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Abstract
Rapid growth and development of space geodetic methods, such as the global positioning

system (GPS), have enabled us to construct high-resolution plate models, including the

small plates (less than several hundred kilometers in plate size) and deformation of the

plates. In this thesis, based on the high-resolution plate models, we analyze plate motion

and the driving forces, particularly focusing on vorticity of the plate velocity field and spin

motion of the individual plates. First, we perform spherical harmonic expansion of the

plate velocity field to higher degrees (up to 1000) than ever and find an increase in the

toroidal/poloidal ratio at the higher spherical harmonic degrees, which is different from

the conventional view that the ratio is broadly constant. We investigate the effect of the

variable geometry and motion of plate upon the toroidal-poloidal power and discuss the

possible causes of the increase in toroidal/poloidal ratio. Next, we decompose the plate

motion into a “spin” motion around the geometrical center of plate and a “straight” mo-

tion along the great circle. We investigate the relationship between the plate size and the

two plate motions and find that the spin rotation rates of most of the small plates (less than

approximately 1000 km in size) are distinctly higher than those of the larger plates. This

relationship constrains the overall strength of plate boundaries to be 3 to 75 MPa, which

is consistent with several seismological estimates, including those constrained from The

2011 off the Pacific coast of Tohoku Earthquake. Finally, we analyze the torque balance

for the spin motion of the Philippine Sea plate (PHS), indicating that an eastward force

is applied to the subducted PHS slab along its northern edge and could have caused the

wavy geometry of the slab beneath southwestern Japan by viscous buckling, not by elastic

deformation. Based on the folding theory, the slab viscosity is estimated to be 1 to 14×1024

Pa s.
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Chapter 1Chapter 1

Introduction

1.1 Observations for plate motion

In addition to accumulation of conventionally utilized data from precise determination

of location and slip vector of earthquakes, magnetic anomalies of the sea floor and the

precise bathymetry data to assist detailed determination of plate boundaries, rapid growth

and development of space geodetic methods, such as very long baseline interferometry

(VLBI), satellite laser ranging (SLR) and the global positioning system (GPS), have enabled

us to develop a new stage of plate motion study (e.g., Gordon, 1998), particularly after

2000. PB2002 (Bird, 2003), which we utilized for the analysis of plate motion in this study,

compiled plate motion data and define plate configuration with the higher resolution than

ever (Figure 1.1 and Table 1.1).

In Table 1.1, we compile the observation methods and the estimated errors. The obser-

vations include those from conventional methods, such as focal mechanisms, transform

fault azimuth and magnetic anomaly of the oceanic plate, as well as relatively novel meth-

ods, such as those utilizing space geodesy. There are both advantages and disadvantages

for individual methods. For example, the focal mechanism approach provides us with in-

valuable information on stress for a significant depth range (see Section 3.3.4), although

the amount of displacement is not accurately estimated. On the other hand, the GPS ob-
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Table. 1.1 Observations used in the plate model PB2002. Min in the 1σ column means
that the observation did not estimate the error and we instead estimate the minimum
error by considering the total errors of the relative Euler poles to obtain the Euler pole
of the plate. For detail, please read the text in Section 3.3.2.



1.1 Observations for plate motion 3

Fig. 1.1 The 52 plates of plate model PB2002 on a Mercator projection from Bird (2003).
The cross-hatched areas are “orogens” where a rigid plate model is not expected to be
accurate. As for two-letter plate abbreviations and plate names, please refer to the plate
name table (Table 1.1).

servation accurately monitors the surface displacement, but it does not necessarily co-

incide the plate motion over a geologic time (which is important for our purpose in this

study) due to, e.g., an elastic response or local deformation of the plate itself (e.g. Heki

et al., 1999; Weber et al., 2001). Accordingly the combination of these methods may pro-

vide more accurate estimates on plate motion. Several Euler poles have been determined

by the combination of the conventional method and GPS data (e.g., Seno et al. (1993); Kato

et al. (1998) for the Philippine Sea plate). As Table 1.1 shows, those various observational

methods and their combination help us acquire the more accurate plate motion data with

the finer scale than ever.

Accordingly there are several remarkably improved aspects which have not been clearly

seen in the earlier works. One aspect concerns the number and distribution of plates

identified and their size variation. For instance, whereas Morgan (1972) defines 15 plates



4 Chapter 1 Introduction

in the plate model, PB2002 contains 52 plates, ranging from the largest Pacific plate of

> 10000 km to the smallest Manus plate of ∼ 100 km (Table 3.1). Another important aspect

is that, although “plate” is originally defined as a rigid shell that is allowed to move differ-

ently from the adjacent plate, the space geodetic approaches clearly demonstrate that the

plates are not rigid and can deform (e.g., Gordon, 1998). Although the precise observa-

tional methods provide us with the detailed motions of the surface of the Earth, the data

contain both the plate motion and the plate deformation itself. In order to distinguish

these two, Bird (2003) defines “orogen” that represents a region where a significant defor-

mation undergoes (Figure 1.1). In another updated plate model, Kreemer et al. (2014) have

utilized more GPS data than PB2002 and defined plate configuration and motions. They

also defined the deformation zones in their plate model to exclude active deformation

zones (Table 3.1).

Fully utilizing these accurate and fine-scale plate motion data, in this study, we inves-

tigate two essential aspects for understanding the plate motions, the toroidal-poloidal

power of the plate velocity field and the driving force of plate motions as follows.

1.2 Toroidal/poloidal ratio

Although the idea of mantle convection originated in the 19th century (Perry, 1895a,b,c)

and has been developed subsequently by, e.g., Lord Rayleigh (Strutt John William (Lord

Rayleigh), 1916), Benard (Benard, 1901) and Chandrasekhar (Chandrasekhar, 1961), one

of the important characteristics, toroidal-poloidal flow, in the convective regime was not

specifically studied until Hager and O’Connell (1978) who first discovered the equipar-

titioning of the toroidal power (associated with strike-slip motion and the horizontal

spin motion) and the poloidal power (associated with the thermal convection and the

divergent-convergent power). Hager and O’Connell (1978) remarked that the significant
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power of toroidal motion comparable to poloidal motion is unexpected for thermal con-

vection in the Earth, which was thought to primarily induce vertical circulation as a heat

pump system. Subsequently the mechanism to generate a significant toroidal component

(e.g. Bercovici, 1993, 1995a,b, 2003) and the temporal variation of toroidal/poloidal ratio

(Lithgow-Bertelloni and Richards, 1993) have been investigated.

Numerical simulations of mantle convection utilize the toroidal/poloidal ratio and its

spectrum as a benchmark feature upon simulation for reproducing the characteristics of

the Earth. With the development of computer power, more realistic and detailed form of

mantle convection and plate tectonics will be tackled in the near future; thus, it is benefi-

cial to investigate the toroidal/poloidal ratio and its spectrum that can be compared with

the observed plate motion from the global to a finer scale. Moreover, owing to the im-

provement of the observation method about the plate geometry and configuration, we can

attempt to comprehend the relationship between the geometry and the toroidal-poloidal

power, which is still poorly understood. For these reasons, this study first conducts spher-

ical harmonic expansion to higher degrees than ever in Section 2 and tries to understand

the relationship between the plate geometry and toroidal/poloidal ratio in Section 2.1 and

Appendix C.

1.3 Driving forces of plate motion

During the development of theory of plate tectonics, first, a drag force applied to the bot-

tom of plate had been thought to be the primary force of plate motion and continental

drift, as was originally proposed by Holmes (1928), and later suggested by numerical sim-

ulation of mantle convection (e.g., see Turcotte and Oxburgh (1972) for review). In other

words, mantle convection and its near-surface horizontal flow actively drive the plates

on the surface. On the other hand, several studies suggest that the plate motions are
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not driven by basal drag: e.g., Oldenburg and Brune (1972) suggest that the plates are

pull apart passively based on the morphological features of spreading ridge and fracture

zones at mid-ocean ridges, and McKenzie and Bickle (1988) show that the thermal struc-

ture beneath mid-ocean ridges implies no “hot plume” from depth instead the mantle are

dragged by the plate motion to cause passive mantle upwelling at mid-ocean ridges that

may subduct as in the Chile triple junction.

Of the studies concerning the driving forces of plate motion, Forsyth and Uyeda (1975)

have found that there is a correlation between the length of subduction zone and the

speed of the plate motion and investigated the relative importance of forces applied to

the plates, as is schematically illustrated in Figure 1.2. They concluded that the slab pull

force is approximately one order higher than the other forces. This notion supports the

“passive origin” of mid-ocean ridge as stated above. More than 25 years later, Becker and

O’Connell (2001) re-examined the driving forces of plate motion in a similar manner to

Forsyth and Uyeda (1975) but with updated data for plate motions based on improved

methods, including estimates of slab-pull force using seismic tomographic images. How-

ever, their main conclusion is the same as in Forsyth and Uyeda (1975), i.e., the slab pull

force generally can account for the observed plate motions. For example, Figure 1.3 from

Becker and O’Connell (2001) shows that for the major plates, including the Pacific, Aus-

tralia, Nazca, Philippine Sea and Cocos plates, the calculated torque solely by slab pull

(torque: orange star; the direction of straight motion: line with orange diamond in the

figure) may reproduce the observed Euler pole (Euler pole: light-blue star; the direction

of straight motion: upward light-blue vector) reasonably well. However, for the Philippine

Sea and Cocos plate, which demonstrate clear spin motion as will be discussed later, the

slab pull force (line with orange diamond) broadly explains the observed “straight” motion

(upward light-blue vector) although the observed spin motion of the Philippine Sea plate
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Fig. 1.2 Forces acting on plates from Becker and O’Connell (2001).

and the Cocos plate (light-blue two arc segments) cannot be accounted for by the slab pull

force or any other forces raised in their analyses. Forsyth and Uyeda (1975) and Becker

and O’Connell (2001) focused on the major plates and only the primary force for the plate

motion, and as a result they have not discussed the origin of the spin motions.

