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CHAPTER 1

Preface

In this thesis, we study the relations between the conformal struc-
ture and a combinatorial structure, which is called the combinatorial
Hodge theory, on a closed Riemann surface. The combinatorial Hodge
theory on Riemannian manifolds with triangulations is constructed by
Eckmann (1945), Dodziuk and Patodi (1976), Wilson (2007), etc. In
2008, using the combinatorial Hodge theory, Wilson defined holomor-
phic 1-cochains on closed Riemann surfaces with triangulations. Our
goal is to show that holomorphic 1-cochains provide an approximation
of holomorphic 1-forms on closed Riemann surfaces.

In [6], Eckmann observed that on a closed Riemannian manifold
with a triangulation, an inner product in real cochain spaces of a finite
simplicial complex gives rise to a combinatorial Hodge theory as follows.
Using an inner product on cochains, we may obtain the adjoint operator
of a coboundary operator on cochains. A harmonic cochain is defined
as a cochain whose images of the coboundary operator and its adjoint
operator both vanish. In a similar way to the smooth Hodge theory,
an inner product on cochains gives rise to the Hodge decomposition of
cochains.

For this combinatorial Hodge theory, Dodziuk [3] and Dodziuk and
Patodi [4] studied the connection with the smooth Hodge theory and
then they showed the following. Let K be a smooth triangulation of
a compact oriented Riemannian manifold M . Then it is shown that
the smooth Hodge theory on M is approximated by the combinato-
rial Hodge theory with a certain inner product on cochains. To show
this, they employed the Whitney map W from cochains to differential
forms, and the de Rham map R from differential forms to cochains. As
a suitable inner product on cochains, Dodziuk and Patodi defined the
Whitney inner product which is defined by using the inner product 〈, 〉Ω
on smooth forms and the Whitney map. Note that we may define an
inner product on smooth forms by using the Riemannian metric. Then
they showed that for any smooth form ω, the corresponding cochain
Rω is an approximation of ω, i.e., ‖ω−WRω‖Ω converges to ω, as the
mesh of a triangulation tends to zero, where ‖ · ‖Ω is the L2-norm on
differential forms. Also, each part of the Hodge decomposition of Rω
converges to the corresponding part of the Hodge decomposition of ω.
This implies that the Hodge decomposition of cochains, given by the
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6 1. PREFACE

Whitney inner product, is an approximation of the Hodge decomposi-
tion of smooth differential forms.

In [14], Wilson developed the combinatorial analogues of several
objects in differential geometry. Especially, he defined a combinatorial
star operator on cochains which is analogue of the smooth Hodge star
operator on differential forms. To define this star operator on cochains,
he used a cup product on cochains defined by Whitney in [13], and an
inner product on cochains. Using the approximation theorem proved
by Dodziuk and Patodi, Wilson showed that his combinatorial star
operator on cochains also converges to the smooth Hodge star opera-
tor. Also, Wilson showed that this approximation respects the Hodge
decompositions of smooth forms and cochains.

In his another paper published in 2008, he applied this combinato-
rial Hodge theory to closed Riemann surfaces. To construct the com-
binatorial Hodge theory on closed Riemann surfaces, he extends all of
the objects to complex settings. Since he also proved that Wilson’s
combinatorial star operator induces an isomorphism from harmonic
cochains to harmonic cochains in [14], we define the combinatorial
star operator on harmonic 1-cochains by this isomorphism. Then the
space of holomorphic 1-cochains is defined as the span of the eigen-
vectors for non-positive imaginary eigenvalues of the isomorphism and
the space of anti-holomorphic 1-cochains is defined as the eigenvectors
for non-negative imaginary eigenvalues of the isomorphism. These are
defined in [15] and also he proved that For a closed Riemann surface
of genus g with a triangulation, these spaces have the following three
properties: (i) the space of harmonic 1-cochains is decomposed into
the spaces of holomorphic 1-cochains and anti-holomorphic 1-cochains,
(ii) the dimensions of the spaces of holomorphic 1-cochains and anti-
holomorphic 1-cochains are equal to g, (iii) complex conjugation maps
holomorphic to anti-holomorphic and vice versa. However, in[12], Tan-
abe showed that complex conjugation dose not map holomorphic to
anti-holomorphic in general and added further assumption as follows.
A hermitian inner product on cochains is real-valued on real-cochains.
This assumption is natural and the Whitney inner product satisfies it.

It is known that as an important property, holomorphic 1-forms sat-
isfy Riemann’s bi-linear relation which implies that for a canonical ho-
mology basis, holomorphic 1-forms are characterized by their periods.
Indeed, for a canonical homology basis Σ = {a1, · · · , ag, b1, · · · , bg}
of a closed Riemann surface of genus g, any holomorphic 1-form ω
on the closed Riemann surface is characterized by their A-periods∫

a1
ω, · · · ,

∫
ag

ω. Here we define the canonical basis {θ1, · · · , θg} of holo-

morphic 1-forms by
∫

ak
θj = δjk and the period matrix Π = (πjk)1≤j,k≤g

by πjk =
∫

bk
θj. For a holomorphic 1-cochain σ, we define the combi-

natorial periods of σ by σ(aj), σ(bj) for 1 ≤ j ≤ g. Riemann’s bi-linear
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relation also holds for σ(aj) and σ(bj). Therefore, we may show that
any holomorphic 1-cochain σ is characterized by their combinatorial
A-periods σ(a1), · · · , σ(ag) as well. Also, we define the canonical ba-
sis {σ1, · · · , σg} of holomorphic 1-cochains by σj(ak) = δjk and the
combinatorial period matrix ΠK = (πK

jk)1≤j,k≤g by πK
jk = σj(bk).

As a relation between (conformal) period matrices and combinato-
rial period matrices, Wilson proved that for a closed Riemann surface
with a canonical homology basis and a triangulation, the combinato-
rial period matrix converges to the (conformal) period matrix as the
mesh of the triangulation tends to zero. This implies that combinato-
rial period matrices give rise to an approximation of (conformal) period
matrices.

As our main work of this thesis, using relations between (conformal)
period matrices and combinatorial period matrices, we study the rela-
tions between holomorphic 1-forms and holomorphic 1-cochains. More
precisely, we show that holomorphic 1-cochains are an approximation
of holomorphic 1-forms. By the approximation result showed by Dodz-
iuk and Patodi, for arbitrary holomorphic 1-form ω, we may obtain
the cochain Rω which gives an approximation of ω. However, in gen-
eral, it is unclear whether or not Rω is a holomorphic 1-cochain. To
describe the relations between holomorphic 1-forms and holomorphic
1-cochains, we construct a new correspondence between them.

Now, we explain our main results which are given in Chapter 4
and 5. In Chapter 4, we show the further relation between (conformal)
period matrices and combinatorial period matrices in Theorem 4.1. For
a fixed triangulation of a closed Riemann surface M with a canonical
homology basis Σ and a triangulation K, we prove the following matrix
equation

Π = ΠK − ΛK ,

where ΛK is defined by ΛK = (〈Wσj, ?θk〉Ω)1≤j,k≤g. This matrix equa-
tion indicates an explicit difference between Π and ΠK for a fixed tri-
angulation. Since Π and ΠK lie in the Siegel upper half space, by using
this matrix equation, we may see that ΛK lies in the Siegel half space
as well. Namely, a triple (M, Σ, K) determines three elements Π, ΠK

and ΛK in the Siegel upper half space.
In Chapter 5, we show that holomorphic 1-cochains provide an ap-

proximation of holomorphic 1-forms. First, we define a new correspon-
dence between holomorphic 1-forms and holomorphic 1-cochains. For
a holomorphic 1-form ω, we define the holomorphic 1-cochain ιω by

ιω(aj) =

∫

aj

ω

for 1 ≤ j ≤ g. Then the map ω 7→ ιω is an isomorphism from holomor-
phic 1-forms to holomorphic 1-cochains. In Theorem 5.2, we prove that
for any holomorphic 1-form ω, ‖Wιω−ω‖Ω converges to 0, as the mesh
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of the triangulation tends to zero. To prove Theorem 5.2, we prove
three theorems. In the first theorem (Theorem 5.4), using the matrix
equation in Chapter 4, we evaluate ‖Wιω − ω‖Ω for a fixed triangula-
tion K. To evaluate this L2-norm, we use a vector ΦK = (ϕ1, · · · , ϕg)
which satisfies

〈Fσj, σj〉C = 〈−iϕjσj, σj〉C
for 1 ≤ j ≤ g, where 〈, 〉C denotes the Whitney inner product on
cochains and {σ1, · · · , σg} is a basis of the space of holomorphic 1-
cochains which satisfies σj(ak) = δjk. In the second theorem (Theorem
5.6), we prove that for any triangulation K of a closed Riemann surface
of genus 1 (complex torus), ΦK is always equal to 1. Then, combining
Theorem 5.4 and 5.6, we see that for any triangulation of a complex
torus, ‖Wιω − ω‖Ω is always equal to 0. Finally, in the third theorem
(Theorem 5.7), for g > 1, we prove that ΦK converges to (1, · · · , 1), as
the mesh of K tends to zero. Combine Theorem 5.4 and 5.7, we see
that for g > 1, ‖Wιω − ω‖Ω converges to 0.

