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ABSTRACT 

In the past decades, road-network congestion especially in urban has become 

more serious due to an increasing travel demand and limited traffic capacity. 

Congestion is known to cause travel and waiting costs, pollution emissions 

and even increase the probability of road hazards, which further restrict our 

economic prosperity and social progress. Therefore, effective congestion 

management mechanism as an foundation component of human society has 

its research and practical significance to benefit the travelers, businesses 

and environment. Traditional congestion management mostly emphasizes on 

either building more roads to expand the traffic capacity or reducing travel 

demand through government intervene measures. However, it is impractical 

to set up enough roads to completely satisfy the increasing travel demand. 

And, the effect of government intervention measures is always not obvious 

with an increasing travel demand. Besides, the recent literature has 

witnessed a great interest and success in designing intelligent 

transportation systems (ITS), such as intelligent traffic signal control and 

vehicle route guidance to solve the road-network congestion problem.  

Under such a background, this thesis studies the congestion management 

issue based on vehicle route guidance of intelligent transportation system.  

The literature review shows that agent-based framework with bottom-up 

perspective has been widely used in this field because of its natural and 

suitable for capturing the dynamic and geographically distributed features of 
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transportation systems. In our study, we aim to propose agent-based models 

with weighted multi-objective optimization algorithm to implement vehicle 

route guidance. Especially, our focus is to construct a quantitative index 

sequence which could achieve the congestion evaluation and management of 

road-network at the same time. First, a multi-agent system is built, where 

each agent stands for a vehicle that would adapt its route to a dynamic 

road-network congestion condition by a two-objective optimization process: 

the shortest path and the minimal congested degree of the target link. The 

agent-based approach captures the nonlinear feedback between vehicle 

routing behaviors and road-network congestion status, thus we can observe 

the formation and evolution of road-network congestion through agent-based 

simulations. Next, a series of quantitative indexes is constructed to describe 

the congested degree of road nodes, and such indexes are used as weights in 

the two-objective function employed by the agents for routing decision in a 

changing traffic environment. In this way, our proposed agent models with 

adaptive weight-based multi-objective optimization algorithm could achieve 

congestion distribution evaluation and congestion management at the same 

time. Besides, we define a set of evaluation criteria to measure the effect of 

our proposed agent models on road-network congestion improvement. 

Intensive experiments on a generated road-network topology and a real 

road map have both shown an applicability and effectiveness of our proposed 

agent model on reducing congestion. We further examine the agent model 

effect with adaptive weight-based two-objective optimization algorithm. The 

simulation results have also confirmed an applicability and effectiveness of 
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the node weights as a new quantitative index sequences which describe the 

road-network congestion distribution, and shunt vehicles on seriously 

congested roads based on that index simultaneously. By comparing the 

distribution of those congested links or nodes on the real road map, we find 

that most congested locations are the unique road connecting two regions or 

road junction. The reason is that these locations always connect traffic 

arteries, thus most agents of the simulated traffic system have to pass such 

links or nodes to go through the regions and finally reach their destinations. 

The contributions of our study in the field of congestion management 

could be found in the hybrid route guidance strategy which quantifies the 

influence of congestion avoidance and implements a two-objective function 

which considers both shortest path and congestion avoidance for the routing 

optimization; and agent-based models with weighted two-objective algorithm 

for understanding the formation and reduction of road-network congestion 

by capturing the nonlinear feedback between agent routing behaviors and 

road-network congestion conditions; as well as a quantitative index sequence 

which measures the real-time congestion distribution and also is used as 

weights of the two-objective function simultaneously for implementing agent 

routing selection function, it could achieve a good tradeoff between user 

satisfaction and effective utility of road-network. The proposed model and 

method will have their significant potentials for actual traffic congestion 

control. With the help of GPS devices, the proposed model and method will 

have their theoretical value and practical significance for both vehicle 

navigation and route guidance used in the field of ITS. 
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1. INTRODUCTION 

1.1 RESEARCH BACKGROUND  

In recent years, due to the pace of human work and life continue to 

accelerate, and the popularity of transportation tools and the expansion of 

transportation networks, urban transportation systems have been 

experienced an unprecedented flourish and outspread. But the attendant 

problems become more apparent. One serious problem is the congestion 

caused by an increasing number of vehicles and poor traffic management 

mechanisms with limited road passage capacity. There have already existed 

many different definitions of traffic congestion. In this study, we use one 

popular definition proposed by Turner: ‘congestion is the time or the delay in 

excess of that normally incurred under light or free flow traffic condition’ 

[Turner, 1996]. The sudden traffic accidents or periodical holiday events are 

always to cause traffic congestion when no efficient and timely emergency 

mechanisms work to divert vehicle groups. Traffic congestion is known to 

cause travel and waiting cost, the long waiting queue of vehicles exacerbates 

emissions and increases the probability of road hazards, it will further 

impact on the economic development and environmental sustainability 

[Desai, 2011]. Nowadays, road-network congestion especially in urban has 

become a major bottleneck restricting economic prosperity and social 

progress. Therefore, effective congestion management mechanism as an 

foundation component of human society has its research and practical 

significance to benefit the travelers, businesses and environment.  

Current solutions for road-network congestion are mostly achieved by 

expanding the road traffic capacity and restricting the traffic flow, which can 

be divided into three categories: (1) building more roads and infrastructures 
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to increase the road traffic capacity; (2) reducing traffic demand through 

intervene by government management measures; and (3) scattering traffic 

flow by designing intelligent transportation systems (ITS), such as 

intelligent traffic signal control and vehicle route guidance. However, it is 

impractical to set up enough roads and infrastructures to completely satisfy 

the increasing travel demand. Furthermore, the effect of government 

intervention measures such as limiting vehicle travel dates to either odd or 

even dates according to the final figure of vehicle license plate is always not 

obvious with an increasing travel demand and large traffic flow.  

Under such a background, Intelligent Transportation Systems (ITS) are 

becoming more and more widely adopted as an important solution for road- 

network congestion management. ITSs are advanced applications which aim 

to provide innovative services relating to different modes of traffic 

management and enable various users to be better informed and make safer, 

more coordinated, and smarter use of transportation networks [EU Directive, 

2010]. Although ITS may refer to each possible transportation mode, we use 

the definition provided by EU Directive 2010/40/EU (7 July 2010), in which 

ITS are ‘systems where information and communication technologies are 

applied in the field of road transportation, including infrastructure, vehicles 

and users, and in traffic management and mobility management, as well as 

for interfaces with other modes of transportation’ [EU Directive, 2010]. In 

the application of ITS to traffic management, certain studies show that the 

travel time may increase 6% to 19% when users make vehicle routing 

selection without considering any information provided by GPS and/or route 

guidance system [Adacher, 2014]. Meanwhile, another challenge for 

conducting correct traffic management in a given road-network section is the 

design of right ITS, able to implement effective vehicle route guidance 

[Adacher, 2014].  
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The past decades have witnessed an increasing interest in the application 

of agent-based approaches to study the urban road-network congestion 

problem. The autonomous and distributed nature of multi-agent system 

(MAS) makes it suitable to capture the dynamic and geographically 

distributed features of transport system. Using MAS approaches, vehicles 

are defined as agents and traffic congestion is regarded as an emergent 

result of nonlinear feedback between agent behaviors and traffic status. 

Thus, with a bottom-up perspective, agent models can relate microscopic 

vehicle routing behavior and macroscopic traffic evolving situation to 

address the real world congestion problem.  

In the literature, earlier methods mainly performs static route 

recommendation without updating the related road-network information, 

they always calculate single measures such as shortest path, travel time 

with exact or approximation algorithms to implement route guidance. More 

sophisticated route guidance systems make use of information on current 

traffic conditions in the road-network. In these systems, the road conditions 

are generally obtained through communication with a central station which 

connects to sensors placed in the road-network. Based on the knowledge of 

traffic condition of the road-network, route guidance approaches are further 

divided into two categories: reactive route guidance and anticipatory route 

guidance. The former approaches provide path to drivers at any given time 

based on the traffic situation at that moment, and the latter recommend 

path based on the prediction of future traffic conditions. However, one 

problem is how future conditions could be correctly predicted. In practice, 

there is no consensus on which of these two approaches should be used 

[Bottom, 2000].  

Meanwhile, scientists suggest that route guidance systems should take 

into account the overall road usage so as to improve traffic management and 
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avoid road-network oversaturation phenomenon [Adler, 1998]. This can be 

achieved by providing the route guidance systems with multiple path routing 

selection embedded algorithms in order to split vehicles over several paths 

[Adacher, 2007] [Beccaria, 1992]. Different approaches have been proposed 

to handle multiple path routing problems, such as system optimum approach 

and user equilibrium approach. The system optimum approaches always 

route the vehicle along an optimum path measured by overall time or 

distance of the road-network; and the user equilibrium approaches aim to 

satisfy  the individual-level optimizations such as minimal travel time or 

shortest path and then route the vehicle. Roughgarden and Tardos 

investigate the relation between these two approaches, and find that the 

user equilibrium approach often proposes solutions outperforming the 

system optimum approach [Roughgarden, 2000]. However, the route 

guidance systems always cause a dilemma by recommending a same path to 

too many drivers. In order to solve this problem, Adacher et al. propose a 

multiple path routing algorithm which considers both user's preferences and 

traffic information provided by the reference nodes to guide the vehicle 

routes [Adacher, 2014]. Although the results show that the proposed 

methodology achieves a good trade-off between single user satisfaction and 

global utilization of the road-network, how to correctly classify user 

preferences becomes another meta-problem. Besides, the definition and 

selection of quantitative indexes to measure road-network congestion is not 

an easy task and each study depending on its purpose focuses on a suitable 

methodological framework. 

1.2 MOTIVATION OF THE RESEARCH 

Vehicle route guidance as one basic method for dealing with traffic 

congestion problem in the road-network transportation system has always 
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been concerned as a hot research topic and engineering issues. In the field of 

study of methodology for conducting vehicle route guidance, agent-based 

framework with bottom-up perspective are natural and suitable for 

capturing the dynamic and geographically distributed features of 

transportation systems, thus have been widely used in the study of vehicle 

route guidance. As literature review shows that current route guidance 

systems pay rare attention to the dilemma by suggesting the same path to 

too many drivers, which may even exacerbate road-network congestion. On 

the other hand, the user equilibrium approaches have often proposed 

solutions outperforming the system optimum approaches over multiply 

paths. Therefore, we intend to design agent-based models which implement a 

good trade-off between single user satisfaction and global utilization of the 

road-network by designing right routing selection algorithm so as to 

implement effective route guidance of ITS. 

The motivations of this thesis are: (1) to design a routing selection 

function which quantifies the influence of congestion avoidance and 

implements a two-objective algorithm which considers both shortest path 

and congestion avoidance for the routing optimization; (2) to propose 

agent-based models which could capture the nonlinear feedback between 

vehicle routing behaviors and road-network traffic conditions, so as to 

analyze the congestion formation and evolution especially focus on finding 

common features of those seriously congested roads; (3) to define a set of 

evaluation criteria, which could evaluate the performance of our proposed 

agent-based models for solving road-network congestion problem; (4) to 

construct a quantitative index sequence which describes the utilization of 

the road-network and evaluates the congestion distribution based on current 

information of road conditions obtained from the referenced intersection 

nodes, and also use such indexes as weights in the route selection function to 
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shunt vehicles on those congested roads. 

1.3 OBJECTIVES OF THE RESEARCH 

The objectives of this research are to formulate a comprehensive 

methodology for quantifying and identifying congestion characteristic based 

on variations in road-network congestion degree and distribution. Our focus 

is to build agent-based models with multi-objective optimization algorithm in 

order to achieve a good tradeoff between user satisfaction and effective 

utility of road-network.  

We describe the main objectives as follows: (1) to design a routing 

selection function which supports vehicle agent routing decision by satisfying 

two objectives as the shortest path and the minimal congested degree of the 

target link simultaneously; (2) to define agent-based models which relate 

vehicle routing behaviors and road-network traffic dynamics to analyze the 

road-network congestion problem, especially focusing on finding common 

features of those seriously congested positions; (3) to construct a quantitative 

index sequence which describes the global congestion distribution of the 

road-network and are also used as weights in the multi-objective function to 

shunts vehicles on those congested roads; and (4) to define a group of 

evaluation criteria for validating the effectiveness of our proposed models 

and methods on road-network congestion improvement.  