It is noted that Forsyth and Uyeda (1975) as well as Becker and O’Connell (2001) have

estimated the relative importance of driving forces in terms torque balance in which the

plate spin motion is naturally involved. Nevertheless, the plate spin motion has not been

considered as is partly expressed in their conceptual Figure 1.2 as if the surface toroidal

motion can be neglected. This indicates that, although spin motion is not negligibly small

even for several major plates, unless we specifically aim at analyzing the spin motion, it

could be hidden behind the major configuration consisting of slab-pull, straight motion

and spreading ridge. In addition, as will be shown later, small plates exhibit more signif-
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Fig. 1.3 Torque analysis from Becker and O’Connell (2001). Three letters represent:
AFR, Africa; ANT, Antarctica; ARA, Arabia; AUS, Australia; CAR, Caribbean; COC, Co-
cos; EUR, Eurasia; IND, India; NAM, North America; NAZ, Nazca; PAC, Pacific; PHI,
Philippines; and SAM, South America. Stars represent the location of the observed Euler
pole (light-blue) or the calculated torque (brown: transform fault tangential, dark-blue:
transform normal, orange: slab pull, pink: ridge push, green: subduction resistance,
bronze yellow: colliding resistance). Lines and a pair of circular vectors represents the
straight and spin motion components, respectively. The size of star and the length of
the line and the circular vector show the magnitude of the value.
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icant spin motions, and it is necessary to include not only the major plates but also the

small plates into the analyses of plate motion, in order to envisage the whole picture of

driving forces of plate motion.

In spite of these difficulties, there are a few previous works that have discussed the

spin motions of a large plate (Seno, 2000) or a small plate (Schouten et al., 1993). Seno

(2000) has discussed the driving force of clockwise spin motion of the Philippine Sea plate.

Seno (2000) attributed the driving force to mantle upwelling off the west coast of Kyushu,

which is suggested by the crustal stress variation (Seno, 2000), the electrical conductiv-

ity (Shimoizumi et al., 1997; Handa, 2005) and seismic observations (Sadeghi et al., 2000;

Yoshizawa et al., 2010) in the Kyushu region. Seno (2000) also suggested that the estimated

magnitude of the torque caused by the upwelling may not be sufficient to simulate the ob-

served plate spin motions and another driving force might be necessary. Regarding the

spin motion of small plates, Schouten et al. (1993) observed the bathymetry and the mag-

netic anomaly of a micro plate in southeastern Pacific, the Easter plate, and discussed the

history of the plate motion in the last several million years, which involves the present-day

clockwise spin motion. They argued the relative motions between the adjacent plates, the

Pacific plate and the Nazca plate, and the kinematics among those three plates. Whereas

they pointed out that the interaction between these neighboring plates drives the spin mo-

tion of micro plate like a gear, they did not estimate either the force balance or the actual

stress required for the spin motion.

Based on these improved data and new plate models including Bird (2003) and Kreemer

et al. (2014), we globally investigate the driving force and mechanism of plate spin motions

that have not been assessed in the previous works. Our analyses are different from the

previous studies mainly in the following two points.

First, unlike the previous studies on driving forces of plate motion (Forsyth and Uyeda
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(1975) and Becker and O’Connell (2001), who have consolidated the primary importance

of slab-pull force), we focus on the spin motion of plates and its driving force. Secondly, we

include small plates in our analysis, most of which exhibit significant spin motions as will

be demonstrated. The smallest plate Forsyth and Uyeda (1975) coped with is the Cocos

plate (or the Caribbean plate) and their size is approximately 2000 km in diameter. Many

of the plates they analyzed do not exhibit significant spin motions. For this reason, even if

Forsyth and Uyeda (1975) focused on plate spin motions, they would not have been able to

discuss the driving force of plate spin motion. In contrast, our study adopts detailed plate

configuration and motions based on the improved observations (Bird, 2003; Argus et al.,

2011; Kreemer et al., 2014) which also allow us to exclude the “orogens” or “deformation

zones” that complicate the analysis of plate motion.

As a result, focusing on the plate spin motions based on the detailed plate models, our

study may contribute to a step-forward understanding of the driving forces of plate mo-

tion.
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Toroidal-poloidal analysis

First, we performed a spherical harmonic expansion of the plate velocity field (e.g., Hager

and O’Connell, 1978). (Concerning the condition of the toroidal-poloidal decomposi-

tion, please refer to Appendix A.1 “Condition of Toroidal-Poloidal Decomposition”.) Plate

boundaries (which include a narrow deformation zone) are key to the characterization

of plate motions (Gordon, 2000; Bercovici, 2003), therefore, we used the high-resolution

plate model of Bird (2003) (PB2002), which includes 52 plates defined by topography, vol-

canism, magnetic anomalies, moment tensor solutions and geodesy (Figure 1.1 and Table

3.1 and 1.1). Then, we prepared a detailed global dataset at a resolution of 0.1◦ (Figure

2.1), and, based on a hotspot reference frame (Gripp and Gordon, 2002), we calculated the

toroidal-poloidal components for spherical harmonic degrees that were higher than those

performed in previous studies (l = 1000; i.e., to a resolution of ∼ 20 km), by developing

a new code that utilizes the parity of spherical harmonics (Appendix A and B, especially

B.3).

The ratio γ(l ) of the toroidal power σT (l ) to the poloidal power σP (l ) is calculated as

γ(l ) = σT (l )

σP (l )
=

√∑
m

clmc∗lm

/√∑
m

blmb∗
lm , (2.1)

where clm and blm represent the toroidal and poloidal coefficients of the velocity fields,

respectively, and the asterisk denotes the complex conjugate. Note that the first degree
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Fig. 2.1 Digitization of plate configuration of PB2002. For plate analysis, we digitized
the original plate configuration data of PB2002 (Bird, 2003) (left figure: an example area
from 100◦ W to 120◦ W and from 20◦ S to 40◦ S) into the digital plate data at a resolution
of 0.1◦ (right figure: the corresponding area).

term in the toroidal expansion corresponds to the net rotation of the lithosphere, which

depends on an absolute reference frame; we therefore do not discuss this term in this

study.

The result of the spherical harmonic expansion is shown as a blue line in Figure 2.3 (and

the power spectra in Figure 2.2). Although O’Connell et al. (1991) argued that the ratio

of the amplitude of the toroidal to poloidal spectra is nearly constant for l < 32 (at ∼0.8),

our new result, applicable to higher harmonics, shows that the amplitude ratio broadly

trends towards higher values for l > 20, which corresponds to a scale < 1000 km, and is

demonstrated by the approximate lines in Figure 2.3.

To estimate the error of this result, caused by the uncertainties in plate motions, we

calculated the toroidal/poloidal ratio of another plate model, NNR-MORVEL (Argus et al.,

2011) (Figure 2.4). The result is indicated by the red line in Figure 2.3 and demonstrates

that there is only a little difference in the toroidal/poloidal ratio between the plate models,
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Fig. 2.2 Toroidal-poloidal power spectrum. The blue and red lines represent spectra
for toroidal power and poloidal power of the plate model PB2002 (Bird, 2003), respec-
tively.

indicating that the error of plate motion in a plate model is negligible and the trend of

toroidal/poloidal ratio in this analysis is robust.
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Fig. 2.3 Ratio of toroidal to poloidal power as a function of spherical harmonic de-
gree. The blue and red spectra represent the ratios of the plate model from PB2002
(Bird, 2003) and NNR-MORVEL (Argus et al., 2011), respectively. The upper horizontal
axis shows the scale of motion corresponding to the spherical harmonic degree. There
are four logarithmic trendlines to fit the data of PB2002: the broken black line is the
quadratic fitting curve for the whole spectrum, the yellow line is the linear fitting line
for the range from 100 km to 1000 km in the scale of motion, and the gray dotted and
solid lines represent linear fitting lines for l < 20 (> 1000 km) and l > 20 (< 1000 km), re-
spectively. The range for the yellow line (100–1000 km) might be related to the analysis
of individual spin motion and the driving force (Figure 3.3 and 3.5). The ratio of total
toroidal power to total poloidal power (l = 2,3, . . . ,1000), γ, is 0.753 for PB2002.
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Fig. 2.4 The 56 plates of plate model NNR-MORVEL from Argus et al. (2011). Blue and
red lines represent the plate boundaries. Capricorn, lw (Lwandle), mq (Macquarie) and
sr (Sur) are new plates added to PB2002 (Bird, 2003) listed in Table 3.1.
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2.1 Effect of plate geometry on the toroidal/poloidal ratio

Although toroidal and poloidal components represent the vorticity and the diver-

gence/convergence of plate motions, respectively, yet not only plate motions but also

plate geometry affects the ratio. As a previous work about the effect of plate geometry on

the toroidal/poloidal ratio, Olson and Bercovici (1991) demonstrated that the aspect ratio

of a plate (i.e., the ratio of the plate length along the plate motion Lp to the plate length

normal to the motion Ln) has the following relationship with the toroidal/poloidal kinetic

energy ratio γ:

γ∼
(

Lp

Ln

)2

. (2.2)

Olson and Bercovici (1991) showed that there is a correlation between the plate aspect ra-

tio and the induced toroidal/poloidal ratio in the 2D ideal square plate model. We here

look at the effect of the plate geometry upon the toroidal/poloidal ratio to grasp the com-

plex relationship between them. We impose straight or spin motion on a plate with an

ideal geometries, circle or square. Accordingly, there are four simple examples: (a) a cir-

cular plate with a pure spin motion (left side of Figure 2.5), (b) a circular plate with a pure

straight motion (right side of Figure 2.5), (c) a square plate with a pure spin motion (left

side of Figure 2.6) and (d) a square plate with a pure straight motion (right side of Fig-

ure 2.6). In this model, we utilized the same-magnitude Euler pole (1◦/Myr) and put it at

the center of the plate to generate spin motion and at the North pole to generate straight

motion. We calculate the power of toroidal-poloidal spectra to 100 degrees and the re-

sult is Figure 2.5 and 2.6. Whereas the circular plate with a pure spin motion possesses

a dominant toroidal component and almost negligible poloidal component, the square

plate with a pure spin motion demonstrates almost same toroidal-poloidal component

or little higher poloidal component than toroidal one since the pure spin motion gen-
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erates divergence and convergence motion along the plate boundary, indicating that the

roundness of the plate geometry affects the toroidal/poloidal ratio. However, in the case of

straight motion, the effect of roundness almost vanishes. It means that not a single effect

but combination of effects including plate geometry and motion determine the toroidal-

poloidal power and the ratio. It is true that the relationship is intricate, this result, espe-

cially the result of spin motions, clearly shows that the length of divergent or convergent

plate boundary and that of transform fault are vital in toroidal/poloidal ratio. Based on

this general result, we then analyze the effect of size, aspect ratio, roundness of the plate

and we also compile the number of subduction zone, ridge and transform fault with those

length in PB2002 in Appendix C.
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Fig. 2.5 Top: red line and orange vectors represent a model plate boundary and an
imposed plate motion, respectively; bottom: blue and red lines show the toroidal and
poloidal power induced by the plate motion, respectively. Left: a circular plate with a
pure spin motion; right: a circular plate with a pure straight motion.
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Fig. 2.6 Left: a square plate with a pure spin motion; right: a square plate with a pure
straight motion. As for the explanation of the figure, please refer to Figure 2.5
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2.2 Summary

The major aim of this chapter is the general comprehension of the toroidal/poloidal

feature, particularly in high spherical harmonic degree, for which we conducted a

detailed spherical harmonic expansion for the high-resolution plate models. With the

detailed plate models, PB2002 and NNR-MORVEL, our result demonstrates the increase in

toroidal/poloidal ratio at higher degrees for the first time. Although the toroidal/poloidal

ratio are commonly used as a benchmark in a numerical simulation of a mantle convec-

tion (Tackley, 2000a,b; Richards et al., 2001) based on the notion that the toroidal/poloidal

ratio is almost constant irrespective of spherical harmonic degrees. However, our result

clearly demonstrates that the ratio is not constant, instead the spectrum should be exam-

ined. This new notion will be useful for those numerical simulations of mantle convection

to understand plate tectonics-like motions through the comparison with our result, i.e.,

the increase in the ratio at high spherical harmonic degrees from approximately l > 20.

