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Abstract

The nonlinear ultrasonic testing (NLUT) based on the contact acoustic nonlinearity (CAN) has at-
tracted notice recently because it is expected to be a new technique for detection of closed cracks,
which cannot be detected by using the conventional linear ultrasonic testing. In the NLUT, the non-
linear ultrasonic waves which consist of higher- and sub-harmonic waves generated from the defects
are evaluated, and the location and size of the defect are predicted by analyzing the frequency char-
acteristic of them.

The higher-harmonic generation due to the CAN was advocated over three decades ago. There-
after, this phenomenon has been vigorously investigated, and its mechanism has been clearly un-
derstood from theoretical and experimental points of view. However, when the higher-harmonic
generation is caused owing to an interface crack, the contribution of material difference has not
been investigated sufficiently. Moreover, the mechanism of sub-harmonic generation has not been
understood from a theoretical point of view yet although its generation has confirmed in the mea-
surement. Therefore, further theoretical and/or numerical approaches are demanded in order to
utilize this nonlinear phenomenon for the nondestructive evaluation (NDE).

In general, the higher-harmonic waves are generated by many causes such as transducer, cou-
plant, and material nonlinearity. On the other hand, it is considered that the sub-harmonic waves are
generated only by crack faces with contact in this situation. Thus, if the sub-harmonic waves can be
used for the NDE, the more precise detection and size measurement of closed cracks are expected.

At this stage, there are a few numerical approaches for sub-harmonic generation, and these sim-
ulations have been succeeded only in the case of very thin debonding plate. However, the sub-
harmonic generation has also been observed for different situations in the realistic measurement.
Therefore, the author conducts numerical simulation of the sub-harmonic generation due to cracks
in an unbounded elastic solid and a surface breaking crack in an elastic half-space in order to inves-
tigate the causes.

The time-domain boundary element method (TD-BEM) is considered as an appropriate numer-
ical method for this simulation because the (semi-)infinite domain is dealt with in this study, and
the nonlinear boundary conditions on crack faces can be treated exactly. In order to investigate sta-
ble sub-harmonic waves due to the CAN, a long-time transient analysis for the nonlinear boundary
problem has to be carried out. The computational cost of numerical simulation becomes large (es-
pecially for three-dimensional (3-D) problems).

In this dissertation, a convolution quadrature time-domain boundary element method (CQ-BEM),

which is known as the one of stable and accurate TD-BEMs, is accelerated using a fast multipole



method (FMM) and a rapid convolution algorithm for solving large-scale wave problems. The au-
thor has applied the proposed fast CQ-BEM to the numerical simulation of NLUT due to the CAN.

First, the higher-harmonic generation due to an interface crack is investigated by using the devel-
oped 3-D TD-BEM. Second, many 2-D numerical simulations are conducted for the sub-harmonic
generation due to cracks in an unbounded infinite elastic solid and a surface breaking crack in an
elastic half-space. Finally, some 3-D numerical simulations of the sub-harmonic generation are
carried out for cracks in an unbounded infinite elastic solid, and the author investigates the dimen-
sional effects, i.e. difference from 2-D results. Through obtained numerical results, the causes and

characteristics of the nonlinear ultrasonic generation phenomenon are discussed.
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Chapter 1

Introduction

1.1. Background of study

The nondestructive evaluation (NDE) of existing structures such as nuclear plants, bridges, and tun-
nels is important to detect flaws at an early stage and to prevent accidents. The inspection of welded
joints is also important to raise its quality in manufacturing. Therefore, it is considered that cost
reduction and safe management can be attained by effective utilization of the nondestructive testing
(NDT). Among many techniques of NDE, the ultrasonic testing (UT) and radiographic testing (RT)
are often used for the flaw detection on the inside of material. The UT has some advantages in its
portability and safety compared with the RT, and it is therefore considered as appropriate for the
inspection of infrastructures.

However, it is difficult to detect closed cracks, which are flaws at an early stage, using the conven-
tional and linear UT (LUT) that is based on mismatch of acoustic impedance between base material
and flaws. This is because an incident wave is hardly scattered on contacting crack faces, and ad-
equate scattered waves cannot be received in the LUT. On the other hand, a nonlinear UT (NLUT)
based on the contact acoustic nonlinearity (CAN) has attracted notice as a new technique for detec-
tion of closed cracks recently [89]. This method is based on the nonlinear ultrasonic waves which
are very sensitive to degradation of material properties at the early stage of damage. The nonlinear
ultrasonic waves, which consist of higher- and sub-harmonic waves, are considered as generated
by the CAN. The higher- and sub-harmonic wave components correspond to the integer times and
integer division of the center frequency of incident wave, respectively.

There are two different mechanisms of higher-harmonic generation, and they have been mostly
understood from theoretical and experimental points of view. The first is a non-symmetrical stress-
strain diagram under perpendicular vibration to a discontinuous interface such as a closed crack.
Thereby, the stiffness crossing the discontinuous interface for compression is harder than that for
tension. The clapping motion of crack faces is then caused, and it excites higher-harmonic waves
of both odd and even orders. The second is energy dissipation because of the interface roughness.
The friction force is generated under some compressive stress, and an incident wave is distorted in a
symmetrical way. It is known that odd order higher-harmonic waves are generated by this dynamic

friction phenomenon.
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In the NLUT, an incident wave with large amplitude is used for the inspection of closed cracks.
Then, the incident wave makes crack faces vibrate with contacting each other, and this vibration
causes the clapping motion and dynamic friction on the crack faces. Consequently, the transmitted
wave through closed cracks contains the nonlinear ultrasonic wave components. Therefore, it is
considered as possible to detect the location of the closed crack and measure its size via the spectrum
analysis of received waves.

However, at this stage, the generation mechanism of sub-harmonic wave in the NLUT has not
been understood clearly unlike the one of higher-harmonic wave. On the other hand, the excita-
tion of sub-harmonic waves have been observed in the measurement [86]. In order to reveal the
generation mechanism of sub-harmonic waves, further theoretical and/or numerical approaches are
implemented in this study. In general, the higher-harmonic waves are generated by many causes
except flaws such as transducer, and couplant. On the other hand, it is considered that the sub-
harmonic waves are generated only by flaws in the NLUT. Thus, if the sub-harmonic waves can be
used for the NDE, the more precise detection and size measurement of closed cracks are expected.

Taking into account the numerical approaches for the NLUT, there are two requirements. The
first is to accurately calculate physical quantities on the crack faces such as displacement and stress
because they significantly effect on the states of crack faces such as contact and non-contact. In ad-
dition, appropriate treatment of boundary conditions on crack faces is also important for accuracy.
On the other hands, nonlinear boundary value problems have to be solved, and the generation mech-
anism of sub-harmonic waves is unknown. Hence, we need to conduct many numerical simulations
for various parameters. From the above, the second requirement is a fast solver of time-dependent
partial differential equations (PDEs), especially for three-dimensional (3-D) problems.

Considering the first requirement, the boundary element method (BEM) is desirable because it
can exactly deal with the nonlinear boundary conditions on crack faces, and accuracy of physical
quantities on boundaries is much better than the finite element method (FEM) and finite difference
method (FDM). To numerically solve the time-dependent problems with nonlinear boundary condi-
tions, a time-domain BEM (TD-BEM) is utilized in this study. The acceleration of TD-BEM must
be considered for 3-D problems owing to the second requirement. Therefore, we propose a new
fast TD-BEM for the nonlinear ultrasonic simulation and implement many numerical simulations in

order to investigate the phenomena of nonlinear ultrasonic generation due to closed cracks.

1.2. Previous researches of nonlinear ultrasonic testing

The generation of higher-harmonic waves due to CAN was advocated over thirty years ago [15], and
many experimental and theoretical approaches have been carried out to investigate its mechanism
and characteristic. For instances of experimental approach, 2nd and 3rd higher-harmonic wave
components in the reflected P waves from a contact surface between two solid blocks have been
investigated by Severin and Solodov [81]. The effects of CAN on surface Rayleigh waves have also
been investigated by Solodov et al. [85]. Moreover, some flaw detection techniques based on the

NLUT have been developed recently. For instance, 2nd higher-harmonic waves have been used for



1.2. Previous researches of nonlinear ultrasonic testing

the synthetic aperture focusing technique (SAFT) [66].

On the other hands, the generation of sub-harmonic waves due to CAN has been first observed
by Solodov and Vu [86]. At that time, it was considered that the sub-harmonic wave is generated
just before the chaotic vibration and an unstable phenomenon. However, comparatively stable sub-
harmonic waves have been observed by Yamanaka et al. [98] in the ultrasonic measurement for a
surface breaking crack, and the depth measurement technique of a surface breaking crack has been
developed by Ohara et al. [65]. Moreover, Hayashi and Biwa [34] have shown that stable sub-
harmonic waves are generated in the case that a thin layer exists between two solid blocks through
experiment and 1-D numerical simulation. However, the generation mechanism of sub-harmonic
waves has not been understood clearly in all cases of above. It is difficult to intuitively comprehend
the generation mechanism of sub-harmonic wave unlike that of higher-harmonic wave.

As previous theoretical and numerical approaches, the 1-D numerical simulation modeling the
clapping motion on the discontinuous interface has been first implemented by Richardson [70].
Thereafter, some numerical simulations have been implemented in 2-D and 3-D modeling the clap-
ping motion and dynamic friction on the crack faces. For instance, 2-D numerical simulations have
been conducted by the TD-BEM [56, 39]. They have used the Coulomb friction law with constant
static and dynamic friction coefficients. Their methods have been extended to the debonding area on
the interface of bi-material in 2-D [77]. Also, the 3-D axisymmetric problem, i.e. a penny-shaped
crack subjected to normal incidence of P wave, has been solved numerically [38]. However, these
numerical approaches using TD-BEM have not succeeded in the simulation of sub-harmonic gen-
eration yet. On the other hand, the 2-D antiplane simulation of FEM for the discontinuous interface
with dynamic friction conditions has been implemented by Meziane et al. [59]. The 2-D FDM
simulation for cracks only with clapping motion has also been conducted by Kimoto and Ichikawa
[42]. Some 3-D sub-harmonic simulations have been conducted for delamination of thin materials
using the FDM [79] and FEM [20]. However, they have presented the sub-harmonic generation only
in the case that the thickness of delaminated layer is much smaller than its diameter and specifically
less than 1/20.

From the above, it is necessary to investigate the physical phenomenon of sub-harmonic gener-
ation due to cracks. There also remains implementation of the 3-D nonlinear ultrasonic simulation
for a debonding area on the interface of bi-material. Therefore, we investigate the characteristic of
higher-harmonic generation in the case that a debonding area is subjected to an incident wave by
means of the 3-D TD-BEM. Subsequently, 2-D simulations of sub-harmonic generation by cracks
in an infinite domain and a surface breaking crack in a half-space are implemented in order to in-
vestigate its causes. Finally, sub-harmonic simulations due to cracks in a 3-D infinite domain are

carried out, and obtained results are compared between 2-D and 3-D.
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1.3. Time-domain boundary element method (TD-BEM)

In this section, we explain the TD-BEM, which is utilized for transient elastic wave scattering
problems for the nonlinear ultrasonic simulation in this study. In general, the BEM is widely used
for transient analyses of wave propagation in fluid and solid media [13, 25]. The transient elastic
wave problems have been investigated by many authors based on different methods, for instance,
the frequency- [63] or Laplace-domain BEM [49] with the construction of time-domain results by
inverse Fourier or Laplace transform, respectively. However, the indirect methods cannot solve
nonlinear boundary value problems such as the nonlinear ultrasonic simulation. Therefore, for such
problems, the direct TD-BEM is clearly preferred [35, 36].

In general, it is well known that the conventional TD-BEM in which a collocation method is used
for the time discretization, causes numerical instability for small time step size in time-marching
process. This issue has been overcome by the Galerkin discretization of both space and time inte-
grals in boundary integral equations (BIEs) [29, 30]. However, it is difficult to solve wave prop-
agation problems for dispersive media such as viscoelastic and poroelastic ones because explicit
time-domain fundamental solutions for those complex problems are not available. On the other
hand, the convolution quadrature method (CQM) which was pioneered by Lubich [46, 47], has
been developed as a technique to approximate convolution integrals in the past two decades. The
application of the CQM to a TD-BEM (CQ-BEM) is suitable for transient analysis of wave prop-
agation problems [82]. By using the CQM for discretizing the convolution integrals in boundary
integral equations, the accuracy and numerical stability of the time-marching process are substan-
tially improved. The CQ-BEM requires the Laplace-domain fundamental solutions. Therefore, as
a result, the dispersion issues encountered in viscoelastic and poroelastic problems can be over-
come straightforwardly [75, 78, 83]. Recently, several studies have shown that the CQ-BEM using
an implicit Runge-Kutta (IRK) scheme performs better accuracy than that using a linear multistep
method [48, 7]. In addition, the stability and error analysis of the IRK-based CQM were conducted
by Calvo et al. [16] and Banjai et al. [5, 6] based on analytical and numerical approaches. The error
and behavior of influence functions for heat and wave problems using the IRK-based CQM were
also analyzed by Monegato et al. [60].

Although the CQ-BEM is powerful, there remains limitations in solving large-scale problems
because of low computational efficiency for matrix-vector products of the retarded potentials. The
computation of influence functions in the CQ-BEM framework generally requires a great deal of
computational time and memory resource compared to that of the conventional TD-BEM. The IRK-
based CQ-BEM also requires much computational cost. To overcome these disadvantages and to
solve large-scale problems, the CQ-BEM accelerated by the fast multipole method (FMM) [72, 26]
(CQ-FMBEM) has been developed [75, 76]. The FMM has been developed as a technique to reduce
the computational time and memory usage for solving large-scale problems. The BEM based on
FMM (FMBEM) has been developed for wave propagation problems in frequency-domain [62].
The conventional TD-BEM has also been accelerated by Takahashi et al. [91, 92] based on the
plane wave time-domain (PWTD) algorithm [24]. In addition, the #{-matrix and adaptive cross
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approximation (ACA) [9, 10], which is an efficient method for matrix-vector product calculation,
has been employed for the acceleration of the CQ-BEM [58].

However, the computational cost for a number of time steps is expensive even if the FMM or
‘H-matrix is applied to matrix-vector products with respect to space. Banjai and Kachanovska have
applied the rapid algorithm of convolution integral [31] and H-matrix to the CQ-BEM for the 3-D
wave equation and shown computational efficiency [8]. However, their method requires compara-
tively much memory although it is order of O(N M, log M. ), where N and M, are the numbers
of time steps and elements, respectively. Moreover, no 3-D elastodynamic formulation for CQ-
FMBEM has been proposed yet [18]. Therefore, we propose a new IRK-based CQ-FMBEM for
3-D elastodynamics which is accelerated for number of time steps using the rapid convolution al-
gorithm with the fast Fourier transform (FFT), in order to utilize it for the nonlinear ultrasonic

simulation.

1.4. Organization of dissertation

This dissertation consists of seven chapters, and these outlines except this one are shown as follows:

Chapter 2 The formulations of linear multistep- and IRK-based CQMs are briefly presented.
Then, we discuss the expected accuracy in the TD-BEM using each CQMs by comparing
the arguments of Laplace-domain fundamental solutions. We also present the application of
IRK-based CQM to TD-BEM for 3-D acoustic wave problems and implement some numeri-

cal simulations. The accuracy is discussed through numerical results obtained by CQ-BEMs.

Chapter 3 We explain the acceleration techniques of the CQ-BEM for 3-D acoustic and elastic
wave problems. First, the IRK-based CQ-BEM for 3-D acoustic wave problems is accelerated
by the FMM with respect to spatial components. Second, the CQ-FMBEM is extended to 3-
D elastic wave and coupled acoustic-elastic wave problems, and some numerical simulations
are implemented. Finally, the CQ-FMBEM is accelerated with respect to the number of time
steps using the rapid convolution algorithm, and we demonstrate the computational efficiency
of the new CQ-FMBEM from numerical results.

Chapter 4 We implement the 3-D numerical simulation of higher-harmonic generation due to an
interface crack between two semi-infinite elastic solids. In this simulation, the collocation
method and piecewise constant approximation are used for the spatial discretization. The
higher-harmonic generation by a penny-shaped interface crack subjected to an incident plane
wave is simulated varying the pre-compressive stress over the crack faces. Then, the scattered
waves are evaluated by means of the far-field approximation, and their frequency spectra are

investigated.

Chapter 5 The 2-D simulations of sub-harmonic generation due to cracks in an infinite domain
and a surface breaking crack in an elastic half-space are carried out. We use the Galerkin

method for the spatial discretization in the sub-harmonic simulation because we deal with
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cracks of complex shape or arrangement. No acceleration technique is utilized for the 2-D
CQ-BEM because the computational cost of the simulations presented in this chapter is not

very expensive.

Chapter 6 We extend the 2-D numerical method for cracks with nonlinear boundary conditions
in an infinite elastic solid presented in Chapter 5 to the 3-D and implement some numerical
simulations. For the 3-D sub-harmonic simulation, we use the new CQ-FMBEM in order
to conduct many simulations with a long analysis time. We conduct some sub-harmonic
simulations with similar models to the 2-D ones and compare the obtained results between
2-D and 3-D.

Chapter 7 In this chapter, we state conclusions.



Chapter 2

Convolution Quadrature Time-domain
Boundary Element Method (CQ-BEM)

In this chapter, we present the CQM formulation and its application to a TD-BEM. Then, 3-D acous-
tic wave problems are numerically solved for comparison of accuracy between the linear multistep-
and IRK-based CQ-BEMs.

2.1. Convolution quadrature method (CQM)

We briefly explain the formulations of the linear multistep- and IRK-based CQMs, which are dis-
cretization methods of convolution integrals. The linear multistep-based CQM was pioneered by
Lubich [46, 47], and then, the IRK-based one has been developed by Lubich and Ostermann [48].

The Laplace transform of a kernel function is used in both CQMs.

2.1.1. Linear multistep-based CQM

First, the formulation of linear multistep-based CQM is explained. The convolution integral with

respect to time ¢,
t
u(t) = (k * g) (1) 5/ K(t - r)g(r)dr 0 <t, @.1)
0
is approximated by the linear multistep-based CQM. In the CQM, l;:(s), which is the Laplace trans-

form of kernel function k(t), is used for the computation of quadrature weight, where s is the

Laplace parameter. We define the notations with respect to the Laplace transform and its inverse as

follows:
i(s) = £ k(1) = / T ket 2.2)
il ’ ) 1 h+iR o
k(t)=L [k(s)} = Rh—géozﬁ/h—m k(s)e**ds, (2.3)
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where i is the imaginary unit. In Eq. (2.3), h is a real number and A > 0. Substituting Eq. (2.3) into
Eq. (2.1) yields

h+iR
u(t) = lim —— / (3)ys(1)ds, 2.4)
R—o0 271 h—iR
where y; is given by y;(t) = (f es(t=7) g(7)dr and the solution of the following initial value prob-
lem:
oy(t
M) sty +91), (0) =0 @)

Note that the difference between the linear multistep-based CQM and IRK-based one is each ap-
proximation scheme of Eq. (2.5). The second order backward differentiation formula (BDF2),
which is one of the A-stable linear multistep methods [32], is often used for this approximation
in the linear multistep-based CQM. The A-stable scheme should be taken to compute convolution
integrals stably, and there is no A-stable linear multistep method with k-th order (k > 2) according
to the second Dahlquist barrier [32].

According to [46, 47], Eq. (2.4) can be approximated as follows:
n
Up :Atan_jgj (n=0,....,N—1), (2.6)
j=0

where u,, ~ u(nAt), g, ~ g(nAt), and At is the time increment. In addition, N is the number of
total time steps. Taking into account generating polynomials with variable (, the quadrature weight

wy, in Eq. (2.6) can be written as follows:

00 —1
ALY wp (=L [/};(s) <7§) - 5> ] , 2.7)
n=0

where ~ is the quotient of the generating polynomial. If we use the k-th order BDF, ~ is given as

follows:

v(¢) = Z a-cr (2.8)

7
=1

The inverse Laplace transform in Eq. (2.7) is evaluated by the residue theorem. Then, the quadrature
weight w,, can be described in the Cauchy integral form and approximated by using a trapezoidal

rule with the number of steps L as follows:

1

_ 7 V(Cl) —n— ~ T-1]1. M
e (b e

where the operator ]-N'lgl indicates the inverse discrete Fourier transform for the CQM. The corre-
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sponding forward transform Fy and it are defined by

N-1 A
Furlhn] = RS hue™ ™, (2.10)
n=0
_p L1 A
Fil] = RL he™ 71" @2.11)
=0

In Eq. (2.9), ¢ = Re2™U/L and R is the radius of contour integral. If we select L as L = N, Eqgs.
(2.10) and (2.11) can be evaluated by using the FFT with O(L log L) computational complexity. A
specific integral path R has to be selected for Eq. (2.9) and is calculated by R* = /€ with an error

of magnitude O(+/€), where ¢ is the error parameter of the numerical calculation of Eq. (2.9).

2.1.2. Implicit Runge-Kutta (IRK)-based CQM

Second, the formulation of the IRK-based CQM is shown. As mentioned in later, note that the IRK-
based CQM involves matrix form of the quadrature weight instead of w,,. A detailed explanation of
both explicit and implicit RK methods can be found in [33].
The RK method is applied to the following initial value problem:
dy(t)

Eq. (2.12) is approximated by the recursions with y,, ~ y(nAt) as follows:

Yoi =tn + AEY aiif (n+¢))ALY,;)  (i=1,..,m), (2.13)
j=1

Y1 = Yo + ALY b f (0 +¢) A Yeg) (2.14)
j=1

where a;;, b;, and ¢; are Butcher’s parameters and frequently described in the Butcher table with the
stage number of RK method m as follows:

T b= (by,....,0m)", (2.15)
c=(ct,....,cm)T.

The approximations in Eqgs. (2.13) and (2.14) are implicit when all of the upper right components

of matrix A are not equal to zero.
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In this study, the Radau ITA method [33], which is one of the A-stable IRK methods with (2m —
1)-th order, is used for the CQM formulation. The coefficient parameters a;;, b;, and c; satisfy the

following conditions:
0<a<..<em=1, bi=ap ({E=1,..,m). (2.16)

Some other specific coefficients pertaining to the Radau IIA method can also be found in [33].
In order to discretize the convolution integral in Eq. (2.1), the following vectors with m compo-

nents are defined as

Un = (u((n+¢;)At)L,  Gn=(9((n+¢)AL))T,

and the generating functions U (¢) and G(() are also defined as follows:
¢=0 ¢=0

Considering the approximation of Eq. (2.5) using the Radau IIA method and using these generating
functions, Eq. (2.1) can be approximated as

U(©) = £ [k(s) (D(¢, )] G(©). 2.17)
In Eq. (2.17), m x m matrix D((, s) is defined by
D(C,s) = TA(? — s, (2.18)
-1
_ (7S
() = <1b o +A> , (2.19)

where I is the identity matrix, and 1 = (1,...,1)T. From Eq. (2.18), D((,s) corresponds to
the characteristic equation of Y(¢)/At. If this characteristic equation does not have any multiple
roots, (D(C, s)) ™! has first-order poles at s = A\g (8 = 1,...,m), where \g are the eigenvalues of
Y (¢)/At. Therefore, the inverse Laplace transform in Eq. (2.17) can be evaluated by means of the

residue theorem as follows:

U) = > k() Es(Q)| G(©), (2.20)
B=1
o -1 adj (D(C,)\ﬁ))

where adj(-) indicates the adjugate matrix. The modification in Eq. (2.21) can be attained by
considering that [D((, s)| = []jZ,()\; — s) owing to the matrix diagonalization. Defining the n-th

10
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step quadrature weight matrix W, as

o0 m
D Wil = k(A Es(0), (2.22)
n= B=1
the following discretized convolution formula can be obtained from Eq. (2.20) by means of the
Cauchy product.
n
U, ~ Wi—1Gk. (2.23)
k=0

The quadrature weight matrix W,, can be expressed by the Cauchy integral form and approximated

by using a trapezoidal rule with the number of steps L as follows:

=5 i Zk Ag)Es(Q)| ¢ ~ Ft 1Y k(AR Es(Q) | (2.24)
p=1 B=1

where )\lﬁ are the eigenvalues of Y((;)/At. A specific integral path R must be selected for Eq.
(2.24) and is calculated by R* = /e with an error of magnitude O(+/€), where ¢ is the error
parameter of the numerical calculation of Eq. (2.24). As presented in [4], R must also be selected
to avoid the issue that the characteristic equation of Y'((;)/At has multiple roots.

The computational manner of Alﬁ is presented here. For m = 2, it is easy to exactly determine )‘ZB

using the quadratic formula as follows:

1 1
M= At<2+Cl+‘/Cl+10C’_2> AL = At<2+§l \/cl?+1ogl—2>.

Therefore, R must be selected to avoid CZQ 4+ 10¢; — 2 = 0 (multiple roots) for m = 2 as presented
in [4]. Similarly, the determination of )\15 for m = 3 and 4 can be implemented by using the corre-
sponding formulas. However, from a numerical point of view, some rounding errors are introduced
when m > 3 (especially for large m). Therefore, an iterative decomposition must be used to calcu-
late )\lﬂ in order to avoid this issue. In this study, the QR algorithm is used for the evaluation of )\%
because Y'((;)/At usually becomes an asymmetric complex matrix.

The derivation of IRK-based CQM formulation presented in this paper is a little different from [4,
7], and they have decomposed the quadrature weight matrix after evaluation of the inverse Laplace
transform. In this study, we evaluate the inverse Laplace transform after the decomposition of the
matrix D(C,s). The presented derivation is valid if k(s) is an analytic function for R[s] > 0 and
the characteristic equation of Y({)/At does not have any multiple roots, where R[z] denotes the

real part of complex value z. The resulting quadrature weight W,, is identical to the one in [4, 7].

11
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3 — 1.5

(b)
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Figure 2.1.: (a) Overall picture and (b) enlarged view around the origin of Laplace parameters s
required for CQMs with RKm and BDFk using computational parameters in Table 2.1.

Table 2.1.: Computational parameters used for calculating Laplace parameters s in Fig. 2.1.

RK3 RK2 BDF2 BDFI
L 100 150 300 300
At 3.0 2.0 1.0 1.0
R 0871 0.933 0955 0.955

2.1.3. Behavior of Laplace parameter

The arguments of Laplace-domain kernel y((;)/At and )\lﬁ correspond to the Laplace parameter s
in the linear multistep- and IRK-based CQMs, respectively. Their behavior significantly effects on
the accuracy because they correspond to the circular frequencies in frequency-domain. In addition,
considering the conjugate features of ((;)/At and A\, we can reduce the computation number of
quadrature weights in the CQM formulation to about half. Hereinafter, BDFk and RKm indicate
the kth order BDF- and the m-stage IRK-based CQM or CQ-BEM, respectively.

Laplace parameters s which are required for the various CQMs are shown in Fig. 2.1 when
¢ = 107'2 and computational parameters in Table 2.1 are used. R[z] and 3[z] indicate the real and
imaginary parts of z, respectively. As we can see from Fig. 2.1 (a), some s are complex conjugate
of others. Specifically, v(¢z—;) = v({;) and )\é_l = )‘TB forl =1,...,L/2 — 1, where () indicates
complex conjugate. Therefore, we need to compute v((;) /At or /\% only for/ =0,..., L/2.

The behavior of s around the imaginary axis is important for the construction of time-domain
original kernel k(t) with high frequency components because 3[s| and R[s] correspond to the circu-
lar frequency and attenuation, respectively. As shown in Fig. 2.1 (b), higher frequency components
near the imaginary axis are contained in RK3 and RK2 than in BDF2 and BDF1. This compari-
son is conducted under the same division number 300 for the same time range [0, 300] as shown in
Table 2.1. Therefore, it is expected that the performance of IRK-based CQM is better in accuracy

12
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S D
0
T2
x1

Figure 2.2.: Analysis model for acoustic wave scattering by an obstacle in a 3-D infinite domain.

for high frequency components than that of linear multistep-based one. Hereinafter, € is taken to be

e = 1012 for all numerical simulations.

2.2. CQ-BEM for 3-D acoustic wave problems

The application of the IRK-based CQM to the TD-BEM for 3-D acoustic wave problems is pre-
sented. The IRK-based CQ-BEM has been developed by Maruyama et al. [51] and Banjai et al.
[7]. The detailed formulation of the linear multistep-based CQ-BEM can be found in the reference
papers [75, 58], and it is omitted here.

2.2.1. Formulation of boundary integral equation (BIE)

Let S be a closed boundary with unit normal vector m in R? as depicted in Fig. 2.2. D is an
exterior domain, which can be considered as an incompressible and non-viscous fluid. The pressure

p satisfies the following wave equation:
FVp(x,t) — p(x,t) =0 x €D, (2.25)

where c; is the velocity of wave propagation in D, and ( ) indicates the partial differentiation with

respect to time ¢. We assume the following initial condition:
p*(x,0) = p*(x,0) x €D, (2.26)

where the superscript ’sc” indicates the scattered wave. Considering the Sommerfeld radiation
condition for scattered waves and initial condition (2.26), the time-domain BIE for pressure p is
formulated by means of the usual manner as follows:

t
Cla)p(a,t) = p"(x. ) + / / G(w,y,t — T)aly, 7)dS,dr
0 S
t
—/ p.v./H(m,y,t—T)p(y,T)dSydT xS, (2.27)
0 S

where the superscript ”in” indicates the incident wave, C'(x) is the free term [14] depending on the

boundary shape at x, and ¢ is the normal derivative of p. G is the fundamental solution of pressure

13
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for 3-D acoustic wave problems in time-domain, and H is its normal derivative. In addition, the

symbol p.v. indicates the Cauchy principal integral.

2.2.2. Discretization of BIE

The discretization of BIE (2.27) using the IRK-based CQM is presented. The collocation method
and piecewise constant approximation are utilized for spatial discretization. If the m-stage Radau
ITA method is used and the boundary S is divided into M, boundary elements, the discretized BIE
at n-th and ¢-th sub-step in time is written as follows:

n M m

1 . o o
5]9,1)}” :p};m,n_i_zzz g;jo,én kqgé,k _/Hlyjo’cn k:pé,k

k=0 a=1 j=1
(i=1,...,m), (n=0,..,N—1), (2.28)

where
ulwn = u(@y, (n+¢;)At)  (u=p,q, or pin)a

« and +y indicate the indices of a boundary element, and . denotes the collocation point of ~y-th
element. The collocation point is selected as the barycenter of element. In addition, G+;" and H73"

are the influence functions defined by

Giar = 7! [Z (Eﬁ(g)% /S @(wv,y,)\lﬁ)dSy], (2.29)
p=1 o

M = Fid [Z (Eﬁ(g))ijp.v. /S ﬁ(mv,y,)\lﬁ)dSy], (2.30)
p=1 o

where S, is the surface of a-th element. In Eqgs. (2.29) and (2.30), G and H are the Laplace-domain

fundamental solutions for pressure and its normal derivative, respectively, and given as follows:

~ e SfT
Gy, 5) =, (2.31)
H(ZL’,y,S) = n(y) : VyG(:c,y,s), (232)

,Vy, = (8/9y1,0/0ys, d/y3), and s; = s/c;s. Note that the integral kernels G
and H in Egs. (2.29) and (2.30) do not depend on time ¢. Rearranging Eq. (2.28) according to the

where r = |y —

time step, the following expression is obtained:

14
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M. m 1 y 4 o
» [<2awaij " %;Jg?) ph - ggﬁoqg;”}

a=1j=1
n—1 M. m
o ok ik ok ik
= P =N NS A\ HE T - G R (2.33)
k=0 a=1 j=1

where 6;; is the Kronecker delta.

For the n-th time step, all of the quantities on the right-hand side of Eq. (2.33) are known.
Therefore, the unknown values p and ¢ at the n-th time step can be obtained by solving Eq. (2.33).
In Eq. (2.33), the total number of unknowns is mM.N. Therefore, the computational time is
proportional to O(m?2N?2M2) order without any acceleration techniques even if we use an iterative

solver, such as the Krylov subspace method [95].

