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A Length Matching Routing Algorithm for Set-Pair Routing
Problem

Yuta NAKATANI†a), Nonmember and Atsushi TAKAHASHI†b), Senior Member

SUMMARY In the routing design of interposer and etc., the combi-
nation of a pin pair to be connected by wire is often flexible, and the re-
ductions of the total wire length and the length difference are pursued to
keep the circuit performance. Even though the total wire length can be
minimized by finding a minimum cost maximum flow in set pair routing
problems, the length difference is often large, and the reduction of it is not
easy. In this paper, an algorithm that reduces the length difference while
keeping the total wire length small is proposed. In the proposed algorithm,
an initial routing first obtained by a minimum cost maximum flow. Then
it is modified to reduce the maximum length while keeping the minimum
total wire length, and a connection of the minimum length is detoured to
reduce the length difference. The effectiveness of the proposed algorithm
is confirmed by experiments.
key words: set-pair routing, interposer, PCB, routing algorithm

1. Introduction

In the routing design such as silicon interposer [1], [2],
printed circuit board (PCB) and etc., the combination of a
pin pair to be connected by wire is often flexible when a
wire is required to connect passive elements, I/O pins of re-
configurable chip or etc. In such cases, whether the con-
nection requirements can be achieved is easily checked by
network flow algorithms. Moreover, the total wire length of
connections can be minimized by finding a minimum cost
maximum flow as used in [2]. However, the length differ-
ence of wires is often large even when the total wire length
is minimized. It would cause the delay mismatch and it is
not acceptable in recent high-speed interposer/PCB designs.
In order to keep the circuit performance good enough, the
length matching of wires is pursued while keeping the wire
lengths small, but it is not easy even if there exists a flexibil-
ity on pin pairs.

In this paper, a length matching routing algorithm for a
set-pair routing problem is proposed. In the set-pair routing
problem, the connection requirements are given between the
source-pin set and the sink-pin set. One pin from the source-
pin set and one pin from the sink-pin set are connected by
wire to propagate a signal so that no pin is shared by more
than one signal.

An example of a set-pair routing problem instance is
shown in Fig. 1 in which red rectangles represent source-
pins and in which blue rectangles represent sink-pins. Two
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Fig. 1 Example of set-pair routing.

routing patterns are shown in Fig. 1(a) and (b). The total
wire length of them is minimum. Here, the number of grid
segments used is set to the length. A minimum cost max-
imum flow algorithm typically generates a routing pattern
that has large length difference as shown in Fig. 1(a), even
though there exist routing patterns that have small length
difference as shown in Fig. 1(b).

In the set-pair routing problem, the length matching
is not easy even though the minimum total wire length
is achieved in polynomial time. The length matching in
the set-pair routing would be improved by applying length
matching algorithms for ordinary routing problems [3]–[5].
However, the results seem not good enough since they gen-
erate routing patterns by utilizing characteristics of problem
specifications well, but without utilizing the flexibility of pin
pairs.

Our proposed length matching algorithm for a set-pair
routing problem reduces the maximum wire length as well
as the length difference as much as possible. Our algorithm
utilizes network flow algorithms effectively, and consists of
three stages. Our algorithm, first, finds a routing pattern
that has the minimum total wire length. Second, the rout-
ing pattern is modified to improve the length matching by
reducing the maximum wire length while keeping the total
wire length minimum. Finally, the length matching is fur-
ther improved by increasing the minimum wire length while
increasing the total wire length. In the final stage, the in-
crease of the total wire length is suppressed since the max-
imum length is reduced as much as possible in the previous
stage.

Our length matching algorithm in this paper is a heuris-
tic even though the time complexity of the problem that min-
imizes the length difference of wires is not apparent. The
enhancements of our algorithm that take the delay match-
ing into account as well as that take the target delay of each
signal into account would be possible.

