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CHAPTER 1

Preface

In this thesis, we study the relations between the conformal struc-
ture and a combinatorial structure, which is called the combinatorial
Hodge theory, on a closed Riemann surface. The combinatorial Hodge
theory on Riemannian manifolds with triangulations is constructed by
Eckmann (1945), Dodziuk and Patodi (1976), Wilson (2007), etc. In
2008, using the combinatorial Hodge theory, Wilson defined holomor-
phic 1-cochains on closed Riemann surfaces with triangulations. Our
goal is to show that holomorphic 1-cochains provide an approximation
of holomorphic 1-forms on closed Riemann surfaces.

In [6], Eckmann observed that on a closed Riemannian manifold
with a triangulation, an inner product in real cochain spaces of a finite
simplicial complex gives rise to a combinatorial Hodge theory as follows.
Using an inner product on cochains, we may obtain the adjoint operator
of a coboundary operator on cochains. A harmonic cochain is defined
as a cochain whose images of the coboundary operator and its adjoint
operator both vanish. In a similar way to the smooth Hodge theory,
an inner product on cochains gives rise to the Hodge decomposition of
cochains.

For this combinatorial Hodge theory, Dodziuk [3] and Dodziuk and
Patodi [4] studied the connection with the smooth Hodge theory and
then they showed the following. Let K be a smooth triangulation of
a compact oriented Riemannian manifold M. Then it is shown that
the smooth Hodge theory on M is approximated by the combinato-
rial Hodge theory with a certain inner product on cochains. To show
this, they employed the Whitney map W from cochains to differential
forms, and the de Rham map R from differential forms to cochains. As
a suitable inner product on cochains, Dodziuk and Patodi defined the
Whitney inner product which is defined by using the inner product (, )o
on smooth forms and the Whitney map. Note that we may define an
inner product on smooth forms by using the Riemannian metric. Then
they showed that for any smooth form w, the corresponding cochain
Rw is an approximation of w, i.e., |[w — W Rw||q converges to w, as the
mesh of a triangulation tends to zero, where || - || is the £2-norm on
differential forms. Also, each part of the Hodge decomposition of Rw
converges to the corresponding part of the Hodge decomposition of w.
This implies that the Hodge decomposition of cochains, given by the
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Whitney inner product, is an approximation of the Hodge decomposi-
tion of smooth differential forms.

In [14], Wilson developed the combinatorial analogues of several
objects in differential geometry. Especially, he defined a combinatorial
star operator on cochains which is analogue of the smooth Hodge star
operator on differential forms. To define this star operator on cochains,
he used a cup product on cochains defined by Whitney in [13], and an
inner product on cochains. Using the approximation theorem proved
by Dodziuk and Patodi, Wilson showed that his combinatorial star
operator on cochains also converges to the smooth Hodge star opera-
tor. Also, Wilson showed that this approximation respects the Hodge
decompositions of smooth forms and cochains.

In his another paper published in 2008, he applied this combinato-
rial Hodge theory to closed Riemann surfaces. To construct the com-
binatorial Hodge theory on closed Riemann surfaces, he extends all of
the objects to complex settings. Since he also proved that Wilson’s
combinatorial star operator induces an isomorphism from harmonic
cochains to harmonic cochains in [14], we define the combinatorial
star operator on harmonic 1-cochains by this isomorphism. Then the
space of holomorphic 1-cochains is defined as the span of the eigen-
vectors for non-positive imaginary eigenvalues of the isomorphism and
the space of anti-holomorphic 1-cochains is defined as the eigenvectors
for non-negative imaginary eigenvalues of the isomorphism. These are
defined in [15] and also he proved that For a closed Riemann surface
of genus ¢ with a triangulation, these spaces have the following three
properties: (i) the space of harmonic 1-cochains is decomposed into
the spaces of holomorphic 1-cochains and anti-holomorphic 1-cochains,
(i) the dimensions of the spaces of holomorphic 1-cochains and anti-
holomorphic 1-cochains are equal to g, (iii) complex conjugation maps
holomorphic to anti-holomorphic and vice versa. However, in[12], Tan-
abe showed that complex conjugation dose not map holomorphic to
anti-holomorphic in general and added further assumption as follows.
A hermitian inner product on cochains is real-valued on real-cochains.
This assumption is natural and the Whitney inner product satisfies it.

It is known that as an important property, holomorphic 1-forms sat-
isfy Riemann’s bi-linear relation which implies that for a canonical ho-
mology basis, holomorphic 1-forms are characterized by their periods.
Indeed, for a canonical homology basis ¥ = {a1,- -, a4, b1, - ,by}
of a closed Riemann surface of genus g, any holomorphic 1-form w
on the closed Riemann surface is characterized by their A-periods
fal W, fag w. Here we define the canonical basis {61, - - - ,6,} of holo-

morphic 1-forms by [, ¢; = d;x and the period matrix IT = (71 )1<jk<q
by 7 = fbk ¢;. For a holomorphic 1-cochain o, we define the combi-
natorial periods of o by o(a;), o(b;) for 1 < j < g. Riemann’s bi-linear
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relation also holds for o(a;) and o(b;). Therefore, we may show that
any holomorphic 1-cochain ¢ is characterized by their combinatorial
A-periods o(ay),---,0(a,) as well. Also, we define the canonical ba-
sis {01, ,0,4} of holomorphic 1-cochains by o;(ay) = 0 and the
combinatorial period matrix Il = (7];)1<jr<g by 7fi = 0;(br).

As a relation between (conformal) period matrices and combinato-
rial period matrices, Wilson proved that for a closed Riemann surface
with a canonical homology basis and a triangulation, the combinato-
rial period matrix converges to the (conformal) period matrix as the
mesh of the triangulation tends to zero. This implies that combinato-
rial period matrices give rise to an approximation of (conformal) period
matrices.

As our main work of this thesis, using relations between (conformal)
period matrices and combinatorial period matrices, we study the rela-
tions between holomorphic 1-forms and holomorphic 1-cochains. More
precisely, we show that holomorphic 1-cochains are an approximation
of holomorphic 1-forms. By the approximation result showed by Dodz-
iuk and Patodi, for arbitrary holomorphic 1-form w, we may obtain
the cochain Rw which gives an approximation of w. However, in gen-
eral, it is unclear whether or not Rw is a holomorphic 1-cochain. To
describe the relations between holomorphic 1-forms and holomorphic
1-cochains, we construct a new correspondence between them.

Now, we explain our main results which are given in Chapter 4
and 5. In Chapter 4, we show the further relation between (conformal)
period matrices and combinatorial period matrices in Theorem 4.1. For
a fixed triangulation of a closed Riemann surface M with a canonical
homology basis ¥ and a triangulation K, we prove the following matrix
equation

Il = Tg — Ag,
where Ak is defined by A = ((Wo,,%0k)a)1<jr<g- This matrix equa-
tion indicates an explicit difference between II and Il for a fixed tri-
angulation. Since IT and Ilx lie in the Siegel upper half space, by using
this matrix equation, we may see that Ay lies in the Siegel half space
as well. Namely, a triple (M, X, K') determines three elements IT, T,
and Ak in the Siegel upper half space.