2.3. Numerical results

For numerical examples, a scattering problem as depicted in Fig. 2.3 is numerically solved to
compare the accuracy between the linear multistep- and IRK-based CQ-BEMs. An incident plane
wave is scattered by a rigid sphere with radius a, and the pressure fields at the point X in Fig. 2.3
are investigated using different time increments. The boundary condition on S is given by ¢ = 0

here. The following plane wave with amplitude py propagating in z1-direction is used as an incident

plane wave.
p™(x,t) = po (1 — cos2mAy) H(Ap)H(1 — Aj), (2.34a)
t —
Ap= w, (2.34b)
v

where )\i]? is the wavelength corresponding to the center frequency of the incident wave, and H (-)
is the Heaviside function. The surface of a sphere is discretized into M, = 3176 flatly triangular
boundary elements, and /\iJ{1 is given by )\ifn /a = 1.0. This problem has been analytically solved
in the frequency-domain by Pao and Mow [67]. Therefore, the transient solutions, which are here-
inafter called the “reference solutions”, can be constructed by using the inverse Fourier transform
of the frequency-domain analytical solutions.

The time variations of pressure p/py at point X in Fig. 2.3 obtained by BDF1, BDF2, RK2, and
RK3 are shown for different time increments in Figs. 2.4, 2.5, 2.6, and 2.7, respectively. As seen
in Fig. 2.4, the BDF1 cannot yield accurate results even if the smallest time increment cyAt/a =
0.0087 is used. In particular, the amplitude of p/pg at c¢t/a = 1 to 2 is different from the reference
solutions, and large oscillation at c¢t/a = 4 to 8 is observed. In additions, the oscillation at c¢t/a =
4 to 8 is hardly improved with decreasing time increments. Consequently, it is considered as difficult
to compute p/po accurately using the BDF1.

As seen in Fig. 2.5, the BDF2 with the smallest time increment ¢y At /a = 0.0087, can yield good

15



2. Convolution Quadrature Time-domain Boundary Element Method (CQ-BEM)

AT3

Figure 2.3.: Acoustic wave scattering by a rigid sphere subjected to an incident plane wave.
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Figure 2.4.: Time variations of p/py obtained by using BDF1 at point X in Fig. 2.3.
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Figure 2.5.: Time variations of p/py obtained by using BDF2 at point X in Fig. 2.3.

results at the time up to ¢st/a = 5. However, p/py is not accurate compared with the reference

solutions after ¢t /a = 5, and fluctuations can be seen clearly. In particular, larger time increments,
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Figure 2.6.: Time variations of p/pg obtained by using RK2 at point X in Fig. 2.3.
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Figure 2.7.: Time variations of p/pg obtained by using RK3 at point X in Fig. 2.3.

e.g., cyAt/a = 0.035 or 0.017, give less accurate results. As a result, a small time increment is
required for accurate computation of p/pg for the time range between c¢t/a = 5 to 8.

As shown in Figs. 2.6 and 2.7, much more accurate results can be obtained by the RK2 and
RK3 for the cases of cyAt/a = 0.035 than the BDF2. The fluctuations of p/po increase with
increasing time increments. p/po calculated by the RK2 and RK3 using c¢fAt/a = 0.035 seem
to be sufficiently accurate. From the above, the selection of time increments is important, and it
has a strong influence on the scattered waves obtained by the CQ-BEM. Therefore, an adequately
small time increment must be chosen to obtain sufficiently accurate results for practical engineering

applications.
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2.4. Concluding remarks

18

o In Chapter 2, we have explained both linear multistep- and IRK-based CQMs and successfully

applied them to the TD-BEM for 3-D acoustic wave problems. To simplify and focus on the
time discretization, the collocation method and piecewise constant approximation have been

used for the spatial discretization.

It was confirmed that there is large difference in the behavior of Laplace parameters s among
schemes which are used for CQM formulations. This difference, especially behavior near the
imaginary axis, is greatly concerned with the available range of circular frequencies. It seems
that the single-step methods, such as RK methods have some advantages in the calculation
of high frequency components. This is because the influence functions for wave problems

contain very rapid fluctuation.

The BDF1 cannot yield accurate solutions even if the small time increment is used, and better
numerical solutions have been obtained by the BDF2 with the small time increment. How-
ever, the performance of IRK-based CQ-BEM is much better in accuracy than that of linear
multistep-based one when the same number of discretization points are used for the same

time range.

The computational complexity and required memory of IRK-based CQ-BEM without any

acceleration techniques are O(m?N?2M?) even if an iterative solver is used.



Chapter 3

Acceleration of CQ-BEM

It is difficult to solve large-scale problems using the CQ-BEM without any acceleration techniques
because its computational and memory complexities are O(m2M2N?) as shown in the previous
chapter. Therefore, we present some acceleration techniques for the CQ-BEM in this chapter.
First, application of the FMM [72, 26] to the CQ-BEM is explained. Then, the formulations of
CQ-FMBEM for 3-D acoustic wave, elastic wave, and their coupling problems, which have been
developed by Maruyama et al. [52, 53], are shown. Finally, we apply the rapid convolution al-
gorithm using FFT [31] to the CQ-FMBEM for 3-D acoustic wave problems and demonstrate the

computational complexity of our proposed method through some numerical results.

3.1. Fast multipole accelerated CQ-BEM (CQ-FMBEM)

The FMM is applied to the IRK-based CQ-BEM to achieve stable, accurate, and efficient calculation
for large-scale wave propagation problems. In what follows, we present the time-marching process
of the IRK-based CQ-FMBEM, the multipole and local expansions, and translation theorems. In
addition, scaling and truncation techniques for the IRK-based CQ-FMBEM are introduced in order
to enhance the stability and efficiency of the proposed method.

3.1.1. Time-marching process

Application of the FMM to the IRK-based CQ-BEM complicates the time-marching process be-
cause the influence functions defined in Egs. (2.29) and (2.30) include the inverse discrete Fourier
transforms in Eq. (2.11). The time-marching process for the terms including g%” in the right-hand
side of Eq. (2.33) is explained as an example. The retarded potential vector with m M, components
R" is defined by

n—1 Me m n—1
R = S35 et = (Lot o
k=0 a=1 j=1 k=0 m(y—1)+i

The multiplication of m M, x m M, matrix and m M, dimensional vector is written by G *t* here.

To evaluate RY using the FMM, the inverse discrete Fourier transform and the summations in Eqs.
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(2.29) and (2.33) are rearranged as follows:

Me m m
() 1>+%:a:1; - Bz:l(Eﬂ(g))ij/saG(a:y,y,/\lﬁ)dsy S
m M,
a8 B o]
=1 \a=1
where
N TR TE A S SN )
o j=1

The term inside braces { } in Eq. (3.2) is first calculated for all of 7, /3, ¢, and [ via the FMM. Then,
taking the summation with respect to 3 and evaluating the inverse discrete Fourier transform, G*q"
forall k (k =0, ..., N — 1) are obtained. Finally, the corresponding retarded potential vector RF+
is updated. This calculation can be expressed in the following matrix form:

([ R! [ G! T q°
R? G2 G! O q
R3 _ G G? G! q° . (3.3)
RN*I GNfl L Gl qN—2

Once a set of the boundary values q* at k-th step is obtained by solving Eq. (2.33), G"q" for all
k can be calculated. Then, the resulting vectors are added into R™ for the rest time steps (n =
k+41,..,N —1)as R” + G"*gF = R™. If this procedure is conducted at each time step, R" is
updated for the next time step calculation. Note that Cauchy data qgj’C are treated in time-domain
although the FMM is implemented in Laplace-domain. In this algorithm, the FMM is implemented

for! =0, ..., L/2 at each time step owing to the following relation:

Z{ZGB’L LqikiBsL = l} Z{ZG% WZ} (1=1,..,L/2—1).

B=1 B=1

iJiK - iJ;K

The terms including H~¢ " in Eq. (2.33) can be evaluated as well as G .

3.1.2. Fast multipole method (FMM)

In Eq. (3.2), the FMM is implemented for the Laplace-domain fundamental solutions. The multi-
pole and local expansions for Laplace-domain fundamental solutions can be derived as well as those
in frequency-domain [23]. The FMM formulation based on Wigner 3-j symbol [57] with O(N}?)

arithmetic complexity [28] is used in this study, where [V, is the truncation number of infinite sum-
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mations in multipole and local expansions.

Multipole and local expansions

The expansions of fundamental solution of modified Helmholtz equation corresponding to some
wave velocities are required for the derivation of multipole and local expansions for elastic wave
problems in Section 3.1.6. Therefore, the expansions of G¥, which is the fundamental solution of
the modified Helmholtz equation with wave velocity c,, are shown here. Note that G in Eq. (2.31)
is G =GY. According to [23], the expansions of G¥ are given by

°(a,y, 5 Zzs¢2a—|—l

a=0b=—a
F2y(y—90)OF (@ —yo)  for |y —yo| < |& — yol, (3.4a)

X<
OFy(y — o) Fy(w —x0)  for |y —xo| > |& — o), (3.4b)

where s, = s/c,, and F¥) (z), F?,(z), OF ,(x), and OF , (x) are defined by

Ffy (@) = ia(spl®))Yy (), Fly(®) = ia(s|]) Y (2), 3.5

a

Oib(m) = ka(s,|x|) Y2 (2), Oib(m) = ka(splx|)Y2(2). (3.6)

a

, and i, and k, are the modified spherical Bessel functions of the

first and second kinds, respectively. Yf are the spherical harmonics which are defined by

(a —b)!
(a+b)!

Y(&) = P?(cos §)e™, (3.7)

where 6 and ¢ are the zenith and azimuthal angles of & in the spherical coordinate system, respec-

tively, and P? is the associated Legendre function.

In order to derive the multipole and local expansions, G%;'B i and H%;ﬂ ! are defined by
GEkbl = [ /S G?(x,y, )\%)dsy} qiiksil (3.8)

HERA = [ /S ﬁ“’(wwyw\fa)dsy] P, 39)

where H¥ is the normal derivative of CA?S", and

m

P =3 (Bs()), b

J=1

In Eq. (3.9), the symbol p.v. is omitted because  (field point) is never equal to « (source point) in
an FMM far-field calculation. Substituting Eq. (3.4a) into Eqgs. (3.8) and (3.9) yields the following
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3. Acceleration of CQ-BEM

multipole expansions:

- s5,(2a+ 1) [
5K B; Gsisk; 85l
I =" D = | Ofy(@y —yo) M (yo)] , (3.10)
a=0b=—a L s:)\lﬁ
o a i
R S (2(1—|— 1) Hiisk;B;l
HEEH =3 0 Y =5 |00y (@y — wo) My (wo) | 3.11)
a=0b=—a L s:)\lﬁ

where MaGblfﬁ and M f blakﬁ ! are the multipole moments with respect to G and H¥, respectively.
The infinite summations in Eqs. (3.10) and (3.11) are truncated by NV; terms in the numerical
simulation. The explicit expressions of the multipole moments in Egs. (3.10) and (3.11) are written

as follows:
Mgl;)ff;ﬁ;l(yo) — qgk;ﬂ;l/s Ff’b(y — yo)dSy, (3.12)
M () = piikil / n(y) - VyFS,(y — yo)dS,. (3.13)

Note that all multipole moments can be evaluated independently on a field point x.,.

The local expansions for G5! and H%;B ! are obtained by substituting Eq. (3.4b) into Egs.
(3.8) and (3.9) as follows:

2 = 5,204+ 1) [
i5K;65 Giisk; B3l
GEEA =" " = g Ffy(x, —a:o)Lan;aﬁ (mo)] , (3.14)
a=0b=—a L s:)\g
00 a B
M HoH S (2a+1) Hisk; B85l
Hikol = 3~ 3~ 2 T - F?y () — @) LI () , (3.15)
a=0b=-a L s:)\g

[GEkBL qng [HiskiBi

where a,b;a a,b;a

are the coefficients of local expansion. The coefficients of local
expansion can be obtained by replacing F7; (y — yo) by O, (y — @) in Egs. (3.12) and (3.13) as

follows:
LETEI () = qihiot /S OF ,(y — @0)dS,, (3.16)
ngff;ﬁ;l(:cg) = pﬁk;ﬁ;l/ n(y) - Vyéib(y — x0)dS,. (3.17)

Translation theorems (M2M, M2L, and L2L)

In the FMM algorithm, multipole expansion to multipole expansion (M2M), multipole expansion to
local expansion (M2L), and local expansion to local expansion (LL.2L), are required [62]. These three
translation theorems for G¥ are described by the following equations for the schematic dipected in
Fig. 3.1:
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3.1. Fast multipole accelerated CQ-BEM (CQ-FMBEM)

o C
Giisk; l Giisk; 85l
M2M : M5 =33 M)y = yrssp) Mo (yo), (3.18)
c=0d=—c
o C
Giisk; l Giisk; B85l
M2L : LS =Y Z (MIL)2 % (g1 = @15 50) Mo (yn), (3.19)
c=0 d=
) oo
L2L: LEPRHH (a Z Z (LIL)2% (21 — @o; sp) Lo (1), (3.20)
=0 d=—c

If MaGl’ff #i and LaGg’g’ﬁl in Egs. (3.18)—(3.20) are replaced with MH’Z’k Al and Lfl’ff Bl respec-
tively, the translation formulas for H¥ are derived. In Eqgs. (3.18)— (3 20) (E|F) (E F=Mor
L) are the translation operators including Wigner 3-j symbol. The operator (E\F) can be calcu-
lated recursively in O(N}}) arithmetic complexity [28]. Eqgs. (3.18)—(3.20) can be recast using the

orthogonalization of spherical harmonics in O(N}) arithmetic complexity:

)
Mfdlcfﬁ Z Mfélf’ﬁl 0) Dg,(R"), (3.21a)
b=—a
o0
~rGiik; 351 ~ Gk B3l
Mg ) = 3 (MIM)E (o = w15 50) My ™ (w0), (3.21b)
a=|d|
C
M ) = > M (1) Diyg (R), (3.21¢)
d=—c
a
Gk 35l Gsizk; Bl
MR ) = Y M (y) DG (RY), (3.22a)
b=—a
o
[ Gk Bil k3 B3l
Legn™ (@) = 3 5 (MIL)Z (g1 — 13 50) Mo g™ (), (3.22b)
a:\d\
Lfblcfﬁl Z L%f’ﬁl 1)Dyq (R) (3.22¢)
\ df—C
a
LEEE @) = 3 L (@) DY, (RT), (3.232)
b=—a
~ . e
LEER (@) = >~ (LIL) (21 — @0; 50) Lo 5in " (1), (3.23b)
a=|d|
. C
L @) = > LEiin ™ (o) Dy (R) (3.23¢)
d=—c

where Di,(R) are the rotation matrices of spherical harmonics and can be calculated recursively
in O(N}?) computational complexity [19]. In Eqs. (3.21)-(3.23), (E|F)Z (E|F)>?, and the

a,c’
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Boundary element

Yo
daor,
Y1

/@ Fieldpoint A
"y :Source point
o, 1 : Local expansion point
Yo, Y1 : Multipole point

Figure 3.1.: Translation theorems (M2M, M2L, and L2L).

rotation matrices of vector R are defined by

(Yo —v1) - R=|yo — y1les inEq. (3.21),
(1 —y1) - R=|x1 —yiles inEq. (3.22),
(xg —x1) - R=|xo — x1|e3 inEq. (3.23),

where e3 is given by e3 = (0,0, 1). All of the calculations in Egs. (3.21)—(3.23) and the evaluations
of (E]F)ZC are conducted in O(N}}) computation. The detailed expressions of (E\F)ZC and the
recursive computation are presented in Appendix A.

3.1.3. Some numerical techniques for efficient CQ-FMBEM

Two typical techniques that enhance the stability and efficiency of the CQ-FMBEM are presented.
The first is scaling of the multipole moments (3.12) and (3.13) with the modified spherical Bessel
functions i, and k,. i,(2) and k,(z) exponentially tend to infinity and zero for a large argument z,
respectively. This fact sometimes causes instability of the translation formulas (3.18)—(3.20) when
cell size is large. The second is the truncation of M2L translations. Some M2L translations for the
retarded potential calculation can be neglected because the fundamental solution in Laplace-domain

rapidly approaches to zero if the distance between field and source points = |x — y| is large.

Scaling of modified spherical Bessel function

When the absolute value of the argument |z| is large, the asymptotic expressions of i, (z) and k,(z)

are given by

(3.24)
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Figure 3.2.: Scaling for M2M moment translated from C,, to C, using half diagonal length of cube
cell.

Therefore, the scaled modified spherical Bessel functions iq and k, are defined by

v

10(2) = € Fig(2),  ka(2) = €ka(2). (3.25)

Scaling of multipole and local expansions

To utilize the scaled modified spherical Bessel functions in Eq. (3.25), the multipole and local
expansions and the translation operators also have to be modified. Taking into account p, which
is the half diagonal length of a cube cell C, as shown in Fig. 3.2, the scaled multipole moment
QMaG’Zfﬂ !, the scaled local expansion coefficient gﬁgzﬁ;ﬂ !, and the scaled functions oFyp and
0O, are defined as follows:

Giusk;Bil _ — Giisk; B3l Giisks Bl Giisk; 851
QMa,bZ;oc =¢ SLPQMa,b?a ’ Qﬁa,bl;a - esnga,bl;a ’ (3.26)
oFap =€ PUF, 00fy, = €20/ . (3.27)
Consequently, the scaled multipole and local expansions for G%;B ! are recast as follows:
00 a i
isk; 851 S (2& + 1) G;i;k; 651
G =3 3 08 @~y MR o) | B28)
a=0b=—a L s:)\%
00 a i
i5k; 851 S (2CL + 1) [EXHHH
Gkt = 3~y el P G T P Al (z0) . (3.29)
a=0b=—a L s=AL
s
The scaled multipole and local expansions for H%;’B ! can be obtained in the same manner as the

ik B3l
ones for G%”B .
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3. Acceleration of CQ-BEM

Scaling of M2M, M2L, and L2L

Considering the sizes of cells before and after translations, the scaling of translation formulas
(M2M, M2L, and L2L) for Egs. (3.28) and (3.29) can be obtained. Taking into account the variation
of cell size from p to 2p as shown in Fig. 3.2, the scaling of M2M formulas (3.21) is expressed as

follows:

~ Giisk; B85l G, H NN
gMaviaﬁ Z e abzozﬁ yO)ng(RT)’ (3.30a)
b=—a
(o]
= Giiskif; . Grivke
2o MEERA (1) = 3T (MIMYL (50 — w15 50) eMETFH (o), (3.30b)
a=|d|
C
Giisks il Giisks 35
20eMn (1) = D 2e M (1) Dig (R) (3.300)
d=—c

where (E|F )Z . (E,F = M or L) is the scaled translation operator, and the detail is given in
Appendix A. The scaled M2L and L2L formulas can be obtained by analogous modifications of
Egs. (3.22) and (3.23) as follows:

p

~ Giisk; B85l G7 ik l
M (y Z oM (y1) DG (RT), (3.31a)
b=—a
LT () = N emseldn 20 (ML) (g1 — @13 5,) M (y1),  (331b)
a*\d\
Giisk; l AGisk; l
@EC:bZ;Oé 7 Z Ecda i )ng (R) ) (331C)
d=—c
a
~Giik; 650 [EXHHH
2‘9[:@:;;016 (1131) = Z ‘Ca bza 7 ( 1)D3b(RT)7 (332&)
b=—a
~ . 0 - .
LTI @g) = D7 (LIL)E (@1 = @03 50)20L 5 g (a0, (3.32b)
a:\d\
Giisk; l 5Giisk; l
Q'CCJ)Z?OC 8 Z ﬁc dla ’ )ng (R) . (3320)
\ d=—c

In Eq. (3.31), dyor denotes the distance between the multipole point y; and local expansion point
x as shown in Fig. 3.1.

Truncation of M2L

From Eq. (3.31b), the M2L moment tends to zero for a large argument s¢(dM2L — 20), where
dnar, — 20 corresponds to the minimum distance between two cells rp,i,, and it holds that dygor, —
20 < rmin as shown in Fig. 3.3. Negligibly small values of £G’z’k'3 l( 1) in M2L (3.31) are

c,d;a
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Figure 3.3.: Distance between two cells in M2L translation.

excluded from the translation process in order to accelerate the FMM calculation. To this end,
the asymptotic behavior of M2L including exp[—s,(dmar, — 20)] is investigated. The truncation
condition is expressed as follows:

R [5,(daor, — 20)] > blog 10, (3.33)

where b is the number of significant figures required in M2L computation. The truncation procedure

is briefly summarized as follows:

1. sy(dmar — 20) is evaluated before M2L.
2. The truncation condition defined in Eq. (3.33) is calculated.

3. If the truncation condition defined in Eq. (3.33) is satisfied, M2L is neglected. However,
when Eq. (3.33) is not satisfied, M2L must be conducted as usual.

This truncation technique can be applied to the large number of M2L translations to save computa-
tional time. The truncation parameter b is given by b = 20 in this study.

3.1.4. Computational complexity

We briefly conclude the computational complexity of our proposed method for N and M. here.
The computational complexity of one matrix-vector product for spatial components is considered
as O(M.) or O(M,log M.) owing to use of the FMM [62]. The computational complexities of
FMM and FFT are dominant in the time-marching process presented in Section 3.1.1. The number
of FMM implementation is O(N?), and the number of FFT calculations is O(NM,). Therefore,
the computational complexity of FMM is O(N2M.) or O(N2M, log M,), while the one for FFT
is O(N?M,log N). In practical numerical computations, the computational time of FMM usually
becomes much larger than that of FFT, and O(N?M,) or O(N?M, log M) is considered as the total
computational complexity of the proposed method. On the other hand, the memory complexity is
O(N M,) owing to the FMM [62].

27



3. Acceleration of CQ-BEM

0.5
0.4 1 Reference
CQ-BEM
031 ——— CQ-FMBEM
0.2 1
)
= 01
)
0.0 -
-0.1 A
-0.2 A
-0-3 T T T T T T T T
o 1 2 3 4 5 6 7 8
crt/a

Figure 3.4.: Time variations of p/pg obtained by CQ-BEM and CQ-FMBEM using RK3 at point X
in Fig. 2.3 when cyAt/a = 0.069.
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Figure 3.5.: Absolute errors between p/py obtained by CQ-BEM and CQ-FMBEM, which are
shown in Fig. 3.4.

3.1.5. Numerical results

To verify the accuracy and to demonstrate the computational efficiency of the proposed CQ-FMBEM,
some numerical examples are presented in this section. The same analysis model as Section 2.3 de-
picted in Fig. 2.3 is used for this numerical simulation. The truncation number for the summation
of multipole and local expansions, such as Eqgs. (3.10) and (3.11), is chosen as Ny = 10 for all
simulations in this study.

First, the comparison of numerical solutions obtained by the CQ-BEMs with and without the
FMM for accuracy verification. Fig. 3.4 shows numerical solutions for the same simulation as Fig.
2.7 when cyAt/a = 0.069, and the dashed line is obtained by the CQ-FMBEM with RK3. As we
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Figure 3.6.: Computational time comparison between CQ-BEM and CQ-FMBEM using RK3 for
3-D acoustic wave problem.
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Figure 3.7.: Required memory comparison between CQ-BEM and CQ-FMBEM using RK3 for 3-D
acoustic wave problem.

can see from Fig. 3.4, the waveforms obtained by the CQ-BEM and CQ-FMBEM are very similar.
On the other hand, the absolute errors between p/py obtained by CQ-BEM and CQ-FMBEM are
plotted in Fig. 3.5. These errors are caused by the approximation in the FMM and considered as
sufficiently small from Fig. 3.5.

Second, the computational efficiency of CQ-FMBEM is confirmed. All of the computations here
are conducted by a single processor. Discretized BIE (2.33) is numerically solved by both CQ-BEM
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Figure 3.8.: Analysis model for elastic wave scattering by an obstacle in a 3-D infinite domain

and CQ-FMBEM, and the non-preconditioned GMRES [74], which is one of the Krylov subspace
solvers, is used. In the CQ-BEM, all of the influence functions (2.30) are stored after the calculations
for all elements and time steps.

The computational time and required memory for both CQ-BEM and CQ-FMBEM with RK3 are
shown in Figs. 3.6 and 3.7, respectively, when c¢fAt/a = 0.069 and N = 128. As shown in Fig.
3.6, the CQ-FMBEM is faster than the CQ-BEM when the number of elements M, is M, = 5000 or
more. Moreover, the memory required by the CQ-FMBEM is much less than that by the CQ-BEM
as shown in Fig. 3.7. Consequently, the CQ-FMBEM is more efficient for large-scale problems than
the CQ-BEM.

3.1.6. CQ-FMBEM for 3-D elastic wave problems

The CQ-FMBEM is applied to 3-D elastic wave problems in this section. The CQ-FMBEM for this
problem has been developed by Maruyama et al. [55]. Only the formulation of BIE and multipole
and local expansions are presented because the calculation algorithm is same as the one for 3-D
acoustic problems.

Let S be a closed boundary with unit normal vector n in R? as depicted in Fig. 3.8. D is an
exterior domain, which is a homogeneous, isotropic, and linearly elastic solid. Disregarding the
body force, the displacement w satisfies the following governing equation:

GV2u(z,t) + (i + ¢7) VV - u(z,t) = ii(x,t) =z € D, (3.34)

where ¢y, and cr are the velocities of P and S waves, respectively, and expressed using the density

p and the Lamé constants A and p as follows:

A+2u \/ﬁ
L = ’ cr = D
P p

We assume that the solution u of Eq. (3.34) satisfies the following initial condition:

u*(z,0) = 4*(x,0) =0 x€D. (3.35)

Considering the Sommerfeld radiation condition for scattered waves and initial condition (3.35), the
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time-domain BIE for displacement u is formulated by means of the usual manner as follows:

t
C(x)u(x,t) = uin(a:,t) +/ / U(z,y,t —7)-t(y, 7)dS,dr
0o JS
t
—/ p.v./ T(x,y,t —7)- u(y,7)dS,dr, (3.36)
0 S

where C'(x) is also the free term [14] depending on the boundary shape at &, and ¢ is the traction
force. U and T are the fundamental displacement and traction solutions for 3-D elastodynamic
problems in time-domain, respectively [1]. The displacement formulation defined in Eq. (3.36) is

used for the boundary element analysis of elastic wave scattering in this chapter.

CQ-FMBEM formulation

In numerically solving BIE (3.36), the convolution integrals are evaluated by means of the IRK-
based CQM, and the surface integrals over the boundary .S are discretized by the piecewise constant
approximation. The discretized BIE at n-th and i-th sub-step in time is written as follows:

Me m
1 . . noZe ) )
§u:n — ulvn,z,n + E : 2 : § : Z/{'Zy]ozn_k . tgx,k: _ Tyzgé,n—k . ué’k
k=0 a=1 j=1
(i=1,...,m), (n=0,..,N—1), (3.37)
where

Py = p(ay, (n+¢i)At), (p=wu,t, or u™).

In Eq. (3.37), L{%Z” and 7'%}” are the influence functions defined by

UsE = Firt [Z (Eﬂ(g))ij/s [Af(mv,y,)\lﬁ)dSy], (3.38)
p=1 g

7‘71'&;:@ - ]?lgl [Z (Eﬁ(gl))ijp.v./s T(acq,,y,)\lﬁ)dsy , (3.39)
B=1 o

where U and T are the Laplace-domain fundamental solutions for displacement and traction, re-

spectively. Rearranging Eq. (3.37) according to the time step, the following expression is obtained.

M m 1
S [ (5100t + T ) i i i

a=1j=1

M m
=ulir =3 NN [ﬁgnk Y A T B (3.40)
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The matrix-vector calculation of retarded potential terms in the right-hand side of Eq. (3.40) is
rapidly evaluated by the FMM in order to reduce the computational cost. Only the multipole and
local expansions are presented here because the time-stepping procedure and translation theorems
are same as the CQ-FMBEM for 3-D acoustic wave problems.

In order to derive the multipole and local expansions, U’ f 75  and TZI ’fy a’B  are defined by
Ukt = VS Ui (2o, y, Ny)dS, } £ (3.41)
TR = [/ Tric(xy,y, \5)dS, ] T (3.42)
where
m m
;K385 k k;B;l ik
it =30 (Ba(@) il G =30 (Ba(@), il
j=1 j=1

U and T in Egs. (3.41) and (3.42) are expressed using the fundamental solution of modified
Helmbholtz equation G as follows:

kgl _ ]. AT ]. 82 T AL
Ois) = |67 oy + g (T @) = GHmye) | G

A 0 -
TIK(mvyv S) = nJ(y)CKJpanIp(mayvs)a (344)
q

where Cjj; is a component of the elastic modulus tensor. The multipole and local expansions for
Laplace-domain fundamental solutions can be derived in a similar way to the ones in frequency-
domain [99, 17].

Taking into account the scaling of modified Bessel functions, substituting Egs. (3.4a), (3.43), and
(3.44) into Eqs. (3.41) and (3.42) yields the following multipole expansions:

ki3t ULsisk;Bsl
U =30 3 |4 o Ot — ) b MO
a=0b=—a
9 or UpsisksBi
+ Buerg oz 0O0a (T — Yo) oM a b (yo) ) (3.45)
J s:/\é3
ki3l Tr;i:k:85
T =30 3 [ {0kl o) | M
a=0b=—a
9 T Tr3isk;Bsl
t+ Baerrr | 5, -0ap(@y —%0) [ Migra” (W0)| . (3.46)
s=AL
8

where g./\/lHL GRS and QMHT’Z’k %1 are the scaled multipole moments with respect to P and S

waves, respectively, and the superscript IT is II = U or T'. In addition, e;j;, indicates a component
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of the 3-D permutation tensor, and A, and B, are defined by

A - sp(2a+1) _ 2a+1
‘o drpst “ drpsp’
In Egs. (3.45) and (3.46), each of U}’;g  and Tzlkg * has four multipole moments: one for P waves
((M giékﬁ l) and the others for S waves (,,M ?gblolf it ,t =1,2,3). The explicit expressions of the

multipole moments in Eqgs. (3.45) and (3.46) are shown as follows:

e B ik F -
gMaU,i;’c;kﬁ,l(yo) — tk’jf,l / [ag Fhy(y - yo)] dSy, (3.47)
Sa YK
ke B i o -
oM (o) =68 / eIk [895?})(1/ - yo)] dsy, (3.48)
Sa Yj
oMo (o) = il /S Crc g (y) [ 5000 yo)] s, (3.49)
P p o -
MR (o) = uEH / etupCK Ipqns (Y) {Mgﬁf B (y — yo)] dsS,. (3.50)
Sa YqOYu

The local expansions for USR5 and TER9 are obtained by substituting Eq. (3.4b) into Eqgs. (3.41)

Iiya Iivya
and (3.42) as follows:

kil _ 0 ULk
U =303 | {w 0 oL )
a=0b=—a [
B 0 LUk 3.51
+ Daétrg %g ~ — T0) ta,bia ) ) (3.51)
d s:)\%
o0 a a
L HEH rL ,l,k,ﬂl
TS Y | (et —wo} o
a=0b=—a 4
a T TTvl}k76l
+ Bgetry %Qfa,b(m’y —20) ¢ oLigha  (T0) ; (3.52)
d s=A!L
where EHL ;k i and EHT;f’f % are the coefficients of local expansion with respect to P and S

waves, respectlvely. The coefficients of local expansion can be written by replacing Q]?(fb(y —Yo)
by g@fb(y — xp) in Egs. (3.47)—(3.50) as follows:

RN ’L 8 =
LU ) = [ O - w0 a5, 653
« LOYK
sisk; is 0 A
Lo (@) =t / etIK [agoib(y_wo)} dSy, (3.54)
Sa YJ

Qﬁg}bsolkyﬂyl(wo) = ukk;fvl / CKJpan<y) |:8 9 QOCIL/,b(y — :1:0)] dSy, (355)
Sa YpOlYq
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Figure 3.9.: Elastic wave scattering by a spherical cavity subjected to an incident plane wave.

ket B ko B 0 ~
Q‘sz,’zzgﬁl(mo) = u%ﬁfvl/ etupC’KJpan(y) [aagogj)('y - CBQ) dSy. (3.56)
Sa YqOYu

In Egs. (3.47)~(3.50) and Egs. (3.53)-(3.56), ,07 , and ,F7, are defined by
Qﬁf,b = e—S«pQF(fb, g@:ib — eSLpQO:ib. (357)

Gk B Giisk; B ; : Hpsiks Bl pHpsisks Bl
If oM 0Ly b A, and s, in Egs. (3.30)~(3.32) are replaced with oMb oLyt
and sy, respectively, the translation formulas for the P wave moments are derived. Similarly, re-
placing (MR LOIRGL and s, in Egs. (3.30)~(3.32) by oM T pITkEL and s,
respectively, the translation formulas for the S wave moments are also obtained.