Acknowledgements
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CHAPTER 2

Riemann surfaces

1. Introduction

We explain the fundamental theory of Riemann surfaces in this
chapter. See [7] for details.

In Section 2, we recall some fundamental definitions and proper-
ties of Riemann surfaces. Riemann surfaces are real 2-dimensional
oriented differentiable manifolds with complex structures. Using com-
plex structures, we may define holomorphic functions and holomorphic
1-forms on surfaces. Also, we define the Hodge star operator on Rie-
mann surfaces and then recall that the space of holomorphic 1-forms
is characterized be the eigenvalues of the Hodge star operator.

In Section 3, we recall the fundamental properties of holomorphic
1-forms. Let g be the number of genus of a closed Riemann surfaces.
Then the dimension of the space of holomorphic 1-forms is equal to g
and holomorphic 1-forms satisfy an important relation which is called
Riemann’s bi-linear relation. For a canonical homology basis of a closed
Riemann surface, Riemann’s bi-linear relation gives rise to a unique
matrix which lies in the Siegel upper half space and is called the period
matrix.

2. Definitions

Definition 2.1. Let M be a two-dimensional manifold. A complex
chart on M is a homeomorphism z : U → V of an open subset U ⊂ M
onto an open subset V ⊂ C such that two complex charts z1 : U1 → V1

and z2 : U2 → V2 satisfy the following, which is called holomorphically
compatible:

z2 ◦ z−1
1 : z1(U1 ∩ U2) → z2(U1 ∩ U2)

is biholomorphic if U1 ∩ U2 6= ∅.
For an open cover {Ui}i∈I of M , i.e.,

⋃
i∈I Ui = M , we define a

complex atlas on M by a system A = {zi : Ui → Vi, i ∈ I} of charts
which are holomorphically compatible.

For two complex atlases A1 and A2 on M , if every chart of A1

is holomorphically compatible with every chart of A2, A1 and A2 are
analytically equivalent. Then we define a complex structure of M is an
equivalence class of analytically equivalent atlases on M .

9



10 2. RIEMANN SURFACES

A complex structure u on M contains a unique maximal atlas A∗.
If A is an arbitrary atlas in u, then A∗ consists of all complex charts
on M which are holomorphically compatible with every chart of A.

Definition 2.2. A Riemann surface is a pair (M,u), where M is
a connected two-dimensional manifold and u is a complex structure on
M .

Definition 2.3. Let M be a Riemann surface. A function f :
M → C is called holomorphic if for every chart z : U → V on M ,

f ◦ z−1 : z(U ∩M) → C
is holomorphic in the usual sense on the open set z(U ∩M) ⊂ C.

Definition 2.4. Let M be a Riemann surface. A 0-form on M is
a function on M . A 1-form on M is an (ordered) assignment of two
continuous functions f and g to each local coordinate z = x + iy on M
such that

fdx + gdy.

A 2-form on M is an assignment of a continuous function f to each
local coordinate z = x + iy such that

fdx ∧ dy.

We write the set of j-forms on M , j = 0, 1, 2, by Ωj(M) and Ω(M) =
⊕j=0,1,2Ω

j(M).

Definition 2.5. Let f be a C2 function on M . We define the
Laplacian of f , ∆f in local coordinate z = x + iy by

∆f =

(
∂2f

∂x2
+

∂2f

∂y2

)
dx ∧ dy.

If the function f satisfies ∆f = 0, then f is a harmonic function. Also,
if a 1-form ω is locally given by df , ω is a harmonic 1-form. We write
the set of the harmonic 1-forms of M by HΩ1(M).

Definition 2.6. A 1-form ω is a holomorphic 1-form if locally
ω = df where f is holomorphic, and we write the set of holomorphic
1-forms on M by HΩ1,0(M).

Definition 2.7. We define the Hodge star operator ? on Ω(M) as
follows. For a 1-form ω = fdx + gdy, we define

?ω = −gdx + fdy.

For a 0-form f and a 2-form A, we define

?f = f(z)
(
λ(z)dx ∧ dy

)

and
?A = A/λ(z)dx ∧ dy,

where λ(z)dx ∧ dy is a non-vanishing 2-form on M and the existence
of such a canonical 2-form λ(z)dx ∧ dy follows from IV.8. in [7].
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It is clear that ?2 = (−1)j on Ωj(M).

Remark 2.8. Using the Hodge star operator, we may write

HΩ1(M) =
{
ω ∈ Ω1(M)

∣∣dω = d ? ω = 0
}

and
HΩ1,0(M) =

{
ω ∈ HΩ1(M)

∣∣ ? ω = −iω}.
3. Closed Riemann surfaces

Let M be a closed Riemann surface of genus g ≥ 1 and H1(M)
be the first homology group of M . Then we obtain a basis Σ =
{a1, · · · , ag, b1, · · · , bg} of H1(M) which satisfies the following inter-
section properties:

aj · bk =

{
0, j 6= k,

1, j = k,

and
aj · ak = bj · bk = 0,

where a · b is the intersection number of a and b. We call a basis
which satisfies this intersection properties a canonical homology basis
of H1(M).

In the case of closed Riemann surfaces, the dimensions of spaces
HΩ1(M) and HΩ1,0(M) are determined by the genus g of each closed
Riemann surface M .

Theorem 2.9. On a closed Riemann surface M of genus g, the
vector space HΩ1(M) of harmonic 1-forms has dimension 2g.

Theorem 2.10. On a closed Riemann surface of genus g, the vector
space HΩ1,0(M) of holomorphic 1-forms has dimension g.

Note that the space HΩ1(M) of harmonic 1-forms has the following

HΩ1(M) = HΩ1,0(M)⊕HΩ0,1(M),

where HΩ0,1(M) is the space of anti-holomorphic 1-forms on M whose
elements are complex conjugation of holomorphic 1-forms.

For a canonical homology basis Σ = {a1, · · · , ag, b1, · · · , bg}, we
define the periods of a closed 1-form ω by∫

aj

ω,

∫

bj

ω,

for 1 ≤ j ≤ g. Then periods satisfy the following relations:

Proposition 2.11. For two closed 1-forms ω1 and ω2,
∫∫

M

ω1 ∧ ω2 =

g∑
j=1

( ∫

aj

ω1

∫

bj

ω2 −
∫

bj

ω1

∫

aj

ω2

)
.

Also, for holomorphic 1-forms, we have the following:
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Corollary 2.12. For two holomorphic 1-forms ω1 and ω2,

〈?ω1, ω2〉Ω =

g∑
j=1

( ∫

aj

ω1

∫

bj

ω2 −
∫

bj

ω1

∫

aj

ω2

)
,

where the bar denotes the complex conjugation.

These relations are called Riemann’s bi-linear relations. By Rie-
mann’s bi-linear relation of holomorphic 1-forms, for a holomorphic
1-form ω, we obtain

‖ω‖2
Ω = i

g∑
j=1

( ∫

aj

ω

∫

bj

ω −
∫

bj

ω

∫

aj

ω

)
,

where ‖ω‖2
Ω = 〈ω, ω〉Ω. This implies that if all A-periods

∫
a1

ω, · · · ,
∫

ag
ω

vanish. Then we obtain ω = 0 and therefore holomorphic 1-forms are
characterized by A-periods. Using this properties, we define a basis
{θ1, · · · , θg} of HΩ1,0(M) which satisfies

∫
ak

θj = δjk and is uniquely

determined by M and Σ. This basis {θ1, · · · , θg} is called the canonical
basis of HΩ1,0(M) and gives rise to the period matrix Π:

Π = (πjk)1≤j,k≤g, where πjk =

∫

bk

θj.

Also, Riemann’s bi-linear relation of holomorphic 1-forms implies that
Π is symmetric and its imaginary part is positive definite, and therefore
period matrices lie in the Siegel upper half space.

It is known that period matrices is one of the characterizations of
closed Riemann surfaces. It is clear that if two closed Riemann surfaces
are conformally equivalent, then the two closed Riemann surfaces have
the same period matrix. Conversely, in 1913, Torelli proved that two
closed Riemann surfaces with the same period matrix are conformally
equivalent. On the other hand, there is a problem, concerned with
period matrix, which is called the Schottky problem. The Schottky
problem is to determine which points in the Siegel upper half space
represent the period matrix of a closed Riemann surface.