In Chapter 5, we show that holomorphic 1-cochains provide an ap-
proximation of holomorphic 1-forms. First, we define a new correspon-
dence between holomorphic 1-forms and holomorphic 1-cochains. For
a holomorphic 1-form w, we define the holomorphic 1-cochain ¢, by

Lo(ay) = /a‘w

J

for 1 < j < g. Then the map w + ¢, is an isomorphism from holomor-
phic 1-forms to holomorphic 1-cochains. In Theorem 5.2, we prove that
for any holomorphic 1-form w, ||[We, —w||q converges to 0, as the mesh



8 1. PREFACE

of the triangulation tends to zero. To prove Theorem 5.2, we prove
three theorems. In the first theorem (Theorem 5.4), using the matrix
equation in Chapter 4, we evaluate |W, — w||q for a fixed triangula-
tion K. To evaluate this £?-norm, we use a vector ®x = (¢1,- -+, )
which satisfies
(koj,05)c = (—ip;o; 05)c

for 1 < j < g, where (,)c denotes the Whitney inner product on
cochains and {oy,---,0,} is a basis of the space of holomorphic 1-
cochains which satisfies o;(a) = d;. In the second theorem (Theorem
5.6), we prove that for any triangulation K of a closed Riemann surface
of genus 1 (complex torus), @ is always equal to 1. Then, combining
Theorem 5.4 and 5.6, we see that for any triangulation of a complex
torus, ||We, —w||q is always equal to 0. Finally, in the third theorem
(Theorem 5.7), for g > 1, we prove that @ converges to (1,---,1), as
the mesh of K tends to zero. Combine Theorem 5.4 and 5.7, we see
that for g > 1, ||W, — w||q converges to 0.
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CHAPTER 2

Riemann surfaces

1. Introduction

We explain the fundamental theory of Riemann surfaces in this
chapter. See [7] for details.

In Section 2, we recall some fundamental definitions and proper-
ties of Riemann surfaces. Riemann surfaces are real 2-dimensional
oriented differentiable manifolds with complex structures. Using com-
plex structures, we may define holomorphic functions and holomorphic
1-forms on surfaces. Also, we define the Hodge star operator on Rie-
mann surfaces and then recall that the space of holomorphic 1-forms
is characterized be the eigenvalues of the Hodge star operator.

In Section 3, we recall the fundamental properties of holomorphic
1-forms. Let g be the number of genus of a closed Riemann surfaces.
Then the dimension of the space of holomorphic 1-forms is equal to g
and holomorphic 1-forms satisfy an important relation which is called
Riemann’s bi-linear relation. For a canonical homology basis of a closed
Riemann surface, Riemann’s bi-linear relation gives rise to a unique
matrix which lies in the Siegel upper half space and is called the period
matrix.

2. Definitions

DEFINITION 2.1. Let M be a two-dimensional manifold. A complex
chart on M is a homeomorphism z : U — V of an open subset U C M
onto an open subset V- C C such that two complex charts z; : Uy — V;
and zy : Uy — Vi satisfy the following, which is called holomorphically
compatible:

Z9 O Zl_l . Zl(Ul N UQ) — ZQ(U]_ N UQ)

is biholomorphic if Uy N Uy # 0.

For an open cover {U;}icr of M, i.e., U,c; Ui = M, we define a
complex atlas on M by a system A = {z; : U; — V;, i € I} of charts
which are holomorphically compatible.

For two complex atlases Ay and Ay on M, if every chart of 2y
1s holomorphically compatible with every chart of Ay, Ay and Ay are
analytically equivalent. Then we define a complex structure of M is an
equivalence class of analytically equivalent atlases on M.

9
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A complex structure v on M contains a unique maximal atlas 2*.
If A is an arbitrary atlas in u, then 2A* consists of all complex charts
on M which are holomorphically compatible with every chart of 2.

DEFINITION 2.2. A Riemann surface is a pair (M,w), where M is
a connected two-dimensional manifold and w is a complex structure on

M.

DEFINITION 2.3. Let M be a Riemann surface. A function f :
M — C s called holomorphic if for every chart z: U —V on M,
fozt:2(UNM)—C
is holomorphic in the usual sense on the open set z(U N M) C C.
DEFINITION 2.4. Let M be a Riemann surface. A O-form on M is
a function on M. A 1-form on M is an (ordered) assignment of two

continuous functions f and g to each local coordinate z = x +1y on M
such that

fdz + gdy.
A 2-form on M is an assignment of a continuous function f to each
local coordinate z = x + 1y such that

fdx N dy.
We write the set of j-forms on M, j =0,1,2, by Q(M) and Q(M) =
Bj=0,128 (M).

DEFINITION 2.5. Let f be a C? function on M. We define the

Laplacian of f, Af in local coordinate z = x + 1y by

0*f  O*f
Af = =54+ == |dr Ady.
d (0562 i 3@/2) e
If the function f satisfies Af =0, then f is a harmonic function. Also,

if a 1-form w s locally given by df, w is a harmonic 1-form. We write
the set of the harmonic 1-forms of M by HQ'(M).

DEFINITION 2.6. A 1-form w is a holomorphic 1-form if locally

w = df where f is holomorphic, and we write the set of holomorphic
1-forms on M by HQYW(M).

DEFINITION 2.7. We define the Hodge star operator = on Q(M) as

follows. For a 1-form w = fdx + gdy, we define
*w = —gdx + fdy.
For a O-form f and a 2-form A, we define
*f = f(2)(AN(z)dz A dy)
and
*A = A/\(z)dx A dy,

where A(z)dx A dy is a non-vanishing 2-form on M and the existence
of such a canonical 2-form \(z)dx A dy follows from IV.8. in [7].
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It is clear that x*> = (—1)7 on Q/(M).
REMARK 2.8. Using the Hodge star operator, we may write
HQAY (M) = {we Q"(M)|dw =d*w =0}
and
HQY(M) = {w € HON(M)| *w = —iw}.
3. Closed Riemann surfaces

Let M be a closed Riemann surface of genus ¢ > 1 and H;(M)
be the first homology group of M. Then we obtain a basis ¥ =
{a1, -+ ,a4,b1, - ,b,} of Hi(M) which satisfies the following inter-

section properties:
{0, £k,
aj by = .
L, j=F,
and
aj-ak:bj-bk:(),
where a - b is the intersection number of a and b. We call a basis
which satisfies this intersection properties a canonical homology basis
of Hl(M)
In the case of closed Riemann surfaces, the dimensions of spaces
HOQY (M) and HOQMO(M) are determined by the genus g of each closed
Riemann surface M.

THEOREM 2.9. On a closed Riemann surface M of genus g, the
vector space HQ(M) of harmonic 1-forms has dimension 2g.

THEOREM 2.10. On a closed Riemann surface of genus g, the vector
space HQYO (M) of holomorphic 1-forms has dimension g.

Note that the space HQ! (M) of harmonic 1-forms has the following
HON (M) = HQYW (M) @& HQ" (M),

where HQ%(M) is the space of anti-holomorphic 1-forms on M whose
elements are complex conjugation of holomorphic 1-forms.

For a canonical homology basis ¥ = {a,---,a4,b1, -+ ,bs}, we
define the periods of a closed 1-form w by

aj bj

for 1 < j < g. Then periods satisfy the following relations:

PROPOSITION 2.11. For two closed 1-forms wy and ws,

[Lona=S ([ ][] =)

Also, for holomorphic 1-forms, we have the following:



12 2. RIEMANN SURFACES

COROLLARY 2.12. For two holomorphic 1-forms wy and ws,

g
(xw1, wa)q = E (/ WI/W_Q_/WI/ W_Q),
j=1 aj by b; aj

where the bar denotes the complex conjugation.