Numerical results

The scattering of an incident plane wave by a spherical cavity is numerically solved to show the
accuracy and efficiency of the CQ-FMBEM for 3-D elastodynamics. The computational time and
required memory are confirmed by comparing the results from CQ-BEMs with and without FMM.
The boundary condition on S is assumed to be t = 0, and Poisson’s ratio v is given by v = 0.25.
An incident plane P wave scattering by a spherical cavity with radius a as depicted in Fig. 3.9,
is numerically solved to verify the accuracy of the CQ-FMBEM for 3-D elastodynamics. Displace-
ment fields at the point X in Fig. 3.9 are investigated for CQ-FMBEMs based on different schemes
and various time increments. The following Ricker wave [71] with amplitude uq is used as an

incident plane wave.

u(x,t) = \g%uodcp (a—0.5)e (3.58a)

2
o= [wfin <t R +“>} , (3.58b)

CL

where d,, is the displacement vector of the incident wave, and ¢ = L, T'V, or T'H and indicates
a P, SV, or SH wave, respectively. In this section, we present only the results of P wave incidence,
and therefore, ¢ = L and d; = (1,0,0) are given. In addition, f™ is the center frequency of
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Figure 3.10.: Time variations of u3°/ug obtained by using BDF2 at point X in Fig. 3.9 when M, =

9280.
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Figure 3.11.: Time variations of u$°/u( obtained by using RK2 at point X in Fig. 3.9 when M, =
9280.

the incident wave, and ¢, is the peak time parameter. In this analysis, ¢, = 1/f™ and f* =
acr, /A are considered, where A is the P wavelength with respect to f™ and given by A\ /a =
V/3. The boundary surface of the cavity is discretized into M, = 9280 flatly triangular boundary
elements. The reference transient solutions are constructed by the inverse Fourier transform because
this problem has also been analytically solved in the frequency-domain by Pao and Mow [67].

The time variations of u5° /g at point X in Fig. 3.9 obtained by BDF2, RK2, and RK3 are shown
for different time increments in Figs. 3.10, 3.11, and 3.12, respectively. As seen from Fig. 3.10,
the BDF2 with the smallest time increment cpAt/a = 0.015, can yield very good results at the

35



3. Acceleration of CQ-BEM

0.10

;)

0.05 - / ‘
0.00 - it = via s

(@)
~ -0.05 A
o~ O Reference
3 10 | crAt/a = 0.24
—_—— CTAt/G:O~12
o5 | U _____ crAt/a = 0.06
........ « erAt/a=0.03
-0.20 ; - ' ' ' ' '
0 1 2 3 4 5 6 !

Figure 3.12.: Time variations of u$°/uq obtained by using RK3 at point X in Fig. 3.9 when M, =
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Figure 3.13.: Time variations of uj°/uo obtained by using RK3 at point X in Fig. 3.9 when
crAt/a = 0.06.

time up to crt/a = 3. However, uj°/uq is not accurate compared with the reference solutions
after cpt/a = 3, and fluctuations can be seen clearly. In particular, larger time increments, e.g.,
cerAt/a = 0.06 or 0.03, give less accurate results. Consequently, a small time increment is required
for accurate computation of u3°/ug for the time range between crt/a =4 to 7.

As shown in Figs. 3.11 and 3.12, better accuracy can be obtained by the RK2 and RK3 for the
cases of ¢z At/a = 0.06 and 0.03 than that by the BDF2. The fluctuations of u3°/ug increase with
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Figure 3.14.: Computational time comparison between CQ-BEM and CQ-FMBEM using BDF2 and
RK3 for 3-D elastic wave problem.
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Figure 3.15.: Required memory comparison between CQ-BEM and CQ-FMBEM using BDF2 and
RK3 for 3-D elastic wave problem.

increasing time increments. u3°/ug calculated by the RK2 and RK3 using ¢ At/a = 0.03 and 0.06
seem to be sufficiently accurate with the exception of a slight oscillation at about crt/a = 5.

The effect of spatial discretization of the BIE on the numerical solutions is next investigated. Fig.
3.13 shows ui®/ug as a function of time at point X in Fig. 3.9 in the cases of M, = 9280 and 50230.
These results are calculated by the RK3 using ¢z At/a = 0.06. As expected, a large number of
boundary elements, M, = 50230, give more accurate results than M, = 9280. The accuracy of the
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Table 3.1.: Computational time and required memory of CQ-FMBEM when N = 128 and M, =

5048.
BDF2 (m=1) RK2 RK3
Computational time (sec) 45291 115860 161140
Required memory (MB) 91 174 272

numerical results can be improved either by using high order elements for the spatial discretization
or by increasing the number of boundary elements.

The computational time and memory needed by the CQ-FMBEM with BDF2 and RK3 are shown
in Figs. 3.14 and 3.15, respectively. The time increment ¢y At/a = 0.08 and the total time step
N = 128 are used here, and all computations are performed by a single processor. As shown in
Fig. 3.14, the CQ-FMBEM with BDF2 is faster than the CQ-BEM with BDF2 when the number
of elements M, is M, = 5000 or more. Moreover, the memory required by the CQ-FMBEM
is much less than that by the CQ-BEM as shown in Fig. 3.15. The CQ-BEM with BDF2 could
not be performed when the number of elements M, is M, = 4000 or more because of memory
restriction. The similar behavior is seen for RK3. Consequently, the CQ-FMBEM is more efficient
for large-scale problems than the CQ-BEM.

Next, the relation between the stage number of IRK method m and the computational efficiency
of the proposed method is considered. The sub-matrix of influence functions becomes 3m x 3m
size as shown in Egs. (3.38) and (3.39). However, the argument )\% used in Egs. (3.38) and (3.39),
which corresponds to the Laplace parameter, has m components per /. Only m kinds of translation
operators for each of M2M, M2L, and L2L are required in the FMM although the multiplications in
the translation theorem and near-field contribution require O(m?) calculation. Therefore, for small
m and large M., it is expected that the combination of the FMM and IRK-based CQ-BEM can
reduce the computational cost as the stage number of the IRK method increases. Table 3.1 presents
the computational time and memory for BDF2, RK2, and RK3 when N = 128 and M, = 5048. As
shown in Table 3.1, the computational time seems to be not O(m?) but faster than it. However, the
behavior of computational time with respect to m is not stable because the M2L truncation depends
on )‘ZB' On the other hand, the memory complexity for m is O(m), and this fact is obviously

confirmed from Table 3.1.

3.1.7. CQ-FMBEM for 3-D coupled acoustic-elastic wave problems

In this section, the formulation and numerical results of the CQ-FMBEM for the 3-D coupled
acoustic-elastic wave problems are presented. The CQ-FMBEM for this problem has been de-
veloped by Maruyama ef al. [53].

Let S be a closed interface between a fluid domain D/ and solid domain D? as depicted in Fig.
3.16. The superscripts of normal vector n, f and s, indicate respective domains, and s denotes the

unit tangential vector to S. Disregarding the body force, the pressure p in D/ and displacement w
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Figure 3.16.: Analysis model 3-D for coupled acoustic-elastic wave problems

in D? satisfy the following governing equations:

GVp(x,t) = p(x,t) x € D, (3.59)
AV2u(x,t) + (2 — &)VV -u(x,t) = i(x,t) x € D, (3.60)

Taking into account the continuity of displacement and traction force on the interface S, the interface

conditions are given as follows:

—pynt (x) -ii(z,t) = g(x,t) xS, (3.61)
n’(x) - t(x,t) = —p(x,t) x €S, (3.62)
s(x) -tx,t)=0 xe€b, (3.63)

where p; is the density of fluid. Assuming that the incident wave exists in D*® and that D{ is closed

inner domain as depicted in Fig. 3.16, the initial conditions for wave scattering problems are given

as follows:
u(z,0) = u(x,0) x € D, (3.64)
u(x,0) =u(x,00 =0 xcb, (3.65)
p(x,0) = p(x,0)=0 x=e D/, S (3.66)

Using boundary conditions (3.61)—(3.63), the time-domain BIEs for pressure (2.27) and displace-
ment (3.36) can be solved simultaneously.

Substituting Egs. (3.61)—(3.63) into BIEs (2.27) and (3.36) and assuming that Pt =0 yield the
following BIEs:

Cl@)n(a.t) = oy /0 /S G, y.t — r)n (y) - ii(y, 7)dS,dr

t
—/ p.V./H(:c,y,t—T)n(y,T)dSydT, (3.67)
0 S
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t
C(x) u(x,t) = uin(a:,t) +/ / U(x,y,t —7) -n°(y)n(y, 7)dS,dr
0o JS
t
— / p.v./ T(x,y,t—7)- u(y,7)dS,dr, (3.68)
0 S

where 7 is defined by n = n® - t. The second derivative of displacement with respect to time &
is contained in the right-hand side of Eq. (3.67). This second derivative has to be numerically
treated by some techniques in order to simultaneously solve Egs. (3.67) and (3.68). Using the CQM
formulation, it is easy to treat time differential terms.

Taking into account the identity of convolution integral

d

o Uerg) (0= (I xg) (0 + k(0)g(t)

and initial condition (3.65), the second term in the right-hand side of Eq. (3.67) can be modified as
follows:

t
oo | [ Gloyt—rn/ (v - ity r)as,ir
t
= ,of/ / @(m,y,t - T)nf(y) ~u(y, 7)dS,dr. (3.69)
0 JS

As shown in Eq. (3.69), derivatives of quantity are no longer included. Next, the discretization
of Egs. (3.67) and (3.68) and the numerical treatment of differentiated fundamental solution G in
Eq.(3.69) using the CQM are presented.

CQ-BEM formulation

In numerically solving the BIEs (3.67) and (3.68), the convolution integrals are evaluated by means
of the IRK-based CQM, and the surface integrals over the interface .S are discretized by the piece-
wise constant approximation. The discretized BIEs at n-th and ¢-th sub-step in time are written as

follows:

n

=SS [yt ], 370)
k=0 a=1 j=1
1. o n Mmoo .
guzn:uanmzzz[usa"-k~nzna Smat]. e
k=0 a=1 j=1

where D,%” is the influence function with respect to the differentiated fundamental solution G and

given as follows:

40



3.1. Fast multipole accelerated CQ-BEM (CQ-FMBEM)

D = Fi! Z(}JB)Q(EB(Q)LJ'/S@(ww,y,)\lﬁ)dsy . (3.72)
=1 g

()\%)2 in Eq. (3.72) is difference between D%ﬁ and g;'joi” in Eq. (2.29). This term is caused by
the differentiation with respect to time because Laplace-domain kernel functions are used here. The
Laplace transform of time differentiated function is given as follows:

L [if(t)} = sh(s).

From the above, BIEs (3.67) and (3.68) can be solved simultaneously with the easy treatment of the
second derivative of displacement.

We confirm the numerical errors of calculating the second differentiation of fundamental solu-
tion in the CQM through numerical experiment. Therefore, the following convolution integral is

computed in two ways, and their results are compared.

u(t) = /t G(z,y,t —1)Y(r)dr 0<t, (3.73a)
0
U(t) = t3e H(t), (3.73b)

where G is specifically described as follows:

1
Glz,y,t) = —6 (t - T) , (3.74)
4y cr
where 4(+) is the Dirac delta distribution. The exact solution of u in Eq. (3.73) can be obtained as
follows:
1 . r
t) = — t——. 3.75
utt) = g (1= =) (75)

We investigate the relative errors caused by numerical computation of Eq. (3.73) in the following

two ways.

case 1 The CQM is applied to Eq. (3.73a) after differentiation of ¢/. In other words, the following

equation is evaluated by means of the CQM.
t
u(t) = / G(z,y,t — 7)(7° + 67 + 67)e"dr. (3.76)
0

case 2 As well as the proposed method, the convolution integral including the second differenti-
ation of fundamental solution is computed by the CQM. Namely, the following equation is
computed by the CQM.

t
u(t) = / Glx,y,t — )37 dr. (3.77)
0
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Figure 3.17.: Relative errors for calculating convolution integral (3.73) vs. time increments using
IRK-based CQM with RK2 and RK3.
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Figure 3.18.: Elastic wave scattering by a spherical obstacle subjected to an incident plane wave.

The total analysis time is cyt/r = 2, and we investigate computational errors varying the time
increment c¢At/r. In addition, the RK2 and RK3 are used for the CQM. The relative errors |(u —
@) /u| caused by both cases are plotted in Fig. 3.17. As we can see from Fig. 3.17, behavior of errors
is unstable when c;yAt/r is comparatively large. However, the slopes of relative errors caused by
case 1 and case 2 are identical, and their behavior is stable when cyAt/r is sufficiently small. An
increase of computational error from case 1 to case?2 is considered as caused by the rapid fluctuation
of differentiated fundamental solution. However, we can use the numerical approach of case 2 if

cyAt/r is sufficiently small.

Numerical results

The numerical examples deal with the scattering problems of an incident plane wave by a spherical
cavity, elastic inclusion, and fluid-filled inclusion as depicted in Fig. 3.18. In this section, the

far-field approximations of scattered wave w5 are evaluated, and their details can be found in
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Table 3.2.: Material constants for base material and inclusions.

P wave velocity S wave velocity Density

Base material cy, cr P

Elastic inclusion cr/V3 cr/V3 p/2

Fluid-filled inclusion cr/V3 - p/2
4

2 4
—~~
o
3
S o
~
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-4 . = . : I
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Figure 3.19.: Time variations of far-field backscattered amplitude €27, /(aug) for various obstacles
subjected to an incident plane P wave.

15

=
3
S
~~
-
S e Cavity
10 1 — Elastic inclusion
""" Fluid-filled inclusion
-15 T T T T T
0 5 10 15 20
(cpt —x)/a

Figure 3.20.: Time variations of far-field forward-scattered amplitude €27, /(aug) for various obsta-
cles subjected to an incident plane P wave.

Appendix B. The Ricker wave described in Eq. (3.58) is used as an incident plane wave. We
present numerical results of P and SV wave incidence, and d,, is given by d;, = (1,0,0) and
dry = (0,1,0). Time parameters are set as A /a = /3, t, = 1/f", erAt/a = 0.12, and
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Figure 3.21.: Time variations of far-field backscattered amplitude Q7 /(aug) for various obstacles
subjected to an incident plane SV wave.
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Figure 3.22.: Time variations of far-field forward-scattered amplitude 27y /(aug) for various ob-
stacles subjected to an incident plane SV wave.

N = 128. In addition, the RK3 is used for the CQM. Material constants for base material, elastic
inclusion, and fluid-filled inclusion are shown in Table 3.2, and Poisson’s ratio of base material v is
given by v = 0.25. As shown in Table 3.2, the acoustic impedance of elastic inclusion for P wave
is identical with the one of fluid-filled inclusion. For all numerical simulations in this section, the
surface of obstacle is divided into M, = 9280 flatly triangular boundary elements.

Figs. 3.19 and 3.20 show the time histories of 7, /(aug) corresponding to backscattered and
forward-scattered waves, respectively, when an incident plane P wave is scattered by a various
spherical obstacle. ), is the far-field scattered amplitude and found in Appendix B. As shown in
Fig. 3.19, the amplitudes of the first wave at about (cpt — z)/a = 0.7 generated by elastic and

fluid-filled inclusions are almost same because their acoustic impedances for P wave are identical.
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Table 3.3.: Computational time (sec).

Cavity Elastic inclusion Fluid-filled inclusion
P wave scattering 41959 220103 114366
S wave scattering 41999 223366 114952

In addition, the phase of waveform at about (c1t — x)/a = 0.7 is the inverse of incident wave,
and then, large amplitude waves arrive in the case of elastic inclusion. These phenomena have also
been observed in the previous 2-D simulation [64]. On the other hand, there is only slight difference
among far-field forward-scattered waves by various obstacles as shown in Fig. 3.20.

Figs. 3.21 and 3.22 show the time histories of Q7 /(aug) corresponding to backscattered and
forward-scattered waves, respectively, when an incident plane SV wave is scattered by various
spherical obstacles. In this simulation, © in Appendix B is given by © = (0,1,0). As shown in
Fig. 3.21, the amplitudes of the first wave in the cases of cavity and fluid-filled inclusion are almost
same, and the one in the case of elastic inclusion is comparatively small. This is because S waves
are completely reflected on the cavity and fluid-solid interfaces. In addition, the secondary waves
at about (cpt — x)/a = 6.0 are greatly dissimilar among different obstacles. There is only slight
difference among far-field forward-scattered waves as shown in Fig. 3.22 similarly to the case of P
wave scattering.

The computational time required for solving the boundary value problems is shown in Table 3.3.
The numerical simulations were conducted using the OpenMP parallelization with 24 threads. As

shown in Table 3.3, the most expensive case costs about 3 days.

3.2. Acceleration for number of time steps

The acceleration of CQ-BEM for the number of elements using the FMM had been discussed until
the previous section. However, there remains the issue of computational cost with respect to the
number of time steps N, and the computational complexity of CQ-FMBEM with respect to N is
still O(N?). This computational complexity prevents the application of CQ-FMBEM to a long
time analysis. Therefore, the time-marching process of CQ-FMBEM is improved using the rapid
convolution algorithm [31] without error increasing in this section. A new M2L truncation condition
can be introduced through the rapid convolution algorithm. Consequently, the total computational
complexity of a new CQ-FMBEM becomes about O (N M, log N log M. ), and that is demonstrated

by showing some numerical results.

3.2.1. New time-marching process of CQ-FMBEM

In this section, the calculation process of matrix-vector products with respect to time for Eq.(3.3)
is improved by using the rapid convolution algorithm. The right-hand side of Eq. (3.3) consists of

the Toeplitz matrix depicted in Fig. 3.23 (a) and the boundary value vector. Moreover, we can use
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Figure 3.23.: (a) Coefficient matrix structure for time and (b) calculation order of sub-matrix in the
rapid convolution algorithm [31].

Algorithm 1 Select h at n-th step.

I:1<n

2: for j =0,...do
32 k<

4: if k = i then

5: h<k

6: exit

7.  elseif k > i then
8: i<=i— 2071
9: goto 2
10:  end if
11: end for

only past boundary values, i.e. q°,...,q" ! at n-th step. This type of matrix-vector products can
be evaluated by the rapid algorithm using FFT with O(N log? N ) computational complexity [31].
In this algorithm, the product of 2" x 2™ sub-matrix and 2" dimensional sub-vector is calculated at
every time step because of using the FFT.

According to [31], the multiplication of sub-matrix and sub-vector is conducted in the order

shown in Fig. 3.23 (b). Specifically, we calculate the following matrix-vector product at n-th step.

Sn Gh thl . Gl qn—h
Sntl Gh+1 Gh e G2 qn—h+1
, = | | : . (3.78)
Sn-‘r.h—l GQ}L—I GQ}L—Q . G‘h qn.fl

Then, the resulting vector 8™ is used to update R” as follows:
R*+S"=R" for k=n,..,n+h—1.

An appropriate h has to be chosen for efficient computation using the FFT, and h at n-th step can

be determined by Algorithm 1. As shown in Algorithm 1, h is always an exponent of two.
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Now, we explain the computational procedure of Eq. (3.78) using the rapid convolution algo-

rithm. The Fourier-domain influence function ,C’;%l is defined by

Gt = Fu |G = Z (Eﬁ G1) / Glay, y, N5)dSy, (3.79)
B=1

and the corresponding component of matrix in Eq. (3.78) is described as Gl. The computational

procedure of the rapid convolution algorithm at n-th step is summarized as follows:

1. The vector consisting of 2h components {q”_h, g™ 0, .., O}T is transformed by discrete

Fourier transform (2.10) as follows:

(@, ... 1T = Fl{q" ", ..., 1,0, ...,o}T] . (3.80)

2. The components of Fourier-domain matrix f}l and the vector in the left-hand side of Eq. (3.80)
are multiplied, and the resulting vector is transformed by inverse discrete Fourier transform
(2.11) as follows:

_ ~_ ~ 0. ~2h—1_91__
(PO, ..., p2h—1)T = F-1 [{G i, ...¢" g1y (3.81)

In the right-hand side of Eq. (3.81), éldl for each [ includes the matrix-vector products
with respect to space. Therefore, the spatial matrix-vector products are rapidly evaluated by
the FMM. In addition, the following identity is also used for the efficient calculation of the
right-hand side of Eq. (3.81).

G =G'd (=1, h—1) (3.82)

As a result of Eq. (3.82), h + 1 spatial matrix-vector products are required in the right-hand
side of Eq. (3.81).

3. Considering the relation between S”™ in the left-hand side of Eq. (3.78) and P* in the left-hand
side of Eq. (3.81),

{s",...,s"%*l}T — {Ph, ...,P2h*1}T, (3.83)

S” can be determined, and R can be updated.

In order to use the FFT for the forward and inverse discrete Fourier transforms in the above, L is
given by L = 2h. In the total calculation process of retarded potential term, the computational com-
plexities of FFT and FMM are about O(N M, log? N) and O(N M, log N log M,), respectively.
The computational time of FFT is usually much smaller than that of FMM, and therefore, the total
computational complexity is considered as about O (N M, log N log M, ). In addition, the memory
requirement of the proposed CQ-FMBEM is in O(N M) order.
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3.2.2. Truncation condition for M2L using arrival time of influence waves

A new condition is introduced to the truncation of M2L in this section. The attenuative feature
of Laplace-domain fundamental solution has been used for the conventional M2L truncation in
Section 3.1.3. Moreover, arrival time of influence waves is considered for the additional truncation
condition.

As shown in Eq. (3.78), the influence functions from first to (2h — 1)-th step are used for the
evaluation of influence waves at n-th step. Therefore, the M2L calculation between two cells which

satisfy the following condition can be neglected.
coAt(2h — 14 ¢p) < daior, — 20, (3.84)

where dyror, — 20 is used instead of the minimum distance between two cells 7y, similarly to
Section 3.1.3. The notations, dyior,, 0, and 7y, are found in Fig. 3.3. This new truncation is
effective in sub-matrices near the diagonal of Toeplitz matrix with respect to time because it is
expected that many components before arrival of influence waves are included in them.

3.2.3. Numerical results

To verify accuracy and to demonstrate the computational efficiency of the new CQ-FMBEM, some
numerical results are presented here. The same analysis model as Section 2.3 depicted in Fig. 2.3
is used for this numerical simulation. All numerical simulations in this section are conducted using
the RK3.

First, we compare numerical solutions obtained by the conventional CQ-FMBEM presented in
Section 3.1 with the ones obtained by the new CQ-FMBEM proposed in this section. Fig. 3.24
shows the time histories of p/py at point X in Fig. 2.3 when c¢fAt/a = 0.069. As we can see from
Fig. 3.24, the waveforms of p/py obtained by the conventional and new CQ-FMBEMs are very
similar. On the other hand, absolute errors between p/py obtained by the conventional and new
CQ-FMBEMs are plotted in Fig. 3.25. These errors are caused by the rapid convolution algorithm
and new M2L truncation. Comparing between Figs. 3.5 and 3.25, the magnitude of errors in Fig.
3.25 is very small compared with that caused by the FMM.

Second, the computational efficiency of the new CQ-FMBEM is presented when computations
are conducted by a single processor. The computational time varying the number of elements M,
for both conventional and new CQ-FMBEMs is shown in Fig. 3.26. As shown in Fig. 3.26, the
new CQ-FMBEM is much faster than the conventional one. The slopes of regression lines for the
conventional and new CQ-FMBEMs are larger than O (M, ) and a little smaller than O (M, log M,).
On the other hand, the computational time varying the number of time steps IV for both conventional
and new CQ-FMBEMs are shown in Fig. 3.27. As shown in Fig. 3.27, the slopes of regression
lines for the conventional and new CQ-FMBEMs are greatly different. The slope of regression
line for the new CQ-FMBEM is very similar to O(N log V) although the one for the conventional
CQ-FMBEM is about O(N?). From the above, the total computational complexity of the new
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Figure 3.24.: Time variations of p/py obtained by conventional and new CQ-FMBEMs using RK3
at point X in Fig. 2.3 when cyAt/a = 0.069.
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Figure 3.25.: Absolute errors between p/pg obtained by conventional and new CQ-FMBEMs, which
are plotted in Fig. 3.24.

CQ-FMBEM is considered as O(N M, log N log M. ), which is much faster than the conventional
O(N2M_ log M,).

Finally, the situation of M2L truncation is presented in Fig. 3.28 when N = 128 and M = 3176.
The ratio of the truncated number to the total number of M2L. moments is plotted in Fig. 3.28.
The case of using only conventional condition (3.33) is presented in Fig. 3.28 (a). As shown in
Fig. 3.28 (a), the ratio of M2L truncation is about 0.2 on every sub-matrix. On the other hand, the
case of using both conventional and new conditions is presented in Fig. 3.28 (b). The ratio of M2L
truncation becomes large as the sub-matrix approaches the diagonal. This is because the new M2L

truncation condition (3.84) is effective in the sub-matrices of small size.
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Figure 3.26.: Computational time comparison between conventional and new CQ-FMBEMs using
RK3 for 3-D acoustic wave problem varying the number of elements M.
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Figure 3.27.: Computational time comparison between conventional and new CQ-FMBEMs using
RK3 for 3-D acoustic wave problem varying the number of time steps V.

3.3. Concluding remarks
e In Chapter 3, we have successfully applied the FMM to the IRK-based CQ-BEM for 3-D
acoustic and elastic wave problems and their coupled one. Moreover, the application of the

rapid convolution algorithm to the time-marching process in CQ-FMBEM has been shown,
and it has significantly improved the computational efficiency of the CQ-FMBEM with re-
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Figure 3.28.: Ratio of M2L truncation for each sub-matrix in triangular Toeplitz system using (a)
only conventional truncation condition (3.33) and (b) both conventional and new ones
when N = 128 and M, = 3176.

spect to the number of time steps.

e In the CQ-FMBEM, many M2L moments can be truncated using condition (3.33) because the
FMM calculation is carried out in Laplace-domain. Using the rapid convolution algorithm
[31] enables the additional truncation condition (3.84) for M2L calculation. The additional
condition is effective in the small sub-matrices near the diagonal of the coefficient matrix with

respect to time.

e The other fast CQ-BEM proposed by Banjai and Kachanovska [8], which is based on the
‘H-matrix, requires O (N M, log M,) memory. Their method [8] can be more widely applied
to various problems than our proposed CQ-FMBEM because the applicability of our method
depends on the multipole expansion of fundamental solutions. However, our proposed CQ-
FMBEM requires only O (N M, ) memory and less than their method.

e In Chapters 2 and 3, only the combination of collocation method and piecewise constant
approximation has been used for the spatial discretization. There remains some problems in
accuracy with respect to spatial discretization as shown in Section 3.1.6. However, it is not
very difficult to use the higher order element or to apply the Galerkin discretization to the
proposed CQ-FMBEM. It is emphasized that the computational and memory complexities
are not changed if these improvements of spatial discretization are considered.
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Chapter 4

3-D Simulation of Higher-harmonic
Waves Due to an Interface Crack of
Bi-material

The boundary element formulation and numerical implementation for wave scattering by an inter-
face crack with contact boundary conditions between two semi-infinite elastic solids are presented in
this chapter. For this problem, the numerical method has been developed and some higher-harmonic
simulations have been implemented by Maruyama et al. [54]. First, the BIE is formulated for wave
scattering by an interface crack. Second, the contact boundary conditions on the interface crack are
described, and the procedure of numerical implementation is explained using the flow chart. Finally,

we show some numerical results and discuss the characteristic of the higher-harmonic generation.

4.1. Problem statement and BIE

A 3-D boundary element analysis model for nonlinear ultrasonic simulation is considered for two-
layered semi-infinite media including debonding areas as shown in Fig. 4.1. This model consists
of two semi-infinite domains D! and D, which are homogeneous, isotropic, and linearly elastic
solids, and the interfaces between them, S and .S4, denote bonding and debonding areas, respec-
tively. In addition, n° is defined as an unit outer normal vector to D° (¢ = I or II), where the
superscript denotes the respective domain. Disregarding the body force, displacement w satisfies

the following governing equation in each domain.
(¢5)* V2@, t) + ()" — ()°]| VY -l t) = @(@t) we D @)

In this study, a plane wave is used as the incident wave in order to investigate fundamental motions
of an interface crack with contact boundary conditions. For the layered media subjected to an
incident plane wave, the free field formulation [37] is usually used in the BEM in order to enhance

the computational efficiency and accuracy. We assume that the interface Sy, is flat and that the
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Figure 4.1.: Analysis model for wave scattering by a debonding area on bi-material interface in 3-D.

boundary conditions on S}, are given by the following continuity of displacement and traction:
ul = uﬂ, th = ¢ 4.2)

We also assume that u™™ exists in D. Then, the free field wf®, which consists of incident wave

trans

u'™™, reflected wave ©™', and transmitted wave u , can be calculated analytically as presented in

Appendix C, and the following relations hold.
ufree;[ — uin;[ + uref;I’ ufree;]f — utrans;ﬂ' (43)

Moreover, the superposition principle holds in D! and D¥ because they are linearly elastic solids.
Therefore, defining the scattered wave u™ as the disturbance of u!™® by the debonding area Sy, the

total displacement field u is described as follows:
u — T o sC. 4.4)
Considering the initial condition
v (x,0) = v’ (x,0) =0 x€D° 4.5)

and that u5¢ satisfies the Sommerfeld radiation condition, the BIE can be formulated for ©°¢ as

follows:

1 .. t .

—u* (x,t) = / / Us(x,y,t —7) - t°°(y,7)dS,dr

2 0 Sh+Sq

¢
—/ p.v./ T (x,y,t —7) u*(y,7)dSydr x € Sp,Sq. (4.6)
0 Sp+Sq

Substituting Eq. (4.4) into Eq. (4.6), the BIE can be rewritten for the total wave field u as follows:

t t
/ / Us(x,y,t —7) -t (y,7)dS,dr — / p.v./ T (x,y,t —7) u(y,7)dS,dr
0 Sn+Sy 0 Sp+Sq
1

- u(@, 1) = g™ (x,) @€ Sy, Se, A7)
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where g™ is equivalent to the left-hand side of Eq. (4.7) in which w and ¢ are replaced with ufre

and ¢, respectively. Therefore, g™ is the known quantity in the boundary element analysis.

4.2. Discretization of BIE and contact boundary conditions

The asymptotic behavior of stress field in the vicinity of interface crack front between dissimilar
materials shows an oscillating singularity [96, 69]. This fact is also known for the anisotropic bi-
material [90]. However, it is cumbersome to use the special element which can describe the proper
behavior of displacement and stress in the vicinity of crack front. The usual element (specifically,
piecewise linear element) has been used for the vicinity of crack front by Wiinsche et al. [97], and
They obtained accurate solutions. Moreover, in this study, we evaluate displacement at far-field as
the received wave. Therefore, it is expected that sufficiently accurate solutions are obtained if the
usual elements are used for the interpolation of quantities in the vicinity of the interface crack front.

In numerically solving BIE (4.7), the convolution integrals are evaluated by means of the IRK
based CQM, and the surface integrals over .S, and Sy are discretized by the piecewise constant
boundary elements. If the interface including the debonding area is divided into M. boundary

elements, the discretized BIE at n-th step and i-th sub-step in time are written as follows:

M m 1
Z Z {usgj;o . tz;];n _ {7:;;2];0 + 21570451’]'} . ugg;n:| — g’f\fee;c;z;n
a=1 j=1
n—1 M. m
jtjin—k gk free;s;j;k jtjin—k gk free;s;jsk
=233 fus et fat et ik fug - uge }] (4.8)
k=0 a=1 j=1
where g"**" is equivalent to the left-hand side of Eq. (4.8) in which u$”™ and t57*" are replaced

with w5 and ¢4 respectively. For n-th time step, all of the quantities on the right-hand
side of Eq. (4.8) are known. Therefore, considering the boundary conditions on S;, and Sy, the
unknown values ug”" and t57"" can be obtained by solving Eq. (4.8). In additions, the underlined

portion in Eq. (4.8) is rapidly evaluated by the FMM as presented in Section 3.1.6.

