衡,高木靖雄,"スワール・タンブルによる乱 流生成と燃焼特性",日本機械学会論文集 B 編, Vol.60, No.580(1994), pp.4280-4286.
- [24]能川真一郎,中田浩一,神田睦美,"過給リーンバーンエンジンによる熱効率向上",第 21 回内燃機関シンポジウム講演論文集,A7-4(2010), pp.533-538.
- [25]Adomeit, P., Weinowski, R., Ewald, J., Burnn, A., Kleeberg. H., Tomazic, D., "A New Approach for Optimization of Mixture Formation on Gasoline DI Engines", SAE International, 2010-01-0509(2010), p.1-17.
- [26]三藤祐子,丹澤一樹,渡辺通夫,永山勇太,"新型 1.2L スーパーチャージ ャガソリンエンジンの燃焼性能設計",自動車技術会学術講演会前刷集, 2011562(2011), pp.23-26.
- [27]Wurns, R., Budack, R., Bohme, J., Dornhofer, R., Eiser, A., Hatz, W., "The New 2.0L TFSI with the Audi Valvelift System for the Audi A4 – The Next Generation of the Audi TFSI Technology", 17th Aachen Colloquium(2008), pp.1067-1090.
- [28]新井文人,細井啓志,土屋富久,嶋村仁志,荻原建志,伊藤良秋,星幸一," 新 AR シリーズエンジンの開発",自動車技術会シンポジウム, 20094117(2009), pp.19-24.

- [29]宮本勝彦,山下正行,五島賢司,藤永尚人,三木田彰,"可変吸気流制御 による燃費,排気ガス低減に関する研究",三菱自動車 テクニカルレビ ュー, No.20, pp.69-74.
- [30]藤本茂希,大高義行,小堂智史, "MBD 実現に向けたエンジンプラントモデルと段階的システム同等環境の構築", Honda R&D Technical Review, Vol.24, No.2(2012), pp. 120-127.
- [31]佐々木隆,吉田一夫,浦田泰弘,大野敏久,石井清,"筒内現象解析用可 視化エンジンの紹介", Honda R&D Technical Review, Vol.10(1998), pp.78-89.
- [32]浦田泰弘,吉田一夫,大野敏久,石井清,"レーザシート法によるシリン ダ内流れの3次元測定",HONDA R&D Technical Review, Vol.8(1996), pp. 106-114.
- [33] 中島樹志,加藤毅彦,秋山清和,小森啓介,"レースエンジン開発における燃焼解析技術",エンジンテクノロジー,第8巻,第2号,通巻43号(2006), pp. 50-54,山海堂.
- [34]Fuyuto, T., Hattori, Y., Fujikawa, T., Akihama, K., "Combustion Visualization Using Newly-developed Optically Accessible Single-Cylinder Engines", R&D Review of Toyota CRDL, Vol.44, No.2(2013), pp.43-53.
- [35]Bianchi, M.G, Cantore, G., Mattarelli, E., Guerrini, G. and Papetti, F., "Influence of Stroke-to-Bore Ratio and Combustion Chamber Design on Formula One Engines Performance", SAE Technical Paper Series, 980126(1998), pp. 494-509.
- [36]Alten, H., Illien, M., "Demands on Formula One Engines and Subsequent Development Strategies", SAE Technical Paper, 2002-01-3359(2002), pp.139-151.
- [37]城戸裕之,和栗雄太郎,村瀬栄一,藤本勝也,王智民,富田攻,"圧縮行 程中でのシリンダ内乱れの空間尺度の変化",日本機械学会論文集 B 編, Vol.50, No.452(1984), pp.1114-1121.
- [38] 脇坂知行,浜本嘉輔,木下史郎,"内燃機関の燃焼室内における乱流特性", 日本機械学会論文集 B 編, Vol.48, No.430(1982), pp.1198-1205.