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers
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The rest of paper is organized as follows. Definitions
and basic notations especially for network flow are given
in Sect. 2. The complexities of several routing problems in-
cluding the set-pair routing problem are discussed in Sect. 3.
In Sect. 4, our proposed length matching algorithm is intro-
duced. Then, the experimental results in which our algo-
rithm is applied to several types of pin distributions on a
planar grid with obstacles are given in Sect. 5. Finally, the
conclusion is given in Sect. 6.

2. Preliminaries

The routing area is modeled as an undirected graph, called
routing graph, where a vertex corresponds to a grid point of
the routing area and an edge corresponds to a candidate of
wire segment. Source-pins and sink-pins are placed on grid
points of a routing graph. The routing graph also represents
a flow graph [6]–[8] in which each vertex v has capacity c(v)
and weight w(v). Source-pins and sink-pins are sources and
sinks of the flow graph, respectively.

In a flow graph, the primary source S that is connected
to source-pins and the primary sink T that is connected from
sink-pins are added to convert the flow graph to a single
source single sink flow graph. The capacity and weight of
both the primary source and the primary sink are infinite and
zero, respectively.

For example, in Fig. 2(a), the routing graph of the set-
pair routing problem instance shown in Fig. 1 is shown. In
Fig. 2(b), the flow graph that corresponds to the routing
graph shown in Fig. 2(a) is shown.

In our implementation, a vertex capacity flow graph is
converted to an equivalent directed flow graph with edge ca-
pacity. The conversion from a vertex capacity to an edge
capacity is explained in the following. A vertex v except
the primary source and the primary sink is converted to two
vertices, named in-vertex vi and out-vertex vo, which is con-
nected by a directed edge ev from vi to vo, The directed
edge ev has capacity c(v) and weight w(v). An undirected
edge in a vertex capacity graph is converted to two directed
edges from out-vertex to in-vertex of the corresponding end
vertices of the undirected edge. These edges have infinite
capacity and zero weight.

Fig. 2 Routing graph and flow graph.

For example, in Fig. 3, vertex u of capacity c(u) and
weight w(u) is converted to in-vertex ui, out-vertex uo, and
edge eu = (ui, uo) of capacity c(u) and weight w(u). An
undirected edge (u, v) of a vertex capacity graph is converted
to two directed edges (uo, vi) and (vo, ui).

In this paper, we assume that the vertex capacity c(v)
is 1 for any vertex v except the primary source and the pri-
mary sink, and that a flow consists of a set of streams of unit
amount. Each stream proceeds along directed edges from
the primary source to the primary sink, and corresponds to
a wire between a source-pin and a sink-pin. A flow is valid
when capacity constraints are satisfied. A flow is said to
be maximum if the number of streams is maximum among
valid flows. The vertex weight w(v) can be set to arbitrary
for any vertex, but is set to 1 in the explanation for sim-
plicity. The cost of a flow is defined as the sum of cost of
streams. The cost of a stream is the sum of edge weights
each of which is proportional to the amount of the stream.
A minimum cost maximum flow can be obtained in polyno-
mial time if the cost of a flow is defined as above [9].

In order to obtain a minimum cost maximum flow, the
residue graph of a valid flow is defined. The residue graph
is obtained from the flow graph by reversing the direction
of edges in which a stream flows. The sign of the weight
of an edge is also reversed when its direction is reversed.
It is known that a maximum flow is the minimum cost if
and only if the residue graph contains no negative weight
directed cycle.

For example, in Fig. 4(a), the residue graph of a flow
graph corresponding to the routing pattern of the total wire

Fig. 3 Vertex capacity to edge capacity.

Fig. 4 Residue graph of a flow.
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length 11 shown in Fig. 4(b) is shown. Note that the to-
tal wire length is not minimum though it is obtained by a
maximum flow algorithm. In Fig. 4(a), thick black edges
correspond to edges in which a stream flows.

