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Abstract

This thesis consists of the following three chapters:

• Chapter 1: This chapter gives a brief introduction to the topics ”lambda-calculus”,

”proof theory” and ”Curry-Howard correspondence”.

• Chapter 2: The Church-Rosser property of the lambda-beta-calculus is an impor-

tant property which guarantees that the lambda-beta-calculus is well-behaved as a

computation model. In this chapter, we give a new proof to the Church-Rosser theo-

rem by improving the proof given in (Takahashi, 1989). Furthermore, we explain that

our proof method can be applied to abstract term rewriting systems. The result in

this chapter was given by Komori, Yamakawa and the author in (Komori, Matsuda,

& Yamakawa, 2014).

• Chapter 3: In this chapter, we give a typed lambda-calculus, called the intuitionistic

lambda-rho-calculus, which corresponds to the implicational fragment of intuitionis-

tic logic and can capture the work of the operators catch and throw of functional

programming language. Because the work of the operators cannot be captured with

the lambda-beta-calculus, this result is regarded as an extension of the Curry-Howard

correspondence. Furthermore, we show some important properties, such as the strong

normalization theorem, of the system. The result of this chapter was given by Fujita,

Kashima, Komori and the author in (Fujita, Kashima, Komori, & Matsuda, 2015;

Matsuda, 2015c).
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Chapter 1 Introduction and preliminaries

In this thesis, we mainly treat the following two objects:

⋆ Lambda-calculus: Lambda-abstraction is a basic operation which constructs a new

higher-order function from some higher-order functions. Lambda-calculi are formal

systems, introduced by Church, which formalize the lambda-abstraction. Because

many functional programming languages use the lambda-abstraction to construct

programs, lambda-calculi are studied as a basic theory of functional programming

languages today.

⋆ Proof theory: Proof theory is a field of mathematical logic which studies “mathe-

matical proofs” as mathematical objects formally by representing mathematical proofs

as formal objects and analyzing them.

It is well-known that there is a closed connection called the Curry-Howard correspondence

between them. The aim of this thesis is to give a study on these two topics and give an

extension of the Curry-Howard correspondence. This chapter explains the background of

our work briefly.

Section 1.1 gives an introduction to lambda-calculus. Section 1.2 gives an introduction

to proof theory. Section 1.3 gives an introduction to the Curry-Howard correspondence.

1.1 Lambda-calculus

Lambda-abstraction is a basic operation which constructs a new higher-order function from

some higher-order functions. For example, a function which receives a unary function on N
(we write the set of natural numbers as N in this thesis) and a natural number and returns

a value obtained by applying the unary function to the natural number twice is written as

(λx : N → N .(λy : N .(x(xy))))

with the lambda-abstraction notation. The intended work of this function is as follows

(λx : N → N .(λy : N .(x(xy))))(f)(3) = f(f(3)).1

1A more detailed introduction to lambda-abstraction notation is written in (Hindley & Seldin, 2008;
Takahashi, 1991) for example.

1



2 Chapter 1. Introduction and preliminaries

Lambda-calculi, introduced by Church (Church, 1944), are formal systems which formal-

ize the work of the lambda-abstraction. Because many functional programming languages

use the lambda-abstraction to construct programs 2, lambda-calculi are studied as a basic

theory of functional programming languages today 3 .

1.1.1 Untyped lambda-beta-calculus

We first give an introduction to untyped lambda-beta-calculus. Suppose a countable set

Vλ = {x1, x2, . . .} of variables, called lambda-variables, is given. Then the set Tmλ of

lambda-terms is defined as follows:

1. Each lambda-variable is in Tmλ.

2. If M,N are both in Tmλ then (MN) is in Tmλ. A term of this form is called a

lambda-application.

3. If M is in Tmλ and x ∈ Vλ then (λx.M) is in Tmλ. A term of this form is called a

lambda-abstraction.

We use metavariables x, y, z, . . . for lambda-variables, and use metavariablesM,N,P,Q, . . .

for lambda-terms. Parentheses will be omitted in such a way thatMNPQ denotes the term

(((MN)P )Q), λx.MN denotes (λx.(MN)) and λx1 . . . xn.M denotes (λx1.(λx2.(. . . (λxn.M

) . . . ))).

Definition 1.1 (Free variable, subterm). We define the sets FVλ(M) ⊂ Vλ and Sub(M) ⊂
Tmλ, for each lambda-term M , as follows:

1. FVλ(x) = {x} and Sub(x) = {x}.

2. FVλ(MN) = FVλ(M) ∪ FVλ(N) and Sub(MN) = Sub(M) ∪ Sub(N) ∪ {MN}.

3. FVλ(λx.M) = FVλ(M) \ {x} and Sub(λx.M) = Sub(M) ∪ {λx.M}.

We say x is free in M if x ∈ FVλ(M). We say N is subterm of M if N ∈ Sub(M).

Definition 1.2 (Substitution). For each M,N , we define [N/x]M as follows:

1. [N/x]M is M if FVλ(M) = ∅.

2. [N/x]x is N .

3. [N/x](PQ) is [N/x]P [N/x]Q.
2See (Abelson, Sussman, & Sussman, 1996, subsection 1.3.2.) or (Pierce, 2002, section 5.) for example.
3See (Abelson et al., 1996; Gunter, 1992; Pierce, 2002) for example.



Section 1.1. Lambda-calculus 3

4. [N/x](λy.P ) is λy.[N/x]P if y is not x and y ̸∈ FVλ(N).

5. [N/x](λy.P ) is λz.[N/x][z/y]P , where z is the first lambda-variable 4 in Vλ \FVλ(P ),

if y is not x and y ∈ FVλ(N).

Here we choose to apply the rule with smallest number if many rules can apply to M 5.

Intuitively speaking, [N/x]M is the lambda-term obtained from M by replacing all free

occurrences of x by N .

Definition 1.3 (alpha-equivalent). We say M is alpha-equivalent to N if M ∼α N can be

derived by the following rules:

(ρ) M ∼α M .

(τ) If M1 ∼α M2 and M2 ∼α M3 then M1 ∼α M3.

(σ) If M1 ∼α M2 then M2 ∼α M1.

(α) If [x/y]M ∼α [x/z]N then λy.M ∼α λz.N .

In the following argument, ifM is alpha-equivalent to N , we identify those two lambda-

terms and write M ≡ N .

Then, we introduce a binary relation ▷1β on Tmλ which captures the work of the lambda-

abstraction.

Definition 1.4 (beta-contraction, beta-reduction, beta-equivalent). If N is obtained from

M by replacing a subterm of the form (λx.P )Q by the term [Q/x]P , we write M ▷1β N .

Strictly speaking, we write M ▷1β N if M ↪→1 N can be derived by the following rules:

(β) (λx.M)N ↪→1 [N/x]M .

(ξ) If M ↪→1 N then λx.M ↪→1 λx.N .

(σ) If M ↪→1 N then PM ↪→1 PN and MQ ↪→1 NQ.

A term of the form (λx.M)N is called a beta-redex and the corresponding term [N/x]M is

called its contractum. ▷1β is called the beta-contraction relation. We also define the binary

relation ▷β (beta-reduction) as the reflexive transitive closure of ▷1β, and define the binary

relation =β (beta-equivalence) as the smallest equivalent relation including ▷1β.
4Recall lambda-variables are enumerable and each variable is assigned a natural number as its index:

x1, x2 . . . . The first variable in Vλ \ FVλ(P ) means the lambda-variable with the smallest index in Vλ \
FVλ(P ).

5In this thesis, we will follow this promise when we define new notions inductively.



4 Chapter 1. Introduction and preliminaries

M ∈ Tmλ is called a beta-normal form if M ̸ ▷1βN for every N ∈ Tmλ. We say N is

lambda-normal form of M if M ▷β N and N is a lambda-normal form.

Example 1.5.

(λxy.x(xy))FN ▷1β (λy.F (Fy))N ▷1β F (FN).

The following properties can be easily checked.

Theorem 1.6.

1. If M ▷β N then, PM ▷β PN , MQ ▷β NQ and λx.M ▷β λx.N for each P,Q, x.

2. If M ▷β N and P ▷β Q then [P/x]M ▷β [Q/x]N for each x.

3. If M ▷β N then FVλ(M) ⊇ FVλ(N).

Proof. See (Hindley & Seldin, 2008).

We call the system (structure) ⟨Tmλ, ▷1β⟩ the lambda-beta-calculus. The lambda-beta-

calculus has very simple structure, but has very strong expressiveness. Church and Kleene

proposed a computation model based on the lambda-beta-calculus, and showed that every

recursive functions can be defined in the computation model:

Definition 1.7 (Church-numeral, lambda-definable function). For each n ∈ N , we give the

lambda-term Cn as follows:

C0 ≡ y, Cn+1 ≡ xCn.

Then, we define the Church numeral n of n as λxy.Cn. Note that each Church-numeral is

a beta-normal form.

We say a k-ary partial function f on N is lambda-definable if there exists a lambda-term

F which satisfies the following conditions for each n1, . . . , nk ∈ N :

• Fn1 . . . nk ▷β f(n1, . . . , nk) if f(n1, . . . , nk) is defined.

• Fn1 . . . nk has no beta-normal form if f(n1, . . . , nk) is undefined.

Theorem 1.8. Each recursive function is lambda-definable, and each lambda-definable

function is recursive.

Proof. See (Hindley & Seldin, 2008; Kleene, 1936).

Note that each calculation step in lambda-beta-calculus is not unique, that is, there may

be plural lambda-terms obtained from M by one-step beta-contraction. For example, we

can obtain both (λx.xx)((λy.y)z) ▷1β ((λy.y)z)((λy.y)z) and (λx.xx)((λy.y)z) ▷1β (λx.xx)z.

Then, the following question arises:
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Is there a situation such that Fn1 . . . nk =τ m1 and Fn1 . . . nk =τ m2 for

some m1 ̸= m2.

If such a situation exists, the notion of lambda-definable function should be regarded to be

worthless. The following theorem guarantees that such a situation cannot happen.

Theorem 1.9 (Church-Rosser theorem). If M ▷βN1 and M ▷βN2 then there exists R such

that N1 ▷β R and N2 ▷β R.

N1

� β
�
β

M ∃R
�
β � β

N2

A proof of the Church-Rosser theorem is given in chapter 2.

1.1.2 Typed lambda-beta-calculus

In the above system, we can construct an ill-behaved term. For example, (λy.z)((λx.xx)(λx.xx))

has a beta-normal form, but it can causes an infinite ▷1β-sequence

(λy.z)((λx.xx)(λx.xx)) ▷1β (λy.z)((λx.xx)(λx.xx)) ▷1β (λy.z)((λx.xx)(λx.xx)) ▷1β . . .

by contracting the beta-redex (λx.xx)(λx.xx) repeatedly. Here, we will explain how we can

remove those ill-behaved terms by treating only terms called typed lambda-terms.

Suppose a countable set AT = {t1, t2, . . .} of atomic types is given. Then the set Tp→

of simple types is defined as follows:

t ∈ AT

σ, τ ∈ Tp→ ::= t | (σ → τ)

We use metavariables s, t, u, . . . for atomic types, and use metavariables σ, τ, θ, . . . for types.

Suppose, for each σ ∈ Tp→, a countable set Vσ
λ = {xσ1 , xσ2 , . . .} of typed lambda-variables

is given. Then the set TpTmλ of typed lambda-terms and a mapping Type : TpTmλ → Tp→

are defined as follows:

1. If x ∈ Vσ
λ then x ∈ TpTmλ and Type(x) = σ.

2. If M,N ∈ TpTmλ, Type(M) = σ → τ and Type(N) = σ then MN ∈ TpTmλ and

Type(MN) = τ .
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3. If M ∈ TpTmλ, Type(M) = σ and x ∈ Vτ
λ then λx.M ∈ TpTmλ and Type(λx.M) =

τ → σ.

Theorem 1.10 (Subject reduction theorem). Let M ∈ TpTmλ. If M ▷1β N then N ∈
TpTmλ and Type(N) = Type(M).