1.4 POSITION OF THE RESEARCH  

The road-network congestion management is a key application in the field of 

intelligent transport system, therefore it is significant to analyze the 

internal mechanism of congestion formation and nonlinear feedback between 

different constitute units, such as infrastructures, vehicles and road-network, 
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and further understand the common features of those seriously congested 

intersections and roads in the transportation systems.  

The position of this research in social science is at the methodology level, 

including the modeling, simulation and evaluation of road-network traffic 

condition so as to implement route guidance of intelligent transportation 

system. First, a multi-agent system is built, where each agent stands for a 

vehicle that adapts its route to real-time road-network congestion status by a 

two-objective optimization process: the shortest path and the minimal 

congested degree of the target link. The agent-based models capture the 

nonlinear feedback between vehicle routing behaviors and road-network 

congestion states. Next, a series of quantitative indexes is constructed to 

describe the utilization and congestion distribution of the road-network, and 

such indexes are also used as weight in the two-objective function employed 

by the agents for routing decision and congestion avoidance. In this way, our 

proposed agent model with adaptive weight-based multi-objective algorithm 

could achieve congestion distribution evaluation and congestion 

management at the same time. 

1.5 ORGANIZATION OF THIS THESIS  

This thesis is organized as shown in Fig 1.1: 
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Fig 1.1 Organization of this thesis 

As shown in Fig 1.1, the rest of this thesis is organized as follows: 

Chapter 2 makes a brief literature review of the related work; Chapter 3 

proposes an agent-based model with multi-objective algorithm on routing 

selection and congestion management and conducts experiments on a 

generated road-network and a real-map to validate the effectiveness of this 

basic agent-based model on congestion improvement; Chapter 4 constructs a 

quantitative index series to measure the traffic congestion distribution, and 

such index sequence are also used as adaptive weights in the agent model to 

achieve the traffic congestion reduction, the model also validated by both 

generated road-network and a real road map. Finally, chapter 5 concludes 

the work of this study and proposes some ideas for future work. 

1.6 SUMMARY 

In this chapter, we have first introduced the background of this research, and 
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then have presented our motivations and objectives for building agent-based 

models for road-network congestion management. Next, we have elaborated 

the position of this research in social science. And finally, we have given the 

organization of this thesis. 
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2. RELATED WORK 

2.1 INTRODUCTION 

In this chapter, we make a brief literature review of this study. First, 

agent-based models for congestion management are compared and analyzed. 

Then, different approaches of route guidance in the application of the 

intelligent transportation systems are presented. And finally, routing 

selection algorithms for implementing vehicle route guidance in the 

intelligent transportation system are described. 

2.2 ABMS FOR TRAFFIC CONGESTION MANAGEMENT 

There have been many contributions that apply agent-based models to study 

the traffic congestion problem. According to the focus on different constituent 

units of transportation systems, we classify these works into three categories 

as Infrastructure-based agent approaches, Vehicle/Driver-based agent 

approaches and Hybrid-perspective-based agent approaches. 

2.2.1 INFRASTRUCTURE-BASED AGENT APPROACHES 

Infrastructure-based agent approaches provide traffic guidance by 

regulation of the traffic flow on infrastructures such as signals and 

intersections. For example, Hoar et al. build a MAS-based evolutionary 

algorithm which achieves an efficient traffic flow by adjusting the timing 

sequences of the traffic lights. The simulation results show an overall 

decrease in waiting time of 26% for complex routes [Hoar, 2002]. As some 

researches attempt to employ machine learning models, Arel et al. present a 

Q-learning algorithm for multi-intersection traffic signal scheduling and the 

simulation results show greater reduction of wait times by compared with 
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longest-queue-first algorithm [Arel, 2010]. And, Roozemond elaborates a 

multi-layered MAS model to implement urban traffic control. The model 

consists of agents with different roles at various levels, where Intelligent 

Traffic Signaling Agents cooperate and coordinate to resolve traffic conflicts 

by using information from Roadside agents [Roozemond, 2001]. Chen et al. 

also present an adaptive and cooperative traffic light agent model which 

shows obvious reduction of delay time compared with the fixed sequence 

traffic signal control case [Chen, 2005]. Onieva et al. build an agent-based 

traffic simulator to study the traffic flow controlled with independent 

agent-based traffic signals, in order to manage traffic congestion problem 

[Onieva, 2011]. Besides, Tahilyani et al. propose a MAS model which decides 

route diversion to solve the traffic congestion problem by utilizing a cognitive 

radio system for traffic flow information [Tahilyani, 2012]. Li et al. propose a 

systematic approach to adaptively realize the vehicle routing with the 

real-time traffic information. It focuses on the route planning procedures for 

determining the optimal route based on analytical hierarchy process (AHP) 

and fuzzy logic theory. The AHP-FUZZY approach is a multi-criteria 

combination system, which can greatly simplify the definition of decision 

strategy and represent the multiple criteria explicitly [Li, 2012a]. 

2.2.2 VEHICLE/DRIVER-BASED AGENT APPROACHES 

Vehicle/Driver-based agent approaches propose appropriate control 

measures with an individual-level perspective to avoid traffic congestions. 

Some papers use bio-inspired techniques such as ant pheromone [Ando, 

2006][Narzt, 2010] [Sur, 2012], bird flocking [Astengo-Noguez, 2006] and 

honey-bee foraging [Wedde, 2007]. For example, Ando et al. propose a car 

agent model which deposits ant pheromone based on various semantics and 

uploads the traffic-related information to a probe server, so as to predict 
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traffic congestion [Ando, 2006]. And Narzt et al. establish self-organizing 

congestion evasion strategies using ant-based pheromones [Narzt, 2010]. Sur 

et al. also build an agent-based model with multi-breeded mean-minded ant 

colony optimization for vehicle routing management, the results show the 

vehicle has near uniform distribution thus implementing congestion 

avoidance [Sur, 2012]. Besides, Astengo-Noguez et al. set up a bird flocking 

based agent model, where vehicle agents form groups and coordinate 

together to achieve effective optimization of traffic flow [Astengo-Noguez, 

2006]. And, Wedde et al. develop BeeJamA algorithm for traffic jam 

avoidance based on the analogy of honey-bee foraging, and the simulation 

results show decrease in average travel time and traffic density as compared 

to Dijkstra shortest path algorithm [Wedde, 2007]. Other contributions are 

found in the approaches which consider driver behaviors for route selection. 

For example, Buscema et al. simulate various scenarios by varying driver’s 

feedback, and the results show decrease in travel time with increase in the 

feedback [Buscema, 2009]. Arnaout et al. also describe an IntelliDriver 

application for reducing traffic congestions using an agent-based approach 

[Arnaout, 2010]. Ito et al. build an anticipatory stigmergy model for 

decentralized traffic congestion management, and the simulation results 

demonstrate its effectiveness and robustness [Ito, 2012]. Olusina et al. 

present empirical solutions to transportation problems in the Lagos 

Metropolis using the bottom-up approach, from transaction-based at local 

government level to multimodal at the metropolitan level. The stochastic 

user utility model is adopted to estimate the appropriate representation of 

human heterogeneity, flexibility and variability on mode choice relative to 

route travel times. The use of Assisted GPS Cameras provides some level of 

intelligence on the transportation routes [Olusina, 2013]. Desai et al. present 

a multi-agent based approach for congestion avoidance and route allocation 
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with virtual agent negotiation, and the simulation results show an 

improvement for travel time as compared to shortest path algorithm [Desai, 

2013]. Zolfpour-Arokhlo et al. establish a multi-agent system which uses 

Q-learning algorithm to help vehicles make route decisions, and confirm the 

effectiveness of the model by case studies on road-network in Malaysia 

[Zolfpour-Arokhlo, 2014]. 

2.2.3 HYBRID-PERSPECTIVE-BASED AGENT APPROACHES 

Hybrid-perspective-based agent approaches provide traffic guidance by 

integrating and processing diverse information from infrastructure units 

and vehicle drivers. Kammoun et al. develop a joint hierarchical fuzzy 

multi-agent model to deal with the route choice problem, and the simulation 

results show better road-network traffic management by accounting for 

environmental factors, vehicle states and driver preferences [Kammoun, 

2007]. Yang et al. realize an algorithm based on ant colony optimization, 

using the principles of the trunk road loop with high priority and real-time 

traffic information, to avoid congested roads [Yang, 2009]. And, Vasirani et al. 

also propose a distributed, market-inspired approach for intersection 

management in urban road traffic networks by using multi-agent models 

[Vasirani, 2009]. Gao et al. elaborate a multi-layered agent approach which 

coordinates the system optimum for road-network and the user optimum for 

user preference to ensure route selection [Gao, 2010].  

2.3 ROUTE GUIDANCE APPROACHES OF ITS 

The route guidance approaches in ITSs are mainly reactive guidance 

approaches and anticipatory guidance approaches. In reactive guidance, it is 

possible to respond quickly to demand changes or sudden incidents because 

only real-time traffic information is utilized and no predictions are used. The 
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anticipatory guidance recommends user’s route based on prediction of future 

demands and traffic conditions, which meets the problem of how future could 

be predicted. Both approaches are widely used in practice. 

2.3.1 REACTIVE GUIDANCE APPROACHES 

Among the contributions of reactive guidance approaches, Wang et al. 

present real-time feedback route guidance in large-scale express ring-roads, 

where the results indicate that real-time feedback route guidance can help 

alleviate and dissolve heavy non-recurrent traffic congestion, and establish 

dynamic user equilibrium [Wang, 2006]. And, Park et al. propose an adaptive 

route choice model for intelligent route guidance using a rule-based approach, 

where the route choice model is combined with a user interface, enabling the 

efficient collection of user feedback [Park, 2007]. Hawas et al. also construct 

an inter-vehicular communication (IVC)-based algorithm for real-time route 

guidance in urban traffic networks, where the algorithm are evaluated by 

network congestion levels, link speeds and link lengths [Hawas, 2008]. 

Besides, Zhang et al. investigate the factors such as the position of vehicles, 

the information on road conditions, the free parking spaces, etc., and build a 

significant-subordinate relationship between these factors to determine their 

relative weights for route guidance [Zhang, 2008]. And, Kumagai et al. 

elaborate a traffic-pattern based pre-routing method that provides an 

approximation of the precise route with real-time traffic data [Kumagai, 

2012]. Li et al. also implement a systematic approach to adaptively realize 

the vehicle route guidance with the real-time traffic information [Li, 2012a].  

2.3.2 ANTICIPATORY GUIDANCE APPROACH 

For the contributions of anticipatory guidance approaches, Ando et al. 

propose a car agent model which deposits ant pheromone based on various 
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semantics and uploads the traffic-related information to a probe server, so as 

to predict traffic congestion [Ando, 2006]. Weyns et al. also establish a 

multi-agent system where vehicle agents generate exploration ants to 

traverse the road-network and gather route information, and then choose a 

particular route satisfying the driver preference to either shortest travel 

distance or wait time or both. On this basis, the infrastructure predicts the 

queuing time. The simulated results show reduction in travel distance and 

wait time [Weyns, 2007]. And, Claes et al. elaborate a decentralized 

approach for anticipatory vehicle routing using multi-agent systems [Claes, 

2011]. Besides, Ito et al. build an anticipatory stigmergy model for 

decentralized traffic congestion management, and the simulation results 

demonstrate its effectiveness and robustness [Ito, 2012]. Naja et al. set up a 

preventive congestion control mechanism applied at highway entrances and 

devised for ITS systems, which integrates different types of vehicles and 

copes with vehicular traffic fluctuations due to an innovative fuzzy logic 

ticket rate predictor. The proposed mechanism efficiently detects road traffic 

congestion and provides valuable information for the vehicular admission 

control [Naja, 2014].  

2.4 ROUTING SELECTION ALGORITHM IN ROUTE GUIDANCE OF ITS 

Different approaches have been proposed to handle routing selection 

problem over multiply paths, which can be divided into system optimum 

approach and user equilibrium approach. The system optimum approaches 

always route the vehicle along an optimum path measured by overall time or 

distance of the road-network; and the user equilibrium approaches aim to 

satisfy individual-level optimization of users such as minimal travel time or 

shortest path and route the vehicle.  