Whereas the increase in the toroidal/poloidal ratio is relevant to the plate motions and

the configuration, the quantitative comprehension of the relationship is not trivial since

all the effects associated with plate configuration and the motion are not independent

but convoluted. However, in order to grasp the geometrical effect on the toroidal-poloidal

power, we calculate toroidal/poloidal ratios with various geometries in Section 2.1 and Ap-

pendix C, which would also help to understand the nature of plate motion and the global

toroidal/poloidal aspect, in both actual data and the numerical results.
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Driving force of plate spin motion

3.1 Division of plate motions

With the finer plate motion data than ever, we explore the driving force of plate spin mo-

tion. To contemplate the force of plate spin motion, we first extract spin motion of ev-

ery individual plate from their observed motions. Hence, we divided plate motions into

two types, spin motion and straight motion. To obtain the spin and straight motions of

individual plates, we divided the Euler vector of each individual plate into two compo-

nents: a vector that passes vertically through the geometric center of the plate, which is

related to the spin motion and has a magnitude (i.e., angular velocity) defined as ωC , and

a vector perpendicular to the first vector, which passes through the Earth’s center and is

related to the motion along a great circle, and whose magnitude is defined as ωG (Table

3.1). Since previous works have already suggested an active spin motions of a small plates

(e.g., Schouten et al., 1993) and detailed plate model PB2002 can exhibit plate motions of

such a small scale, we plots of ωC and ωG as functions of plate size (Figure 3.1). Figure

3.1 shows that ωC generally decreases with increasing plate size, whereas ωG is roughly

constant between 0.1 and 1◦/Myr. As a result, for plate sizes less than ∼ 1000 km, the dif-

ference between ωC and ωG is large (Figure 3.1). Based on these differential variations, we

discuss the mechanisms and their corresponding force balance for the plate spin motions.



22 Chapter 3 Driving force of plate spin motion

Fig. 3.1 Plate spin (ωC ) and straight (ωG ) motions as a function of plate size. Blue
circles and red triangles represent ωC and ωG , respectively. The vertical lines between
blue circles and red triangles connect a ωC , ωG pair for each plate, and the color of the
line indicates a larger component of either ωC (blue lines) or ωG (red lines).
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3.2 Driving force of plate spin motion

The driving forces of plate motion are generally classified into three types (e.g., Forsyth

and Uyeda, 1975; Becker and O’Connell, 2001) (Figure 1.2): body forces (e.g., slab-pull and

ridge-push; hereafter expressed as TBD ), plate boundary forces (e.g., collision, suction,

and shear forces between neighboring plates; TPB ), and resultant resistance forces (e.g.,

mantle drag and slab resistance; TRS ). Here, mantle drag (a component of TRS ) is treated as

a resistive force rather than a driving force of plate spin motion, because the toroidal com-

ponents in mantle convection are negligible (Hager and O’Connell, 1978) and are unlikely

to excite the spin motion of plates. Of these, TBD , in particular the slab-pull force, is the

main driving force of the global plate system (Forsyth and Uyeda, 1975); TBD contributes

primarily to straight plate motion (Figure 1.3), whereas TPB may cause spin motion when

torque occurs around the center of the plate. However, the slab-pull force sometimes ex-

cites spin motion. One such example is the Cocos plate. Gorbatov and Fukao (2005) have

shown that the northwestern part of the slab was torn away from the deeper Farallon slab.

It induces the heterogeneity of the slab pull forces, including a strong northward force

from the eastern part of the slab, which can lead to the observed counterclockwise spin

motion. Another example is the Philippine Sea plate, which exhibits an active clockwise

spin motion (Seno et al., 1993). (We consider the driving force through the shape of a part

of the slab of the Philippine Sea plate in Chapter 4). Seno (2000) suggests that the spin

motion results from the eastward mantle flow against the Philippine Sea slab subducted

beneath the SW Japan-Ryukyu arc, which is indicated by the crustal stress variation (Seno,

1999), the electrical conductivity (Shimoizumi et al., 1997; Handa, 2005) and seismic ob-

servations (Sadeghi et al., 2000; Yoshizawa et al., 2010) in the Kyushu region. To exclude

such complexities associated with slabs, we focused on plates without slabs (Table 3.1),
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in which case the torque balance around the center of the plate can be described with

relevant TPB and TRS forces, as discussed below.

We can express TPB as the driving shear stress along a plate boundary σPB and the area

receiving the stress SPB as

TPB =σPB SPB R=σPB DPB LPB R=2πλσPB DPB R2 (3.1)

where R is the plate radius, DPB is the average depth of the plate boundary sustaining

the shear stress, LPB is the length of the plate boundary along which the driving force is

applied, andλ is the ratio of LPB to the total length of the plate boundary. In equation (3.1),

we assume a planar plate for simplicity in the calculation of its radius and area (which does

not affect the results significantly), and we can assume that the plate is circular rather than

spherical shell because the difference in the result is not sufficiently significant (Figure

3.2), the length of the driving plate boundary is proportional to the plate size, and λ is

constant. We also assume the presence of a low-viscosity layer (hereafter referred to as the

asthenosphere) with constant Newtonian viscosity µ and thickness DRS . Then, TRS can be

expressed as

TRS =
∫
σRS r dS =

∫ R

0
µ

rωC

DRS
2πr 2dr = πµωC

2DRS
R4. (3.2)

From the torque balance and equations (3.1) and (3.2), we obtain

σPB = ωC

4λDPB DRS
µR2, (3.3)

which indicates that σPB is proportional to R2 and ωC . In other words, equation (3.3)

shows that (for a constant ωC ) as plate size increases (left to right in Figure 3.1), the driving

shear stress increases such that it induces spin motion onto a larger plate.

In this context, ωC of a slab-free plate, which is indicated by the blue circles in Figure 3.3,

generally increases with decreasing plate size. Concerning the list of the plate utilized for

this figure, please refer to Table 3.1. One notable feature in Figure 3.3 is the rapid change
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Fig. 3.2 2D/3D ratio of plate area. This result shows that the areal difference is small;
virtually none for plate size below 2000 km, which is the most important range in this
study, and up to 25% difference even for the size of 10,000 km, having a negligible effect
on the results and conclusions.

in ωC around the critical plate size of ∼ 1000 km: above the critical size, ωC values are gen-

erally less than the average rotation rate of the global lithosphere (i.e., the net lithospheric

rotation) (Ricard et al., 1991), of ∼0.43◦/Myr, as based on the hotspot reference frame uti-

lized in this analysis (Gripp and Gordon, 2002); below the critical size, however, except for

two plates, i.e., the Panama plate and the Shetland plate, the motions of which are not

well-determined in PB2002 model, all ωC values exceed 0.43 ◦/Myr.

It should be noted that the R-ωC variation is not significantly affected by the choice of

plate models as in Figure 3.3 (i.e., Pb2002 (Bird, 2003) (Figure 1.1), NNR-MORVLE (Argus

et al., 2011) (Figure 2.4) and GSRM v2.1 (Kreemer et al., 2014) (Figure 3.4) that include

both no-net-rotation and hotspot reference frames for the data acquired by several meth-
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Fig. 3.3 Rotation rate and plate size. Blue circles, red squares, green triangles, and
purple diamonds represent the data from three different models of PB2002 (Bird, 2003),
NNR-MORVEL (Argus et al., 2011), GSRM v2.1 (Kreemer et al., 2014) in no-net-rotation,
and hotspot reference frame, respectively (see Table 3.1 for the details). Vertical bars
represent the difference in rotation rate of a plate among the three plate models and the
downward arrows indicate that both clockwise and counterclockwise rotations occur
depending on the plate models with different reference frames. The dashed line repre-
sents the expected rotation rate driven by the motion of the Pacific plate (∼ 10 cm/yr).

ods representing different time-scales. see Table 3.1 for the details): i.e., almost all the

large plates (plate size > 1000 km) show negligibly small ωC less than the net-rotation

rate (0.43◦/Myr), and the rotation direction (clockwise or counterclockwise) of large plates

varies depending on the reference frame chosen (as indicated by large error bars with

downward arrows in Figure 3.3), whereas the large ωC is seen only for small plates irre-
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Fig. 3.4 The 50 plates of plate model GSRM v2.1 from Kreemer et al. (2014). Shaded
areas represent the deformation zone, which we cannot deal with as a rigid plate.

spective of the chosen frame (Figure 3.3).

In Figure 3.3, the dashed line indicates the R-ωC relation expected from the Pacific plate

motion (i.e., assuming that a fast-moving plate drives the spin motion of the surrounding

small plates via mechanical coupling at plate boundaries), which limits the upper bounds

of high rate of the small plates. Within this context, there is a significant gap between the

dashed line and ωC of the plates larger than ∼ 1000 km, indicating that a more rapid de-

crease in ωC occurs around the plate size of ∼ 1000 km than that expected from the dashed

line. This may suggest a rapid change in the stress-strain-rate regime of plate boundary

(e.g., yielding with viscoplastic rheology or shear weakening with pseudo-stick-slip rheol-

ogy (Bercovici, 2003)).