4.2.1. Nonlinear interface conditions

In order to simultaneously solve BIEs (4.8) with ¢ = I and I, the appropriate boundary conditions
should be selected at each time step. Eq. (4.2) holds on the bonding interface S},. For the debonding
area Sy, we consider three types of interface state in a similar way to the previous researches [38,
39, 77]. The interface phases consist of ”separation”, “’stick”, and “’slip” as shown in Fig. 4.2, and

they are summarized as follows:
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Figure 4.2.: Contact phases on debonding area S.

Separation

The separation phase means that two surfaces of upper and lower materials are separated with no
traction as depicted in the lower left of Fig. 4.2. Thus, the following traction-free condition is given

for this phase.

t! =t = 0. (4.9)

Stick contact

For the stick phase, the surfaces of two materials are contacting and not relatively moving due to the
static friction force as depicted in the upper right of Fig. 4.2. However, the discontinuity of relative
displacement in tangential direction is allowed unlike the perfect bonding on S;. From the above,
the interface conditions are given as follows:

[us] = —ug, [us] =0, ¢ =—t" (4.10)

I'_ 4!, and u, indicates

where [u] is the crack opening displacement (COD) and defined by [u] = u
the displacement vector in the plane of a crack surface. u, denotes the pre-opening displacement of

the debonding surface.

Slip contact

Although the slip phase is also contact state similarly to the stick phase, it allows the relatively
tangential movement with dynamic friction force. The traction force is continuous in any direction
because the surfaces of two materials are contacting under this phase. The friction force is evaluated

by using the Coulomb friction law in this study, and therefore, the following interface conditions
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are given for this phase.

[

]

[us) = —ug,  tg=—t3, t;=—t] =

s = —

pa (—3) 4.11)

where 4 is the dynamic friction coefficient, and ¢, is the traction vector in the plane of a crack
surface. The moving direction defined by [u;]/ ‘ [us] ‘ is significant to the determination of friction

force vector in the dynamic problem [39, 56, 59].

4.2.2. Modification of BIE

The interface conditions for the stick and slip phases (4.10) and (4.11) contain the tangential veloci-
ties of COD, and it is difficult to accurately compute them using ordinary numerical differentiation,
such as backward differentiation. Moreover, the tangential velocity of COD consists of z;- and x»-
components in 3-D problems although it is enough to evaluate sgn([dl]) in the 2-D case [39, 77].
Therefore, the BIE is modified to the appropriate form in order to accurately evaluate the tangential
velocity of COD.

The vector w is defined by w = (11, 12, u3), and discretized BIE (4.8) is modified to the one for
w. Taking into account initial condition (4.5), the BIE for scattered wave (4.6) can be modified to

the following expression in a similar way to the modification in Section 3.1.7.
1 ¢ .
—w % (x,t) = / / X (x,y,t — 1) - t*(y,7)dSydr
2 0 JSu+S4
t
— / p.v./ Y (z,y,t — 1) w(y,7)dS,dr x € Sp, Sy, 4.12)
0 Sh+Sa

where X and Y are defined by

Un Ui Uz T T Tis
X=|Uxy Uxp Uy |, Y=|Tn Ty T |, (4.13)
Us1 Uszx Usg I'31 I'so 133

respectively, and I is

t
I‘(a:,y,t):/ T(x,y,7)dr.
0

The discretized BIE for w can be obtained in a similar manner to derivation of Eq. (4.8) as follows:

M. m 1
STV HUSIFTSYH O ;2550 4~ U asiain | pfreessiiin

Zzhmta pm+ﬂmﬁwaym
a=1j=1

n—1 Me m

sijin—k SVH free;s;j;k sijin—k ISYH. free;s;j;k

SSSS | -{taf _ glieeisij }—ymﬂ -{waf _ pfreeisid } , (4.14)

k=0 a=1 j=1
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Figure 4.3.: Flowchart of numerical procedure for nonlinear analysis.

where A" is equivalent to the left-hand side of Eq. (4.14) in which wg”™" and 5™ are
replaced with w7 and ¢1°%J™ respectively. The influence functions X557 and V&7

correspond to X and Y, respectively, and contain time differentiation and integration. However,
these can be easily evaluated by considering the following identities with respect to the Laplace

transform:

C k)] = shis), £ [/Otk(T)dT] _ %k(s).

Using discretized BIE (4.14) and dealing with the tangential velocities of COD as variables, the
direction of relative movement and tangential traction on the debonding area in the slip phase can

be evaluated precisely.

4.3. Numerical procedure for nonlinear analysis

The transition and constraint conditions for the iterative calculation of nonlinear analysis are pre-
sented in this section. The overall procedure of numerical simulation is shown in Fig. 4.3. Ata
time step in the CQ-BEM, discretized BIE (4.14) is solved assuming that the interface conditions
on each element are the same as those at the previous time step. If the additional constraint condi-
tions enclosed by the double rhombuses in Fig. 4.3 are not satisfied by the obtained solutions, the
interface condition on the element, which is one of separation, stick, and slip, is changed to another

condition, and then, the system of equations is assembled and solved again. After conducting the
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iterative calculations, if both the boundary and constraint conditions on all elements are satisfied,
the time step proceeds to the next one.

Some remarks concerning the numerical calculations are summarized as follows:

e At the initial time step, the interface condition of separation is given for all elements on the
debonding area Sy if the pre-opening displacement g > 0. On the other hand, all elements

are taken to be the stick phase if uy, = 0.

e There are two options for the phase shift from separation to one of two contact conditions,
i.e. slip and stick. In this study, the priority is given to the change from separation to stick if
[ug] > —uy for the separation condition is violated on the element. In practice, it is considered
that the slip is not started unless the tangential force exceeds the static friction force which is

generated by the contact of debonding surfaces.

e The stick phase is changed to the slip one if the tangential traction force exceeds the static

friction force. Specifically, this transition occurs if the following condition is violated.
|t1] < ps (—t5) . (4.15)

where p is the static friction coefficient. On the other hand, the transition from contact state

to separation is caused if the following condition is violated.

t5 < 0. (4.16)
e In numerical calculations, it is difficult to achieve the condition |[us]| = 0 exactly in the
transition from stick to slip. Therefore, we set |[us]| = 0 if the following condition is not

satisfied.

. re
o] - fus] " goton e
‘[']‘[-]prev _€<COS( )7 ( )
us)| |[us

where the superscript ’prev’”’ indicates the quantity at the previous time step. Violating Eq.
(4.17) means that the direction of relatively tangential movement is changed more than §5t°P.
Considering the 2-D local coordinate system (s1, s2) on the debonding surface in which s; is
parallel to [ds]prev /| [ds]prev| as depicted in Fig. 4.4, a sign of s1-component of [u,]/|[us]| is
different from the one of [u S]prev /| S]prev\ if the direction of relatively tangenrial movement

is changed more than 90°. Therefore, §5'°P is given by 90° in this study.

4.4. Numerical results

In this section, we present some numerical results for two types of material combination using the

analysis model depicted in Fig. 4.5. The first is a penny-shaped debonding area on the steel-steel
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Figure 4.4.: Local coordinate system for stopping condition of relatively tangential movement.
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Figure 4.5.: An incident plane wave scattering by a penny-shaped interface crack with radius a.

interface subjected to an incident plane wave, and this model is equivalent to a crack in an infinite
elastic solid. The second is a penny-shaped debonding area on the interface of the steel-aluminum
coupled medium subjected to an incident plane wave. Numerical results of scattering problems due
to normal incidence of P and S waves and oblique incidence of P wave are shown for both cases. In
advance of the nonlinear ultrasonic simulation, we show numerical results for the linear problem to
verify the numerical method. The CQ-FMBEM with RK2 is used for all numerical simulations in
this section.

4.4.1. Accuracy verification

To verify accuracy of the proposed CQ-FMBEM, we solve the scattering problem by an interface
crack when the debonding area is always separated. The material constants of D! and D are
given by identical values, and therefore, this problem is equivalent to the scattering problem by a
penny-shaped crack in an infinite domain. If the material constants of D! and D7 are identical, we
omit the superscripts I and II. We use an incident plane P wave normal to the crack face for this

verification, and it is defined by the monotonically increasing function as follows:

ul (2, 1) = —uodis L T (ept — 3). (4.18)
cr, a
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Figure 4.6.: Vertical COD on S, at each several time steps crt/a when a penny-shaped crack is
subjected to normal incidence of P wave.

Time increment At is taken as cpA/a = 0.1, and Poisson’s ratio v is given by v = 0.3. Vertical
CODs at each several time steps are shown in Fig. 4.6. As shown in Fig. 4.6, the CODs near the
center point of the penny-shaped crack becomes about 2¢rt/a from crt/a = 0.1 to 0.5 because the
incident wave is completely reflected on .S;. The diffracted P wave reaches the center point of crack
at crt/a ~ 0.53. Therefore, the CODs are larger than 2c¢7t/a due to the influence of diffracted
waves after cpt/a = 0.6. From the above, it seems that the proposed CQ-FMBEM is verified.

4.4.2. Nonlinear ultrasonic simulation

Next, we present numerical results of the nonlinear ultrasonic simulation considering the nonlinear
interface conditions. The following sinusoidal burst wave with n'™ cycles is used as an incident

wave in this simulation.

u(x,t) = updy sin (27rAé) H (Aé) H (nin — AZD) , (4.19a)
AL = fi (t _plEox) X)) : (4.19b)
Co

where o = L, TV, or T'H and indicates a P, SV, or SH wave, respectively. p is the propagation
vector of the incident palne wave and given by p = (sin#™, 0, cos ) using the incident angle
6™. The displacement vector is given by d;, = p for the incident P wave, and we assume that
drp = (0,1,0) and d7y = drg X p in this study. x is a point on the wavefront of the incident
wave at t = 0 and given by x = (—a,0,0). n'" is given by n'" = 3 in this section. The free-fields
are calculated from Eq. (4.19) as presented in Appendix C. The far-field approximation of scattered
wave (see Appendix B) is used for the frequency spectrum analysis. The time increment is taken to
be f™At = 0.08, and material constants for steel and aluminum media are shown in Table 4.1. The
static and dynamic friction coefficients for steel-steel and steel-aluminum interfaces are also shown
in Table 4.2 [22].
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Table 4.1.: Material constants for steel and aluminum.

cr [m/s] er [m/s] plkg/m?]
Steel 5800 3100 7690
Aluminum 6400 3040 2700

Table 4.2.: Friction coefficients for steel-steel and steel-aluminum interfaces.

Hs Hd
Steel-steel 0.74 0.57

Steel-aluminum 0.61 0.47

In some numerical simulations, we consider the static compressive stress normal to the debonding
area 0°*. Adding o' into the free-field of traction, o' can be considered in the case that ¢ = 0
because o' does not cause COD at ¢ < 0 due to the stick state. In this study, o is given over the
debonding area uniformly.

We explain some symbols used for the frequency spectrum analysis of nonlinear ultrasonic waves
here. A,, Aa,, and As, indicate the Fourier amplitudes corresponding to fundamental frequency,
2nd higher-harmonic component, and 3rd higher-harmonic component, respectively. This type of
the symbol with superscript 0 such as A%, A9 , or A9, indicates the quantity in the case that
ug/ug = 0% /oy = 0.0. The nondimensionalization parameter oy is the maximum stress of the

incident wave and given by
o0 = 2mug " pey, (4.20)

where ¢ is taken to be same as the incident wave.

Debonding area on steel-steel interface

The scattering problems by a penny-shaped crack in an infinite elastic solid are numerically solved
by the proposed CQ-FMBEM. Therefore, the material constants of steel are used for D! and D7,
and we omit the superscripts [ and I1.

Numerical resutls using an incident plane P wave with #" = 0° are shown. Time histories of
vertical displacement on the top and bottom surfaces at the center point of a crack are shown in Figs.
4.7 and 4.8 when the center wavenumbers of the incident wave are given by kra = 27af™/cp =
2.0 and 5.2, respectively. Opening and closing of crack faces, i.e. clapping motions, are repeated
periodically as shown in Fig. 4.7. The crack faces are rapidly closed by the diffracted wave after the
opening of crack faces. On the other hand, the waveforms of displacement in the case kra = 5.2
are not clearly periodic as we can see in Fig. 4.8. If the frequency of incident wave is higher than

the eigenfrequency of mode I for the linear system, it takes time that the vibration of crack faces
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Figure 4.7.: Time variations of vertical displacement at the center point of a penny-shaped crack
subjected to an incident plane P wave when kra = 2.0 and 0% /o = 0.
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Figure 4.8.: Time variations of vertical displacement at the center point of a penny-shaped crack
subjected to an incident plane P wave when kra = 5.2 and 0% /o = 0.

becomes periodic. This is because the arrival time of diffracted waves is large compared with the

period of incident wave.

The frequency spectra of far-field amplitude of backscattered P wave Qp, /(aug) are shown in
Figs. 4.9 and 4.10 when k7a = 2.0 and 5.2, respectively. They are normalized by the maximum
value around the fundamental frequency in each spectrum, and the time history of Qr/(aug) is
shown in each small window in Figs. 4.9 and 4.10. From Fig. 4.9, the similar waveform to [38] is
obtained, and some rapid fluctuations can be seen. It is confirmed that this sharp waveform includes
higher-harmonic components of 2nd, 3rd, 4th, etc. orders. Similarly, the sharp waveform is obtained
in the case that kra = 5.2 as shown in Fig. 4.10. As described in Egs. (B.2) and (B.6), the far-
field scattered wave depends on the velocity of the COD [35]. Therefore, the sharp waveforms are
constructed from the rapid fluctuation of the velocity of COD due to the closing motion of crack

faces, and higher-harmonic waves are generated strongly.

Time histories of vertical COD at the center point of a crack for various static compressive stress
0%t /o are shown in Figs. 4.11 and 4.12 when k7a = 2.0 and 5.2, respectively. The normalized
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Figure 4.9.: Normalized frequency spectrum of far-field amplitude of backscattered P wave
Q. /(aup) when kpa = 2.0 and 0% /op = 0.
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Figure 4.10.: Normalized frequency spectrum of far-field amplitude of backscattered P wave
Qr/(aup) when kra = 5.2 and 0% /og = 0.

Fourier amplitudes corresponding to the 2nd and 3rd higher-harmonic components, As,, /A, and
As,,/AY,, are plotted in Figs. 4.13 and 4.14. From Fig. 4.11, amplitude of vertical COD decreases
monotonously in the case that kra = 2.0 as 0% /g increases. Correspondingly, As,, /A9 is de-
creasing as shown in Fig. 4.13. On the other hand, the vertical COD in the case that kra = 5.2
shows different behavior as we can see from Fig. 4.12. The waveform of the vertical COD be-
comes similar to the case that k7a = 2.0 as o5t /oo increase from oSt /oo = 0.0 to 0.4. Then,
amplitude of the vertical COD decreases with a little phase shift. Due to this fact, there is a peak
of Ay, /AY,, around o°t/oy = 0.2 in Fig. 4.14 although the amplitude of the vertical COD in the
case that 0 /o = 0.0 is largest. From the above, the behavior of 2nd higher-harmonic generation
is significantly influenced by f'* and o' /5. The behavior of Az, /Agw is similar in both cases as

shown in Figs. 4.13 and 4.14.

Next, time histories of horizontal COD at the center point of a penny-shaped crack subjected to
an incident plane SV wave for various o' /o are shown in Fig. 4.15 when kpa = 2.0. In this

simulation, ¢ and © are given by ¢ = TV and v = (1,0, 0), respectively. The normalized Fourier

64



4.4. Numerical results

Figure 4.11.: Time variations of vertical COD at the center point of a penny-shaped crack subjected
to an incident plane P wave varying 0% /og when kra = 2.0.
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Figure 4.12.: Time variations of vertical COD at the center point of a penny-shaped crack subjected
to an incident plane P wave varying 0% /oq when kra = 5.2.

amplitude corresponding to the 3rd higher-harmonic component Aj,, /A9, is also plotted in Fig.
4.16. The slip between crack faces does not occur in the case that about 0% /og > 1.35 because
s = 0.74. From Fig. 4.15, the amplitude of horizontal COD decreases, and the waveform becomes
similar to the square wave as o' /o increases. As,, /Agw peaks at about 0°* /oy = 0.6 and decreases
after the peak as shown in Fig. 4.16. The comparatively large 3rd higher-harmonic wave is generated
in the case that 0'/oy = 1.2 although o®* /o is near the nonslip condition o' /oy ~ 1.35. This
is because s > pgq, and the crack faces are hard to stop once they begin to slip. Conversely,
the 3rd higher-harmonic component decreases gently if ;s = g4, and this fact has been presented
from solving the antiplane shear wave problems by Meziane et al. [59]. The normalized frequency
spectrum in the case that o' /oy = 0.6, when a most large 3rd higher-harmonic wave is generated,
is shown in Fig. 4.17. From the small window of Fig. 4.17, the waveform of Q7 /(aug) is similar
to the triangular wave. It is also confirmed from the frequency spectrum in Fig. 4.17 that the 3rd

higher-harmonic wave is generated.

Finally, numerical results for the oblique incidence of P wave with 05 /og = 0.0 are presented.
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Figure 4.13.: Normalized Fourier amplitude of €21, /(awg) corresponding to 2nd and 3rd higher-
harmonic components, A, /A9, and Az, /A3, in backscattered P waves varying
O’St/O'() when kTa = 2.0.
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Figure 4.14.: Normalized Fourier amplitude of € /(aug) corresponding to 2nd and 3rd higher-
harmonic components, As, /A9, and As, /A3, in backscattered P waves varying
ot /oo when kra = 5.2.

Time histories and normalized frequency spectra of €21, / (aug) varying 6™ in the case that kra = 2.0
are presented in Figs. 4.18 and 4.19, respectively. The interval of incident angle is 15°. In order
to compare them with the different frequency cases, the corresponding numerical results in the case
that kra = 5.2 are also shown in Figs. 4.20 and 4.21. From Figs. 4.18 and 4.19, the amplitude of
Q1,/(aug) and the higher-harmonic components decrease as the #™ increases. On the other hand,
from Fig. 4.20, it can also be seen that the amplitude of Q7 /(aug) decreases as the 6™ increases.
However, the amplitude is very small when 6™ is 45° or more, and the waveforms of 21, /(auo)
become comparatively flat. Therefore, it is confirmed that there are many low frequency components
in the frequency spectra of Fig. 4.21. In addition, the locations of peak near kra = 5.2 are shifted
because the scattered waves are distorted and have their aftereffects as shown in Fig. 4.20. From
the above, behavior of scattered waves and their frequency spectra is significantly different among
different ™. Therefore, the size estimation of debonding area is considered as possible using this

behavior.
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Figure 4.15.: Time variations of horizontal COD at the center of a penny-shaped crack subjected to
an incidence plane SV wave varying o' /oy when kra = 2.0.
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Figure 4.16.: Normalized Fourier amplitude corresponding to 3rd higher-harmonic component
As,,/AY,, in far-field backscattered SV waves varying o /g when kra = 2.0.
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Figure 4.17.: Normalized frequency spectrum of far-field amplitude of backscattered SV wave
Qrv /(aup) when kra = 2.0 and 0% /oy = 0.6.
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Figure 4.18.: Time variations of far-field amplitude of backscattered P wave 1, /(aug) varying '
when kra = 2.0 and 0% /o = 0.0.
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Figure 4.19.: Normalized frequency spectra of far-field amplitude of backscattered P wave
Q1 /(aug) varying 0™ when kra = 2.0 and 05* /o = 0.0.

Debonding area on steel-aluminum interface

Numerical results for the scattering problems by a penny-shaped debonding area on the steel-
aluminum interface are presented. The material constants of steel and aluminum in Table 4.1 are
used for D! and D, respectively, and the friction coefficients in the bottom of Table 4.2 are used
for this simulation. In Fig. 4.22, the absolute values of the reflection and transmission coefficients
for displacement are shown. R%® and T*? indicate the reflection and transmission coefficients,
respectively, and the first and second superscripts denote the wave modes before and after its con-
version, respectively. In Fig. 4.22, the rapid fluctuation can be seen at ™ ~ 65°, and this incident
angle is the critical angle for the P-P transmission. In this section, numerical results under the simi-
lar conditions to the previous section are presented in order to compare between the steel-steel and

steel-aluminum cases.

Time histories of vertical displacement on the top and bottom surfaces at the center point of an
interface crack are shown in Figs. 4.23 and 4.24 when kéa = 2.0 and 5.2, respectively. Although the

behavior in the case that kr{pa = 2.0 is similar to the one in Fig. 4.7, the amplitude of displacement is
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Figure 4.20.: Time variations of far-field amplitude of backscattered P wave 21, /(aug) varying '
when kra = 5.2 and 0% /o = 0.0.
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Figure 4.21.: Normalized frequency spectra of far-field amplitude of backscattered P wave
Q1 /(aug) varying 0™ when kra = 5.2 and 0% /o = 0.0.
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Figure 4.22.: Absolute values of reflection and transmission coefficients for displacement when a

semi-infinite and flat interface between steel and aluminum is subjected to an incident
plane P wave with incident angle ™.
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Figure 4.23.: Time variations of vertical displacement on the center point of a penny-shaped inter-
face crack subjected to an incident plane P wave when kr}a =2.0and 0% /o = 0.
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Figure 4.24.: Time variations of vertical displacement on the center point of a penny-shaped inter-
face crack subjected to an incident plane P wave when k:r}a = 5.2 and 0% /o = 0.

different due to reflection and transmission coefficients as shown in Fig. 4.23. For normal incidence
of P wave, the reflection and transmission coefficients are |R*%| ~ 0.44 and |T*F| ~ 1.44,
respectively. The amplitude of displacement in the case that k%a = 5.2 is also influenced due
to this fact as shown in Fig. 4.24. However, the difference between Figs. 4.8 and 4.24 is large
compared with the case that k:%a = 2.0. This difference in behavior of waveform is caused by the
difference of wave velocities between steel and aluminum. It seems that this effect is significant in

the high frequency case.

The normalized frequency spectra of far-field amplitude of backscattered P wave €27, /(aug) are
shown in Figs. 4.25 and 4.26 when k%a = 2.0 and 5.2, respectively. They show almost same
behavior as the ones in Figs. 4.9 and 4.10.

Time histories of vertical COD at the center point of an interface crack for various static com-
pressive stress o' /o are shown in Figs. 4.27 and 4.28 when kéﬂa = 2.0 and 5.2, respectively.
The normalized Fourier amplitudes corresponding to the 2nd and 3rd higher-harmonic components,
Ag, /A, and As,,/AY,, are also plotted in Figs. 4.13 and 4.14. Note that the static compressive

3w?

70



4.4. Numerical results

1.0 )
\

Incident wave

0.8 1 ———- Backscattered wave

0.6 -

0.2 A1 7 ’I

Normalized Fourier amplitude
o
N
>
~~—e
—//
N
)
7/
( %
N I

0.0 ; v : .
I
kra

Figure 4.25.: Normalized frequency spectrum of far-field amplitude of backscattered P wave
Q1/(aup) when kl.a = 2.0 and 0% /oy = 0.
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Figure 4.26.: Normalized frequency spectrum of far-field amplitude of backscattered P wave
Q1 /(aup) when kl.a = 5.2 and 0% /o = 0.

stress o' /o given here is different from the ones in the case of steel-steel interface because the
transmission coefficient for stress is ]TUL ’L| =~ (.56 in this case. The opening of crack faces does
not occur if 0% /o > |T2**|. However, the behavior in the cases that kta = 2.0 and 5.2 are very

similar to the cases of steel-steel interface.

Next, time histories of horizontal COD at the center point of a penny-shaped interface crack
subjected to an incident plane SV wave varying ¢/ are shown in Fig. 4.31 when k:{Fa = 2.0.
The normalized Fourier amplitude corresponding to 3rd higher-harmonic components in the far-
field backscattered SV wave Q7 /(auy) is also plotted in Fig. 4.32. In this case, the transmission
coefficient for stress corresponding to SV-SV transmission is significant, and ]Tg V’TV] ~ 0.51.
Therefore, the slip between crack faces does not occur if o /oo > [T "7V | /s ~ 0.84. Similarly
to the case of steel-steel interface, the amplitude of horizontal COD decreases, and the waveform
becomes similar to the square wave as 0 /o increases in Fig. 4.31. As shown in Fig. 4.32, the
peak of As,/AS, is located about at 0*/cy = 0.4. Thus, the normalized frequency spectrum in

the case that 0 /oy = 0.4 is shown in Fig. 4.33. From Fig. 4.33, the waveform of Qv /(aug) is
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Figure 4.27.: Time variations of vertical COD at the center point of a penny-shaped interface crack
subjected to an incident plane P wave varying o' /og when k:{pa = 2.0.
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Figure 4.28.: Time variations of vertical COD at the center point of a penny-shaped interface crack
subjected to an incident plane P wave varying o' /og when k:%a =5.2.

similar to the triangular wave, and it is confirmed that the 3rd higher-harmonic wave is generated.

Finally, numerical results for the oblique incidence of P wave with o5 /og = 0.0 are presented.
Time histories and normalized frequency spectra of far-field amplitude of backscattered P wave
Q1 /(aup) varying 6™ in the case that kL.a = 2.0 and 5.2 are presented in Figs. 4.34-4.21. We
should pay attention to the behavior near the critical angle which is about 65° here. Hence, the
results with #"" = 65° are added into Figs. 4.34—4.37. From Figs. 4.34 and 4.36, the amplitudes
of Q1 /(aug) are smaller than those in Figs. 4.18 and 4.20 due to the reflection and transmission
coefficients. It is remarkable that the amplitude of Q,/(aug) in the case that " = 65° is much
larger than those with # = 60° and 70°. This is because the reflection and transmission coefficients
are much larger than those with other 6, and the large COD is then generated. However, the
features of frequency components of 7, /(aug) are similar to the ones with # = 60° and 70° as
shown in Figs. 4.35 and 4.37.
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Figure 4.29.: Normalized Fourier amplitude of €21, /(aug) corresponding to 2nd and 3rd higher-
harmonic components, A, /A9, and Az, /A3, in backscattered P waves varying
0%t /oo when kl.a = 2.0.
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Figure 4.30.: Normalized Fourier amplitude of € /(aug) corresponding to 2nd and 3rd higher-
harmonic components, As, /A9, and As, /A3, in backscattered P waves varying
0% /oy when kla = 5.2.

4.5. Concluding remarks

e In Chapter 4, we have applied the CQ-FMBEM to the nonlinear ultrasonic simulation for the
debonding area on the interface of two semi-infinite elastic solids. We have conducted some
numerical simulations for the steel-steel and steel-aluminum interfaces and investigated the
characteristic of higher-harmonic generation due to the static compressive stress. Moreover,
the numerical results have been compared between the cases of steel-steel and steel-aluminum

interfaces.

e We have successfully reproduced the clapping motion and friction on the crack faces and
observed the higher-harmonic generation using the presented contact model of crack faces.
The clapping motion and dynamic friction of crack faces have generated the every order of
higher-harmonic waves and odd order of ones, respectively. Therefore, it is considered that

the presented model is valid.
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Figure 4.31.: Time variations of horizontal COD at the center of a penny-shaped interface crack
subjected to an incidence plane SV wave varying o' /oy when k}a = 2.0.
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Figure 4.32.: Normalized Fourier amplitude corresponding to 3rd higher-harmonic component
As,,/AY, in far-field backscattered SV waves varying o /o when kLa = 2.0.
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Figure 4.33.: Normalized frequency spectrum of far-field amplitude of backscattered SV wave
Qrv /(aup) when kl.a = 2.0 and 0% /o¢ = 0.4.
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Figure 4.34.: Time variations of far-field amplitude of backscattered P wave 21, /(aug) varying '
when kl.a = 2.0 and 0%t /oy = 0.0.
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Figure 4.35.: Normalized frequency spectra of far-field amplitude of backscattered P wave
Q1 /(aup) varying 6™ when kl.a = 2.0 and 0% /oy = 0.0.

e In the high frequency cases, i.e. kra = 5.2, the scattered waves sometimes have been dis-
torted strongly. Then, many low frequency components are contained in their frequency spec-

tra. However, we could not observe the sub-harmonic generation.

e In the case of the steel-aluminum interface, the reflection and transmission coefficients sig-
nificantly effect in the results. For the normal incidence of P and SV waves, the amplitude
of COD greatly depends on these coefficients. Moreover, scattered waves obtained by using
the incident angle near the critical one have much larger amplitude than the others. However,
the behavior of frequency spectra is not very different from others in the presented numerical

results.
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Figure 4.36.: Time variations of far-field amplitude of backscattered P wave €21, /(aug) varying ™
when kl.a = 5.2 and °t /oy = 0.0.
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Figure 4.37.: Normalized frequency spectra of far-field amplitude of backscattered P wave
Q1/(aup) varying 6 when kl.a = 5.2 and 0°* /oy = 0.0.
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Chapter 5

2-D Simulation of Nonlinear Ultrasonic
Waves Due to Interior and Surface
Breaking Cracks

In this chapter, the boundary element formulations and numerical results for 2-D simulation of
higher- and sub-harmonic generation are presented. We consider the scattering problems by cracks
in an infinite elastic solid and surface breaking cracks in an elastic half-space. The frequency re-
sponse characteristic of linear systems is important for the sub-harmonic simulation, and we con-
sider complex shape and arrangement of cracks. Therefore, the Galerkin method is used for spatial
discretization in this simulation. In general, the Galerkin BEM requires expensive computational
cost and produces accurate solutions compared with the collocation BEM. Moreover, although the
collocation hypersingular BIE is known to require a C'*® continuity for displacement on boundaries,
usual C? basis functions are allowed to use in the variational one [12, 40].

In this chapter, the hypersingular integral (p.f. integral) in the BIE for crack problems is regu-
larized only to strong singular one (p.v. integral), where p.f. denotes the finite part of a divergent
integral. This is because it is not very difficult to analytically calculate the integration of the static

part of fundamental solutions over a straight-line element for 2-D elastodynamics.

5.1. Problem statement and BIE

In this section, we present the problem statements and formulation of BIE for the scattering prob-
lems by cracks in an infinite domain and surface breaking cracks in a half-space.

5.1.1. Scattering problem by cracks in infinite domain

Scalar wave scattering problems by a crack have been come down to the hypersingular BIE by
Martin and Rizzo [50]. Then, the counterpart for elastodynamic problems has been numerically
solved by BEMs. The hypersingular BIE is effective in dealing with crack problems for infinite and

semi-infinite domains and also used in this study.
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Figure 5.1.: Analysis model for elastic wave scattering by a crack in a 2-D infinite domain.

Let S be a smooth curved crack surface in R? as depicted in Fig. 5.1. D is a homogeneous,
isotropic, and linearly elastic solid, and .S consists of ST and S~ called positive and negative sides
of crack face, respectively (S = ST U S~ and ST NS~ = (). nt and n~ are the unit normal
vectors to St and S, respectively. sT is the unit tangential vector to S*. Disregarding the body

force, we consider the problem to find the solution w which satisfies the following equations:

AV2u(z,t) + (i + 7)) VV -u(z,t) = i(z,t) x € D(=R*\S), (5.1)
tt(z,t)+t (z,t) =0 =x€S, (5.2)
[u](z,t) (= u' (z,t) —u (x,t)) =0 x €IS, (5.3)
u*(x,0) = 4*(x,0) =0 x€D, (5.4)

where the superscript & indicates the each side of crack face. Eq. (5.2) indicates traction continuity
over crack faces. Eq. (5.3) denotes that the COD at the crack tip 95 is equal to zero, and this
condition ensures the uniqueness of solution in crack problems. Eq. (5.4) is the initial condition
and indicates that there are no scattered waves at ¢ < 0.

