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1 Localization

We developed a localization system using Spatio-Temporal Selective Search (ST-Selective Search) and
Convolutional Neural Network (CNN) with Spatial Pyramid Pooling (SPP-net) [1].

ST-Selective Search is an extension of the conventional 2D Selective Search [2] to spatio-temporal (3D)
search. It uses optical-flow features in addition to color or texture features for video segmentation to
produce temporally continuous candidate bounding-boxes for object detection. Then SPP-net is adopted
to detect objects from the candidates produced by ST-Selective Search. It processes a large number of
bounding-boxes efficiently by sharing lower convolutional layers of the network among these boxes. To
improve the robustness against noise and blur, multi-frame score fusion and neighbor score fusion are
also introduced.

One of our runs achieved 0.6688 mean pixel F-score, the highest score among all teams. Another run
achieved the 3rd place in harmonic mean of spatio-temporal F-scores among all 6 teams.

1.1 Method

1.1.1 3-Dimensional Segmentation

The Selective Search [2] is extended so that it will process not only intra-frame similarities such as
color and texture similarities but also inter-frame similarities such as optical-flow value similarity for
temporal segmentation. We call this method Spatio-Temporal Selective Search (ST-Selective Search).

In detail, the following method is used for the ST-Selective Search.

1. Split a video at every I-frame
2. Extract a set of frames from each split video
3. Extract color and optical-flow features from each pixel of each frame
4. Generate super-pixels with color similarity for each frame
5. Extract texture features from each super-pixel
6. Generate intra- and inter-frame edges connecting super-pixels
7. Hierarchically merge super-pixels connected with the strongest edge and update features of merged

super-pixel in the same way as the original Selective Search
8. Repeat step 2-7 until whole video is processed
9. Repeat step 1-8 with changing values of following parameters: initial super-pixel size and weights

of features, in the same way as the original Selective Search [2]

In step 1, videos are split at every I-frames into short segments containing about 12 frames since seg-
menting a whole video or shot is time consuming. In step 4, super-pixels are not generated over frames
to avoid under-segmentation.

1.1.2 Spatial Pyramid Pooling in CNN

ST-Selective Search will produce a large number of object bounding-boxes from each frame. To
reduce calculation cost, Spatial Pyramid Pooling (SPP) [1] is adopted. SPP is a special layer connecting
convolutional layers working as feature extractor and fully-connected layers working as a classifier. It will
pool features of a ROI (region of interest) from suitably scaled feature map from a whole image. The
network adopting SPP can process a large number of objects with less time than usual networks because
the system just have to calculate a few scaled deep CNNs per image and a shallow neural network for
each object as shown in [1].

Following [1], a CNN proposed in [3] is used as feature extractor before the SPP layer. Support Vector
Machines (SVMs) for TRECVID concepts are put as the last layer of network. They will work as 2 class
(positive and negative) classifiers and one of them will be used while the test phase. Note that the other
layers are shared among all TRECVID concepts.
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Figure 1: The diagram of our scoring method. The results of 3-Dimensional Segmentation is used on
Spatial Pyramid Pooling (SPP) of each frame. Fusion is Multi-frame Score Fusion.

1.1.3 Multi-frame Score Fusion

Information of P-frames between I-frames are also useful for localization since movements of objects
in P-frames can be traced by ST-Selective Search. An I-frame and 3 P-frames between I-frames are taken
as input of CNNs and their CNN outputs are fused in a certain depth as shown in Figure 1.

1.1.4 Neighbor Score Boosting

Neighbor Score Boosting is introduced to improve the robustness against occlusion, blurring, noise
and etc. If there are object bounding-boxes overlapping with a high-scoring object bounding-box in a
neighbor frame, their scores will be boosted with the following formula.

BoostedScorei = BaseScorei + β max
j

area(BBi ∩ NBBj)
area(BBi ∪ NBBj)

(1)

where β is the boosting multiplier, BB is bounding-boxes in a current frame and NBB is high-scoring
bounding-boxes in neighbor frames. Then scores of these objects with scores below the threshold will be
boosted and some of them will be selected as positives.

1.2 Experiments

1.2.1 Experimental Conditions

On the segmentation stage, Selective Search parameters are tuned for videos in TRECVID training
dataset since it is found that parameters used in the original Selective Search code is not suitable for
noisy videos. On the classification stage, CNN layers pre-trained with the ILSVRC 2012 dataset provided
with the SPPnet [1] model are used below the SPP layer. Fully-connected layers above the SPP layer
are fine-tuned with positive samples and hard-negative samples overlapping positives for all concepts on
Caffe [4] and SVMs are trained with positive samples and negative samples for each concept as done
in [1]. The IACC.2.A dataset is used for training and the IACC.2.B dataset is used for validation to
optimize parameters.