In order to test such a possibility, we examine the relationship between R and σPB (the

plate boundary shear stress driving the spin motion) based on equation (3.3) and observed
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Fig. 3.5 The driving shear stress along a plate boundary σPB obtained from equation
(3.3) as a function of plate size (=2R). The symbols and error bars are the same as in
Figure 3.3. The dashed line is the expected driving stress induced by the motion of the
Pacific plate (corresponding to the dashed line in Figure 3.3)

ωC as shown in Figure 3.5, assuming µ = 1020 Pa s, DPB = 40 km, DRS = 60 km, and λ =

0.25. The uncertainties associated with these assumptions will be discussed later. It is

worth noticing that σPB for plates with low rotation rates (the large plates, in general) have

extremely large uncertainties, indicated by the error bars with downward arrows in Figure

3.5, and should be regarded as upper bounds.

The dashed line in Figure 3.5 represents the expected driving stress induced by the mo-

tion of the Pacific plate (corresponding to the dashed line in Figure 3.3), which limits
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the upper bounds of σPB for the small plates; whereas for large plates, σPB is apprecia-

bly lower than the prediction of the dashed line, indicating that rheological weakening or

yielding operates on the boundaries of large plates, irrespective of the choice of reference

frame (Figure 3.5).

For small plates (the plate size < 1000 km, i.e., R < 500 km), the shear stress driving

the spin motion increases with R (e.g., the dashed line in Figure 3.5), and above a critical

size Rc , the stress becomes too large to transmit the stress across the boundary, causing

rheological weakening or yielding. This critical stress is regarded as the strength of the

plate boundary. From Figure 3.5, the critical stress is estimated to be ∼ 10− 20 MPa for

plate sizes between ∼ 350−630 km. Accordingly, the rotation rate of plates with R > Rc is

small as compared to the dashed line in Figure 3.3.

It can be confirmed that the spin rates of small plates are higher than those of large

plates, which is the overall result, from Figure 3.6. Figure 3.6 shows that many small plates

along the “sides” (i.e., along strike-slip boundaries) of large fast-moving plates have high

spin rates with a rotation direction (clockwise or counterclockwise) consistent with the

nearly straight motions of large plates that subduct along their margins. This mechanism

has been suggested for several individual microplates (e.g., Schouten et al., 1993). Fig-

ure 3.6, for example, demonstrates that in the southwestern Pacific, the Pacific plate (PA)

excites spin motion of the Niuafo’ou plate (NI) and that the Australia plate (AU) induces

spin motion of the Tonga plate (TO) and the Kermadec plate (KE). Along the East Pacific

Rise, the Pacific plate and the Nazca plate (NZ) drive motions of the Easter plate (EA) and

the Juan Fernandez plate (JZ). Although some of the abovelisted small plates, based on

PB2002 plate model, are located within deforming zones identified by Kreemer et al. (2014)

(shaded regions in Figure 3.4) and could be inappropriate to consider them as rigid plates

to define the spin rate (e.g., KE), the overall configuration remains unchanged, including
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Fig. 3.6 Global geographical distribution of spin motion on a Mercator projection
based on the plate model PB2002 (Bird, 2003). The blue and green curved vectors repre-
sent clockwise and counterclockwise spin motion, respectively. The radius of the vector
is correlated with the rate of spin motion. Black vectors show the directions of plate mo-
tions of the Pacific plate (PA), the Australia plates (AU), and the Nazca plate (NZ). The
two letters with each vector identify the plate, as follows. AU: Australia; EA: Easter; JZ:
Juan Fernandez; KE: Kermadec; NZ: Nazca; NI: Niuafo’ou; PA: Pacific; TO: Tonga.

large spin motions of NI, EA, and JZ as shown in Figure 3.6.

These features, represented in Figure 3.6, suggest that although some regions (especially

Southeast Asia) exhibit complex spin directions probably due to interactions among the

small plates, the small islands and the intricate subduction zones, large fast-moving plates

with subducting slabs induce spin motion in adjacent small plates through interactions

along plate boundaries, which supports the idea presented above that TPB drives the plate

spin motions.

In addition, from equation (3.3) and Figure 3.5, we obtain a quantitative relationship be-

tween the viscosity of the asthenospheric mantle beneath the plates µa and the strength

of the plate boundary σst . We substitute the constraints at the critical condition, as speci-

fied in Figure 3.5 (i.e., ωC ≈ 8◦/Myr, plate size ≈ 630 km and λ≈ 0.25, corresponding to the
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South Bismarck Plate attaining the maximum σPB ), and set DPB = 40 km as the thickness

of the plate boundary sustaining the shear stress (e.g., Kohlstedt et al., 1995). Then, we

obtain the following equation,

σst (MPa) = 1.1

1017

µa(Pa s)

DRS (km)
, (3.4)

which is the basis for Figure 3.7. There is an appreciable uncertainty with regard to the

thickness of the asthenosphere beneath the oceanic plates, as it is dependent on the ob-

servational methods used for measurement (Karato, 2012); the asthenosphere is observed

as a zone of low seismic velocity [e.g., ∼ 120 km (Kawakatsu et al., 2009)], a high attenua-

tion layer [e.g., ∼ 140 km (Dziewonski and Anderson, 1981); ∼ 60 km (Yingjie et al., 2007)]

with significant seismic anisotropy [e.g., ∼ 120 km (Beghein and Trampert, 2004)] and a

high electrical conductivity layer [e.g., ∼ 60 km (Evans et al., 2005)]. From these observa-

tions, we estimate the thickness of asthenosphere under the oceanic plates (DRS ) to be

60–140 km.

Equation (3.4) and Figure 3.7 impose several constraints on the plate-mantle dynam-

ics. Substituting µa = 1021 Pa s, based on the representative viscosity of the upper man-

tle (Peltier, 1998), into equation (3.4), we obtain σst = 78–183 MPa for DRS ≈ 60–140 km.

Considering a more realistic case and assuming a low-viscosity asthenosphere, which is

estimated from post-glacial rebound, seismic data, and laboratory measurements as 1019–

1020 Pa s (e.g., Karato and Wu, 1993; Simons and Hager, 1997; Forte and Mitrovica, 2001),

we substitute µa ≈ 1019–1020 Pa s, which gives σst ≈ 0.78–18 MPa. This estimate only con-

siders the force along the fractional length of the plate boundary λ, as in equation (3.1).

If we consider the resistive forces along the remainder of the plate boundary, with length

1−λ, we obtain

σPB = ωC

4λDPB DRS
µR2 + 1−λ

λ
σR , (3.5)

where σR is the average resistive stress along the plate boundary (which must be less than
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Fig. 3.7 Relationship between the strength of a plate boundary and the viscosity of
the asthenosphere. The solid black and gray lines are obtained from equation (3.4) for
DRS = 140 and 60 km, respectively. The dotted black and gray lines are obtained on
the basis of equation (3.5), corresponding to the minimum and maximum estimates
for the strength of plate boundary, respectively. The shaded region shows the range of
viscosity of the asthenosphere estimated from postglacial rebound, seismic data, and
experimental data (e.g., Simons and Hager, 1997; Forte and Mitrovica, 2001; Karato and
Wu, 1993).

the strength of plate boundary σst ). As a result, a lower viscosity µa is required to repro-

duce the same σst , as compared with the results of equation (3.4) (broken lines, Figure

3.7). Setting σR (≤ σst ≈ 0.78–18 MPa), µa = 1019–1020 Pa s, and DRS = 60–140 km, and

considering the uncertainty of plate size in plate model, we estimate σst ≈ 3–75 MPa.
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3.3 Discussion

3.3.1 Force balance in spin motion

Our analysis for the driving force of plate spin motion assumes the “rigid” plate and de-

formations are concentrated in the plate boundary. In fact, plate model PB2002 excludes

the active deformation zones (orogens) and our analysis also deals with the other regions.

However, the plates defined as rigid would also deform though the deformation is prob-

ably small. We here consider the effect of the deformation upon the dynamics of spin

motion. With deformation, the driving force along plate boundary is used for the defor-

mation of the plate as well as for the plate motion. As a result, the actual driving stress

might be higher than the estimated driving force in this study, indicating a higher strength

of plate boundary than our estimates.

In addition, for the force balance in the spin motion, we consider the force along plate

boundary induced by the interaction with the motion of the neighboring plates and the

resistive force resulted from the asthenosphere. Another conceivable force exciting plate

spin motion is the “driving” drag force from the asthenospheric mantle flow. In order to ex-

ist such a mantle flow in asthenosphere, there must be the horizontal heterogeneity in the

same scale to the plate size. However, any observation do not support the global hetero-

geneity just beneath the plate in the scale of one thousand or several hundred kilometers

and mantle is mainly driven by the thermal convection, which generates poloidal motions

instead of toroidal motions (Hager and O’Connell, 1978). In short, the forces we consid-

ered in the force balance of the spin motion seem sufficient to investigate the driving force

for the spin motion.

Furthermore, in our analysis we estimated the magnitude of the conceivable forces

within a certain range of several parameters which are poorly constrained, such as the vis-
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cosity and the thickness of the asthenosphere. Another parameter which might vary is the

thickness of plate boundary. We utilized the thickness of oceanic plate at the age of 60 Myr

(Kohlstedt et al., 1995). Whereas the older oceanic plate than 60 Myr would not change

the thickness substantially (Stein and Stein, 1992), there are several plates holding ridge

along the plate boundary, which must contain the thinner plate along the ridge. Along

such a plate boundary, the driving force is transmitted by the thinner plate boundary and

the actual stress might be higher than our estimate. Nonetheless, the upward passive

mantle flow to compensate the plate along the ridge might increase the temperature of

the mantle beneath the plate, which may decrease the viscosity of the asthenosphere

and the resistive force. Hence, while the existence of ridge will affect our analysis of the

plate spin motion, the thin plate boundary and the soft asthenosphere might cancel

the influence of the ridge upon the estimate of the strength of plate boundary and the

difference in the estimate might be small.

