
論文 / 著書情報
Article / Book Information

Title An Efficient Gear-shifting Power-proportional Distributed File System

Author Hieu Hanh LE, Satoshi HIKIDA, Haruo YOKOTA

Journal/Book name Proceeding of the 26th International Conference on Database and
Expert Systems Applications (DEXA 2015),   ,   ,  pp. 153-161

発行日 / Issue date 2015,  9

DOI 10.1007/978-3-319-22852-5_14

権利情報 / Copyright  The original publication is available at www.springerlink.com.

Note このファイルは著者（最終）版です。
This file is author (final) version.

Powered by T2R2 (Science Tokyo Research Repository)

http://t2r2.star.titech.ac.jp/


An Efficient Gear-shifting Power-proportional
Distributed File System

Hieu Hanh Le1, Satoshi Hikida2, and Haruo Yokota2

1 Center for Technology Innovation, R&D Group, Hitachi Ltd., Japan?

2 Department of Computer Science, Tokyo Institute of Technology, Japan
{hanhlh,hikida}@de.cs.titech.ac.jp,yokota@cs.titech.ac.jp

Abstract. Recently, power-aware distributed file systems for efficient
big data processing have increasingly moved toward power proportional
designs. However, inefficient gear-shifting in such systems is an important
issue that can seriously degrade their performance. To address this is-
sue, we propose and evaluate an efficient gear-shifting power proportional
distributed file system. The proposed system utilizes flexible data place-
ment that reduces the amount of reflected data and has an architecture
that improves the metadata management to achieve high-efficiency gear-
shifting. Extensive empirical experiments using actual machines based
on the HDFS demonstrated that the proposed system gains up to 22%
better throughput-per-watt performance. Moreover, a suitable metadata
management setting corresponding to the amount of data updated while
in low gear is found from the experimental results.

1 Introduction

Commercial off-the-shelf-based distributed file systems (DFS) have been widely
used for cloud applications for their fast deployment and easy scaling. Among
these systems, power-aware DFS have increasingly moved toward power pro-
portional designs [1]. To realize such systems, current data placement methods
commonly divides the nodes into a set of small and separated groups [2–4]. These
groups are then configured to operate in multiple “gears” where each gear con-
tains a different number of groups, and offers a different level of parallelism and
aggregate I/O throughput [2].

However, the current methods do not fully consider the effects of the reflection
of updated data during gear-shifting on the performance. For example, in the
morning, the system may have to update the datasets modified in a low gear
while a subset of the nodes was powered off overnight. When the system moves
to a higher gear to gain a better performance by reactivating inactive nodes, it
must replicate the updated data to the reactivated nodes to share the load among
all the active nodes for better performance. Inefficient reflection of updated data
with large amounts of retransferred data is believed to degrade the performance
of such power proportional systems greatly during gear-shifting.
? This work was done when the author was at Tokyo Institute of Technology



2

Moreover, metadata management in the DFS is believed to play an impor-
tant role during gear-shifting because the metadata management will be more
complex. In the low gear, the system generally creates log records specifying the
locations of updated data. When changing to a higher gear, it must identify the
replicated data from the log records, access their metadata, transfer the data to
the appropriate nodes, and update the corresponding metadata for later refer-
ences. Carrying out this process effectively with efficient distributed metadata
management is vital in realizing power proportionality DFS.

To provide efficient gear-shifting for power proportional DFS, an integration
of distributed metadata management and data placement is further important
because they are so closely related to each other. By leveraging both actions, the
carefully designed integration will greatly increase the efficiency of gear-shifting
with less throughput performance degradation.

In this paper, we propose a novel DFS that efficiently combines both of
our previous works, Accordion [5,7] and NDCouplingHDFS [6], to provide high
throughput performance during gear-shifting. Although the amount of retrans-
ferred data is reduced in Accordion, efficient metadata management is required
for better power proportional throughput performance. In the proposed system,
this is achieved with support from NDCouplingHDFS, which distributes the
metadata management cost efficiently to multiple nodes with small overhead.

The contributions of this paper are as follows.

– We propose a DFS for efficient gear-shifting to maintain high power propor-
tional results during gear-shifting.