CHAPTER 3

Combinatorial Hodge theory

1. Introduction

In Section 2, we recall the combinatorial Hodge theory on Riemann-
ian manifolds with triangulations. First, we recall that an inner prod-
uct on cochains gives rise to the Hodge decomposition of each space of
j-cochains. Then, to consider the relations between smooth differential
forms and cochains, we induce the two maps, which are the Whitney
map W on cochains and the de Rham map R on differential forms. By
the result of Dodziuk and Patodi, for all smooth differential forms ω,
the L2-norm ‖ω −WRω‖Ω on differential forms converges to 0, as the
mesh of a triangulation tends to zero. This implies that the cochain
Rω provides an approximation of ω.

In Section 3, we recall the definition of a star operator on cochains
which is analogue to the Hodge star operator on differential forms.
This star operator is defined by using a cup product on cochains and
provides an approximation of the Hodge star operator on differential
forms.

In Section 4, we apply this combinatorial theory to closed Riemann
surfaces and define holomorphic 1-cochains. Also, we recall some no-
tions of holomorphic 1-cochains.

2. Combinatorial Hodge theory on Riemannian manifolds

In this section, we recall a combinatorial theory constructed by Eck-
mann, Dodziuk, Patodi, etc. This theory is constructed on Riemannian
n-manifolds with triangulations, but we may apply this theory to Rie-
mann surfaces with triangulations since we regard a Riemann surface
as a Riemannain 2-manifold with a complex structure.

Let M be a closed smooth Riemannian n-manifold, and let Ωj(M)
be the space of smooth differential j-forms on M with the exterior
derivative operator d. Then the Riemannian metric of M induces an
inner product 〈, 〉Ω on Ω(M) and we may obtain the Hodge star operator
?. Now we define d∗ := (−1)j(j+1−n) ? d?, which is the adjoint operator
of d, and the space HΩj(M) of harmonic j-forms on M by

HΩj(M) =
{
ω ∈ Ωj(M)|dω = d∗ω = 0

}
.

By the Hodge theory, we have the following decomposition

Ωj(M) = dΩj−1(M)⊕HΩj(M)⊕ d∗Ωj+1(M).

13



14 3. COMBINATORIAL HODGE THEORY

Next, for this classical Hodge theory of smooth differential forms,
we recall an approximation to the Hodge decomposition of smooth
differential forms by cochains. This approximation is constructed by
Dodziuk and Patodi, see [3, 4] for details.

Let K be a C∞ triangulation of M . Now we identify |K| and
M and fix an ordering of the vertices of K. Then we denote the i-
th vertex of K by pi and the barycentric coordinate corresponding to
pi by µi. Let Cj(K) be the simplicial j-cochains of K with values
in R. Given the ordering of vertices, we have a coboudary operator
δ : Cj(K) → Cj+1(K). Since K is a finite complex, we can identify
chains and cochains and then for σ ∈ Cj(K), we may write

σ =
∑

τ

cτ · τ,

where cτ ∈ R and the sum is taken over all j-simplices of K. We write
τ = [p0, p1, · · · , pj] of K with the vertices in an increasing sequence
with respect to the ordering of vertices in K.

Definition 3.1. For a triangulation K, we define the mesh η(K)
of K by

η(K) = sup r(p, q)

where r means the geodesic distance in M and the supremum is taken
over all pairs of vertices p, q of a 1-simplex in K.

We define the fullness Θ(K) of K by

Θ(K) = inf
vol(σ)

η(K)n
,

where the inf is taken over all n-simplices σ of K and vol(σ) is the
Riemannian volume of σ, as a Riemannian submanifold of M .

Then we have the following lemma which is analogue of Whitney’s
result in [13].

Lemma 3.2. Let M be a smooth Riemannian n-manifold.
(1) Let K be a smooth triangulation of M . Then, there is a positive constant

Θ0 > 0 and a sequence of subdivisions K1, K2, · · · of K such that
limn→∞ η(Kn) = 0 and Θ(Kn) ≥ Θ0 for all n.

(2) Let Θ0 > 0. There exist positive constants C1, C2 depending on M and Θ0

such that for all smooth triangulations K of M satisfying Θ(K) ≥ Θ0, all
n-simplices of σ = [p0, p1, · · · , pn] and vertices pk of σ, vol(σ) ≤ C1 · η(K)n

and C2 · η(K) ≤ r(pk, σpk
), where r is the Riemannian distance, vol(σ) is

the Riemannian volume, and σpk
= [p0, · · · pk−1, pk+1, · · · , pn] is the face

of σ opposite to pk.

Since any two metrics on M are commensurable, the lemma follows
from Whitney’s Euclidean result, see [4].
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Here we assume that the fullness of any triangulation using this
paper is bounded below by some constant Θ0 > 0. This implies that
the shapes of all simplices of any triangulation do not become too thin.

Now suppose that the cochains C(K) are equipped with a non-
degenerate inner product 〈, 〉C such that Cj(K) ⊥ Ck(K) for j 6= k.
Then we define the adjoint operator of δ:

Definition 3.3. The adjoint operator δ∗ : Cj(K) → Cj−1(K) of δ
is defined by 〈δ∗σ1, σ2〉C = 〈σ1, δσ2〉C.

Then two operators δ and δ∗ give rise to the harmonic cochains as
follows.

Definition 3.4. We define the spaceHCj(K) of harmonic j-cochains
of K by

HCj(K) =
{
σ ∈ Cj(K)|δσ = δ∗σ = 0

}
.

Eckmann showed that an inner product 〈, 〉C provides the Hodge
decomposition of cochains.

Theorem 3.5 ([6]). There is an orthogonal direct sum decomposi-
tion

Cj(K) = δCj−1(K)⊕HCj(K)⊕ δ∗Cj+1(K)

and HCj(K) ∼= Hj(K), the cohomology of (K, δ) in degree j.

Note that the space HCj(K) of harmonic j-cochains and the Hodge
decompositions of cochains depend upon the choice of the inner product
on cochains. Dodziuk and Patodi employed a particularly nice inner
product on cochains, which is called the Whitney inner product. To
define the Whitney inner product and the relations between the smooth
Hodge theory and the combinatorial Hodge theory, we need to recall
two maps between differential forms and cochains. First, we define a
map W from Cj(K) into L2Ωj(M) which is the completion of Ωj(M)
with respect to 〈, 〉Ω. The map W is called the Whitney map.

Definition 3.6. For a j-simplex τ = [p0, · · · , pj] of K, we define
Wτ by

Wτ = j!

j∑
i=0

(−1)iµidµ0 ∧ · · · ∧ d̂µi ∧ · · · ∧ dµj,

where ̂ over a symbol means deletion. W is defined on C(K) =
⊕j∈{0,1,2}Cj(K) by extending linearly.

Remark 3.7. The barycentric coordinates µj are not even of class
C1, but they are of class C∞ on the interior of any simplex of K. This
implies that dµj is defined and Wτ is well-defined. Therefore dW is
also well-defined on L2Ωj(M).

The Whitney map W has several properties.
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Proposition 3.8 ([13]). The following hold:

(1) Wτ = 0 on M\St(τ),
(2) dW = Wδ,

where St(τ) is the closure of the open star St(τ).

Next we define the de Rham map R from differential forms to
cochains which is given by integration:

Definition 3.9. For any differential form ω and chain c, the de
Rham map R is defined by

Rω(c) =

∫

c

ω.

The de Rham map is a chain map:

Lemma 3.10 ([5]). The following holds:

δR = Rd.

The Whitney map and the de Rham map satisfy the following re-
lation, see [3, 4, 13]:

Theorem 3.11. The following holds:

RW = Id.

In general, WR 6= Id. However, Dodziuk and Patodi [4] showed
the following approximation theorem.

Theorem 3.12 ([3]). There exist a positive constant C and a pos-
itive integer m, independent of K, such that

‖ω −WRω‖Ω ≤ C · ‖(Id + ∆)mω‖Ω · η(K)

for all C∞ differential forms ω on M .

In the right hand of the above theorem, the depending on the choice
of triangulations is only the mesh. This implies that any smooth form
ω can be approximated by the corresponding cochain Rω as the mesh
tends to zero.

Next we define the Whitney inner product.

Definition 3.13. For two cochains σ1, σ2, we define

〈σ1, σ2〉C = 〈Wσ1,Wσ2〉Ω.

In [3], Dodziuk showed that the Whitney inner product is non-
degenerate. Also, Dodziuk and Patodi showed the following theorem
which indicates that the Hodge decompositions of cochains are an ap-
proximation of the Hodge decompositions of smooth forms.