3.3.2 Error of spin motion

Compiling the error of the plate motions of PB2002 in Table 1.1, here we consider the effect

of the errors on our suggestion. We extract the error of the spin motion of a plate without

a slab as we did in Figure 3.3. The result is Figure 3.8. Although there are plates, especially

in Southeast Asia, in which the observation for the motion did not estimate the error (red

cross in Figure 3.8), we instead estimate the minimum error by considering the total er-

rors of the relative Euler poles to obtain the Euler pole of the plate. In other words, when

we calculate the Euler pole of a plate, we start the most stable plate, the Pacific plate in

PB2002, and move to one of the neighboring plates, in which we calculate the relative Eu-

ler pole between the neighbor and the Pacific plate, and we continue the movement to the

neighboring plate and the calculation of the relative Euler pole until we arrive at the goal,
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Fig. 3.8 Rotation rate of spin motion with error. Blue circles represent the spin motion
of a plate without slab in PB2002 (Bird, 2003). The vertical bars shows the error from ob-
servation. The red cross represent the estimated minimum error. Regarding the detail,
please read the text.

i.e., the plate that we would like to know the Euler pole. The minimum error represents

the summation of the errors in those relative Euler poles. Figure 3.8 demonstrates that er-

rors in spin motion do not deteriorate the main feature of the result, i.e., small plates spin

actively and large plates hardly hold spin motions.

3.3.3 Effect of slab on geometrical center and Euler pole division

In this study, we calculate the geometrical center of the plate to obtain the spin Euler pole

and the straight Euler pole from the observed Euler pole (Figure 3.1). Here, we consider

the effect of the slab on geometrical center and the calculated Euler pole. We focus on

a small subducting plate, the Cocos plate, because the smaller the plate, the larger the
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Fig. 3.9 The effect of slab on the plate spin (ωC ) and straight (ωG ) motions as a func-
tion of plate size. A light-blue circle and an orange triangle represent the spin and
straight motion of the Cocos plate including the effect of the slab area. For the other
explanation, please refer to Figure 3.1.

effect of the slab on the Euler pole division. With the tomography data of the Cocos plate

(Gorbatov and Fukao, 2005), we estimate the area of the slab between the depth from 0

to 600 km in the upper mantle, and calculate the geometrical center and the divided two

Euler poles. The obtained Euler poles are Figure 3.9. The result shows that the effect of the

subducted slab on the geometrical center and the Euler pole division is almost ignorable.
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3.3.4 Focal mechanism of earthquake and work of plate boundary

We found that the interaction between plates via plate boundary is essential for small-

plate spin motion and especially a fast-moving plate drives the adjacent small plates

through the drag along the plate boundary. In order to make sure the role of plate

boundary of an active-spin plate, here we investigate the seismological data, particularly

the focal mechanism, around the plate since those data contain the information about

the stress distribution on the plate and the direction of the stress. The data of earthquakes

were taken from CMT catalog between the date from 1976/1/1 to 2015/12/1 and at the

depth shallower than 100 km to see the stress of the lithosphere (Dziewonski et al., 1981;

Ekstrom et al., 2012).

First, we look at the seismicity around the Easter plate (EA) and the Juan Fernandez

plate (JZ) because of the relatively simple circumstances where the Pacific plate (PA) and

the Nazca plate (NZ) move westward and eastward, respectively, and excite the spin mo-

tion of the two micro plates (Schouten et al., 1993) (Figure 3.10). Along the northern and

southern plate boundary of the two small plates, which are estimated as a driving plate

boundary, there are strike-slip earthquakes and the direction of the imposed stress seems

consistent with the plate spin motions. For instance, around the southern plate boundary

of the Easter and Juan Fernandez plates there are right-lateral strike-slip faults, implying

that the Pacific plate drag those two plates and induce the clockwise spin motions. An-

other notable characteristic about the focal mechanism is that the beach balls around the

several other plate boundaries, such as the western plate boundary of the Easter plate,

have the opposite stress direction to that along the driving plate boundary, i.e., left-lateral

strike-slip faults, which indicates that those plate boundaries work as a resistive source.

Secondly, we investigate the focal mechanism around the Niuafo’ou plate (NI) off Fiji
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Fig. 3.10 Focal mechanism around the Easter and Juan Fernandez plate in the East
Pacific Ocean. For the explanation, please read the text.

Islands in the South Pacific Ocean because the plate has a high spin motion and is also

an oceanic plate like the Easter and Juan Fernandez plate. The result is Figure 3.11. The

northern plate boundary of the Niuafo’ou plate, which seems the driving plate boundary

based on the direction of the spin motion of the Niuafo’ou plate and the plate motion

of the Pacific plate, shows consistent focal mechanisms, i.e., left-lateral strike-slip faults.

In contrast, the southwestern plate boundary with the Australia plate (AU) exhibits the

opposite fault, right-lateral strike-slip faults, suggesting that the plate boundary works as

a resistive plate boundary. Another feature about the seismicity is that the earthquakes
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Fig. 3.11 Focal mechanism around the Niuafo’ou plate in the South Pacific Ocean. For
the explanation, please read the text.

along the driving plate boundary are rather scattered and those along the resistive plate

boundary are aligned with the line, which might indicate that the driving stress from the

Pacific plate is supported by using the strength of the plate as well as the plate boundary.

This observation implies that our estimates about the strength of the plate boundary, 3–75

MPa, partially represents the strength of the plate itself, which is estimated as 17–170 MPa

(Tackley, 2000b) and 50–150 MPa (Richards et al., 2001) based on the numerical simulation

of mantle convection.

Finally, we attempt to analyze a plate in Southeast Asia, which holds complicated small

subduction zones and many small islands. Therefore, plates in this region may not be
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suitable to be used as an oceanic plate like the examples above. The plate that we fo-

cus on is the South Bismarck plate (SB) (Figure 3.12). The northern plate boundary of

the South Bismarck plate with the North Bismarck plate (NB) shows left-lateral strike-slip

faults. However, from the direction of the spin motion, the plate boundary seems to work

as a resistive plate boundary although the direction of the spin motion of the smallest

plate in PB2002, the Manus plate (MN), is consistent with the focal mechanisms. As the

driving plate boundary for the South Bismarck plate, a candidate is the southwestern plate

boundary with the Woodlark plate (WL). Whereas there are some right-lateral strike-slip

faults around the plate boundary, there is no clear driving plate boundary around the plate

probably because the boundary exists on the islands and is different from the oceanic plate

boundary that we mainly deal with in this study, particularly, in the point of the strength of

the coupling because of the different structure (Kohlstedt et al., 1995). In addition, another

plate model, GSRM v2.1 (Kreemer et al., 2014) defines Southeast Asia as an active deforma-

tion zones rather than rigid plates, suggesting that GSRM v2.1 defines plate configuration

more accurately or at least more consistently to the seismological data than PB2002. But,

please note that our suggestion about the driving force of the spin motion and the esti-

mated strength of plate boundary is robust in both plate models (Figure 3.3 and 3.5).
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Fig. 3.12 Focal mechanism around the South Bismarck plate in Southeast Asia. For the
explanation, please read the text.
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3.3.5 Strength and rheology of plate and plate boundary

In previous studies, the strength of a plate boundary was estimated based on seismic ob-

servations, particularly the spatial mapping of earthquake focal mechanisms and their

corresponding temporal changes before and after a large earthquake; e.g., Hasegawa et al.

(2012) used high-resolution data on the approximately 4000 earthquake focal mechanisms

in northeast Japan between 2003 and 2011, and found that the 2011 Tohoku earthquake

almost completely released the accumulated stress along the plate boundary, and they

estimated the stress at release to be as small as 5–15 MPa, suggesting that the presence

of water weakened the plate boundary fault. Hardebeck and Hauksson (2001) used the

focal mechanism data of approximately 50,000 earthquakes along the San Andreas Fault,

mainly between 1981 and 1999, including the 1992 Landers earthquake, and estimated

the strength of the fault to be about 10–30 MPa, due in part to the low mechanical strength

of smectite (Carpenter et al., 2011). Compared with those previous studies, our obtained

strength of plate boundary, 3–75 MPa, is consistent with a stress level deduced from high-

resolution seismic observations of specific areas.

To naturally reproduce plate-like structures and motions as part of a mantle convection

process, including the case of rigid plates with soft plate boundaries, three-dimensional

numerical simulations have been used to investigate critical conditions and requirements,

especially those concerning rock rheology. Tackley (2000b) and Richards et al. (2001) es-

timated the required yield stress of a plate to reproduce Earth-like plate motion on the

basis of surface velocity fields, and obtained results of 17–170 MPa and 50–150 MPa, re-

spectively. In addition, Bercovici (1993, 1995b, 2003) suggested that a pseudo-stick-slip

rheology, in which the stress decreases with increasing strain rate after yielding, can repro-

duce plate-like motions, in particular a high toroidal/poloidal kinetic energy ratio of up to
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0.8, which is consistent with ratios observed in previous studies (Hager and O’Connell,

1978; O’Connell et al., 1991; Bercovici and Wessel, 1994) as well as in this study (Fig.2.3).

In this context, after exceeding the yield stress of plates, the strain can be concentrated to

form a plate boundary composed of a “damaged” weak zone (e.g., Bercovici and Ricard,

2014), where the stress level is significantly reduced, possibly to the range estimated from

seismology and this study, especially when water is present to weaken the plate boundary.

However, as we showed in Section 3.3.4 and particularly in Figure 3.11, plate itself as well

as plate boundary might sustain the stress to spin a plate by the interaction between the

plates, which might indicate that we should deal with the driving force and plate motion in

more general theory than conventional plate tectonics only with rigid plate and deforming

narrow plate boundary.

Compared with those previous studies to estimate the strength of plate or plate bound-

ary, seismology and numerical simulations, the uniqueness of our study is the following

point; while the estimate of the strength of plate boundary from seismology contains a

less errors than our estimate, they can only estimate the strength of limited plate bound-

ary where large earthquakes were observed. In contrast, our analysis deals with observed

global plate motions and, therefore, obtained value may be regarded as a globally averaged

value for many plate boundaries based on observations instead of numerical simulations.

In these point, our estimate about the strength of plate boundary has some significance

compared with other estimates from different types of studies.

The exact rheology and the physical-chemical state of plate boundary is a vital prob-

lem that will help understand the mechanisms of plate tectonics (e.g., Gordon, 1998, 2000;

Bercovici and Ricard, 2014). At present, it is difficult to constrain the exact rheology from

the approach in this study; however, by combining with other approaches, such as seis-

mic and geodetic observations on both rigid plates and deformation zones (Gordon, 1998,
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2000; Kreemer et al., 2014), field and laboratory studies on rock and fault rheology (e.g.,

Kohlstedt et al., 1995; Sibson, 2003), and numerical simulation of combined plate motion

and mantle convection (e.g., Tackley, 2000b; Richards et al., 2001; Bercovici, 2003), tighter

constraints can be obtained to quantify the Earth’s dynamics with regard to plate tectonics.