The conditions and results derived from the validation set are shown in Table 1 and in Table 2,
respectively. The best threshold and the best fusion method are adopted from this experiment for this
year’s TRECVID submission. Finally, it is concluded that fusion layers taking average positioned after
the 2nd FC layer and the last SVM is the optimum method as shown as 3Avg-5Avg in Figure 1.

For this year’s TRECVID submission, the IACC.2.A and the IACC.2.B datasets are used for fine-
tuning and training to acquire more accuracy. We annotated 12K I-frames for “Anchorperson” and 7K



Name Boxes Fusion Method Threshold β

Base S Single None -0.65 0.0
Base M Multiple None -0.65 0.0
Single2 Single 3Avg-5Avg -0.65 0.0
Multiple Multiple 3Avg-5Avg -0.65 0.0
Multiple Aug3 Multiple 3Avg-5Avg -0.55 0.4
Multiple Spat Multiple 3Avg-5Avg 0.85 0.0

Table 1: The experimental conditions of each method. Boxes: Single will contain up to 1 bounding-box
per I-frame, Multiple will contain multiple. Fusion Method: None will just use a score from the I-frame,
3Avg-5Avg will fuse scores at 3rd and 5th layers as shown in 1.1.3. Threshold: the detection threshold.
β: score boosting multiplier shown in 1.1.4.

Validation set Test set
Name I-Frame F Pixel F F-like I-Frame F Pixel F F-like
Base S 0.4747 0.3809 0.4227
Base M 0.4747 0.4129 0.4416
Single2 0.4873 0.3891 0.4327 0.6699 0.4450 0.5348
Multiple 0.4873 0.4211 0.4518 0.6699 0.4984 0.5716
Multiple Aug3 0.4785 0.4564 0.4569 0.6683 0.5046 0.5750
Multiple Spat 0.2239 0.3218 0.3578 0.3791 0.6688 0.4839

Table 2: The results of each method. F stands for F-score. F-like shows a integrated score of I-Frame
F-score and Pixel F-score.

I-frames for “Computers” in the IACC.2.A dataset and used them for training since there are no ground
truths provided for these two concepts added from this year.

We submitted following four runs. They are at the bottom of Table 1.

Single2

This run is the simplest run of our submitted runs. Scores are extracted from each frame and are
fused as explained above. One object bounding-box with the highest score is selected as a positive if its
score is above the threshold.

Multiple

This run is a modification of Single2. In this run, all object bounding-boxes with a score above the
threshold are selected as positives since multiple bounding-boxes in one frame are allowed in TRECVID
localization task.

Multiple Aug3

In this run, Neighbor Score Boosting explained above is added to Multiple. Note that the threshold
is re-optimized for Neighbor Score Boosting.

Multiple Spat

This run optimizes parameters based on spatial (pixel) F-score in Multiple Aug3.

1.2.2 Results

Since there are no I-frame and pixel F-scores integrated measure, we also report F-score like measure
of them to compare methods. This is defined as the harmonic mean of them as follows.

F -like =
2 · I-FrameF · PixelF

I-FrameF + PixelF
(2)
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Figure 2: Overview of results of the localization task in TRECVID 2015. Our runs are colored in black.
One of our runs Multiple Spat achieved the best in mean pixel F-score.
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Figure 3: Overview of results of the localization task in TRECVID 2015 with F-like scores. Our runs are
marked with black diamonds. Our best run is placed in 3rd among all 6 teams.



As shown in Table 2, the scores of test set are higher than these of validation set since amount of
training data is larger as mentioned in Sec. 1.2.1. Our best run, Multiple Aug3 achieved the highest
score among our runs in test set as in validation set. This run is placed in the 3rd position in F-like
score among all 6 teams. Multiple Spat achieved 0.6688 mean pixel F-score, the highest score among all
teams. Comparisons with other teams are shown in Figure 2 and Figure 3.

1.3 Conclusion

We proposed a localization system using ST-Selective Search and SPP-net. Our best run achieved
0.6688 mean pixel F-score, the highest score among all teams. Another run was placed in the 3rd place in
harmonic mean of spatio-temporal F-scores among all 6 teams. Our future work will focus on extending
convolutional networks to spatio-temporal space. We also need to increase the amount of training data
to learn such networks.

2 Semantic Indexing

We propose a hybrid system of deep convolutional neural networks (CNNs) and Gaussian mixture
model (GMM) supervectors [6, 7, 8] for semantic indexing [5]. This year, we introduced temporal max-
pooling to CNN features extracted from multiple frames in a video shot. The 16-layered network in
[9] trained on the ImageNet dataset is used to extract CNN features. Finally, it is combined with our
baseline system using GMMs by score fusion. Our best result was 0.299 in terms of Mean InfAP, which
was ranked third among participating teams.

