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PAPER

Error Correction Using Long Context Match for Smartphone
Speech Recognition

Yuan LIANG†a), Nonmember, Koji IWANO††b), Member, and Koichi SHINODA†c), Senior Member

SUMMARY Most error correction interfaces for speech recognition ap-
plications on smartphones require the user to first mark an error region and
choose the correct word from a candidate list. We propose a simple mul-
timodal interface to make the process more efficient. We develop Long
Context Match (LCM) to get candidates that complement the conventional
word confusion network (WCN). Assuming that not only the preceding
words but also the succeeding words of the error region are validated by
users, we use such contexts to search higher-order n-grams corpora for
matching word sequences. For this purpose, we also utilize the Web text
data. Furthermore, we propose a combination of LCM and WCN (“LCM +
WCN”) to provide users with candidate lists that are more relevant than
those yielded by WCN alone. We compare our interface with the WCN-
based interface on the Corpus of Spontaneous Japanese (CSJ). Our pro-
posed “LCM +WCN” method improved the 1-best accuracy by 23%, im-
proved the Mean Reciprocal Rank (MRR) by 28%, and our interface re-
duced the user’s load by 12%.
key words: speech recognition, error correction, multimodal interface,
word confusion network, context match

1. Introduction

Speech input interfaces have become popular in smartphone
applications [1]–[3]. In these interfaces, speech recognition
errors are unavoidable due to the poor performance of au-
tomatic speech recognition (ASR) in real environments and
out-of-vocabulary (OOV) words, and so on [4]. When high
quality transcriptions are needed such as in email applica-
tions, users are required to verify and correct the ASR out-
put. In the conventional speech interfaces, when a user finds
some error words in the outputs, he/she corrects them one
by one. First, he/she marks one error word and then either
selects its corresponding correct word from a candidate list
provided by the interface [5]–[7] or inputs the correct word
by speech, handwriting, or virtual keyboard [8]–[11]. Tak-
ing the user’s efforts and the limited user interface available
in a smartphone into account, this operation should be sim-
pler. The efficiency of a speech recognition interface de-
pends both on its recognition accuracy and on the design of
its correction interface [3]. In this paper, we focus on the
latter. There are fundamentally two challenges in error cor-
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rection research. The first is “how to reduce users’ efforts?”.
The second is “how to evaluate a user interface?”.

How to reduce users’ efforts? One way is to design a
simple user interface by using the advantage of multimodal
inputs, such as speech, gestures, and handwritings [8]–[12].
Another way is to provide users a candidate list which as-
sists users to speed up the procedure of correcting errors [2],
[3], [5], [6], [13]. Word confusion network (WCN) [14] has
proven to be effective to make a candidate list for an er-
ror [5]–[7]. Some researches effectively used the user val-
idated information, which is obtained through the manual
error correction procedure done by users [13], [15]–[17].

In this paper, we propose a simple multimodal error
correction interface and its corresponding method to gener-
ate more accurate candidate lists. Assuming that not only
the preceding contexts but also the succeeding contexts of
the error word are validated by the user, we use these con-
texts to search higher-order n-grams data for the matched
word sequence. We call this method Long Context Match
(LCM). LCM dynamically estimates the language model
(LM) score of the possible candidates from higher-order n-
grams data, estimates the associated acoustic model (AM)
score, and computes the posterior probabilities of candi-
dates. We also utilized the Web information to complement
the missed information from the in-domain data. We further
propose a combination of LCM and WCN to provide users
with candidate lists that are more relevant than those yielded
by WCN alone.

How to evaluate a user interface? One way is using
human subjective tests [3], [6]. Another way is using com-
puter simulations. Baber et al. [18] noted that “there is a
wide range of possible techniques which could be used for
correcting recognition errors, and it is often difficult to com-
pare the techniques objectively because their performance is
closely related to their implementation.”. In this paper, we
simulate the users’ load in offline experiments to avoid such
dependence on implementation.

We evaluate our error correction method and inter-
face using speech data from the Corpus of Spontaneous
Japanese (CSJ) [19]. This article brings together the results
that have been previously reported [20], [21] by the authors∗

∗Paper [20] introduced the basic idea of LCM-based method
and the interface design for the ideal situation, where there was
only one substitution error exist in each test utterance. Paper [21]
extended the LCM-based method to a situation that the contexts
contained errors, but only dealt with a single substitution error and
a single deletion error.

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers
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and presents new results.

2. Background

In this section, we explain the background of speech error
correction interface, of candidate word lists, and of evalua-
tion metrics.

2.1 Speech Error Correction Interface

2.1.1 Categorization

Speech error correction interfaces can be categorized from
the following four different viewpoints.

1. Device: Smartphone [2], laptop, or desktop. The de-
mand of speech interfaces for smartphones is increas-
ing, because their keyboard interfaces are inconve-
nient [8]. In particular, we focus on the development
of interface for smartphone applications.

2. User: Handicapped users or normal users. While
voice-only error correction reported in [11] is suitable
for handicapped users, we focus on the normal users in
this paper.

3. Modality: Unimodal [11] or multimodal [2], [6]. We
focus on multimodal. We provide users a touchscreen
interface. Users can use speech input in the first step of
dictation, and use a pen or fingers to correct the ASR
errors. We also support keyboard input.