Proof. See (Hindley & Seldin, 2008).

The following theorem shows that the ill-behaved terms is actually removed.

Theorem 1.11 (Strong normalization theorem). IfM ∈ TpTmλ, then there are no infinite

sequences of beta-contraction starting from M .

Proof. See (Hindley & Seldin, 2008).

1.2 Proof theory

When we write a mathematical proof, we naturally construct a new complicated proposition

from some basic propositions by use of some logical connectives such as “or”, “and ”, “not”

and “if ... then”. Symbolic propositional logic and proof theory study the work of such

logical connectives by representing mathematical propositions and mathematical proofs as

formal objects and analyzing them.

The language L, which we use in this thesis, consists of the following symbols:

• Propositional variables: We prepare countably many propositional variables p1, p2, . . . .

Each propositional variable represents an arbitrary proposition. We write a set of

every propositional variables as PV. We use metavariables p, q, r, . . . to represent

propositional variables.

• Logical symbols: In this thesis, we treat only ⊃ and ⊥ as logical symbols 6 . α ⊃ β

represents the proposition “if α then β”, and ⊥ represents a contradicted proposition.

The set Fml⊃⊥ of formulas and the set Fml⊃ of implicational formulas are defined as follows:

1. Each propositional formula is in Fml⊃⊥ and Fml⊃.

2. ⊥ is in Fml⊃⊥.

3. If α, β are both in Fml⊃⊥ (resp. Fml⊃) then (α ⊃ β) is in Fml⊃⊥ (resp. Fml⊃).

6In this thesis, we do not treat other logical connectives such as “and” and “or”. Proof theoretic treatment
of such connectives is written in (Buss, 1998) for example.
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We sometimes use the notation Fml to represent either Fml⊃ or Fml⊃⊥. We use metavari-

ables α, β, γ, . . . to represent formulas. (α ⊃ (β ⊃ γ)) is abbreviated as α ⊃ β ⊃ γ

and α ⊃ ⊥ is abbreviated as ¬α. We define the formula [β1/p1, . . . , βn/pn]α as the for-

mula obtained from α by replacing each pi by βi simultaneously. A formula of the form

[β1/p1, . . . , βn/pn]α is called a substitution instance of α.

1.2.1 Classical logic and intuitionistic logic

Classical logic is a logic which is admitted and used by almost all mathematicians. There

are many proof systems which formalize classical logic. One of the most famous system was

given by Hilbert:

Definition 1.12. Hilbert style proof systemHK for classical logic has the axioms (S), (K), (A), (P)

and the inference rule (E ⊃) 7 .

(S) (p ⊃ q ⊃ r) ⊃ (p ⊃ q) ⊃ p ⊃ r

(K) p ⊃ q ⊃ p

(A) ⊥ ⊃ p

(P) ((p ⊃ q) ⊃ p) ⊃ p

α ⊃ β α

β
(E ⊃)

With these rules, we define the notion of HK-proof. Each HK-proof has its assumption

set Γ ⊆ N × Fml and its conclusion α ∈ Fml. We write a pair ⟨n, α⟩ ∈ N × Fml as n : α.

HK-proofs are constructed as follows:

1. For each n ∈ N and α ∈ Fml,

n : α

is an HK-proof of α with the assumption set {n : α}.

2. Let (∗) ∈ {(S), (K), (A), (P)}. If α is a substitution instance of the (∗)-axiom, then

α (∗)

is an HK-proof of α with no assumption.

7The rule (E ⊃) is sometimes called the modus ponens.
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3. Let Π1 be an HK-proof of α ⊃ β with the assumption set Γ and Π2 be an HK-proof

of α with the assumption set ∆. Then

Π1 Π2

β
(E ⊃)

is an HK-proof of β with the assumption set Γ ∪∆.

We write Γ ⊢HK α for Γ ⊆ Fml and α ∈ Fml, if there exists Γ+ ⊆ N × Fml such that

Γ = {α | n : α ∈ Γ+} and there exists an HK-proof of α with the assumption set Γ+. We

say α is provable in HK and write ⊢HK α if ∅ ⊢HK α.

The proof system HK⊃ for implicational classical logic consists of the axiom scheme

(S), (K), (P) and the inference rule (E ⊃).

Intuitionistic logic is a logic, introduced by Brouwer, which admits only constructive

reasoning. Heyting, a disciple of Brouwer, gave a Hilbert style proof system HJ for intu-

itionistic logic:

Definition 1.13. Hilbert style proof system HJ for intuitionistic logic consists of the axiom

schemes (S), (K), (A) and the inference rule (E ⊃). The notion of HJ-proof and ⊢HJ are

defined in the same way as HK-proof and ⊢HK respectively.

The proof systemHJ⊃ for implicational intuitionistic logic consists of the axiom schemes

(S), (K) and the inference rule (E ⊃).

Example 1.14.

(1) From the following proof, we obtain {¬α, α} ⊢HJ β.

⊥ ⊃ β
(A) 1 : ¬α 2 : α

⊥ (E ⊃)

β
(E ⊃)

(2) From the following proof, we obtain ⊢HJ α ⊃ α.

(α ⊃ (α ⊃ α) ⊃ α) ⊃ (α ⊃ α ⊃ α) ⊃ α ⊃ α
(S)

α ⊃ (α ⊃ α) ⊃ α
(K)

(α ⊃ α ⊃ α) ⊃ α ⊃ α
(E ⊃)

α ⊃ α ⊃ α (K)

α ⊃ α (E ⊃)

As you can see from the above examples, Hilbert style proof has very different form from

real mathematical proof. Gentzen (Gentzen, 1935) analysed many mathematical proofs and

introduced the proof systems NK for classical logic and NJ for intuitionistic logic.

Definition 1.15 (Natural deduction style proof systems NK and NJ). Each NK-proof

has its assumption set Γ ⊆ N × Fml and its conclusion α ∈ Fml.

NK-proofs are constructed as follows:
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1. For each n ∈ N and α ∈ Fml,

n : α

is an NK-proof of α with the assumption set {n : α}.

2. Let Π1 be an NK-proof of α ⊃ β with the assumption set Γ and Π2 be an NK-proof

of α with the assumption set ∆. Then

Π1 Π2

β
(E ⊃)

is an NK-proof of β with the assumption set Γ ∪∆.

3. Let Π be an NK-proof of β with the assumption set Γ. Then

Π
α ⊃ β

(I ⊃ n : α)

is an NK-proof of α ⊃ β with the assumption set Γ \ {n : α}.

4. Let Π be an NK-proof of ⊥ with the assumption set Γ, then

Π
α (Absurd)

is an NK-proof of α with the assumption set Γ.

5. Let Π be an NK-proof of ¬¬α with the assumption set Γ, then

Π
α (DNE)

is an NK-proof of α with the assumption set Γ.

We write Γ ⊢NK α for Γ ⊆ Fml and α ∈ Fml, if there exists Γ+ ⊆ N × Fml such that

Γ = {α | n : α ∈ Γ+} and there exists an NK-proof of α with the assumption set Γ+. We

say α is provable in NK and write ⊢NK α if ∅ ⊢NK α.

The proof system NJ for intuitionistic logic consists of the inference rules (E ⊃), (I ⊃
), (Absurd), that is, NJ is obtained from NK by removing the inference rule (DNE). We

define the notation ⊢NJ in the same way as ⊢NK. The proof system NJ⊃ for implicational

intuitionistic logic consists of the inference rules (E ⊃), (I ⊃ ).

Example 1.16.

1. We have {α,¬α} ⊢NK β because we can construct the following NJ-proof.

1 : ¬α 2 : α
⊥ (E ⊃)

β
(Absurd)
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2. We have ⊢NJ α ⊃ α because we can construct the following NJ-proof.

1 : α
α ⊃ α (I ⊃ 1 : α)

Note 1.17. Consider the following two NJ-proofs:

1 : α ⊃ β 2 : α

β
(E ⊃)

(α ⊃ β) ⊃ β
(I ⊃ 1 : α ⊃ β)

α ⊃ (α ⊃ β) ⊃ β
(I ⊃ 2 : α)

3 : α ⊃ β 4 : α

β
(E ⊃)

(α ⊃ β) ⊃ β
(I ⊃ 3 : α ⊃ β)

α ⊃ (α ⊃ β) ⊃ β
(I ⊃ 4 : α)

One may notice that these proofs are essentially the same. In the following argument, we

identify such proofs. Strictly speaking, we identify a proof Π to a proof Σ if Σ is obtained

from Π by replacing labels of some discharged assumptions.

1.2.2 Proof contraction for NJ⊃

As written above, in proof theory, we studies properties of a logic by observing a formal proof

system of the logic. One of the most useful tool in proof theory is proof contraction (proof

transformation). For example, Prawitz (Prawitz, 1965) studies some proof contractions for

some natural deduction style proof systems, and showed some important properties of those

systems. In this subsection, we introduce a proof contraction called ⊃-contraction for NJ⊃.

Definition 1.18. For each NJ⊃-proof Σ of α, we define the proof [Σ / n : α]Π as the

NJ⊃-proof obtained from Π by replacing each assumption n : α by Σ. Here we assume that

if m is used as a label of an assumption of Σ then there are no discharged assumptions with

label m in Π.

Let Π be an NJ⊃-proof. If there exists a subproof of Π of the form

Σ
α ⊃ β

(I ⊃ n : α)
Ω

β
(E ⊃)

,

where Σ is an NJ⊃-proof of β and Ω is an NJ⊃-proof of α, then we call the subproof a

detour in Π. If Π′ be obtained from Π by replacing a detour of the above form by the

proof [Ω / n : α]Σ, then we write Π ▷1→ Π′. We also define the relation ▷⊃ as the reflexive

transitive closure of ▷1p. An NJ⊃-proof is said to be normal if it includes no detours.

Example 1.19.

1 : (α ⊃ α) ⊃ (α ⊃ α) ⊃ β 2 : α ⊃ α

(α ⊃ α) ⊃ β
(E ⊃)

2 : α ⊃ α

β
(E ⊃)

(α ⊃ α) ⊃ β
(I ⊃ 2 : α) 3 : α

α ⊃ α (I ⊃ 3 : α)

β
(E ⊃)
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▽1⊃

1 : (α ⊃ α) ⊃ (α ⊃ α) ⊃ β
3 : α
α ⊃ α (I ⊃ 3 : α)

(α ⊃ α) ⊃ β
(E ⊃) 3 : α

α ⊃ α (I ⊃ 3 : α)

β
(E ⊃)

Theorem 1.20. If Σ is an NJ-proof and Σ ▷1→ Π then Π is an NJ-proof.

Proof. See (Komori & Ono, 2010).

Theorem 1.21. For each NJ⊃-proof Π, there exists a normal NJ⊃-proof Σ such that

Π ▷⊃ Σ.

Proof. See (Komori & Ono, 2010).

From the above theorems, we can obtain an important property of intuitionistic logic:

Corollary 1.22. Intuitionistic logic is consistent, that is, there exists a formula α such

that ̸⊢NJ α.

Proof. We can show ̸⊢NJ⊃ p as follows: If ⊢NJ⊃ p, then there exists a normal NJ⊃-proof

of p with no assumption. However we cannon construct such a proof.

1.3 The Curry-Howard correspondence

We introduced the typed lambda-beta-calculus in subsection 1.1.2 and the proof system

NJ⊃ in subsection 1.2.1. Each system has its own history and philosophy, but there are

many similarities between these systems. The correspondence between these system was

discovered by Howard (Howard, 1980) and, since then, have been studied in many fields

such as mathematics, computer science and philosophy. The correspondence and the corre-

spondence between HJ⊃ and the combinatory logic SK discovered by Curry (Curry, Feys,

Craig, & Craig, 1958) are called the Curry-Howard correspondence. In subsection 1.3.1, we

give an explanation on the correspondence between the lambda-beta-calculus and NJ⊃.