– We evaluate the effectiveness of the proposed system through empirical ex-
periments. The experiments show that the proposed system gained up to
22% better power proportional performance than the base system config-
ured with Accordion and the default HDFS.

– It is observed that the proposed system gains better performance for large
amounts of updated data under a heavy metadata load; and for small amounts
of updated data under a light metadata load.

The remainder of this paper is organized as follows. The related work is reviewed
in Sections 2. The proposed system is described and evaluated in 3 and Section 4.
The conclusions of this paper are discussed in Section 5.

2 Related work

Rabbit [4] was the first method to provide power proportionality to an Hadoop
Distributed File System (HDFS) by focusing on the read performance by utilizing
an equal-work data layout policy based on data replication on organized nodes.
Sierra [3] also organizes the replicas of the dataset such that each replica is stored
in a group of nodes. However, Sierra differs from Rabbit in that each replica of
the dataset is evenly distributed to all the nodes in each group.

We also proposed Accordion [5], a flexible data placement method based on
data replication to reduce the amount of retransferred data during gear-shifting
by differentially considering the locations of primary data. As the primary data
are located at all nodes, when the modified dataset is updated (or appended)
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Fig. 1. The NDCoupling HDFS architecture and data flow.

in low gear, part of the primary data in the updated dataset is already stored
on the active nodes. Hence, only the remainder of the updated dataset, which
should have been written to the deactivated nodes, must be retransferred when
the system shifts to a higher gear. Although Accordion improves the power
proportional performance by 30% compared with Rabbit and Sierra [7], the
metadata management in this study is still constrained by the single metadata
node in the system.

We also previously presented an architecture known as NDCouplingHDFS [6]
to facilitate the efficient reflection of updated data in a power proportional
HDFS. NDCouplingHDFS focuses on coupled metadata management and data
management on each HDFS node, which reduces the cost of managing the meta-
data generated during changes in the system configuration. However, the effect
of NDCouplingHDFS on the throughput performance during gear-shifting was
not considered in the earlier study.

3 System description
We confidently expect that utilizing distributed metadata management, ND-
CouplingHDFS can improve further the effectiveness of Accordion, because of
the very close relationship between metadata management and data placement.
In this section, we describes the NDCouplingHDFS architecture, the Accordion
data placement then presents the updated data reflection process.
3.1 NDCouplingHDFS architecture
In this paper, because we focus on the locality of metadata management for
improving the efficiency of reflecting the updated data in gear-shifting, we have
applied equivalent coupling as each node contains both NameNode Manager and
DataNode Manager. In the NDCouplingHDFS, NameNode Manager includes the
distributed metadata management (Distributed MDM) and other modules such
as Data Placement and Block Mapping, as at the NameNode in a default HDFS.
The difference from a default HDFS is that the namespace of the file system is
divided among all the nodes in the cluster while taking locality into consider-
ation. The local Distributed MDM and the Block Mapping only manage the
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metadata for local files and blocks. In this system, we utilize the Fat-Btree [8]
method, which is an update-conscious parallel B-Tree structure to maintain the
metadata of the system whose efficiency was verified in [6]. The DataNode Man-
ager module at each node is the DataNode Manager at DataNode in the default
HDFS. Figure 1 shows an example of the architecture and the data flow of ND-
CouplingHDFS in the four-node system. This system operates in two gears; the
Low Gear requires two active nodes Node 2 and Node 3 and the High Gear
requires all four active nodes.

3.2 Accordion data placement

Accordion [7] is designed to provide power proportionality in distributed file
systems that use commodity computer servers such as the HDFS or the Google
File System. In Accordion, the files are divided into a large number of blocks and
a number of replicas of each data block are distributed among the nodes of the
cluster. Like other approaches, Accordion aims to control the power consumption
of the system by dividing the nodes into several separate groups. An Accordion-
based system can then operate in a multiple-gear mode where higher gears have
more groups of nodes. In Accordion, the nodes are arranged geometrically in a
horizontal array because the nodes that belong to lower groups are bounded by
the nodes of higher groups.