2.4.1 SYSTEM OPTIMIZATION APPROACHES 
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Among the contributions of system optimization approaches, Dai et al. 

present a hierarchical intelligent control and coordination conceptual 

architecture to make full use of road-network resources and realize efficient 

transportation. In their work, a system optimum equilibrium flow model is 

described with minimizing the total delay of the road networks, getting 

optimal traffic volume on a link, then calculating the signal timing 

parameters and optimal route so as to make full use of road network 

resources and realize efficient transportation [Dai, 2005]. Hawas et al. also 

implement an inter-vehicular communication (IVC)-based algorithm which 

is built on information sharing among vehicles with same destination and 

within a specific communication range, through which the algorithm 

provides real-time route guidance in urban traffic networks [Hawas, 2008]. 

And, Chen suggests a dynamic route guidance method based on Particle 

Swarm Optimization algorithm [Chen, 2009]. Wu et al. present a 

threshold-based restricted searching area algorithm which uses the spatial 

distribution feature of the real road network to restrict the searching area by 

setting up a reasonable threshold value that reduces its searching size, so as 

to enhance its efficiency [Wu, 2010]. Besides, Zolfpour et al. set up a 

self-adaptive multi-agent algorithm for managing the shortest path routes, 

which improve the acceptability of the costs between the origination and 

destination nodes. Compared with Dijkstra algorithm, the experimental 

results show a reduction of the cost in vehicle routing problem 

[Zolfpour-Arokhlo, 2011].  

2.4.2 USER EQUILIBRIUM APPROACH 

In the field of intelligent traffic control, Sheffi proposes the user-equilibrium 

theory in which no driver can shorten his/her journey time by changing the 

path to realize an equilibration state, and such ideal situation is difficult to 
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achieve in practice[Sheffi, 1985]. Further, Sheffi elaborates several 

approaches to approximate this equilibrium state, and the Label-Connecting 

algorithm which is a shortest path tree approach has been proved as one of 

the most effective methods. In the field of study of user equilibrium 

approaches in route selection, for example, Wang and his colleagues present 

real-time feedback route guidance in large-scale express ring-roads, where 

the results indicate that real-time feedback route guidance can help alleviate 

and dissolve heavy non-recurrent traffic congestion, and establish dynamic 

user equilibrium [Wang, 2006]. Another contribution can be found in Du’s 

work. Du et al. build a coordinated online in-vehicle routing mechanism for 

smart vehicles with real-time information exchange and portable 

computation capabilities. The proposed coordinated routing mechanism 

incorporates a discrete choice model to account for drivers' behavior, and is 

implemented by a simultaneously updating distributed algorithm. This 

study shows the existence of an equilibrium coordinated routing decision for 

the mixed-strategy routing game and the convergence of the distributed 

algorithm to the equilibrium routing decision, assuming individual smart 

vehicles are selfish players seeking to minimize their own travel time[Du, 

2014]. Besides, Adacher et al. propose a multiple path routing algorithm, 

where each vehicle computes its own route on the basis of its specific settings 

reflecting user's preferences and traffic information provided by the 

reference station. This algorithm explores a solution that represents a good 

tradeoff between single user satisfaction and system optimum [Adacher, 

2014]. 

2.5 SUMMARY 

In this chapter, we have reviewed the related work from three aspects: the 

agent-based approaches in congestion management, the route guidance in 
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intelligent transportation system and the routing selection algorithms in 

route recommendation.  

In the field of study of methodology for congestion management, 

agent-based framework with bottom-up perspective have been widely used 

because of its natural and suitable for capturing the dynamic and 

geographically distributed features of transportation systems. However, it is 

not so easy to design the agent-based models to avoid too complex or too 

simple in practice. Literature review also shows that recent route guidance 

systems pay more attentions to anticipatory approaches than reactive 

approaches, while how to predict the future traffic flow is a problem. And 

among the contributions of routing selection algorithms, user equilibrium 

approaches especially in dynamic traffic conditions have attracted more 

concerns than the systemic optimum approaches over multiply paths.  

On the basis of literature review, this thesis intends to design 

agent-based models with multi-objective based routing selection algorithms 

to achieve a good trade-off between single user satisfaction and global 

utilization of the road-network in a dynamic traffic environment.  
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3.  AN AGENT-BASED MODEL FOR ROAD-NETWORK 

CONGESTION MANAGEMENT  

3.1 INTRODUCTION 

In this chapter, we first give the design of the agent-based model with 

multi-objective algorithm for road-network congestion management. Next, 

we elaborate the model through ODD protocol. And then, we describe the 

definition of evaluation criteria. Finally, we execute simulation experiments 

to validate the applicability and effectiveness of our proposed model on 

road-network congestion management. 

3.2 PROPOSAL OF AN AGENT-BASED MODEL FOR ROAD-NETWORK 

CONGESTION MANAGEMENT 

In this study, we propose an agent-based model with a hybrid vehicle routing 

strategy to improve the road-network congestion problem in the applications 

of ITS. In our model, each vehicle agent considers shortest path and 

congestion avoidance as two objectives in his/her routing selection. We focus 

on finding common features of those seriously congested links and reducing 

the congested degree of such links by a hybrid strategy. We also focus on the 

methodology: the adaptive agent model based on a hybrid strategy to analyze 

the congestion control problem, where the hybrid strategy may provide a 

dynamic diversion idea from the vehicles perspective with the help of GPS 

devices or Route Guidance System, rather than vehicle shunt at single 

intersections in most applications.  

3.3 MODEL DESCRIPTION THROUGH ODD PROTOCOL 

Below, we present the agent model following the ODD (Overview, Design 
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concepts, Details) protocol proposed by Grimm et al. [Grimm, 2010]. 

3.3.1 PURPOSE 

The agent-based model is designed to investigate the effectiveness of vehicle 

route guidance strategy on congestion control, by managing shortest path 

and congestion avoidance simultaneously. Under such a consideration, the 

road-network congestion problem is studied by relating different strategies 

and congestion distribution result of the overall road network to address the 

real-world transportation problem. The purpose of this study is to find 

common features of those seriously congested links through agent-based 

simulations, and validate the effectiveness of our proposed routing selection 

strategy with multi-objective algorithm on improving the traffic condition on 

those congested links.  

3.3.2 ENTITIES, STATE VARIABLES AND SCALES 

The model includes three types of entities: vehicle entity, link entity and 

node entity, as described in Table 3.1. 

Table 3.1 Entities and descriptions 

Entities Descriptions 

Vehicle The vehicle individuals of the road-network 

Link Immobile links of the road-network where vehicle passes 

Node The physical nodes with fixed coordinates of the road-network 

Next, the state variables are explained in order as they appear in Table 

3.2, which are Origination Node (ON), Destination Node (DN), Vehicle Path 

(VP), Link Length (LL), Link Capacity (LC), Link Traffic (LT), Link State 

(LS), Link Congestion Degree (LCD) and Link Travel Time (LTT). 
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Table 3.2 State variables and descriptions 

Entity Variables Descriptions 

Vehicle 

Origination Node 

(ON) 

The predefined departure node when a vehicle is 

added into the road-network 

Destination 

Node(DN) 

The predefined target node where a vehicle 

supposed to eventually reach 

Vehicle Path(VP)
A list of nodes where vehicles passed by, which 

records the movement trajectory of the vehicles 

Link 

Link Length(LL)

The physical length of the link, approximately 

calculated by the linear distance between two end 

nodes 

Link 

Capacity(LC) 
The largest number of vehicles on this link 

Link Traffic (LT) The current number of vehicles on this link 

Link State(LS) 
The current status of the link, either congested or 

un-congested 

Link Congestion 

Degree(LCD) 

A quantitative indicator used to describe the 

dynamic congested degree of the road-network 

links with congested link states 

Link Travel 

Time(LTT) 

The passage time of a vehicle passing through a 

link 

Of the above nine variables, origination node and destination node are 

represented by the node ID, and vehicle path is represented by a list of node 

IDs. Link length is approximately measured by the linear distance between 

two end nodes, given in equation (3-1): 
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where xi and yi are the coordinates of the node i in a two-dimensional plane. 

And, link capacity and link traffic respectively describe the largest vehicle 

passage ability and current vehicle numbers on the link. Next, we define 

equations to calculate the rest variables as LS, LCD and LTT. Assume that a 

link r has its largest traffic capacity as C(r) and the current number of 

vehicles at time step t on this link is n(r,t), we then calculate LS and LCD of 
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link r in equation (3-2) and (3-3) respectively: 
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As the dynamics of real-time link state would affect the agents travel 

distance at each simulation step, we therefore discuss the calculation of LTT 

in two cases. Assume that the travel time of an agent on passing an 

uncongested link is unconT , when the simulation proceeds and the link state 

changes into congested, the expected travel time of the agent on the rest of 

this link is represented by conT . The calculation of conT is presented by 

equation (3-4), which originates from the result of investigation and 

regression analysis of a large number of road traffic data by the Bureau of 

Public Roads (BPR) of the US [BPR, 1964]. 
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where LL(r) is the physical length of link r calculated by equation (3-1), V is 

the velocity of the vehicle agent when the link is not congested, LCD(r,t) is 

the congested degree of link r, LS(r,t) is the link state, either congested or 

uncongested, α and β are two parameters of the equation which are set to 

0.15 and 4 respectively according to the suggestion in [BPR, 1964]. 

3.3.3 PROCESS AND SCHEDULING 

At the initial stage of the simulation process, agents are added into the 

road-network at different time steps. When the simulation proceeds and the 

agents arrive at a node, they make route choices. An agent is removed from 

the network when it arrives at a predefined target node. During the 



23 
 

simulation, the agent aggregation will cause link congestions and thus affect 

other agents’ route decisions. The following pseudo-code in Fig 3.1 describes 

the process and the scheduling of the agent-based model. The details of two 

sub-models that agents select a target link and travel a distance on the 

present link will be explained in section 3.3.6. 

Start 

Initialize the nodes and links of the road-network 

for simulation step=1 to MaxSimulationStep 

for agent number=1 to MaxAgentNumber 

if (the simulation step == the time stamp an vehicle to be added) 

add the vehicle to the road-network 

end if 

if (the agent reaches a node) 

if (the agent arrives at its predefined destination) 

remove the agent from the road-network 

else 

the agent selects a target link 

update the agent number and link state of the involved links 

end if 

else 

the agent travels a distance on the link 

end if 

update the state varibles of the agent 

end for 

end for 

End

 

Fig 3.1 Pseudo-code of the agent simulation model 

3.3.4 DESIGN CONCEPTS 

Basic principles: The general concepts underlying the model design come 

from the urban road-network traffic optimization theory proposed by Sheffi 

[Sheffi, 1985]. In his theory, congestion is one of the most important 

mechanisms, directly affecting the vehicles passage time, and it is associated 

with the number of vehicles passing through the nodes. With a predefined 

road-network structure and traffic data, Sheffi has pointed out that link 

function, represented by the travel time function of the traffic flow on 
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network links, is one of the most important factors that affect the traffic flow 

in the road-network congestion control problem. It reflects the degree of 

road-network traffic congestion. Meanwhile, he has proposed a 

user-equilibrium theory in which no driver can shorten his/her journey time 

by changing the path to realize an equilibration state, and such ideal 

situation is difficult to achieve in practice. Furthermore, Sheffi has proposed 

several approaches to approximate this equilibrium state, and the 

Label-Connecting algorithm which is a shortest path tree approach has been 

proved as one of the most effective methods. According to Sheffi’s theory and 

methods, we choose shortest path and congestion avoidance as two objectives 

to define the link selection function, and set up our agent model with 

two-objective algorithm to improve the road-network congestion problem. 

Emergence: The traffic flow of the road-network is formed and evolved 

when vehicle agents continuously move toward their destinations, and the 

network links appear different congestion degree, especially certain links 

show serious congestion. 

Adaptation: In the model, vehicle agents determine their target links 

based on two principles: shortest path and congestion avoidance. The link 

selection strategy is adaptively updated based on the integrated effect of 

shortest path and congestion avoidance. 

Objectives: The objective of the model is defined as a routing selection 

function, which guides the agent’s link selection process as a combined result 

of shortest path and congestion avoidance. 

Observation: The observations from the agent-based model are the 

variation of Average Link Congestion Degree (ALCD), Average Link 

Congestion Time (ALCT), and Average Arrival Time (AAT) of all vehicle 

agents, which reflect the effectiveness of our proposed agent model and 

methods on improving road-network congestion problems. 
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3.3.5 INITIALIZATION 

For the initialization, the model randomly generates a group of vehicle 

agents with their departure and destination nodes. They are gradually added 

into a predefined road-network at different time steps that follow a uniform 

distribution with 1 to 50. 