4. Interactivity: Without a user’s input (one-step correc-
tion) or with a user’s input (two-step correction) to help
the system find and correct errors. We utilize the users’
help to find and correct errors. This is done in two
steps, first locate an error (location), and second cor-
rect an error (correction) [18]. In the first step, we ask
users to locate an error word by simply marking it on
the smartphone display. In the second step, we pro-
vide users a candidate list for its corresponding correct
word.

2.1.2 Modality

In speech input interface, “unimodal” refers to use speech
only, while “multimodal” refers to use the other modalities,
including gestures and handwritings. It has been shown that
multimodal error correction methods are more effective than
using speech alone [12]. In the smartphone displays, gesture
and handwriting inputs by means of a pen or fingers are re-
ferred to as pen inputs [8]. Most commercial applications
supply a smartphone keyboard input method as the base er-
ror correction method.

Some may think using speech while correcting errors,
but it does not work well. People adopt a more hyper-
articulated speaking style when correcting errors. Hyper-
articulation increases the mismatch between spoken correc-
tion input and the AMs of the speech recognizer trained only
on normally pronounced speech. Generally, correction by

repeating in the same modality frequently leads to repeated
errors, and switching to a different modality may help to
avoid repeated errors [1], [8], [22].

Commercial dictation systems, e.g., Dragon Dicta-
tion [23], use pen or finger selection from a list of alterna-
tives. First users use a pen or a finger to touch an error word.
Then the system presents a candidate list under the error
word, from which users select a correct word by touching it.
Vertanen et al. [2] proposed a multimodal error correction
interface for smartphones, which displays the recognizer’s
best hypothesis along a single line at the top. In addition to
the best hypothesis, several alternatives for each word are
also displayed. Then users can correct errors by touching a
correct word in the candidate list or input the correct word
by using the smartphone touch keyboard.

2.1.3 Interactivity

In one-step correction, the system corrects errors with one
action from users. Users repeat a phrase including the cor-
rect words, and the system automatically recognizes the
phrase, identifies the errors, and corrects the errors (e.g.,
[11]). But since it is often unreliable as mentioned in 2.1.2,
most commercial speech recognition systems employ two-
steps correction.

In two-steps correction, the first step is location. Suhm
et al. [8] mentioned two methods for locating recognition er-
rors: a user-initiated method and a system-initiated method.
In the user-initiated method, users look from the speech
recognition results displayed on a touch screen, and users in-
dicate the presence of an error word by touching it or saying
a command such as “select [word]”. In the system-initiated
method, those words for which the system is less confident
are highlighted [8] or appear in a shade [7]. Since confi-
dence scores are often not reliable, the error detection may
be incorrect. Suhm et al. [8] found that confidence high-
lighting in their dictation system did not reduce users’ load
to locate errors.

2.2 Candidate Word List

2.2.1 Word Confusion Network (WCN)

A word confusion network (WCN) [14] is a compact rep-
resentation of multiple aligned ASR hypotheses, which is
made from a word lattice or graph generated by a speech
recognizer. Each competing word in an aligned segment
has a posterior probability, which can be used as a con-
fidence score of each word. WCN has been widely used
to generate a candidate list for a speech recognition er-
ror [2], [3], [5], [6], [13].

2.2.2 User Validated Information

The information obtained during the past error correction
process can be used for the error correction at present.
This information can be called user validated information.
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Rodriguez et al. [15], [16] proposed a computer-assisted
speech transcription system, in which every time a user cor-
rects a word, the correction is immediately taken into ac-
count to re-evaluate the succeeding transcription. They pro-
posed a natural assumption that, when a user corrects an er-
ror word, all the preceding words and the corrected word are
correct. They called this information user validated prefix.
Laurent et al. [13] used this user validated prefix, a higher-
order n-gram LM, and a caching LM to re-order the WCN.
Wang et al. [17] proposed a multimodal error correction in-
terface with pen gestures, where they assumed that one pre-
ceding and one succeeding words of the error region are val-
idated by users.

However, these previous researches did not use the user
validated “suffix”, because they wanted to correct errors in-
stantly after a user marks an error [13], [15], [17]. We think
that, if users can wait a little bit, especially when users input
longer texts, we can use not only the contexts preceding the
error but also the contexts succeeding the error, and thus we
can provide users more accurate candidates.

2.2.3 Outer Resources

Web text data is helpful for improving the accuracy of can-
didate lists. They have been widely used in augmenting the
training data for adapting a LM [24]–[26], in re-scoring the
first pass speech recognition results [27], in recovering OOV
words [28]. Several previous researches used them to cor-
rect ASR errors. For example, Nishizaki et al. [29] used
them in spoken documents indexing for correcting misrec-
ognized proper nouns. Their system includes an automatic
error correction procedure without users’ interaction. It used
a part of the 1-best hypothesis from the speech recogni-
tion as a query to the Google search and substituted each
error word by its best alternative candidate. Nevertheless,
their performance is still insufficient for our application, er-
ror correction for speech interfaces on smartphones. In this
paper, we provide a feasible way of using Google’s Web n-
grams corpora, which is complementary to the in-domain
CSJ corpus.