At first, the primary data in the dataset are distributed to all the nodes
in the system. This means that each node stores the same amount of primary
data. Then, starting with the highest group, the data stored in this group are
replicated to the next lower group. To guarantee the data reliability in the lowest
gear, the chained declustering policy is applied to the smallest group. Each node
replicates its data to its neighbor node, which guarantees that all of the data in
the dataset are replicated in the two neighbor nodes. In the example in Figure 1,
all the data from Node 1 and Node 4 are replicated to Node 2 and Node 3
accordingly. Then, the data of Node 2 are replicated to Node 3 and vice versa.

3.3 Gear controller

For easy implementation, there is one master Gear controller at a node, which is
assumed to be always active and is responsible for any request related to control-
ling the gear of the system from the administrator such as down gear or up gear.
Here, the master Gear controller will communicate with other Gear controllers
to fulfill requests. Other approaches such as allowing any Gear controller among
the nodes of the lowest group to be the master Gear controller are possible.

3.4 Updated data reflection process

In this section, we refer to Figure 2 and describe the behavior of the proposed
system in serving data update requests in low gear and reflecting the updated
data when the system changes to a higher gear by reactivating a subset of nodes.
In the default HDFS, basically all the operations are similar; however, because
there is only a single NameNode that is in charge of metadata management, all
the metadata operations are processed at the NameNode.
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Fig. 2. Flow of the updated data reflection process.

Step 1: Issue a gear change command When receiving the gear-shifting command
from the administrator, the Gear controller at the master node (Node 2) sends
the command to the Gear controllers at all other active nodes.
Step 2: Issue update metadata commands After receiving the commands, active
nodes will respond according to their roles. Nonoffload nodes that are not affected
by the gear-shifting simply delay I/O requests from the clients. Offload nodes
(node Node 2 and Node 3) that store the updated data issue the update metadata
command to the Metadata Management.
Step 3: Transfer updated metadata The Metadata Management modules that
receive the command check the log files and transfer only the changed metadata
to the intended nodes specified in the log files. When the updated metadata
transfers have finished, both the offload nodes and the intended nodes are ready
to process the I/O requests from the clients, including any requests queued
during the data reflection process, and send a “finished” indication to the Gear
controller at the master node. After gathering all the finished indications from
offload nodes, the Gear controllers forward this indication to all the nonoffload
nodes. When the nonoffload nodes receive the indication, they are ready to
process I/O requests from clients. Concurrently, in the background, the updated
data reflection process continues with Step 4.
Step 4: Issue block transfer commands Next, the Metadata Management searches
the log records for updated file blocks and issues block transfer commands with
pairs of blocks and intended node identifiers to the local DataNode Manager.
After each heartbeat interval, the DataNode Manager receives a command
and transfers the blocks to the intended nodes.
Step 5: Transfer updated blocks When the DataNode Manager receives the com-
mand issued by the Metadata Management, for better efficiency it sends the
blocks to the intended nodes in a batch manner, which is called batch transfer
method. When the DataNode Manager knows all the blocks it must transfer,
the cost of opening a new network connection can be reduced by sending all the
relevant blocks through a single network connection. The current implementa-
tion of the HDFS requires opening a new connection for each block.
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Table 1. Node specification

CPU TM8600 1.0 GHz
Memory DRAM 4 GB

NIC 1000 Mbps
OS Linux 3.0 64 bit

Java JDK-1.7.0

Table 2. Sizes of datasets [MB]

Configuration Without Update Small Medium Large
Updated dataset 0 4480 8960 13440
Initial dataset 26880 22400 17920 13440

After receiving the updated data, the DataNode Managers at reactivated
nodes (Node 1 and Node 4) notify the newly arrived data information to the
responsible Metadata Management as in the default HDFS.

4 Experimental evaluation

We conducted an empirical experiment using actual machines to verify the ef-
ficiency of the proposed system described in Section 3 during gear-shifting. For
the evaluation, we chose a system that deploys Accordion with the default HDFS
architecture as the base system.

4.1 Experimental method
The workloads generated were close to the actual operation of multiple-gear DFS
like the HDFS. We assumed that initially the file system was operated in a High
gear and stored an initial dataset. Then, the system shifted to a Low gear for a
specified power proportional service agreement. During this period, this dataset
was updated as new files were appended from the clients. Here, the dataset
that contains all these new files is called the update dataset. Next, the system
was shifted to the High gear to satisfy the higher throughput performance on
reading the whole dataset from the clients. At this time, the system must serve
read requests from the client while performing updated data reflection in the
background. As we focused on the applications on the DFS like the HDFS, we
chose the method of updating the dataset as appending new files to the dataset
and the method for reading the dataset as scanning all the files in the dataset.
The sizes of the reading dataset, which includes both the initial and the update
dataset, is fixed to 26880 [MB]. The sizes of the initial and the updated dataset,
which are used in the evaluation, are varied as in Table 2.