3.3.6 SUB-MODELS 

In detail, two sub-models are defined for the operation of link selection and 

agent travel process. First, we describe the pseudo-code of link selection 

model in Fig3.2.  

Start 

if (the node connects to an unique link) 

Choose this link as the target link 

else  if (the link state on shortest path == uncongested) 

Choose shortest link as the target link 

else 

Calculate the utility values of all connected links 

Choose a link with the minimum utility value as the target link 

end if 

end if 

End

   

Fig 3.2 Pseudo-code of the link selection model 

As stated in Fig 3.2, an adaptive agent defined in our model changes its 

link selection strategies according to the congested degree of all connected 

links. When multiple links can be selected, the agent chooses one based on a 

utility function. The utility function of a link r at simulation step t is given in 

equation (3-5). 

),,(*)1(),(*),,( trLCDtrgtrU      ]1,0(         (3-5) 

where the first term g(r, t) represents the strength which attracts agent 

moving towards its destination node, calculated by the Floyd shortest path 

algorithm [Floyd, 1962]; the second term ),( trLCD reflects the congested 
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Start 

if (the current link state == uncongested) 

the agent moves forward a predefined distance on current link 

else 

calculate the rest of the link distance S to the next node 

calculate the expected travel time texp for passing the rest of the link 

the agent move forward a S/texp  distance on current link 

end if 

End 

degree of link r at simulation step t, calculated by equation (3-3); and the 

parameter is used as a weight to simultaneously optimize the two objectives 

as shortest path and congestion avoidance. Next, we present the pseudo-code 

of the agent travel process in Fig 3.3. 

 

 

 

 

 

 

 

 

 

 

Fig 3.3 Pseudo-code of the agent travel model 

According to the pseudo-code in Fig3.3, the distance that an agent travels 

on a link depends on the real-time traffic condition of the link. When the link 

state changes to be congested, the expected travel time texp is calculated as in 

equation (3-4). Assume that the velocity of the vehicle agent on the current 

link with uncongested state is V, and S is the rest distance of this vehicle on 

the present link, we then provide the equation of agent travel distance (ATD) 

below: 
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3.4 EVALUATION CRITERIA  

In this study, we consider the evaluation criteria for road-network congestion 

and model efficiency from three-levels:  

(1) first, the link-level congestion are measured by the Average Link 

Congestion Degree (ALCD), the Average Link Congestion Time (ALCT) and 

the Average Link Congestion Index (ALCI), where the first index reflects the 

average congested degree of a link r throughout the simulation process, the 
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second index is a quantitative indicator which describes the average 

congested time of a link r when the simulation is terminated, and the third 

index is a regulated indicator which describes the congestion by combing 

both spatial and temporal traffic condition for evaluation. Assume that the 

simulation is executed st steps, the calculations of these indexes are given by 

equation (3-7), (3-8), and (3-9) respectively: 
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(2) Second, the node-level congestion is measured by Average Node 

Congestion Degree (ANCD), which reflects an integrated congestion degree 

of all the neighbor links. Assume that a node i has j links connected to it, 

each link r has its largest traffic capacity as C(r) and the current number of 

vehicles on link r at time step t is n(r,t), we then calculate NCD of node i at 

time step t in equation (3-10): 
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Accordingly, ANCD is an average value of NCD. Assume that the agent 

simulation is executed st steps, the ANCD is computed in equation (3-11): 
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(3) Finally, the model effect is measured by the improvement rate on those 

seriously congested locations of the road-network, and the Average Arrival 

Time (AAT) which represents the average arrival time of all the vehicle 

agents, given by equation (3-12). 
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where tin and tout represent the simulation time steps when an agent ai 

enters and leaves the road-network respectively, A is the amount of agents. 

We summarize the evaluation criteria in Table 3.3. 

Table 3.3 Evaluation criteria and descriptions 

Criteria Description Identification 

Average Link 

Congestion Degree 
The average congested degree of a link 

ALCD 

Average Link 

Congestion Time 

The average congested time of a link ALCT 

Average Link 

Congestion Index 

The average congested condition of a 

link 

ALCI 

Average Node 

Congestion Degree 
The average congested degree of a node ANCD 

Average Arrival Time 
The average time that agents traveled 

in the network 
AAT 

3.5 EXPERIMENT ON THE BASIC ABM  

3.5.1 EXPERIMENT OVERVIEW 

In this section, we first conduct two groups of experiments to examine the 

applicability and effectiveness of our proposed agent model in improving the 

road-network congestion problem on a generated road-network. On this basis, 

we further conduct the third group of experiments to validate the model on a 

real road-map. The purposes and evaluation criteria of each group of 

simulation experiments are summarized in Table 3.4.  
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Table 3.4 Summary of the experimental purposes and evaluation criteria 

Experiment No. Purpose Evaluation Criteria 

Experiment 1 
Sensitivity test of the parameter λ on 

congestion improvement 
ALCD, ALCT, ALCI, AAT 

Experiment 2 

 

Validation of the model on a 

generated road-network 

ALCD, ALCT, ALCI 
ALCD, ALCT and ALCI of each 

link and the congested links 

The impact of link density and agent 

number on congestion improvement 
ANCD 

Experiment 3 
   Validation of the model on a real 

road map 

ALCD, ALCT, ALCI 
ALCD, ALCT and ALCI of the 

congested links 

To conduct the experiments, we define two types of agents: the first type 

is the Floyd agent that uses the Floyd shortest path strategy in routing 

selection, and the second type is the adaptive agent that uses hybrid strategy. 

Hybrid strategy refers to execute the Floyd shortest path strategy and the 

two-objective optimization strategy introduced by equation (3-5) in turn, 

depending on the dynamic congestion conditions of the road-network. Thus, 

the adaptive agent using a hybrid strategy would adapt its routing selection 

strategies to a changing congestion environment of nearby links. On this 

basis, we execute simulation experiments with different composition of these 

two types of agents, and then compare the simulation results by using the 

evaluation criteria in Table 3.4.  

There are three agent groups defined in the experiments: the first group 

includes all agents using shortest path strategy, the second mixed group 

includes half Floyd agents and half adaptive agents, and the third group 

includes unique Adaptive agents using hybrid strategy. All agents are 

randomly generated with their departure and destination nodes. Table 3.5 

presents the different composition of agents in the above experiments. 
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Table 3.5 The different composition of agents in the experiments 

Experiment No. Agent Composition 

Experiment 1 1000 Floyd vs. 500 Floyd & 500 Adaptive vs. 1000 Adaptive. 

Experiment 2 
1000 Floyd vs. 500 Floyd & 500 Adaptive vs. 1000 Adaptive. 

500 Floyd & 500 Adaptive, 250 Floyd & 250 Adaptive 

Experiment 3 3000 Floyd vs. 1500 Floyd & 1500 Adaptive vs. 3000 Adaptive.

Finally, we provide the topologies of both generated road-network and 

real road map employed in the designed experiments. As shown in Fig 3.4, 

the generated road-network consists of 39 nodes with their IDs ranging from 

0 to 38, and 146 links represented by pair of nodes. The coordinates of the 

nodes are defined in table 3.6, consistent with [Schweitzer, 1997]. 

 

Fig3.4 The topology of a generated road-network 
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Table 3.6 Coordinates of the nodes in the (x, y) plane 

Node x y Node x y 

0 121 388 20 518 340 

1 131 291 21 556 246 

2 203 438 22 598 415 

3 218 233 23 598 536 

4 231 78 24 601 121 

5 231 331 25 638 160 

6 256 163 26 645 463 

7 305 370 27 648 320 

8 310 463 28 661 190 

9 321 86 29 695 550 

10 336 253 30 718 120 

11 361 160 31 718 356 

12 396 478 32 731 485 

13 398 325 33 760 393 

14 440 260 34 788 293 

15 448 63 35 811 221 

16 480 145 36 826 463 

17 488 415 37 833 360 

18 493 503 38 863 273 

19 508 171    

Further, we preprocess the GIS map data of a Medium-sized city in China 

from ArcMap, and get a directed graph consisting of 514 nodes and 791 links, 

shown in Fig 3.5.  
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Fig3.5 The topology of a real road map 

3.5.2 EXPERIMENT-1: SENSITIVITY TEST OF THE PARAMETER Λ ON 

CONGESTION IMPROVEMENT 

Given a generated road-network topology in Fig 3.4, the first group of 

simulation experiments examines how the values of parameter λ affect the 

improvement result of congestion on this generated road-network. Among 

this group of simulation experiments, the values of parameter λ vary from 

0.05 to 1 with an interval of 0.1, and the simulation results are evaluated by 

the ALCD, ALCT and ALCI of all links and the AAT of all agents under 

different values of λ. 

Fig 3.6, Fig 3.7 and Fig 3.8 present the simulated results of the ALCD, 

ALCT and ALCI under different values of λ. The result in Fig 3.6 shows that 

ALCD increases rapidly when λ is greater than 0.85, which indicates that we 

should set the λ less than 0.85 to ensure the effect from congestion avoidance 
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represented by 1-λ in the two-objective function by equation (3-5). The results 

in Fig 3.6 and Fig 3.7 also show the similar trend of ALCT and ALCI. 

Therefore, it is important to find an appropriate value of parameter λ in order 

to ensure the model effect. 

 

Fig 3.6 Variation of the ALCD under different values of λ 

 

Fig 3.7 Variation of the ALCT under different values of λ 
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Fig 3.8 Variation of the ALCI under different values of λ 

Further, Fig 3.9 compares the variation of AAT with three agent groups 

under different values of λ. As shown in Fig 3.9, the Floyd agent group has 

their AAT values smaller than the adaptive agent group. In the mixed agent 

group, although the value of λ only affects the adaptive agents’ link selection 

process, there may exist indirect effect on the travel time of Floyd agents, 

which reflects a complex feedback between link congestion distribution and 

agent’s link selection decisions. Such results also indicate the importance of 

finding an appropriate value of λ which could make a better improvement of 

the network congestion and keep the AAT of both agents at a lower level. We 

recognize that it is a better choice to set up λ to 0.85. 

 

Fig 3.9 Variation of the AAT under different values of λ 
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3.5.3 EXPERIMENT-2: VALIDATION OF THE MODEL ON A GENERATED 

ROAD-NETWORK 

The second group of simulation experiments examines how our proposed 

adaptive agent model with a hybrid routing selectin strategy works to 

improve the road-network congestion on a generated road-network. We set 

the same composition of three agent groups as in experiment 1. The value of 

parameter λ of the two-objective function for the link selection process is set 

to 0.85. And, we also keep the road-network topology as the same one in 

experiment 1. We choose ALCD, ALCT and ALCI as the evaluation criteria 

to measure the simulated network congestion results. Besides, we conduct 

further experiments to observe the impact of link density and agent number 

on network congestion distribution. 

3.5.3.1 COMPARISON AND ANALYSIS ON SIMULATED RESULTS 

Fig 3.10, Fig 3.11 and Fig 3.12 present the results of ALCD, ALCT and ALCI 

throughout the simulation period under three different agent groups, which 

reflect the variation of average congestion of the entire network over time. It 

is obvious that the adaptive agent group with hybrid strategy has obvious 

effect in reducing the overall network congestion after the simulation. When 

the simulation proceeds, agents gradually arrive at their destination nodes 

and then have been removed from the road-network. That is the reason why 

the simulated results tend to downward trends.  
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Fig 3.10 Variation of the ALCD under three different agent groups 

 

Fig 3.11 Variation of the ALCT under three different agent groups 

 

Fig 3.12 Variation of the ALCI under three different agent groups 

We further calculate the ALCD, ALCT and ALCI of each congested link 



37 
 

over the entire simulation time, shown in Fig 3.13, Fig 3.14 and Fig 3.15. 

 

Fig 3.13 ALCD of congested link under different agent groups 

 

Fig 3.14 ALCT of congested link under different agent groups 
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Fig 3.15 ALCI of congested link under different agent groups 

As shown in Fig 3.13, the values of ALCD of most links were not 

obviously optimized throughout the simulation process, except some 

seriously congested link (25, 28) and (33, 31). The ALCD of these links 

decreased from 6.28 to 2.15, 1.21 and from 6.92 to 3.90, 2.88 respectively 

during the whole simulation process, marked by rectangular box in Fig 3.13. 