2.3 Evaluation Metrics

2.3.1 The Performance of Correction Methods

We use n-best accuracy and mean reciprocal rank (MRR) to
evaluate the performance of error correction.

Wang et al. [17] evaluated their error correction method
by calculating the accuracy of the top candidate word and
the percentage the n-best list involves the correct candidate
word respectively. We name the percentage of the correct
words in the n-best candidate list as n-best accuracy.

MRR is a statistic for evaluating any process that pro-
duces a list of possible responses to a query, ordered by the
probability of correctness. MRR is the average of the recip-
rocal ranks of results for a set of queries Q:

MRR =
1
|Q|

|Q|∑
i=1

1
ri
, (1)

where ri is the rank of the correct word in a candidate list,
and Q is the number of error words. In this paper, Q is
set to the total number of substitution errors and deletion
errors. MRR becomes closer to 1 as more correct answers
are placed near the top of the n-best list.

2.3.2 Interface Evaluation Metrics

As we mentioned in Sect. 1, one way to evaluate a user in-
terface is using subjective tests, and another way is using
computer simulations. Ogata and Goto [6] proposed an er-
ror correction interface, in which competitive candidates are
successively displayed along with the 1-best recognition hy-
pothesis, and a user can immediately correct an error word
by selecting its corresponding correct word among its candi-
dates. They evaluated the usability by using human subjects.
They measured the time required to enter some sentences
including the error correction using their method. Laurent
et al. [13] used word stroke ratio (WSR) and the number of
actions to evaluate their error correction method. In their
paper, correcting one error word counts as one stroke, and
hitting a key on the keyboard counts as one action. WSR,
which is a measure used in computer assisted translation of
speech (CATS) [30], is the number of words to be corrected
divided by the total number of words in the reference. WSR
is identical to word error rate (WER) when no words are to
be corrected.

In this paper, we choose to use a simulation method
in order to avoid the dependence on implementation. We
modify the method for counting the number of users’ ac-
tions [13] and use it as a simulation method (see Sect. 5) to
evaluate our interface. As the user’s load, the number of
strokes or touches needed to correct ASR errors is used.

3. Interface

Figure 1 shows our interface design. Its touch display con-
sists of two regions, a text region and a button region. In
the text region, the recognized text is displayed, and users

Fig. 1 Design of our interface containing two regions, a text region and
a button region.
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Fig. 2 Gestures for marking errors. An “underline” to mark a substitu-
tion error, a “strikethrough” to mark an insertion error, and a “vertical line”
to mark a deletion error.

Fig. 3 Error correction procedure using our interface.

can use a pen or fingers to correct errors. The button region
contains three buttons, “Start”, “End”, and “Undo”. Since
complete reversibility (Undo) is one of the key features for
error handling [22], we provide users a “Undo” button. Fig-
ure 2 defines gestures for marking errors in the text region.
We define one-stroke gesture for each of three error types:
deletion, substitution, and insertion. In this section, we ex-
plain how to use our interface.

Our interface contains a recognizing function and a
correcting function. Figure 3 shows an example of error
correction procedures using our interface to correct errors.

Recognizing: A user taps the “Start” button and starts
speaking, and taps the “End” button when he/she finishes
speaking. The system recognizes the speech input and dis-
plays its 1-best hypothesis on the screen.

Correcting: Then he/she checks the text and marks er-
rors. We suppose users mark errors from left to right. In
order to use the “suffix”, the system waits to correct errors
until the suffix is validated by users. The system judges
the suffix is validated when the user (1) marks some errors
which make the number of suffix equal or larger than a pre-
determined number†, or (2) marks errors in the following
sentence, or (3) pushes the “End” button. For a substitution

†The number is six in our paper.

Fig. 4 How our system identifies errors when multiple errors occurring
successively. Error type “S” is a substitution error, “D” is a deletion er-
ror, and “I” is an insertion error. The plus sign “+” indicates there is one
or more of the preceding element. For example, “(DI)+” denotes {“DI”,
“DIDI”, “DIDIDI”, . . .}. “A”, “B”, and “C” denotes three different words.
Our system identifies “DI” and “ID” as one “S”. The second column shows
the rules about how the system decides the error patterns.

error, the system substitutes the error word by the top-1 can-
didate, and shows a candidate list of the 2nd best word to
the nth best word under the error word. For a deletion error,
the system inserts the top-1 candidate and shows a candi-
date list of the 2nd to the nth best under the space where a
deletion gesture is input. If the top-1 candidate is not cor-
rect, a user can select a correct word from the candidate list.
If he/she cannot find a correct word in the candidate list,
he/she touches the error word and inputs a correct word by
handwriting [10] or keyboard [5], [10] in a pop-up window.
The system judges the top-1 candidate is correct when the
user marks the next error. When the user wants to finish
correcting errors, he/she pushes the “End” button again or
pushes the “Start” button to start inputting a new text. Con-
sidering the small size of smartphone displays, we limit the
length of the candidate list to 5. The system simply deletes
an insertion error.

Multiple errors often successively happen in the sys-
tem output. Some interfaces ask users to mark these errors
together, and they show a n-best phrase list. However, it is
difficult to precisely estimate the correct number of words.
Instead, our interface requires users to mark the same num-
ber of times as the number of the correct words (not the
number of recognized words). The number of correct words
equals to the sum of the number of “underlines” and the
number of “vertical” lines. Our system shows a candidate
list for each of substitution errors and deletion errors. While
a user may use different combinations of gestures, the sys-
tem decides the types of errors according to the rules. Fig-
ure 4 shows the rules about how a user makes gestures and
how the system judges a user’s gestures.