These relations are called Riemann’s bi-linear relations. By Rie-
mann’s bi-linear relation of holomorphic 1-forms, for a holomorphic
1-form w, we obtain

Hwnazig(ij/bjw—/bjwljw),

where ||w||3 = (w,w)q. This implies that if all A-periods fal Wy faq w
vanish. Then we obtain w = 0 and therefore holomorphic 1-forms are
characterized by A-periods. Using this properties, we define a basis
{01, .0y} of HQM (M) which satisfies [, ¢; = d; and is uniquely
determined by M and . This basis {6, - - ,0,} is called the canonical
basis of HQYY(M) and gives rise to the period matrix IT:

= (mjr)1<jh<g, Where s, = / 0;-

by,
Also, Riemann’s bi-linear relation of holomorphic 1-forms implies that
IT is symmetric and its imaginary part is positive definite, and therefore
period matrices lie in the Siegel upper half space.

It is known that period matrices is one of the characterizations of
closed Riemann surfaces. It is clear that if two closed Riemann surfaces
are conformally equivalent, then the two closed Riemann surfaces have
the same period matrix. Conversely, in 1913, Torelli proved that two
closed Riemann surfaces with the same period matrix are conformally
equivalent. On the other hand, there is a problem, concerned with
period matrix, which is called the Schottky problem. The Schottky
problem is to determine which points in the Siegel upper half space
represent the period matrix of a closed Riemann surface.



CHAPTER 3

Combinatorial Hodge theory

1. Introduction

In Section 2, we recall the combinatorial Hodge theory on Riemann-
ian manifolds with triangulations. First, we recall that an inner prod-
uct on cochains gives rise to the Hodge decomposition of each space of
j-cochains. Then, to consider the relations between smooth differential
forms and cochains, we induce the two maps, which are the Whitney
map W on cochains and the de Rham map R on differential forms. By
the result of Dodziuk and Patodi, for all smooth differential forms w,
the £%norm ||w — W Rw||q on differential forms converges to 0, as the
mesh of a triangulation tends to zero. This implies that the cochain
Rw provides an approximation of w.

In Section 3, we recall the definition of a star operator on cochains
which is analogue to the Hodge star operator on differential forms.
This star operator is defined by using a cup product on cochains and
provides an approximation of the Hodge star operator on differential
forms.

In Section 4, we apply this combinatorial theory to closed Riemann
surfaces and define holomorphic 1-cochains. Also, we recall some no-
tions of holomorphic 1-cochains.

2. Combinatorial Hodge theory on Riemannian manifolds

In this section, we recall a combinatorial theory constructed by Eck-
mann, Dodziuk, Patodi, etc. This theory is constructed on Riemannian
n-manifolds with triangulations, but we may apply this theory to Rie-
mann surfaces with triangulations since we regard a Riemann surface
as a Riemannain 2-manifold with a complex structure.

Let M be a closed smooth Riemannian n-manifold, and let /(M)
be the space of smooth differential j-forms on M with the exterior
derivative operator d. Then the Riemannian metric of M induces an
inner product (, )o on (M) and we may obtain the Hodge star operator
x. Now we define d* := (—1)7U+17") s dx, which is the adjoint operator
of d, and the space H (M) of harmonic j-forms on M by

HY (M) = {w e Y (M)|dw = d'w =0} .
By the Hodge theory, we have the following decomposition
V(M) =d¥Y (M) e HY (M) & dQPHH(M).
13
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Next, for this classical Hodge theory of smooth differential forms,
we recall an approximation to the Hodge decomposition of smooth
differential forms by cochains. This approximation is constructed by
Dodziuk and Patodi, see [3, 4] for details.

Let K be a C* triangulation of M. Now we identify |K| and
M and fix an ordering of the vertices of K. Then we denote the i-
th vertex of K by p; and the barycentric coordinate corresponding to
pi by p;. Let C(K) be the simplicial j-cochains of K with values
in R. Given the ordering of vertices, we have a coboudary operator
§: CI(K) — C'"Y(K). Since K is a finite complex, we can identify
chains and cochains and then for o € C7(K), we may write

o= g Cr - T,
T

where ¢, € R and the sum is taken over all j-simplices of K. We write
T = [po,p1,--- ,p;] of K with the vertices in an increasing sequence
with respect to the ordering of vertices in K.

DEFINITION 3.1. For a triangulation K, we define the mesh n(K)
of K by
n(K) = supr(p, q)

where r means the geodesic distance in M and the supremum is taken
over all pairs of vertices p, q of a 1-simplex in K.
We define the fullness ©(K) of K by

vol(o)
n(K)"

where the inf is taken over all n-simplices o of K and vol(c) is the
Riemannian volume of o, as a Riemannian submanifold of M.

O(K) = inf

Then we have the following lemma which is analogue of Whitney’s
result in [13].

LEMMA 3.2. Let M be a smooth Riemannian n-manifold.

(1) Let K be a smooth triangulation of M. Then, there is a positive constant
O > 0 and a sequence of subdivisions Ky, Ks,--- of K such that
lim,, .o N(K,) =0 and ©O(K,) > Oq for all n.

(2) Let ©g > 0. There exist positive constants Cy,Cy depending on M and ©
such that for all smooth triangulations K of M satisfying ©(K) > Oy, all
n-simplices of o = [po, p1,- -+ ,Pn] and vertices py, of o, vol(o) < Cy - n(K)"
and Cy - n(K) < r(pg,0p, ), where r is the Riemannian distance, vol(o) is
the Riemannian volume, and o,, = [Po,* " Pk—1,Pk+1, " - D) 1S the face
of o opposite to py.

Since any two metrics on M are commensurable, the lemma follows
from Whitney’s Euclidean result, see [4].
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Here we assume that the fullness of any triangulation using this
paper is bounded below by some constant ©y > 0. This implies that
the shapes of all simplices of any triangulation do not become too thin.

Now suppose that the cochains C(K) are equipped with a non-
degenerate inner product (,)c such that CY(K) 1L C*(K) for j # k.
Then we define the adjoint operator of 4:

DEFINITION 3.3. The adjoint operator §* : CV(K) — CV"YK) of §
is defined by (6* 01, 09)c = (01,002)¢.

Then two operators  and 0* give rise to the harmonic cochains as
follows.

DEFINITION 3.4. We define the space HC? (K) of harmonic j-cochains
of K by
HCI(K) ={o € CV(K)|do =60 =0} .

Eckmann showed that an inner product (,)c provides the Hodge
decomposition of cochains.

THEOREM 3.5 ([6]). There is an orthogonal direct sum decomposi-
tion
C/(K) =6C""YK) ® HCY(K) @ §*CTTH(K)
and HCY(K) = HI(K), the cohomology of (K,8) in degree j.

Note that the space HC?(K) of harmonic j-cochains and the Hodge
decompositions of cochains depend upon the choice of the inner product
on cochains. Dodziuk and Patodi employed a particularly nice inner
product on cochains, which is called the W hitney inner product. To
define the Whitney inner product and the relations between the smooth
Hodge theory and the combinatorial Hodge theory, we need to recall
two maps between differential forms and cochains. First, we define a
map W from C’(K) into £2Q7 (M) which is the completion of Q7 (M)
with respect to (,)q. The map W is called the W hitney map.

DEFINITION 3.6. For a j-simplex T = [po,--- ,p;| of K, we define
W by

J

i=0
where ~ over a symbol means deletion. W is defined on C(K) =
Pjef01,2yCY (K) by extending linearly.