And, the simulated results in Fig 3.14 and Fig 3.15 show the reduction of 

ALCT on this two seriously congested links from 4.87 to 1.27, 0.82 and from 

4.95 to 1.72, 1.34, and the reduction of ALCI from 30.57 to 2.73, 0.99 and 

from 34.27 to 6.71, 3.85 respectively during the whole simulation process, 

also marked by rectangular box in Fig 3.14 and Fig.3.15. The results indicate 

that the hybrid strategy might relieve the congestion degree of those severely 

congested links.  

Based on the simulation results of ALCD, ALCT and ALCI in Fig 3.13, 

Fig 3.14 and Fig 3.15, we find that some congested links turn to be 

uncongested, like link (3, 10), (10, 13), (13, 20), (15, 16), (20,14) and (32, 22), 

meanwhile there are new congestion appeared in link (0, 5), (1,5), (2,7), (31, 

34) and (36, 33). This phenomenon indicates a congestion transfer in the 
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road-network. 

3.5.3.2 THE IMPACT OF LINK DENSITY AND AGENT NUMBER ON CONGESTION 

IMPROVEMENT 

Further, we execute simulation experiments to examine whether and how 

the road-networks with different link density and different number of agents 

would affect the formation and evolution of road-network congestions. The 

experiment sets the mixed agent group with half Floyd agents and half 

Adaptive agents, with random departure and destination nodes. The 

simulation results are evaluated by ANCD. 

First, the experiment generates three network structures with different 

link density by setting the amount of links as 172, 84 and 43, respectively. 

The results of congestion and the distribution under each case are illustrated 

in Fig 3.16. Especially, those nodes marked with red circles, such as 13, 17, 

22 and 27 in Fig 3.16 (a), 5, 21 and 32 in Fig 3.16 (b), and 3 and 27 in Fig 3.16 

(c), represent those seriously congested positions of the road-network under 

each case.  

 

(a) The congested nodes under a generated road-network with 172 links 
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(b) The congested nodes under a generated road-network with 84 links 

 
(c) The congested nodes under a generated road-network with 43 links 

Fig 3.16 The congestion distribution under different link densities 

As shown in Fig 3.16, the seriously congested nodes are mostly located at 

junctions of the road-networks. There also exist certain peripheral isolated 

nodes which easily cause congestion in the road-network. Besides, the 

results indicate that link connection would also affect the outcomes of road 

congestion when all nodes of the road-network have fixed positions.  

Second, the experiment sets two agent groups varying the number of 

agents to observe the model effect. The first group includes 500 Floyd agents 
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and 500 adaptive agents, and the second group consists of 250 Floyd agents 

and 250 adaptive agents. Both experiments set the value of parameter λ of 

the two-objective function for the link selection process to 0.85 and the 

maximum simulation step is set to 500. The simulation results are measured 

by ANCD under the above mentioned three link density, summarized in Fig 

3.17. As shown in Fig 3.17, the red circles corresponding to those seriously 

congested nodes in Fig 3.16. It is obvious that smaller agent volume leads to 

light traffic congestion under all simulation scenarios. Furthermore, those 

seriously congested nodes show great reduction in ANCD values after 

performing our proposed agent model with multi-objective optimization 

algorithm in routing selection. 

 

(a) Comparison of ANCD with different agent number with 172 links 
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(b) Comparison of ANCD with different agent number with 84 links 

 

(c) Comparison of ANCD with different agent number with 43 links 

Fig 3.17 Comparison of ANCD with different agent number and link density 

3.5.4 EXPERIMENT-3 VALIDATION OF THE MODEL ON A REAL ROAD MAP 

Finally, the third group of simulation experiments runs to verify the 

applicability and effectiveness of our proposed agent model on a real road 

map. We preprocess the GIS map data of a Medium-sized city in China from 

ArcMap, and get a directed graph consisting of 514 nodes and 791 links, 
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shown in Fig 3.5. To compare the simulation results, we set three different 

agent groups as described in Table 3.5. All agents are generated with random 

departure and destination nodes, and added into the road-network at 

different time stamps. The value of λ is set to 0.85 and the maximum 

simulation step is set to 500. The measurements include the ALCD, ALCT 

and ALCI. We first conduct sensitivity test to find an appropriate value of 

parameter λ. On this basis, we focus on the comparison of improvement of 

those seriously congested links, and then compare and analyze the 

distribution of congested links over the road-network.  

3.5.4.1 SENSITIVITY TEST OF PARAMETER Λ ON CONGESTION IMPROVEMENT 

The variations of ALCD, ALCT and ALCI with three agent groups under 

different values of λ are given in Fig 3.18, Fig 3.19 and Fig 3.20 respectively. 

The simulation results show that the adaptive agent group has smaller 

values of ALCD, ALCT and ALCI than the Floyd agent groups, which 

indicates a better performs of the hybrid strategy in congestion control on a 

real road map. The simulated results also suggest that 0.85 is a better value 

of weight in the two-objective optimization process for routing selection. 

 

Fig 3.18 Variation of ALCD under different λ on a real road map 



44 
 

 

Fig 3.19 Variation of ALCT under different λ on a real road map 

 

Fig 3.20 Variation of ALCI under different λ on a real road map 

Further, Fig 3.21, Fig 3.22 and Fig 3.23 provide the results of ALCD, 

ALCT and ALCI throughout the simulation period under three different 

agent groups, which reflect the variation of average congestion of the entire 

network over time. It is obvious that the adaptive agent group with hybrid 

strategy has obvious effect in reducing the overall network congestion after 

the simulation. When the simulation proceeds, agents gradually arrive at 

their destination nodes and then have been removed from the road-network. 

That is the reason why the simulated results of ALCD, ALCT and ALCI show 

decrease trends. 
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Fig 3.21 Variation of the ALCD under three different agent groups 

 

Fig 3.22 Variation of the ALCT under three different agent groups 

 

Fig 3.23 Variation of the ALCI under three different agent groups 
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3.5.4.2 IMPROVEMENT AND DISTRIBUTION OF CONGESTED LINKS 

The simulated results of the sensitivity test have shown an effectiveness of 

our proposed agent model on reducing road-network congestion. On this 

basis, we focus on the model effect on decreasing congestions of those 

seriously congested links. With this purpose, we sort the links by their ALCD 

values in a descending order and list the top ten links with larger ALCD 

values in Table 3.7. 

Table 3.7 The list of the top 10 congested links by ALCD  

Link 

ALCD 

(3000 

Floyd) 

ALCD 

(1500 Floyd and 

1500 Adaptive) 

Improvement Rate
ALCD 

(3000 Adaptive) 
Improvement Rate

(380, 110) 44.28 38.73 12.53% 36.23 18.18% 

(56, 57) 41.25 36.65 11.15% 33.57 18.62% 

(103, 104) 38.64 33.84 12.42% 32.42 16.10% 

(258, 257) 35.65 30.45 14.59% 30.02 15.79% 

(385, 386) 33.34 26.75 19.77% 24.39 26.84% 

(135, 136) 31.46 25.94 17.55% 24.63 21.71% 

(49, 50) 28.38 24.75 12.79% 23.46 17.34% 

(307, 308) 27.66 22.46 18.80% 21.94 20.68% 

(186,187) 25.37 21.95 13.48% 20.71 18.37% 

(226, 227) 23.47 20.15 14.15% 19.53 16.79% 

As described in Table 3.7, the ALCD values of the top ten seriously 

congested links are reduced more than 15% after the adaptive agent model 

effect. Further, we mark the top five links on the actual road map and find 

their locations have some common characteristics. As shown in Fig 3.24, the 

most seriously congested link represented by (380, 110) is the unique road 

connecting the east and west urban area. Meanwhile, the rest severely 

congested links are located at the connection positions such as (56, 57), (103, 

104), (257, 258) and (385, 386).  
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Fig 3.24 The top 5 congested links ranked by ALCD index on real road map 

We further mark the congestion distribution on the real road map under 

three different agents groups, shown in Fig3.25. In these figures, the red 
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links mean that the two-way roads are both congested, while the yellow links 

represent that only one-way roads appear congested. Meanwhile the darker 

the color, the more serious congestion becomes. The results in Fig 3.25 

denote that the adaptive agent model really reduce the congestion of the real 

road-network. Furthermore, the red link in the middle of the network has 

the most severe congestion, which corresponds to the unique bridge 

connecting the east and west area of the city.  

 

(a) The congestion distribution under 3000 Floyd agents on a real road map 

 

(b) The congestion distribution under 1500 Floyd agents and 1500 Adaptive agents on a real 
road map 
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(c) The congestion distribution under 3000 Adaptive agents on a real road map 

Fig 3.25 Comparison of congestion distribution under different agent groups on a real road 

map 

To verify a robustness of congestion distribution under different 

congestion evaluation criteria, we again sort the links by their ALCT values 

in a descending order and list the top ten links in Table 3.8. 

Table 3.8 The list of the top 10 congested links by ALCT 

Link 

ALCT 

(3000 

Floyd) 

ALCT 

(1500 Floyd and 

1500 Adaptive) 

Improvement Rate
ALCT 

(3000 Adaptive) 
Improvement Rate

(379, 380) 13.46 12.25 8.99% 11.39 15.38% 

(380, 379) 12.64 11.97 5.30% 10.84 14.24% 

(380, 110) 11.95 10.46 12.47% 9.98 16.49% 

(110, 380) 10.62 9.16 13.75% 8.47 20.24% 

(109, 110) 9.13 7.35 19.50% 6.56 28.15% 

(56, 57) 8.17 6.35 22.28% 5.96 27.05% 

(103, 104) 8.03 6.22 22.54% 5.76 28.27% 

(258, 257) 7.63 5.61 26.47% 5.44 28.70% 

(385, 386) 6.94 4.38 36.89% 4.36 37.18% 

(135, 136) 6.47 4.13 36.17% 4.06 37.25% 
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The values of ALCT of congested links in Table 3.8 also show great improvement of 

congested links. Fig 3.26 presents the distribution of the top five links on the real road 

map under three different agent groups. The thickness of the link represents the value of 

ALCT. That is, the thicker the link, the greater the ALCT. As shown in Fig 3.26, the two 

seriously congested links, labeled by 3, 4 are on the unique road connecting the east and 

west urban area, and the congested link 1, 2 and 5 are also located near the unique road. 

By comparing the simulation results of Floyd agent and adaptive agent, the results show 

obvious effect of hybrid strategy on decreasing the congested degree on those seriously 

congested links.  
 

(a) The top five congested links with 3000 Floyd agents 

 

(b) The top five congested links with 1500 Floyd agents and 1500 adaptive agents 

 

(c) The top five congested links with 3000 adaptive agents 

Fig 3.26 The distribution of the top five congested links ranked by ALCT under 

different agent groups 

3.6 DISCUSSION  

We discuss the simulation results as follows: 
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(1) The results in the first group of simulation experiments show that the 

values of parameter λ obviously affect the result of ALCD, ALCT and ALCI 

when its values are greater than 0.85. The changes in the value of λ reflect a 

variation of an agent’s preference on two objectives of the utility function. On 

one hand, when λ becomes smaller, the agents with a hybrid strategy intend 

to avoid the congested link of the road-network, thus leading to a further 

optimization of network congestion. But the simulation results show that the 

AAT of agents increases. This is because the congestion avoidance 

characteristic causes some detours. Therefore, agents with hybrid strategy 

might travel a longer time in the network compared to those Floyd agents 

with only the shortest route. Such adjustment might also indirectly affect 

the travel time of Floyd agents in the mixed agent group under a changing 

traffic environment. On the other hand, when λ becomes bigger, agents with 

hybrid strategy prefer to travel along the shortest route. When λ continues 

increasing, the decreasing preference on congestion avoidance makes the 

congestion degree of network could not be further improved. Especially, when 

λ is set to 1, that is, the second part of equation (3-5) has no effect and the 

agents with hybrid strategy are the same as Floyd agent. Based on the 

analysis of simulation experiment results, we set the value of parameter λ 

equal to 0.85 in order to assure a balanced effect of our proposed agent model 

on improving road-network congestion. 

(2) In the second group of simulation experiments, the results of ALCD, 

ALCT and ALCI show obvious reduction under the adaptive model effect. 