Considering the Sommerfeld radiation condition for scattered waves and initial and boundary
conditions (5.4) and (5.2), the scattered displacement fields can be expressed in the following inte-

gral representation:

t
u*(x,t) = —/ T (z,y,t —7) - [u*](y,7)dS,dr =z € D. (5.5)
0 JSt
Then, substituting u*° = u — u™ into Eq. (5.5) and considering the continuity of 4™ over crack
faces yield
. t
u(x, t) = u"(x,t) — / TH(z,y,t —7) - [u](y,7)dSydr € D. (5.6)
0 JS+

The traction operator with respect to x is multiplied from the left in both hand sides of Eq. (5.6).
Then, taking the limit that z € D — x € S™, the collocation hypersingular BIE can be obtained as
follows:

t
th(x,t) =t (x,t) — / p.f. W (z,y,t —7) - [u](y,7)dSydr =€ ST, (5.7)
0 S+
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5.1. Problem statement and BIE

0S

Figure 5.2.: Analysis model for wave scattering by a surface breaking crack in a 2-D elastic half-
space.

where W is the hypersingular kernel corresponding to n™* and given as follows:

0 0

Wi (@,y.1) = nd @i () Cousc iy~ 5,

Note that the hypersingular kernel W for 2-D problems has singularity of order 1/r2 as r | 0. Mul-
tiplying the weight function ¢ and integrating over the surface S™ with respect to «, the variational

hypersingular BIE can be derived as follows:
Y(x)tT (2, t)dS, = [ p(x)t™T (x,t)dS,
S+ S+
t
- / w(m)p.f./ W (z,y,t —7) - [u](y, 7)dS,dS,dr. (5.9)
0 Js+ S+

Both collocation and variational BIEs contain p.f. integrals as the result of taking of the limit to the

boundary. Eq. (5.9) is the BIE which is used for the boundary element analysis in this study.

5.1.2. Scattering problem by surface breaking cracks in half-space

Next, we show the variational formulation of BIE for the scattering problem by a surface breaking
crack in an elastic half-space. In this study, the full-space fundamental solutions are used for solving
the initial and boundary value problem. Then, the scattered far-fields are evaluated by means of
approximated Green’s functions for an elastic half-space. The similar boundary element analyses
for the traction-free crack have been implemented in frequency-domain by Zhang and Achenbach
[102, 103].

Let Sy and S, be flat free surface and smooth curved crack face, respectively in R? as depicted
in Fig. 5.2. We assume that the governing equation and boundary conditions on crack face S, are

same as Eqs. (5.1)—(5.4). In addition, the boundary condition on the free-surface S is given by
t(x,t)=0 xS, (5.10)

Therefore, we can obtain the following integral representation of scattered waves in D by means of
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a similar manner to the crack problems in an infinite domain.
t
u*(x,t) = — / T(x,y,t — 1) u*(y,7)dSydr
0 JSs
t
- / T (z,y,t —7) - [u](y,7)dSydr =z € D, (5.11)
0 Jst

where the scattered wave is defined as the disturbance of free-field u™® by a crack. Multiplying the
traction operator corresponding to x from the left in both sides of Eq. (5.11) and taking the limit
thatx € D — x € S5, S, the hypersingular BIE for the surface breaking crack is obtained as
follows:

t
55" (x,t) = _/0 p.f. g W (z,y,t —7) u*(y,7)dS,dr
t S
—/ p.f. N W (z,y,t —7) - [u)(y,7)dS,dr x € S, S (5.12)
0 Se
Taking the free-field of traction £7°¢(= ¢ —#°°) into account, we can obtain the following expression:
t
tH(x, t) =t (x, 1) — / pf. [ WH(z,y,t —7) u*(y,7)dS,dr
0 Ss
¢
- / p.f. N Wt (z,y,t —7)- [u)(y,7)dSydr = € S, S, (5.13)
0 S¢

where t°¢ consists of incident and reflected waves and satisfies governing equation (5.1) and
boundary condition (5.10). The variational formulation corresponding to Eq. (5.13) can be derived

using the weight function % as follows:

V@)t (.S, = [ 0@t . 0)ds,
s

s
t
- / / Y(x)pf. | WH(z,y,t — 1) w(y,7)dS,dS,dr
0 JS.uss S,
t
- / / Y(x)p.t. W (z,y,t —7) - [ul(y, 7)dSydS.dr.  (5.14)
0 Jssust S&
The scattered wave u* is used for the variable on free-surface, while the COD [u] is the one on
crack face as shown in Eq. (5.14). Considering appropriate boundary conditions on crack face, Egs.

(5.9) and (5.14) can be solved numerically. In order to accurately evaluate the p.f. integral which

contains the hypersingular kernel, the regularization technique is used for relaxing the singularity.
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5.2. Regularization of BIE

5.2. Regularization of BIE

In this section, the regularization of hypersingular BIE is presented. The superscript + is hereinafter
omitted in this chapter.
According to [93], the second term in the right-hand side of Eq. (5.9) can be regularized from

p.f. integral to p.v. one as follows:

/ot /s v@pt. /S Whj(@, y,t — 7)[u;](y, 7)dS,dSedr

Oluy](y, 7)

dS,dS,dr
Y4 Y

t
:edeeckcbaic/o /S¢($)na(w)p'v-/Szikj(wvyat_T)ne(y)
t .
— pChaie /0 /S b(@)na(e) /S U@, y.t — 7)ne(y)lu)(y, 7)dS, dS,dr
t
—eckaaiC/U /gw(m)na(w)[gsd(y)aaw{Eikj(a:,y,t—v')[uj](y,r) dSydSydr, (5.15)

where ¢;; is a component of the 2-D permutation tensor. 3 is the fundamental solution with respect
to stress and has an singularity of order 1/r as r | 0 (so-called strong singularity). Note that this
singularity is not related with stress singularity at crack tips and sometimes called non-physical
singularity. The third term in the right-hand side of Eq. (5.15) contains the tangential derivative
s4(y)0/0yq and vanishes when [u] is equal to zero at the edges of boundary S as described in Eq.
(5.3). It therefore vanishes in the case that crack is located on the inside of material.

Now, we show the regularized BIEs corresponding to Egs. (5.9) and (5.14). The regularized BIE
for the scattering problem by cracks in an infinite domain can be obtained as follows:

/w(w)tb(m,t)dsx Z/w(m)t},n(mj)dsz
S s

t .
+edeeck0baic/ /1/1(:13)na(az)p.v./Zikj(:c,y,t—T)ne(y)zwy’ﬂdSdexdT
0 Js S Y4
t .o
—pCbaic/O /Sw(m)na(m)/SUij(m,y,t—T)nc(y)[uj](y,T)dSdexdT, (5.16)

where boundary condition (5.3) is used. On the other hand, the regularized BIE for the scattering

problem by surface breaking cracks in an elastic half-space can be written as follows:
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¢L(ﬂ3) o Center of element
e Nodal point

1 \Tl CAW T | Ty’ 7
Cracktip  'ipelement o7 () Tip element Crack tip

Figure 5.3.: Spatial shape functions with respect to displacement and traction for a crack in an infi-
nite domain.

/ Y(x)ty(x, t)dS, = / Y(x)tree (z, t)dS,

ou(y,7)
+ edeeckcbazc / / )p V. / Zikj (x7 Y, t— T>n€(y) dSdeIdT
S5US. S, 0Yaq
~ pCaie / / () / Usj (@, 9.t — T)ne(y)e (y, 7)dS,dS,dr
S5US. S,

0
_ eckaazc/ / .’l} na ) / Sd(’y)i |:27,kj(33, Y, t— T)uj.c(y7 7') dSdea;dT
S5US. S, Y

+edeeckamc/ / (z)p.v. / Eikj(w,y,t—T)ne(y)MdS dSydr
SUSe S. Y

— e /0 / V@@ /S U@y, = 7Inelw) sy, S dSdr
oG [ [ vta@inate) [ saty) g[St - 0l )] dSdSdr. 517

5.3. Discretization of BIE

Next, the time and spatial discretization using the IRK based-CQM [48] and Galerkin method,
respectively, is presented. In this study, we use straight-line elements for division of surfaces, S,
Sc, and S;. For interpolation of quantities, different shape functions between displacement and
traction are taken because we consider the continuity and discontinuity of displacement and traction
between two adjacent elements, respectively. Specifically, the piecewise linear interpolation and tip
element are used for [u] and u*¢, and ¢ is interpolated by the piecewise constant shape function. The
shape functions with respect to these variables for a crack in an infinite domain are presented in Fig.
5.3. Using the Galerkin method, the weight functions 1) are taken to be same as the corresponding
shape functions of variable considered in each BIE. Therefore, ¢ is different between BIEs for

displacement and traction.
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5.3. Discretization of BIE

5.3.1. Scattering problem by cracks in infinite domain

First, we discretize the BIE for scattering problems by cracks in an infinite domain. If the bound-
ary S in Eq. (5.16) is divided into M, straight-line elements consisting of My nodal points, the

discretized BIEs for [u] and ¢ at n-th and i-th sub-step in time can be written as follows:

m Md ME

SO Wy == >t | B (w)ds,
Jj=1J=1 a=1 supp(¢})NSa
) n—1 m My y '
+ / SHE)E (z, (n+ c)A)dS, — Y Y S W wlF (518
supp(¢}) k=0 j=1 J=1

n m My

ot [ a5, =), [ e reranis - 3OS0 SR W, 619

« k=0 j=1J=1

where subscripts I and J indicate the indices of nodal point. In addition, supp(¢) denotes the
support of ¢, and |, S dS; in the left hand side of Eq. (5.19) is equal to the length of a-th element.

The specific expressions of [u];" and 5" are

[wli" = (@1, (n + ¢)AL), 5" = t(xa, (n+ ci)AL),

where x; is the position vector of I-th nodal point. The influence functions W}f]“ and Wz}” in
Egs. (5.18) and (5.19) are given by
Wi = F Y (Ba@), [ opaw] s, | (520
B=1 tJ Jsupp(¢¥)
Wi = B |3 (Bs(@) ok / W (@)ds. | | (521)
[A=1 “
where
. A o4
(Wi'@)), = carterConina(@p. [ Sias(ap Nymala) s,
bj supp(¢4%) Yd
2 .
—-p (Alﬁ> Cbaicna(a:)/ Uij(w7y7 Alﬂ)nc(y)¢1j(y)dsy
supp(¢Y)
ol A
_eckna(w)Cbaic/ 3d(y>87 [Eikj(waya )‘lﬂ)(#j(y)} dSy (522)
supp(¢%) Yd

In Eq. (5.22), U and 3 are the 2-D fundamental solutions corresponding to displacement and stress
in Laplace-domain. Note that the underlined term in the right-hand side of Eq. (5.22) is canceled
by boundary condition (5.3) for a crack on the inside of materials.

In this study, we use two types of special shape functions for displacement ¢7, and ¢7, on the tip
elements (see Fig. 5.3) in order to describe the proper behavior of COD at the crack tip. If y; and
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y2 are the left and right edges of element, respectively, the specific expressions of ¢7, and ¢7, are

Yy — y1] ly — yo
oY) = 00— oY) =4/
4(v) lys — y1] 1,(v) Y1 — o

Note that the derivatives of shape functions on tip elements have additional singularity of order

shown as follows:

1/4/r corresponding to the stress singularity as y — 9.5. Therefore, the coordinate transformation
is used for the first term in the right-hand side of Eq. (5.22) before the numerical integration using
the standard Gaussian quadrature.

We summarize the procedure of transformation as follows:

1. The interval of integration over the line element is transformed from [y;, y2] to [0, 1]. If the

kernel function is A(y), the integral is transformed as follows:

2 1
Y A(y)dS, = 1. / A(l)dl, (5.23)
0

Y1
where I, = |y2 — y1|,and y = y1 + (y2 — y1)l.

2. The integral variable [ is changed to appropriate one [* considering the location of crack tip.
When the crack tip is located at [ = 0, the relation between [ and [* is taken as

L= (1), J@) =2,

where J* is the Jacobian corresponding to coordinate transformation as [ to [*. On the other
hand,

I=1—(1-=19% J()=2(1-10

for the case that the crack tip is located at [ = 1. Then, the Jacobian corresponding to each [*

can cancel the singularity of order 1/4/7, and Eq. (5.23) is rewritten as follows:
1 1
I, / A)dl = 1, / AQ)T* (1) dl*. (5.24)
0 0

3. In order to use the standard Gaussian quadrature, [* is transformed to f with interval [—1, 1]
as follows:

! K\ Tk [Tk *x 1 ! *
I /0 AQ)T @) = S, /_ AT () (5.25)

where f is given by [* = (f 4+ 1)/2. Using Eq. (5.25), the integrals of 3 for tip elements can
be evaluated accurately.

In this study, all integrals of static parts of U and 3 are analytically calculated.
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5.3. Discretization of BIE

Figure 5.4.: (a) Double node model and (b) triple node model for connection point between surface
breaking crack and free-surface.

5.3.2. Scattering problem by surface breaking cracks in half-space

Second, we discretize the BIE for scattering problems by a surface breaking crack in an elastic half-
space. For the connection point between the surface breaking crack and free-surface, we need to
consider discontinuity of displacement. The double node model as depicted in Fig. 5.4 (a) is usually
utilized for this type of problem, where square nodal points are in the same position. If we use the
double node model, boundaries S; and S, are considered as continuous and closed. Therefore,
the fourth and seventh terms in the right-hand side of Eq. (5.17) can be canceled. However, the
triple node model as depicted in Fig. 5.4 (b) is utilized in this study because the manageability of
nonlinear iterative calculation becomes much easier than the case of double node model.

If the boundaries S, and S5 in Eq. (5.16) is divided into M, and M; straight-line elements
consisting of My nodal points, the discretized BIEs for [u] and «, and t at n-th and i-th sub-step

in time are written as follows:

Sy wprer =S | o4 (@)dS,
j=1J=1 a=1 supp(¢})NSa
n—1 m Mgy
+ / $1(@)t (@, (n+ i) At)dS, — > D S WP F L (5.26)
supp(¢}) k=0 j=1J=1
n m My
oot [ s =t [ 6 0k e)nnds, — 30D S W ol 62
Sa S k=0 j=1 J=1

In Egs. (5.26) and (5.27),

) in S
vlj’" — [US]CI im when /-th nodal point belongs to cR
uI 19 SS

For the calculation of influence functions in Eqgs. (5.26) and (5.27), the underlined term in the
right-hand side of Eq. (5.22) has to be evaluated. This term can be modified into the following
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expression and easily evaluated for 2-D problems.

0 N
eckna(w)cbaic/ Sd(y)aTJd [Zikj(may7 )\lﬁ)ﬁ(y)} dsSy

supp(¢%)

9 S U
= eckna()Chaic / Sd(y)@ [Eikj(xayaAfB)qu(y)] dSy
Seesupp(¢y) © ¢ ¢

. y=y:
= eckna(®)Chaic {Eikj(%y,)\lg)wj(y)} o (5.28)
Se€supp(¢%) y=u

where S, is an element area and has the interval [y1, y2].

5.4. Nonlinear boundary conditions and numerical procedure

The nonlinear boundary conditions on crack faces are different from the ones for an interface crack
in Section 4.2.1 because this problem is 2-D, and the formulations and variables are different. There-
fore, the nonlinear boundary conditions and numerical procedure are briefly presented in this sec-
tion.

In order to simultaneously solve BIEs (5.18) and (5.19), the appropriate boundary conditions
should be selected at each time step. We also consider three types of state in a similar way to

Section 4.2.1. The boundary conditions for separation, stick, and slip states are summarized as

follows:
t=0 : separation, (5.29a)
[u] -m=u, [u]-s=0 : stick, (5.29b)
[ul-n=uy t-s=sgn ([u] . s) pat -n :slip. (5.29¢)

As shown in Eq. (5.29¢), the slip direction in the 2-D problem is positive or negative, and its
evaluation is easier than the 3-D case.

The transition conditions for the iterative calculation are summarized as follows:

[u] -n >y, : separation — stick, (5.30a)
t-n>0 : stick or slip — separation, (5.30b)
[t-s| > ps|t-n : stick — slip, (5.30c)
([ﬁ] -s) / (mpm - s) <0 :slip — stick. (5.30d)

Eq. (5.30a) indicates that the phase is changed from separation to stick when the crack faces overlap.
Eq. (5.30b) means that the normal tensile force to the crack face opens it. The right-hand side of Eq.
(5.30c) corresponds to the maximum static friction force. The crack faces begin to slide relatively in
the Coulomb friction law when the absolute value of tangential force exceeds the maximum static
friction one. The transition condition from slip to stick is considered as [u] -8 = 0 in practice.

However, it is difficult to satisfy this condition in numerical simulation. Therefore, we assume that
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Z2
Straight-line
crack

Figure 5.5.: A straight-line crack subjected to an incident plane wave.

the direction change of relatively tangential movement is ’stop condition” as shown in Eq. (5.30d).
If the left inequalities in Eq. (5.30) are satisfied, the corresponding right transition occurs.

Using boundary conditions (5.29), discretized BIEs (5.18) and (5.19) can be simultaneously
solved. The iterative algorithm is similar to the case of interface crack in Section 4.3. In addi-
tion, discretized BIEs (5.18) and (5.19) are modified for the velocity of displacement tangential to
the crack face as well as Section 4.2.2. The scattering problems by surface breaking cracks are also

solved in a similar way to the one by cracks in an infinite elastic solid.

5.5. Numerical results

In this section, numerical results of the proposed IRK-based CQ-BEM are presented. Before the
sub-harmonic generation, the linear problem is first solved in order to verify the proposed method
for the crack problem. Second, the higher-harmonic simulation is conducted to validate the contact
model of crack faces. Finally, numerical results of sub-harmonic generation due to cracks in an
infinite domain and a surface breaking crack in a half-space are presented. The non-accelerated

CQ-BEM with RK2 is used for all numerical simulations in this section.

5.5.1. Linear problem

In advance of the nonlinear ultrasonic simulation, the numerical results for the traction-free crack
are shown in order to verify the proposed IRK-based CQ-BEM. We compute the stress intensity
factor (SIF) of mode I for straight-line crack subjected to an incident plane P wave as depicted
in Fig. 5.5, where a is the half length of a crack. The incident plane P wave is defined by the

monotonically increasing function as follows:

u(z,t) = —uodL% (t - M) H (t - M) : (5.31)

CL CL

p, dy, and x are given by p = dy = (sin#™, cos#™) and x = (—a,0) in this simulation, re-

spectively. The crack surface S is divided into 40 boundary elements, time increment At is taken
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Figure 5.6.: Time variations of dynamic SIF of mode I when 6™ = 30°.

as cpA/a = 0.05, and Poisson’s ratio v is given by v = 0.25. The mode I dynamic SIF can be

calculated from COD near the crack tip as follows:

w2 T 1

K =— — . 32
where € is the distance from the crack tip.
Time histories of dynamic SIF of mode I corresponding to the crack tips at z;/a = —1.0 and

1.0 are shown in Fig. 5.6 when a straight-line crack is subjected to an incident plane P wave with
6™ = 30°. The dynamic SIFs shown here are normalized by the exact solution of static problems
K5" = 099y/ma. The short time exact solutions for this problem have been obtained by Thau and
Lu [94], and they are plotted in the same figure for comparison. Both numerical solutions are in
good agreement with the exact ones and converge to the static exact ones over time. Therefore, the
scattering problem by a crack can be accurately solved using the proposed IRK-based CQ-BEM.

5.5.2. Higher-harmonic simulation

In order to validate the contact model of crack face, the numerical results of higher-harmonic simu-
lation are presented in this section. The analysis model in Fig. 5.5 is also used for this simulation,
and we confirm that our model can reproduce the clapping motion and friction on crack faces. 6™ is
given by #'™ = 0° here because fundamental motions on crack faces are investigated. The following

sinusoidal burst wave with n'™ cycles is used as the incident wave for this simulation.

u™(z,t) = uody sin (2rA,) H (Ay) H (n™ — Ay) (5.33a)
A, = fin <t _p@E=X) X)> : (5.33b)
o
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where ¢ = L or T because of the 2-D problem. The far-field approximated scattered wave is
used for the spectrum analysis of scattered wave (see Appendix B). The time increment is taken as
™At = 0.05, and Poisson’s ratio of base material is given by v = 0.3 supposing steel. The friction
coefficients are thus given by the top row of Table 4.2. n'™ is taken as n'™ = 30 because we conduct
transient analysis for a sufficiently long time and investigate nearly stationary vibration.

First, some numerical results of P wave incidence are presented when " = 0°, kra = 3.0, and
ug/up = 0.0. Time histories of vertical COD at the center point of a crack is shown in Fig. 5.7
(a). On the other hand, time histories and normalized frequency spectra of far-field amplitude of
backscattered P wave Q. /(ug+/a) in Fig. 5.7 (b), and (c), respectively. In thses figures, linear”
and “nonlinear” indicate the results obtained for the traction-free crack and the crack with contact
boundary conditions, respectively. The small windows in the figures show the enlarged view of
early parts. As shown in Fig. 5.7 (a), the vertical COD obtained by the presented model cannot take
the negative value due to contact. From Fig. 5.7 (b), the waveform of Q7 /(ug+/a) is distorted by
the clapping motion. Therefore, its frequency spectrum contains the higher harmonic components
as shown in Fig. 5.7 (c). It is known that all (2nd, 3rd, 4th, etc.) orders of higher-harmonic waves
are generated for the normal incidence of P wave [89], and that is reproduced by the presented
numerical simulation.

Second, numerical results of S wave incidence are presented when 0™ = 0°, kra = 3.0, and
ug/up = 0.0. In this case, the static compressive stress o is given over a crack uniformly in order
to generate the dynamic friction force. o®t is given by o' /oy = 1.0 here. If o' does not cause
COD due to contact of crack faces, o' is only added into £™ or ¢ in BIEs similarly to Chapter 4.
Therefore, if we give u,/ug as a parameter, o' /o is equal to zero in this study. The reverse is also
true.

Time histories of tangential traction at the center point of a crack is shown in Fig. 5.8 (a). On the
other hand, time histories and normalized frequency spectra of far-field amplitude of backscattered
S wave Q7/(upy/a) in Fig. 5.8 (b), and (c), respectively. As shown in Fig. 5.8 (a), the tangential
traction becomes similar to square wave due to dynamic friction force. Therefore, the waveform
of Qp/(ug+/a) is distorted and the amplitude becomes small as shown in Fig. 5.8 (b). From Fig.
5.8 (c), the 3rd higher-harmonic component is contained in the nonlinear case. It is known that
odd order of higher-harmonic waves are generated due to pure shear motion with contact [89], and
that is also reproduced. From the above, we can confirm that the presented numerical method can
accurately simulate the clapping motion and dynamic friction on crack faces.

Finally, we investigate the characteristic of 2nd higher-harmonic generation varying pre-opening
displacement g or static compressive stress ot when a straight-line crack is subjected to normal
incidence of plane P wave. Normalized Fourier amplitudes corresponding to 2nd higher-harmonic
wave Ay, /A9, for each kra varying ug/ug and o™ /o are shown in Fig. 5.9 (a) and (b), respec-
tively. The behavior of As,,/AY_ varying ug/ug is different among various k7a as shown in Fig.
5.9 (a). However, the maximum value of As, /Agw for each kra is located at ug/ug = 0.0. This
is because contact of crack faces is strongly caused if ug/ug is small. On the other hand, behavior

of Ay, /Agw varying o/ is different. The maximum value of Ay, /AY  in the case that about
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Figure 5.7.: Time variations of (a) COD at the center point of a crack and (b) far-field amplitude
of backscattered P wave when a straight-line crack is subjected to an incident plane P
wave. (c) is normalized frequency spectrum of far-field amplitude.

kra < 1.2 is located at ot /oo = 0.0 as we can see Fig. 5.9 (b). However, the maximum value
of Ao, /Agw for about 1.3 < kra is located at 0%° /oy > 0.0. In addition, the maximum value of
Agy,/AY,, is located at about 0*/oy = 0.4 when 3.0 < kra < 5.5. In order to investigate the
detail, the time histories of far-field amplitude of backscattered P wave 7, /(ug+/a) in the case that
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Figure 5.8.: Time variations of (a) tangential traction at the center point of a crack and (b) far-field
amplitude of backscattered S wave when a straight-line crack is subjected to an incident
plane S wave, and o'/ = 1.0. (c) is normalized frequency spectrum of far-field
amplitude.

kra = 5.0 are shown in Fig. 5.10. As shown in Fig. 5.10, the amplitude of Qr,/(up+/a) in the
case that 0 /oy = 0.4 is comparatively small because the compressive static stress prevents crack
faces from opening. However, the waveform is strongly distorted, and it is expected to contain many
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Figure 5.10.: Time variations of far-field amplitude of backscattered P wave when kra = 5.0.

higher-harmonic components.

From the above, there is optimal static compressive stress for the 2nd higher-harmonic gener-
ation when kra is comparatively large. The branch point k7a ~ 1.2 is almost same as the first
mode quasi-eigenfrequency in the linear system. It has been pointed out by some researchers that
there is optimal static compressive stress for the 2nd higher-harmonic generation [15, 70, 87]. How-
ever, the presented 2-D numerical simulation revealed that this phenomenon has relation to quasi-

eigenfrequency of the linear system containing a crack.

5.5.3. Simulation of sub-harmonic waves due to interior cracks

Some numerical results of sub-harmonic generation by cracks in an infinite domain are shown here.

We consider two types of model for the numerical simulations as depicted in Fig. 5.11. The first is
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Figure 5.11.: Elastic wave scattering by (a) a half-sine-shaped crack and (b) two straight-line cracks
arranged in parallel.

an incident wave scattering by a half-sine-shaped crack (Fig. 5.11 (a)), and the second is that by two
cracks arranged in parallel (Fig. 5.11 (b)). In practice, it is not sure that cracks with the shape and
arrangement presented here exist. However, our objective is to implement numerical simulations
for the system in which the resonance is caused easily. In order to investigate the sub-harmonic
generation in the case that contact boundary conditions on crack faces are added into such a system,
the analysis models in Fig. 5.11 are selected in this study.

The time increment is taken as f"A¢ = 0.05, and Poisson’s ratio of base material is given by
v = 0.3 supposing steel. The friction coefficients are thus given by the top row of Table 4.2. The

cycle number of the incident wave n'® is given by n'™ = 30.

Sub-harmonic generation by a curved crack

First, numerical results obtained by solving the scattering problem by a curved crack as depicted in
Fig. 5.11 (a) are shown. Fourier amplitude ratios of sub-harmonic component to fundamental one
in backscattered P wave Ag s, /A,, for various kra, ug/ug, and 6™ are shown in Figs. 5.12-5.16
when height h/a is varying. The area enclosed by a white line in Fig. 5.16 indicates the condition
under which we can observe the sub-harmonic generation. Therefore, we could not observe the
sub-harmonic generation when 0.0 < h/a < 1.5 as shown in Figs. 5.12-5.15. For the case that
h/a = 2.0 in Fig. 5.16, the sub-harmonic generation is caused under certain conditions except the
symmetric case, i.e. #™ = 0°. For instance of the sub-harmonic generation, the time history and
normalized frequency spectrum of far-field amplitude of backscattered P wave are shown in Fig.
5.17 when kra = 1.2, ug/ug = 2.0, h/a = 2.0, and 9™ = 60°. As shown in Fig. 5.17 (a),
large and small amplitude is periodically repeated, and this motion becomes stable from the middle.
This waveform is typical one which includes sub-harmonic components, and there is a clear peak
corresponding to the sub-harmonic component in Fig. 5.17 (b). In this study, we define that sub-
harmonic wave can be observed if such a waveform and frequency spectrum are confirmed. On

the other hand, we could not observe the sub-harmonic generation even if Ag 5, /A, is large in the
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Figure 5.12.: Fourier amplitude ratio of sub-harmonic frequency to fundamental one for various
wavenumber kra, pre-opening displacement w,/ug, and incident angles 6™ when a

half-sine-shaped crack is subjected to an incident plane P wave with n'® = 30 (h/a =
0.0).
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Figure 5.13.: Fourier amplitude ratio of sub-harmonic frequency to fundamental one for various
wavenumber kra, pre-opening displacement u,/ug, and incident angles 6™ when a
half-sine-shaped crack is subjected to an incident plane P wave with n'™ = 30 (h/a =
0.5).
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Figure 5.14.: Fourier amplitude ratio of sub-harmonic frequency to fundamental one for various
wavenumber kra, pre-opening displacement w,/ug, and incident angles 6™ when a

half-sine-shaped crack is subjected to an incident plane P wave with n'® = 30 (h/a =
1.0).
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Figure 5.15.: Fourier amplitude ratio of sub-harmonic frequency to fundamental one for various
wavenumber kra, pre-opening displacement u,/ug, and incident angles 6™ when a
half-sine-shaped crack is subjected to an incident plane P wave with n'™ = 30 (h/a =
1.5).
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Figure 5.16.: Fourier amplitude ratio of sub-harmonic frequency to fundamental one for various
wavenumber kra, pre-opening displacement w,/ug, and incident angles 6™ when a

half-sine-shaped crack is subjected to an incident plane P wave with n'® = 30 (h/a =
2.0).
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Figure 5.17.: (a) Time variation and (b) normalized frequency spectrum of far-field amplitude of
backscattered P wave when a curved crack is subjected to an incident plane P wave
(kra = 1.2, ug/up = 2.0, h/a = 2.0, and 6™ = 60°).

outside of white line. As an example of that, the time history and normalized frequency spectrum of
far-field amplitude of backscattered P wave are shown in Fig. 5.18 when kra = 2.5, ug/up = 0.0,
h/a = 2.0, and 6™ = 60°. As shown in Fig. 5.18 (a), the waveform of Q0 /(ug\/a) is strongly
distorted, and the value of A, is considered as small. Although Ay 5, /A, is comparatively large
due to this fact, there is no peak corresponding to the sub-harmonic component as shown in Fig.
5.18 (b). In order to investigate the behavior of sub-harmonic generation varying u, /g, Ao 5. /Aw
for various ug/ug is shown in Fig. 5.19 when kra = 1.2, h/a = 2.0, and '™ = 60°. As shown
in Fig. 5.19, Ay, /AL changes continuously without rapid fluctuation when ug/ug is varying.
In addition, the chaotic vibration, which has been observed in [88, 34], has never seen from the

numerical results in this thesis.

In order to investigate the vibration around a crack when the sub-harmonic wave is generated,
the displacement fields in the case that kra = 1.2, ug/uo = 2.0, h/a = 2.0, and "™ = 60° from
"t = 20.0 to 22.0 are presented in Fig. 5.20. The color depth of crack line indicates the phase

of contact conditions as shown in the upper right of Fig. 5.20. These displacement fields are in the
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Figure 5.18.: (a) Time variation and (b) normalized frequency spectrum of far-field amplitude of
backscattered P wave when a curved crack is subjected to an incident plane P wave
(kra = 2.5, ug/ug = 0.0, h/a = 2.0, and 6™ = 60°).
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Figure 5.19.: Fourier amplitude ratio of sub-harmonic frequency to fundamental one for various
pre-opening displacement ug/ug when kra = 1.2, h/a = 2.0, and o = 60°.
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Figure 5.20.: Displacement fields around a curved crack from "¢ = 20.0 to 22.0 when h/a = 2.0,
o™ = 60°, kra = 1.2, and ug/ug = 2.0.
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Figure 5.21.: Histories of displacement at points (a) C1 and C2, and (b) C3 and C4 in the lower right
of Fig. 5.20 from ft = 20.0 to 22.0 when h/a = 2.0, ™ = 60°, kra = 1.2, and

ug/up = 2.0.
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Figure 5.22.: Histories of displacement at points C1-C4 in the lower right of Fig. 5.20 from it =
20.0 to 21.0 when h/a = 2.0, ™ = 60°, kra = 1.2, and (a) ug/up = 0.5 and (b)
ug/uo = 3.0.

nearly stationary vibration after the transient analysis is proceeded for a sufficiently long time. It
can be obviously seen that the vibration period is double of 1/, especially in the inner part of a
curved crack. Focusing there, the large displacement to right is generated at £t = 20.0, and the
friction is caused on the right side of crack at around f¢ = 20.2 to 20.4. Then, the inner part is
deformed to left with comparatively small amplitude at around f"t = 21.0. This part begins to
be deformed to right again at around f"t = 21.6, and the state of displacement fields eventually
returns to the first one at f¢+ = 22.0. From the above, it seems that the torsional vibration with the
double period of incident wave as shown in lower right of Fig. 5.20 is generated by the contact of

crack faces.