REMARK 3.7. The barycentric coordinates ji; are not even of class
CY, but they are of class C° on the interior of any simplex of K. This
implies that dp; s defined and Wt is well-defined. Therefore dW 1is
also well-defined on L*Q7 (M).

The Whitney map W has several properties.
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ProposITION 3.8 ([13]). The following hold:
(1) Wt =0 on M\St(7),
(2) dW = W,
where St(T) is the closure of the open star St(r).

Next we define the de Rham map R from differential forms to
cochains which is given by integration:

DEFINITION 3.9. For any differential form w and chain c, the de
Rham map R is defined by
Rw(c) = / w.

The de Rham map is a chain map:
LeEMMA 3.10 ([5]). The following holds:
0R = Rd.
The Whitney map and the de Rham map satisfy the following re-
lation, see [3, 4, 13]:
THEOREM 3.11. The following holds:
RW = Id.

In general, WR # Id. However, Dodziuk and Patodi [4] showed
the following approximation theorem.

THEOREM 3.12 ([3]). There exist a positive constant C' and a pos-
itive integer m, independent of K, such that

lw—=WRwllo <C-|[(Id+ A)"wlla - n(K)
for all C*° differential forms w on M.
In the right hand of the above theorem, the depending on the choice
of triangulations is only the mesh. This implies that any smooth form
w can be approximated by the corresponding cochain Rw as the mesh

tends to zero.
Next we define the Whitney inner product.

DEFINITION 3.13. For two cochains o1, 09, we define
<01,02>C = <W01a W02>Q-

In [3], Dodziuk showed that the Whitney inner product is non-
degenerate. Also, Dodziuk and Patodi showed the following theorem
which indicates that the Hodge decompositions of cochains are an ap-
proximation of the Hodge decompositions of smooth forms.

THEOREM 3.14 ([4]). Let w € ¥ (M) and Rw € CV(K) have Hodge
decompositions

w = dw1 + wo + d*u)g
Rw = da;+as+ 6 as.
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Then
[dwy — Wéarlla < A-[[(Id+ A)"wllq - n(K)
|we = Waglla < A |[(Id+ A)"wllq - n(K)
|d*ws — Wi*azlla < A-[[(Id+ A)"wllq - n(K)

where A and m are independent of w and K.

3. Wilson’s combinatorial Hodge star operator

In [14], Wilson developed this combinatorial theory as follows. Us-
ing a cup product on cochains, he defined a star operator on cochains
which is an analogue of the Hodge star operator on smooth forms.
Also, he showed that this star operator on cochains is an approxima-
tion of the Hodge star operator on smooth forms. First, we recall the
definition of the cup product on cochains which is defined Whitney in
[13].

DEFINITION 3.15. We define U : C7(K) ® C*(K) — C7**(K) by
ocUtr=R(WaoAWT),
for o € CI(K) and 7 € C*(K).
Since the de Rham map R and the Whitney map W are chain maps

with respect to d and ¢, we see that J is a derivation of the cup product
U on cochains, i.e.,

S(cUT)=d0UT+ (=1)*9g U sr.

By a theorem of Whitney in [13], this cup product induces the same
map on cohomology as the usual (Alexander-Whitney) simplicial cochain
product. Also, this cup product on cochains satisfies the following.

THEOREM 3.16 ([1]). Let 0 = [pag, - :Pa;] € C/(K) and 7 =
[Pges -+ »ps.) € C*(K). Then o UT is zero unless o and T intersect
in exactly one vertex and span a (j + k)-simplex v, in which case, for
T = [Paj> " s Payip), we have

ouTt = [pocov"' 7pocj] U [paj7"' apaj+k]
k!
= E(U,T)m[pam“' >pa]-+k]>

where €(o,T) is determined by
orientation(o ) orientation(t )=€(o, T)-orientation(v).

In [14], Wilson proved that the cup product U on cochains is cor-
responding to the wedge product A on smooth differential forms.

THEOREM 3.17 ([14]). Let wy,wy € Q(M). There exist a constant
C and a positive integer m, independent of K, such that

|W(Rw; U Rwy) —wy Awallg < C - Mwy,ws) - n(K),
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where
Awr, w2) = [|wlloe - [[(7d + A)"wallo + [walloo - [I(1d + A)"wr[lo
and || - |0 is the uniform norm on Q(M).

Using the cup product on cochains, Wilson defined a star operator
on cochains as follows:

DEFINITION 3.18. Let (, )¢ be a positive definite inner product on
C(K) such that C¥(K) 1. C*(K) for j # k. For o € C(K), we define
*o € C"I(K) by

(Ko, 7)o = (e UT)[M],
where [M] denotes the fundamental class of M.

This star operator % has several properties:

LEMMA 3.19 ([14]). The following hold:

(1) %d = (—1)7" 5" %k, i.e. % is a chain map.

(2) Foro € C/(K) and T € C" I (K), (%0, 7)c = (=1)1" {0, %7)c,

i.e. % is (graded) skew-adjoint.

(3) % induces isomorphisms HCY(K) — HC"(K) on harmonic

cochains.

Using Theorem 3.12, Wilson showed that ¥ converges to the Hodge
star operator x on Q(M):

THEOREM 3.20 ([14]). There ezist a positive constant C' and a
positive integer m, independent of K, such that

[+w =Wk Ruwllo <C-[|(Id+ A)"wllq - n(K),
for all C*differential forms w on M.

Under the assumption that the cochains C'(K) are equipped with
the Whitney inner product, Wilson also showed that s respects the
Hodge decomposition of C(K) and Q(M):

THEOREM 3.21 ([14]). Let w € (M) and Rw € C?(K) have the
Hodge decompositions
w = dwi + wy + d*ws
Rw = 5@1 + as + 5*613.
Then there exist a positive constant C' and a positive integer m, inde-
pendent of K, such that
|5 dwy — Wkbarllo < C - ([[(Id + A)"wllo + [(Id + A)"dw: o) - n(K),
[ * w2 = Wikas|lo < C- ([[(Id+ A)"wla + [[(Id + A)"wsla) - n(K),
|| xd*ws — Wk as|lo < C - (|[(Id+ A)"w|lq + [|(Id + A)"d*ws]|q) - n(K).
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For a Riemannian n-manifold M, it is known that the smooth
Hodge star operator x on € (M) satisfies

x2 = (—i) "I ]d.
In [14], Wilson observed that %2 on C?(K) and stated that %? is not
equal to £1d in general. In [12], Tanabe proved the following theorem.

THEOREM 3.22. Let M be a Riemannian manifold with a triangula-
tion K of mesh n(K). There ezist a positive constant C' and a positive
integer m, independent of K, such that

| %" w = WH*Rwllo < C- [|(Id + A)"wllq - n(K)
for all C* differential forms w on M.

Also, Tanabe showed that this approximation respects to the Hodge
decompositions of Q(M) and C(K) in his paper [12].

In this combinatorial theory, there are some approximation ques-
tions. For instance, Dodziuk and Patodi asked whether or not the
following holds:

lim |[[Wé* Rw — d*'wl|lq =0,

n(K)—0

for all C*° differential forms w. For this question, in Appendix II of
[4], the authors suggest a counterexample to this question. However,
Smits [10] pointed out the counterexample is not valid and showed that
this approximation holds for all C* differential 1-forms on surfaces
under a certain restriction on the triangulations. In [2], we may have
this approximation for more than two dimensions under a certain mesh
condition. On the other hand, there are open questions. In [14], Wilson
raised a question if either of % or % ¢* provide a good approximation
to dx or xd*, respectively.