3.4 Summary

The main objective of this chapter was to constrain the driving forces of plate motion, es-

pecially the plate spin motion, for which we analyzed the spin motion of each individual

plate as a function of plate size with detailed plate models. The following results were ob-

tained. First, spin motion of plates without slabs decreases at plate sizes of ∼ 1000 km and

greater (Figure 3.3), which indicates the strength for plate boundaries (Figure 3.5). Sec-

ondly, the geographical distribution of spin motion (Figure 3.6) suggests that large plates

with subducting slabs drive the spin motion of surrounding smaller plates, similar to gears

that transmit the shear stress induced by straight motion of large plates. Thirdly, seismic-

ity and the focal mechanism indicates that the driving force to spin a small plate might be

transmitted through not only the plate boundary but also plate itself (Figure 3.11). Finally,

from the force balance of spin motion at the critical plate size, we obtain the relationship

between the strength of the plate boundary and the viscosity of the asthenosphere (Fig-

ure 3.7). Assuming the viscosity and thickness of the asthenosphere to be 1019–1020 Pa s

and 60–140 km, respectively, we roughly estimated the strength of the plate boundary to

be 3–75 MPa, which is comparable to the stress level estimated from several seismological

observations, including those in NE Japan associated with the 2011 Tohoku earthquake.
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Chapter 4Chapter 4

Spin motion and buckling of the
Philippine Sea plate

4.1 Introduction

The Philippine Sea plate (hereafter referred to as PHS) is one of the two exceptional plates

(i.e., PHS and the Cocos plate) in terms of the size-rotation rate relation as was discussed

in Chapter 2 and 3. In this Chapter 4, we focus on PHS to investigate possible mechanism

of its spin motion, since a number of observations have been made both on the motion

and the stress applied to PHS more than the Cocos plate as will be stated below. We first

describe a key feature near the northern edge of PHS, i.e., the slab geometry and stress

for the subducted PHS slab beneath the southwestern Japan arc, and show evidences for

east-west compression of the PHS slab, possibly an eastward applied stress. Based on the

analysis, we then discuss the torque balance and spin motion of PHS.

Of the Japanese island arcs, the southwestern Japan arc exhibits a variety of unique char-

acteristics associated with subduction of PHS; the Shikoku Basin is subducting along the

Nankai Trough with an extinct ridge, the Kinan Seamount Chain (Okino et al., 1994, 1999)

(Figure 4.1). Beneath the southwestern Japan arc, the subducted slab is aseismic due to

its young and warm nature (Shiono, 1982), and deep-seated brines and gases with high
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helium isotope ratios comparable to mantle values (Sano et al., 2009; Umeda et al., 2012;

Kusuda et al., 2014), all of which are associated with the young warm slab of PHS. Another

noticeable feature of the PHS slab is the wavy shape (e.g., Baba et al., 2002; Shiomi et al.,

2004; Nakajima and Hasegawa, 2007; Hirose et al., 2008; Shiomi et al., 2008; Ueno et al.,

2008; Iidaka et al., 2009) (Figure 4.2). As a previous work, Ide et al. (2010) investigated the

slab shape assuming that the slab had deformed instantaneously in an elastic or brittle

manner along an extinct ridge (i.e., the subducted Kinan Seamount Chain) due to a sud-

den change of the plate motion at 2 to 4 Ma, based on geological observations (Kimura

et al., 2005; Ikeda et al., 2009).

In order to investigate a possible cause of enigmatic geometry of the PHS slab, we first

quantify the slab geometry. Then, considering a buckling process as a possible mechanism

of the wavy geometry of the PHS slab, we apply the theory of folding (e.g., Biot, 1957; 1961;

Ramberg, 1959; Fletcher, 1974) to the slab geometry, based on which rheology, stress and

buckling process of the PHS slab are discussed.



4.1 Introduction 49

Fig. 4.1 Map of the Philippine Sea and the adjacent area. Orange lines and white ar-
rows represent the plate boundary and the speed of the PHS and the Pacific plate (in
reference frame of the Africa plate fixed) in PB2002 (Bird, 2003), respectively.
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Fig. 4.2 Depth contour map of the PHS slab (Baba et al., 2002; Nakajima and
Hasegawa, 2007; Hirose et al., 2008) and the Pacific slab (Nakajima and Hasegawa, 2006;
Nakajima et al., 2009; Kita et al., 2010). Blue dashed lines represent the plate boundaries
in PB2002 (Bird, 2003). Regarding the depth of the isodepth contour, please see the color
bar in the figure. The green zone shows the contact area between the PHS slab and the
upper surface of the Pacific slab beneath the Kanto district (Nakajima et al., 2009).
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4.2 Analysis of slab geometry

We utilize the slab geometry acquired by seismicity data and seismic tomography (Baba

et al., 2002; Nakajima and Hasegawa, 2007; Hirose et al., 2008) (Figure 4.2). The slab-

surface geometry, in particular the wavy shape beneath the Shikoku district, is also sup-

ported by more recent study using the receiver function technique with spatially high-

density seismic stations (Iidaka et al., 2009). The shape of the slab in Figure 4.2 has several

notable features. First, the PHS slab is almost in contact with the upper surface of the

Pacific slab beneath Kanto district (Nakajima et al., 2009) (represented by a green area in

Figure 4.2). Secondly, the wavy shape has three peaks beneath the northern Izu Peninsula,

the Biwa Lake and the western Seto Inland Sea (Figure 4.2). The easternmost peak beneath

the northern Izu Peninsula is located at the triple junction among the PHS, the Eurasia

(Amur) plate and the North America (Okhotsk) plate (Bird, 2003), where the Izu Bonin arc

on PHS has thrusted beneath the Honshu arc since ∼ 17 Ma (Aoike, 1999) and now Izu

Peninsula is colliding (e.g., Soh et al., 1998). The collision of the Izu Bonin arc distorted

the slab shape beneath the Kanto district to Central Japan (e.g., Nakajima et al., 2009). In

comparison with the easternmost peak, the other two peaks of the slab shape beneath

the Biwa Lake and the Seto Inland Sea do not have such surface expression of collision or

specific deformation features, suggesting that some slab-mantle interaction, e.g., mantle

flow to cause east-west compression, could have been associated. In addition, compared

with the small easternmost peak, the two western peaks are similar in size, repeating the

folding-like shape, which has an affinity with buckling systems. For these reasons, we are

going to develop analyses and modeling for the geometry including the two western peaks

of subducted PHS slab, based on the theory of folding of strata/rocks and buckling.

In Figure 4.2 and 4.3, the geometry of the slab is shown vertically and obliquely to mea-
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Fig. 4.3 Oblique view of depth contours of the PHS slab (Baba et al., 2002; Nakajima
and Hasegawa, 2007; Hirose et al., 2008). Regarding blue dashed lines and the depth
contours, please refer to Figure 4.2. From this geometry, we roughly estimate the domi-
nant wavelength λd , arclength L and amplitude a.

sure the characteristic lengths (i.e., width and height) of the wavy geometry. From Figure

4.3, assuming the slab shape as sinusoidal, we estimate the dominant wavelength λd 400

km, arclength L 415 km and amplitude a 25 km. As regards the plate thickness, Yoshioka

and Ito (2001) scrutinized the thickness of the PHS and its horizontal variation along the

Nankai Trough taking into account the thick marine sediment, suggesting that the thick-

ness h is approximately 25 to 35 km. With those parameters, we next apply the folding

theory to this slab geometry.

4.3 Application of folding theory

Buckling is a dynamic instability as a result of series of folding, in which a layer in a me-

dia receives a layer-parallel compression (Biot, 1961; Hudleston and Treagus, 2010). The

folding of the layer occurs due to the different physical properties between the layer and

the media and the buckling can be observed in various conditions and scales (Figure 4.4).

Since the first theory of folding and its applications to geology by Biot (1961), the theory

has been improved to consider various rheologies of the layer and the surrounding media,
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Fig. 4.4 Buckling/Folding in nature in various scales. Left figure: quartz vein in slate.
Right figure: mountains in British Columbia.

such as a Newtonian viscosity (Biot, 1961) and non-Newtonian rheology (e.g., Fletcher,

1974; Smith, 1975, 1977). In this study, we apply various theories, i.e., (i) elastic slab, (ii)

Newtonian slab, (iii) power-law slab and (iv) viscoelastic slab, to the PHS slab. Please note

that we assume Newtonian mantle, i.e., diffusion creep rheology in the surrounding man-

tle, rather than other complex rheologies, such as dislocation creep, which is adopted in a

high strain-rate region (Karato, 2010) (e.g., asthenospheric mantle beneath a fast-moving

plate). First, similarly to the analysis of Ide et al. (2010), we analyze the slab of PHS as an

elastic layer in a Newtonian viscous mantle.

4.3.1 Elastic slab

Here in this section, we consider an elastic slab, such as the outer rise of oceanic plates

(e.g., Caldwell and Turcotte, 1979). Buckling of an elastic layer in a Newtonian viscous

media is expressed by the following equation (Biot, 1961; Turcotte and Schubert, 2002)

λd

h
=π

(
El

σ
(
1−ν2

l

)) 1
2

, (4.1)

where λd , h, El , νl and σ are the dominant wavelength, the thickness, the elastic moduli,

Poisson’s ratio of the layer and the layer-parallel stress, respectively (Figure 4.5 (a)). Please

note that in this case the equation is independent of the surrounding viscous media since
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(a) (b)

(c) (d)

Fig. 4.5 Buckling with physical properties in various rheologies: (a) elastic, (b) Newto-
nian, (c) power-law rheology and (d) viscoelastic layer. As for physical properties, please
refer to the text.

the elastic layer sustains the layer-parallel compression and controls the system. When we

set El 65 GPa and νl 0.25 as representative properties of plate (e.g., Yoshioka and Ito, 2001;

Turcotte and Schubert, 2002), substituting the slab geometry into λd and h yields σ= 2.6–

5.2 GPa. However, when we estimate the negative buoyancy of the slab along the Nankai

Trough, i.e., slab pull force, the net force is approximately 8×1017 N. In this estimate, we

assume an average temperature gap between the PHS slab and the surrounding mantle:

∆T = 650 K, slab thickness: h = 25 km, slab length: L = 100 km, mantle density: ρm =

3300kg/m−3, thermal expansivity: α = 2× 10−5 /K, and the length of the Nankai Trough

from the Izu Peninsula to Kyushu district: Ltr ench = 750 km. Even when all the slab pull

force is used only for the elastic buckling, the stress σ ≈ 0.3 GPa, which is one order of

magnitude less than the above estimate for elastic buckling. Therefore, hereafter we do

not deal with the slab as an elastic layer in this analysis.