Furthermore, the adaptive agent model with hybrid strategy helps to 

decrease the congested degree of those congested links, especially seriously 

congested links like (33, 31). But the simulation results also show that ALCD 

of some links such as (31, 34) and (36, 33) have increased. This is exactly 

explained the model effect on vehicle shunting and congestion equilibration. 
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Therefore, the simulation results validate an effectiveness of our proposed 

agent model on reducing the congested time of those seriously congested 

links. The agent model with a hybrid routing selection strategy actually 

implements a dynamic congestion improvement mechanism through the 

nonlinear feedback between agent routing decisions and road-network 

congestion dynamics. Further experiments find that the link density and the 

agent number even the link connection would also affect the road-network 

congestion. Meanwhile, the seriously congested nodes emerged from 

simulations with different network structure show common distribution 

features such as junctions of the road-networks and peripheral isolated 

nodes. This result needs further experiment and discussion. 

(3) The results obtained from the last group of simulation experiments 

show that the adaptive agent model with a hybrid routing selection strategy 

has really improved the entire road-network congestion. The agent model 

also has decreased the ALCD and ALCT of those seriously congested links. 

The reason is similar to the second group of experiments. Meanwhile, 

according to the simulated results of distribution of congested links in the 

real road map, we have found that the seriously congested links are mostly 

located at the connection positions or the unique road connecting two regions. 

Because these links are all traffic arteries, most agents of the simulated 

traffic system have to go through such links to pass the regions and finally 

reach their predefined destinations. Although we have not set agents 

according to the real traffic flow in the city map, the simulation results 

reflect the same congested road with the real map in actual life. Also, the 

improvement made by our model on those seriously congested links provides 

a dynamic balancing diversion idea from the vehicles perspective, which has 

its significance for guiding the actual operation of the congestion control. 

Therefore, the simulation results have verified the applicability and 
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effectiveness of our proposed model on a real road map. 

Based on the above analysis, the main findings are summarized as 

follows: 1) both shortest path and congestion avoidance are important factors 

which affect the road-network congestion; 2) vehicles which adapt their route 

selection strategy to the real-time congested degree of surrounding roads 

could help improve passage capacity of road-networks; and 3) seriously 

congested roads have some common features, such as the connection 

positions or the unique road connecting two regions. 

3.7 SUMMARY  

In this chapter, we have proposed an agent-based model with multi-objective 

optimization algorithm to study the road-network congestion problem. After 

the proposal of the agent-based model, we have described the agent model 

following the ODD (Overview, Design concepts, Details) protocol. More 

concretely, we first describe the purpose of the study, next define three 

entities as the vehicle, the link and the node and their related state variables, 

and then present the process and scheduling of the model. We also elaborate 

the design concepts of the model, and further we explain two sub-models as 

link selection model and agent travel model. Finally, we set up the 

evaluation criteria for evaluating the model effect.  

On this basis, we have implemented three groups of simulation 

experiments to conduct parameter sensitivity test, model validation under 

different traffic scenarios on a generated road-network topology and a real 

road map. The simulation results have shown that the model has realized a 

real-time road congestion control, it reduces the congested degree of those 

seriously congested links and thus promotes the traffic capacity of the 

transportation network. Especially, the validation of the model on a real road 

map of a Medium-sized city in China has turned out that our proposed model 
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could balance the congestion in this road-network. Therefore, the simulation 

results has confirmed an applicability and effectiveness of the agent model 

with a hybrid strategy on improving the road-network congestion problem. 

Besides, we also find that seriously congested roads have some common 

features, such as the connection positions or the unique road connecting two 

regions.  

One limitation of the model is that the weights used in the utility function 

are determined by sensitivity analysis. Furthermore, it is not easy to find a 

suitable weight value with large-scale road-network and traffic flow. In the 

next chapter, we will construct a quantitative index series to describe the 

dynamic congestion distribution of road-network, and at the same time use 

such indexes as weights of the utility function to shunt vehicles on those 

seriously congested links.  
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4 AN ADAPTIVE WEIGHT-BASED AGENT MODEL FOR 

ROAD-NETWORK CONGESTION MANAGEMENT 

4.1 LIMITATION OF THE PROPOSED AGENT-BASED MODEL 

In chapter 3, we have proposed an agent-based model with multi-objective 

routing selection algorithm, which can reduce the number of congested links. 

However, the proposed agent model has two limitations. One is the 

road-network congestion distribution and the agents travel time is affected 

by the weight value of the two-objective function. For the other hand, how to 

find a suitable weight value with large-scale road-network and traffic flow is 

a difficult problem. 

To solve the above weight problems, we further propose an agent model 

with adaptive weight-based multi-objective algorithm. We focus on construct 

a quantitative index series which describe and evaluate the road-network 

congestion distribution, and also use such indexes as weights in the 

two-objective function to adapt agent behaviors to the traffic dynamics. 

4.2 PROPOSAL OF AN AGENT-BASED MODEL WITH ADAPTIVE WEIGHT-BASED 

MULTI-OBJECTIVE ALGORITHM 

In this chapter, following our previous work, we propose an agent model with 

adaptive weight-based multi-objective algorithm to study the road-network 

congestion problem with a hybrid perspective. We emphasis on constructing 

a series of quantitative indexes to describe and measure the real-time 

congestion distribution of road-network at each node, and using such indexes 

as weights in the two-objective function to shunt vehicles on those congested 

links. An adaptive node weight algorithm is proposed based on the difference 

between the passage times on each adjacent link in two consecutive 
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simulation time steps. In this way, our agent model with adaptive 

weight-based multi-objective optimization algorithm could achieve 

congestion distribution evaluation and congestion management at the same 

time. At each simulation step, the vehicle agents autonomously move 

towards their destination nodes according to the optimization result, 

through which the improvement and control of those congested links of 

road-network is realized. 

4.3 MODEL DESCRIPTION THROUGH ODD PROTOCOL 

4.3.1 PURPOSE 

We describe an agent model with adaptive weight-based multi-objective 

algorithm to improve the road-network congestion problem in ITS. In our 

model, each vehicle agent considers shortest path and congestion avoidance 

as two objectives in his/her routing selection process. We focus on 

constructing a quantitative index series to measure the road-network 

congestion distribution with system-level perspective, and employ such 

indexes as weights of the two-objective function for agent routing decision at 

an individual-level perspective. In this way, our proposed agent model could 

achieve congestion distribution evaluation and congestion management at 

the same time. The proposed approach may provide a dynamic diversion idea 

from the vehicles perspective with the help of GPS devices or Route 

Guidance System embedded with the adaptive weight-based routing 

selection algorithm, rather than vehicle shunt in single intersections in most 

applications.  

4.3.2 ENTITIES, STATE VARIABLES AND SCALES 

The model includes three types of entities: vehicle entity, link entity and 

node entity, as consistent with the definition of the basic agent model in 

Table 3.1. The state variables are Origination Node (ON), Destination Node 
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(DN), Vehicle Path (VP), Link Length (LL), Link Capacity (LC), Link Traffic 

(LT), Link State (LS), Link Congestion Degree (LCD) and Link Travel Time 

(LTT), which are also same with the definition in Table 3.2. The unique new 

state variable is Node Weight (NW), which reflects an integrated congestion 

impact on a node from all its connected links. The design principles of node 

weight come from the Proportional Regulator (P Regulator) of automatic 

control field [Messmer, 1994][Pavlis, 1999]. The main idea of P regulator is to 

balance the travel time of different ways that connects the same start and 

destination. 

We use this idea to shunt vehicles to multiply candidate ways when they 

reach an intersection node of the road-network. In the case that a vehicle 

passes one node and selects a target link, and if such behavior changes the 

current state of the target link from uncongested to congested, or from 

congested to uncongested, this would affect the passage time of agents on the 

link. In consideration of the above state transitions, we define an adaptive 

node weight algorithm based on iterative operations on the variation of the 

passage time on each adjacent link in two consecutive simulation time steps. 

Suppose that the road-network has one node a connecting a link r, the node 

weight at simulation step t would be updated by the following equation (4-1) 

and (4-2): 
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where NW(a, t) and NW(a, t-1)are the weight of node a at time step t and t-1 

respectively, T(r, t) and T(r, t-1) are the expected travel time of a vehicle on 

link r at time step t and t-1 respectively, K is the model parameter. According 

to the equations, the node weight is adjusted iteratively according to the 
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difference between vehicle’s passage times on the target link in two 

consecutive time steps. When NW(a, t) gets smaller in magnitude, the more 

seriously congested degree of the node becomes. The other state variables are 

calculated in consistent with those ones in section 3.3.2. 

4.3.3 PROCESS AND SCHEDULING 

The process and scheduling are almost similarly as in the basic agent-based 

model, except those operations on node weights of the road-network. The 

following pseudo-code in Fig 4.1 describes the process and the scheduling of 

the agent model with adaptive weight-based multi-objective algorithm. The 

details of two sub-models as agent selects a target link and travels a distance 

on the link are to be explained in section 4.3.6. 

 

Fig 4.1 Pseudo-code of the agent model with adaptive weight-based multi-objective 

algorithm. 

Start 

Initialize the nodes and links of the road-network 

for simulation step=1 to MaxSimulationStep 

for agent number=1 to MaxAgentNumber 

if (the simulation step == the time stamp an vehicle to be added) 

add the vehicle into the road-network 

end if 

if (the agent reaches a node) 

if (the agent arrives at its predefined destination) 

remove the agent from the road-network 

else 

the agent selects a target link 

update the agent number and link states of the involved links 

update the node weight based on the link state 

end if 

else 

the agent travels a distance on the link 

end if 

update the state varibles of the agent 

end for 

end for 

End 
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4.3.4 DESIGN CONCEPTS 

In the agent model with adaptive weight-based multi-objective algorithm, 

most design concepts are similar with in section 3.3.4, except that the 

observations include not only the variations of ALCD, ALCT, ALCI, AAT, but 

also ANCD.  

4.3.5 INITIALIZATION 

For the initialization, the model randomly generates a group of vehicle 

agents with their departure and destination nodes. They are gradually added 

into a predefined road-network at different time steps that follows a uniform 

distribution with 1 to 50. At the beginning of the simulation, the weight of 

each node in the road-network is initialized to 1. When the simulation 

proceeds, the weights of some nodes are adaptively updated based on 

equation (4-1).  In this thesis, we define those nodes with their weights Less 

than 1 as congestion feedback nodes. 

4.3.6 SUB-MODELS 

Two sub models are additionally defined for the operation of link selection 

and agent travel process. First, we describe the pseudo-code of link selection 

model in Fig 4.2. 

 

Fig 4.2 Pseudo-code of the link selection model. 

Start 

if (the node connects to an unique link) 

Choose this link as the target link 

else  if (the link state on shortest path == uncongested) 

Choose shortest link as the target link 

else 

Calculate the utility values of all connected links 

Choose a link with the minimum utility value as the target link 

end if 

end if 

End 
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As stated in Fig 4.2, each vehicle agent changes its link selection 

strategies according to the real-time congested degree of connected links. 

When multiple links can be selected, the agent chooses one based on a utility 

function. The utility function of link r at simulation step t is given in 

equation (4-3). 

),,(*)),(1()(*),(),( trLCDtaNWrgtaNWtrU                  (4-3) 

where the first term g(r) represents the strength which attracts agent 

moving towards its destination node, calculated by Floyd shortest path 

algorithm[Floyd, 1962]; the second term ),( trLCD reflects the congested 

degree of link r at simulation step t, calculated by equation (3-3); and the 

parameter ),( taNW  is an adaptive weight updated by equation (4-1), which 

is used to simultaneously optimize the two objectives as shortest path and 

the congestion avoidance. The pseudo-code of the agent travel process is 

same with the basic agent model, shown in Fig 4.3. 

 

Fig 4.3 Pseudo-code of the agent travel model. 

4.4 DEFINITION OF EVALUATION CRITERIA 

Besides the evaluation criteria defined in section 3.4, the number of 

congestion feedback nodes (N_CFN), which refers to those nodes with their 

weights less than 1 is also considered as a measurement in the study. As the 

Start 

if (the current link state == uncongested) 

the agent moves forward a predefined distance on current link 

else 

calculate the rest of the link distance S to the next node 

calculate the expected travel time texp for passing the rest of the link 

the agent move forward a S/texp distance on current link 

end if 

End 
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weight of each node is initialized as 1, and such values are updated when the 

congested degree of connected links change. Therefore, those nodes with 

their weights less than 1 indicate a feedback to the dynamic congestion 

situation of road-network. The evaluation criteria are described and listed in 

Table 4.1. 