Theorem 3.14 ([4]). Let ω ∈ Ωj(M) and Rω ∈ Cj(K) have Hodge
decompositions

ω = dω1 + ω2 + d∗ω3

Rω = δa1 + a2 + δ∗a3.
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Then

‖dω1 −Wδa1‖Ω ≤ λ · ‖(Id + ∆)mω‖Ω · η(K)

‖ω2 −Wa2‖Ω ≤ λ · ‖(Id + ∆)mω‖Ω · η(K)

‖d∗ω3 −Wδ∗a3‖Ω ≤ λ · ‖(Id + ∆)mω‖Ω · η(K)

where λ and m are independent of ω and K.

3. Wilson’s combinatorial Hodge star operator

In [14], Wilson developed this combinatorial theory as follows. Us-
ing a cup product on cochains, he defined a star operator on cochains
which is an analogue of the Hodge star operator on smooth forms.
Also, he showed that this star operator on cochains is an approxima-
tion of the Hodge star operator on smooth forms. First, we recall the
definition of the cup product on cochains which is defined Whitney in
[13].

Definition 3.15. We define ∪ : Cj(K)⊗ Ck(K) → Cj+k(K) by

σ ∪ τ = R(Wσ ∧Wτ),

for σ ∈ Cj(K) and τ ∈ Ck(K).

Since the de Rham map R and the Whitney map W are chain maps
with respect to d and δ, we see that δ is a derivation of the cup product
∪ on cochains, i.e.,

δ(σ ∪ τ) = δσ ∪ τ + (−1)deg(σ)σ ∪ δτ.

By a theorem of Whitney in [13], this cup product induces the same
map on cohomology as the usual (Alexander-Whitney) simplicial cochain
product. Also, this cup product on cochains satisfies the following.

Theorem 3.16 ([1]). Let σ = [pα0 , · · · , pαj
] ∈ Cj(K) and τ =

[pβ0 , · · · , pβk
] ∈ Ck(K). Then σ ∪ τ is zero unless σ and τ intersect

in exactly one vertex and span a (j + k)-simplex v, in which case, for
τ = [pαj

, · · · , pαj+k
], we have

σ ∪ τ = [pα0 , · · · , pαj
] ∪ [pαj

, · · · , pαj+k
]

= ε(σ, τ)
j!k!

(j + k + 1)!
[pα0 , · · · , pαj+k

],

where ε(σ, τ) is determined by

orientation(σ)· orientation(τ)=ε(σ, τ)·orientation(v).

In [14], Wilson proved that the cup product ∪ on cochains is cor-
responding to the wedge product ∧ on smooth differential forms.

Theorem 3.17 ([14]). Let ω1, ω2 ∈ Ω(M). There exist a constant
C and a positive integer m, independent of K, such that

‖W (Rω1 ∪Rω2)− ω1 ∧ ω2‖Ω ≤ C · λ(ω1, ω2) · η(K),



18 3. COMBINATORIAL HODGE THEORY

where

λ(ω1, ω2) = ‖ω‖∞ · ‖(Id + ∆)mω2‖Ω + ‖ω2‖∞ · ‖(Id + ∆)mω1‖Ω

and ‖ · ‖∞ is the uniform norm on Ω(M).

Using the cup product on cochains, Wilson defined a star operator
on cochains as follows:

Definition 3.18. Let 〈, 〉C be a positive definite inner product on
C(K) such that Cj(K) ⊥ Ck(K) for j 6= k. For σ ∈ Cj(K), we define
Fσ ∈ Cn−j(K) by

〈Fσ, τ〉C = (σ ∪ τ)[M ],

where [M ] denotes the fundamental class of M .

This star operator F has several properties:

Lemma 3.19 ([14]). The following hold:
(1) Fδ = (−1)j+1δ∗F, i.e. F is a chain map.
(2) For σ ∈ Cj(K) and τ ∈ Cn−j(K), 〈Fσ, τ〉C = (−1)j(n−j)〈σ,Fτ〉C,

i.e. F is (graded) skew-adjoint.
(3) F induces isomorphisms HCj(K) → HCn−j(K) on harmonic

cochains.

Using Theorem 3.12, Wilson showed that F converges to the Hodge
star operator ? on Ω(M):

Theorem 3.20 ([14]). There exist a positive constant C and a
positive integer m, independent of K, such that

‖ ? ω −WFRω‖Ω ≤ C · ‖(Id + ∆)mω‖Ω · η(K),

for all C∞differential forms ω on M .

Under the assumption that the cochains C(K) are equipped with
the Whitney inner product, Wilson also showed that F respects the
Hodge decomposition of C(K) and Ω(M):

Theorem 3.21 ([14]). Let ω ∈ Ωj(M) and Rω ∈ Cj(K) have the
Hodge decompositions

ω = dω1 + ω2 + d∗ω3

Rω = δa1 + a2 + δ∗a3.

Then there exist a positive constant C and a positive integer m, inde-
pendent of K, such that

‖ ? dω1 −WFδa1‖Ω ≤ C · (‖(Id + ∆)mω‖Ω + ‖(Id + ∆)mdω1‖Ω) · η(K),

‖ ? ω2 −WFa2‖Ω ≤ C · (‖(Id + ∆)mω‖Ω + ‖(Id + ∆)mω2‖Ω) · η(K),

‖ ? d∗ω3 −WFδ∗a3‖Ω ≤ C · (‖(Id + ∆)mω‖Ω + ‖(Id + ∆)md∗ω3‖Ω) · η(K).
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For a Riemannian n-manifold M , it is known that the smooth
Hodge star operator ? on Ωj(M) satisfies

?2 = (−i)j(n−j)Id.

In [14], Wilson observed that F2 on Cj(K) and stated that F2 is not
equal to ±Id in general. In [12], Tanabe proved the following theorem.

Theorem 3.22. Let M be a Riemannian manifold with a triangula-
tion K of mesh η(K). There exist a positive constant C and a positive
integer m, independent of K, such that

‖ ?2 ω −WF2Rω‖Ω ≤ C · ‖(Id + ∆)mω‖Ω · η(K)

for all C∞ differential forms ω on M .

Also, Tanabe showed that this approximation respects to the Hodge
decompositions of Ω(M) and C(K) in his paper [12].

In this combinatorial theory, there are some approximation ques-
tions. For instance, Dodziuk and Patodi asked whether or not the
following holds:

lim
η(K)→0

‖Wδ∗Rω − d∗ω‖Ω = 0,

for all C∞ differential forms ω. For this question, in Appendix II of
[4], the authors suggest a counterexample to this question. However,
Smits [10] pointed out the counterexample is not valid and showed that
this approximation holds for all C∞ differential 1-forms on surfaces
under a certain restriction on the triangulations. In [2], we may have
this approximation for more than two dimensions under a certain mesh
condition. On the other hand, there are open questions. In [14], Wilson
raised a question if either of δF or Fδ∗ provide a good approximation
to d? or ?d∗, respectively.

4. Combinatorial Hodge theory on closed Riemann surfaces

Using the combinatorial theory, Wilson constructed a combinatorial
theory on closed Riemann surfaces in [15]. To construct the theory on
closed Riemann surfaces, he extended to complex settings as follows.
Let M be a closed Riemann surface of genus g with a triangulation K,
C(K) = ⊕j=0,1,2C

j(K) the complex valued simplicial cochains with a
non-degenerate positive definite hermitian inner product 〈, 〉C . Then
Wilson defined the associated combinatorial star operator F by

〈Fσ, τ〉C = (σ ∪ τ)[M ],

where the bar denotes complex conjugation and ∪ is extended over C
linearly. Also, for complex cochains, we have a Hodge decomposition

C1(K) = δC0(K)⊕HC1(K)⊕ δ∗C2(K).

By Lemma 3.19, we regard F as an isomorphism fromHC1(K) into
HC1(K) which is skew-adjoint. Then we define holomorphic 1-cochains
as follows:
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Definition 3.23. Let 〈, 〉C be a hermitian inner product on the
complex valued simpicial 1-cochains which is R-valued on R-cochains.
We define the space HC1,0(K) of holomorphic 1-cochains to be the span
of the eigenvectors for non-positive imaginary eigenvalues of F and the
space HC0,1(K) of anti-holomorphic 1-cochains to be the span of the
eigenvectors for non-negative imaginary eigenvalues of F.

Now we assume that the cochains C(K) are equipped with the
Whitney inner product. Note that the Whitney inner product is R-
valued on R-cochains. Then we have the following properties ofHC1,0(K)
and HC0,1(K), due to [12, 15].

Lemma 3.24. Let M be a closed Riemann surface of genus g with a
canonical homology basis Σ and a triangulation K. Then, the following
hold:

(1) HC1(K) = HC1,0(K)⊕HC0,1(K).
(2) dimCHC1,0(K) = dimCHC0,1(K) = g.
(3) Complex conjugation maps HC1,0(K) to HC0,1(K) and vice

versa.