4.2 Framework of the experiments
Our test-bed for the experiments comprised dozens of commodity nodes based on
the HDFS. We were focused on energy-aware commodity systems so we used low
power consumption ASUS Eeebox EB1007 machines, the specifications for which
are provided in Table 1. In the base system, there is one NameNode besides the
cluster of DataNodes in each gear (2, 8 and 20 nodes). However, in the proposed
system, the numbers of nodes in each gear are limited to 2, 8 and 20.

4.3 Experimental results
In this section, experimental results are reported for four cases relating to the
load of the metadata, in which the size of the files is set to 64 MB, 16 MB, 4
MB, and 1 MB. In this experiment, because of the same data placements in both
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Table 3. Settings

Case File size [MB] #blocks
Light 64 420
Medium–Light 16 1680
Medium–Heavy 4 6720
Heavy 1 26880

Table 4. Numbers of updated blocks

Case Without Update Small Medium Large
Light 0 42 84 126
Medium–Light 0 168 336 504
Medium–Heavy 0 672 1344 2016
Heavy 0 2688 5376 8064
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Fig. 3. Experiment results

the base system and the proposed system, the sizes of the reflected data are the
same. However, because of the file size, the number of blocks varies between the
systems, hence the cost for metadata management changes. Table 3 describes
the file size and the number of blocks for the four cases Light, Medium–Light,
Medium–Heavy, and Heavy.

Figures 3(a) shows the experimental results of the average throughput-per-
watt when the system changes from Gear 2 to Gear 3 with scanning the dataset in
four configurations: Without Update, Small, Medium, and Large configurations.
Note that in the Without Update configuration, the performance of the scanning
dataset workload was not affected by the update data reflection process. The
effectiveness of NDCouplingHDFS is confirmed as the throughput-per-watt per-
formance of the proposed system was better than the base system in the Medium
and Large configurations, by approximately 10% and 22%, respectively. This is
explained by the advantages of the coupling architecture in NDCouplingHDFS
employed in the proposed system compared with the normal HDFS in the base
system. However, we can also see from Figure 3(a) that NDCouplingHDFS was
not effective in Without Update and Small configuration. We suggest that the
default HDFS showed better results in such situations because the cost of re-
flecting updated data is small. Table 4 shows the number of updated blocks of
four cases in all configurations.

Figure 3(b) show the results for the average throughput-per-watt results in
Light case. In contrast with the Heavy case, the effectiveness of the coupling
architecture NDCouplingHDFS in the proposed system was difficult to observe
as the throughput-per-watt performance of the proposed system was at most 6%
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better than the performance of the base system (Large configuration). The main
reason was the light load in metadata management as the numbers of updated
blocks in the Light cases were extremely small showing in Table 4.

The effect of the metadata load on the effectiveness of the proposed system is
evaluated by comparing the throughput-per-watt results of the proposed system
with the base system for our four cases (Light, Medium–Light, Medium–Heavy,
Heavy). Figure 3(c) presents the throughput-per-watt results of the proposed
system divided by those for the base system. We observe that the effect of the
metadata load (number of blocks) depends on the amount of updated data. In
the Small configuration, the smaller number of blocks is better for the proposed
system as the Light case gave the best result. However, in the Medium and Large
configurations in Heavy case where the amount of updated data is greater, the
heavier metadata load cases delivered the better result.
5 Conclusion and future work
We have demonstrated that the distributed metadata management in NDCou-
plingHDFS is effective for smooth gear-shifting in systems applying the Accor-
dion data placement. Our experiments showed that the proposed system inte-
grating Accordion and NDCouplingHDFS could achieve up to 22% better power
proportionality than the base system configured with Accordion and the default
HDFS. The efficiency of the proposed system is expected to be increasing when
the metadata load is higher and the amount of updated data is larger. We would
like to further evaluate the proposed system with other data placement methods.
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