4.3.2 Newtonian slab

We next analyze the slab as a viscous layer, which is expected from relatively hot tempera-

ture of the young PHS (Okino et al., 1994, 1999; Yoshioka and Ito, 2001). When we assume

a Newtonian viscous slab in a Newtonian viscous mantle, the viscosity contrast and the
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Fig. 4.6 The effect of mechanical shortening upon the dominant wavelength. At the
initiation of compression, λd = L, however, as the strain accumulates, the dominant
wavelength becomes short λd < L and in folding theory we should utilize the initial
dominant wavelength L.

slab geometry have the following relationship (Biot, 1961),

λd

h
= 2π

(
µs

6µm

) 1
3

, (4.2)

where µs and µm are the viscosity of the slab and the mantle, respectively (Figure 4.5 (b)).

Substituting the slab geometry, we obtain the viscosity contrast between the PHS slab and

the surrounding mantle approximately 36–100. More precisely, taking into account the

effect of layer-parallel shortening by compression upon the dominant wavelength (Biot,

1965) (Figure 4.6), we substitute arclength L into wavelength λd in equation (4.2) as the

initial wavelength and obtain the viscosity contrast 40–110.
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4.3.3 Power-law (dislocation creep) slab

Next, we deal with the slab as an Non-Newtonian layer, in this case, a layer of power-law

rheology. When we adopt power-law rheology, the relationship between the geometry of

slab and the viscosity contrast becomes (Fletcher, 1974)

λd

h
= 2π

 µs

6µm

n
1
2
m

ns


1
3

, (4.3)

where ns and nm are the power-law exponents for the slab and the mantle, respectively

(Figure 4.5 (c)). Setting ns = 3.5 as dislocation creep rheology and nm = 1 as diffusion

creep rheology (Karato et al., 2001) yields µs /µm = 130–350. Including the mechanical

shortening by compression as we did for a Newtonian slab, we obtain µs /µm = 140–390.

4.3.4 Viscoelastic slab

Next we consider the combination of two rheologies we analyzed above, i.e., viscoelastic

rheology. In the case of a viscoelastic layer in a Newtonian viscous media (Figure 4.5 (d)),

buckling is controlled mainly by one of the two rheologies, which is determined by the

competition of the physical properties as follows (Schmalholz and Podladchikov, 1999): if

2

(
µs

6µm

) 1
3 <

(
El

σ
(
1−ν2

l

)) 1
2

, (4.4)

then the viscous rheology dominates buckling and we can adopt only viscous rheology

and vice versa. In other words, the smaller dominant wavelength generated by viscous

rheology or elasticity determines the buckling geometry. Setting El 65 GPa and νl 0.25 as

representative properties and putting µs /µm ≡∆µ, we find the condition for the elasticity-

dominant buckling as

σ∆µ
2
3 > 5.7×1010. (4.5)

From our estimates of the viscous layers, substituting the viscosity contrast between the

slab and the mantle ∆µ ≈ 40–110 in Newtonian slab into equation (4.5) yields σ > 2.5–5
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GPa, which is about one order higher than the stress induced by the slab pull force σ≈ 0.3

GPa as was discussed. This means that, even if the PHS slab has viscoelastic rheology, the

slab is likely to behave viscously during buckling. Based on the buckling analyses with var-

ious rheologies, we suggest that the PHS slab has undergone viscous deformation rather

than elastic one. Next, we constrain the viscosity of the slab based on the obtained viscos-

ity contrast.

4.4 Viscosity of slab

Regarding the viscosity contrast between slab (or lithosphere) and the surrounding man-

tleµs /µm(µl /µm), numerical simulations and model experiments have estimatedµl /µm =

500–2000 (Di Giuseppe et al., 2008), µl /µm = 150–5000 (Newtonian plate) (Funiciello et al.,

2008), µs /µm = 100–300 (Schellart, 2008), µs /µm = 100–700 (Schellart, 2009). From ob-

served slab stress conditions and fluid modelling, Alpert et al., (2010) put forward the

general viscosity contrast between slabs and upper mantle as µs /µm = 10–100. In our

study, analyzing the horizontal wavy shape of the PHS slab, we constrain the viscosity

contrast between the slab and the mantle as µs /µm ≈ 40–110 for Newtonian rheology and

µs /µm ≈ 140–390 for power-law rheology. It is noted that old and cold plates, such as

the Pacific plate beneath the Tohoku district, might be more viscous than our estimates

whereas the effect of water in cold slab and slow grain-growth due to the low temperature

may compensate the increase in viscosity (Karato and Wu, 1993; Karato et al., 2001).

With regard to the estimate of the slab viscosity from the viscosity contrast, we assume

that the mantle wedge (the mantle above the slab) is softer than the suboceanic man-

tle (the mantle beneath the slab) due to the fluid derived from the slab and melting of

the mantle in mantle wedge (e.g., Iwamori, 1998; Iwamori and Zhao, 2000; Iwamori et al.,

2007; Hall, 2012) and also assume that the harder suboceanic mantle controls the system.
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Then, adopting the representative viscosity 2.6×1021 Pa s (Simons and Hager, 1997), we

estimates the slab viscosity as

µs =1 ∼ 3×1023 [Pa s] (Newtonian) (4.6)

µs =3 ∼ 14×1023 [Pa s] (power− law). (4.7)

We now investigate the time required to generate the observed strain (i.e., amplitude of

folding) . Buckling of a Newtonian layer and power-law layer are expressed as (Biot, 1961;

Fletcher, 1974; Turcotte and Schubert, 2002)

σ=4µs

( ε

∆t

)
(Newtonian) (4.8)

σ=4
µs

ns

( ε

∆t

)
(power− law) (4.9)

σ, ε and ∆t are the layer-parallel compressive stress, strain and the time taken for the de-

formation, respectively. As for the strain ε, regarding amplitude/wavelength = a/λd << 1

gives the strain ε≈ (L −λd )/L ≈ 0.036. In the unconstrained parameters, σ and ∆t , we es-

timate the compressive stress σ from the spin motion of PHS because the active clockwise

spin motion (Section 3 and Figure 4.7) results in the collision between the slab of the PHS

and the Pacific plate (Figure 4.2) (Nakajima et al., 2009) and the driving force for the spin

motion can be regarded as the compressive stress for the buckling. For this reason, next

we estimate the driving force of the spin motion of the PHS in a simple torque analysis.

4.5 Force balance for the motion of the Philippine Sea
plate

4.5.1 Euler pole analysis of the Philippine Sea plate

In plate tectonics, slab pull force is the most essential driving force (e.g., Forsyth and

Uyeda, 1975; Conrad and Lithgow-Bertelloni, 2002) and PHS accompanies the Nankai

Trough, the Ryukyu Trench and the Philippine Trench, all of which induce a straight mo-

tion toward the trench but cannot generate a significant spin motion (Figure 1.3). Seno
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Fig. 4.7 Relative motion between the PHS and the Pacific plate in PB2002 (Bird, 2003).
The yellow star represent the relative Euler pole between the PHS and the Pacific plate
and, in the Pacific plate fixed reference frame, therefore, the PHS moves along the or-
ange vector, indicating a strong collision between the two plates at the northern part of
the PHS.
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(1999) investigated the crustal stress variation in Japan and suggested that the Kyushu dis-

trict has a clear variation in the horizontal stress. He argued that beneath the Kyushu re-

gion there is a eastward mantle flow derived from a mantle upwelling off the west coast of

Kyushu, which is supported by the electrical conductivity (Shimoizumi et al., 1997; Handa,

2005) and seismic observations (Sadeghi et al., 2000; Yoshizawa et al., 2010). We utilized

the above two driving forces, the slab pull and the trench-parallel force beneath the south-

western Japan arc, to simulate the observed Euler pole of the PHS in a simple torque model

and compare them to estimate the driving force for the spin motion.

Utilizing the plate model PB2002 (Bird, 2003), we impose uniform forces normal to the

subduction zone of PHS as an “effective” slab pull force (light blue vectors in Figure 4.8).

The effective slab pull is the net force of the slab pull force and the slab resistance and the

magnitude of the force is approximately one order lower than the original slab pull force

(Forsyth and Uyeda, 1975). Then, we put another force along the Nankai Trough as the

stress suggested by Seno (1999, 2000) (pink vectors in Figure 4.8) and chose the direction

and magnitude of the force so as to generate the observed Euler pole. Here we assume

that those considered forces are dominant and determine the direction of the plate mo-

tion, which is justified by the previous studies of torque analysis (e.g., Forsyth and Uyeda,

1975). The ideal vector is acquired in the almost eastward direction at the magnitude of

2.7 larger than the effective slab pull force. In this calculation, we put the density of mantle

ρ = 3300kg /m3, the difference in temperature between mantle and slab ∆T ∼ 500 K, ther-

mal expansivity α = 2×10−5, gravitational acceleration g = 9.8kg /m3, the representative

vertical length Lr and thickness hr of the PHS slab Lr ∼ 250 km and hr ∼ 35 km (Yosh-

ioka and Ito, 2001; Becker and O’Connell, 2001; Turcotte and Schubert, 2002). Assuming

that the obtained stresses along the Nankai Trough is applied to the compression of the

slab buckling beneath southwestern Japan (Seno, 1999, 2000), the imposed stress on the
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slab becomes 4 to 40 MPa, which is in the range of our estimate for the strength of plate

boundary in Chapter 3, 3 to 75 MPa. Although the meaning of this consistent result is not

so clear, yet it might imply that the PHS also has a high spin motion because the driving

stress can be sustained by the strength of the plate boundary or slab. From equation (4.8)

and (4.9), the time of buckling is

∆t = 4.6 ∼ 13 [Myr] (Newtonian) (4.10)

∆t = 4.0 ∼ 19 [Myr] (power− law). (4.11)

With this result, next we discuss the history of the PHS motion and the dynamics.

4.5.2 History of the Philippine Sea plate

The history of PHS motion has been investigated in many previous works to understand

the geological and tectonic events around the Japan arcs for the last several tens of million

years, such as opening of the Japan Sea and the collision of the Izu arc, although there are

large uncertainties (e.g., Seno and Maruyama, 1984; Hall et al., 1995; Hall, 2002; Kimura

et al., 2005; Gaina and Muller, 2007; Yamazaki et al., 2010). We here raise one unique event

in the history and propose a possibility of the buckling to understand the cause of the

unique wavy shape of the PHS slab and discuss the tectonic evolution with our buckling

analysis.