Table 4.1 Evaluation criteria and descriptions 

Criteria Description Identification 

Average Link 

Congestion Degree 
The average congested degree of a link ALCD 

Average Link 

Congestion Time 

The average congested time of a link 
ALCT 

Average Link 

Congestion Index 

The average congested condition of a 

link 
ALCI 

Average Node 

Congestion Degree 
The average congested degree of a node ANCD 

Average Arrival Time 
The average time that agents traveled 

in the network 
AAT 

Number of Congestion 

Feedback Nodes 

The number of congestion feedback 

nodes with their node weight less than 1
N_CFN 

4.5 EXPERIMENT ON THE ADAPTIVE WEIGHT-BASED AGENT MODEL 

4.5.1 EXPERIMENT OVERVIEW 

Following our previous work, we first conduct two groups of simulation 

experiments to examine the applicability and effectiveness of the agent 

model with adaptive weight-based multi-objective algorithm in improving 

the road-network congestion on a generated road-network. On this basis, we 

further validate the model effect on a real road map. The purposes and 

evaluation criteria of each group of experiments are described in Table 4.2. 

To conduct the experiments, we also define two types of agents: one type 

of agent is the Floyd agent using shortest path strategy, and the other agent 

type is the adaptive agent using hybrid strategy. Hybrid strategy refers to 
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executing the shortest path strategy and the two-objective optimization 

strategy in turn according to a changing congestion condition. The agent 

using hybrid strategy adapts its routing selection strategies to the dynamic 

congestion condition of nearby links. On this basis, we execute simulation 

experiments with different composition of these two types of agents, and 

compare the simulation results by using the evaluation criteria in Table 4.2. 

Table 4.2 Summary of the experimental purposes and evaluation criteria  

Experiment No. Purpose Evaluation Criteria 

Experiment 1 
Sensitivity test of the parameter 

K on congestion improvement 

ALCD, ALCT, ALCI, AAT 
ANCD, N_CFN 

Experiment 2 

Validation of the model on a 

generated road-network 

ALCD, ALCT and ALCI of 

congested links 

ANCD 
The impact of number of agents on 

congestion improvement 
N_CFN 

Experiment 3 

Validation of the model on a real 

road map 

ALCD, ALCT and ALCI of the 

top ten congested links 

ANCD 
The impact of number of agents on 

congestion improvement 
N_CFN 

Table 4.3 presents the different composition of agents in the experiments, 

with a default value of K set to 1.4. 

Table 4.3 The composition of agents in the experiments 

Experiment No. Agent Composition 

Experiment 1 
3000 Floyd vs. 1500 Floyd and 1500 Adaptive vs. 3000 

Adaptive. 

Experiment 2 

3000 Floyd vs. 1500 Floyd and 1500 Adaptive vs. 3000 

Adaptive. 

The agent number scales in {1000, 2000, 3000, 4000, 5000}. 

Experiment 3 

6000 Floyd vs. 3000 Floyd and 3000 Adaptive 

8000 Floyd vs. 4000 Floyd and 4000 Adaptive 

10000 Floyd vs. 5000 Floyd and 5000 Adaptive 

At the initial stage, the two types of agents travel along the shortest path 

according to equation (4-3). When the simulation proceeds, some roads 
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become congested, and the connected nodes would adjust their weights based 

on equation (4-1). Then the agent model adaptively shunts vehicles by using 

such weight sequences as weights in the two-objective function based on 

equation (4-3). In this way, the developed model implements a set of index 

sequences which describes a changing congested degree of road-network, and 

also use this indexes to shunt vehicles through routing selection process.  

4.5.2 EXPERIMENT-1: SENSITIVITY TEST OF THE PARAMETER K ON 

CONGESTION CONTROL 

The first group of simulation experiments conducts sensitivity analysis of 

parameter K on congestion control. The experiments are executed on the 

generated network topology given in Fig 3.4, consisting of 39 nodes with 

their IDs ranging from 0 to 38, and 146 links each represented by a pair of 

nodes. And, the experiment sets three agent groups according to Table 4.3. 

The values of parameter K change from 0.2 to 2 with an interval of 0.2. The 

simulation will be terminated after 1000 steps. The simulation results are 

evaluated by the ALCD, ALCT and ALCI of all links, the AAT of all agents 

and ANCD and N_CFN of all nodes under different values of K.  

In the following, Fig 4.4, Fig 4.5, Fig 4.6, Fig 4.7 and Fig 4.8 present the 

results of the ALCD, ALCT, ALCI, AAT and ANCD under different values of 

K, respectively. As shown in Fig 4.4, the value of ALCD increases rapidly when 

K is greater than 1.4, which indicates that we should set the K less than 1.4 

to ensure the effect from congestion avoidance represented by 1-NW in the 

adaptive weight-based function by equation (4-3). The results in Fig 4.5, Fig 

4.6 and Fig 4.8 also show the similar variation of ALCT, ALCI and ANCD. 

While the resulted data in Fig 4.7 show that our proposed agent model leads 

to more time cost of AAT. Thus find a suitable value of K is important to 

ensure the model effect. By analyzing the simulation results under different 
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values of K, we set its value to 1.4. 

 

Fig 4.4 Variation of ALCD under different values of K 

 

Fig 4.5 Variation of ALCT under different values of K 

 

Fig 4.6 Variation of ALCI under different values of K 
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Fig 4.7 Variation of AAT under different values of K 

 

Fig 4.8 Variation of ANCD under different values of K 

Further, because the number of congestion feedback nodes directly 

reflects the effect of our agent model on congestion management and control, 

we then calculate the number of congestion feedback nodes under different 

values of K and present the results in Fig 4.9. 

 

Fig 4.9  The number of congestion feedback nodes under different K. 

As shown in Fig 4.9, the adaptive agent group and the mixed agent group 
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produce more congested feedback nodes than the Floy agent group, which 

show an obvious effect of our proposed model on congestion management. 

There have no obvious variation of N_CFN until K reach 1.4, which indicates 

we should set the value of K to 1.4 to ensure the model effect on congestion 

improvement. There is no more congestion feedback nodes in the network 

when K is bigger than 2. 

4.5.3 EXPERIMENT-2: VALIDATION OF THE MODEL ON A GENERATED 

ROAD-NETWORK 

The second group of simulation experiments examines how our model using 

adaptive weight-based two-objective optimization algorithm reduces the 

road-network congestion on a generated road-network topology. To compare 

the simulation results, we set three agent groups with different composition 

of two types of agents as shown in Table 4.3. All agents are generated with 

random departure and destination nodes, and added into the road-network 

at different time stamps. We choose ALCD, ALCT and ALCI of those 

congested links and ANCD of congested nodes as the evaluation criteria to 

measure the simulation results. The experiment sets the values of parameter 

K to 1.4, and the simulation will be stopped after executing 1000 steps. 

4.5.3.1 COMPARISON AND ANALYSIS ON SIMULATED RESULTS 

Fig 4.10, Fig 4.11 and Fig 4.12 present the results of ALCD, ALCT and ALCI 

of all congested links in the generated network under three groups of agents. 

The results show our model effect on those seriously congested links such as 

(19, 16), (16, 19), (25, 28), (26, 22), (33, 31), (35, 34), (37, 33) and (38, 34). 
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Fig 4.10  ALCD of congested links under different setup of agents  

 

Fig 4.11  ALCT of congested links under different setup of agents 

 

Fig 4.12  ALCI of congested links under different setup of agents 
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Further, Fig 4.13 presents the results of ANCD of all congested nodes in 

the generated network under three different agent groups. The simulation 

results show obvious effectiveness of our proposed model in reducing the 

road-network congestion. Meanwhile, it is interesting that the resulted 

congested nodes such as 16, 19, 25, 28, 31 and 33 are corresponding to the 

end nodes of those seriously congested links obtained in Fig 4.10, Fig 4.11 

and Fig 4.12. 

 

Fig 4.13  ANCD of congested nodes under different groups of agents 

We further compare the number of occurrences of congestion feedback 

nodes. Fig 4.14 presents the emerged frequency of congestion feedback nodes 

under three agent groups of the generated road-network. 
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Fig4.14  The number of occurrences of congestion feedback nodes of the 

generated network under deferent agent groups. 

As shown in Fig 4.14, the congestion feedback nodes are also located on 

some specific nodes 16, 19, 25, 26, 28, 31and 33. These nodes appeared 11 or 

12 times as congestion feedback nodes during the simulation. Such results 

indicate that the congested links or nodes may have some common 

geographical distributed features of the road-network. 

4.5.3.2 THE IMPACT OF AGENT NUMBER ON CONGESTION IMPROVEMENT 

Next, we conduct experiments with mixed agent group to examine how the 

number of agents influences the road-network congestion on the generated 

road-network. The number of agents ranges in the collection of {1000, 2000, 

3000, 4000, 5000}. Fig 4.15 records the number of occurrences of congestion 

feedback nodes after simulation under each case. The results in Fig 4.15 

show that the congestion feedback nodes are also located on some specific 

nodes 16, 19, 25, 26, 28, 31and 33. These nodes appeared over 8 times as 

congestion feedback nodes during the simulation under each case. Such 

results also suggest that the congested nodes may have some common 

geographical distributed features of the road-network. Furthermore, the 
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congestions become more serious with an increasing number of agents, 

indicating that bigger travel requirements would cause worse congestion 

condition. 

 

Fig 4.15  The number of congestion feedback nodes under different number of 

agents. 

4.5.4 EXPERIMENT-3: VALIDATION OF THE MODEL ON A REAL ROAD MAP 

Finally, the third group of simulation experiments runs to validate the 

applicability and effectiveness of our agent model on a real road map. The 

road-network consists of 514 nodes and 791 links, with its topology defined 

in Fig 3.5. First, we examine the effectiveness of the model under different 

traffic flows by increasing the number of agents. The experiment sets the 

mixed agent group under each simulation case. Table 4.4 gives the resulted 

number of congestion feedback nodes under a growing number of agents.  

The results in Table 4.4 show that the number of congestion feedback nodes 

increases from 12 to 106, with the number of agents changing from 3000 to 

10000. Since the number of congestion feedback nodes reflects an ability of 

the model in improving congestion, therefore, such results also has 
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confirmed the efficiency of our model on congestion control. 

Table 4.4  The number of congestion feedback nodes with different number of 

agents 

The number of Agents N_CFN 

3000 12 

6000 38 

8000 73 

10000 106 

Next, we fix the number of agents to 6000, and sort the links by their 

ALCD values in a descending order and the top ten links are found and 

summarized in Table 4.5.  

Table 4.5  The list of the top ten links sorted by ALCD 

Link Id 6000 Floyd Agent 
3000 Floyd and 3000 

Adaptive 

Improvement 

Rate 

(385,386) 1.6546  1.5041  9.09% 

(103,104) 1.6008  1.0440  34.78% 

(56,570) 1.4610  1.1083  24.14% 

(379,380) 1.3823  1.0367  25.00% 

(57,58) 1.3457  1.1128  17.31% 

(258,257) 1.3379  1.0946  18.18% 

(110,109) 1.3359  1.0312  22.81% 

(380,110) 1.2899  1.0279  20.31% 

(378,379) 1.2591  1.0301  18.18% 

(244,243) 1.2560  0.0000  100.00% 

As described in Table 4.5, nine of the top ten congested links have 

improved their ALCD values more than 17%. The most seriously congested 

link (385, 386) has its ALCD value been improved 9%, and the congestion in 

link (244, 243) disappears. Next, we fix the number of agents to 6000, and 

sort the links by their ALCT values in a descending order. Table 4.6 lists the 
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top ten links with larger ALCT values. 

Table 4.6 The list of the top ten links sorted by ALCT 

Link Id 6000 Floyd Agent
3000 Floyd 3000 

Adaptive 
Improvement Rate 

(379,380) 338.6683  165.8784  51.02% 

(380,110) 149.6260  49.3379  67.03% 

(56,57) 130.0289  56.5255  56.53% 

(378,379) 119.6103  85.5013  28.52% 

(57,58) 98.2352  20.0300  79.61% 

(58,59) 60.5380  0.0000  100.00% 

(396,395) 44.8691  19.8438  55.77% 

(52,56) 40.7229  27.3767  32.77% 

(258,257) 38.7987  25.1766  35.11% 

(109,110) 34.1477  28.2182  17.36% 

As shown in Table 4.6, most links with bigger values of ALCT decrease 

greatly, such as link (379,380) (380,110), (56, 57), (57, 58) and (396,395). The 

improvement rates of these links are over 50%. Especially, the congestion no 

longer occurs on link (58, 59).  