In the following argument, we use the following notation: We define Pr as the set of

NJ⊃-proof. Furthermore, we write the assumption of Π ∈ Pr as Ass(Π) ⊆ (N × Fml), and

write the conclusion of Π as Con(Π) ∈ Fml.
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1.3.1 Typed lambda-beta-calculus and NJ⊃

Because both AT (the set of atomic types) and PV (the set of propositional variables) are

enumerable, we can give a bijection How0 from AT into PV as How0(ti) = pi. Based on

this bijection, we will observe the correspondence between the lambda-beta-calculus and

NJ⊃.

We first define a mapping How1 from Tp→ (the set of simple types) into Fml⊃ (the set

of implicational formulas) as

How1(ti) = How0(ti)(= pi), How1(τ → σ) = How1(τ) ⊃ How1(σ).

Then, define a mapping How2 :
∪
τ∈Tp→

Vτ
λ → (N × Fml) as

How2(x
τ
n) = n : How1(τ).

Next, we define a mapping How3 : TpTmλ → Pr, which satisfies Con(How3(M)) =

How1(Type(M)) and Ass(How3(M)) = How2(FVλ(M)), as follows:

1. How3(x
τ
n) is the following NJ⊃-proof.

n : How1(τ)

2. Let M ≡ PQ. In this case, we have Type(P ) = τ → σ, Type(Q) = τ and

Type(M) = σ for some τ, σ. By induction hypothesis, we obtain an NJ⊃-proof

How3(P ) of How1(τ) ⊃ How1(σ) and an NJ⊃-proof How1(Q) of How1(τ). Then we

define How3(M) as the following proof.

How3(P ) How3(Q)

How1(σ)
(E ⊃)

3. Let M ≡ λxτn.N . In this case, we have Type(N) = σ and Type(M) = τ → σ for some

σ. By induction hypothesis, we obtain an NJ⊃-proof How3(N) of How1(σ). Then we

define How3(M) as the following proof.

How3(N)

How1(τ) ⊃ How1(σ)
(I ⊃ n : How1(τ))

Finally let How = How1 ⊕ How2 ⊕ How3. Then How tells us that there is a close

connection between the lambda-beta-calculus and NJ⊃ in the following sense:

Theorem 1.23. How is an isomorphism from the structure ⟨Tp⊃⊕
∪
τ∈Tp→

Vτ
λ⊕TpTmλ :

Type,FVλ : ▷1β⟩ into the structure ⟨Fml⊃ ⊕ (N × Fml⊃)⊕ Pr : Con,Ass : ▷1p⟩ 8 , i.e. the

following properties hold for each M,N ∈ TpTmλ:
8In this thesis, ⟨S : f1, . . . , fn : r1, . . . , rm⟩ means a many sorted structure where S is the base set of this

structure and each fi is a function and each rj is a relation.
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1. How1 is a bijection from Tp→ into Fml⊃.

2. How2 is a bijection from
∪
τ∈Tp→

Vτ
λ into (N × Fml⊃).

3. How3 is a bijection from TpTmλ into Pr.

4. How1(Type(M)) = Con(How3(M)).
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5. How2(FVλ(M)) = Ass(How3(M)).

6. If M ▷1β N then How3(M) ▷1p How3(N).

Furthermore, through the isomorphism How, we can easily discover a close connection

of each pair of concepts written below:
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lambda-beta-calculus NJ⊃

atomic type propositional variable

type formula

lambda-term proof

- lambda-variable - assumption

- lambda-application - (E ⊃)

- lambda-abstraction - (I ⊃ )

free variable in a lambda-term assumption set of a proof

type of a lambda-term conclusion of a proof

beta-contraction ▷1β proof-contraction ▷1p

beta-normal form normal proof

In the following argument, we identify each pair of concepts written above.



Chapter 2 A simplified proof of the

Church-Rosser theorem

As written in chapter 1, the Church-Rosser property of the lambda-beta-calculus is an

important property which guarantees that the lambda-beta-calculus is well-behaved as a

computation model. In this chapter, we give a new proof by improving the proof given in

(Takahashi, 1989). Furthermore, we give a proof method which can be applied to abstract

term rewriting systems. The result in this chapter was given by Komori, Yamakawa and

the author in (Komori et al., 2014).

Section 2.1 explains how Takahashi (Takahashi, 1989) proved the Church-Rosser theo-

rem. Our proof is given in section 2.2. In section 2.3, we explain some advantages of our

proof method. Section 2.4 gives the conclusion of this chapter and give some future works.

In the following argument, we write M ▷nβ N if N is obtained from M by n-step beta

contraction, that is, there are lambda-terms M0,M1, . . . ,Mn such that

M ≡M0 ▷1β M1 ▷1β . . . ▷1β Mn ≡ N.

2.1 Takahashi’s proof

The original proof of the theorem was given by Church and Rosser in (Church & Rosser,

1936). However, their proof method was not particularly simple, and many other proof

methods have been given by many other researchers (see (Barendregt, 1984) and (Hindley

& Seldin, 2008)). One of the simplest proof was given by Takahashi (Takahashi, 1989,

1995). The following notions are key notions of her proof:

Definition 2.1 (Parallel-beta-contraction). We define a binary relation ▷1pβ, called parallel-

beta-contraction, on lambda-terms as follows:

1. x ▷1pβ x.

2. If M ▷1pβ N then λx.M ▷1pβ λx.N .

3. If M1 ▷1pβ N1 and M2 ▷1pβ N2 then M1M2 ▷1pβ N1N2.

4. If M1 ▷1pβ N1 and M2 ▷1pβ N2 then (λx.M1)M2 ▷1pβ [N2/x]N1.

Furthermore, we define the relation ▷pβ as the reflexive transitive closure of the above

relation.

16
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Definition 2.2 (Takahashi-translation). For each lambda-term M , we define the lambda-

term MT as follows:

1. xT ≡ x.

2. ((λx.M1)M2)
T ≡ [MT

2 /x]M
T
1 .

3. (M1M2)
T ≡MT

1 M
T
2 .

4. (λx.M)T ≡ λx.MT .

We call this translation Takahashi-translation.

In addition, we inductively define the notation MnT as follows.

1. M0T ≡M .

2. M (n+1)T ≡ (MnT )T .

Example 2.3. Let M ≡ (λx.xx)((λy.y)z). Then we obtain all of the following relations.

M ▷1pβ (λx.xx)((λy.y)z), M ▷1pβ ((λy.y)z)((λy.y)z),

M ▷1pβ (λx.xx)z, M ▷1pβ zz.

Furthermore, we have MT ≡ zz.

Intuitively speaking, parallel-beta-reduction reduces a number of redexes in a lambda-

term simultaneously, and Takahashi-translation reduces all of the redexes in a lambda-term

simultaneously. From this intuition, we can easily check the following theorem.

Theorem 2.4.

(p1) M ▷1β N =⇒ M ▷1pβ N .

(p2) M ▷1pβ N =⇒ M ▷β N .

(p3) M ▷1pβ N =⇒ N ▷1pβ M
T .

Proof. See (Takahashi, 1991).

With the above properties, Takahashi proved the Church-Rosser property of the lambda-

beta-calculus as follows: Suppose M ▷3β P3 and M ▷2β Q2, for example.

M ▷1β P1 ▷1β P2 ▷1β P3

▷
1
β

Q1

▷
1
β

Q2
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Then, from (p1), we have M ▷3pβ P3 and M ▷2pβ Q2.

M ▷1pβ P1 ▷1pβ P2 ▷1pβ P3▷
1
p
β

Q1▷
1
p
β

Q2

Here, from (p3), we can check P3 ▷pβ P
2T
1 and Q2 ▷pβ P

2T
2 by the following figure.

M ▷1pβ P1 ▷1pβ P2 ▷1pβ P3▷
1
p
β

▷
1
p
β

▷
1
p
β

▷
1
p
β

Q1 ▷1pβ MT ▷1pβ P T1 ▷1pβ P T2▷
1
p
β

▷
1
p
β

▷
1
p
β

▷
1
p
β

Q2 ▷1pβ QT1 ▷1pβ M2T ▷1pβ P 2T
1

Hence, from (p2), we obtain both P2 ▷β P
2T
1 and Q3 ▷β P

2T
1 .

2.2 A simplified proof

Parallel reductions have many interesting properties. For example, Takahashi showed the

leftmost reduction theorem of the lambda-beta-calculus with ▷1pβ in (Takahashi, 1989). On

the other hand, we can say that the notion of parallel reduction is not necessarily essential,

because the Church-Rosser theorem is described without this notion. This chapter gives a

proof of the theorem without the notion of parallel reduction.

2.2.1 Outline

Recall that MT is obtained from M by reducing all of the redexes existing in M simulta-

neously and MnT is obtained from M by applying Takahashi translation n-times. By this

intuition, we can expect that Takahashi translation satisfies following properties.

(t1) M ▷β M
T .

(t2) If M ▷nβ N then N ▷β M
nT .

Using (t1) and (t2), we shall prove the following fact, which is a stronger statement than

the Church-Rosser property.

(t3) If M ▷nβ M1, M ▷mβ M2 and k = max{n,m} then M1 ▷β M
kT and M2 ▷β M

kT .

This is the outline of our proof.
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2.2.2 Proof

First, we can easily verify the following three lemmas by induction on the structure of M .

Lemma 2.5. FVλ(M
T ) ⊆ FVλ(M).

Lemma 2.6. M ▷β M
T .

Lemma 2.7. If M ▷1β N then N ▷β M
T .

Furthermore, we can obtain the following lemma.

Lemma 2.8. ((λx.M)N)T ▷β ([N/x]M)T .

Proof. We have ((λx.M)N)T ≡ [NT /x]MT and we can verify the following properties,

simultaneously, by easy induction on the structure of M .

1. If N is not a lambda-abstraction (i.e. N does not have the form λy.N ′), then

[NT /x]MT ≡ ([N/x]M)T .

2. [λy.NT
1 /x]M

T ▷β ([λy.N1/x]M)T .

These lead to the following lemmas and theorems.

Lemma 2.9. If M ▷1β N then MT ▷β N
T .

Proof. By induction on the structure of M . We give the proof only of the nontrivial cases

below.

1. Let M ≡ (λx.P1)P2.

(a) Let N ≡ [P2/x]P1. In this case, we obtain MT ▷β N
T by lemma 2.8.

(b) Let N ≡ (λx.Q1)P2 for some Q1 such that P1 ▷1βQ1. In this case, we first obtain

NT ≡ [P T2 /x]Q
T
1 . Furthermore, by induction hypothesis, P T1 ▷β Q

T
1 . Hence

MT ≡ [P T2 /x]P
T
1 ▷β [P

T
2 /x]Q

T
1 ≡ NT .

(c) Let N ≡ (λx.P1)Q2 for some Q2 such that P2 ▷1βQ2. In this case, we first obtain

NT ≡ [QT2 /x]P
T
1 . Furthermore, by induction hypothesis, P T2 ▷β Q

T
2 . Hence

MT ≡ [P T2 /x]P
T
1 ▷β [Q

T
2 /x]P

T
1 ≡ NT .
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2. Suppose that M ≡ P1P2 where P1 is not a lambda-abstraction and N ≡ Q1P2 for

some Q1 such that P1 ▷1β Q1. We can easily verify the result when Q1 is not an

abstraction, and so we consider the case when Q1 is λy.R. From P1 ▷1β λy.R and the

induction hypothesis, we obtain P T1 ▷β (λy.R)
T ≡ λy.RT . Therefore,

MT ≡ P T1 P
T
2 ▷β (λy.R

T )P T2 ▷1β [P
T
2 /y]R

T ≡ NT .

Lemma 2.10. If M ▷β N then MT ▷β N
T .

Proof. If M ▷β N , then we have M ▷nβ N for some n. The result is verified by induction

on this n. If n = 0,then N ≡ M . Therefore NT ≡ MT . If n > 0, then there exists R such

that M ▷1β R▷(n−1)β N . Here we have RT ▷β N
T by induction hypothesis, and we also have

MT ▷β R
T by lemma 2.9. Therefore MT ▷β N

T .