When a user marks one error word, both the conven-
tional interface and our interface show a candidate list. In
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the case of conventional interfaces such as Dragon Dicta-
tion [23], they keep the error word shown on the interface.
For correcting the error, a user has to touch the display again
to choose from the candidate list. However, our interface
replaces the error word with a top-1 candidate in the first
touch. If a top-1 candidate is the correct word, this one touch
of a user can be saved. The 5-best candidate list of the con-
ventional interface contains the 5-best candidates, while the
candidate list of our interface contains the 2nd-6th candi-
dates.

4. Long Context Match (LCM)

4.1 Algorithm Outline

For each error word, the system generates the candidate list
for its corresponding correct word in the following steps:

Step-1 Extracts its location, error type, and user-validated
prefix and suffix to make search queries.

Step-2 Uses those queries to search higher-order n-grams
for matched word sequences, and from each of them
extracts the word in its position as a candidate.

Step-3 If the number of candidates is one, the system di-
rectly outputs it. Otherwise, goes to Step 4.

Step-4 Calculates its LM score and AM score for each can-
didate.

Step-5 Calculates its posterior probability of each candi-
date, and orders candidates in their descending order.

We explain the details of Steps 1, 2, and 4 in the fol-
lowing.

4.2 Making Search Queries

Let

W = w1, . . . , w j−1︸���������︷︷���������︸
Wpre

, w j, w j+1, . . . , wT︸���������︷︷���������︸
Wsu f

,

be one of the word sequence hypotheses corresponding to
the acoustic observations X, where T is the number of words
in W. Suppose one word w j is a substitution error or a dele-
tion error. Then, W is divided into three fragments: a prefix
Wpre, an error word w j, and a suffix Wsu f . We here assume
that the prefix Wpre is validated by users, while some words
in the suffix Wsu f may not be validated by users. Practically,
since we cannot deal with a very long context, we have to
limit the length (the number of words) in the context. Let
p be the number of words we use in the prefix and s be the
number of words in the suffix, and let Wcp be w j−p, . . . , w j−1,
Wcs be w j+1, . . . , w j+s, and Wc be a set (Wcp, Wcs). We use a
wild-card word “.*” to represent an error word. Let the max-
imum number of words in a query is seven. This number
corresponds to the largest n in our n-grams model. For ex-
ample, suppose that one ASR output contains 9 words where
the 5th, 7th, and 8th words correspond to substitution errors.
For the error word w5, the longest length of queries is 7, the

Table 1 All the possible search queries for error word w5 from a word
sequence w1, . . . , w9, where w5, w7, w8 are substitution errors. We set the
maximum length of query to 7 and the minimum length of query is 2. “.*”
is a wild card word.

w1 w2 w3 w4w5 w6 w7 w8 w9

7-grams w1 w2 w3 w4.∗ w6 .∗
w2 w3 w4.∗ w6 .∗ .∗
w3 w4.∗ w6 .∗ .∗ w9

6-grams w1 w2 w3 w4.∗ w6
w2 w3 w4.∗ w6 .∗
w3 w4.∗ w6 .∗ .∗
w4.∗ w6 .∗ .∗ w9

5-grams w1 w2 w3 w4.∗
w2 w3 w4.∗ w6
w3 w4.∗ w6 .∗
w4.∗ w6 .∗ .∗
.∗ w6 .∗ .∗ w9

4-grams w2 w3 w4.∗
w3 w4.∗ w6
w4.∗ w6 .∗
.∗ w6 .∗ .∗

3-grams w3 w4.∗
w4.∗ w6
.∗ w6 .∗

2-grams w4.∗
.∗ w6

shortest length of queries is 2. Table 1 shows all the pos-
sible queries in this case. Any word sequence in n-grams
that matches those queries is an alternative word sequence,
where the word in that error word position is a candidate
word for the correct word.

4.3 Long Context Match

We use higher-order in-domain n-grams and Web n-grams.
Our target is to find the word sequences which match to
the search queries except the error word itself. A backoff
search algorithm starts from the longest query with length
“7” to length “2”. Algorithm 1 shows our backoff search
algorithm. We search the n-length word sequences which
match to all the possible queries in n-grams. If we can not
find any candidate, we search the word sequences again by
using (n − 1)-length queries in (n − 1)-grams. We continue
this process until we find at least one candidate in the current
n-grams. When we get at least one candidate word from n-
grams in a certain n, we stop searching. We call this process
Long Context Match (LCM). If there is only one candidate
in a certain n, the system directly outputs it. Otherwise, the
system calculates the score of each candidate word as fol-
lows.