3. Length Matching of Routing

3.1 Ordinary Routing Problem

In ordinary routing problems, a set of pins to be connected
by wire is given as a net. The problem finding a wire with
the minimum length for a single net is formulated as a short-
est path problem on a weighted graph or a Steiner tree prob-
lem on a weighted graph. When the number of pins of a net
is two, a shortest path of the net can be obtained by poly-
nomial time algorithms when the weight of an edge of the
routing graph is non-negative [7], [10]. While the problem
finding a minimum Steiner tree that connects three or more
pins is NP-hard in general, and it is considered that it is im-
possible to find an optimal solution in polynomial time [9],
and various heuristic algorithms have been proposed so far.

Furthermore, in ordinary routing problems, multiple
nets are given in general. It is difficult for multiple nets to
determine whether all the connection requirements can be
achieved. As it is well-known, the problem finding disjoint
paths is NP-hard when two or more two-pin nets are given
on a planar graph [9]. It is also known that the problem is
still NP-hard even if the graph is restricted to a grid graph
[11].

Network flow is often used to solve a routing problem.
However most of them are impractical except the situations
in which a flow always corresponds to the connection of a
net [5]. Multi commodity flow can be used to formulated a
routing problem, but it is not effective in general since the
problem is NP-hard if the amount of flow is restricted to an
integer even if the number of commodities is two [12].

So far, various kinds of algorithm have been proposed
for various kinds of design objectives. For example, the
length matching algorithms that control the length of wire
were proposed for ordinary routing problems under several
restrictions were proposed [3]–[5].

3.2 Set-Pair Routing Problem

In the routing design such as silicon interposer [1], [2],
printed circuit board and etc., the combination of a pin pair
to be connected by wire is often flexible when a wire is
required to connect passive elements, I/O pins of reconfig-
urable chip or etc. In such cases, the number of signals to be
propagated and the locations of pins are given as a problem
instance specification.

Set-Pair Routing Problem is defined as follows.

Set-Pair Routing Problem :
The connection requirements are given between two
sets of pins, named source-pin set and sink-pin set. The
locations of source-pins and sink-pins are given as an

input. One pin from the former and the other pin from
the latter are requested to be connected in the given
routing area without intersecting each other.

Objectives

• The reduction of the total wire length
• The reduction of the maximum wire length
• The reduction of the wire length difference
• The achievement of the target wire length

A various types of set-pair routing problems can be de-
fined depending on the objectives derived from applications.
A basic set-pair routing problem can be regarded as a dis-
joint path problem between two vertices. In the problem
formulation as the disjoint path problem, the primary source
that is connected to source-pins and the primary sink that
is connected from sink-pins are defined and are requested
to be connected by internally disjoint paths. Two internally
disjoint paths that connect a given pin pair can be obtained
in a linear time [13]. Even though the time complexity of the
problem that minimizes the length difference of wires is not
apparent, the problem of finding disjoint paths of the des-
ignated length or length upper bound is NP-hard in general
[14].

In a basic set-pair routing problem, whether the con-
nection requirements can be achieved is easily checked by
network flow algorithms. Also, a set of wires that achieves
the minimum total wire length can be obtained by obtaining
a minimum cost maximum flow which can be obtained by a
polynomial time [2], [9]. However, it is not easy to achieve
the length matching of wires even if there exists a flexibility
on pin pairs. The difficulties in set-pair routing problems are
in the reduction of the maximum wire length of connections
and the length mismatch among wires.

4. Length Matching Routing Algorithm for Set-Pair
Routing

4.1 Overview

Our proposed length matching algorithm for a set-pair rout-
ing problem reduces the maximum wire length as well as
the length difference as much as possible. Our algorithm
utilizes network flow and consists of three stages. The out-
line of our algorithm is shown in Fig. 5.