4. Combinatorial Hodge theory on closed Riemann surfaces

Using the combinatorial theory, Wilson constructed a combinatorial
theory on closed Riemann surfaces in [15]. To construct the theory on
closed Riemann surfaces, he extended to complex settings as follows.
Let M be a closed Riemann surface of genus g with a triangulation K,
C(K) = ®j—012C"(K) the complex valued simplicial cochains with a
non-degenerate positive definite hermitian inner product (,)c. Then
Wilson defined the associated combinatorial star operator % by

(Ko, 7)c = (o UT)[M],
where the bar denotes complex conjugation and U is extended over C
linearly. Also, for complex cochains, we have a Hodge decomposition
C’l(K) = 5CO(K) @b HCl(K) b 5*02([().

By Lemma 3.19, we regard % as an isomorphism from HC?(K) into
HC'(K) which is skew-adjoint. Then we define holomorphic 1-cochains
as follows:
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DEFINITION 3.23. Let (,)c be a hermitian inner product on the
complex valued stmpicial 1-cochains which is R-valued on R-cochains.
We define the space HCYO(K) of holomorphic 1-cochains to be the span
of the eigenvectors for non-positive imaginary eigenvalues of % and the
space HC%'(K) of anti-holomorphic 1-cochains to be the span of the
eigenvectors for non-negative imaginary eigenvalues of .

Now we assume that the cochains C(K) are equipped with the
Whitney inner product. Note that the Whitney inner product is R-
valued on R-cochains. Then we have the following properties of HC(K)
and HC%'(K), due to [12, 15].

LEMMA 3.24. Let M be a closed Riemann surface of genus g with a
canonical homology basis X2 and a triangulation K. Then, the following
hold:

(1) HCYK) = HCOY(K) @ HC*(K).

(2) dim¢ HCYO(K) = dime HC"H(K) = g.

(3) Complex conjugation maps HCYO(K) to HC*(K) and wvice
versa.

REMARK 3.25. The spaces of holomorphic 1-cochains and anti-
holomorphic 1-cochains are defined by Wilson in [15] as follows. Since
we redefined % as the isomorphism on harmonic cochains induced by
the combinatorial star operator, Y% admits a unique polar decomposi-
tion % = HU where H is symmetric positive definite and U is unitary.
Also, since % is skew-adjoint, so is U, and therefore the eigenvalues
of U are +i. Then Wilson defined the spaces HC**(K) and HC*(K)
by

HCY(K) = {0 € HCl(K)|UU = —ia},
and

HC" (K) = {0 € HC'(K)|Uo =ic}.
On the other hand, Wilson also gave an equivalent definition as above.
However, he did not state the assumption of an inner product on cochains.
In [12], Tanabe remarked that by this equivalent definition without the
assumption, complex conjugation dose map HC'(K) to HC*'(K) in
general. To define HCYW(K) as the span of eigenvectors of %, we need
to add the assumption that a hermitian inner product on cochains to be
R-valued on R-cochains. This assumption is natural and the Whitney
inner product satisfies it.

Next we define combinatorial periods.

DEFINITION 3.26. Let M be a closed Riemann surface of genus g
with a canonical homology basis ¥ and a triangulation K. We define
the combinatorial periods of o € HCY(K) by the following complex
numbers:

o(aj), o(bj) for1<j<g.
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As an important property of holomorphic 1-cochains, Wilson showed
that holomorphic 1-cochains also satisfy Riemann’s bi-linear relations.
THEOREM 3.27 ([15]). For o, 7 € HC'Y(K), we have
g

> (o(a;)7(b;) — o (b;)7(a;)) = 0.

j=1
To define combinatorial period matrices, Wilson [15] showed the
following relation. For o,7 € HC(K),
9

(Yo, 7)o = Y (0(a;)7(b;) — a(b;)7(ay)).

j=1

This yields the following.

COROLLARY 3.28 ([15]). Let o be a holomorphic 1-cochain.
(1) If all A-periods o(a;), 1 < j < g or all B-periods o(b;), 1 <j <g
vanish, then o = 0.
(2) If all A-periods o(a;), 1 < j < g and all B-periods o(b;), 1 <j<g
are real, then o = 0.

For any basis {7, ,7,} for HC'?(K), we consider the following
equation of (¢;;)1<ij<4:

g
Z CijTi(ak) = Ojk-
i=1

By Corollary 3.28 (1), the matrix (¢;j)1<; <4 1S uniquely determined
by a triple (M,%, K). Then we put o; = »%_ c;7. This basis
{o1,++ 04} is called the canonical basis of HC™Y(K).

Using the canonical basis, we define combinatorial period matrices
as follows.

DEFINITION 3.29. Let M be a closed Riemann surface of genus g
with a canonical homology basis ¥ and a triangulation K. Let {oy,--- ,04}
be the canonical basis of HCY°(K). Then the combinatorial period ma-
triz g = (7 )1<jh<g of M is defined by wh = o;(by).

THEOREM 3.30 ([15]). Combinatorial period matrices are symmet-
ric and their imaginary parts are positive definite.

This theorem implies that combinatorial period matrices lie in the
Siegel upper half space. Then Wilson showed that combinatorial period
matrices are an approximation of conformal period matrices.

THEOREM 3.31 ([15]). Let M be a closed Riemann surface with
a canonical homology basis >, and let 11 be the period matriz. Let
{K} ey be a sequence of triangulations of M with mesh converging to
zero. Then the combinatorial period matrices g, satisfy
lim I, =1L

n—oo
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Then Wilson mentioned that this theorem induces the following
corollary which is related the Schottky problem.

COROLLARY 3.32. Every conformal period matriz is the limit of a
sequence of combinatorial period matrices.

To prove Theorem 3.31, Wilson showed the following lemmas, which
are also used for the proof of Theorem 5.7.

LEMMA 3.33 ([15]). Let M be a closed Riemann surface with a
triangulation K. For any w € HQY(M) which has the following de-
composition

Rw:§g+h1+h2—|—5*k,

where hy € HCY(K) and hy € HC%'(K), there exists positive con-
stant C', dependent on w but independent of K, such that

[Why —wllo < C-n(K).

Also, the original proof of the above lemma in [15] provides the
following lemma:

LEMMA 3.34. Let M be a closed Riemann surface with a triangula-
tion K. For any w € HQY (M) which has the following decomposition

Rw:§g+h1+h2+(5*k,

where hy € HCY(K) and hy € HC"'(K), there exists positive con-
stant C', dependent on w but independent of K, such that

WHhy —xwllo < C-n(K).

PRrROOF. By Theorem 3.14 and 3.21, there is a positive constant C',
independent of K, such that

C-n(K) > [[Wek(hi+ hy) —»wllo + [|[w — W(hy + ha)|lo
= |[Wa(hi + hg) — *wllq + || *w + iW (k1 + ha)||a
> |[Wekhy + Wakhy +iW (hy + ha)lla

= ||*h1 + %he +i(h + hg)”c.