Histories of displacement at points C1-C4 in lower right of Fig. 5.20 from f"t = 20.0 to 22.0
are shown in Fig. 5.21. The circle in the figure indicates the displacement at 't = 20.0. As shown
in Fig. 5.21 (a), the displacement orbits at points C1 and C2 are distorted, and the locations return
to the positions at f"t = 20.0 spending double of 1/f. The cause of these phenomena is the

contact of crack faces because the displacement orbit of harmonic vibration must be ellipse with the
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period 1/ £, As shown in Fig. 5.21 (b), the torsional vibration like the lower right of Fig. 5.20
is observed at points C3 and C4. In addition, the direction of displacement at point C4 is rapidly
changed because it is near the crack face. On the other hand, displacement orbits in the cases that
the sub-harmonic generation could not be observed are presented in Fig. 5.22 for the time range
from fint = 20.0 to 21.0. Fig. 5.22 (a) shows the case that u,4/uo = 0.5, and it can be seen that the
displacement orbits are distorted by contact of crack faces. However, all of these periods are 1/f"
and different from ones in Fig. 5.21. The displacement orbit is almost ellipse with 1/ period in
the case that uy/ug = 3.0 as shown in Fig. 5.22 (b) because contact of crack faces hardly occurs.
From the above, the torsional vibration is generated as sub-harmonic resonance under certain
conditions for the model in Fig. 5.11 (a). As a result, the sub-harmonic wave is contained in the

scattered wave.

Sub-harmonic generation by two straight-line cracks arranged in parallel

Second, numerical results obtained by solving the scattering problem by two straight-line cracks in
parallel as depicted in Fig. 5.11 (b) are shown. Fourier amplitude ratios of sub-harmonic component
to fundamental one in backscattered P wave A 5.,/A,, for various kra, ug/ug, and 0™ are shown
in Figs. 5.23-5.25 when the interval between two cracks h/a is varying. We could not observe the
sub-harmonic generation when h/a = 1.5 as shown in Fig. 5.25. For the cases that h/a = 0.5
and 1.0 in Figs. 5.23 and 5.24, respectively, the sub-harmonic generation is caused under certain
conditions except the case of parallel incidence to cracks, i.e. #" = 90°. For instance of the sub-
harmonic generation, the time history and normalized frequency spectrum of far-field amplitude of
backscattered P wave are shown in Fig. 5.26 when kra = 2.5, ug/ug = 2.0, h/a = 0.5, and
6™ = 0°. As shown in Fig. 5.26, the waveform of €1, /(ug+/a) is the typical one which contains
the sub-harmonic component, and there is a clear peak of Ag 5. /A, in the frequency spectrum.
Ag 5./ Ay for various ug/ug is shown in Fig. 5.27 when kra = 2.5, h/a = 0.5, and o = 0°. In
this case, Ag 5. /A also changes continuously as shown in Fig. 5.27.

In order to investigate the vibration around cracks when the sub-harmonic wave is generated, the
displacement fields in the case that kra = 2.5, ug/ug = 2.0, h/a = 0.5, and 6" = 0° from
it = 20.0 to 22.0 are presented in Fig. 5.28. It can be obviously seen that the vibration period
is 2/ f1, especially at the part between two cracks. Focusing there, the large displacement appears
upward at f¢t = 20.0, and the displacement becomes small at around "¢ = 20.2 to 21.0. Then,
contact of crack faces occurs on the lower crack at ft = 21.2, and upward large displacement is
generated by diffracted waves at ft = 21.6 to 21.8. Finally, the displacement state returns to the
first one at f¢ = 22.0. From the above, it seems that the bending vibration with the double period
of incident wave as shown in lower right of Fig. 5.28 is generated by the contact of crack faces.

Histories of displacement at points D1-D4 in lower right of Fig. 5.28 from f*t = 20.0 to 22.0
are shown in Fig. 5.29. As shown in Fig. 5.29 (a) and (b), all of the displacement orbits are strongly
distorted, and the displacement returns to the position at f*¢t = 20.0 spending double of 1/ f®.

From Fig. 5.29 (a), one upward and downward motion spends 2/ f1*, and it is therefore confirmed
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Figure 5.23.: Fourier amplitude ratio of sub-harmonic frequency to fundamental one for various
wavenumber kra, pre-opening displacement u, /g, and incident angles 6™ when two

straight-line cracks arranged in parallel are subjected to an incident plane P wave with
n® =30 (h/a = 0.5).
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Figure 5.24.: Fourier amplitude ratio of sub-harmonic frequency to fundamental one for various
wavenumber kra, pre-opening displacement u, /g, and incident angles 6™ when two

straight-line cracks arranged in parallel are subjected to an incident plane P wave with
n® =30 (h/a = 1.0).
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Figure 5.25.: Fourier amplitude ratio of sub-harmonic frequency to fundamental one for various
wavenumber kra, pre-opening displacement u, /g, and incident angles 6™ when two
straight-line cracks arranged in parallel are subjected to an incident plane P wave with
n® =30 (h/a = 1.5).
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Figure 5.26.: (a) Time variation and (b) normalized frequency spectrum of far-field amplitude of
backscattered P wave when two straight-line cracks arranged in parallel are subjected
to an incident plane P wave (kra = 2.5, ug/ug = 2.0, h/a = 0.5, and 6" = 0°).
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Figure 5.27.: Fourier amplitude ratio of sub-harmonic frequency to fundamental one for various
pre-opening displacement u,/ug when kra = 2.5, h/a = 0.5, and 6™ = 0°.
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Figure 5.30.: Histories of displacement at points D1-D4 in the lower right of Fig. 5.28 from ft =
20.0 to 21.0 when h/a = 0.5, 6™ = 0°, kra = 2.5, and (a) ug/up = 1.0 and (b)
ug/up = 3.0.

that the bending vibration is generated. On the other hand, displacement orbits in the cases that the
sub-harmonic generation could not be observed are presented in Fig. 5.30 for the time range from
fint = 20.0 to 21.0. Fig. 5.30 (a) shows the case that ug/up = 1.0, and it can be seen that the
displacement orbits are distorted by contact of crack faces. However, all of these periods are 1/ f™"
and different from the ones in Fig. 5.29. The displacement orbit is almost ellipse with 1/ period
in the case that u,/up = 3.0 as shown in Fig. 5.30 (b) because contact of crack faces hardly occurs.

From the above, the bending vibration is generated as sub-harmonic resonance under certain

conditions for the model in Fig. 5.11 (b).

Relation between sub-harmonic generation and characteristic of frequency
response

From numerical results of sub-harmonic generation by a curved crack and two straight-line cracks
arranged in parallel, it seems that the sub-harmonic resonance such as torsional and bending vi-

brations, depends on the shape and arrangement of cracks. Therefore, it is presumed that the fre-
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Figure 5.31.: Frequency responses for the model in Fig. 5.11 (a) using the frequency-domain BEM
and assuming that crack faces are always separated. The norm ||[u]||/ug at point A in
Fig. 5.11 (a) for various ™ and kra is plotted when (a) h/a = 0.0, (b) 0.5, (c) 1.0,
(d) 1.5, and (e) 2.0.

quency response characteristic of the linear system containing cracks without contact of crack faces
is important. That is investigated by solving the scattering problem for the same models using
the frequency-domain BEM. In this study, the norm of COD ||[u]|| is considered as the factor of
frequency response. The norm || - || is defined by

l[v]| = (5.34)

The norm of COD ||[u]||/up at points A in Fig. 5.11 (a) varying k7a is shown in Fig. 5.31 for
various h/a and 6™ All lines are smooth in Fig. 5.31 (a), (b), and (c) compared with the ones in Fig.
5.31 (d) and (e). ||[u]||/uo in Fig. 5.31 (d) shows a little rapid fluctuation at about kpa = 0.7 when
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Figure 5.32.: Frequency responses for the model in Fig. 5.11 (b) using the frequency-domain BEM
and assuming that crack faces are always separated. The norm ||[u]||/uo at point B in
Fig. 5.11 (b) for various 6™ and kra is plotted when (a) h/a = 0.5, (b) 1.0, and (c)
1.5.

30° < 6™ < 90°. As shown in Fig. 5.31 (e), ||[u]||/uo has rapid fluctuation at about kra = 0.5
when 15° < '™ < 90°. This fluctuation corresponds to the first mode quasi-eigenfrequency and
seems to be important for the probability of sub-harmonic generation because the sub-harmonic
generation could be observed when h/a = 2.0 and 15° < g™ < 90°. In addition, the sub-harmonic
generation could be observed in the case that kra is a little larger than the double of kra at the
rapid fluctuation as shown in Fig. 5.16. h/a and 6™ are significant to the characteristic of frequency
response, and they are therefore important for the sub-harmonic generation.

Next, the norm of COD ||[u]||/uo at points B in Fig. 5.11 (b) varying kra is shown in Fig. 5.32
for various h/a and 6. ||[u]||/uo in Fig. 5.32 (a) shows rapid fluctuation at about k7a = 0.8 when
0° < @™ < 75°. As shown in Fig. 5.32 (a)—(c), the smaller h /a is, the more rapid the fluctuation of

||[w]||/uo is. However, ||[]||/uo is gentle in the case that ™ = 90° because the multiple reflection

hardly occurs between two cracks. It also seems that this fluctuation is important for the probability
of sub-harmonic generation because the sub-harmonic generation could be observed only when
h/a = 0.5 and 1.0 and 0° < @™ < 75°. In addition, the the sub-harmonic generation could be
observed in the case that kra is larger than the double of kra at the rapid fluctuation as shown in
Figs. 5.23 and 5.24.
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Figure 5.33.: Elastic wave scattering by a surface breaking crack in an elastic half-space.

5.5.4. Simulation of sub-harmonic waves due to a surface breaking crack

The numerical results of sub-harmonic generation by a surface breaking crack in an elastic half-
space as depicted in Fig. 5.33 are presented. We assume that a straight-line crack with length a is
connected to the free surface with the angle .. An incident plane wave described in Eq. (5.33) with
¢ = L (P wave) and n'™ = 15 is used in this simulation. The far-field scattered waves and free

fields are evaluated as presented in Appendices B and C, respectively.

Fourier amplitude ratios of sub-harmonic component to fundamental one in backscattered P wave
Ag 5.,/ Ay for various kra, ug/ug, and 6™ are shown in Figs. 5.34-5.37 when the crack angle 6,
is varying. We could not observe the sub-harmonic generation when 0° < 6, < 15° in Figs. 5.34
and 5.35. However, for the case that 8, = 30° in Fig. 5.36, the sub-harmonic generation is slightly
caused around k7a = 3.7 and uy/up = 0.0. As shown in Fig. 5.37, the sub-harmonic generation
can be obviously observed in the case that . = 45° compared with the case that §. = 30°. For
instance of the sub-harmonic generation, the time history and normalized frequency spectrum of
far-field amplitude of backscattered P wave are shown in Fig. 5.38 when kra = 3.7, ugy/ug = 0.0,
6, = 45°, and ™™ = 75°. The typical sub-harmonic waveform and clear peak of Ay 5., /A can be
observed in Fig. 5.17 (a) and (b), respectively. Ag 5., /A, for various uy/ug is shown in Fig. 5.39
when kra = 3.7, 0, = 45°, and 6™ = 75°. It can be seen from Fig. 5.39 that Ag 5, /A, changes
gently. However, the behavior is different from the cases of interior cracks, and the maximum value
of Ag s, /A is observed at ug/ug = 0.0.

In order to investigate the vibration around a surface breaking crack when the sub-harmonic
wave is generated, the displacement fields in the case that kra = 3.7, ug/ug = 0.0, 6. = 45°,
and 9™ = 75° from ft = 10.0 to 12.0 are shown in Fig. 5.40. It can be obviously seen that the
vibration period is double of 1/f™, especially around the crack. Focusing on the upper left of a
surface breaking crack, the displacement to left at ft = 10.0 is observed, and the contact of crack
faces is caused at f"t = 10.2 to 10.4. Then, this part is deformed from upper left to upper right
with large amplitude at f"t = 10.8 to 11.6 without contact of crack faces. This part begins to be
deformed to left again at around f"t = 11.8, and the state of displacement eventually returns to

the first one at f"t = 12.0. From the above, it seems that the bending vibration of the convex part
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Figure 5.34.: Fourier amplitude ratio of sub-harmonic frequency to fundamental one for various
wavenumber kra, pre-opening displacement u,/ug, and incident angles 6™ when a
surface breaking crack is subjected to an incident plane P wave with n'™ = 15 (6, =
0°).

with the double period of incident wave as shown in lower right of Fig. 5.40, is generated due to the

contact of crack faces.

The history of displacement at point E in lower right of Fig. 5.40 from ft = 10.0 to 12.0
is shown in Fig. 5.41. The circle in the figure indicates the displacement at f"¢ = 10.0. As
shown in Fig. 5.41, the displacement orbit is distorted, and the displacement returns to the position
at f"t = 10.0 spending double of 1/f. Therefore, the bending vibration of the convex part is

generated as sub-harmonic resonance under certain conditions.

In order to investigate the relation with frequency responses, the norm of COD ||[u]||/uo at the
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Figure 5.35.: Fourier amplitude ratio of sub-harmonic frequency to fundamental one for various
wavenumber kra, pre-opening displacement u,/ug, and incident angles 6™ when a
surface breaking crack is subjected to an incident plane P wave with n'™ = 15 (6, =
15°).

origin O in Fig. 5.33 varying kra is shown in Fig. 5.42 for various 6.. As shown in Fig. 5.42 (d),
||[w]||/uo has rapid fluctuation at about kra = 1.1 when 60° < 6" < 75° compared with others
in Fig. 5.42 (a), (b), and (c). It also seems that this fluctuation is important for the probability of
sub-harmonic generation. However, the sub-harmonic generation is caused in the case that kra is
larger than the triple of kra at the rapid fluctuation as shown in Fig. 5.37. In addition, the optimal
ug/up for the sub-harmonic generation is ug/ug = 0.0 in this case. Therefore, the behavior of
sub-harmonic generation is different between interior cracks and surface breaking crack. This may

be because the one side of convex part is free surface without contact.
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Figure 5.36.: Fourier amplitude ratio of sub-harmonic frequency to fundamental one for various
wavenumber kra, pre-opening displacement u,/ug, and incident angles 6™ when a
surface breaking crack is subjected to an incident plane P wave with n'™ = 15 (6, =
30°).

5.6. Concluding remarks

e In Chapter 5, we have applied the IRK-based CQ-BEM without any acceleration techniques
to the 2-D elastic wave scattering problems by cracks in an infinite elastic solid and surface
breaking cracks in an elastic half-space. Moreover, the contact boundary conditions on crack
faces are considered, and the phenomena of higher- and sub-harmonic generation are investi-

gated by the presented numerical method.

e The IRK-based CQ-BEM produces accurate solutions for the linear crack problems. We
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Figure 5.37.: Fourier amplitude ratio of sub-harmonic frequency to fundamental one for various
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wavenumber kra, pre-opening displacement u,/ug, and incident angles 6™ when a
surface breaking crack is subjected to an incident plane P wave with n'* = 15 (4, =
45°).

have also numerically solved the fundamental nonlinear ultrasonic problems such as normal
incidence of P and S waves to a straight-line crack in order to validate the presented contact
model. From these results, it could be confirmed that the proposed IRK-based CQ-BEM can

accurately solve the crack problems with contact boundary conditions.

We conducted the higher-harmonic simulation for a straight-line crack subjected to an inci-
dent plane P wave varying uy/ug or 0*/cy. From the numerical results, the 2nd higher-
harmonic wave is generated most strongly when u,/ug = o%/og = 0.0 if the center fre-

quency of incident wave is comparatively low. However, the 2nd higher-harmonic wave is
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Figure 5.38.: (a) Time variation and (b) normalized frequency spectrum of far-field amplitude of
backscattered P wave when a surface breaking crack is subjected to an incident plane
P wave (kra = 3.7, uy/ug = 0.0, 6. = 45°, and 6™ = 75°).
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Figure 5.39.: Fourier amplitude ratio of sub-harmonic frequency to fundamental one for various
pre-opening displacement u, /1o when kra = 3.7, 6, = 45°, and 6™ = 75°.
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Figure 5.40.: Displacement fields around a surface breaking crack from f*¢ = 10.0 to 12.0 when
0. = 45°, 0™ = 75°, kra = 3.7, and ug/ug = 0.0.
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Figure 5.41.: History of displacement at point E in the lower right of Fig. 5.40 from ¢t = 10.0 to
12.0 when 6, = 45°, 6™ = 75°, kra = 3.7, and uy/up = 0.0.
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Figure 5.42.: Frequency responses for the model in Fig. 5.33 using the frequency-domain BEM and
assuming that crack faces are always separated. The norm ||[u||/uo at the origin O in
Fig. 5.33 for various 6™ and kra is plotted when (a) 8. = 0°, (b) 15°, (c) 30°, and (d)

45°.
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generated most strongly under some compressive static stress if the center frequency of inci-
dent wave is comparatively high. The border frequency of this phenomenon is near the first
mode quasi-eigenfrequency of the linear system (about kra = 1.2).

We have dealt with the scattering problems by a half-sine-shaped crack and two straight-line
cracks arranged in parallel in an infinite elastic solid in this chapter. The torsional and bending
vibrations with the double period of the incident wave are generated as the nonlinear sub-
harmonic resonance. In addition, the characteristic of frequency response greatly depends on
the crack shape and incident angle, and it seems that this characteristic is significantly related

to the probability of sub-harmonic generation.

We also implemented the 2-D simulation of nonlinear ultrasonic due to a surface breaking
crack in an elastic half-space. The bending vibration of convex part with the double period
of the incident wave is generated as the nonlinear sub-harmonic resonance. Similarly to the
case of interior cracks, the characteristic of frequency response seems to be important for the
sub-harmonic generation. However, the frequency behavior of sub-harmonic generation is

different from the case of the interior crack.



Chapter 6

3-D Simulation of Nonlinear Ultrasonic
Waves Due to Interior Cracks

In this chapter, the boundary element formulations and numerical results for the 3-D simulation of
sub-harmonic generation are presented. We consider the scattering problems by cracks in an infinite
domain. The fast CQ-BEM proposed in Chapter 3 is extended to the 3-D crack problems with
contact boundary conditions. The Galerkin method is used for spatial discretization here, similarly
to Chapter 5.

For 2-D problems, the regularization of hypersingular integrals to the strong singular one is
enough to use the tip element as shown in Chapter 5. However, the analytical integration over
elements at the crack front in 3-D problems is much more complicated than that in 2-D. Therefore,
we regularize the hypersingular integrals to weakly singular ones, and all of the integrations over
elements are evaluated numerically. Regularization techniques for the hypersingular BIE have been
developed by many researchers [93]. For instance, the weakly singular formulations have been de-
veloped for the 3-D acoustic and elastic wave problems by Liu and Rizzo [44, 45]. Also, the direct
numerical integration method of hypersingular integral has been developed by Guiggiani et al. [27].
In this study, we use the regularization method proposed by Nishimura and Kobayashi [61]. Their
method is based on the stress function representation of differentiated fundamental solution and can
relax the hypersingular integrals to weakly ones.

First, the formulation of time-domain BIE for crack problem is briefly explained. Second, the
regularization and discretization are presented, and some remarks related with the application of
FMM are summarized. Then, the computational cost and accuracy of the proposed CQ-FMBEM
are demonstrated by solving linear crack problems. Finally, we implement 3-D sub-harmonic sim-

ulations and discuss the phenomena through obtained numerical results.

6.1. Problem statement and BIE

We show the initial and boundary conditions for 3-D crack problems in time-domain. Let S be a
smooth curved crack surface in R3 bounded by a smooth edge 05 as depicted in Fig. 6.1. D is a

homogeneous, isotropic, and linearly elastic solid, and .S consists of S* and S~ called positive and
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Figure 6.1.: Analysis model for elastic wave scattering by a crack in a 3-D infinite domain.

negative sides of crack face, respectively (S = ST U S~ and ST N S~ = (). n is the unit normal
vector to the crack face, and the superscript + indicates its each side. Disregarding the body force,

the problem is to find the solution w which satisfies the following equations:

AV2u(z,t) + (i + ) VV -u(z,t) = i(z,t) x €D (=R\S), 6.1)

t+(z,t) + ( )_0 x €S, 6.2)
[u](x,t) (= u* —u (x,1)) =0 xcds, (6.3)
u*(x,0) = bC(:B ()) =0 xzebD. (6.4)

Similarly to 2-D case in Chapter 5, the variational formulation of hypersingular BIE with weight
function 1/ can be derived as follows:

w(m)t+(:c,t)dSm:/ ()t (x, 1)dS,
S+ S+
t
- / w(m)p.f./ W (z,y,t —7)- [u](y, 7)dS,dS,dr. (6.5)
0 Js+ s+

The superscript + is hereinafter omitted. In Eq. (6.5), W is the 3-D hypersingular kernel in time-
domain. Similarly to the 2-D case, it can be written as follows:

0 0

Wy (@,y,t) = na(w)nk(y)cbaiccjkpqgw
c OYq

Uip(x,y,1). (6.6)

6.2. Regularization of BIE

In this section, the regularization of variational BIE (6.5) is presented. First, the stress function
representation of differentiated fundamental solution in Laplace-domain is shown because we use
the CQM and evaluate the integration of hypersingular kernel in Laplace-domain. According to

[61], the stress function representation for differentiated fundamental solutions in Laplace-domain
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elastodynamic problems is shown as follows:

o 0 - 0 0 0 0 :
Cbaichkpqai%aiquip(wv Yy, 5) = eacmebdsejpnekqtaimcaimdaiypaiyqq)msnt(xu Y, 5)

+ Wik (2, Y, 8) + Dapjd(z — y), (6.7)

where @ is a function of order r as 7 | 0, and W is a function which has an integrable singularity
at x = y. In addition, D is a constant tensor, and this term is canceled in the BIE. The specific

expressions of ® and ¥ for isotropic media are given as follows:

N 1
(I)msnt(ma Y, 3) = _W%{2)\5m35m§ + ()\ + 2,“) (5mt53n + 5st5mn) }

A+ ) s,
—SLT —S8TT
x (e _ ¢ > , (6.8)

T T

Vansi(@,9,8) = s | 15H{ Awdje (ajdur + dardiy) | A
abjk\T, Y, S _47r()\+,u) HST abOjk M \OajObk akObj 52T r s% r

— {20051 + 152 (Bapad + OopOkadas + dapOau + Dopigdar)

8 8 e SLT e sTT
+ 2)\/,6 (5ab6jp5kq + (Sjk(sapdbq) }%% < , — r > ] . (69)
p q

In addition, this decomposition has been extended to anisotropic elastodynamics by Becache et al.
[11].

Taking into account the application of CQM, we consider the following integral containing the
Laplace-domain hypersingular kernel wW corresponding to the second term in the right-hand side of
Eq. (6.5):

S S

where ¢ is the spatial shape function for [u]. Substituting Eq. (6.7) into Eq. (6.10) yields the

following expression:

= /Sw(w)na(w)
g 9 0 0 ;
1. : 2299
XPp /S(b(y)nk(y)eacmebdsegpnekqt Ba:c aIL'd ayp 8yq q)msnt(way7 S)dsydsac

4 /S O(@)na () /S Bopye(@. 4, )0y (y)dS,dSs.  (6.11)
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casel case 2

7 Ys Y2

Figure 6.2.: Two types of triangular tip element for crack front.

Using Stokes’ theorem and taking Eq. (6.3) into account, Eq. (6.11) can be regularized as follows:

- N (x) 99(y) 9 0 .
w _ .
I" = /S eacmna(a:) o, /S CkqtMk (y) ayq €bds€jpn axd 6yp q)msnt(mv Yy, S)dsydsx

Opy) 9 0,
f;s ¢(€B) /S ekqtnk(y)Webdsejpn 8$d ayp (I)msnt<wa Yy, S)dSydwm

+/Sw(az)na(a:)/S\i/abjk(w,y,3)¢(y)nk(y)d5yd5’m. (6.12)

The second term in Eq. (6.12) includes the contour integral over the crack front with respect to .
If we select the weight function ¢ as ¥ = 0 on 0.5, this term vanishes. The second derivative of o
in the first term of Eq. (6.12) has weak singularity of order 1/7 as r | 0.

6.3. Discretization of BIE

The IRK-based CQM [48] is used for time discretization. For spatial discretization, the piecewise
linear interpolation is used for [u] except elements which are located at the crack front. We utilize
two types of tip element as depicted in Fig. 6.2 in order to accurately calculate COD near the crack
front using flatly triangular elements. As shown in Fig. 6.2, m4 and m are the unit tangential and
normal vectors to the crack front, respectively. The specific expressions of shape function ¢} for

the two types of tip element are shown as follows:

case 1

) = [ WY ) = gy(y) =0,

case 2

u(y) = ML (y—ys) |ma-(y—u2)

m gy e (g gy Y0

- omy-(y—y1) [ ma-(y—y2)
my-(ys—y1) \| ma- (y3 —y2)
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Note that the derivatives of shape function for tip element have additional singularity of order 1/+/r

corresponding to stress singularity at the crack front.

On the other hand, the piecewise constant shape function ¢’ is used for the interpolation of ¢ in
order to describe the discontinuity of traction between two adjacent elements. Therefore, the weight
functions for displacement ¥“ and traction v’ are different because the Galerkin method is used
in this study. For simplicity, all of the weight functions " are however taken as piecewise linear

functions. Thus, 1% # ¢“ on tip elements.

If the m-stage Radau IIA method [33] is used for the IRK-based CQM, and the boundary S is
divided into M, flatly triangular elements composed of M, nodal points, the discretized BIEs for
[u] and ¢ at n-th and i-th sub-step in time are written as follows:

Mg m A M. '
>0 [ Wi [ul } =-)_td"dl, / V] ()dS,
a=1 o

J=1j=1 supp(¢})NS,
) n—1 Mg m B .
+ / YH@)E (@, (n+ c)At)dS — YD S Wi E [l (6.13)
supp(¥}) k=0 J=1 j=1
£t o, / as, = &, / £9 (@, (1 + c5) A1),
Sa Seo
n Md m .. .
SN WIS, (614
k=0 J=1 j=1

where |, s, A5z in the left hand side of Eq. (6.14) is equal to the area of o-th element. W}f]“ and

ng in Egs. (6.13) and (6.14) are influence functions and given as follows:

Wit =R, [Z (E/s(Cz)) 2771, (6.15)
f=1

. oY (x
(Z]le) .:/ €acma () /()
b supp(¥}) Oz,

X /s o) ekqtnk(y)&?y(qy)ebdsejpnaiijpémsnt(x, y, Ns)dS,dS,
+ / o) b (@)ne(@) / oo Wangt (2, Y, )6 ()i (y)dSydSa, (6.16)
Wi =T [Z(EB(Q)) 201, 6.17)
(:2"“ ~Pa jéa . / oy y)a%’y (y)ebdsej,m 88 831) Dyt (2, y, Ny)dSydam,
+ 0 / (@) /Suppw Wanji (2, Y, Ag) 05 (¥)nk (y)dSydSe,  (6.18)
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Figure 6.3.: Schematic of element subdivision and coordinate transformation for case 1 tip element
in Fig. 6.2.

Table 6.1.: Relation between coordinate systems (d, d2) and (df, d5) for sub-elements E, Fs, and

Es in Fig. 6.3.
Eq Es E3
4 = (d))? & =d d=1-(1_d)

do =1— (1 —d})? de =1— (1 —d5)? do =1— (1 —d})?

where 0, indicates the edge of S,. Note that there are only weakly singular integrals in Egs.
(6.16) and (6.18). Therefore, applying the element subdivision [43] and the transformation of local
coordinate system, we can accurately evaluate all of the integrals in Egs. (6.16) and (6.18) using the

standard Gaussian quadrature.
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6.4. Numerical integration over element surfaces

In this study, we use the element subdivision [43] and the transformation of local coordinate system
in order to cancel the weak singularities of order 1/r and 1//r. The similar regularization technique
has been presented in [21]. For instance, we present regularization for the case 1 in Fig. 6.2 when
field point x is located on the same element. The integrals with respect to « in Egs. (6.16) and (6.18)
are evaluated by the standard Gaussian quadrature after the calculation of integrals with respect to
y.

We summarize the procedure of the regularization as follows:

1. The element subdivision method is applied in order to regularize the singularity of order 1/r
at the point © = y. The definitions of sub-elements E1, Fs, and E3 are shown in the above
of Fig. 6.3. Then, the coordinate system of each sub-element is transformed into the local
one (dy,dz). We select (d1, d2) for each element as shown in the middle of Fig. 6.3, and the
ranges of d; and ds for each element are [0, 1]. If the kernel function is A(y), the integral is

transformed as follows:

1 1
/ Aly)ds, = / / A(d)Juddrdds (i =1,2, or 3), (6.19)
E; 0 0

where J; is the Jacobian of the coordinate transformation and can cancel the singularity of
order 1/7 at da = 0 in the middle of Fig. 6.3.

2. In order to regularize the additional singularity of order 1/4/r caused by the derivatives of
shape function ¢* at the crack front, the additional transformation of local coordinate sys-
tem is introduced. The coordinate system (d, d2) is changed to (dj, d5) using the relations

between old and new ones in Table 6.1 for each element as follows:

1 el 1 pl
/ / A(d)Jyddyddy = / / A(d)JaTsdd A, (6.20)
o Jo o Jo
where J7 is also the Jacobian of the coordinate transformation. Consequently, the singularity
of each sub-element is canceled by each J.

3. The coordinate system (d7, d%) is transformed to (f1, f2), where the intervals of f; and fs are
[—1, 1]. Then, the integrations over each sub-element are evaluated by the standard Gaussian

quadrature.

The other cases of integration such as case 2 tip element or the case that « is located at the edge of

element, can be regularized in a similar way.

6.5. Application of FMM

The computational time and required memory often become significant issues for solving 3-D prob-
lems. Therefore, the proposed CQ-BEM is accelerated by the FMM as presented in Chapter 3.
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The multipole and local expansions for non-regularized hypersingular kernel are used because the
FMM for the regularized one requires much more computational time [100, 101]. The difference
of accuracy between the FMM with and without regularization is not significant because the FMM
calculation is implemented only for far-field contributions. In Chapter 3, we explained the com-
putational algorithm of the CQ-FMBEM. Therefore, the multipole and local expansions and some
remarks for this problem are presented here.

In order to derive the multipole and local expansions, Wz;,]}i]ﬁ;l and Wziﬁ ! are defined by

Wik [ / Ui (@) / th(w,y,Ag)gﬁy(y)dsydsx] s {5, 6.21)
supp(¢}) supp(¢Y)
W = ot [ Wi X)ohw)ds,ds. | w0, (6.22)
’ So /supp(¢Y)

where

[un] 55 =3 (Eﬁ(Cl)) JunlE.

j=1 Y
The scaled multipole expansions for WZ];JBI and VVZ@? ! without regularization are given by

82
Av Cca / nc €T u r)—— O,Ll}’w z de
{ peed supp(¢}) (@i )axamd@ w( Yo) }

« QMWL;i;k;,B;l(y())

v,w;J

) oo v
W= S

v=0 w=—v

d? .
+ Byeoce {cbmd / ne() i (@) 5 o0y ( - yo>dsx} gMZZ,T,;U;’;ﬂJ(yoJ :
supp(v§) Td0Te s=A,

(6.23)

82 1.
Av t . L _ " WL721k7B7l
{Cbcad¢o¢ /Sa n (m) 8$aawd QOU7w (w yo)ds } QMU,w;J (yo)

o0 v
Ak Bl
Wi = >

v=0w=—v

d? ko B
+ Bueoce 3 Cheaadl, / (@) 5———oOF (@ — Y0)dSy § oMU TR (o) . (6.24)
Sa 0x40x, Al N

=As
where ,M ! EERBL and , MY TIERBL are the scaled multipole moments with respect to P and S
waves, respectively, and given by

QMK/&’jk’ﬁ’l(?JO) — [uh]jkﬁ,l/ Chipgrry(y) [MQ‘FT{:W(?J — yo)] ¢7(y)dSy, (6.25)
supp(¢.7) YpOYq

QMK)T’;U;];B’l(yO) = [uh]jk’ﬁ’l/ eoupChfpgnf(Y) [Mgfg:w(y - yo)] ¢ (y)dSy.
supp(¢J) YqOYu

(6.26)
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6.6. Nonlinear boundary conditions and numerical procedure

Note that the double integrals with respect to & and y are separated, and therefore, far-feild con-
k551

by and

tributions can be rapidly evaluated using the FMM. The same translation theorems as U
TZZf  in Chapter 3 can be used for M2M, M2L, and L2L calculations.