Lemma 2.11. If M ▷β N then MnT ▷β N
nT .

Proof. By applying lemma 2.10 repeatedly.

Lemma 2.12. If M ▷nβ N then N ▷β M
nT .

Proof. By induction on n. If n = 0 then we clearly say M ▷β M ≡ M0T . Let n > 0, there

exists R such that M ▷1β R ▷(n−1)β N . Here N ▷β R
(n−1)T by induction hypothesis. On the

other hand, by M ▷1β R, we have R▷βM
T using lemma 2.7. So we can get R(n−1)T ▷βM

nT

by lemma 2.11. Therefore N ▷β M
nT .

Then we prove the Church-Rosser theorem.

Proof of theorem 1.9. Suppose M ▷β N1 and M ▷β N2, then M ▷nβ N1 M ▷mβ N2 for some

n,m. We can assume n ≤ m. Because we obtain N2 ▷β M
mT from lemma 2.11, it suffices

to show N1 ▷βM
mT . We first obtain N1 ▷βM

nT from lemma 2.11. Furthermore, we obtain

MnT ▷β M
mT from lemma 2.6. Hence N1 ▷β M

mT .

M ▷1β P1 ▷1β P2 ▷1β P3

▷
1
β

▷
1
β

Q1

▷
1
β

...

Q2 ▷1β . . . ▷1β M2T ▷
β

▷
1
β

M3T
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2.3 Some advantages of our proof

Our proof has some advantages in comparison with the existing proof methods.

2.3.1 Brevity

It can be said, in some sense, that our idea improves Takahashi’s idea.

The notion of parallel reduction was given by Tait and Martin-Löf in the early 1970s (see

(Barendregt, 1984) or (Hindley & Seldin, 2008)). They discovered the diamond property of

parallel reduction stated below.

N1

▷ 1
pβ

▷
1pβ

M ∃R
▷
1pβ ▷ 1

pβ

N2

(diamond property of ▷1pβ)

They verified this property by giving R which depends on the form of N1 and N2.

Takahashi improved this proof and gave the following stronger property in (Takahashi,

1989).

N1

▷ 1
pβ

▷
1pβ

M MT

▷
1pβ ▷ 1

pβ

N2

In her idea, the meeting term MT can be found without the information of the forms of M1

and M2.

Our proof promotes this improvement:

N1

▷ n
β ▷

β

M Mmax{n,m}T

▷
m
β ▷ β

N2

Note that, the meeting term Mmax{n,m}T can be found without the information of the

forms of M1,M2 and the terms occurring in the processes of the reductions M ▷nβ N1 and

M ▷mβ N2.
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2.3.2 applicability to other systems

One may notice, by observing our proof, that the properties of Takahashi-translation which

essentially work well in our proof are the following three properties.

(T1) M ▷β M
T .

(T2) If M ▷1β N then MT ▷β N
T .

(T3) If M ▷1β N then N ▷β M
T .

Then, one may also notice that any translation ◦ which satisfies the following three prop-

erties enables us to prove the Church-Rosser property in the same way.

(◦1) M ▷β M
◦.

(◦2) If M ▷1β N then M◦ ▷β N
◦.

(◦3) If M ▷1β N then N ▷β M
◦.

This proof method can be applied to a more general case:

An (abstract) term rewriting system is a structure A = ⟨A, ↪→1⟩ where ↪→1 is a binary

relation, called a contraction relation, on A. For given contraction relation ↪→1, we define

↪→ as the reflexive transitive closure. We say A has the Church-Rosser property if, for each

M,N1, N2 ∈ A such that M ↪→ N1 and M ↪→ N2, there exists R ∈ A such that N1 ↪→ R

and N2 ↪→ R. The Church-Rosser property is one of the most important notion in the study

of term rewriting systems.

Theorem 2.13. 1 A term rewriting system A = ⟨A, ↪→1⟩ has the Church-Rosser property, if
there exists a translation ◦ on A which satisfies the following properties for each M,N ∈ A.

(◦1) M ↪→M◦.

(◦2) If M ↪→1 N then M◦ ↪→ N◦.

(◦3) If M ↪→ N then N ↪→M◦.

We say a term rewriting system has the Z-property if there exists a translation ◦ satisfying

the above properties.

This proof method enables us to prove the Church-Rosser property of some other term

rewriting systems, in fact. In the following, as an application example, we prove the Church-

Rosser property of the lambda-beta-eta-calculus 2 .
1This fact was proved in (Komori et al., 2014), but was also proved in (Dehornoy & van Oostrom, 2008)

independently.
2Other application examples can be found in (Nakazawa & Nagai, 2014), (Nakazawa & Naya, 2015) and

(Yamakawa & Komori, 2015), for example.
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Definition 2.14 (The lambda-beta-eta-calculus). For each lambda-terms M,N , we write

M ▷1βη N if M ↪→1 N is derivable by the rules (β), (ξ), (σ) written in definition 1.4 and the

following rule.

(η) If x /∈ FVλ(M) then λx.Mx ↪→1 M .

An eta-redex is a lambda-term of the form λx.Mx where x ̸∈ FVλ(M). We call the term

rewriting system ⟨Λ, ▷1βη⟩ the lambda-beta-eta-calculus.

Example 2.15. λx.yx ▷1βη y but λx.xx ̸ ▷1βηx.

Theorem 2.16 (The Church-Rosser theorem of the lambda-beta-eta-calculus). IfM▷βηN1

and M ▷βη N2 then there exists R such that N1 ▷βη R and N2 ▷βη R.

Proof. By theorem 2.13, it suffices to show that there exists a translation ◦ on Λ which

satisfies (◦1)-(◦3). Such a translation can be given as follows.

1. x◦ ≡ x.

2. ((λx.M1)M2)
◦ ≡ [M◦

2 /x]M
◦
1 .

3. (M1M2)
◦ ≡M◦

1M
◦
2 .

4. (λx.Mx)◦ ≡M◦, if x ̸∈ FVλ(M) and Mx is not a β-redex.

5. (λx.M)◦ ≡ λx.M◦.

Actually, we can show this ◦ satisfies (◦1)-(◦3) as follows:

We can easily verify (◦1) and (◦3), and therefore we prove only (◦2). Because the cases

when M▷Nβη is derived without the rule (η) can be checked in the same way as the case

of the lambda-beta-calculus, we only treat the case when M▷Nβη is derived by the rule (η)

Let M ≡ λx.M1x (x ̸∈ FVλ(M1)) and let M1 be not an abstract, then N is either M1 or

λx.N1x (M1 ▷1βη N1). If N ≡ M1, we have M◦ ≡ M◦
1 ≡ N◦. Let N ≡ λx.N1x. First, we

have M◦
1 ▷βηN

◦
1 by induction hypothesis. And we also get x ̸∈ FVλ(N1) by M1 ▷1βηN1 and

x ̸∈ FVλ(M1). Therefore we obtain M◦ ≡M◦
1 ▷βη N

◦
1 ≡ N◦.

Note 2.17. Although λx.(λx.M)x is an eta-redex, we defined (λx.(λx.M)x)◦ by using

beta-contraction. This definition can seem unnatural, and the following definition may be
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natural.

(1) x◦ ≡ x

(2) ((λx.M1)M2)
◦ ≡ [M◦

2 /x]M
◦
1

(3) (M1M2)
◦ ≡M◦

1M
◦
2

(4) (λx.Mx)◦ ≡M◦, if x ̸∈ FV (M)

(5) (λx.M)◦ ≡ λx.M◦

Takahashi proved the Church-Rosser theorem of the lambda-beta-eta-calculus with this

in (Takahashi, 1989). We can also use this for our method, but this definition makes the

proof a little more difficult. For example, if we adopt the above definition, we have to

discuss the case when M ≡ λx.M1x (x ̸∈ FV (M1)), M1 ≡ λy.M2 and N ≡ λx.[x/y]M2, in

addition to the cases we discussed above.

2.4 Conclusion and future work

In this chapter, we give a new proof to the Church-Rosser theorem of the lambda-beta-

calculus with the Z-property. In addition, we extract, from our proof, a proof method

which can generally apply to other rewriting system.

We think the Z-property has many other interesting properties. For example, Fujita

(Fujita, 2015) and Nakazawa (Nakazawa & Fujita, 2015) showed certain properties of some

rewriting systems by use of the condition. We expect the study on the Z-property will

develop.



Chapter 3 An extension of the Curry-Howard

correspondence

In section 1.3, we introduce the Curry-Howard correspondence. It tells us, from proof

theoretic view, that the work of the lambda-abstraction can be simulated with Gentzen’s

proof system NJ and the proof contraction, written ▷1⊃, which gets rid of a detour in a

proof. The computational meaning of proofs is now investigated in a wide range of fields,

including not only intuitionistic logic but also classical logic and modal logic (Kobayashi,

1997; Miyamoto & Igarashi, 2004).

One of the most famous extension of the Curyy-Howard correspondence was given by

Parigot (Parigot, 1992). He gave a typed lambda-calculus, called the lambda-mu-calculus,

which corresponds to the [⊃,⊥]-fragment of classical logic and has more expressive power

than the lambda-beta-calculus. In (Sørensen & Urzyczyn, 2006), it was stated that the

lambda-mu-calculus can capture the work of the operators catch and throw of functional

programming language which cannot be captured with the lambda-beta-calculus. In this

chapter, we give a typed lambda-calculus, called the intuitionistic lambda-rho-calculus,

which corresponds to the implicational fragment of intuitionistic logic and can capture the

work of the operators catch and throw. Because our system is weaker than the lambda-

mu-calculus as proof system, it can be said that our result gives a stronger result than

the work of (Sørensen & Urzyczyn, 2006). The result of this chapter was given by Fujita,

Kashima, Komori and the author in (Fujita et al., 2015; Matsuda, 2015c).

In section 3.1, we give a brief introduction to the lambda-mu-calculus and explain the

motivation of our work. Our result is given in section 3.2. Conclusion and future works are

written in section 3.3.

3.1 Introduction and preliminary

3.1.1 Preliminary: The lambda-mu-calculus

Parigot (Parigot, 1992, 1993, 2000) refined Griffin’s idea (Griffin, 1989) and gave an elegant

typed lambda-calculus called the lambda-mu-calculus which corresponds to classical logic.

Definition 3.1 (Typed lambda-mu-term).

1. Extended type:

25
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We first extend the set Tp→ of types to the set Tp→⊥ as follows.

(a) Each atomic type is in Tp→⊥.

(b) ⊥ is in Tp→⊥.

(c) If τ, σ are both types then τ → σ is in Tp→⊥.

We write σ → ⊥ as ¬σ.

2. Lambda-mu-term:

Suppose, for each σ ∈ Tp→⊥, a countable set Vσ
λ = {xσ1 , xσ2 , . . .} of typed lambda-

variables and a countable set V¬σ
µ = {a¬σ1 , a¬σ2 , . . .} of typed mu-variables are given.

Then the set TpTm′
λµ of (typed) pseudo-lambda-mu-terms and a mapping Type from

TpTm′
λµ into Tp→⊥ are defined as follows:

(a) If x ∈ Vσ
λ then x ∈ TpTm′

λµ and Type(x) = σ.

(b) If M,N ∈ TpTm′
λµ, Type(M) = σ → τ and Type(N) = σ then MN ∈ TpTm′

λµ

and Type(MN) = τ .

(c) If M ∈ TpTm′
λµ, Type(M) = σ and x ∈ Vτ

λ then λx.M ∈ TpTm′
λµ and

Type(λx.M) = τ → σ.

(d) If M ∈ TpTm′
λµ, Type(M) = σ and a ∈ V¬σ

µ then aM ∈ TpTm′
λµ and

Type(aM) = ⊥. A pseudo-lambda-mu-term of this form is called amu-application.