The conventional ASR uses the maximum a poste-
rior (MAP) decision rule to output a word sequence Ŵ,
which maximizes the posterior probability P(W |X) given a
sequence of acoustic feature vectors X:

Ŵ = arg max
W∈Σ

P(W |X)

= arg max
W∈Σ

P(X|W)P(W)
P(X)

, (2)

where Σ denotes the set of all possible sentences, P(W) is
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Algorithm 1 Long Context Match
for (n = 7;n−−;n > 1) do

for (i = n-1;i−−;i ≥ 0) do
use (w j−i, . . ., w j−1, .∗, w j+1, . . ., w j+n−i−1) as searching queries
to search the n-grams data; store the matched word sequences and
their counts in the memory

end for
if in the stored data, there is at least one word sequence then

stop searching
end if

end for
n: “n” in n-grams
j: the error word position in a word sequence
.∗: any word

the probability of W obtained by using a LM, and P(X|W) is
the probability of X given W obtained by using an AM. The
posterior probability P(W |X) is often used as a confidence
measure for the decision that X is recognized as W.

Then, the word posterior probability P(w′j|X,Wc) of

candidate w′j for the jth word is calculated as follows:

P(w′j|X,Wc) =
P(X,Wc, w

′
j)∑

wm∈We
P(X,Wc, wm)

, (3)

where wm denotes any possible candidate word, and We de-
notes the set of all possible candidate words for the error.

We split the sequence of acoustic feature vectors X into
three fragments Xpre, Xe, Xsu f , assuming their boundaries
are known. Then,

P(w′j|X,Wc)

=
P(Xpre, Xe, Xsu f |w′j,Wc)P(w′j|Wc)P(Wc)

∑
wm∈We

P(Xpre, Xe, Xsu f |wm,Wc)P(wm|Wc)P(Wc)

=
P(Xpre, Xe, Xsu f |Wcp, w

′
j,Wcs)P(w′j|Wc)

∑
wm∈We

P(Xpre, Xe, Xsu f |Wcp, wm,Wcs)P(wm|Wc)
,

(4)

where Xpre, Xe, and Xsu f are a sequence of the acoustic fea-
ture vectors of the preceding contexts, that of the error word,
and that of the succeeding contexts, respectively. We further
assume that P(Xpre|Wcp) does not depend on the error and
the suffix, P(Xe|wm) does not depend on the prefix and the
suffix, and P(Xsu f |Wcs) does not depend on the prefix and
the error. Then we can rewrite Eq. (4) as:

P(w′j|X,Wc)

=
P(Xpre|Wcp)P(Xe|w′j)P(Xsu f |Wcs)P(w′j|Wc)

∑
wm∈We

P(Xpre|Wcp)P(Xe|wm)P(Xsu f |Wcs)P(wm|Wc)

=
P(Xe|w′j)P(w′j|Wc)

∑
wm∈We

P(Xe|wm)P(wm|Wc)
. (5)

Since it is difficult to precisely calculate the denomina-
tor in Eq. (5), we calculate the product P(Xe|wm)P(wm|Wc)
only for candidate words that match the search queries. Fi-
nally, we introduce a LM weight λ in order to balance be-
tween the AM score and the LM score:

P(w′j|X,Wc)

=
exp(ln P(Xe|w′j) + λ ln P(w′j|Wc))

∑
wm∈We

exp(ln P(Xe|wm) + λ ln P(wm|Wc))
. (6)

4.4 LM and AM Score Calculation

If we get more than one candidate words from the LCM, we
calculate the LM probability of each candidate word. The
probability of a candidate word w′j is equal to the count of
the word sequence including w′j divided by the total number
of counts of all the matched word sequences:

P(w′j|Wc) =
C(Wc, w

′
j)

C(Wc)

=
C(Wc, w

′
j)∑M

m=1 C(Wc, wm)
, (7)

where C(Wc, w
′
j) is the number of occurrences of sequence

(Wc, w′j) in the n-grams data, C(Wc) is the total number of
occurrences of all the matched word sequences, and M is
the number of candidate words obtained from the n-grams
data.

We use the same AM as the one used in the first
step speech recognition, to calculate the acoustic probability
P(Xe|w′j). We utilize the grapheme-to-phoneme conversion
toolkit to obtain the phoneme label sequence of each can-
didate word. In order to obtain speech feature vectors Xe,
we need its starting time and ending time. For a substitution
error, we assume that the segmentation for X is correctly
done in the speech recognition process, and we use the re-
sult of segmentation. For a single deletion error, we decode
the speech segment from the starting time of the previous
word to the ending time of the next word for three words,
and extract an AM score of the deleted word at the center. If
a deletion error exists before or after another error word, its
corresponding speech segment is difficult to extract. We set
the AM score to zero in LCM method for such cases.

4.5 Combination of LCM and WCN

The LCM method utilizes the posterior probability obtained
from the user validated contexts, while WCN method calcu-
lates the posterior probability from a word lattice or graph
generated by a speech decoder. Since these two methods are
complementary to each other, we combine them by linearly
interpolating their posterior probabilities. For each candi-
date word wr obtained from LCM and WCN, we use Eq. (8)
to calculate the final posterior probability:

P(wr |X,Wc, L)

= αPWCN(wr |L) + (1 − α)PLCM(wr |X,Wc), (8)

where L is a word lattice or graph for X, and α is the in-
terpolation weight for WCN, where 0 ≤ α ≤ 1. Since both
LCM and WCN utilize the most probable word sequence hy-
pothesis for segmenting an utterance into words, they share
the same segment for a substitution error. However, for a
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deletion error, LCM may not have its aligned segments in
WCN. For a substitution error or a deletion error, its can-
didate words may appear only in WCN or only in LCM. If
a candidate word appears in LCM but does not appear in
WCN, we set its posterior probability in WCN to zero. If
a candidate word appears in WCN but does not appear in
LCM, we set its posterior probability in LCM to zero.