However, the modified fast multipole algorithm for the Galerkin BEM (see Chapter 3 in [101]),
has to be taken in order to ensure the following two identities because we canceled some terms in
the regularization procedure from Eq. (6.11) to Eq. (6.12) using Eq. (6.3) and ¥)* = 0 on 05.

/ P (@)p.f. / Wiy (e, y, 5)6%(y)dS,dS,
supp(¢¥) supp(¢4)
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supp(¢}) Oz
0¢5(y) g 0 .
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+ / W (@)na () / B (. 9, 5)6% ()i () dS, dSa, 627)
supp(¥¥) supp(¢%)

¢f1/ p.f./ ij(x,y,s)qj"j(y)dSdem
Sa supp(¢})

09 (y) o 0 .
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950 Jsupp(e) kqt k’( ) 8yq bds€jp Oy 3yp t( ) Y
+ ¢t / na() / Do (@, 9, )6 ()i () dS, dSe (6.28)
Sa supp(¢Y)

Eq. (6.27) holds if 7} and ¢} are equal to zero at the edges of supp(¢}') and supp(¢'), respectively.
Therefore, a set of multipole moments corresponding to ¢ is calculated for one yq as shown in Fig.
6.4 (a). The coefficients of local expansion have to be calculated in a similar way. Then, the far-field
contributions can be evaluated by using the fast multipole algorithm. Correspondingly to this fast
multipole algorithm, the near-field contributions have to be evaluated as node to node. Similarly,
Eq. (6.28) holds if ¢"; = 0 at the edges of supp(¢;). Also in this case, a set of multipole moments
corresponding to ¢ has to be calculated for one yo as shown in Fig. 6.4 (b). As a result, the near-
field contributions have to be evaluated as node to element. Taking into account these calculation
ways and two identities (6.27) and (6.28), the counterpart of direct matrix-vector product can be
evaluated by using the FMM. Other numerical procedures of CQ-FMBEM are same as the ones in
Chapter 3.

6.6. Nonlinear boundary conditions and numerical procedure

The nonlinear boundary conditions and numerical procedure are briefly summarized in this sec-
tion. In order to simultaneously solve discretized BIEs (6.13) and (6.14), the appropriate boundary
conditions should be selected at each time step. We consider three types of state in a similar way

to Section 4.2.1. The boundary conditions for separation, stick, and slip states are summarized as
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Figure 6.4.: Schematic of potential calculation to ensure (a) Eq. (6.27) and (b) Eq. (6.28).

follows:

t=20 : separation, (6.29a)
[u] -m=u, [us]=0 - stick, (6.29b)

[ul-n=uy, t;=pq(t-n) : slip, (6.29¢)

)

where the vectors with the subscript s indicate the ones which consist of the tangential components

to the crack face. The transition conditions for the iterative calculation are also summarized as

follows:
[u] -n > u, : separation — stick, (6.30a)
t-n>0 : stick or slip — separation, (6.30b)
[ts| > ps |t - n| : stick — slip, (6.30c)
. + .prev
CORICD PN (6°°P)  :slip — stick, (6.30d)
o] |22,
us| |[us

where 65%°P is given by 90°. If the left inequalities in Eq. (6.30) are satisfied, the corresponding

right transition occurs.
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Figure 6.5.: A penny-shaped crack with radius a subjected to an incident plane P wave.
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Figure 6.6.: Mesh structure of a penny-shaped crack when M, = 656 and M, = 361.

Using boundary conditions (6.29), discretized BIEs (6.13) and (6.14) can be simultaneously
solved. The iterative algorithm is similar to the case of interface crack of bi-material in Section
4.3. In addition, discretized BIEs (6.13) and (6.14) are modified for the velocity of COD tangential
to the crack face as well as Section 4.2.2.

6.7. Numerical results

In this section, numerical results of the proposed CQ-FMBEM for 3-D crack problems are pre-
sented. First, the linear problem is numerically solved in order to verify the accuracy and to demon-
strate the computational efficiency. Second, the higher-harmonic simulation is carried out to vali-
date the contact model of crack faces. Finally, numerical results of sub-harmonic generation due to

cracks in an infinite domain are shown and compared with the ones for the 2-D case.

6.7.1. Linear problem

In advance of the nonlinear ultrasonic simulation, the numerical results for the traction-free crack

are shown. The time histories of COD and SIF are computed for the accuracy verification when a
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Figure 6.7.: (a) Vertical COD at each several time-steps and (b) time variations of normalized dy-
namic SIF when a penny-shaped crack is subjected to normal incidence of plane P
wave.

penny-shaped crack is subjected to normal incidence of plane P wave as depicted in Fig. 6.5. The
incident plane P wave is given by

. crt —x3
u; (@, ) = —uodi3

H (CLt — 133) . (6.31)
The crack surface is divided into 656 flatly triangular elements as depicted in Fig. 6.6, and time
increment At is given by cpAt/a = 0.1. Poisson’s ratio of base material v is given by v = 0.25 in
order to compare with reference solutions, and the CQ-FMBEM with RK3 is used here.

Vertical COD at several time steps on the positive part of x;-axis is shown in Fig. 6.7 (a). The
vertical COD at z1/a = 0.0 is constantly raised until about c¢rt/a = 0.6 because the diffracted P
wave arrives at about crt/a = 0.58. From crt/a = 0.9 to 1.2, the behavior of COD around the
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Figure 6.8.: Computational time of CQ-FMBEM using RK3 for 3-D crack problems varying the
number of elements M, when N = 128.
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Figure 6.9.: Computational time of CQ-FMBEM using RK3 for 3-D crack problems varying the
number of time steps N when M, = 1464.

center of the crack is greatly different from an early time due to diffracted surface waves.

Next, the dynamic SIF of mode I is computed by the present method. According to [84], the

dynamic SIF corresponding to mode I can be calculated by

w22r 1

Kilt) = 3= i - ful(e,0)- ),

(6.32)
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where ¢ indicates the distance from the crack front. We normalize the dynamic SIF using the exact
solution of static problems K3' = 2033 \/a/iﬂ. The time history of dynamic SIF is presented in
Fig. 6.7 (b). The solutions obtained by Hirose and Achenbach [35] are plotted in the same figure
for comparison. They have used the conventional TD-BEM in which the collocation method is used
for time and spatial discretization. On the other hand, this problem in frequency-domain can be
come to a Fredholm integral equation of the second kind using the axisymmetric property, and it
has been numerically solved by Rahman [68]. The transient solutions constructed by the inverse
Fourier transform, which are called the “reference solutions”, are also presented in Fig. 6.7 (b).
The reference solutions have slight oscillation at about ¢7t/a = 2.1 and 4.3, when the waveform
is rapidly fluctuated. However, the reference solutions are considered as most accurate in Fig. 6.7
(b). The behavior of solutions obtained by the proposed method and Hirose and Achenbach are
very similar and both solutions converge to the static solution. At about cyt/a = 2.1 and 4.3, the
solutions obtained by the proposed method seem to be more accurate.

The computational efficiency of the proposed method is confirmed by solving the same problem
for different N and M,.. The computational time varying the number of elements M, is shown in
Fig. 6.8 when NV = 128. The solid line in the figure indicates the regression one of numerical results.
As shown in Fig. 6.8, the computational complexity for M. seems to be about O(M, log M, ). On
the other hand, the computational time varying the number of time steps IV is shown in Fig. 6.9
when M, = 1464. When about N < 200, the computational complexity seems to be O(N).
However, the order of computational time seems to be O(N log N) for comparatively large N. This
is because calculation of the influence functions for near-field contribution is most time-consuming
with small NV, and its complexity is O(N M. ). Consequently, it seems that the total computational
complexity of the proposed method is about O(N M, log N log M,).

6.7.2. Higher-harmonic simulation

In order to validate the contact model of crack faces for 3-D problems, the numerical results of
higher-harmonic simulation are presented here. Hereinafter, the CQ-FMBEM with RK2 is used for
all nonlinear ultrasonic simulations. The analysis model in Fig. 6.5 is also used for this simulation,
and we confirm that our model can reproduce the clapping motion and friction on crack faces sim-
ilarly to the 2-D case in Section 5.5.2. The following sinusoidal burst wave with ni™ cycles is used

as the incident wave for the nonlinear ultrasonic simulation.

u™(x,t) = uody sin (2rA,) H (Ay) H (n™ — Ay) (6.33a)
Ay = i <t — ”'(“’_X)> . (6.33b)
Cp

We assume that dry = (0, 1,0) and d7y = dpg xp. The far-field approximation of scattered wave
(see Appendix B) is used for the spectrum analysis. The time increment is taken as f At = 0.05,
and Poisson’s ratio of base material is given by v = 0.3 supposing steel. The friction coefficients
are thus given by the top row of Table 4.2. n'" is given by n'" = 15 here.
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Figure 6.10.: Time variations of (a) COD at the center point of a crack and (b) far-field amplitude
of backscattered P wave when a penny-shaped crack is subjected to an incident plane
P wave. (c) is normalized frequency spectrum of far-field amplitude.

First, numerical results of P wave incidence are presented when o™ = 0°, kra = 3.0, and
ug/up = 0.0. Time histories of vertical COD at the center point of a crack are shown in Fig. 6.10
(a). Time histories and normalized frequency spectra of far-field amplitude of backscattered P wave
are also presented in Fig. 6.10 (b), and (c), respectively. As shown in Fig. 6.10 (a), the vertical COD
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Figure 6.11.: Time variations of (a) tangential traction at the center point of a crack and (b) far-field
amplitude of backscattered SV wave when a penny-shaped crack is subjected to an
incident plane SV wave, and 0% /0y = 1.0. (c) is normalized frequency spectrum of
far-field amplitude.

in the nonlinear case cannot take negative values due to contact conditions. From Fig. 6.10 (b), the
waveform of 27, /(aug) is distorted by the clapping motion. Therefore, the frequency spectrum of
Q1,/(aup) in the nonlinear case contains higher-harmonic components as shown in Fig. 6.10 (c).
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Figure 6.12.: Elastic wave scattering by (a) a saddle-shaped crack and (b) two penny-shaped cracks
arranged in parallel.

Also in the 3-D case, it is confirmed that all (2nd, 3rd, 4th, etc.) orders of higher-harmonic waves
are generated.

Second, numerical results of SV wave incidence are presented when o = 0°, kra = 3.0,
and ug/ug = 0.0. In this case, the static compressive stress o™ has a positive value over a crack
uniformly in order to generate the dynamic friction force. o®¢ is given by o' /oy = 1.0 here. Time
histories of tangential traction at the center point of a crack are shown in Fig. 6.11 (a). Time
histories and normalized frequency spectra of far-field amplitude of backscattered SV wave are also
presented in Fig. 6.11 (b), and (c), respectively. As shown in Fig. 6.11 (a), the tangential traction
becomes similar to square wave due to dynamic friction force, and its amplitude corresponds to the
dynamic friction coefficient ;4. From Fig. 6.11 (b), the waveform of Q7 /(aug) is distorted due
to the friction force, and the amplitude is smaller than the linear one. Therefore, the 3rd higher-
harmonic component is contained in the nonlinear case as shown in Fig. 6.11 (c). It is known that
odd order of higher-harmonic waves are generated due to pure shear motion with contact [89], and
that is also reproduced. From the above, we can confirm that the presented numerical method can

accurately simulate the clapping motion and dynamic friction on crack faces.

6.7.3. Sub-harmonic simulation

In order to confirm that the sub-harmonic generation can be caused in the 3-D model, we present
some numerical results in this section. The similar models to the ones in Section 5.5.3 is used for
the 3-D sub-harmonic simulation. Therefore, a saddle-shaped crack and two penny-shaped cracks
arranged in parallel in an infinite elastic solid depicted in Fig. 6.12 are considered as the analysis
models. The time increment is taken as At = 0.05, and the material constants are same as the

higher-harmonic simulation in the previous section. The incident plane wave is assumed to be P
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Figure 6.13.: Frequency responses for the model in Fig. 6.12 (a) using the frequency-domain BEM
and assuming that crack faces are always separated. The norm ||[u]||/ug at point F in
Fig. 6.12 (a) for various 6™ and kra is plotted when (a) w/a = 1.0 and (b) 2.0.

wave, and ¢ = L in Eq. (6.33).

Sub-harmonic generation by a saddle-shaped crack

First, we presented numerical results of wave scattering by a saddle-shaped crack in an infinite
elastic solid as depicted in Fig. 6.12 (a). In the 2-D simulation, the nonlinear torsional vibration
is caused at the inner part of a curved crack, and sub-harmonic waves are generated under certain
conditions as presented in Section 5.5.3. Therefore, the similar model with finite width w in 3-D is
considered. Only the cases that h/a = 2.0 and §™ = 60° are presented here because sub-harmonic
waves are generated in a comparatively wide range of kra and uy/ug in the 2-D case as shown in
Fig. 5.16.

In advance of the sub-harmonic simulation, the frequency response analysis varying w/a is con-
ducted in order to predict the probability of sub-harmonic generation. The norm ||[u]||/u at point
F in Fig. 6.12 (a) for various kra and 6™ is plotted in Fig. 6.13. From Fig. 6.13 (a), the peak of
[|[w]||/uo is located at about kra = 1.2 in the case that w/a = 1.0. As shown in Fig. 6.13 (b),
the results in the case that w/a = 2.0 are similar to the 2-D ones in Fig. 5.31 (e), and the peak
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Figure 6.14.: Fourier amplitude ratio of sub-harmonic frequency to fundamental one for various pre-
opening displacement u,/ug when a saddle-shaped crack is subjected to an incident
plane P wave (w/a = 1.0, " = 60°, and n'™ = 15).

of ||[u]||/up is located at about kra = 0.7. Comparing Fig. 6.13 (a) and (b),
gentle in the case that w/a = 1.0 than w/a = 2.0. Therefore, it is expected that the sub-harmonic

[u]||/uo is more

generation occurs in the case that w/a = 2.0 similarly to the 2-D case although that may be not

caused in the case that w/a = 1.0.

It is difficult to conduct the same number of numerical simulations as the 2-D case because of the
computational cost for the 3-D simulation. Therefore, we present numerical results varying the pre-
opening displacement u,/u for several center wavenumbers of the incident wave kra. Ags./Aw
for various u,/uo in the case that w/a = 1.0 is presented in Fig. 6.14. kra is changed from 1.0 to
5.0 with increments of 1.0 in Fig. 6.14 (a), and we could not confirm the sub-harmonic generation.
According to the tendency of the 2-D results in Section 5.5.3, the sub-harmonic generation occurs at
kra which is a little larger than the double of the first peak of frequency response. In this case, the
first peak of frequency response is located at about kra = 1.2, so that kra is changed from 2.2 to
2.8 with fine increments in Fig. 6.14 (b). Although we could not find the sub-harmonic generation
here, Ao 5, /A in the case that kra = 2.8 becomes very large as shown in Fig. 6.14 (b). Therefore,

Ap .50/ Ay only in this case is plotted in Fig. 6.15 with a different vertical axis. The maximum value
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Figure 6.15.: Fourier amplitude ratio of sub-harmonic frequency to fundamental one for various pre-
opening displacement u,/ug when a saddle-shaped crack is subjected to an incident
plane P wave (kra = 2.8, w/a = 1.0, ™ = 60°, and n'* = 15).
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Figure 6.16.: (a) Time variation and (b) normalized frequency spectrum of far-field amplitude of

backscattered P wave when a saddle-shaped crack is subjected to an incident plane P
wave (kra = 2.8, ug/ug = 3.4, w/a = 1.0, 6™ = 60°, and n'® = 15).

of Ap5./A, is about 0.95 as we can see from Fig. 6.15. In order to investigate what happened here,

the time history and frequency spectrum of far-field amplitude of backscattered P wave are shown
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Figure 6.17.: Fourier amplitude ratio of sub-harmonic frequency to fundamental one for various pre-
opening displacement u,/ug when a saddle-shaped crack is subjected to an incident
plane P wave (w/a = 2.0, " = 60°, and n'™ = 15).

in Fig. 6.16 when kra = 2.8, ug/ug = 3.4. The frequency spectrum is normalized by A,,. From
Fig. 6.16 (a), the waveform of 21, /(aug) is strongly distorted, and the amplitude is very small in
the middle. The frequency spectrum is also distorted, and the peak is unstable and shifted as shown

in Fig. 6.16 (b). As aresult, A, is small, and A 5,,/A,, becomes large.

Next, Ag 5. /A, for various ug/ug in the case that w/a = 2.0 is presented in Fig. 6.17. In Fig.
6.17 (a), kra is changed from 1.0 to 5.0 with increments of 1.0, and we could not confirm the
sub-harmonic generation from these cases. The first peak of frequency response is located at about
kra = 0.7, and therefore, kra is changed from 1.2 to 1.8 with fine increments in Fig. 6.17 (b).
There are two slight peaks at around k7a = 1.2 and u,/ug = 2.6, and kra = 1.4 and ugy/ug = 1.6
as indicated by arrows, and we can confirm the sub-harmonic generation under these conditions. For
instance of the sub-harmonic generation, the time history and normalized frequency spectrum of far-
field amplitude of backscattered P wave are shown in Fig. 6.18 when kra = 1.4 and u4/ug = 2.6.
As shown in Fig. 6.18, the large and small amplitude is periodically repeated, and the slight peak
of Ag.s. /Ay is confirmed. However, they are not clear because ni™ = 15. In order to show more

clear sub-harmonic generation, the waveform and frequency spectrum in the case that n'™ = 30 are
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Figure 6.18.: (a) Time variation and (b) normalized frequency spectrum of far-field amplitude of
backscattered P wave when a saddle-shaped crack is subjected to an incident plane P
wave (kra = 1.4, ug/up = 2.6, w/a = 2.0, 6" = 60°, and n™ = 15).

presented in Fig. 6.19. It can be confirmed from Fig. 6.19 (a) that the waveform becomes stable in
the state that large and small amplitude is repeated periodically. The more clear peak of Ag 5,,/A.
can be seen in Fig. 6.19 (b) than in Fig. 6.18 (b). Ag 5. /A in this case is much smaller than that
in the 2-D case. However, it is expected that Ag 5,,/A,, becomes large as w/a increases because the
case that w/a — oo is equivalent to the 2-D one. The sub-harmonic generation can be caused for

the model in Fig. 6.12 (a) with sufficiently large w/a.

Sub-harmonic generation by two penny-shaped cracks arranged in parallel

Second, we present numerical results of the wave scattering by two penny-shaped cracks arranged
in parallel in an infinite elastic solid as depicted in Fig. 6.12 (b). In the 2-D simulation, the nonlinear
bending vibration is caused at the part between two straight-line cracks, and sub-harmonic waves
are generated under certain conditions as presented in Section 5.5.3. Therefore, it is expected that
similar bending vibrations are generated in the 3-D case for the model in Fig. 6.12 (b). Only the
normal incidence is considered here because the sub-harmonic waves can be observed in the 2-D
case except 6" = 90°.

In advance of the sub-harmonic simulation, the frequency response analysis varying h/a is con-
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6.7. Numerical results
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Figure 6.19.: (a) Time variation and (b) normalized frequency spectrum of far-field amplitude of
backscattered P wave when a saddle-shaped crack is subjected to an incident plane P
wave (kra = 1.4, ug/ug = 2.6, w/a = 2.0, 6™ = 60°, and n'® = 30).
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Figure 6.20.: Frequency responses for the model in Fig. 6.12 (b) using the frequency-domain BEM
and assuming that crack faces are always separated. The norm ||[u]||/ug at point G in
Fig. 6.12 (b) for various h/a and kra is plotted when 6™ = 0°.

ducted in order to predict the probability of sub-harmonic generation. The norm ||[u]||/ug at point
G in Fig. 6.12 (b) for various kra is plotted in Fig. 6.20. From Fig. 6.20, the results are very similar
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Figure 6.21.: Fourier amplitude ratio of sub-harmonic frequency to fundamental one for various
pre-opening displacement u,/uo when two penny-shaped cracks arranged in parallel
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are subjected to an incident plane P wave (h/a = 0.5, '™ = 0°, and n'* = 15).

to the 2-D ones in Fig. 5.32. Therefore, it is expected that sub-harmonic waves are generated in the

cases that h/a = 0.5 and 1.0.

Ag 5./ A, for various ug/ug in the case that h/a = 0.5 is presented in Fig. 6.21. In Fig. 6.21
(a), kra is changed from 1.0 to 5.0 with increments of 1.0, and a peak of Ag 5, /A, is observed
around kra = 3.0 and uy/up = 3.2. In order to investigate the transition of Ag s, /A, varying
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6.7. Numerical results
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Figure 6.22.: (a) Time variation and (b) normalized frequency spectrum of far-field amplitude of
backscattered P wave when two penny-shaped cracks arranged in parallel are subjected
to an incident plane P wave (kra = 3.0, ug/ug = 3.2, h/a = 0.5, ™ = 0°, and
nit = 15).

kra, Aps., /A, for kra = 2.2 to 2.8 and 3.2 to 3.8 with fine increments are shown in Fig. 6.17
(b) and (c), respectively. There are several peaks of Ag 5. /A, in Fig. 6.17 (b) and (c), specifically
around kra = 2.8 and ug/ug = 3.4, kra = 3.2 and uy/up = 2.8, kra = 3.4 and ug/ug = 3.2,
and kra = 3.6 and uy/uo = 2.8 as indicated by arrows. Under these conditions, the sub-harmonic
generation can be confirmed. For instance of the sub-harmonic generation, the time history and
normalized frequency spectrum of far-field amplitude of backscattered P wave are shown in Fig.
6.22 when kra = 3.0, ug/up = 3.2. As shown in Fig. 6.22, the large and small amplitude is
periodically repeated around the last part, and the peak of A 5. /A, is confirmed. However, they
are not clear because n'™ = 15. In order to show more clear sub-harmonic generation, the waveform
and frequency spectrum in the case that n'™ = 30 are presented in Fig. 6.23. From Fig. 6.23 (a), it is
confirmed that the waveform becomes stable in the state that large and small amplitude is repeated
periodically. The more clear peak of Ay 5., /A, can be seen in Fig. 6.23 (b) than in Fig. 6.22 (b).

Next, Ag.5u/ Ay for various u,/ug in the case that h/a = 1.0 is presented in Fig. 6.24. In Fig.
6.24 (a), kra is changed from 1.0 to 5.0 with increments of 1.0, and we could not confirm the

sub-harmonic generation in these cases. The first peak of the frequency response is located at about
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Figure 6.23.: (a) Time variation and (b) normalized frequency spectrum of far-field amplitude of
backscattered P wave when two penny-shaped cracks arranged in parallel are subjected
to an incident plane P wave (kra = 3.0, ug/ug = 3.2, h/a = 0.5, " = 0°, and
n'® = 30).

kra = 1.6, and therefore, kra is changed from 3.2 to 3.8 with fine increments in Fig. 6.24 (b).
However, We could not find the sub-harmonic generation in these cases. As a result, it seems to be
harder for the 3-D model in Fig. 6.12 (b) than the 2-D model in Fig. 5.11 (b) that the sub-harmonic
generation is caused. This may be because the width of cracks is finite, and the effect of multiple

reflection is weaker in the 3-D case than the 2-D case.

6.8. Concluding remarks

e In Chapter 6, we have successfully applied the new CQ-FMBEM to the 3-D nonlinear ultra-
sonic simulation for cracks in an infinite elastic solid. The validity of our proposed method
was confirmed through numerical results of normal incidence of P and S waves to a penny-
shaped crack. We have also succeeded in the simulation of sub-harmonic generation due to

interior cracks with contact boundary conditions in 3-D.

e From numerical results for the linear problem, the accuracy and efficiency of the CQ-FMBEM
for crack problems were confirmed. The computational complexity of the CQ-FMBEM is
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Figure 6.24.: Fourier amplitude ratio of sub-harmonic frequency to fundamental one for various
pre-opening displacement u,/uy when two penny-shaped cracks arranged in parallel
are subjected to an incident plane P wave (h/a = 1.0, '™ = 0°, and n'® = 15).

O(N M, log N log M,). The far-field contributions can be rapidly calculated for the Galerkin
formulation because double integrals with respect to source and field points are separated in

the multipole expansion.

e For the case that a saddle-shaped crack is subjected to an incident plane P wave, we con-
ducted the numerical simulation with two kinds of finite width w. We could observe the sub-
harmonic generation in the case that w/a = 2.0 from numerical results but not for w/a = 1.0.
As aresult, it has been confirmed that the sub-harmonic generation occurs if w is sufficiently

large.

e For the case that two penny-shaped cracks arranged in parallel are subjected to an incident
plane P wave, we conducted the simulation with two kinds of interval h. It could also be
found that the sub-harmonic generation is caused if sufficiently small h similarly to the 2-D
case. However, we could not see the sub-harmonic generation in the case that h/a = 1.0.

Therefore, the finite width may also be significant in this case.
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Chapter 7

Final Remarks

In this dissertation, we have investigated the acceleration of CQ-BEM for 3-D acoustic and elas-
tic wave problems. The proposed fast CQ-BEM is accurate and efficient for the large-scale wave
problems especially dealing with the (semi-) infinite domain. The application of the fast CQ-BEM
to the nonlinear ultrasonic simulation has also been performed, and the behavior of nonlinear ultra-
sonic waves has been investigated through numerical results. The results obtained by this study are

summarized as follows:

Chapter 1 We have explained the background of this study about the NLUT based on CAN and
the TD-BEM. To investigate the behavior of higher-harmonic generation and the mechanism
of sub-harmonic one, we focused numerical simulation as the theoretical approach. In the
previous researches, the behavior of higher-harmonic generation due to an interface crack has
not been investigated in full 3-D, and there are a few reports of sub-harmonic simulation.
Therefore, it is necessary to carry out these simulations and to quantitatively analyze them.
For this type of problems, the TD-BEM is considered as an appropriate numerical method be-
cause of its accuracy and efficiency. However, the conventional TD-BEM has some problems
such as instability in time-marching process and large computational complexity. Therefore,
we mentioned the importance of the stabilization and acceleration of the TD-BEM in this

chapter.

Chapter 2 The IRK-based CQ-BEM formulation and its important aspects are presented in this
chapter. This numerical method produces more accurate numerical solutions than the linear
multistep-based one although the required memory and computational time increase in the
same N and M.. However, it is sometimes difficult to satisfy accuracy requirements using
the linear multistep-based CQ-BEM. Therefore, we strongly recommend to use the IRK-based

CQ-BEM because of its high performance in accuracy.

Chapter 3 We have successfully accelerated the IRK-based CQ-BEM in this chapter. The original
computational complexity and required memory of the IRK-based CQ-BEM are O(m?N?2M?2)
even if we use an iterative solver. As the result of the acceleration based on the FMM and

the rapid convolution algorithm, the computational complexity and required memory can be
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7. Final Remarks

reduced to O(mN M, log N log M,.) and O(mN M), respectively. We have also presented
its applicability to the elastic wave and coupled acoustic-elastic wave problems.

Chapter 4 The 3-D simulation of nonlinear ultrasonic waves due to an interface crack with con-
tact boundary conditions between two semi-infinite elastic solids, has been performed in this
chapter. The appropriate boundary element formulation for this problem has been proposed in
order to accurately compute the tangential velocity of displacement. We have been carried out
some numerical simulations of the higher-harmonic generation and validated the numerical
model of interface crack through obtained numerical results. For normal incidence of P and S
waves, the reflection and transmission coefficients between two materials significantly effect
in the static compressive stress. For oblique incidence of P wave, the amplitude of scattered
wave rapidly fluctuates due to the behavior of reflection and transmission coefficients near the

critical angle.

Chapter 5 The long-time analyses of the nonlinear ultrasonic generation by interior and surface
breaking cracks in 2-D have been implemented by the non-accelerated CQ-BEM. Verifica-
tion and validation of the proposed CQ-BEM have been conducted by solving the fundamen-
tal problems. From the simulation of higher-harmonic waves due to a straight-line crack, it
was found that there is optimal static compressive stress for the 2nd higher-harmonic gener-
ation related with the normalized wavenumber of the incident wave. On the other hand, we
have successfully conducted the numerical simulation of the sub-harmonic generation under
certain conditions. From numerical results, we have investigated the relation between the
characteristic of frequency response and the probability of sub-harmonic generation. As a
result, the sub-harmonic generation is caused due to interior cracks with some pre-opening
displacements when the frequency of the incident wave is a little larger than the first mode
quasi-eigenfrequency of the linear system. However, the behavior of sub-harmonic genera-
tion due to a surface breaking crack is different, and that occurs when the frequency of the

incident wave is about triple of the first mode quasi-eigenfrequency of the linear system.

Chapter 6 The 3-D simulation of nonlinear ultrasonic waves due to cracks in an infinite elastic
solid has been conducted by the fast CQ-BEM presented in Chapter 3. Therefore, the fast
CQ-BEM has been extended to the 3-D crack problem and verified by solving linear prob-
lems. We also presented the computational complexity through some numerical results. The
crack model has also been validated by solving the fundamental nonlinear problems such as a
penny-shaped crack subjected to normal incidence of P and S waves. From the numerical re-
sults of the nonlinear ultrasonic simulation, it was confirmed that the sub-harmonic generation

is caused under the similar conditions to the 2-D cases.

In this study, we succeeded in reproducing the sub-harmonic waves due to the CAN in the 2-D
and 3-D numerical simulations as presented in Chapters 5 and 6. As a result, the sub-harmonic
generation greatly depends on the situation such as size, shape, and arrangement of cracks and

existence of free-surface. Therefore, it is difficult to use these phenomena for the NDE if there is
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no information of flaws in advance of measurement, and the applicability is limited. However, it is
important to completely reveal the mechanism and to make the range of applicability clear. Also, it
may be expected that the sub-harmonic generation phenomenon is used for other engineering fields.

In the future, we are going to extend the proposed 3-D numerical method of nonlinear ultrasonic
simulation to the scattering problems by a surface breaking crack similarly to the 2-D case. How-
ever, for performing many numerical simulations, the proposed CQ-BEM is not sufficiently fast.
Therefore, we are going to continue the acceleration of the CQ-BEM. Also, we should compare
obtained numerical results with experimental data and consider the consistency between numerical
and experimental approaches.

The FDM and FEM are usually used for the time-dependent (nonlinear) problems because of
their robustness, computational efficiency, and ease of formulation. On the other hand, the stability
of TD-BEM has been improved and accelerated by some special techniques recently as shown in

this dissertation. The author hopes that the TD-BEM is more widely used in the engineering fields.
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Appendix A

Translation Operators and Recursions

The translation operators for the fundamental solution of the modified Helmholtz equation (E|F)"""/

are obtained using the analogous manner as the Helmholtz equation [23].

a+c
(M|M) ( Yo — yl) Z ( ) -AC WZ bc;b dFe,d—b(yO - yl)a (A.D)
e=|a—c|
a+tc
M\L) (Y1 = o) = Z (—1)a+dAc,ve},c,§b_dOe,d7b(wl - Y1), (A.2)
e=|a—c|
a+c
(LIL)> (901 — x0) = Z (—1)% A W Gyop—aFed—b(@1 — 20), (A3)

e=|a—c|

where Aqp = (2a + 1)(2b + 1) and W, "7 is expressed using Wigner-3j symbol ( ::: ) [57] as

follows:
a ¢Cc e a ¢ e
Whee = . A4
bd.f <OOO><bdf) a4

The recursions of (E|F)Z . are following [28]:

a:b(E|E)Z+1,c = _a;b(E|E)Z—1,c + a:r 1 b(E’E)Z e—1 T ac_—i-l,b(E‘E)Z e+l (A.5)
by (BE)in e = bo y(BIE),T)  + bc 1o (BIB) g ey =0y (BIE)g ey, (A6)

ab(M|L)a+1 c ab(M|L)a Le — Qc—1 b(M|L)ac 17 Gy, b(M|L)a e+ (A7)
b ML) o = by (ML) o = by (ML)g oy + by (ML)goprs  (AS)

where coefficients a;rb, a» b, and b, are defined as follows:

ot = \/(a+b;—al—?_(;z—b+1), 0 - (a;;lbj_(clt—b)7 (A9)
 VJ(@—-b+1)(a-b+2) 7_\/(a+b)(a+b—1)'

R (A.10)

20 +1 20 +1

153



A. Translation Operators and Recursions

The initial values for the recursion (E[F)g . are given as follows:

(MM)g . = (2¢ + Dic(sylyo — w1), (A.11)
(MIL)] . = (2¢+ Dke(sglyn — @1]), (A.12)
(LIL)g . = (2¢ + 1)ic(se|@1 — o). (A.13)
Using the relations (E|F)) = (E[F),”,
2c+1 2c+1
b b b b
EE)oe = 5,7 EE) e, (ML) = 5 —— (=D)* (ML), (A.14)

and recursions (A.5)-(A.8) with appropriate computational procedure, the translation operators
(E|F)2c can be calculated in O(N}?) computational time. Then, the scaling of the translation op-
erators (<5'|.7-")27C can be calculated to replace i.(z) and k.(z) in Egs. (A.11)-(A.13) with i.(z) and
IUCC(Z), respectively. Notice that the plus or minus signs in these recursions are different from the

ones [28] for the Helmholtz equation.
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Appendix B

Far-field Approximation of Scattered
Waves

We explain the calculation method of far-field approximation of scattered waves.