- [39]浜本嘉輔, 冨田栄二, 三葉浩義, "四サイクル機関シリンダ内乱流の計測", 日本機械学会論文集 B 編, Vol.53, No.491(1987), pp.2226-1205.
- [40]神本武征,八木田幹,森吉泰生,小林治樹,盛田英夫,"透明シリンダエンジンによるシリンダ内空気流動に関する研究",日本機械学会論文集 B 編, Vol.53, No.492(1987), pp.2686-2693.
- [41]大谷英男,森吉泰生,八木田幹,神本武征,"圧縮行程中のシリンダ内乱れの減衰と生成に及ぼすスワールの影響(空間相関法による乱れスケールのLDV 測定)",日本機械学会論文集 B 編, Vol.56, No.530(1990), pp.3137-3180.
- [42]鄭海泳,古井隆,西山淳,池田裕二, "PIV と LDV を利用した点火プラグ 近傍の乱流特性計測",第22回内燃機関シンポジウム講演論文集,24(2011), pp.139-144.
- [43]Muller, H.R.S., Bohm, B., Gleibner, M., Grzeszik, R., Arndt, S., Dreizler, A., "Flow Field Measurements in an Optically Accessible Direct-Injection Spray-Guided Internal Combustion Engine using High-Speed PIV", *Experiments in Fluids*, Vol. 48, No. 2(2010), pp.281-290.
- [44]Kaneko, M., Ikeda, Y., Nakajima, T., "Tumble Generator Valve (TGV) Control of In-Cylinder Bulk Flow and Its Turbulence Near Spark Plug in SI Engine", SAE Technical Papers, 2001-01-1306(2001), pp.1-9.
- [45]Reuss, L., D., "Cyclic Variability of Large-Scale Turbulent Structures in Directed and Undirected IC Engine Flows", SAE Technical Papers, 2000-01-0246(2000), pp.1-18.
- [46]石田礼,渡辺温,後藤大輔,金子隆,金子誠,森川弘二,"レーザー計測 を用いた筒内非定常流動 CAE 解析の精度検証",第 20 回内燃機関シンポ ジウム講演論文集,20090040(2010), pp.133-137.
- [47]Jakob, M., Pischinger, S., Adomeit, P., Brunn, A., Ewald, J., "Effect of Intake Port Design on the Flow Field Stability of a Gasoline DI Engine", SAE technical papers, 2011-01-1284(2011), pp. 1-17.

- [48]Ghandhi, B.J., Herold, E.R., Shakal, S.J., Strand, E.T., "Time Resolved Particle Image Velocimetry Measurements in an Internal Combustion Engine", SAE Technical Paper Series, 2005-01-3868 (2005).
- [49]可視化情報学会編, PIV ハンドブック, 第1版(2002), pp.4-77, 森北出版.
- [50]Sholes, R.K., 川島純一, 森信三, "PIV による筒内流動サイクル変動解析 手法の開発", 自動車技術会秋季学術講演会, 20045515(2004), pp. 9-14.
- [51]可視化情報学会編, PIV ハンドブック, 第1版(2002), pp.30-38, 森北出版.
- [52]大江修造,物性推算法, p.225-237(2002), データブック出版社.
- [53]水谷幸夫, 燃焼工学, 第2版(1992), pp.91-98, 森北出版.
- [54]濱本嘉輔, "エンジンシリンダ内乱流特性", エンジンテクノロジー, Vol. 2, No. 4 (2000), pp.85-89.
- [55]大倉康裕,瀬川誠,鬼丸裕美,浦田泰弘,店橋護,"高速 PIV を用いた過給 GDI エンジンの筒内流動解析",自動車技術会論文集, Vol.46, No.1(2015), 20154023, p.27-33.
- [56]大倉康裕, 樋口和哉, 浦田泰弘, 染矢聡, 店橋護, "高速 PIV によるエン ジン燃焼室内の乱流計測", 日本機械学会論文集 B 編, Vol.79, No.809(2013), pp.2193-2206.
- [57]可視化情報学会編, PIV ハンドブック, 第1版(2002), pp. 151-162, 森北 出版.
- [58]Jaffri, K., Hascher, G., H., Novak, M., Lee, K., Schock, H., Bonne, M., Keller, P., "Tumble and Swirl Quantification within a Motored Four-Valve SI Engine Cylinder Based on 3-D LDV measureents", SAE technical paper series, 970792(1997), pp. 1-12.
- [59]日野幹雄,スペクトル解析,第3刷(2012),朝倉書店, pp.42-43.
- [60]Petschenig, E., Glanz, R., Sorger, H., "Differential flow field analysis in engine development", *MTZ*, 0512010, Vol.71(2010), pp.26-32.