Let ¢1, -+, ¢, be an orthogonal eigenbasis of HC'?(K) for %, with
eigenvalues —iAy, -+, —iA; (A; > 0), and let ¢y, -+, ¢, be an or-
thogonal eigenbasis of HC"!'(K) for v, with eigenvalues i\, -+ i)\,

(Aj > 0). Then we may write hy = > °9_, ¢;¢; and hy = Z?Zlféjgj.
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Since HC'Y(K) and HC®!(K) are orthogonal, we have

g 2 g 2

C* (K = |I> (L= N)ees|| + | D_(1+ )&,
j=1 C j=1 C
g g _ _
= D (=Xl PlolE + ) 1+ M) E P61
j=1 Jj=1

g
> SR P61
j=1

= | ¥hel?.
Hence we conclude
[Wkhy —*wlla < [[Wek(hy + he) — xwllq + [[HKhe|lc < 2C - n(K).
O

In the proof of Theorem 3.31 (Theorem 7.2 in [15]), for a sequence
{K,} of triangulations with the mesh converging to zero and the holo-
morphic part 2} of R"0; € C'(K,), Wilson stated that Lemma 3.33
(Lemma 7.1 in [15]) provides
(4.1) lim hif(ay) = / 0; = Ojk-

ay
However, in [16], Wilson remarked that (4.1) dose not follows from
the lemma since the convergence in the lemma is with respect to £2-
norm, and the integration is not a bounded operator on smooth forms
with respect to the norm. Also, Wilson stated that using the following
lemma, (4.1) holds since we are considering smooth differential forms
that are closed.

LEMMA 3.35 ([16]). Let w, be a sequence of smooth closed differ-
ential forms on a closed Riemannian manifold which converge in L? to
a smooth form w. Then for any cycle, the sequence fc wy, converges to

Jow.






CHAPTER 4

A matrix equation

1. Introduction

In this chapter, we refer to [17]. We describe the more relation
between conformal period matrices and combinatorial period matrices.
More precisely, for a fixed triangulation of a closed Riemann surface,
we show the following matrix equation which includes the conformal
period matrix and the combinatorial period matrix.

THEOREM 4.1. Let M be a closed Riemann surface of genus g with
a canonical homology basis ¥ and a triangulation K, and let 11 be the
period matriz and Ik the combinatorial period matrix. Let {6y, -- ,0,}
be the canonical basis of HQY (M) and {c1,- - ,0,} the canonical basis
of HCYO(K). Then the following equation holds:

II = H_K - E)
where Ag = ((Waj, %0k)a)1<jk<g-

The matrix equation implies the difference between the conformal
period matrix and the combinatorial period matrix for a fixed trian-
gulation. In [17], we call the matrix Ax the associate matriz of K.
Although two matrices II and Ilx lie in the Siegel upper half space, by
using this matrix equation, the associate matrix Ag lies in the Siegel
upper half space as well. This implies that for a closed Riemann sur-
face, when we fix a canonical homology basis and a triangulation, we
may obtain three elements in the Siegel upper half space which satisfy
the matrix equation in Theorem 4.1.

2. Proofs

PROOF OF THEOREM 4.1. Set

~ 1
CK = Q_Z(H - HK)(ImH)_l,
and
Ok :=E—Cx

where FE is the (g x g) identity matrix.
Note that since ImII is positive definite, there exists (ImIT)~'.

25
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We compute

Mg = II—2iCrImil

Let ¢, be the (7, k)-entry of Ck and ¢j; the (j, k)-entry of Cx.
Then, for each j, k, we have

g g
br m=1 br m=1 br
and
g g o
| (wo = X et = 350 ) =0
bk m=1 m=1

On the other hand, we compute

g g
ag

m=1 m=1

= /WO’j—Zg:ij/ em_zg:am/%
ak m=1 ak m=1 ak
g

= Ok — > _(Cjm + Gjm)Okm

m=1

g
= Gk = OimOim
m=1

= 0.

Namely, all A-periods and B-periods of Wo;—>¢ | ¢imbm—>"% _| Cimbm
are zero. By Proposition 3.8 and do; = 0, we have dWo; = Wdo; =0
on the interior 7% of any n-simplex 7 in K, where n = 1,2. This implies
that Wo; — 29 | Cimbm — D7 _, Cjmbm is closed on 7°. By de Rham’s
theorem, the closed form Wo; — 329 _ ¢imbm — 329 _ | Cjmbpm is exact:
there exists df; such that

WO']' - Zg: ijem - Zg:gjm% = dfj7
m=1 m=1
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on M\ {p € M|p : vertex in K}.
Since {p € M|p : vertex in K} is a null set, we have

g
<dfj7 9k>9 - WU] Z ij m Z Eljm%v 9k>ﬂ
m=1

g

= (WO'j, 0k>ﬂ - Z ij<0ma 9k>Q

m=1

g —
— > (8,000
m=1

Since 0,, € HO' (M) and d*6; = 0, we obtain (0,,,0;)q = 0 and
(Om, dfj)o = (d*Om, fj)o = 0. So, we have

g

m=1

By Riemann’s bi-linear relation of holomorphic 1-forms, we obtain

= <*0m; «9k

oy L5 L)

- (ﬂ-km
= 1 (ﬂ-mk - ka)
= 2Imm,,;..

Note that since the period matrix II lies in the Siegel upper half space,
the period matrix II is symmetric and we obtain 7y, = 7. Thus, we
have

A = ((Woj,x0k)0)1<jk<g
= i((Woy,0k)0)1<jk<g

g
— i(? > cjmlmmk>
m=1

2i(cjm)1<jm<g(IMT0p ) 1<m k<g
= 2iCkImlII.

1<j,k<g

So we conclude
Iy = II—2iCklmll
IT— 2i(E — Ck)ImII
IT — 2¢ImII + 2iCk ImlII
= I+ Ag.
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As a corollary of Theorem 4.1, we prove that for any triangulation
K, Ak lies in the Siegel upper half space as well.

COROLLARY 4.2. For a closed Riemann surface M of genus g with
a canonical homology basis ¥ and a triangulation K, Ak lies in the
Siegel upper half space.

Proor. By Theorem 4.1, we have

For any x € RY, we see that

2(ImAg)r = 2(Imllg + ImIl)z

= w(Imllg)z + z(ImIl)z > 0.
This implies that Ag is symmetric and ImAg is positive definite, so
Ak is an element of the Siegel upper half space.
Next, we assume that Ag is equal to II. Then, by Theorem 4.1, we
have B B
Mg =114+ A =11 4+ IT = 2Rell.

This is a contradiction, because the imaginary part of a combinatorial

period matrix is not equal to zero matrix. In a similar way, one can
check that Ak is not equal to IIx as well. O



CHAPTER 5

The asymptotic behavior of holomorphic
1-cochains

1. Introduction

In this chapter, we refer to [18]. Using the matrix equation in
Theorem 4.1, we show that holomorphic 1-cochains provide an approx-
imation of holomorphic 1-forms. To describe the approximation, we
now introduce a neq correspondence between holomorphic 1-forms and
holomorphic 1-cochains as follows.

DEFINITION 5.1. For w € HQY (M), we define 1, € HCY(K)

which satisfies
tw(ay) :/ w,

J

for1<j<yg.

Since both holomorphic 1-forms and holomorphic 1-cochains are
characterized by the A-periods, this correspondence is a natural rela-
tion between holomorphic 1-forms and holomorphic 1-cochains. Then
our main result is as follows.

THEOREM 5.2. Let M be a closed Riemann surface of genus g with
a canonical homology basis 3, w an arbitrary holomorphic 1-form on
M. In the case of g = 1, for any triangulation K of M, we have

Wi, —w|q=0.