Further, Fig 4.16 gives the weight distribution (NW) of end nodes 

corresponding to those seriously congested links in Table 4.5 and 4.6, where 

the red line represents the average weight of all congestion feedback nodes of 

the road-network, which was 0.36. According to the results in Fig 4.16, most 

nodes have their weights much smaller than the average value. Particularly, 

the two end nodes, 379 and 380 that belong to the most congested link 

(379,380), have their weights modified to 0.08 and 0.12 after the model effect.  
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Fig 4.16 The weight distribution of those seriously congested links. 

For a more intuitive display with congestion feedback nodes to describe 

the distribution of congestion, we mark the locations of the congestion 

feedback nodes on the real road map in Fig 4.17. We compare the resulted 

congested location with 6000, 8000 and 10000 agents respectively. In this 

figure, the nodes with darker red color represent smaller values of the 

weight, which actually indicates more severe congestion of connected roads. 

According to the results on Fig 4.17, it is obvious that the congestion becomes 

worse when the number of agents increase. We also find that those seriously 

congested nodes have some common features, such as end nodes of major 

traffic arteries or road junctions.   

 

(a) 6000 agents 
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(b) 8000 agents 

 

(c) 10000 agents 

Fig 4.17 The distribution of congestion feedback nodes on the real road map under 

different number of agents. 

4.6 FURTHER EXTENSION AND EXPERIMENTS OF THE AGENT-BASED MODELS 

ON CONGESTION MANAGEMENT 

We future extends our agent-based model based on the principles of 

proportional and the integral Regulator (PI Regulator) of automatic control 
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field [Pavlis, 1999]. The main idea of PI regulator is also to balance the travel 

time of different ways that connects the same start and destination. Suppose 

that the road-network has one node a connecting a link r, the node weight at 

simulation step t would be updated by the following equation (4-4) and (4-5): 

]1,0(,))1,(),((),()1,(),(  api NWtrTtrTKtrTKtaNWtaNW   (4-4) 
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where NW(a, t) and NW(a, t-1) are the weight of node a at time step t and t-1 

respectively, T(r, t), T(r, t-1) and T(r, t-2) are the expected travel time of a 

vehicle on link r at time step t, t-1 and t-2 respectively, Ki and Kp are the 

model parameters. According to the equations, the node weight is adjusted 

iteratively according to the difference between vehicle’s passage times on the 

target link in three consecutive time steps. As NW(a, t) gets smaller in 

magnitude, the more seriously congested degree of the node becomes.  

In this experiment, we set three agent groups: the first group is composed 

of 3000 Floyd agents using shortest path strategy, the second group consists 

of 1500 Floyd agents using shortest path strategy and 1500 adaptive agents 

using hybrid strategy, and the third group includes 3000 adaptive agents 

using hybrid strategy. We choose ALCD, ALCT and ALCI of all links and 

ANCD of all nodes as the evaluation criteria to measure the simulation 

results. The experiment sets the values of parameter Ki and Kp are 0.9 and 

0.05 by preliminary sensitivity test, and the simulation step is set to 1000. 

Below, Fig 4.18, Fig 4.19, Fig 4.20 and Fig 4.21 present the results of the 

ALCD, ALCT, ALCI and ANCD after simulation. The results also show 

better effect of this model on congestion improvement. 
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Fig 4.18 Variation of ALCD under three agent groups 

 

Fig 4.19 Variation of ALCT under three agent groups 

 

Fig 4.20 Variation of ALCI under three agent groups 
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Fig 4.21 Variation of ANCD under three agent groups 

4.7 DISCUSSION 

From the experimental results above, we draw the following discussions: 

(1) The results in the first group of simulation experiments show that the 

performance of our proposed approach is affected by the values of parameter 

K and the number of agents. The sensitivity test finds that the number of 

congestion feedback nodes decreased with a growing value of parameter K. 

Such results indicate that the congested nodes and related links are also 

decreased and the network congestion is greatly improved. And, the 

simulation results achieve best performance when K equal to 1.4. On the 

contrary, the result that no more congestion feedback nodes appear when K 

is bigger than 2 indicates a threshold for K in the process of node weight 

adjustment. That is because too large values of parameter K would lead to an 

over-modification of node weight and a coarseness of the congestion 

evaluation. In this case, our model is unable to accurately measure the 

congestion distribution of the road-network. Furthermore, the simulation 

results show that the congestion feedback nodes are mainly located on some 

specific nodes, such as end nodes of major traffic arteries or road junctions. 

The results also show that the number of congestion feedback nodes 

increased with a growing number of agents, which indicates that bigger 
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traffic flow would cause more serious congestion status. This shows that the 

node weight is affected by the agent quantity to a certain degree. Further, 

the distribution of congestion feedback nodes under different amounts of 

agent again shows that the congestion nodes mainly depended on the 

network topology.  

(2) In the second group of simulation experiments, the results of ALCD, 

ALCT and ALCD show that our proposed model helps to decrease the 

congested degree of those congested links. This exactly explains the model 

effect on vehicle shunting and congestion equilibration. Additionally, the 

achieved adaptive weight sequence confirms that the value of node weights 

could reflect the non-uniform road congestion degree in a quantitative way. 

When the simulation starts, the weight of nodes are initialized to 1. At the 

early stage of the simulation, both Floyd agent using shortest path strategy 

and adaptive agent using hybrid strategy travel along the shortest routing 

according to equation (4-3). When the simulation proceeds, some roads 

become congested, and the connected nodes would adjust their weights based 

on equation (4-1) and implement vehicle shunt via the two-objective 

optimization by equation (4-3). During the simulation process, the extremely 

small weight of nodes mean a seriously congested situation with those 

connected links while the nodes with higher values of weight approximating 

to or more than one denote less congestion or never congestion. Therefore, 

the results show that our model successfully constructs a new quantitative 

index of nodes which could achieve the congestion evaluation and congestion 

management simultaneously. 

(3) The results obtained from the third group of simulation experiments 

show that the agent model with adaptive weight-based two-objective 

optimization algorithm successfully reduces the traffic congestion on the real 

road map. The increased amount of congestion feedback nodes denotes that 
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the performance of the agent model is affected by the different traffic scales, 

and also indicates the effect of different traffic scales on the nodes weights. 

The improvement rate of those seriously congested links with higher values 

of ALCD, ALCT and ALCD confirm the shunting effect of our proposed model 

on congestion control. The node weights exactly provide a quantitative index 

for describing and evaluating the network congestion distribution with a 

global perspective. Meanwhile, according to the simulated results of 

distribution of congestion feedback nodes on the real road map, we find most 

nodes located at the road junction or near the unique road connecting the 

east and west urban area. Because these nodes connect traffic arteries, most 

agents of the simulated traffic system have to pass such nodes to go through 

the regions and finally reached their destinations. Although we do not set 

agents according to the real traffic flow in the city map, the simulation 

results reflect the same congested node with the real map in actual life. Also, 

the improvement made by our model on those seriously congested links 

provide a dynamic balancing diversion idea from the vehicles perspective, 

which has its significant potentials for guiding actual operation of the 

congestion control. Therefore, the simulation results verify an applicability 

and effectiveness of our proposed model on the real road map. 

Further experiments of the agent model with adaptive-weight based 

multi-objective algorithm by using PI regulator also show obvious effect of 

our model in reduction of congestion, we will discuss this extension in the 

future work. 

4.8 SUMMARY 

In this chapter, following our previous work, we have proposed an agent 

model with adaptive weight-based algorithm for studying the road-network 

congestion problem with a hybrid perspective.  
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We have constructed a quantitative index series which is employed to 

measure the real-time congestion distribution of the road-network and as 

weights in the two-objective functions to shunt vehicles on those congested 

links simultaneously. Accordingly, an adaptive node weight algorithm has 

been presented based on the proportional regulator of automatic control field. 

In this way, our proposed agent model with adaptive weight-based 

multi-objective optimization algorithm could achieve congestion distribution 

evaluation and congestion management at the same time. At each simulation 

step, the vehicle agents autonomously move towards their destination nodes 

according to the optimization result, through which the improvement and 

control of those congested links of road-network is realized.  

The simulation results show that the model has realized a timely control 

on road-network congestion, through which it reduces the road congestion 

and promots traffic capacity of the road-network. Especially, the validation of 

the model with a real traffic map of a Medium-sized city in China has turned 

out that our proposed model could balance and reduce the congestion in the 

road-network. The simulation results also has confirmed an applicability and 

effectiveness of the node weight as a new quantitative index sequences to 

describe the road-network congestion distribution, and shunt vehicles on 

those congested roads based on that index simultaneously. 

Such a hybrid-perspective-based agent approach with adaptive 

weight-based multi-objective optimization algorithm will have its significant 

potentials for actual traffic congestion control by considering the global 

congestion distribution and the local vehicle routing preference at the same 

time.  
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5 CONCLUSION AND FUTURE WORK 

In this thesis, we study the road-network congestion management issue 

based on vehicle route guidance of intelligent transportation system. As 

agent-based framework with bottom-up perspective is natural and suitable 

for capturing the dynamic and geographically distributed features of 

transportation systems, we design and implement agent-based models with 

weighted multi-objective optimization algorithm to implement vehicle route 

guidance.  

First, a multi-agent system is built, where each agent stands for a vehicle 

that would adapt its route to a dynamic road-network congestion condition 

by a two-objective optimization process: the shortest path and the minimal 

congested degree of the target link. The agent-based approach captures the 

nonlinear feedback between vehicle routing behaviors and road-network 

congestion status, thus we can observe the formation and evolution of 

road-network congestion through agent-based simulations. Next, a series of 

quantitative indexes is constructed to describe the congested degree of road 

nodes, and such indexes are used as weights in the two-objective function 

employed by the agents for routing decision in a changing traffic 

environment. In this way, our proposed agent models with adaptive 

weight-based multi-objective optimization algorithm could achieve 

congestion distribution evaluation and congestion management at the same 

time. Besides, we define a set of evaluation criteria to measure the effect of 

our proposed agent models on road-network congestion improvement. 

Intensive experiments on a generated road-network topology and a real 

road map have both shown an applicability and effectiveness of our proposed 

agent model on reducing congestion. We further examine the agent model 
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effect with adaptive weight-based two-objective optimization algorithm. The 

simulation results have also confirmed an applicability and effectiveness of 

the node weights as a new quantitative index sequences which describe the 

road-network congestion distribution, and shunt vehicles on seriously 

congested roads based on that index simultaneously. By comparing the 

distribution of those congested links or nodes on the real road map, we find 

that most congested locations are the unique road connecting two regions or 

road junction. The reason is that these locations always connect traffic 

arteries, thus most agents of the simulated traffic system have to pass such 

links or nodes to go through the regions and finally reach their destinations. 

Although we have not set agents according to the real traffic flow in the city 

map, the simulation results have reflected the same congested node with the 

real road map in actual life. Also, the improvement made by our model on 

those seriously congested links has provided a dynamic balancing diversion 

idea from the vehicles perspective, which has its significant potentials for 

guiding actual operation of the congestion control.  

The contributions of our study in the field of congestion management are 

mainly: (1) a hybrid route guidance strategy which quantifies the influence 

of congestion avoidance and implements a two-objective function which 

considers both shortest path and congestion avoidance for the routing 

optimization; (2) agent-based models with weighted two-objective algorithm 

for understanding the formation and reduction of road-network congestion 

by capturing the nonlinear feedback between agent routing behaviors and 

road-network congestion conditions; (3) a quantitative index sequence which 

measures the real-time congestion distribution and also is used as weights of 

the two-objective function simultaneously for implementing agent routing 

selection function, it could achieve a good tradeoff between user satisfaction 

and effective utility of road-network.  
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With the help of GPS devices, the proposed model and method will have 

their theoretical value and practical significance for both vehicle navigation 

and route guidance used in the field of ITS. In the future work, we plan to 

test the effectiveness and accuracy of our model based on an exact traffic flow 

data. We also consider the implementation of this idea to a real world traffic 

environment. 
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