Remark 3.25. The spaces of holomorphic 1-cochains and anti-
holomorphic 1-cochains are defined by Wilson in [15] as follows. Since
we redefined F as the isomorphism on harmonic cochains induced by
the combinatorial star operator, F admits a unique polar decomposi-
tion F = HU where H is symmetric positive definite and U is unitary.
Also, since F is skew-adjoint, so is U , and therefore the eigenvalues
of U are ±i. Then Wilson defined the spaces HC1,0(K) and HC0,1(K)
by

HC1,0(K) =
{
σ ∈ HC1(K)

∣∣Uσ = −iσ
}
,

and
HC0,1(K) =

{
σ ∈ HC1(K)

∣∣Uσ = iσ
}
.

On the other hand, Wilson also gave an equivalent definition as above.
However, he did not state the assumption of an inner product on cochains.
In [12], Tanabe remarked that by this equivalent definition without the
assumption, complex conjugation dose map HC1,0(K) to HC0,1(K) in
general. To define HC1,0(K) as the span of eigenvectors of F, we need
to add the assumption that a hermitian inner product on cochains to be
R-valued on R-cochains. This assumption is natural and the Whitney
inner product satisfies it.

Next we define combinatorial periods.

Definition 3.26. Let M be a closed Riemann surface of genus g
with a canonical homology basis Σ and a triangulation K. We define
the combinatorial periods of σ ∈ HC1(K) by the following complex
numbers:

σ(aj), σ(bj) for 1 ≤ j ≤ g.
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As an important property of holomorphic 1-cochains, Wilson showed
that holomorphic 1-cochains also satisfy Riemann’s bi-linear relations.

Theorem 3.27 ([15]). For σ, τ ∈ HC1,0(K), we have
g∑

j=1

(σ(aj)τ(bj)− σ(bj)τ(aj)) = 0.

To define combinatorial period matrices, Wilson [15] showed the
following relation. For σ, τ ∈ HC1,0(K),

〈Fσ, τ〉C =

g∑
j=1

(σ(aj)τ(bj)− σ(bj)τ(aj)).

This yields the following.

Corollary 3.28 ([15]). Let σ be a holomorphic 1-cochain.
(1) If all A-periods σ(aj), 1 ≤ j ≤ g or all B-periods σ(bj), 1 ≤ j ≤ g
vanish, then σ = 0.
(2) If all A-periods σ(aj), 1 ≤ j ≤ g and all B-periods σ(bj), 1 ≤ j ≤ g
are real, then σ = 0.

For any basis {τ1, · · · , τg} for HC1,0(K), we consider the following
equation of (cij)1≤i,j≤g:

g∑
i=1

cijτi(ak) = δjk.

By Corollary 3.28 (1), the matrix (cij)1≤i,j≤g is uniquely determined
by a triple (M, Σ, K). Then we put σj =

∑g
j=1 cijτi. This basis

{σ1, · · · , σg} is called the canonical basis of HC1,0(K).
Using the canonical basis, we define combinatorial period matrices

as follows.

Definition 3.29. Let M be a closed Riemann surface of genus g
with a canonical homology basis Σ and a triangulation K. Let {σ1, · · · , σg}
be the canonical basis of HC1,0(K). Then the combinatorial period ma-
trix ΠK = (πK

jk)1≤j,k≤g of M is defined by πK
jk = σj(bk).

Theorem 3.30 ([15]). Combinatorial period matrices are symmet-
ric and their imaginary parts are positive definite.

This theorem implies that combinatorial period matrices lie in the
Siegel upper half space. Then Wilson showed that combinatorial period
matrices are an approximation of conformal period matrices.

Theorem 3.31 ([15]). Let M be a closed Riemann surface with
a canonical homology basis Σ, and let Π be the period matrix. Let
{Kn}n∈N be a sequence of triangulations of M with mesh converging to
zero. Then the combinatorial period matrices ΠKn satisfy

lim
n→∞

ΠKn = Π.
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Then Wilson mentioned that this theorem induces the following
corollary which is related the Schottky problem.

Corollary 3.32. Every conformal period matrix is the limit of a
sequence of combinatorial period matrices.

To prove Theorem 3.31, Wilson showed the following lemmas, which
are also used for the proof of Theorem 5.7.

Lemma 3.33 ([15]). Let M be a closed Riemann surface with a
triangulation K. For any ω ∈ HΩ1,0(M) which has the following de-
composition

Rω = δg + h1 + h2 + δ∗k,

where h1 ∈ HC1,0(K) and h2 ∈ HC0,1(K), there exists positive con-
stant C, dependent on ω but independent of K, such that

‖Wh1 − ω‖Ω ≤ C · η(K).

Also, the original proof of the above lemma in [15] provides the
following lemma:

Lemma 3.34. Let M be a closed Riemann surface with a triangula-
tion K. For any ω ∈ HΩ1,0(M) which has the following decomposition

Rω = δg + h1 + h2 + δ∗k,

where h1 ∈ HC1,0(K) and h2 ∈ HC0,1(K), there exists positive con-
stant C, dependent on ω but independent of K, such that

‖WFh1 − ?ω‖Ω ≤ C · η(K).

Proof. By Theorem 3.14 and 3.21, there is a positive constant C,
independent of K, such that

C · η(K) ≥ ‖WF(h1 + h2)− ?ω‖Ω + ‖ω −W (h1 + h2)‖Ω

= ‖WF(h1 + h2)− ?ω‖Ω + ‖ ? ω + iW (h1 + h2)‖Ω

≥ ‖WFh1 + WFh2 + iW (h1 + h2)‖Ω

= ‖Fh1 + Fh2 + i(h1 + h2)‖C .

Let φ1, · · · , φg be an orthogonal eigenbasis of HC1,0(K) for F, with

eigenvalues −iλ1, · · · ,−iλg (λj > 0), and let φ̃1, · · · , φ̃g be an or-

thogonal eigenbasis of HC0,1(K) for F, with eigenvalues iλ̃1, · · · , iλ̃g

(λ̃j > 0). Then we may write h1 =
∑g

j=1 cjφj and h2 =
∑g

j=1 c̃jφ̃j.
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Since HC1,0(K) and HC0,1(K) are orthogonal, we have

C2 · η(K)2 ≥
∥∥∥∥

g∑
j=1

(1− λj)cjφj

∥∥∥∥
2

C

+

∥∥∥∥
g∑

j=1

(1 + λ̃j)c̃jφ̃j

∥∥∥∥
2

C

=

g∑
j=1

(1− λj)
2|cj|2‖φj‖2

C +

g∑
j=1

(1 + λ̃j)
2|c̃j|2‖φ̃j‖2

C

≥
g∑

j=1

λ̃2
j |c̃j|2‖φ̃j‖2

C

= ‖Fh2‖2
C .

Hence we conclude

‖WFh1 − ?ω‖Ω ≤ ‖WF(h1 + h2)− ?ω‖Ω + ‖Fh2‖C ≤ 2C · η(K).

¤
In the proof of Theorem 3.31 (Theorem 7.2 in [15]), for a sequence

{Kn} of triangulations with the mesh converging to zero and the holo-
morphic part hn

j of Rnθj ∈ C1(Kn), Wilson stated that Lemma 3.33
(Lemma 7.1 in [15]) provides

(4.1) lim
n→∞

hn
j (ak) =

∫

ak

θj = δjk.

However, in [16], Wilson remarked that (4.1) dose not follows from
the lemma since the convergence in the lemma is with respect to L2-
norm, and the integration is not a bounded operator on smooth forms
with respect to the norm. Also, Wilson stated that using the following
lemma, (4.1) holds since we are considering smooth differential forms
that are closed.

Lemma 3.35 ([16]). Let ωn be a sequence of smooth closed differ-
ential forms on a closed Riemannian manifold which converge in L2 to
a smooth form ω. Then for any cycle, the sequence

∫
C

ωn converges to∫
C

ω.





CHAPTER 4

A matrix equation

1. Introduction

In this chapter, we refer to [17]. We describe the more relation
between conformal period matrices and combinatorial period matrices.
More precisely, for a fixed triangulation of a closed Riemann surface,
we show the following matrix equation which includes the conformal
period matrix and the combinatorial period matrix.

Theorem 4.1. Let M be a closed Riemann surface of genus g with
a canonical homology basis Σ and a triangulation K, and let Π be the
period matrix and ΠK the combinatorial period matrix. Let {θ1, · · · , θg}
be the canonical basis of HΩ1,0(M) and {σ1, · · · , σg} the canonical basis
of HC1,0(K). Then the following equation holds:

Π = ΠK − ΛK ,

where ΛK = (〈Wσj, ?θk〉Ω)1≤j,k≤g.

The matrix equation implies the difference between the conformal
period matrix and the combinatorial period matrix for a fixed trian-
gulation. In [17], we call the matrix ΛK the associate matrix of K.
Although two matrices Π and ΠK lie in the Siegel upper half space, by
using this matrix equation, the associate matrix ΛK lies in the Siegel
upper half space as well. This implies that for a closed Riemann sur-
face, when we fix a canonical homology basis and a triangulation, we
may obtain three elements in the Siegel upper half space which satisfy
the matrix equation in Theorem 4.1.