In the case of g > 1, for any sequence { K, }nen of triangulations of M
with the mesh converging to zero, we have

lim ||[W.] —wllq =0,
where " € HCYY(K,).
2. Proofs

To prove Theorem 5.2, we need to study some relations between
holomorphic 1-cochains and holomorphic 1-forms. First of all, we prove
that for all holomorphic 1-forms w, the map w — ¢, is an isomorphism.

LEMMA 5.3. The map ¢ : HQYO(M) — HC'(K) defined by w + 1,

18 an isomorphism.

PRrROOF. It is clear from the following diagram.
29
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Id

co  —

(2

HOLO (M) HOW(K)
w W
w L

where the isomorphisms from HQ"0 (M) to C¢ and from HC'?(K) to
C9 are as follows:

HOO (M) 5 w—s (/ w,---,/ w) e 9,

and
HC'Y(K) 3 0 — (0(ay), - ,0(a,)) € C.
U

Now, to prove Theorem 5.2, we show three theorems. In the first
theorem, we give an estimation of difference between holomorphic 1-
forms and holomorphic 1-cochains with respect to the £2-norm. To
evaluate the difference, we use the diagonal elements Imﬂﬁ of the
imaginary part Imllx of the combinatorial period matrix of K and
the eigenvalues of the canonical basis {o1, - ,0,} of HC(K) for %.
Note that since the space HC'?(K) of holomorphic 1-cochains is the
span of eigenvectors of ¥, it is unclear whether or not each o; has
the eigenvalues of %. However, since {oy,---,0,} is a basis, we may
obtain a vector @5 = (1, -+ ,@,) such that

(Kkoj,05)c = (—ip;jo;,05)c

for all j. Then, using ImnX,--- ,Imﬂglg and ® g, we have the following
theorem.

THEOREM 5.4. Let M be a closed Riemann surface of genus g with a
canonical homology basis ¥ and a triangulation K, and let {61, -- ,0,}
be the canonical basis of HQYW (M), {01, -+ ,0,} the canonical basis
of HCY(K) and Ny = (7} )1<jk<g the combinatorial period matriz.
Then there ezists a vector O = (¢1,- -+ ,p4) € (0,1]9 such that

(Ko, 05)c = (—ip;o),05)c.

In addition, we have

1
Wa; —0ille = \/QImﬂﬁ (f - 1),
Pj
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1
wl - 2Im7r]1-§ <— — 1>,
Pj

Proor. By Theorem 4.1, we have

and

HWLw - WHQ >

aj

for all w € HQY(M).

ImlIl = —Imllx 4+ ImA gk

and
(2.1) Im7j; = —Imwﬁ +Im(Wo;,+0;)q,
for 1 < j < g. Using Riemann’s bi-linear relation, we compute
(0,0;)0 = i(=if;, 9')
= (*9 6;)
S (Lo [ L)
= i(T5 — 7j5)

Similary, we obtain i(%0c;,0;)c = 21m7r . Also we compute
21m<W0j,*9j>Q = i<<WUj,*9j>Q — <WUj,*€j>Q)
= i(<*€j, WO']'>Q — <WU]‘,*0]'>Q>

(0;, Woj)a + (Woaj, 0;)a.

By (2.1),
(05,05)0 — (0;, Waj)a — (Way,0;)a = —i(koj,05)c-
Then we have

(2.2) [|[Wa;—0;]l6 = (Wo;—6;, Wo;—6;)q = (0j,0;)c—i(koj,05)c.

Here we define ¢; by
Wao; — 6o\’
= 1- (Wobny’
lojlle
By this definition,
(0j,05)c —i(koj,050c = (1= @;){0;,05)c,

and therefore

(kaj,05)c = (—ipjo;, 05)c.
Since Ilx is an element of the Siegel upper half space, the diagonal

elements Im7%5 (1 < j < g) of ImIlg are all positive. Thus, by (2.2),

ol — [[Wo; — 05113, = i(ko;,05)¢ = 2Immls > 0,
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and so

[Wao; — 05115
o112

This implies that 0 < ¢; <1 (1 < j < g) and therefore &, € (0,1]9.

By the definition of ¢;,

(Wo; —billa =+/1—9jllojllc.

. K
||U||% _ Z<*Uj70j>c _ 2Im7rjj
! Pj ©j

0< < 1.

Since

and ||o;||c > 0, we have

2Imm K 1
IWaj=bille = V1 = wjllojlle = /1= ¢ 2 == \/QImﬂg <g7] - 1)'

For w € HQY (M) and ¢, € HC'O(K), we may write

and

Hence we conclude

Wi, —wle =

(]

By Theorem 3.31, each Imwﬁ converges to Immj; as the mesh of
K tends to zero and since period matrices lie in the Siegel upper half
space, Immj; > 0. Therefore, to show Theorem 5.2, we need to study
the behavior of .

In the case of genus 1, we show that ®; = ; = 1. This implies that
for any triangulation K of a complex torus, HC*(K) is the eigenspace
of % for the eigenvalue —i, i.e.,

HC'Y(K) = {0 € HC'(K)|%o = —ic}.

To prove this, we show the following lemma which is a characterization
of & =(1,---,1).
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LEMMA 5.5. Let M be a closed Riemann surface with a canonical
homology basis ¥ and a triangulation K, and let {6;,--- ,6,} be the
canonical basis of HQYO(M). Let @ be the vector as in Theorem 5.4.
Then the following three conditions are equivalent:

(a) P =(1,---,1).
(b) HCY(K) = {o € HCY (K )| %o = —ic}.
(c) WRO; =0, a.e. on M for all j.
PROOF. (a)=(c): By Theorem 5.4, we obtain
Waj —bjlla =0,
and so Wo; = 0; a.e. on M. By Theorem 3.11; RW = Id, we have
WRO; =WRWao; =Wo; =0,
a.e. on M.
(c)=(b): For any o € C*(K), we compute

(kRO;,0)c = / WRO; A\Wa

/ 0; AWo

= (x0;, Wo)q
= —i(0;, Wo)a
= —i(WR0;, Wao)q
= —i(RY;,0)q
= (—iRb;,0)q.
This implies that ¥ R0; = —iRR0;. By Lemma 3.10, we have
dR0; = RdO; = 0,
and by Lemma 3.19 (1),
0*RO; = i6" % RO; = ik IR0O; = 0.
Thus all RA; (1 < j < g) are harmonic 1-cochains which have eigen-
values —i of %, and therefore they are holomorphic 1-cochains. Since

{64, ,0,} is a basis of HQ"*(M) and WR = Id, {R6,,--- , Rf,} is
a basis of HC(K). Since every eigenvalue of Rf; is —i,
HCY(K) = {0 € HC'(K)|%ko = —ic}.
(b) = (a): Since all elements of HC'Y(K) have the same eigenvalue
—i of %, we obtain yo; = —io; for all j. By the definition of ®x =
(p1,-+ ,@y), we have
villojlle = i{—ip;o5,0)c
= i(k0j,05)c
= i<_i0'j70'j>C

= lloglle
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Since {oy,---,0,} is a basis, we conclude ¢; = 1 for all j. O

THEOREM 5.6. Let M be a closed Riemann surface of genus 1 (com-
plex torus) with a canonical homology basis 3, K a triangulation of M,
and ¢y € (0,1] which satisfies (ko1,01)c = (—ip101,01)c, where {o1}
is the canonical basis of HC'(K). Then o = 1.