- [61]Glanz, R., "Differential Measurement of Tumble Flows", *MTZ Motortechnische Zeitschirift*, Vol.61(2000), pp.2-5.
- [62]櫻原一雄,新里智則,大津啓二,沖田忠之,明本禧洙,"'92 モデルプレ リュードエンジンについて", HONDA R&D Technical Review, Vol.4(1992), pp.41-52.
- [63]福谷格,渡部英一,"平均吸気マッハ数による4サイクル機関の容積効率の整理 臨界流れによる吸気のチョーク現象,臨界容積効率曲線の解明-",内燃機関,19巻10号(1980), pp.9-28.
- [64]Peters, N., Turbulent Combustion, Fourth printing with corrections (2006), pp.78-86, CAMBIDGE UNIVERSITY PRESS.
- [65]Ohashi, T., Yang, X., Takabayashi, T., Urata, Y., Kubota, S., Katsuyama, H., "Ignition and Combustion simulation in HCCI engines", SAE technical paper series, 2006-01-1522 (2006).
- [66]店橋護,"乱流予混合燃焼火炎 I 乱流と予混合火炎の代表スケール –", 日本燃焼学会誌,第51巻,158号(2009),pp.37-44.
- [67]可視化情報学会編, PIV ハンドブック, 第1版(2002), pp.137-164, 森北出版.
- [68]日本機械学会編, 伝熱工学の進展 第2巻, pp. 83-86, 養賢堂.

謝 辞

本研究は、東京工業大学理工学研究科 店橋護教授のご指導のもとで実施 されたものであります.研究を開始するきっかけは、2009年に開催された ホンダ燃焼コロキアムで、私の研究発表に対して有益なご助言を頂いたこと によります.店橋護教授には、研究の進め方から論文の作成にいたるまで、 ご指導ご鞭撻を賜り深く感謝いたします.

本研究を開始するにあたり、社会人博士課程に入学することを快く承認し て頂いた当時のマネージャーである木村英輔主任研究員、当時のグループリ ーダーである松浦浩海室長には深く感謝いたします.また、事情により半年 遅れての入学となってしまいましたが、当時のマネージャーである足立秀幸 主任研究員、グループリーダーである藤原幹夫主任研究員にも深く感謝いた します.

三浦啓二主任研究員には、レースエンジン用可視化エンジンの製作や光学 計測の機会を与えて頂きました.なかなか成果が出せない時でも、有益な助 言と研究継続の承認をして頂きました.この時にご指導して頂いた「エンジ ン燃焼技術の知識」と「研究に取り組む姿勢」は、私のホンダでの研究人生 の基礎となっており深く感謝いたします.

浦田泰弘主任研究員には, 強力点火系やバイオ燃料などの新規性の高い研 究テーマや新計測法開発の着手など, 国内外の企業や大学との共同研究の機 会を与えて頂きました. この時にご指導して頂いた「新しいことに挑戦する 姿勢」と「光学計測の知識」は, 私の研究人生の幅を広げることとなってお り深く感謝いたします.

レース用エンジン製作を共同で行ってきた松原珠研究員,可視化を行うに あたり CFD の観点から有益なご助言を頂いた花田尚喜研究員,平出篤志研 究員,高橋真嘉研究員には深く感謝いたします.過給ダウンサイジングエン ジンの流動計測や燃焼解析を共同で推進した瀬川誠研究員,佐藤誓祐研究員, 鬼丸裕美氏には,自分では気づきえない観点からご助言を与えて頂き,深く 感謝いたします.

最後に,研究生活を背後から支えてくれた妻に心より感謝します.この論 文を親愛なる私の妻と子供に捧げます.

> 2015 年 6 月 自宅にて 大倉 康裕