5. Evaluation of the User Load

For insertion errors, in the conventional interface, two
strokes are needed for correcting one insertion error. When a
user locates the error, the interface will show a candidate list,
and a user can choose [Delete] on the candidate list (such as
[23]). In our interface, only one stroke is needed for cor-
recting one insertion error. A user draws a “strikethrough”
to delete an insertion error.

For substitution and deletion errors, we divided the er-
rors into three types:

Type-1 error : Can be automatically corrected by the top-1
candidate word. A user does not need to do anything.

Type-2 error : Can be corrected by tapping the correct
word from the candidate list.

Type-3 error : Can be corrected through the other input
modalities. A user taps the error word again and edits
the intended word by using the keyboard or handwrit-
ing in a pop-up window.

In the conventional interface, after a user marks an er-
ror word, the system immediately provides a 5-best candi-
date list. There are only two types of errors, Type-2 and
Type-3 errors. The number of strokes a user needs to cor-
rect these two types of errors are: one stroke for correcting
one Type-2 error, and more than one strokes for correcting
one Type-3 error. In our interface based on the combination
of LCM and WCN method (“LCM +WCN”), the candidate
list includes from top-2 to top-6 candidates. The number of
strokes required to correct these three types of errors are:
zero stroke for correcting one Type-1 error, one stroke for
correcting one Type-2 error, and more than one strokes for
correcting one Type-3 error.

6. Experiments

We carried out two kinds of experiments. One is to confirm
that our proposed “LCM + WCN” method generates more
relevant candidate lists than only WCN does, and the other
is to evaluate users’ load of our proposed error correction
interface.

6.1 Experimental Setup

We evaluated the proposed method using speech data from
academic and extemporaneous lectures in the Corpus of
Spontaneous Japanese (CSJ) [19]. The number of lectures
is 2701, and the total length of the speech data is 530 hours.
We evaluated our method by cross-validation. We randomly

divided the lectures into two sets: set A contains 1350 lec-
tures, and set B contains 1351 lectures. The triphone AM
and the trigram LM were constructed. The T 3 decoder [31]
was used for speech recognition. The average word recog-
nition accuracy is 65.2%. For these two sets, there are
1,558,761 substitution errors, 593,495 deletion errors, and
248,919 insertion errors. The system identifies the types of
errors based on users’ gestures. We assume that this iden-
tification is always correct in this paper. While users may
use many ways to mark successive multiple errors, collect-
ing such data may take much effort. Instead, we align the
recognized word sequence and the correct word sequence
by using dynamic programming, and decide the error type
(S, I, or D) for each error word automatically.

For in-domain LCM, we used CSJ text data to generate
the word 1-grams to 7-grams and their observed frequency
counts. For Web LCM, we used Google Japanese Web n-
grams [32]. It consists of Japanese word 1-grams to 7-grams
and their observed frequency counts generated from over
255 billion words of texts. The n-grams were extracted
from publicly accessible Web pages that were crawled by
Google in July 2007. This data set contains only n-grams
that appear at least 20 times in the processed text data. Web
n-grams data does not provide the pronunciation for each
word. We utilized a grapheme-to-phoneme conversion tool,
Chasen Morphological Analyzer [33], to convert Japanese
characters to monophones. The size of Web text data, rang-
ing from 2-grams to 7-grams, is 49.7 G. We utilized inverted
index and binary search provided by Apache Solr for search-
ing this large-scale Web text data. The minimum and maxi-
mum lengths of contexts to use LCM method is one and six,
respectively.

We also evaluated the performance of the WCN-
based error correction method. In order to generate
the WCN-based candidate list, we employed the SRILM
toolkit [34] which implements a simplified algorithm to con-
struct WCNs [35].

6.2 Comparison of Methods

In Tables 2 and 3, we compare the n-best accuracies and
MRRs of the baseline WCN-based method and the proposed
LCM-based methods for Sub and Del errors. We confirmed
that the ranks of correct words in the candidates lists were
improved by using user validated information and higher-
order n-grams text data. For example, for Sub errors, “Web
LCM + WCN” improved 1-best accuracy by 11.5% and
MRR by 16.7%. For Del errors, “In-domain LCM (w/o
AM) + WCN” improved 1-best accuracy by 102.3% and
MRR by 92.3%.

From Tables 2 and 3, we also found that the best LCM
method for Sub errors was “Web LCM”, and the best LCM
method for Del errors was “In-domain LCM (w/o AM)”.
We also examined their combination “Web LCM + WCN
for Sub” + “In-domain LCM (w/o AM) + WCN for Del”.
Table 4 shows its results for Sub and Del errors. It improved
the 1-best accuracy by 23.0%, and improved MRR by 28.0%
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Table 2 The n-best accuracy and MRR when correcting Sub errors. The
results are obtained by using all the Sub errors from set A and set B. “w/o
AM” means without using acoustic model probability. α (0 � α � 1) is
the interpolation weight for WCN method, which is optimized by using
two-fold cross-validation.