2. Proofs

Proof of Theorem 4.1. Set

C̃K :=
1

2i
(Π− ΠK)(ImΠ)−1,

and

CK := E − C̃K

where E is the (g × g) identity matrix.
Note that since ImΠ is positive definite, there exists (ImΠ)−1.

25
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We compute

ΠK = Π− 2iC̃KImΠ

= (CK + C̃K)Π− 2iC̃KImΠ

= CKΠ + C̃KΠ.

Let cjk be the (j, k)-entry of CK and c̃jk the (j, k)-entry of C̃K .
Then, for each j, k, we have

∫

bk

Wσj =

g∑
m=1

cjm

∫

bk

θm +

g∑
m=1

c̃jm

∫

bk

θm,

and

∫

bk

(
Wσj −

g∑
m=1

cjmθm −
g∑

m=1

c̃jmθm

)
= 0.

On the other hand, we compute

∫

ak

(
Wσj −

g∑
m=1

cjmθm −
g∑

m=1

c̃jmθm

)

=

∫

ak

Wσj −
g∑

m=1

cjm

∫

ak

θm −
g∑

m=1

c̃jm

∫

ak

θm

= δjk −
g∑

m=1

(cjm + c̃jm)δkm

= δjk −
g∑

m=1

δjmδkm

= 0.

Namely, all A-periods and B-periods of Wσj−
∑g

m=1 cjmθm−
∑g

m=1 c̃jmθm

are zero. By Proposition 3.8 and δσj = 0, we have dWσj = Wδσj = 0
on the interior τ i of any n-simplex τ in K, where n = 1, 2. This implies
that Wσj −

∑g
m=1 cjmθm−

∑g
m=1 c̃jmθm is closed on τ i. By de Rham’s

theorem, the closed form Wσj −
∑g

m=1 cjmθm −
∑g

m=1 c̃jmθm is exact:
there exists dfj such that

Wσj −
g∑

m=1

cjmθm −
g∑

m=1

c̃jmθm = dfj,
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on M\ {p ∈ M |p : vertex in K}.
Since {p ∈ M |p : vertex in K} is a null set, we have

〈dfj, θk〉Ω = 〈Wσj −
g∑

m=1

cjmθm −
g∑

m=1

c̃jmθm, θk〉Ω

= 〈Wσj, θk〉Ω −
g∑

m=1

cjm〈θm, θk〉Ω

−
g∑

m=1

c̃jm〈θj, θk〉Ω.

Since θm ∈ HΩ0,1(M) and d∗θk = 0, we obtain 〈θm, θk〉Ω = 0 and
〈θm, dfj〉Ω = 〈d∗θm, fj〉Ω = 0. So, we have

〈Wσj, θk〉Ω =

g∑
m=1

cjm〈θm, θk〉Ω.

By Riemann’s bi-linear relation of holomorphic 1-forms, we obtain

〈θm, θk〉Ω = i〈−iθm, θk〉Ω
= i〈?θm, θk〉Ω

= i

g∑
s=1

( ∫

as

θm

∫

bs

θk −
∫

bs

θm

∫

as

θk

)

= i(πkm − πmk)

= i(πmk − πmk)

= 2Imπmk .

Note that since the period matrix Π lies in the Siegel upper half space,
the period matrix Π is symmetric and we obtain πkm = πmk. Thus, we
have

ΛK = (〈Wσj, ?θk〉Ω)1≤j,k≤g

= i(〈Wσj, θk〉Ω)1≤j,k≤g

= i

(
2

g∑
m=1

cjmImπmk

)

1≤j,k≤g

= 2i(cjm)1≤j,m≤g(Imπmk)1≤m,k≤g

= 2iCKImΠ.

So we conclude

ΠK = Π− 2iC̃KImΠ

= Π− 2i(E − CK)ImΠ

= Π− 2iImΠ + 2iCK ImΠ

= Π + ΛK .

¤
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As a corollary of Theorem 4.1, we prove that for any triangulation
K, ΛK lies in the Siegel upper half space as well.

Corollary 4.2. For a closed Riemann surface M of genus g with
a canonical homology basis Σ and a triangulation K, ΛK lies in the
Siegel upper half space.

Proof. By Theorem 4.1, we have

ΛK = ΠK − Π = (ReΠK − ReΠ) + i(ImΠK + ImΠ).

For any x ∈ Rg, we see that
tx(ImΛK )x = tx(ImΠK + ImΠ)x

= tx(ImΠK )x + tx (ImΠ)x > 0.

This implies that ΛK is symmetric and ImΛK is positive definite, so
ΛK is an element of the Siegel upper half space.
Next, we assume that ΛK is equal to Π. Then, by Theorem 4.1, we
have

ΠK = Π + ΛK = Π + Π = 2ReΠ.

This is a contradiction, because the imaginary part of a combinatorial
period matrix is not equal to zero matrix. In a similar way, one can
check that ΛK is not equal to ΠK as well. ¤



CHAPTER 5

The asymptotic behavior of holomorphic
1-cochains

1. Introduction

In this chapter, we refer to [18]. Using the matrix equation in
Theorem 4.1, we show that holomorphic 1-cochains provide an approx-
imation of holomorphic 1-forms. To describe the approximation, we
now introduce a neq correspondence between holomorphic 1-forms and
holomorphic 1-cochains as follows.

Definition 5.1. For ω ∈ HΩ1,0(M), we define ιω ∈ HC1,0(K)
which satisfies

ιω(aj) =

∫

aj

ω,

for 1 ≤ j ≤ g.

Since both holomorphic 1-forms and holomorphic 1-cochains are
characterized by the A-periods, this correspondence is a natural rela-
tion between holomorphic 1-forms and holomorphic 1-cochains. Then
our main result is as follows.

Theorem 5.2. Let M be a closed Riemann surface of genus g with
a canonical homology basis Σ, ω an arbitrary holomorphic 1-form on
M . In the case of g = 1, for any triangulation K of M , we have

‖Wιω − ω‖Ω = 0.

In the case of g > 1, for any sequence {Kn}n∈N of triangulations of M
with the mesh converging to zero, we have

lim
n→∞

‖Wιnω − ω‖Ω = 0,

where ιnω ∈ HC1,0(Kn).

2. Proofs

To prove Theorem 5.2, we need to study some relations between
holomorphic 1-cochains and holomorphic 1-forms. First of all, we prove
that for all holomorphic 1-forms ω, the map ω 7→ ιω is an isomorphism.

Lemma 5.3. The map ι : HΩ1,0(M) → HC1,0(K) defined by ω 7→ ιω
is an isomorphism.

Proof. It is clear from the following diagram.

29
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Id
Cg −−−−−−→ Cg←−−−−−−

© ←−−−−−−

HΩ1,0(M) −−−−−−→ HC1,0(K)

∈ ∈

ω ιω

where the isomorphisms from HΩ1,0(M) to Cg and from HC1,0(K) to
Cg are as follows:

HΩ1,0(M) 3 ω 7−→
( ∫

a1

ω, · · · ,

∫

ag

ω

)
∈ Cg,

and

HC1,0(K) 3 σ 7−→ (σ(a1), · · · , σ(ag)) ∈ Cg.

¤

Now, to prove Theorem 5.2, we show three theorems. In the first
theorem, we give an estimation of difference between holomorphic 1-
forms and holomorphic 1-cochains with respect to the L2-norm. To
evaluate the difference, we use the diagonal elements ImπK

jj of the
imaginary part ImΠK of the combinatorial period matrix of K and
the eigenvalues of the canonical basis {σ1, · · · , σg} of HC1,0(K) for F.
Note that since the space HC1,0(K) of holomorphic 1-cochains is the
span of eigenvectors of F, it is unclear whether or not each σj has
the eigenvalues of F. However, since {σ1, · · · , σg} is a basis, we may
obtain a vector ΦK = (ϕ1, · · · , ϕg) such that

〈Fσj, σj〉C = 〈−iϕjσj, σj〉C
for all j. Then, using ImπK

11, · · · , ImπK
gg and ΦK , we have the following

theorem.

Theorem 5.4. Let M be a closed Riemann surface of genus g with a
canonical homology basis Σ and a triangulation K, and let {θ1, · · · , θg}
be the canonical basis of HΩ1,0(M), {σ1, · · · , σg} the canonical basis
of HC1,0(K) and ΠK = (πK

jk)1≤j,k≤g the combinatorial period matrix.
Then there exists a vector ΦK = (ϕ1, · · · , ϕg) ∈ (0, 1]g such that

〈Fσj, σj〉C = 〈−iϕjσj, σj〉C .