2.1 Method

2.1.1 Deep Convolutional Neural Networks

Deep convolutional neural network (CNN) is introduced to extract feature vectors. A feature vector,
which represent an image frame, consists of the activations on the second-last layer of a network, i.e.,
from the 16-layered network in [9], a 4096 dimensional feature vector is extracted from the 15th fully
connected layer. Max pooling is applied to aggregate features extracted from multiple image frames.
Finally, support vector machines (SVMs) are trained for each semantic concept by using these aggregated
features as input.

2.1.2 GMM Supervectors

GMM supervectors [6, 7, 8] represent an image frame by a concatenation of mean vectors of an
estimated GMM on low-level features. First, the following six types of visual and audio low-level features
are extracted from video data.

1. SIFT features with Harris-Affine detector (Har-SIFT) [10, 11]

2. SIFT features with Hessian-Affine detector (Hes-SIFT) [11]

3. SIFT and hue histogram with dense sampling (Dense-SIFTH) [12]

4. HOG with dense sampling (Dense-HOG)

5. LBP with dense sampling (Dense-LBP) [13]

6. MFCC audio features (MFCC)

Note that principal component analysis is applied to reduce the dimensions of each type of low-level
feature to 32. Second, from a set of low-level features, parameters of a Gaussian mixture models (GMMs)
is estimated under the maximum a posteriori (MAP) criterion. Its probability density function (pdf) is
given by

p(x|θ) =
K∑

k=1

wkN (x|µk, Σk), (3)

where x is a low-level feature, θ = {wk, µk,Σk}K
k=1 is a set of GMM parameters, K is the number of

Gaussian components (vocabulary size), wk is a mixture coefficient, and N (x|µk,Σk) is a Gaussian pdf



with a mean vector µk and a covariance matrix Σk. Third, a GMM supervector is extracted by combining
normalized mean vectors as

φ(XF) =


µ̃1

µ̃2

...
µ̃K

 , µ̃k =
√

w
(U)
k (Σ(U)

k )−
1
2 µ̂k. (4)

2.1.3 Late Fusion

Support vector machines (SVMs) with the following RBF-kernel are used to train discriminative
models for each semantic concepts.

k(XF, X ′
F) = exp

(
−γ‖φ(XF) − φ(X ′

F)‖2
2

)
, γ =

1
d̃
, (5)

where d̃ is the average distance between two GMM supervectors or CNN features. Here, annotations are
obtained from the collaborative annotations [14]. Finally, trained discriminative functions are linearly
combined as

f(X) =
∑
F∈F

αFfF(XF), 0 ≤ αF ≤ 1,
∑

F

αF = 1. (6)

where F is a set of feature types. Combination coefficients αF are optimized on a validation set.

2.1.4 Video-Clip Scores

The relationship between shots are useful for detecting semantic concepts. For example, Safadi et al.
[15] proposes a re-ranking method to re-evaluate scores of video shots by using shot-score distributions.
In our re-ranking method, we define a video-clip score as the maximum value of shot scores among all
the shots in a video clip:

smax = max
i

si (7)

where si(i = 1, 2, · · · , n) are shot scores for a video-clip that consists of n shots. Our final score for
ranking shots is given by

s′i = (1 − p)si + psmax (8)

where p is a probability of appearance of a semantic concept in a video clip given by

p = r

〈
#(positive shots in a video clip)

#(shots in a video clip)

〉
. (9)

where r is a scaling parameter. The final score s′i gets closer to smax as the concept appear more often
(e.g. an anchorperson in a news video).

2.2 Experiments

Figure 4 shows the overview of results of the semantic indexing task [5, 16, 17]. Figure 5 shows InfAP
by semantic concepts. Our best result obtained by the run of TokyoTech 1 was 0.299 in terms of Mean
InfAP, which is ranked 9th among all runs and is ranked 3rd among participating teams. Details of our
four runs are as follows.

TokyoTech 4

This run used average weighting for late fusion. CNN features and GMM supervectors for the six
types of visual and audio features are fused. This run achieved 0.287 in Mean InfAP.



Figure 4: Overview of results of the semantic indexing task in TRECVID 2015. Our best result was
Mean InfAP of 29.9%. Our four runs are colored in black.

Figure 5: InfAP by semantic concept.

TokyoTech 1, 2, and 3

These runs optimized weights for late fusion on IACC 1 A dataset. The steepest descent method is
used for optimization, in which Mean AP on the IACC 1 A dataset for initial weight values. TokyoTech 1,
2, and 3 stop iteration at 20th, 15th, and 1st epochs, respectively. They achieved 0.296, 0.298, and 0.299
in Mean InfAP. We also confirmed that video-clip scoring applied to all runs improved performance by
1.0% on average.

2.3 Conclusion

We proposed a high-performance semantic indexing system using CNN features and GMM supervec-
tors. Our best result was 0.299 in terms of Mean InfAP, which was ranked third among participating
teams in the semantic indexing task. Our future work will focus more on the spatio-temporal analysis
based on neural networks.