N-best accuracy (%)
Method 1-best 5-best 10-best MRR

WCN 22.6 39.3 44.4 0.30
In-domain LCM
(w/o AM) 13.9 23.4 26.7 0.18
In-domain LCM 17.1 25.7 28.4 0.21
Web LCM
(w/o AM) 12.7 22.4 26.0 0.17
Web LCM 16.1 24.9 27.8 0.20
In-domain LCM +
WCN
(α = 0.7) 24.6 46.5 53.0 0.34
Web LCM +
WCN
(α = 0.7) 25.2 46.1 52.3 0.35

Table 3 The n-best accuracy and MRR when correcting Del errors. The
results are obtained by using all the Del errors from set A and set B. “w/o
AM” means without using acoustic model probability. α (0 � α � 1) is
the interpolation weight for WCN method, which is optimized by using
two-fold cross-validation.

N-best accuracy (%)
Method 1-best 5-best 10-best MRR

WCN 8.6 19.4 22.7 0.13
In-domain LCM
(w/o AM) 16.0 28.2 32.7 0.22
In-domain LCM 15.0 27.2 31.9 0.21
Web LCM
(w/o AM) 13.1 24.9 29.9 0.19
Web LCM 12.1 23.8 28.9 0.18
In-domain LCM
(w/o AM) +WCN
(α = 0.2) 17.4 34.4 41.6 0.25
Web LCM
(w/o AM) +WCN
(α = 0.4) 15.1 32.0 39.2 0.23

Table 4 The n-best accuracy and MRR when correcting all the Sub and
Del errors. LCM represents “Web LCM for Sub” + “In-domain LCM (w/o
AM) for Del”. “LCM +WCN” represents “Web LCM +WCN for Sub” +
“In-domain LCM (w/o AM) +WCN for Del”. The results are obtained by
using all the Sub and Del errors from set A and set B.

N-best accuracy (%)
Method 1-best 5-best 10-best MRR

WCN 18.7 33.8 38.4 0.25
LCM 16.1 25.8 29.2 0.21
LCM +WCN 23.0 42.9 49.4 0.32

from WCN.
We confirmed that the effectiveness of using large-scale

Web text data for Sub errors. However, for Del errors, LCM
using in-domain text data is better than that using Web text
data. This might be due to 49% deleted words are particle
words, which more often appear in the in-domain text data
than in the Web text data.

We found that the acoustic probabilities are useful for
correcting Sub errors. Without using acoustic probabilities,
some candidate words were semantically similar but acous-

tically much different. For example, in an ASR output sen-
tence “当事者間で本数が生じて” (当事/t o: j i/者/sh
a/ 間/k a N/ で/d e/ 本数/h o N s u:/ が/g a/ 生じ/sh o: j i/
て/t e/), “本数/h o N s u:/” was the error word. Before using
acoustic probabilities, the top-1 candidate for corercting the
error was “トラブル/t o r a b u r u/”. After using acous-
cit probabilities, the top-1 candidate was “紛争/f u N s o:/”,
which is the correct word.

When correcting Del errors, we found that the acous-
tic probability is not helpful. The reason is that the acous-
tic models can not distinguish a deleted word and its sur-
rounding words well. Most of the deleted words are short
Japanese particle words, such as “を/o/”, “が/g a/”, “の/n
o/”, “と/t o/”, “で/d e/”. The ASR system misrecognizes a
deleted word as a part of its preceding or following word.
For example, in a two word phrase “情報/j o: h o:/ を/o/”,
“を/o/” was deleted from the recognition result. The acous-
tic model is not useful to recover this error, because “情報/j
o: h o:/” and “情報/j o: h o:/を/o/” are acoustically almost
identical.

6.3 Comparison of Interfaces

Table 5 shows the analysis of the user’s load (the number
of strokes/touches) for correcting 100 error words (exclud-
ing the insertion errors) using the conventional interface [23]
and proposed interface. We used all the Sub errors and Del
errors to collect the statistics of the n-best accuracies by us-
ing WCN and “LCM + WCN”. In our proposed method,
we assume that a user pushes the “End” button after he/she
marks 100 error words. When a user finishes correcting all
the errors, and then he/she pushes the “End” button again.
The number of strokes/touches is simulated by using the re-
sults of Table 4. From Table 5 we can see that our user in-
terface is more effective than the conventional interface. By
using “LCM + WCN”-based interface, 12% of the user’s
load was reduced from using WCN-based conventional in-
terface. Furthermore, the advantage of our user interface is
more obvious when correcting insertion errors.

6.4 Detailed Analysis

Here we report several diagnostic experiments and associ-
ated analyses of our LCM-based method.

6.4.1 The Effect of Multiple Errors

In order to analyze the effect of multiple errors on the per-
formance, we investigated the performance of our LCM
method for the following two groups, single error and mul-
tiple errors. We show the results in Table 6.

We noticed that in both Sub and Del error cases, the
multiple errors occurring successively make the LCM per-
formance worse, 18.1% of performance degradation for Sub
case, and 46.3% of performance degradation for Del case.
The ability of using LCM method to correct Del errors is
rather limited in the case of successive multiple errors.
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Table 5 The number of strokes which a user needs to correct 100 error words (only Sub and Del
errors) in the proposed user interface and in the conventional interface. Since the conventional interface
does not replace the error by using a top-1 candidate and does not have an “End” button. The symbol
“-” is used for indicating zero action.