PROOF. Since the canonical basis of HQM0 (M) is {cdz} where z is
a local coordinate and c is some complex number, by Lemma 5.5, it is
enough to show that W Rdz = dz a.e. on M.

First of all, we express W Rdz by

Whdz =W ( > Rdzx(r) - T) =" Rdz(r)

where the sum is taken over all 1-simplices 7 of K. Let [pg, p1,p2] be
any 2-simplex of K with the barycentric coordinates g, @1 and ps.
Since W7 =0 on M\St(7), on the interior of [pg, p1, p2|, we compute

(7
WRdz = Rdz([po, p1]) - Wlpo, p1] + Rdz([p1, p2]) - Wip1, pa] + Rdz([p2, pol) - W [p2; po]

= (/ dz) - Wlpo, p1] + (/ dZ) - Wip1,pa] + (/ dZ) - Wpa, po]
[po,p1] [p1,p2] [p2,po]

= (p1 —po) - Wipo, p1] + (p2 — p1) - Wp1, p2] + (po — p2) - Wlp2, po)
= (p1—po) - (odpa — pdpo) + (p2 — p1) - (padpz — padpin)
+(po — p2) - (H2dpo — podpz)
= po(paduo — podpe — podp + prduo) + pr(podin — prdpo — pdps + padn)
+p2(padus — padpn — padpio + podpiz)
On the interior of [pg, p1, p2](3 2), the barycentric coordinates satisfy

po(z) + p1(2) + pa(z) = 1

and
dpo + dpy + dpg = 0.
Using these relations among pg, (1 and pe, we compute
pradpro — prodpy — prodpn + prudpo = (1 + po)dpo — po(dpn + dps)
= (1= po)duo — po(—dpo)
= dpo.
In similar ways, we obtain
podpn — padpo — padps + padpn = duy
and
padps — padpy — padpg + podpe = dps.
Since z = 2?—0 pjpj(z) we have

WRdz = ij dp;(z (ijuj ) =dz.
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On the other hand, the union of the sets of all vertices (0-simplices)
and 1-simplices of K is a finite set and therefore it is a null set. Hence
WRdz =dz a.e. on M. By Lemma 5.5, we conclude that ¢ =1. [

In [8] and [9], Mercat constructed a different discrete structure on
surfaces which is called a discrete Riemann surface. Especially, Mer-
cat defined a discrete period matriz on a discrete Riemann surface and
then he showed that discrete period matrices are also an approxima-
tion of (conformal) period matrices on Riemann surfaces. In the case
of genus 1, all discrete periods coincide with (conformal) periods, but
Wilson did not show that all combinatorial periods also coincide with
(conformal) periods in [15]. However, combining Theorem 4.1 and 5.6,
we see that all combinatorial periods of genus 1 coincide with (confor-
mal) periods as well. This implies that although the constructions of
Mercat’s discrete period matrices and Wilson’s combinatorial period
matrices are different, they have the same properties.

Finally we consider the behavior of ®x for higher genus. The fol-
lowing theorem implies that eigenvalues of % on HC'?(K) converge
to —1, as the mesh tends to zero.

THEOREM 5.7. Let M be a closed Riemann surface of genus g >
1 with a canonical homology basis ¥ and {K,}nen be a sequence of
triangulations of M with the mesh converging to zero. Let & =
(@7, ¢y) be the vector in (0,1]9 such that

(Ko, 0l)c = (—ipjol, 0})c,

where each {o},--- 0} be the canonical basis of HC'(K,,). Then we
have

lim = (1,---,1).
PROOF. Let {wy, -+ ,w,} be an orthogonal basis of HQ(M) and
R™ the de Rham map from Q(M) to C(K,). By the Hodge decompo-
sition and HC'(K,,) = HCYY(K,,) @HC%(K,,), we obtain

R'wj = 8"k + h" + 17 + 87

for any n € N, where b} € HC"(K,) and E? € HC"(K,).

First, we show that the number of K, such that {h},--- hj} is
not a basis of HC'?(K,), is finite. Now we assume that the number is
infinite. Then there exist j € {1,---, g} and a subsequence {K,,} of
{K,} such that each A} is generated by the other elements, i.e.,

m __ m1m
hj - Z ijhp )
DPF£j
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for all m € N, where ¢, € C. Since "3 . ¢yl is the holomorphic

part of R™(w; — > _; chiw,), by Lemma 3.33, we have

(2.3) 7&1_{1;0 wj — Z ClipWp 0.
p#j Q
Also, since {wy, -+ ,w,} is an orthogonal basis,
2
(2.4) wi = pr|| = llws |3 + X 1P llwpll?,
P#] P#J

and therefore
2

Wy — E iju)p

0 < | Pllnll? <

P#J @
By (2.3), we obtain lim,;, . |c;| = 0 and (2.4) implies that |lw;||q = 0.
This is a contradiction since {wl, -+ ,wy} is a basis.

Here we assume that {h7,-- h"} is a basis of HC™(K,,) for all
n € N. Then, for any n € N, we may write

for 1 < j < g, where ¢}, € C. Next we consider lim, .., c},. Let

(d};)1<e,j<g De the inverse matrix of (¢jy)1<je<y- This matrix provides

Z 059 J’
and

hf a’k Zdﬁj 0; Z d£k7

for 1 </, k <g. By Lemma 3.33 and 3.35, we have

n—oo n—oo

(2.5) lim dj, = llm hy(ax) = lim RWhj(ag) = / wy,
ag

for 1 < ¢,k < g. Note that each Whj is neither smooth nor closed,
but it can be approximated by a sequence of closed smooth forms
and therefore we may apply Lemma 3.35 to Wh}. Thus (2.5) implies

1 mn
that the matrix (dj;)1<sj<4 converges to (faj we)1<e,j<g, and therefore
-n o N'n, —1 .
(CTo)r<je<g = (d7;)1<p j<, also converges to a matrix (s;¢)1<jp<g, Where
each sj¢ is determined by [, wy,- - ,fag Wiy [y Wey ,fag Wy
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Using the Cauchy-Schwarz inequality, we compute

0< (1 —eNllotlle = (o}, 0 —il—igio},of)e
(0F,07)c —i(ka},07)c
= (0} —i%ko},07)c
< o} —i%ka}|c-llo}llc,
and then
(26) 0< (1- gDl < o7 — iko?c.

Since o} = > 7_, ¢};hy, we have

g
o7 — i%kolllc =

& (hy — ikehy)

C

/=1
g
< D 1 IWhE — iW Sk o
/=1
g
= > [Tl IWh — wi + % wp — iW KA o
/=1
g
< Y- (wa —wrllo+ [l wr - W*h’il\n)-

o~

=1
Note that any holomorphic 1-form w satisfies w — i xw = 0.

By Lemma 3.33 and 3.34, there exist positive constants Cy, independent
of {K,}, such that

[Why — wella + [[Wakhy —xwella < Cp- (k).

Thus we have

NS}

o7 — i%ko?|c < Z |- Oy n(K,),

and
lim |07 —i¥%o}||c = 0.
n—oo

Namely, by (2.6), we have
Tim (1= )7l = 0.

By Riemann’s bi-linear relations and 0 < 7 <1,

2Immir
||0-;L||% - <*0] a0]> —n]j > 21m7rj§H7
90] #j
and therefore lim, . [|67]|& > 2Imm;; > 0 by Theorem 3.31. Hence
we conclude lim,, o ¢} =1 for all j. O

Combine Theorem 5.4, 5.6 and 5.7, we can easily show Theorem
5.2.
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