In addition, we have

‖Wσj − θj‖Ω =

√
2ImπK

jj

(
1

ϕj

− 1

)
,
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and

‖Wιω − ω‖Ω ≤
g∑

j=1

∣∣∣∣
∫

aj

ω

∣∣∣∣ ·
√

2ImπK
jj

(
1

ϕj

− 1

)
,

for all ω ∈ HΩ1,0(M).

Proof. By Theorem 4.1, we have

ImΠ = −ImΠK + ImΛK

and

(2.1) Imπjj = −ImπK
jj + Im〈Wσj, ?θj〉Ω,

for 1 ≤ j ≤ g. Using Riemann’s bi-linear relation, we compute

〈θj, θj〉Ω = i〈−iθj, θj〉Ω
= i〈?θj, θj〉Ω

= i

g∑

k=1

( ∫

ak

θj

∫

bk

θj −
∫

bk

θj

∫

ak

θj

)

= i(πjj − πjj)

= 2Imπjj.

Similary, we obtain i〈Fσj, σj〉C = 2ImπK
jj . Also we compute

2Im〈Wσj, ?θj〉Ω = i
(〈Wσj, ?θj〉Ω − 〈Wσj, ?θj〉Ω

)

= i
(〈?θj,Wσj〉Ω − 〈Wσj, ?θj〉Ω

)

= 〈θj,Wσj〉Ω + 〈Wσj, θj〉Ω.

By (2.1),

〈θj, θj〉Ω − 〈θj,Wσj〉Ω − 〈Wσj, θj〉Ω = −i〈Fσj, σj〉C .

Then we have

(2.2) ‖Wσj−θj‖2
Ω = 〈Wσj−θj, Wσj−θj〉Ω = 〈σj, σj〉C−i〈Fσj, σj〉C .

Here we define ϕj by

ϕj = 1−
(‖Wσj − θj‖Ω

‖σj‖C

)2

.

By this definition,

〈σj, σj〉C − i〈Fσj, σj〉C = (1− ϕj)〈σj, σj〉C ,

and therefore

〈Fσj, σj〉C = 〈−iϕjσj, σj〉C .

Since ΠK is an element of the Siegel upper half space, the diagonal
elements ImπK

jj (1 ≤ j ≤ g) of ImΠK are all positive. Thus, by (2.2),

‖σj‖2
C − ‖Wσj − θj‖2

Ω = i〈Fσj, σj〉C = 2ImπK
jj > 0,
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and so

0 ≤ ‖Wσj − θj‖2
Ω

‖σj‖2
C

< 1.

This implies that 0 < ϕj ≤ 1 (1 ≤ j ≤ g) and therefore ΦK ∈ (0, 1]g.
By the definition of ϕj,

‖Wσj − θj‖Ω =
√

1− ϕj‖σj‖C .

Since

‖σj‖2
C =

i〈Fσj, σj〉C
ϕj

=
2ImπK

jj

ϕj

and ‖σj‖C > 0, we have

‖Wσj−θj‖Ω =
√

1− ϕj‖σj‖C =
√

1− ϕj·
√

2ImπK
jj

ϕj

=

√
2ImπK

jj

(
1

ϕj

− 1

)
.

For ω ∈ HΩ1,0(M) and ιω ∈ HC1,0(K), we may write

ω =

g∑
j=1

( ∫

aj

ω

)
· θj

and

ιω =

g∑
j=1

( ∫

aj

ω

)
· σj.

Hence we conclude

‖Wιω − ω‖Ω =

∥∥∥∥
g∑

j=1

( ∫

aj

ω

)
(Wσj − θj)

∥∥∥∥
Ω

≤
g∑

j=1

∣∣∣∣
∫

aj

ω

∣∣∣∣ · ‖Wσj − θj‖Ω

=

g∑
j=1

∣∣∣∣
∫

aj

ω

∣∣∣∣ ·
√

2ImπK
jj

(
1

ϕj

− 1

)
.

¤
By Theorem 3.31, each ImπK

jj converges to Imπjj as the mesh of
K tends to zero and since period matrices lie in the Siegel upper half
space, Imπjj > 0. Therefore, to show Theorem 5.2, we need to study
the behavior of ΦK .

In the case of genus 1, we show that ΦK = ϕ1 = 1. This implies that
for any triangulation K of a complex torus, HC1,0(K) is the eigenspace
of F for the eigenvalue −i, i.e.,

HC1,0(K) = {σ ∈ HC1(K)|Fσ = −iσ}.
To prove this, we show the following lemma which is a characterization
of ΦK = (1, · · · , 1).
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Lemma 5.5. Let M be a closed Riemann surface with a canonical
homology basis Σ and a triangulation K, and let {θ1, · · · , θg} be the
canonical basis of HΩ1,0(M). Let ΦK be the vector as in Theorem 5.4.
Then the following three conditions are equivalent:

(a) ΦK = (1, · · · , 1).
(b) HC1,0(K) = {σ ∈ HC1(K)|Fσ = −iσ}.
(c) WRθj = θj a.e. on M for all j.

Proof. (a)⇒(c): By Theorem 5.4, we obtain

‖Wσj − θj‖Ω = 0,

and so Wσj = θj a.e. on M . By Theorem 3.11; RW = Id, we have

WRθj = WRWσj = Wσj = θj

a.e. on M .
(c)⇒(b): For any σ ∈ C1(K), we compute

〈FRθj, σ〉C =

∫∫

M

WRθj ∧Wσ

=

∫∫

M

θj ∧Wσ

= 〈?θj,Wσ〉Ω
= −i〈θj,Wσ〉Ω
= −i〈WRθj,Wσ〉Ω
= −i〈Rθj, σ〉Ω
= 〈−iRθj, σ〉Ω.

This implies that FRθj = −iRθj. By Lemma 3.10, we have

δRθj = Rdθj = 0,

and by Lemma 3.19 (1),

δ∗Rθj = iδ∗FRθj = iFδRθj = 0.

Thus all Rθj (1 ≤ j ≤ g) are harmonic 1-cochains which have eigen-
values −i of F, and therefore they are holomorphic 1-cochains. Since
{θ1, · · · , θg} is a basis of HΩ1,0(M) and WR = Id, {Rθ1, · · · , Rθg} is
a basis of HC1,0(K). Since every eigenvalue of Rθj is −i,

HC1,0(K) =
{
σ ∈ HC1(K)|Fσ = −iσ

}
.

(b)⇒ (a): Since all elements of HC1,0(K) have the same eigenvalue
−i of F, we obtain Fσj = −iσj for all j. By the definition of ΦK =
(ϕ1, · · · , ϕg), we have

ϕj‖σj‖2
C = i〈−iϕjσj, σj〉C

= i〈Fσj, σj〉C
= i〈−iσj, σj〉C
= ‖σj‖2

C .
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Since {σ1, · · · , σg} is a basis, we conclude ϕj = 1 for all j. ¤
Theorem 5.6. Let M be a closed Riemann surface of genus 1 (com-

plex torus) with a canonical homology basis Σ, K a triangulation of M ,
and ϕ1 ∈ (0, 1] which satisfies 〈Fσ1, σ1〉C = 〈−iϕ1σ1, σ1〉C, where {σ1}
is the canonical basis of HC1,0(K). Then ϕ1 = 1.

Proof. Since the canonical basis of HΩ1,0(M) is {cdz} where z is
a local coordinate and c is some complex number, by Lemma 5.5, it is
enough to show that WRdz = dz a.e. on M .

First of all, we express WRdz by

WRdz = W

( ∑
τ

Rdz(τ) · τ
)

=
∑

τ

Rdz(τ) ·Wτ,

where the sum is taken over all 1-simplices τ of K. Let [p0, p1, p2] be
any 2-simplex of K with the barycentric coordinates µ0, µ1 and µ2.
Since Wτ = 0 on M\St(τ), on the interior of [p0, p1, p2], we compute

WRdz = Rdz([p0, p1]) ·W [p0, p1] + Rdz([p1, p2]) ·W [p1, p2] + Rdz([p2, p0]) ·W [p2, p0]

=

( ∫

[p0,p1]

dz

)
·W [p0, p1] +

( ∫

[p1,p2]

dz

)
·W [p1, p2] +

( ∫

[p2,p0]

dz

)
·W [p2, p0]

= (p1 − p0) ·W [p0, p1] + (p2 − p1) ·W [p1, p2] + (p0 − p2) ·W [p2, p0]

= (p1 − p0) · (µ0dµ1 − µ1dµ0) + (p2 − p1) · (µ1dµ2 − µ2dµ1)

+(p0 − p2) · (µ2dµ0 − µ0dµ2)

= p0(µ2dµ0 − µ0dµ2 − µ0dµ1 + µ1dµ0) + p1(µ0dµ1 − µ1dµ0 − µ1dµ2 + µ2dµ1)

+p2(µ1dµ2 − µ2dµ1 − µ2dµ0 + µ0dµ2)

On the interior of [p0, p1, p2](3 z), the barycentric coordinates satisfy

µ0(z) + µ1(z) + µ2(z) = 1

and
dµ0 + dµ1 + dµ2 = 0.