(e) IfM ∈ TpTm′
λµ, Type(M) = ⊥, a ∈ V¬σ

µ then µa.M ∈ TpTm′
λµ and Type(µa.M) =

σ. A pseudo-lambda-mu-term of this form is called a mu-abstraction.

Then the set TpTmλµ ⊆ TpTm′
λµ of lambda-mu-terms is defined as follows:

(a) Each lambda-variable is in TpTmλµ.

(b) If M,N ∈ TpTmλµ, Type(M)σ → τ and Type(N) = σ then MN ∈ TpTmλµ.

(c) If M ∈ TpTmλµ and x is a lambda-variable then λx.M ∈ TpTmλµ.

(d) If M ∈ TpTmλµ, Type(M) = σ, a ∈ V¬σ
µ and b is a mu-variable then µb.aM ∈

TpTmλµ.

Although a mu-variable is not a (pseudo-)lambda-mu-term, we sometimes write Type(a) =

σ if a ∈ Vσ
µ. We use metavariables M,N,P,Q, . . . for (pseudo-)lambda-mu-terms,

x, y, z, . . . for lambda-variables, a, b, c, . . . for mu-variables.
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3. Free variable:

For given M ∈ TpTm′
λµ, the set FVλ(M) of free lambda-variables of M and the set

FVµ(M) of free mu-variables of M are defined as follows.

(a) FVλ(x) = x and FVµ(x) = ∅.

(b) FVλ(MN) = FVλ(M) ∪ FVλ(N) and FVµ(MN) = FVµ(M) ∪ FVµ(N).

(c) FVλ(λx.M) = FVλ(M) \ {x} and FVµ(λx.M) = FVµ(M).

(d) FVλ(aM) = FVλ(M) and FVµ(aM) = FVµ(M) ∪ {a}.

(e) FVλ(µa.M) = FVλ(M) and FVµ(µa.M) = FVµ(M) \ {a}.

We say M is closed if FVλ(M) = FVµ(M) = ∅.

TpTmλµ corresponds to classical logic in the following sense.

Theorem 3.2. For each type (formula) σ ∈ Tp→⊥, ⊢HK σ if and only if there exists a

closed lambda-mu-term M such that Type(M) = σ.

Example 3.3. There exists a closed lambda-mu-term whose type is ((σ → τ) → σ) → σ.

1 In fact, for x ∈ Vσ
λ, y ∈ V

(σ→τ)→σ
λ , a ∈ V¬σ

λ , b ∈ V¬τ
µ ,

Type(λy.µa.a(y(λx.µb.ax))) = ((σ → τ) → σ) → σ.

Definition 3.4 (Substitution). We introduce two kinds of substitution operations. We first

define, for each M ∈ TpTm′
λµ and a, b ∈ Vµ such that Type(a) = Type(b), the pseudo-

lambda-mu-term [b/a]M as follows:

1. [b/a]M is M if a ̸∈ FVµ(M).

2. [b/a](PQ) is [b/a]P [b/a]Q.

3. [b/a](λx.P ) is λx.[b/a]P .

4. [b/a](aM) is b[b/a]M .

5. [b/a](cM) is c[b/a]M .

6. [b/a](µb.M) is µc.[b/a][c/b]M where c is the first variable in V
Type(b)
µ \ {b}.

7. [b/a](µc.M) is µc.[b/a]M .

1This is called Peirce’s formula. It is known that Peirce’s formula is provable in classical logic but is not
provable in intuitionistic logic.
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Then we define, for each M,N ∈ TpTm′
λµ and x ∈ V

Type(N)
λ , the pseudo-lambda-mu-term

[N/x]M as follows:

1. [N/x]M is M if x ̸∈ FVλ(M).

2. [N/x]x is N .

3. [N/x](PQ) is [N/x]P [N/x]Q.

4. [N/x](λy.P ) is λy.[N/x]P if y ̸∈ FVλ(N).

5. [N/x](λy.P ) is λz.[N/x][z/y]P , where z is the first variable in V
Type(y)
λ \ FVλ(N), if

y ∈ FVλ(N).

6. [N/x](aP ) is a[N/x]P .

7. [N/x](µa.P ) is µa.[N/x]P if a ̸∈ FVµ(N).

8. [N/x](µa.P ) is µb.[N/x][b/a]P , where b is the first variable in V
Type(a)
µ \ FVµ(N).

Definition 3.5 (alpha-equivalence). Let M,N ∈ TpTm′
λµ. We say M is alpha-equivalent

to N if M ∼α is derivable by the following rules.

(ρ) M ∼α M .

(τ) If M1 ∼α M2 and M2 ∼α M3 then M1 ∼α M3.

(σ) If M1 ∼α M2 then M2 ∼α M1.

(α)λ If [x/y]M ∼α [x/z]N then λy.M ∼α λz.N .

(α)µ If [a/b]M ∼α [a/c]N then µb.M ∼α µc.N .

In the following, we identify M to N and write M ≡ N if M is alpha-equivalent to N .

Then, we introduce more two substitution operations.

Definition 3.6. Let N be a pseudo-lambda-mu-term, and let a, b be mu-variables such

that Type(N) = σ, Type(a) = ¬(σ → τ) and Type(b) = ¬τ for some σ, τ . Then, for each

M ∈ TpTm′
λµ, we define the pseudo-lambda-mu-term [a⇐ b,N ]M as follows:

1. [a⇐ b,N ]M ≡M if a ̸∈ FVµ(M).

2. [a⇐ b,N ](PQ) ≡ [a⇐ b,N ]P [a⇐ b,N ]Q.

3. [a⇐ b,N ](λx.P ) ≡ λx.[a⇐ b,N ]P if x /∈ FVλ(N).
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4. [a ⇐ b,N ](λx.P ) ≡ λy.[a ⇐ b,N ][y/x]P , where y is the first variable in V
Type(x)
λ \

FVλ(N), if x ∈ FVλ(N).

5. [a⇐ b,N ](aP ) ≡ b([a⇐ b,N ]PN).

6. [a⇐ b,N ](cP ) ≡ c[a⇐ b,N ]P .

7. [a⇐ b,N ](µc.P ) ≡ µc.[a⇐ b,N ]P if c ̸∈ (FVµ(N) ∪ {b}).

8. [a ⇐ b,N ](µc.P ) ≡ µd.[a ⇐ b,N ][d/c]P , where d is the first variable in V
Type(c)
µ \

(FVµ(N) ∪ {b}), if c ∈ (FVµ(N) ∪ {b}).

Let N be a pseudo-lambda-mu-term and let a, b be mu-variables such that Type(N) =

σ → τ , Type(a) = ¬σ and Type(b) = ¬τ for some σ, τ . Then, for each M ∈ TpTm′
λµ, the

pseudo-lambda-mu-term [b,N ⇒ a]M is defined as follows:

1. [b,N ⇒ a]M ≡M if a ̸∈ FVµ(M).

2. [b,N ⇒ a](PQ) ≡ [b,N ⇒ a]P [b,N ⇒ a]Q.

3. [b,N ⇒ a](λx.P ) ≡ λx.[b,N ⇒ a]P if x /∈ FVλ(N).

4. [b,N ⇒ a](λx.P ) ≡ λy.[b,N ⇒ a][y/x]P , where y is the first variable in V
Type(x)
λ \

FVλ(N), if x ∈ FVλ(N).

5. [b,N ⇒ a](aP ) ≡ b(N [b,N ⇒ a]P ).

6. [b,N ⇒ a](cP ) ≡ c[b,N ⇒ a]P .

7. [b,N ⇒ a](µc.P ) ≡ µc.[b,N ⇒ a]P if c ̸∈ (FVµ(N) ∪ {b}).

8. [b,N ⇒ a](µc.P ) ≡ µd.[b,N ⇒ a][d/c]P , where d is the first variable in V
Type(c)
µ \

(FVµ(N) ∪ {b}), if c ∈ (FVµ(N) ∪ {b}).

Example 3.7. Consider the term µb.a(µc.ax) where Type(a) = Type(c) = ¬(σ → τ),

Type(b) = θ and Type(x) = σ → τ . Let Type(M) = σ, Type(N) = (σ → τ) → π,

Type(d) = ¬τ and Type(e) = ¬π. Then

[a⇐ d,M ](µb.a(µc.ax)) ≡ µb.d((µc.d(xM))M),

[e,N ⇒ a](µb.a(µc.ax)) ≡ µb.e(N(µc.e(Nx))).
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Definition 3.8. Let M,N ∈ TpTm′
λµ. We write M ▷1p N if M ↪→1 N can be derived by

the following rules:

(τ) (λx.M)N ↪→1 [N/x]M .

(µr) (µa.M)N ↪→1 µb.[a ⇐ b,N ]M where Type(a) = (σ → τ), Type(N) = σ and

Type(b) = ¬τ .

(µl) N(µa.M) ↪→1 µb.[b,N ⇒ a]M where Type(a) = ¬σ, Type(N) = σ → τ and

Type(b) = ¬τ .

(ζ) a(µb.M) ↪→1 [a/b]M .

(ηµ) µa.aM ↪→1 M if a /∈ FVµ(M).

(ξλ) If M ↪→1 N then λx.M ↪→1 λx.N .

(ξµ) If M ↪→1 N then µa.M ↪→1 µa.N .

(σλ) If M ↪→1 N then PM ↪→1 PN and MQ ↪→1 NQ.

(σµ) If M ↪→1 N then aM ↪→1 aN .

In addition, we define the relation ▷p as the reflexive transitive closure of ▷1p.

Example 3.9.

1. Let M ≡ (µa.a(µc.ax))y, where Type(a) = Type(c) = ¬(σ → τ), Type(x) = σ → τ

and Type(y) = σ. Then we obtain M ▷1p µd.d((µc.d(xy))y), where d is a mu-variable

such that Type(d) = ¬τ .

2. Let Type(a) = ¬σ, Type(b) = ¬τ , Type(N) = σ, Type(P ) = τ → θ, Type(Q) = θ →
σ and FVµ(N) = ∅. Then we obtain

µa.a((P (µb.aN))Q) ▷1p µa.a((µc.aN)Q) ((µl), (ξµ), (σλ) and (σµ))

▷1p µa.a(µd.aN) ((µr), (ξµ), (σλ) and (σµ))

▷1p µa.aN ((ζ) and (ξµ))

▷1p N ((ηµ))

where c ∈ V¬θ
µ and d ∈ V¬σ

µ .

In general, if FVµ(N) = ∅ and a ̸≡ b, then we obtain

(µb.aN)P ▷1p µc.aN, Q(µb.aN) ▷1p µd.aN, µa.a(µb.aN) ▷p N

for some c, d.
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Theorem 3.10. If M ∈ TpTmλµ and M ▷1p N then N ∈ TpTmλµ and Type(N) =

Type(M).

We call the system ⟨TpTmλµ, ▷1p⟩ the (typed) lambda-mu-calculus. The lambda-mu-

calculus has higher expressive power than the lambda-beta-calculus. The following appli-

cation examples 2 tells us the expressive power of the lambda-mu-calculus.

Example 3.11.

1. The lambda-mu-calculus can treat streams, which are sequences of data elements

made available over time. For this topic, see (Nakazawa & Katsumata, 2012; Saurin,

2005) for example.

2. Some functional programming languages have operators catch and throw 3 . In

(Sørensen & Urzyczyn, 2006, chapter 6), it is stated that the lambda-mu-calculus can

capture the work of those operators, which cannot be captured with the lambda-beta-

calculus:

We first define the set Cλµ of lambda-mu-catch-contexts and a mapping Typec : Cλµ →
Tp→⊥ as follows (we write C[ ]φ : σ if both C[ ]φ ∈ Cλµ and Typec(C[ ]φ) = σ hold).

(c0) [[ ]]φ : φ.

(c1) C[ ]φ : σ, M ∈ TpTm′
λµ, Type(M) = σ → τ =⇒ MC[ ]φ : τ .

(c2) C[ ]φ : σ → τ, M ∈ TpTm′
λµ, Type(M) = σ =⇒ C[ ]φM : τ .