B.1. Inclusions and cracks in 2-D and 3-D

Replacing the fundamental solutions in the integral representation of the scattered wave with the
far-field approximated ones, the far-field scattered waves can be evaluated. Therefore, the far-field
scattered wave u%" from inclusions with surface S and cracks with one side of crack faces ST in

an infinite elastic solid can be described as follows:
St (g ) / /Ufar x,y,t —71) t(y,7)dSydr
/ /Tfar xz,y,t — 1) u(y,7)dS,dr, (B.1)
w (g f) = — /0 /S Ty, 1) - ful(y, 7S, (B.2)

where the superscript “far” indicates the far-field approximated function. Defining that = |x| and
& = x/x and considering x > |y| as the far-field condition, we can approximate as r ~ x — & - y
and Or/0x; ~ &;. Consequently, the far-field approximated fundamental solutions corresponding
to displacement and traction for 2-D elastodynamic problems in time-domain can be respectively
obtained as follows:

1 62 H(t— z my)
yfar £ = 2], A °L
%) (xvya ) //L\/% T c%xlx] ] | oy
(b a) (=)
L L
c
+ (513 — i‘zi‘J) = (B.3)
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t 1
1) (=)

Sindi + Opidy, — 2y i — G-
ki F Oij Tk — STl T nk(y)5<t—x w y) . (B4

+
CT\/(;+;T) (- =2%)

Similarly, the counterparts for 3-D problems are given by

1 2 2 —2c2) Sipdj + 2c30i0 44 — G-
T (2, y,t) = —\/> (L, = 267) budy + 267 i n(y)s (t _r-ry y)
Verz ¥ T 3\/( Ty cr

ar 1 02 o s rT—x-y T-T-y

1 c2 2 — -
Tfar = ——— ¢ | L5 (2L _92])5§ 2
ij (x,y,t) 47m{ [C%% (CQT ) ik + xzxjsck] nk(y ( >

1 —
+ — |:5ikij + (52‘ji‘k — 2.@’i§3]xk] nk(y)é (t — w) } (B.6)
cr cr

Substituting Egs. (B.3)-(B.6) into Egs. (B.1) and (B.2) yields the following forms because the
far-field scattered wave can be completely separated into P, SV, SH wave components in 3-D and P
and SV (S) ones in 2-D.

,usc;far(w’ t) _

1
P |:£QL (ZB t— ) + 0Oy (m t— > + hQTH (jﬁ,t — $>:| for 3-D,
4 cy, cr cr

1 x T
zQp |zt — — | +0Qp | &, t — — for 2-D,
\V8mrx [ L( CL) T( CT>}

where © and h are the displacement vectors of SV and SH waves, respectively. Q, (¢ = L, TV,

B.7)

or T'H) is the far-field amplitude and indicates the invariable waveform of the scattered wave at far-
field. The scattered waves at far-field are attenuated by distance in order of O(1/+/x) and O(1/x)
for 2-D and 3-D cases, respectively, as shown in Eq. (B.7).

If we use the CQM formulation for evaluation of the far-field scattered waves, the equivalent
scattered far-field can be obtained by using the far-field approximated Laplace-domain fundamental
solutions. The approximated 2-D Laplace-domain fundamental solutions are obtained by using the

asymptotic behavior of the modified Bessel function Ky as follows:

s

Ko(spr) ~ exp [—wa + 21} exp [SoT - Y] . (B.8)

218,

On the other hand, the 3-D counterparts are obtained by using the approximations r ~ x — & - y
and Or/0z; ~ ;.
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B.2. Interface cracks between two semi-infinite elastic solids in 3-D

Figure B.1.: Interface crack of two-layered elastic solid.

B.2. Interface cracks between two semi-infinite elastic solids in
3-D

The far-field scattered waves by an interface crack are evaluated in Chapter 4. Therefore, the cor-
responding far-field approximated Green’s function is shown. The far-field scattered waves can be
evaluated by replacing T in Eq. (B.2) with Green’s function for the two-layered semi-infinite
elastic solid. The far-field approximated Green’s functions can be obtained from the integral rep-
resentation of the fundamental solutions using the ray theory [2] and the stationary phase method
[80]. The ray theory has been applied to the BEM in order to improve the accuracy and efficiency
by Kimoto and Hirose [41].

Let ST and S” be each side of crack faces as depicted in Fig. B.1. The integral form of far-field

scattered wave from interface cracks is given by
t
w0 (1) = — / HEI O W (2 y ¢ — 1) - [u)(y, 7)dSydr,  (BY)
0 JgItn

where H'™ /=1 indicates the far-field approximation of traction Green’s function for the two-
layered elastic solid when the source and field points are located in D and DZ, respectively. Con-
sidering that inhomogeneous waves are generated over the critical angles, the scattered waves should
be evaluated in frequency-domain. Therefore, the approximations of frequency-domain Green’s
function are shown here. The far-field approximation of frequency-domain traction Green’s func-

tion for the two-layered elastic solid can be written as follows:

I(I) -+
- ) n;(y)C ¢
H{;H)ﬁﬂ(l),far(xjy,w) _ Z i )I(lg;g)k:?(;)
a=L,TV B=LTV dmrp Ca
+
+a,8 ;+a,B- . _ C Y
XA d " iwexp | iw —CH(I) Cé(ﬂ) o .
B Q=G #1,62= "7y T2
‘s ‘8
I(I
_”j(y)Cp](-kq) qu AFTHTH p£THTH; exp |iw r ¢ty
47r:1:,u1(ﬂ)c§w) g ' cg(l) CIT(H) (1) LD ’

<1:%i1£2:%$2
°r ‘T

(B.10)
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B. Far-field Approximation of Scattered Waves

Surface breaking crack

D
S

C

Figure B.2.: Surface breaking crack in elastic half-space.

where
(™) o
ta,f _ pa,B + T3| 14a
Ay _TI(HHH(J)(C )W d;. (B.11)
@ "B

The superscripts on the material constants such as Cjjx; and 1 indicate each domain. In Eq. (B.11),
Tj’z’l'% L I)(C *+) is the transmission coefficient with propagation vector of the incident wave ¢*
when the wave mode is changed from « to /3, and the wave is propagating from D!(I) to DZ(1),

The propagation vector ¢ is defined by

= (G, 6,2r), v=y1-(0)?- (&) (B.12)

and d** and d**7? are the displacement vector before and after the transmission, respectively. The
sign + has to be select to converge exp[-] in Eq. (B.10). The Laplace-domain counterpart of Eq.
(B.10) can be obtained by replacing w with is. Only for y3 = 0, the closed form of time-domain
counterpart of Eq. (B.10) is available. Therefore, the time-domain expression can be used for the

case in Chapter 4.

B.3. Surface breaking cracks in 2-D elastic half-space

The far-field scattered waves by surface breaking cracks in an elastic half-space are evaluated in
Chapter 5. Therefore, the corresponding far-field approximated Green’s function is shown. Let S,
be one side of crack faces as depicted in Fig. B.2. The integral form of far-field scattered wave from

surface breaking cracks in an elastic half-space is given by
t
W (1) = —/ / H™ (z,y,t — 1) - [u](y, 7)dS,dr, (B.13)
0 JS.

where H'" indicates the far-field approximation of traction Green’s function for the elastic half-

space. The far-field approximation of frequency-domain traction Green’s function for the elastic
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B.3. Surface breaking cracks in 2-D elastic half-space

half-space can be written as follows:

~ ~ n; k‘qC
HE (@, y,w) = T (x,y,w E g j Cr
D » Y ip )
a=LTV B=L,TV “’ca\/&rkﬁx

+ .
xBia’ﬁd¥a’61w exp |: {I’ _ C y} + 17T:|
cs Coy 4

, (B.14)

Q1= L"m

B];tayﬁ — RO&B(C )(CT) |x3|dia (B15)
CaCp V

where T%" is the far-field approximation of the full-space traction fundamental solution. ¢* and v
for 2-D are different from the previous 3-D ones and they are defined by

¢t =(C,2r), v=V1-(Q)> (B.16)
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Appendix C

Free-field for two-layered elastic solid

We explain the calculation method of the free-field for a two-layered semi-infinite elastic solid
subjected to the incident plane wave as depicted in Fig. C.1. In this study, the n'® cycles sinusoidal
burst plane wave with amplitude up such as Eq. (4.19), is utilized for the incident wave in the
nonlinear ultrasonic simulations. If the incident wave u™ is emitted from D!, it can be written

using the center circular frequency w'™ as follows:

u (@, t) = uody sin (AL) H (AL) H (2mn™ — AL) (C.1a)
AL = <t = W) . (C.1b)

If the incident angle is smaller than the critical one, it is easy to evaluate the propagation vectors
after reflection and transmission using Snell’s law. In this case, the reflection and transmission
coefficients can be calculated easily from the given interface conditions and must be real values
[73]. Consequently, the free-field can be calculated in time-domain directly. However, it is diffi-
cult to evaluate the free-field in time-domain if the incident angle is over the critical one. There-
fore, we numerically construct the time-domain free-field using the inverse Fourier transform of the

frequency-domain one.

Taking into account that n'™ is integer, the Fourier transform of the Eq. (C.1) is given by

F [uin(m,t)] (z,w) = /00 u'(x, t)eidt

—00

uOdL?wi“ 2nMirw w
= 2 ) (- - —p" - (@ — C.2
(win)2 _ w2 { ( eXp |: win :|> exp |:CI p ($ X)i| }7 ( )

«

where w is the circular frequency, and F indicates the Fourier transform. Assuming continuity of
displacement and traction on the interface, the following displacement fields of the reflected and
transmitted waves in frequency-domain can be obtained by solving the reflection and transmission

problem of an incident plane wave for a two-layered elastic solid.
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C. Free-field for two-layered elastic solid

Transmitted SV wave

X3 X Transmitted P wave

g
"D Im2 :xl /

D! / \
Incident P wave
Reflected P wave

Incident SV wave
Reflected SV wave

Figure C.1.: Reflection and transmission of the incident plane wave on the interface between two
elastic solids.

o1 uOdrﬁefwin _
F [ure ; (:n?t)} (z,w) = Z —5 Qch,B(pm)
sty (W) —w
2niMirw iw
X { (1 — exp [m]> exp [—Iprﬁef (x — X)} }, (C.3)
U dtranswin )
F [utrans;ﬂ($, t)} (m’ w) _ Z 0. ,32 2Ta,ﬂ(p1n)
sty (W) —w
2w iw
X { (1 — exp [m]> exp [—Hptﬁrans (x — X)} }, (C4)

where R?#(p™) and T¥#(p™) are the reflection and transmission coefficients, respectively, when
the incident plane wave is propagating to the p™ direction and its mode is changed from ¢ to j3.
The time-domain free-field can be evaluated by means of the inverse Fourier transform after the
calculation of Egs. (C.3) and (C.4). For elastic half-space, the free-field can be evaluated in a
similar way.

We show the reflection and transmission coefficients for the steel-aluminum interface which is
used in Chapter 4. Therefore, the material constants in Table 4.1 are used. The positive directions
of propagation and vibration are shown as the big and small arrows in Fig. C.1, respectively. The
detailed calculation method of the reflection and transmission coefficients can be found in e.g. [3,
80, 73].

The real and imaginary parts of reflection and transmission coefficients for P wave incidence
are shown in Fig. C.2. As shown in Fig. C.2, there is a critical angle which corresponds to the
transmitted P wave when '™ ~ 65°. The similar graphs corresponding to SV wave incidence are
shown in Fig. C.3. There are two critical angles which correspond to the transmitted and reflected
P waves when 0™ ~ 29° and 32°, respectively. If the reflection and transmission coefficients are

complex values, the corresponding phase shift is caused.
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Figure C.2.: (a) Real parts and (b) imaginary parts of reflection and transmission coefficients of P
wave incidence for various incident angles 6™,
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Figure C.3.: (a) Real parts and (b) imaginary parts of reflection and transmission coefficients of SV
wave incidence for various incident angles 6™,

163






Bibliography

(1]
(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

Achenbach, J. D.: Wave propagation in elastic solids, North-Holland (1973).

Achenbach, J. D., Gautesen, A. K., and McMaken, H.: Ray methods for waves in elastic
solids, Pitman (1982).

Aki, K. and Richards, P. G.: Quantitative seismology theory and methods Vol.1, W.H. Free-
man (1980).

Banjai, L.: Multistep and multistage convolution quadrature for the wave equation: algo-
rithms and experiments, SIAM Journal on Scientific Computing, 32-5, pp.2964-2994 (2010).

Banjai, L. and Lubich, C.: An error analysis of Runge-Kutta convolution quadrature, BIT

Numer. Math., 51, pp.483—496 (2011).

Banjai, L., Lubich, C., and Melenk, J. M.: Runge-Kutta convolution quadrature for nonsec-

torial operators arising in wave propagation, Numer. Math., 119, pp.1-20 (2011).

Banjai, L., Messner, M., and Schanz, M.: Runge-Kutta convolution quadrature for the bound-
ary element method, Comput. Meth. Appl. Mech. Engng., 245-246, pp.90-101 (2012).

Banjai, L. and Kachanovska, M.: Fast convolution quadrature for the wave equation in three
dimensions, J. Comput. Phys., 279, pp.103—-126 (2014).

Bebendorf, M.: Approximation of boundary element matrices, Numer. Math., 86 pp.565-589
(2000).

Bebendorf, M.: Hierarchical matrices, Springer (2008).

Becache, E., Nédélec, J. C., and Nishimura, N.: Regularization in 3D for anisotropic elasto-
dynamic crack and obstacle problems, J. Elasticity, 31, pp.25—46 (1993).

Bonnet, M.: Regularized direct and indirect symmetric variational BIE formulations for
three-dimensional elasticity, Eng. Anal. Bound. Elem., 15, pp.93—102 (1995).

Bonnet, M.: Boundary integral equation methods for solids and fluids, John Wiley & Sons
(1999).

Brebbia, C. A., Telles, J. C. F.,, and Wrobel, L. C.: Boundary element techniques, Theory and

applications in engineering, Springer (1984).

165



Bibliography

[15]

166

Buck, O., Morris, W.L. and Richardson, J.M.: Acoustic harmonic generation at unbonded
interfaces and fatigue cracks, Appl. Phys. Lett., 33-5, pp.371-373 (1978).

Calvo, M. P, Cuesta, E., and Palencia, C.: Runge-Kutta convolution quadrature methods for
well-posed equations with memory, Numer. Math., 107, pp.589-614 (2007).

Chaillat, S., Bonnet, M., and Semblat, J. -F.: A Fast Multipole Method formulation for
3D elastodynamics in the frequency domain, Comptes Rendus Mecanique, 335, pp.714-719
(2007).

Chaillat, S. and Bonnet, M.: Recent advances on the fast multipole accelerated boundary ele-
ment method for 3D time-harmonic elastodynamics, Wave Motion, 50, pp.1090-1104 (2013).

Choi, C. H., Ivanic, J., Gordon, M. S., and Ruedenbeg, K.: Rapid and stable determination of
rotation matrices between spherical harmonics by direct recursion, J. Chem. Phys., 111-19,
pp-8825-8831 (1999).

Delrue, S. and Abeele, K. V. D.: Three-dimensional finite element simulation of closed de-
laminations in composite materials, Ultrasonics, 52, pp.315-324 (2012).

Marrero, M. and Dominguez, J.: Time-domain BEM for three-dimensional fracture mechan-
ics, Eng. Fract. Mech., 71, pp.1557-1575 (2004).

Douglas, C. G.: Physics for scientists and engineers, 4th Edition, Addison-Wesley (2000).

Epton, M. A. and Dembart, B.: Multipole translation theory for the three dimensional Laplace
and Helmbholtz equations, SIAM J. Sci. Comput., 16, pp.865-897 (1995).

Ergin, A. A., Shanker, B., and Michielssen, E.: Fast evaluation of three-dimensional transient

wave fields using diagonal translation operators, J. Comput. Phys., 146, pp.157-180 (1998).

Gaul, L., Kogl, M., and Wagner, M.: Boundary element methods for engineers and scientists,

An introductory course with advanced topics, Springer (2003).

Greengard, L. and Rokhlin, V.: A fast algorithm for particle simulations, J. Comput. Phys.,
73, pp-325-348 (1987).

Guiggiani, M., Krishnasamy, G., Rudolphi, T. J., and Rizzo, F. J.: A general algorithm for the
numerical solution of hypersingular boundary integral equations, J. Appl. Mech., 59, pp.604—
614 (1992).

Gumerov, N. and Duraiswami, R.: Fast multipole methods for the Helmholtz equation in

three dimensions, Elsevier (2004).

Guoyou, Y., Mansur, W. J., Carrer, J. A. M., and Gong, L.: Stability of Galerkin and colloca-
tion time domain boundary element methods as applied to the scalar wave equation, Comput.
Struct., 74, pp.495-506 (2000).



[30]

[31]

Bibliography

Ha-Duong, T., Ludwig, B., and Terrasse, I.: A Galerkin BEM for transient acoustic scattering
by an absorbing obstacle, Int. J. Numer. Meth. Eng., 57, pp.1845-1882 (2003).

Hairer, E., Lubich, C., and Schlichte M.: Fast numerical solution of nonlinear Volterra con-
volution equations, SIAM J. Sci. Stat. Comput., 6, pp.532-541 (1985).

Hairer, E., Wanner, G., and Ngrsett, S. P.: Solving ordinary differential equations I: nonstiff

problems, Springer series in computational mathematics, Springer (1987).

Hairer, E. and Wanner, G.: Solving ordinary differential equations II: stiff and differential-

algebraic problems, Springer series in computational mathematics, Springer (1991).

Hayashi, T. and Biwa, S.: Subharmonic wave generation at interface of a thin layer between
metal blocks, Jpn. J. Appl. Phys., 52, 07HCO02 (2013).

Hirose, S. and Achenbach, J. D.: Time-domain boundary element analysis of elastic wave
interaction with a crack, Int. J. Numer. Meth. Engng., 28, pp.629-644 (1989).

Hirose, S.: Boundary integral equation method for transient analysis of 3-D cavities and
inclusions, Eng. Anal. Bound. Elem., 8-3, pp.146-153 (1991).

Hirose, S. and Kitahara, M.: Calculation of scattered far-fields in layered materials, JAS-
COME, 9, pp.31-34 (1992) (in Japanese).

Hirose, S. and Achenbach, J. D.: Higher harmonics in the far-field due to dynamic crack-face
contacting, J. Acoust. Soc. Am., 93, pp.142-147 (1993).

Hirose, S.: 2-D scattering by a crack with contact-boundary conditions, Wave Motion, 19,
pp-37-49 (1994).

Hsiao, G. C. and Wendland, W. L.: Boundary integral equations, Springer (2010).

Kimoto, K. and Hirose, S.: A coupling method of boundary element method and generalized
ray theory for elastic wave scattering in a thick plate Review of Quantitative Nondestructive
Evaluation, 22, pp.41-48 (2003).

Kimoto, K. and Ichikawa, Y.: A finite difference method for elastic wave scattering by a

planar crack with contacting faces, Wave Motion, 52, pp.120-137 (2015).

Lachat, J. C. and Watson, J. O.: Effective numerical treatment of boundary integral equation:
A formulation for three-dimensional elastostatics, Int. J. Num. Meth. Eng., 10, pp.991-1005
(1976).

Liu, Y. and Rizzo, F. J.: A weakly singular form of the hypersingular boundary integral
equation applied to 3-D acoustic wave problems, Comput. Meth. Appl. Mech. Engng., 96,
pp-271-287 (1992).

167



Bibliography

[45]

168

Liu, Y. and Rizzo, F. J.: Hypersingular boundary integral equations for radiation and scatter-
ing of elastic waves in three dimensions, Comput. Meth. Appl. Mech. Engng., 107, pp.131—
144 (1993).

Lubich, C.: Convolution quadrature and discretized operational calculus I, Numer. Math., 52,
pp-129-145 (1988).

Lubich, C.: Convolution quadrature and discretized operational calculus Il, Numer. Math.,
52, pp.413-425 (1988).

Lubich, C. and Ostermann, A.: Runge-Kutta methods for parabolic equations and convolu-
tion quadrature, Math. Comput., 60, pp.105-131 (1993).

Manolis, G. D.: Elastic wave scattering around cavities in inhomogeneous continua by the
BEM, J. Sound Vib., 266, pp.281-305 (2003).

Martin, P. A. and Rizzo, F. J.: On boundary integral equations for crack problems, Proc. R.
Soc. Lond., A 421, pp.341-355 (1989).

Maruyama, T., Saitoh, T., and Hirose, S.: Implicit Runge-Kutta based convolution quadra-
ture boundary element method and its application to 3-D scalar wave propagation problems,
JASCOME, 12, pp.91-96 (2012) (in Japanese).

Maruyama, T., Saitoh, T., and Hirose, S.: Implicit Runge-Kutta based convolution quadrature
time-domain fast multipole boundary element method for 3-D scalar wave problems, Journal
of JSCE, Ser.A2 (Applied Mechanics), 69-2, pp.I_175-1_185 (2013) (in Japanese).

Maruyama, T., Saitoh, T., and Hirose, S.: Implicit Runge-Kutta based CQ-FMBEM for cou-
pled acoustic-elastic wave problems, JASCOME, 14, pp.55-60 (2014) (in Japanese).

Maruyama, T., Saitoh, T., and Hirose, S.: 3-D numerical simulation of nonlinear ultrasonic
testing using CQ-BEM, Journal of JSCE, Ser.A2 (Applied Mechanics), 70-2, pp.1_235-1_246
(2014) (in Japanese).

Maruyama, T., Saitoh, T., Bui, T. Q., and Hirose, S.: Transient elastic wave analysis of 3-D
large-scale cavities by fast multipole BEM using implicit Runge-Kutta convolution quadra-

ture, Comput. Meth. Appl. Mech. Engng. (accepted).

Mendelsohn, D.A. and Doong, J.M.: Transient dynamic elastic frictional contact: a general
2D boundary element formulation with examples of SH motion, Wave Motion, 11, pp.1-21
(1989).

Messiah, A.: Quantum Mechanics, John Wiley & Sons (1967).

Messner, M. and Schanz, M.: An accelerated symmetric time-domain boundary element
formulation for elasticity, Eng. Anal. Bound. Elem., 34, pp.944-955 (2010).



[59]

[72]

[73]

Bibliography

Meziane, A., Norris, A. N. and Shuvalov, A. L.: Nonlinear shear wave interaction at a fric-
tional interface: Energy dissipation and generation of harmonics, J. Acoust. Soc. Am., 1304,
pp-1820-1828 (2011).

Monegato, G., Scuderi, L., and Stani¢, M. P.: Lubich convolution quadratures and their ap-
plication to problems described by space-time BIEs, Numer. Algorithms, 56, pp.405-436
(2011).

Nishimura, N. and Kobayashi, S.: A regularized boundary integral equation method for elas-
todynamic crack problems, Comput. Mech., 4, pp.319-328 (1989).

Nishimura, N.: Fast multipole accelerated boundary integral equation methods, Appl. Mech.
Rev., 554, pp.299-324 (2002).

Niwa, Y., Hirose, S., and Kitahara, M.: Application of the boundary integral equation (BIE)
method to transient response analysis of inclusions in a half space, Wave Motion, 8, pp.77-91
(1986).

Odashima, A., Nakahata, K., and Kitahara, M.: Calculation of backscattered waveforms from
defects with emphasis on phase, JASCOME, 18, pp.23-28 (2001) (in Japanese).

Ohara, Y., Horinouchi, S., Hashimoto, M., Shintaku, Y., and Yamanaka, K.: Nonlinear ultra-
sonic imaging method for closed cracks using subtraction of responses at different external
loads, Ultrasonics, 51, pp.661-666 (2011).

Patter, J. N., Croxford, A. J., and Wilcox, P. D.: Nonlinear ultrasonic phased array imaging,
Phys. Rev. Lett., 113, No.144301 (2014).

Pao, Y. -H. and Mow, C. -C.: Diffraction of elastic waves and dynamic stress concentrations,
Crane and Russak (1973).

Rahman, M.: Time-harmonic body force loading of a mode-I penny-shaped crack, Int. J.
Solids Struct., 32, pp.3191-3216 (1995).

Rice, J. R.: Elastic fracture mechanics concepts for interfacial cracks, J. Appl. Mech., 55,
pp-98-103 (1988).

Richardson, J.M.: Harmonic generation at an unbounded interface-I. planar interface between
semi-infinite elastic media, Int. Engng. Sci., 17, pp.73-85 (1979).

Ricker, N.: The computation of output disturbances from amplifiers for true wavelet inputs,
Geophysics, 10, pp.207-220 (1945).

Rokhlin, V.: Rapid solution of integral equations of classical potential theory, J. Comput.
Phys., 60, pp.187-207 (1985).

Rose, J. L.: Ultrasonic waves in solid media, Cambridge University Press (1999).

169



Bibliography

[74]

[75]

170

Saad, Y. and Schultz, M. H.: GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7, pp.856—-869 (1986).

Saitoh, T., Hirose, S., and Fukui, T.: Convolution quadrature boundary element method and
acceleration by fast multipole method in 2-D viscoelastic wave propagation, Theor. Appl.
Mech. Jap., 57, pp.385-393 (2009).

Saitoh, T. and Hirose, S.: Parallelized fast multipole BEM based on the convolution quadra-
ture method for 3-D wave propagation problems in time-domain, IOP Conference Series:
Materials Science and Engineering, 10 No.012242 (2010).

Saitoh, T., Furuta, Y., Hirose, S., and Nakahata, K.: Simulation of higher harmonics on non-
linear ultrasonic testing using convolution quadrature time-domain boundary element method
in 2-D elastodynamics, J. JSCE Appl. Mech., 67, pp.1_.161-1_.169 (2011) (in Japanese).

Saitoh, T., Chikazawa, F., and Hirose, S.: Convolution quadrature time-domain boundary
element method for 2-D fluid-saturated porous Media, Appl. Math. Model., 38, pp.3724—
3740 (2014).

Sarens, B., Verstraeten, B., Glorieux, C., Kalogiannakis, G., and Hemelrijck, D. V.: Inves-
tigation of contact acoustic nonlinearity in delaminations by shearographic imaging, laser
doppler vibrometric scanning and finite difference modeling, IEEE Trans. Ultrason. Ferr.,
57-6, pp.1383-1395 (2010).

Schmerr, L. W.: Fundamentals of Ultrasonic Nondestructive Evaluation, Plenum Press
(1998).

Severin, F. M. and Solodov, I. Yu.: Experimental observation of acoustic demodulation in
reflection from a solid-solid interface, Sov. Phys. Acoust., 35-4, pp.447—448 (1989).

Schanz, M. and Antes, H.: Application of ’operational quadrature methods’ in time domain
boundary element methods, Meccanica, 32, pp.176—186 (1997).

Schanz, M., Antes, H., and Riiberg, T.: Convolution quadrature boundary element method
for quasi-static visco- and poroelastic continua, Comput. Struct., 83, pp.673—684 (2005).

Sladek, J. and Sladek, V.: Dynamic stress intensity factors studied by boundary integro-
differential equations, Int. J. Num. Meth. Eng., 23, pp.919-928 (1986).

Solodov, I. Yu., Asainov, A. F,, and Len, K. S.: Non-linear SAW reflection: experimental
evidence and NDE applications, Ultrasonics, 31-2, pp.91-96 (1992).

Solodov, I. Yu. and Vu, C. A.: Popping nonlinearity and chaos in vibrations of a contact
interface between solids, Acoust. Phys., 39, pp.476—479 (1993).



[87]

[100]

[101]

Bibliography

Solodov, I. Yu.: Nonlinear NDE using contact acoustic nonlinearity (CAN), Ultrasonic Sym-
posium 1994 Proceedings, pp.1279-1283 (1994).

Solodov, I. Yu., Krohn, N., and Busse, G.: CAN: an example of nonclassical acoustic non-
linearity in solids, Ultrasonics, 40, pp.621-625 (2002).

Solodov, I. Yu., Doring, D., and Busse, G.: New opportunities for NDT using non-linear
interaction of elastic waves with defects, J. Mech. Eng., 57-3, pp.169-182 (2011).

Suo, Z.: Singularities, interfaces and cracks in dissimilar anisotropic media, Proc. R. Soc.
Lond., A 427, pp.331-358 (1990).

Takahashi, T., Nishimura, N., and Kobayashi, S.: A fast BIEM for three-dimensional elasto-
dynamics in time domain, Eng. Anal. Bound. Elem., 27, pp.491-506 (2003).

Takahashi, T.: An interpolation-based fast-multipole accelerated boundary integral equation
method for the three-dimensional wave equation, J. Comput. Phys., 258, pp.809-832 (2014).

Tanaka, M., Sladek, V. and Sladek, J.: Regularization techniques applied to boundary ele-
ment methods, Appl. Mech. Rev., 47, pp.457-499 (1994).

Thau, S. A. and Lu, T. -H.: Transient stress intensity factors for a finite crack in an elastic
solid caused by a dilatational wave, Int. J. Solids Struct., 7, pp.731-750 (1971).

Vorst, H. A.: Iterative Krylov methods for large linear systems: Cambridge monographs on

applied and computational mathematics, Cambridge University Press (2003).

Williams, M. L.: The stresses around fault or crack in dissimilar media, Bull. Seismol. Soc.
America, 49-2, pp.199-204 (1959).

Wiinsche, M., Zhang, Ch., Sladek, J., Sladek, V., Hirose, S., and Kuna, M.: Transient dy-
namic analysis of interface cracks in layered anisotropic solids under impact loading, Int. J.
Fract., 157, pp.131-147 (2009).

Yamanaka, K., Mihara, T., and Tsuji, T.: Evaluation of closed cracks by model analysis of
subharmonic ultrasound, Jpn. J. Appl. Phys., 43, pp.3082-3087 (2004).

Yoshida, K., Nishimura, N., and Kobayashi, S.: Analysis of three dimensional scattering
of elastic waves by a crack with fast multipole boundary integral equation method, J. Appl.
Mech. JSCE, 3, pp.143-150 (2000) (in Japanese).

Yoshida, K., Nishimura, N., and Kobayashi, S.: Application of fast multipole Galerkin
boundary integral equation method to elastostatic crack problems in 3D, Int. J. Numer. Meth.
Engng., 50, pp.525-547 (2001).

Yoshida, K.: Applications of fast multipole method to boundary integral equation method,
Ph.D. thesis, Kyoto University, Japan, (2001).

171



Bibliography

[102] Zhang, C. and Achenbach, J. D.: Scattering of body waves by an inclined surface-breaking
crack, Ultrasonics, 26, pp.132-138 (1988).

[103] Zhang, C. and Achenbach, J. D.: Numerical analysis of surface-wave scattering by the bound-
ary element method, Wave Motion, 10, pp.365-374 (1988).

172