Our algorithm, first, finds a routing pattern by using
a minimum cost maximum flow algorithm. The total wire
length of the routing is minimum. However the length differ-
ence is tend to be large in general. Second, the initial routing
is modified to improve the length matching by reducing the
maximum wire length while keeping the total wire length
minimum. Pin pairs are exchanged to reduce the maximum
wire length. Finally, the length matching is further improved
by increasing the minimum wire length while increasing the
total wire length. In the final stage, the increase of the to-
tal wire length is suppressed since the maximum length is
reduced as much as possible in the previous stage.
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Stage 1 (Total Reduction)
Obtain a routing pattern that has the minimum total wire
length by finding a minimum cost maximum flow of the
corresponding flow graph.

Stage 2 (Maximum Reduction)
Reduce the maximum wire length while keeping the total
wire length minimum by greedily modifying a routing
pattern so that an earlier length sequence is obtained.

Stage 3 (Minimum Increase)
Lengthen a wire of the minimum length as much as
possible by using R-Flip iteratively while the maximum
length is kept.

Fig. 5 Proposed length matching algorithm.

Our length matching algorithm in this paper is a heuris-
tic even though the time complexity of the problem that min-
imizes the length difference of wires is not apparent. The
achievement of the target wire length is not taken into ac-
count in our algorithm. But it is not difficult to enhance our
algorithm to take it into account. The details of our proposed
algorithm are described in the following subsections.

4.2 Total Wire Length Minimization

In order to obtain a routing whose total wire length is min-
imum, a minimum cost maximum flow algorithm is used.
It is known that a minimum cost maximum flow can be ob-
tained in polynomial time [2], [9].

In our implementation, in order to obtain a maximum
flow, a flow stream of a unit amount from primary source
to primary sink is iteratively added by finding a augment-
ing path in the flow graph iteratively until there is no aug-
menting path. Augmenting paths are obtained by using a
breadth-first-search base algorithm. After a maximum flow
is obtained, the cost of a maximum flow is reduced by modi-
fying the flow iteratively by adding a closed stream that cor-
responds to a negative weight directed cycle of the residue
graph of the flow until there is no negative weight directed
cycle. The cost of a maximum flow is reduced to which a
closed stream that corresponds to a negative weight cycle
in the residue graph is added. A negative weight cycle in
a weighted directed graph is obtained by using the negative
cycle detection algorithm shown in [15] which is based on
Bellman-Ford shortest path algorithm [16].

In Fig. 6(a), a negative weight cycle of weight −2 in
the residue graph shown in Fig. 4(a) is drawn in black. In
Fig. 6(b), the routing pattern of the total wire length 9 cor-
responding to the flow graph obtained by adding a closed
stream on the cycle is shown. Note that the change of the
total wire length is equal to the weight of the cycle.

The total wire length of the routing that corresponds
to the obtained minimum cost maximum flow is minimum.
However the length difference is tend to be large since the
routing is generated by using breadth-first-search base algo-
rithm. Shorter wires that connects near pins are generated
in earlier and the remaining distant pins are connected later.
Even though connections are modified to reduce the total

Fig. 6 Negative weight cycle of residue graph.

Fig. 7 Zero weight cycle of residue graph.

wire length, the length difference often remains large. It
is often the case that the total wire length is minimum but
the length difference is large. The minimum cost maximum
flow algorithm does not modify the routing if it achieves the
minimum total wire length.

4.3 Maximum Wire Length Reduction

A routing pattern that has the minimum total wire length
does not necessarily achieve the length matching. In or-
der to improve the length matching, the maximum length of
the routing pattern is reduced while keeping the total wire
length minimum.

Typically, the length difference is tend to be large when
a routing pattern is obtained by using a typical minimum
cost maximum flow algorithm. The length matching is im-
proved if a directed cycle in a residue graph that improves
the length matching is obtained, but the characterization
such cycles is not easy.

For example, in Fig. 7(a), the residue graph of the flow
corresponding to the routing pattern shown in Fig. 7(b) is
shown. The residue graph contains no negative weight di-
rected cycle. In Fig. 7(a), the zero weight cycle that converts
the routing pattern shown in Fig. 7(b) to the routing pattern
shown in Fig. 7(c) is drawn in black.