Interface Conventional Proposed
Method WCN LCM +WCN WCN LCM +WCN
Mark errors 100 100 100 100
Correct Type 1 errors - - 0 0
Correct Type 2 errors 34 43 16 22
Correct Type 3 errors ≥ 132 ≥ 114 ≥ 130 ≥ 110
Push the “End” button - - 2 2
Total ≥ 266 ≥ 257 ≥ 248 ≥ 234

Table 6 The analysis of the effect of multiple errors. All the Sub errors
and Del errors are divided into two groups, single error and multiple errors.
“w/o AM” means without using acoustic model probability. Percentage
written in parentheses indicates that the proportion of the single error and
the multiple errors in Sub errors or Del errors.

1-best
Error groups LCM method accuracy (%)

Sub Single error
(20%) Web LCM 18.8
Multiple errors
(80%) Web LCM 15.4

Del Single error In-domain LCM
(19%) (w/o AM) 25.5
Multiple errors In-domain LCM
(81%) (w/o AM) 13.7

Table 7 The analysis of the effect of suffix errors. All the Sub errors and
Del errors are divided into two groups, correct suffix and suffix containing
errors. “w/o AM” means without using acoustic model probability. Per-
centage written in parentheses indicates that the proportion of the correct
suffix and the suffix containing errors in Sub errors or Del errors.

1-best
Error groups LCM method accuracy (%)

Sub Correct suffix
(30%) Web LCM 25.1
Suffix
containing errors
(70%) Web LCM 12.1

Del Correct suffix In-domain LCM
(11%) (w/o AM) 32.2
Suffix
containing errors In-domain LCM
(89%) (w/o AM) 13.9

6.4.2 The Effect of Suffix Errors

In order to analyze the effect of suffix errors on the per-
formance, we investigated the performance of our LCM
method for the following two groups, correct suffix and suf-
fix containing errors. We show the results in Table 7.

We noticed that in both Sub and Del error cases, the
errors in the suffix make the performance worse, 51.5% of
performance degradation for Sub case, and 56.8% of per-
formance degradation for Del case. We found on average
the influence of suffix errors is larger than the influence of
multiple errors in case of performance degradation.

Fig. 5 N-best accuracy of “LCM +WCN” method and WCN method.

6.4.3 N-best Accuracy

We checked the n-best accuracy when we increased the
number of candidate words into 100 and 1000 in order to
know the limitation of “LCM + WCN” method and WCN
method. We show the results in Fig. 5. From 100-best list to
1000-best list, the n-best accuracy continued to rise by using
“LCM +WCN”, while there was almost no change by using
WCN method. We also realized that even using 1000-best
list, there are still 35% of errors can not be corrected. In the
future, we plan to improve the performance of the baseline
speech recognizer.

6.4.4 Advantages and Disadvantages of the Proposed
Method

The proposed method uses not only user validated preceding
words but also user validated succeeding words, and higher-
order n-grams text data. As a result, it can generate can-
didates more accurate than the WCN-based method. How-
ever, when a user marks an error, the user needs to mark the
following errors to trigger the process of this error, which
means the user needs to wait a little bit. In addition to this,
our method is more computationally costly than the WCN-
based method.
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6.4.5 Usability Discussion

The system reaction time (the time required for the system
to generate the feedback to the user) has a significant effect
on the usability. Since the current implementation of our
methods was not optimized for real use, it does not operate
in real-time. Searching large-scale Web text data is the most
time consuming part. As we mentioned in Sect. 6.1, we uti-
lized inverted index and binary search provided by Apache
Solr. One query search takes 0.26 sec on average when us-
ing 2 GB memory cache. The current search speed can be
improved by using different ways, for example by raising
Solr’s cache size, by getting faster hardware, especially a
faster I/O system, etc. It is not difficult to realize real-time
operation.

7. Conclusions and Future Work

In this study, we proposed a simple multimodal error cor-
rection interface and a “LCM + WCN” method to provide
users more relevant candidate lists than WCN alone. We
developed a LCM method to obtain the candidates comple-
mentary to the conventional WCN results. Assuming that
not only the preceding words but also the succeeding words
of the error word are validated by the user, we used such a
context to search the corpora of higher-order n-grams for
the matching word sequences. We also utilized the Web
text data, which includes additional data that does not ex-
ist in in-domain text data. By using the CSJ corpus, we
confirmed the effectiveness of the proposed method and in-
terface. Compared to the conventional WCN method, the
proposed “LCM + WCN” method improved the 1-best ac-
curacy by 23% and improved the MRR by 28%. Compared
to the conventional WCN-based interface, our “LCM +

WCN”-based interface successfully reduced the user’s load
by 12%.

Based on the analysis of LCM results, we found that
the speech recognition errors in the suffix and the multiple
errors significantly degrade the performance. Therefore, we
consider that it is important to propose some techniques for
avoiding this influence. We also found even using 1000-best
candidate list, some 35% of errors still can not be corrected.
Therefore, we plan to improve the performance of the base-
line speech recognizer.
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