Using these relations among µ0, µ1 and µ2, we compute

µ2dµ0 − µ0dµ2 − µ0dµ1 + µ1dµ0 = (µ1 + µ2)dµ0 − µ0(dµ1 + dµ2)

= (1− µ0)dµ0 − µ0(−dµ0)

= dµ0.

In similar ways, we obtain

µ0dµ1 − µ1dµ0 − µ1dµ2 + µ2dµ1 = dµ1

and
µ1dµ2 − µ2dµ1 − µ2dµ0 + µ0dµ2 = dµ2.

Since z =
∑2

j=0 pjµj(z), we have

WRdz =
2∑

j=0

pj · dµj(z) = d

( 2∑
j=0

pjµj(z)

)
= dz.
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On the other hand, the union of the sets of all vertices (0-simplices)
and 1-simplices of K is a finite set and therefore it is a null set. Hence
WRdz = dz a.e. on M . By Lemma 5.5, we conclude that ϕ1 = 1. ¤

In [8] and [9], Mercat constructed a different discrete structure on
surfaces which is called a discrete Riemann surface. Especially, Mer-
cat defined a discrete period matrix on a discrete Riemann surface and
then he showed that discrete period matrices are also an approxima-
tion of (conformal) period matrices on Riemann surfaces. In the case
of genus 1, all discrete periods coincide with (conformal) periods, but
Wilson did not show that all combinatorial periods also coincide with
(conformal) periods in [15]. However, combining Theorem 4.1 and 5.6,
we see that all combinatorial periods of genus 1 coincide with (confor-
mal) periods as well. This implies that although the constructions of
Mercat’s discrete period matrices and Wilson’s combinatorial period
matrices are different, they have the same properties.

Finally we consider the behavior of ΦK for higher genus. The fol-
lowing theorem implies that eigenvalues of F on HC1,0(K) converge
to −i, as the mesh tends to zero.

Theorem 5.7. Let M be a closed Riemann surface of genus g >
1 with a canonical homology basis Σ and {Kn}n∈N be a sequence of
triangulations of M with the mesh converging to zero. Let ΦKn =
(ϕn

1 , · · · , ϕn
g ) be the vector in (0, 1]g such that

〈Fσn
j , σn

j 〉C = 〈−iϕn
j σn

j , σn
j 〉C ,

where each {σn
1 , · · · , σn

g } be the canonical basis of HC1,0(Kn). Then we
have

lim
n→∞

ΦKn = (1, · · · , 1).

Proof. Let {ω1, · · · , ωg} be an orthogonal basis of HΩ1,0(M) and
Rn the de Rham map from Ω(M) to C(Kn). By the Hodge decompo-
sition and HC1(Kn) = HC1,0(Kn) ⊕HC0,1(Kn), we obtain

Rnωj = δ∗kn
j + hn

j + h̃n
j + δgn

j

for any n ∈ N, where hn
j ∈ HC1,0(Kn) and h̃n

j ∈ HC0,1(Kn).
First, we show that the number of Kn, such that {hn

1 , · · · , hn
g} is

not a basis of HC1,0(Kn), is finite. Now we assume that the number is
infinite. Then there exist j ∈ {1, · · · , g} and a subsequence {Km} of
{Kn} such that each hm

j is generated by the other elements, i.e.,

hm
j =

∑

p6=j

cm
jph

m
p ,
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for all m ∈ N, where cm
jp ∈ C. Since hm

j −
∑

p6=j cm
jph

m
p is the holomorphic

part of Rm(ωj −
∑

p6=j cm
jpωp), by Lemma 3.33, we have

(2.3) lim
m→∞

∥∥∥∥ωj −
∑

p6=j

cm
jpωp

∥∥∥∥
Ω

= 0.

Also, since {ω1, · · · , ωg} is an orthogonal basis,

(2.4)

∥∥∥∥ωj −
∑

p6=j

cm
jpωp

∥∥∥∥
2

Ω

= ‖ωj‖2
Ω +

∑

p6=j

|cm
jp|2‖ωp‖2

Ω,

and therefore

0 ≤ |cm
jp|2‖ωp‖2

Ω ≤
∥∥∥∥ωj −

∑

p6=j

cm
jpωp

∥∥∥∥
2

Ω

.

By (2.3), we obtain limm→∞ |cm
jp| = 0 and (2.4) implies that ‖ωj‖Ω = 0.

This is a contradiction since {ω1, · · · , ωg} is a basis.
Here we assume that {hn

1 , · · · , hn
g} is a basis of HC1,0(Kn) for all

n ∈ N. Then, for any n ∈ N, we may write

σn
j =

g∑

`=1

c̃n
j`h

n
` ,

for 1 ≤ j ≤ g, where c̃n
j` ∈ C. Next we consider limn→∞ c̃n

j`. Let

(d̃n
`j)1≤`,j≤g be the inverse matrix of (c̃n

j`)1≤j,`≤g. This matrix provides

hn
` =

g∑
j=1

d̃n
`jσ

n
j ,

and

hn
` (ak) =

g∑
j=1

d̃n
`jσ

n
j (ak) =

g∑
j=1

d̃n
`j · δjk = d̃n

`k,

for 1 ≤ `, k ≤ g. By Lemma 3.33 and 3.35, we have

(2.5) lim
n→∞

d̃n
`k = lim

n→∞
hn

` (ak) = lim
n→∞

RWhn
` (ak) =

∫

ak

ω`,

for 1 ≤ `, k ≤ g. Note that each Whn
` is neither smooth nor closed,

but it can be approximated by a sequence of closed smooth forms
and therefore we may apply Lemma 3.35 to Whn

` . Thus (2.5) implies

that the matrix (d̃n
`j)1≤`,j≤g converges to (

∫
aj

ω`)1≤`,j≤g, and therefore

(c̃n
j`)1≤j,`≤g = (d̃n

`j)
−1
1≤`,j≤g also converges to a matrix (sj`)1≤j,p≤g, where

each sj` is determined by
∫

a1
ω1, · · · ,

∫
ag

ω1, · · · ,
∫

a1
ωg, · · · ,

∫
ag

ωg.
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Using the Cauchy-Schwarz inequality, we compute

0 ≤ (1− ϕn
j )‖σn

j ‖2
C = 〈σn

j , σn
j 〉C − i〈−iϕn

j σ
n
j , σn

j 〉C
= 〈σn

j , σn
j 〉C − i〈Fσn

j , σn
j 〉C

= 〈σn
j − iFσn

j , σn
j 〉C

≤ ‖σn
j − iFσn

j ‖C · ‖σn
j ‖C ,

and then

(2.6) 0 ≤ (1− ϕn
j )‖σn

j ‖C ≤ ‖σn
j − iFσn

j ‖C .

Since σn
j =

∑g
`=1 c̃n

`jh
n
` , we have

‖σn
j − iFσn

j ‖C =

∥∥∥∥
g∑

`=1

c̃n
j`

(
hn

` − iFhn
`

)∥∥∥∥
C

≤
g∑

`=1

|c̃n
j`| · ‖Whn

` − iWFhn
` ‖Ω

=

g∑

`=1

|c̃n
j`| · ‖Whn

` − ω` + i ? ω` − iWFhn
` ‖Ω

≤
g∑

`=1

|c̃n
j`| ·

(
‖Whn

` − ω`‖Ω + ‖ ? ω` −WFhn
` ‖Ω

)
.

Note that any holomorphic 1-form ω satisfies ω − i ? ω = 0.
By Lemma 3.33 and 3.34, there exist positive constants C`, independent
of {Kn}, such that

‖Whn
` − ω`‖Ω + ‖WFhn

` − ?ω`‖Ω ≤ C` · η(Kn).

Thus we have

‖σn
j − iFσn

j ‖C ≤
g∑

`=1

|c̃n
j`| · C` · η(Kn),

and
lim

n→∞
‖σn

j − iFσn
j ‖C = 0.

Namely, by (2.6), we have

lim
n→∞

(1− ϕn
j )‖σn

j ‖C = 0.

By Riemann’s bi-linear relations and 0 < ϕn
j ≤ 1,

‖σn
j ‖2

C =
i

ϕn
j

〈Fσn
j , σn

j 〉C =
2ImπKn

jj

ϕn
j

≥ 2ImπKn
jj ,

and therefore limn→∞ ‖σn
j ‖2

C ≥ 2Imπjj > 0 by Theorem 3.31. Hence
we conclude limn→∞ ϕn

j = 1 for all j. ¤
Combine Theorem 5.4, 5.6 and 5.7, we can easily show Theorem

5.2.
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