A zero weight directed cycle of the residue graph
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would be found by a similar method to negative cycle de-
tection algorithms. However, most of zero weight directed
cycles do not improve the length matching. If pin pairs
to be connected are not exchanged, the length matching is
not improved if the minimum total length is maintained. A
zero weight directed cycle interacts with at least one flow
stream. If it interacts with only one flow stream, then pin
pairs to be connected are not exchanged. In order to find
a zero weight directed cycle that has potential to improve
the length matching, the cycle must interact with at least
two flow streams so that pin pairs to be connected are ex-
changed. In order to find such a zero weight directed cycle,
our procedure checks whether there exists a zero weight di-
rected cycle that contains two vertices on the different flow
streams.

In our procedure in this stage, first, two vertices v and u
are chosen from grid points on the different flow streams.
Second, a shortest path from out-vertex vo of v to in-vertex ui

of u in the residue graph is obtained by using a Bellman-
Ford shortest path base algorithm. Then, a shortest path
from ui to vo that excludes internal vertices of the shortest
path from vo to ui is obtained to form a directed cycle when
two paths are concatenated. If the sum of weights of two
paths is zero, then a zero weight directed cycle which is the
concatenation of two paths is found. The current routing
pattern is modified if the length matching is improved when
the found zero weight directed cycle is applied. Otherwise
the current routing pattern is kept. This is repeated until no
better routing pattern is found for combinations of vertices.

In order to find a cycle that has a potential to improve
the length matching, at least one grid point is chosen from
a longer flow stream. Even though the existence check of a
zero weighted directed cycle is a heuristic, and there might
be missed a cycle in terms of chosen two vertices, a zero
weighted directed cycle would be found for several combi-
nations of vertices.

For example, in Fig. 8, two shortest paths between vo
and ui in the residue graph shown in Fig. 7(a) are drawn in
black. The weights of the shortest paths from vo to ui and
from ui to vo are 2 and −2, respectively. The concatenation
of these two paths forms the cycle shown in Fig. 7(a).

Fig. 8 Shortest paths between vo and ui.

In our implementation, the order of pairs of vertices
to find a candidate zero weight directed cycle is defined as
follows. The order of pairs of vertices is defined for each
pair of wires as follows. For each vertex chosen along the
longer wire from sink pin to source pin, a vertex to be paired
is chosen along the shorter wire from source pin to sink pin.
The order of pairs of wires to generate pairs of vertices is
defined as follows. For each wire in decreasing order of
wire length, a shorter distinct wire to be paired is selected in
increasing order of wire length (ties are broken arbitrary).

In our procedure, the current routing pattern is modi-
fied if a better routing pattern is obtained. If a routing pattern
is evaluated by using the maximum wire length or by using
the length difference, the evaluation is often the same even
if the routing pattern looks improved. In order to improve
the search ability while keeping the convergence of modifi-
cations, the length sequence of a routing pattern is used to
evaluate the routing pattern.

The length sequence of a routing pattern is defined as a
decreasing order of lengths of wires in the routing pattern. In
the lexicographical order of the length sequence of routing
patterns, a routing pattern that has a smaller maximum wire
length is earlier than that has a larger maximum wire length.
If the maximum wire lengths are the same, the smaller sec-
ond largest wire length is earlier, and so on. Even though
an earlier lexicographical order does not necessarily mean a
smaller length difference, the length difference of a routing
pattern is tend to be small if it has an earlier lexicographical
order.

4.4 Minimum Wire Length Increase

The reduction of the wire length difference can be also
achieved by lengthening shortest wires instead of the reduc-
tion of the maximum wire length. In the final stage, in order
further improve the length matching the length of a short-
est wire is increased by applying simple detour modifica-
tion called R-flip in [17] while keeping the maximum wire
length. The total wire length is increased in this stage, but
the increase of the total wire length is suppressed since the
maximum length is reduced as much as possible in the pre-
vious stage.