We use metavariables C,D, . . . to stand for arbitrary contexts. Parentheses are omit-

ted under the convention of association to the left. We then define the pseudo-lambda-

mu-term C[M ]φ, for eachM ∈ TpTmλµ such that Type(M) = φ and each C[ ]φ ∈ Cλµ,
as follows.

(c0)′ C[ ]φ ≡ [[ ]]φ =⇒ C[M ]φ ≡M .

(c1)′ C[ ]φ ≡ ND[ ]φ =⇒ C[M ]φ ≡ ND[M ]φ.

(c2)′ C[ ]φ ≡ D[ ]φN =⇒ C[M ]φ ≡ D[M ]φN .

2Other examples can be found in (Bierman, 1998), for example.
3In (Sørensen & Urzyczyn, 2006), the following intuitive explanation for those operators is given: The

program P = catch a in M normally returns the result of the program M . however, if we encounter the
program throw N to a during evaluating M , then the evaluation of M is aborted and P returns the result
of N . For example, 1 + (catch a in (2 + (throw 3 to a))) returns 4. Cite also (Graham, 1996).
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We give the terms which work as the catch operator and the throw operator as

follows.

catch a in M ≡ µa.aM, throw N to a ≡ µb.aN

where b is an appropriate mu-variable which depends on the context. We can easily

show that if Type(a) = ¬σ and FVµ(N) = ∅ then, for any lambda-mu-catch-context

C[ ]τ : σ,

catch a in C[throw N to a]τ ▷p N.

See also example 3.9-2.

3.1.2 Motivation and aim of chapter 3

Subsection 3.1.1 introduced a typed lambda-calculus, which is called the lambda-mu-calculus

and corresponds to the [→,⊥]-fragment of classical logic, and showed the work of the opera-

tors catch and throw can partly be simulated with the system. It is clear that the work of

the operators cannot be simulated with the lambda-beta-calculus, and hence it can be said

that the lambda-mu-calculus has higher expressive power than the lambda-beta-calculus.

However let me raise the following questions here:

Q1. Recall that the typed lambda-beta-calculus corresponds to intuitionistic logic but the

lambda-mu-calculus corresponds to classical logic. Here, do we essentially need the

extension? In other words, is there a typed lambda-calculus which corresponds to

intuitionistic logic and can simulate catch and throw?

Q2. Recall that the typed lambda-beta-calculus treats only simple types but the typed

lambda-mu-calculus treats extends the notion of type. Here, do we essentially need

the extension? In other words, is there a simple typed lambda-calculus which can

simulate catch and throw?

Q3. Parigot’s symmetric contraction ▷1p is very complex and is difficult to treat. Is there

a typed lambda-calculus which can simulate catch and throw but whose contraction

rules are easier to treat the lambda-mu-calculus?

The aim of this chapter is to give an affirmative answer to the above questions, in

other words, to give a typed lambda-calculus which corresponds to implicational fragment

of intuitionistic logic and can simulate the work of the catch operator and the throw

operator.

In section 3.2, we will introduce the typed lambda-calculus stated above and will in-

vestigate the system. Our system is based on the lambda-rho-calculus, given by Komori
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(Komori, 2013). Before going to section 3.2, we introduce Komori’s system in the following

subsection.

3.1.3 Preliminary: The lambda-rho-calculus

Komori got inspiration from the proof system for implicational classical logic given in (Baba,

Hirokawa, Kashima, Komori, & Takeuti, 2000), and introduced a typed lambda-calculus

called the lambda-rho-calculus corresponding to implicational fragment of classical logic in

(Komori, 2013).

Definition 3.12 (The lambda-rho-calculus). Suppose, for each σ ∈ Tp→, a countable set

Vσ
λ = {xσ1 , xσ2 , . . .} of typed lambda-variables and a countable set Vσ

ρ = {aσ1 , aσ2 , . . .} of

typed rho-variables (we use metavariables a, b, c, . . . for rho-variables) are given. Then the

set TpTmλρ of (typed) lambda-rho-terms and a mapping Type from TpTm′
λρ into Tp→ are

defined as follows:

1. If x ∈ Vσ
λ, then x ∈ TpTmλρ and Type(x) = σ.

2. If M,N ∈ TpTmλρ such that Type(M) = σ → τ and Type(N) = σ, then MN ∈
TpTmλρ and Type(MN) = τ .

3. If M ∈ TpTmλρ such that Type(M) = σ and x ∈ Vτ
λ, then λx.M ∈ TpTmλρ and

Type(λx.M) = τ → σ.

4. If M ∈ TpTmλρ such that Type(M) = σ and a ∈ Vσ
ρ , then (aM)τ ∈ TpTmλρ and

Type((aM)τ ) = τ . We call a term of this form a rho-application.

5. If M ∈ TpTmλρ such that Type(M) = σ and a ∈ Vσ
ρ , then ρa.M ∈ TpTmλρ and

Type(ρa.M) = σ. We call a term of this form a rho-abstraction.

We sometimes write
∪
σ∈Tp→

Vσ
λ as Vλ and write

∪
σ∈Tp→

Vσ
ρ as Vρ.

Next, we define, for each M ∈ TpTmλρ, the set FVλ(M) of free lambda-variables in M ,

the set of FVρ(M) of free rho-variables in M , the set BVλ(M) of bound lambda-variables

in M and the set BVρ(M) of bound rho-variables in M as follows:

1. FVλ(x) = {x}, FVρ(x) = BVλ(x) = BVρ(x) = ∅.

2. FVλ(MN) = FVλ(M) ∪ FVλ(N), FVρ(MN) = FVρ(M) ∪ FVρ(N), BVλ(MN) =

BVλ(M) ∪ BVλ(N) and BVρ(MN) = BVρ(M) ∪ BVρ(N).

3. FVλ(λx.M) = FVλ(M) \ {x}, FVρ(λx.M) = FVρ(M), BVλ(λx.M) = BVλ(M)∪{x}
and BVρ(λx.M) = BVρ(M).



34 Chapter 3. An extension of the Curry-Howard correspondence

4. FVλ((aM)σ) = FVλ(M), FVρ((aM)σ) = FVρ(M) ∪ {a}, BVλ((aM)σ) = BVλ(M)

and BVρ((aM)σ) = BVρ((aM)σ.

5. FVλ(ρa.M) = FVλ(M), FVρ(ρa.M) = FVρ(M) \ {a}, BVλ(ρa.M) = BVλ(M) and

BVρ(ρa.M) = BVρ(M) ∪ {a}.

We say M is closed if FVλ(M) ∪ FVρ(M) = ∅.

Theorem 3.13. For each type σ ∈ Tp→, ⊢HK⊃ σ if and only if there exists a closed

lambda-rho-term M such that Type(M) = σ.

Example 3.14. We have

Type(λy.ρa.(y(λx.(ax)τ ))) = ((σ → τ) → σ) → σ,

where x ∈ Vσ
λ, y ∈ V

(σ→τ)→σ
λ and a ∈ Vσ

ρ .

We define the substitutions [N/x]M and [b/a]M and the notion of alpha-equivalent

(M ≡ N) in the same way as the lambda-mu-calculus.

3.2 Intuitionistic lambda-rho-calculus

In this section, we give a typed lambda-calculus which satisfies the claims given in the

questions Q1 and Q2 in subsection 3.1.2. In other words, we give a typed lambda-calculus

which corresponds to the implicational fragment of intuitionistic logic and can capture the

work of the operators catch and throw. Furthermore, we can say our system satisfies the

claim in the question Q3, that is, the contraction of our system is easier, in some sense, to

treat than Parigot’s contraction.

We give the subsystem in subsection 3.2.1, and show some basic properties in subsection

3.2.2. In subsection 3.2.3, we show the system corresponds to intuitionistic logic. Then we

explain how we can simulate the catch operator and the throw operator in 3.2.4. Last, as

an example which shows the ease of use of our system, we show the strong normalization

property of our system in subsection 3.2.5.

3.2.1 Definition

Our system is a subsystem of the lambda-rho-calculus given as follows:

Definition 3.15 (Intuitionistic lambda-rho-term). We first define, for each M ∈ TpTmλρ

and a ∈ Vρ, the set FVa
λ(M) ⊆ FVλ(M) as follows.

1. FVa
λ(x) = ∅.
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2. FVa
λ(MN) = FVa

λ(M) ∪ FVa
λ(N).

3. FVa
λ(λx.M) = FVa

λ(M) \ {x}.

4. FVa
λ((aM)σ) = FVλ(M).

5. FVa
λ((bM)σ) = FVa

λ(M).

6. FVa
λ(ρa.M) = ∅.

7. FVa
λ(ρb.M) = FVa

λ(M).

Then, we define the set TpTmI
λρ of intuitionistic lambda-rho-terms as follows.

1. Each x ∈ Vλ is in TpTmI
λρ.

2. If M,N ∈ TpTmI
λρ, Type(M) = σ → τ and Type(N) = σ, then MN ∈ TpTmI

λρ.

3. If M ∈ TpTmI
λρ satisfies FVa

λ(M) = ∅ for each a ∈ FVρ(M), then λx.M ∈ TpTmI
λρ.

4. If M ∈ TpTmI
λρ and a ∈ V

Type(M)
ρ then (aM)σ ∈ TpTmI

λρ.

5. If M ∈ TpTmI
λρ and a ∈ V

Type(M)
ρ then ρa.M ∈ TpTmI

λρ.

Intuitively speaking, a closed lambda-rho-term is in TpTmI
λρ if it does not include a

subterm of the form

ρa.(. . . (λx.(. . . (a(. . . x . . . ))σ . . . ) . . . ).

Note that the term λy.ρa.(y(λx.(ax)τ )), which was given in example 3.14 and whose type

is ((σ → τ) → σ) → σ (Pierce’s formula), is not in TpTmI
λρ because FVa

λ((ax)
τ ) = {x}.

We define the following term rewriting rules for our system.

Definition 3.16. We write M ▷1ct N , for M,N ∈ TpTmλρ, if M ↪→1 N can be derived by
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the following rules:

(τ) (λx.M)N ↪→1 [N/x]M.

(throw λ-app l) N(aM)σ ↪→1 (aM)τ where Type(N) = σ → τ.

(throw λ-app r) (aM)σ→τN ↪→1 (aM)τ .

(throw λ-abs) λx.(aM)τ ↪→1 (aM)σ→τ where Type(x) = σ.

(throw ρ-app) (b(aM)σ)τ ↪→1 (aM)τ .

(throw ρ-abs) ρa.M ↪→1 M if a ̸∈ FVρ(M).

(catch) ρa.(aM)σ ↪→1 M if a ̸∈ FVρ(M).

(σλ) If M ↪→1 N then RM ↪→1 RN and MR ↪→1 NR.

(ξλ) If M ↪→1 N then λx.M ↪→1 λx.N.

(σρ) If M ↪→1 N then (aM)φ ↪→1 (aN)φ.

(ξρ) If M ↪→1 N then ρa.M ↪→1 ρa.N.

In addition, we define the relation ▷ct as the reflexive transitive closure of ▷1ct.

We call the system ⟨TpTmI
λρ, ▷1ct⟩ the (typed) intuitionistic lambda-rho-calculus.

Example 3.17. Let Type(M) = σ, Type(P ) = τ → θ → σ, Type(Q) = θ, a ∈ Vσ
ρ ,

a ̸∈ FVρ(M) and ρa.P (aM)τQ ∈ TpTmI
λρ, then we obtain

ρa.P (aM)τQ ▷1ct ρa.(aM)θ→σQ ((throw λ-app l), (σλ), (ξρ))

▷1ct ρa.(aM)σ ((throw λ-app r), (ξρ))

▷1ct M ((catch)).

3.2.2 Basic properties

This subsection shows some basic properties of our system. The goal of this subsection is

to show that TpTmI
λρ is closed under the relation ▷1ct:

Theorem 3.18. If M ∈ TpTmI
λρ and M ▷1ct N then N ∈ TpTmI

λρ.