3 Multimedia Event Detection

In Multimedia Event Detection task [18] in this year, we add VideoStory features to our GMM-
supervector system using four types of low-level features. We submit runs under the condition with 10Ex
and 100Ex for the Pre-Specified (PS) task and 10Ex for the Ad-Hoc task. With the EvalSub dataset,
our result ranked 3rd among 7 teams in PS 100Ex, and 9th among 16 teams in PS 10Ex.



Type of features MAP(%)
DT-HOG 20.04
DT-HOF 17.66
DT-MBH 21.51
DT-HOG+HOF+MBH 29.00

Table 3: The effectiveness of DT features on Kindred dataset under 100Ex

Settings EvalFull EvalSub
HOG+SIFT+DT 9.19 13.88
HOG+SIFT+DT+MFCC 9.64 13.73
HOG+SIFT+DT+VS 8.96 13.98

Table 4: The comparison in infAP200 (%) of our runs

3.1 VideoStory representation (VS)

VideoStory is a video representation that combines videos and their textual descriptions such as titles
[23]. It is computed by learning a visual projection from low-level visual features and a textual projection
from video titles simultaneously.

We follow the VideoStory algorithm to train the projections to compute features. From 38,457 videos
from VideoStory46K [23] and their titles, we extract low-level visual features and term vectors, and then
train textual projection and visual projection in the form of 2 matrices. Regularization parameters are
optimized by cross-validation. DT-MBH [22] is used as low-level visual features. For TRECVID training
and test videos, we use the projections trained on VideoStory46K to compute VideoStory representations.

3.2 GMM supervectors

We also use four other different types of features as follows.

• Dense HOG features (HOG)

We use 32-dimensional histogram of oriented gradients (HOG) features [19]. We apply three levels
of spatial pyramids: 1 × 1, 2 × 2, and 3 × 1 [20] [21]. PCA is applied for normalization.

• RGB-SIFT features (SIFT)

To capture color information, we extract Scale-Invariant Feature Transform (SIFT) features [10]
from each of RGB channels, then combine to a 384-dimensional feature. We also apply spatial
pyramids with three levels: 1 × 1, 2 × 2, 3 × 1. PCA is used to reduce the dimension to 64.

• Dense trajectory features (DT)

Dense trajectory is an motion feature for action recognition in [22]. We resize images to the width of
160, and skip every other frames of each interval. We use PCA to reduce the number of dimensions
of HOG, HOF, and MBH descriptors to 32, 32, and 64, respectively.

• MFCC features (MFCC)

To capture audio information, we use 38-dimensional Mel Frequency Cepstral Coefficient (MFCC)
including ∆MFCC, ∆∆ MCFF, ∆ power, and ∆∆ power. PCA is applied for normalization.

Gaussian Mixture Model (GMM) supervectors are extracted as in [6, 7, 8] from these features. Maxi-
mum a posteriori (MAP) adaptation and Universal Background Model(UBM) are used to make GMM
supervectors. The number of Gaussian mixtures is set to 512. SVM is used to score videos for each type
of features. Late fusion is applied to fuse SVM scores obtained from these features.



Figure 6: The comparison of infAP200 (%) in 2015 for Pre-Specified task under 10Ex

Figure 7: The comparison of infAP200 (%) in
2015 for Pre-Specified task under 100Ex

Figure 8: The comparison of infAP200 (%) in
2015 for Ad-Hoc task under 10Ex

3.3 Experimental Results

Our primary system combines HOG, SIFT, DT and VS features. This setting is common among all
conditions: PS 100Ex, PS 10Ex, AH 10Ex. Comparison with other teams is showed in Figure 6, 7, and
8. We see that our system worked better for 100Ex than 10Ex because the number of training samples
was not enough to train SVMs in 10Ex. DT features were the most effective among the seven types of
features because they capture actions that are important to detect events. The effectiveness of combining
3 types of descriptors for DT is shown in Table 3. Audio MFCC and VS improved the performance as
shown in Table 4.

VideoStory shows effectiveness in events consisting familiar concepts such as “Rock climbing”, “Fixing
musical instruments”, “Parking a vehicle”, and “Tuning musical instruments”. VS does not improve the
system in events such as “Giving directions to a location”, “Beekeeping”, “Wedding shower”, and “Playing
fetch”, because concepts of these events are not popular in the pre-training dataset VideoStory46K. We
conclude that VideoStory is a compact feature to represent concepts appearing in videos. It is needed to
increase the amount of training data with textual descriptions for improving the performance.



3.4 Conclusion

This year we added VideoStory features to our system based on GMM supervectors. Our best run
ranked 3rd among 7 teams in PS 100Ex EvalSub. Our future work will focus on deep learning techniques
such as deep convolutional neural networks for event detection.
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