In our procedure, R-flips are applied iterative to an
arbitrary wire segment of an arbitrary shortest wire, even
though the final result depends on how R-flips are applied.
In our implementation, a feasible R-flip which is found first

Fig. 9 R-flip.
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is applied. In order to find a feasible R-flip, the feasibility
of R-flips to upper, lower, left, and right directions for each
wire segment from sink pin to source pin along an arbitrary
shortest wire are checked in this order.

For example, R-flip is applied to the routing pattern
shown in Fig. 9(a), the routing pattern shown in Fig. 9(b) is
obtained. By applying R-flip repeatedly, the routing pattern
shown in Fig. 9(c) is obtained.

5. Experiments

The proposed length matching algorithm is implemented by
C++ programming language on Intel(R) Core i3-550 CPU
3.20 GHz, 4 GB Memory.

The problem instances are generated randomly to fit
with several situations as single layer routing problem. The
number of source-pins is equal to the number of the sink-
pins. Obstacles are randomly inserted in routing area. In E
series instances, source pins are on array and sink pins are
on the boundary. In B series instances, source pins and sink
pins are generated to align on lines. In S series instances,
source pins and sink pins are generated in top half and bot-

Table 1 Experimental result.

Stage 1 (Tot. Reduction) Stage 2 (Max. Reduction) Stage 3 (Min. Increase)
Instance Grid #Net #Obst Ltot Lmax dmax t1 (sec.) Ltot Lmax dmax t2 (sec.) Ltot Lmax dmax t3 (sec.)

#E1 19x19 16 0 136 10 4 0.011 136 10 2 3.414 160 10 0 0.0002
#E2 19x19 16 50 146 18 12 0.004 146 16 10 0.494 154 16 8 0.0001
#B1 19x22 6 50 93 19 9 0.005 93 17 4 0.197 97 17 2 0.0000
#B2 29x31 12 100 338 35 12 0.020 338 30 5 18.049 354 30 1 0.0001
#B3 29x31 12 100 356 46 24 0.040 356 46 20 11.892 420 46 12 0.0004
#S1 10x10 6 10 44 17 14 0.001 44 12 9 0.023 46 12 8 0.0000
#S2 20x20 8 60 91 22 17 0.006 91 16 10 0.557 117 16 2 0.0001
#S3 30x30 12 100 271 51 44 0.053 271 30 19 33.465 355 30 1 0.0004
#F1 29x29 12 120 132 23 20 0.019 132 19 16 7.950 196 19 4 0.0003
Avg. 160.7 24.1 15.6 0.016 160.7 19.6 9.5 7.604 189.9 19.6 3.8 0.0002

Fig. 10 Routing patterns.

tom half of the single layer routing region. In F series in-
stances, source pins and sink pins are on arrays of different
size.

The results are shown in Table 1. The statistics of the
output of each stage is shown. The number of nets, the
number of grids to which an obstacle is placed are shown
in “#Net” and “#Obst”, respectively. The total wire length,
the maximum wire length, and the wire length difference are
shown in Ltot, Lmax, and dmax, respectively. The computation
time (sec.) of each stage is also shown. Routing patterns ob-
tained are shown in Fig. 10.

It is confirmed that the length matching is improved
from routing patterns corresponding to minimum cost max-
imum flows. Stage 2 consumes relatively long time in the
current implementation. It would be reduced if the number
of combinations of vertices checked is reduced by selecting
the combinations properly.

6. Conclusion

In this paper, an algorithm that reduces the length differ-
ence while keeping the total wire length small is proposed
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for a set-pair routing problem. Experiments show the effec-
tiveness of the proposed algorithm. In order to adapt high-
speed designs, the post-processing that further improves the
obtained routing patterns such as meander wiring, corner
rounding, and delay consideration would be required. Our
algorithm will lead such the post-processing to meaningful.
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