Before we prove this theorem, we prepare the following properties.

Lemma 3.19. If M ∈ TpTmI
λρ and M ▷1ct N then FVλ(M) ⊇ FVλ(N) and FVρ(M) ⊇

FVρ(N).

Proof. By induction on the clauses of definition 3.16. The only nontrivial case is the case

whenM ↪→1 N is derived by the rule (throw λ-abs). LetM ≡ λx.(aP )σ and N ≡ (aP )τ→σ
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where Type(x) = τ . In this case, from λx.(aP )σ ∈ TpTmI
λρ, we obtain x ̸∈ FVλ(P ).

Hence FVλ(λx.(aP )
σ) = FVλ((aP )

τ→σ). Furthermore, FVρ(λx.(aP )
σ) = FVρ((aP )

τ→σ)

is obvious.

Theorem 3.20 (Subject reduction property). IfM ∈ TpTmI
λρ andM▷1ctN then Type(M) =

Type(N).

Proof. Obvious.

Lemma 3.21.

1. If x ̸∈ FVa
λ(M) then FVa

λ([N/x]M) ⊆ FVa
λ(M) ∪ FVa

λ(N).

2. If a does not occur in M then FVa
λ([N/x]M) ⊆ FVa

λ(N).

3. If x, y ̸∈ FVa
λ(M) and y ̸∈ FVa

λ(N) then y ̸∈ FVa
λ([N/x]M).

Proof. (2) and (3) are easy consequences of (1). Then we show (1) by induction on the size

of M . We can assume FVλ(M) ∩ BVλ(M) = ∅, FVρ(M) ∩ BVρ(M) = ∅ and a ̸∈ BVρ(M).

(A) Suppose a ̸∈ FVρ(M). In this case, we can show FVλ([N/x]M) ⊆ FVa
λ(N) by induc-

tion on the size of M .

(A-1) If x ̸∈ FVλ(M), then

FVa
λ([N/x]M) = FVa

λ(M) = ∅ ⊆ FVλ(N).

(A-2) If M ≡ x, then

FVa
λ([N/x]M) = FVa

λ(N).

(A-3) If M ≡ PQ, then

FVa
λ([N/x]M) = FVa

λ([N/x]P [N/x]Q) =

= FVa
λ([N/x]P ) ∪ FVa

λ([N/x]Q).

Here, by a ̸∈ FVa
ρ(M), we have a ̸∈ FVa

ρ(P ) and a ̸∈ FVa
ρ(Q). Then, by induction

hypothesis, we have FVa
λ([N/x]P ) ⊆ FVa

λ(N) and FVa
λ([N/x]Q) ⊆ FVa

λ(N).

Hence, FVa
λ([N/x]M) ⊆ FVa

λ(N).

(A-4) If M ≡ λy.P (y ̸≡ x), then

FVa
λ([N/x]M) = FVa

λ([N/x]P ).

By induction hypothesis, we have FVa
λ([N/x]P ) ⊆ FVa

λ(N). The case when M

is either (bP )σ or ρb.P (b ̸≡ a) can be proved in the same way.
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(B) If M ≡ PQ, then

FVa
λ([N/x]M) = FVa

λ([N/x]P [N/x]Q)

= FVa
λ([N/x]P ) ∪ FVa

λ([N/x]Q).

By induction hypothesis, we have FVa
λ([N/x]P ) ⊆ FVa

λ(P )∪FVa
λ(N) and FVa

λ([N/x]Q)

⊆ FVa
λ(Q) ∪ FVa

λ(N). Hence we obtain

FVa
λ([N/x]M) ⊆ (FVa

λ(P ) ∪ FVa
λ(N)) ∪ (FVa

λ(Q) ∪ FVa
λ(N))

= (FVa
λ(P ) ∪ FVa

λ(Q)) ∪ FVa
λ(N)

= FVa
λ(M) ∪ FVa

λ(N).

The case when M is either λy.P , (bP )σ or ρb.P (y ̸≡ x, b ̸≡ a) can be proved in the

same way.

(C) Suppose M ≡ (aP )σ. In this case, from the condition x ̸∈ FVa
λ(M), we have x ̸∈

FVλ(M). Therefore we obtain FVλ([N/x]M) = FVλ(M).

Lemma 3.22. If M and N are both in TpTmI
λρ then [N/x]M is also in TpTmI

λρ.

Proof. By induction on the size of M . The only nontrivial case is the case when M

is a λ-abstraction. Suppose M ≡ λy.P . We can assume y ̸∈ FVλ(N). By induc-

tion hypothesis, [N/x]P is in TpTmI
λρ. Furthermore, because M ∈ TpTmI

λρ, we obtain

y ̸∈
∪
a∈FVρ(P ) FV

a
λ(P ). Then, with lemma 3.21-(3), we obtain

y ̸∈
∪

a∈FVρ([N/x]P )

FVa
λ([N/x]P )

Therefore we obtain λy.[N/x]P ∈ TpTmI
λρ.

Then we show the set TpTmI
λρ is closed under the relation ▷1ct (theorem 3.18)

Proof of theorem 3.18. Suppose M ∈ TpTmI
λρ and M ▷1ct N . We show, by induction on

the clauses of definition 3.16, the following conditions simultaneously.

[♯1] FVa
λ(M) ⊇ FVa

λ(N) for any a ∈ FVρ(M).

[♯2] N ∈ TpTmI
λρ.

The nontrivial cases are the following two cases.
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1. Suppose M ▷1ct N is derived by (τ), that is, there exist P and Q such that M ≡
(λx.P )Q ▷1ct [Q/x]P ≡ N . [♯2] is obtained from lemma 3.22. Then we show [♯1].

Suppose a ∈ FVρ(P ). Because λx.P ∈ TpTmI
λρ, we have x ̸∈ FVa

λ(P ). Then, from

lemma 3.21-(1), we obtain

FVa
λ([Q/x]P ) ⊆ FVa

λ(P ) ∪ FVa
λ(Q) = FVa

λ((λx.P )Q).

Suppose a ̸∈ FVρ(P ). Then, from lemma 3.21-(2), we obtain

FVa
λ([Q/x]P ) ⊆ FVa

λ(Q) = FVa
λ((λx.P )Q).

2. Suppose M ▷1ctN is derived by (ξλ), that is, there exist x,M ′ and N ′ such that M ≡
λx.M ′, N ≡ λx.N ′ and M ′ ▷1ctN

′. By induction hypothesis, we have N ′ ∈ TpTmI
λρ.

[♯1] is obvious. Then we show [♯2].

Suppose a ∈ FVρ(N
′) and suppose x ∈ FVa

λ(N
′). From theorem 3.20 and [♯1], we

obtain x ∈ FVa
λ(M

′). However, this contradicts to M ≡ λx.M ′ ∈ TpTmI
λρ. Hence

x ̸∈ FVa
λ(N

′). We therefore obtain N ≡ λx.N ′ ∈ TpTmI
λρ.

3.2.3 Correspondence to intuitionistic logic

In this subsection, we prove that the intuitionistic lambda-rho-calculus corresponds to in-

tuitionistic logic 4 . We first prepare the following concept.

Definition 3.23 (lambda-rho-context). We define the set C of all lambda-rho-contexts

and a mapping Typec : C → Tp→ as follows (we write C[ ]φ : σ if both C[ ]φ ∈ C and

Typec(C[ ]φ) = σ hold).

(c0) [[ ]]φ : φ.

(c1) C[ ]φ : σ, M ∈ TpTmλρ, Type(M) : σ → τ =⇒ MC[ ]φ : τ .

(c2) C[ ]φ : σ → τ, M ∈ TpTmλρ, Type(M) = σ =⇒ C[ ]φM : τ .

(c3) C[ ]φ : τ, x ∈ Vσ
λ =⇒ λx.C[ ]φ : σ → τ .

(c4) C[ ]φ : σ, a ∈ Vσ
ρ =⇒ (aC[ ]φ)

τ : τ .

(c5) C[ ]φ : σ, a ∈ Vσ
ρ =⇒ ρa.C[ ]φ : σ.

4This thesis prove the fact by use of the contraction ▷1ct, but a more proof-theoretic proof was given in
(Matsuda, 2015a).
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We use metavariables C,D, . . . to stand for arbitrary contexts. Parentheses are omitted

under the convention of association to the left. We obtain a typed lambda-rho-term C[M ]φ,

for each M satisfying Type(M) = φ and each C[ ]φ ∈ C, as follows.

(c0)′ C[ ]φ ≡ [[ ]]φ =⇒ C[M ]φ ≡M .

(c1)′ C[ ]φ ≡ ND[ ]φ =⇒ C[M ]φ ≡ ND[M ]φ.

(c2)′ C[ ]φ ≡ D[ ]φN =⇒ C[M ]φ ≡ D[M ]φN .

(c3)′ C[ ]φ ≡ λx.D[ ]φ =⇒ C[M ]φ ≡ λx.D[M ]φ.

(c4)′ C[ ]φ ≡ (bD[ ]φ)
τ =⇒ C[M ]φ ≡ (bD[M ]φ)

τ .

(c5)′ C[ ]φ ≡ ρb.D[ ]φ =⇒ C[M ]φ ≡ ρb.D[M ]φ.

Theorem 3.24. If ρa.C[(aM)φ]φ ∈ TpTmI
λρ and FVρ(M) = ∅, then

ρa.C[(aM)φ]φ ▷ctM.

Proof. It suffices to show that C[(aM)φ]φ ▷ct (aM)ψ, here

ψ = Type(C[(aM)φ]φ).

The proof is given by induction on the size of C[ ]φ.

1. C[ ]φ ≡ [[ ]]φ. Because ρa.C[(aM)φ]φ ∈ TpTmI
λρ, we obtain φ ≡ ψ, and then we

obtain C[(aM)φ]φ ≡ (aM)ψ.

2. Suppose that C[ ]φ ≡ ND[aM ]φ. Let Type(N) = σ → τ . By induction hypothesis,

we obtain D[(aM)φ]φ▷ct (aM)σ. Furthermore, by the rule (throw λ-app l), we obtain

N(aM)σ▷ct(aM)τ . The cases when C[ ]φ is constructed by either of the rules (c2)-(c4)

can be proved in the same way.

3. Suppose that C[ ]φ ≡ ρb.D[ ] and Type(b) = ψ. By induction hypothesis, we obtain

D[(aM)φ]φ ▷ct (aM)ψ. Furthermore, because b ̸∈ FVρ(M), we obtain ρb.(aM)ψ ▷1ct

(aM)ψ.

Lemma 3.25. Let M ∈ TpTmI
λρ be closed, then there exists a closed lambda-term N such

that M ▷ct N .
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Proof. By induction on the number of rho-symbols in M .

Suppose there are no rho-applications in M . Take a rho-abstraction ρa.N occurring

in M and let M ≡ C[ρa.N ]φ. By the assumption, we have FVρ(N) = ∅. Hence we have

M ▷1ct C[N ]φ. By theorem 3.20, we can see that C[N ]φ is closed. Then, by induction

hypothesis, C[N ]φ can be reduced to some closed lambda-term.

Suppose there is a rho-application in M . Then there exists a rho-application aN M

such that FVρ(N) = ∅. Because M is closed, M ≡ C[ρa.D[(aN)ψ]ψ]φ for some contexts

C[ ]φ, D[ ]ψ. We have M ▷ct C[N ]φ by theorem 3.24. We can see, by theorem 3.20, C[N ]φ

is closed. Then, by induction hypothesis, C[N ]φ can be reduced to some closed lambda-

term.

Then we show that the intuitionistic lambda-rho-calculus corresponds to the implica-

tional fragment of intuitionistic logic.

Theorem 3.26. For each φ ∈ Tp→, ⊢HK⊃ φ if and only if there exists a closed term

M ∈ TpTmI
λρ such that Type(M) = φ.

Proof. Because TpTmλ ⊆ TpTmI
λρ, the “only if” part is clear.

We show the “if” part. Let M be a closed term in TpTmI
λρ such that Type(M) = φ.

By lemma 3.25, there exists a closed lambda-term N such that M ▷ctN . Furthermore, from

theorem 3.20, we obtain Type(M) = φ. Therefore, φ is intuitionistically valid.

3.2.4 Catch and throw in the intuitionistic lambda-rho-calculus

We can give the intuitionistic lambda-rho-terms which work as the catch operator and the

throw operator as follows.

catch a in M ≡ ρa.M, throw N to a ≡ (aN)φ

where φ is an appropriate type which depends on the context. We can easily show that

if Type(a) = σ and FVµ(N) = ∅ then, for any lambda-rho-context C[ ]τ : σ such that

catch a in C[throw N to a]τ ∈ TpTmI
λρ,

catch a in C[throw N to a]τ ▷ct N.

See also example 3.17.

3.2.5 Strong normalization

This subsection gives a proof of the strong normalization property of our system:

Theorem 3.27 (Strong normalization theorem). For any M ∈ TpTmI
λρ, there are no

infinite ▷1ct-sequences starting from M .
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Our contraction relation ▷1ct is regarded as a kind of symmetric reduction. In general,

symmetric contraction rules make the strong normalization proof complicated (a detailed

consideration for this topic was given in (David & Nour, 2005)). However, in our system,

the proof can be given in the standard way, so-called the reducibility method 5 (see (Hindley

& Seldin, 2008, Appendix A3)). It tells us that our contraction relation is easier to treat

than Parigot’s contraction ▷1p in some sense. In the following, we write the set of subterms

of M as Sub(M), that is, Sub(M) = {N ∈ TpTmI
λρ | N occurs in M as a subterm}. The

key of our proof is the following property.

Lemma 3.28. Suppose M ∈ TpTmI
λρ, M ▷ct N and (aP )φ ∈ Sub(N), then there exists a

subterm of M which has the form (aQ)ψ ∈ Sub(M) for some Q such that Q ▷ct P .

Proof. The proof is given by induction on the length of the ▷1ct-sequence fromM to N . We

can assume a ̸∈ BVρ(M).

1. Suppose M ≡ N . Then the lemma is obvious.

2. Suppose M ▷1ctN . The case when M ▷1ctN is derived without the rule (τ) is obvious.

Then suppose that there exist R,S such that M ≡ (λx.R)S and N ≡ [S/x]R. In this

case, because M ∈ TpTmI
λρ, we have x ̸∈ FVa

λ(R). Then we can check

(aP )φ ∈ Sub([S/x]R) =⇒ (aP )φ ∈ Sub(R) ∪ Sub(S)

by easy induction on the size of R.

3. Suppose there exists R such that M ▷ct R ▷1ct N . Suppose (aP )φ ∈ Sub(N). Then,

there exists (aS)τ ∈ Sub(R) such that S ▷ct P . In addition, by induction hypothesis,

there exists (aQ)ψ ∈ Sub(M) such that Q ▷ct S. This (aQ)ψ satisfies the required

condition.

Then we start to prove the theorem.

Definition 3.29 (Computable terms). We define the set SN of strongly normalizable terms

as follows.

SN = {M ∈ TpTmI
λρ | there are no infinite ▷1ct -sequences starting from M}.

5Yamagata (Yamagata, 2001) showed the strong normalization property of Parigot’s symmetric contrac-
tion by applying the proof method given in (Barbanera & Berardi, 1996). Their proof was given with the
reducibility method. However, their definition of strong computable terms (strong reducible terms) were
very complicated. In our proof, on the other hand, the strong computable terms can be defined simply.
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Then we define the set SC ⊆ TpTmI
λρ of strongly computable terms as follows.

M ∈ SC if either of the following conditions holds.

(1) Type(M) is an atomic type and M ∈ SN.

(2) Type(M) = σ → τ and MN ∈ SC for every N ∈ SC such that Type(N) = σ.

Note 3.30. The following properties can be easily checked (see (Hindley & Seldin, 2008)).

(1) Suppose Type(M) = σ1 → . . . → σn → t for some σ1, . . . , σn ∈ Tp→ and t ∈ AT.

M ∈ SC if and only if MN1 . . . Nn ∈ SN for every N1, . . . , Nn ∈ SC such that

Type(Ni) = σi.

(2) If M ∈ SN and M ▷1ct N then N ∈ SN.

(3) If M ∈ SN then every subterm of M is in SN, because any infinite ▷1ct-sequence from

a subterm of M gives rise to an infinite sequence from M .

(4) Suppose [N/x]M ∈ SN. Then M ∈ SN, because any infinite ▷1ct-sequence from M

gives rise to an infinite sequence from [N/x]M . Furthermore, if x ∈ FVλ(M) then

N ∈ SN.

(5) If Mx ∈ SN then M ∈ SN.

(6) If (aM)σ ∈ SN then (aM)τ ∈ SN.

Lemma 3.31. Every term of the form (aM0)
σ1→...→σn→τM1 . . .Mn is in SN, ifM0, . . . ,Mn ∈

SN and (aM0)
σ1→...→σn→τM1 . . .Mn ∈ TpTmI

λρ.

Proof. By induction on n.

First, we consider the case when n = 0. Suppose that there is an infinite ▷1ct-sequence

Σ starting from (aM0)
τ . From the form of reduction rules, the form of Σ is either of the

followings.

(aM0)
τ ▷1ct (aN1)

τ ▷1ct (aN2)
τ ▷1ct . . . (M0 ▷1ct N1, Nj ▷1ct Nj+1).

(aM0)
τ ▷1ct . . . ▷1ct (a(bP )

φ)τ ▷1ct (bP )
τ ▷1ct . . . (M0 ▷ct (bP )

φ).

The former sequence contradicts the condition M0 ∈ SN. On the other hand, because

M0 ▷ct (bP )
φ and M0 ∈ SN and note 3.30-(6), there are no ▷1ct-sequences starting from

(bP )τ . Hence (aM0)
τ ∈ SN.
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LetM ≡ (aM0)
σ1→...→σn→τM1 . . .Mn and suppose that there is an infinite ▷1ct-sequence

Σ starting from M . Because each Mi is in SN, there are no infinite ▷1ct-sequences of the

following form.

M ▷1ct (a1N01)
σ1→...→σn→τN11 . . . Nn1

▷1ct (a2N02)
σ1→...→σn→τN12 . . . Nn2

▷1ct . . .

(∃j such that j = k implies Mj▷1ctNj1 and j ̸= k implies Mk ≡ Nk1)

(∀i, ∃j such that j = k implies Nji ▷1ct Nj(i+1) and j ̸= k implies Nki ≡ Nk(i+1))

Hence, σ has either of the following forms.

M ▷1ct . . . ▷1ct (bP0)
σ1→...→σn→τP1P2 . . . Pn

▷1ct (bP0)
σ2→...→σn→τP2 . . . Pn

▷1ct . . .

(Mj ▷ct Pj , (aM0)
σ1→...→σn→τ ▷ct (bP0)

σ1→...→σn→τ )

M ▷1ct . . . ▷1ct (cQ0)
σ1→...→σn→τQ1Q2 . . . Qi−1(dR)

σiQi+1 . . . Qn

▷1ct (dR)
σi+1→...→σn→τQi+1 . . . Qn

▷1ct . . .

(Mi ▷ct (dR)
σi , Mj ▷ct Qj , (aM0)

σ1→...→σn→τ ▷ct (cQ0)
σ1→...→σn→τ )

Here, from note 3.30-(2) and (3), we obtain Pj , Qk, R ∈ SN. Therefore, by induction

hypothesis, there are no infinite sequences of the above forms.

Lemma 3.32. If M1, . . . ,Mn ∈ SN and xM1 . . .Mn ∈ TpTmI
λρ, then xM1 . . .Mn ∈ SN.

Proof. In the same way as the lemma 3.31.

Lemma 3.33.

(1) Every term of the form xM1 . . .Mn such that Type(xM1 . . .Mn) = φ is in SC, if

M1, . . . ,Mn ∈ SN.
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(2) Every term M ∈ SC such that Type(M) = φ is in SN.

Proof. We prove (1) and (2) simultaneously by induction on the size of φ.

Let φ ≡ t ∈ AT. We obtain (1) from lemma 3.32, and obtain (2) from the definition of

SC.

Let φ ≡ σ → τ . We first show (1). Take an arbitrary term N of type σ. Then, by induc-

tion hypothesis, we obtain N ∈ SN and, by induction hypothesis again, xM1 . . .MnN ∈ SC.

We therefore obtain xM1 . . .Mn ∈ SC. Then we show (2). Take x ∈ Vσ
λ and consider Mx.

We obtain Mx : τ , and obtain Mx ∈ SN by induction hypothesis. Hence, with note 3.30,

M ∈ SN.

Lemma 3.34.

(1) If ([M1/x]M0)M2 . . .Mn ∈ SN and M1 ∈ SN then (λx.M0)M1M2 . . .Mn ∈ SN.

(2) If ([N/x]M) ∈ SC and N ∈ SC then (λx.M)N ∈ SC.

Proof. In the same way as lemma 3.31 and (Hindley & Seldin, 2008).

Then we show the strong normalization theorem for our system.

Proof of the strong normalization theorem. From lemma 3.33, it suffices to show the follow-

ing property.

(♯) For all x1, . . . , xn (xi ∈ Vφi

λ ) and all N1, . . . , Nn ∈ SC (Type(Ni) = φi) such that none

of x1, . . . , xi−1 occurs free in Ni, [N1/x1] . . . [Nn/xn]M ∈ SC.

The proof of (♯) is given by induction on the size of M ∈ Λρ. The case when M is neither

a rho-application nor a rho-abstraction can be shown in the standard way. The case when

M is a ρ-application is easily verified with lemma 3.31 and the induction hypothesis.

Suppose M ≡ ρa.M ′. We can assume a does not occur free in any of N1, . . . , Nn. In

this case, we have

[N1/x1] . . . [Nn/xn]M ≡ ρa.[N1/x1] . . . [Nn/xn]M
′.

By induction hypothesis, [N1/x1] . . . [Nn/xn]M
′ ∈ SC. Let Type(M) = σ1 → . . . → σm →

t (t ∈ AT) and take P1, . . . , Pm ∈ SC such that Type(Pi) = σi. Suppose that there is an

infinite ▷1ct-sequence Σ starting from

(ρa.[N1/x1] . . . [Nn/xn]M
′)P1 . . . Pm,
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then Σ has the following form (we can see, in the same way as lemma 3.34, the other cases

cannot happen).

(ρa.[N1/x1] . . . [Nn/xn]M
′)P1 . . . Pm ▷1ct . . . ▷1ct (ρa.(aQ)φ)R1 . . . Rm

▷1ct QR1 . . . Rm

▷1ct . . .

([N1/x1] . . . [Nn/xn]M
′ ▷ct (aQ)φ, Pi ▷ct Ri, φ ≡ σ1 → . . .→ σm → p)

On the other hand, from lemma 3.28, there exists (aS)ψ ∈ Sub(M ′) such that

[N1/x1] . . . [Nn/xn]S ▷ct Q.

By induction hypothesis and note 3.30, we have [N1/x1] . . . [Nn/xn]S ∈ SC, but this

contradicts the form of Σ. Therefore there are no infinite ▷1ct-sequence starting from

(ρa.[N1/x1] . . . [Nn/xn]M
′)P1 . . . Pm.

3.3 Conclusion and future work

In this chapter, we give a new typed lambda-calculus, called the intuitionistic lambda-rho-

calculus, which corresponds to the implicational fragment of intuitionistic logic and has

more expressive power than the lambda-beta-calculus.

We expect that we can show some properties of intuitionistic logic with the intuitionistic

lambda-rho-calculus. For example, in (Matsuda, 2015b), the author show the correspon-

dence between the intuitionistic lambda-rho-calculus and a proof system called tree sequent

calculus of intuitionistic logic, and show some properties of the tree sequent calculus with

the correspondence.
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