It is suggested that PHS changed its motion at 2 to 4 Ma based on the geological evi-

dences of temporal change in the regional stress field around the Honshu arc (Takahashi,

2006), the spatio-temporal change of volcanic front in the Chugoku district (Kimura

et al., 2005), the distribution of active fault along the Median Tectonic Line (Ikeda et al.,

2009), and plate reconstruction (e.g., Hall, 2002; Gaina and Muller, 2007). The abrupt

event changed the PHS motion from northward to northwestward and slowed down the

clockwise spin motion (Seno and Maruyama, 1984; Hall et al., 1995; Seno et al., 1993;

Kimura et al., 2005; Gaina and Muller, 2007; Yamazaki et al., 2010), which indicates that
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Fig. 4.8 Euler pole analysis of the PHS on a Lambert projection. Black line is the plate
boundary of the PHS. Yellow star, triangle, and circle represent the observed Euler pole,
the straight Euler pole, and the spin Euler pole, respectively. Light blue vectors are im-
posed a uniform effective slab pull. Pink vector is the added force arbitrarily chosen
to reproduce the observed Euler pole. The vector length represented in this picture is
arbitrary, yet the relative length between the blue and pink vectors is correct. All the Eu-
ler poles depicted here are negative Euler poles. For the observed Euler poles, hotspot
reference frame is utilized (Gripp and Gordon, 2002).
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some eastward force was applied along the northern edge of PHS. In addition, seismic

observations revealed the contact zone between the PHS slab and the upper surface of

the Pacific slab beneath the Kanto district (Nakajima et al., 2009), which might represent

collision of the PHS slab to the Pacific slab around 3 Ma, having led to the significant

deformation of the PHS slab beneath Kanto. This quick change of the plate motion might

have caused the unique shape of the PHS slab, as was pointed out by Ide et al. (2010).

However, during the continuous clockwise spin motion before the abrupt change, the PHS

slab had received the driving force for the spin motion and therefore the slab deformation

must have continued for a much longer period of time. Although the initiation age of the

spin motion is not well resolved, a long-term tectonic reconstruction (e.g., Hall, 2002),

including several events around PHS, such as the opening of the Japan sea, especially the

clockwise motion of the southwestern Japan (∼ 15 Ma) (e.g., Sato, 1994; Jolivet et al., 1994;

Maruyama et al., 1997), the collision of the Izu arc into the Kanto district dated back to at

least ∼ 17 Ma (Aoike, 1999), and the initiation of the subduction of the northern PHS plate

(∼ 20 Ma) (Hall, 2002) are consistent with our rough estimate of age, ∆t = 4 to 19 Myr, and

might be related to the initiation of slab buckling.

4.6 Discussion

4.6.1 Validity of torque analysis for the Philippine Sea plate

In our torque analysis for the PHS, we first imposed the uniform slab pull force based on

the notion that the slab pull force generally succeed in simulating the observed Euler Pole

(Forsyth and Uyeda, 1975; Becker and O’Connell, 2001). Actually, as we already stated

above (Chapter 1), slab pull can simulate the observed Euler poles of almost all the plates

and the straight motion of the other plates, such as the Philippine Sea and Cocos plate. For

this reason, we first adopted the slab pull force. In addition, Forsyth and Uyeda (1975) and
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Becker and O’Connell (2001) consider uniform slab pull force along the subduction zone

and according to their analysis we also impose uniform slab pull force. The reason that

the uniform slab pull force can generate the observed Euler pole might be associated with

a mechanism in which the slab resistance increases as the increase in the driving slab pull.

Then, to generate the PHS spin motion, we need to add a torque which has not been con-

sidered in the previous works (Forsyth and Uyeda, 1975; Becker and O’Connell, 2001). As

the driving force Seno (2000) raised a mantle upwelling off the west coast of Kyushu, which

is indicated based on the crustal stress variation in Kyushu region (Seno, 1999), the electri-

cal conductivity (Shimoizumi et al., 1997; Handa, 2005) and seismic observations (Sadeghi

et al., 2000; Yoshizawa et al., 2010), though he also suggested that the estimated magnitude

of the torque caused by the upwelling may not be sufficient to simulate the observed plate

spin motions and another driving force might be necessary. Another conceivable candi-

date for the driving force is the collision of the Caroline plate (Figure 4.9). The westward

motion seems to push the southern part of the PHS and to induce the clockwise spin mo-

tion. However, the southern plate boundary between the two plates is ridge and the speed

of westward motion of the PHS is faster than that of the Caroline plate. Thus, the Caroline

plate cannot be a driving force for the spin motion of the PHS. Based on these considera-

tions, we imposed uniform slab pull force along the subduction zone and added another

force suggested by Seno (1999, 2000) in the torque analysis of the PHS.

4.6.2 Other possibilities of the wavy slab geometry

Although we assumed the wavy slab geometry as a buckling and applied the folding theory

to the geometry, here we consider another possibility to induce the geometry of the PHS

slab beneath the southwestern Japan. One candidate is the wavy plate boundary when the

plate was subducting. Looking at the slab geometry, generally the geometry is the same as
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Fig. 4.9 Plate motion of the Caroline plate. Although the Caroline plate moves west-
ward, the westward motion of the Philippine Sea plate is faster and as a result, the plate
boundary between the two plates becomes ridge.

the shape of the plate boundary (Hayes et al., 2012). In fact, due to the collision of the PHS

at the Izu peninsula the plate boundary deforms and the slab subducted there has similar

geometry (Figure 4.2). However, the locations we focus on to analyze the slab geometry,

such as around Biwa Lake and Seto Island Sea, are not suggested to deform in these several



66 Chapter 4 Spin motion and buckling of the Philippine Sea plate

million years; therefore, it is not conceivable that a wavy plate boundary generated the

current deformed slab geometry.

As regards the cause of the wavy slab, Ide et al. (2010) analyzed the slab geometry by

dealing with the slab as an elastic media and suggested that the folding occurred some-

time between 2–4 Ma, causing the split of the slab which they claimed to be observed in

the current seismicity. Although they did not maintain the mechanism to split the slab

suddenly, our analysis showed that approximately a few GPa (approximately one order

higher than that of slab pull stress (Section 4.3.1)) is necessary to deform the elastic slab

and it is difficult to think about any conceivable driving force in the interior of the Earth.

For this reason, we suggest that the slab deformed after the subduction due to the buckling

as a viscous media rather an elastic one.

4.6.3 Thermal condition of southwestern subduction zone and rheology
of slab

Whereas we suggested that the slab beneath the southwestern Japan deforms as a viscous

media, here we discuss the thermal condition of the subduction zone to consider whether

or not the slab can behave as a viscous material in the circumstances. Compared with

other subduction zone such as the northeastern Japan, the subduction zone of the south-

western Japan is suggested to be relatively “hotter” (Peacock and Wang, 1999; Iwamori,

2007) and the temperature of the slab at the depth of 40–60 km, at which the deformation

of the PHS slab is largest (Figure 4.2), is estimated as approximately 500◦C or more (500–

600◦C at the bottom of the oceanic crust (Peacock and Wang, 1999); 400–600◦C along the

slab-wedge interface (Iwamori, 2007)). Moreover, the thickness of a plate in which the

lithosphere behaves as an elastic plate, i.e., the elastic thickness, accords the isotherm of

600◦C (Watts and Zhong, 2000). Thus, the lithosphere of less than 600◦C behaves elasti-

cally in a short time scale and viscously in a long time scale and that of more than 600◦C
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exhibits a viscous characteristic. Consequently, it is enough conceivable that the relatively

hot slab beneath the southwestern Japan deformed as a viscous media to yield the cur-

rent wavy geometry. We estimate the viscosity contrast between the slab and the mantle

by theoretical formulation of rheology (Karato and Wu, 1993; Korenaga and Karato, 2008).

In a simple case, in which we set temperature 500◦C for the slab surface and 1000◦C for

the surrounding mantle, the depth 50km and the both rheologies wet diffusion creep, the

viscosity contrast becomes roughly 109–1013 (Karato and Wu, 1993; Korenaga and Karato,

2008; Karato, 2010, 2011). The estimated viscosity contrast is large, yet several effects, such

as water and the grain size, might play an important role to reduce such a large viscosity

contrast.

4.7 Summary

We analyzed the geometry of the PHS slab beneath southwestern Japan using the theory of

folding. We found that during the buckling process, the slab behaves as a viscous media,

such as Newtonian or power-law, rather than an elastic slab and the viscosity of the slab

is approximately 1–14×1023 Pa s. The simple Euler pole analysis provides an estimate on

the driving force of the PHS spin motion, i.e., the eastward force of approximately 4–40

MPa. This range is within the stress level that can be sustained by the plate boundary as

was discussed in Chapter 3, although the exact relation between the two estimates are not

clear at present. While there is a large uncertainty of our estimate of the time took for the

buckling (∆t = 4–19 Myr), important events around the PHS, including the quick change of

the PHS motion (∼ 4 Ma), the clockwise motion of the southwestern Japan for the opening

of the Japan Sea (∼ 15 Ma) (e.g., Sato, 1994; Jolivet et al., 1994), the collision of the Izu arc

into the Kanto district (∼ 17 Ma) (Aoike, 1999), and the initiation of the subduction of the

northern PHS plate (∼ 20 Ma) (Hall, 2002), may be important to understand the evolution
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of the PHS and slab, as well as tectonic evolution around the Japan arcs.
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Summary and conclusion

In previous works, numerical simulations of mantle convection have been used to ex-

amine the extent to which toroidal velocity components are naturally generated on the

surface, by varying key parameters, notably the rheological properties of plates and plate

boundaries. Here, we took the reverse approach and performed analysis of observed plate

motions with high-resolution plate models to constrain the physical properties and to

comprehend the dynamics of plate motions. We analyzed (i) toroidal/poloidal ratio of

global plate motion, (ii) spin motions of individual plates without a slab and (iii) the Philip-

pine Sea plate with both a high spin rate and subducting slab.

In the toroidal-poloidal analysis, although previous works (e.g., O’Connell et al., 1991)

suggested the toroidal/poloidal ratio is almost constant (∼ 0.8) for both low and high de-

grees of spherical harmonic expansion, our detailed analysis up to much higher degrees

than ever demonstrated that there is an increase in the ratio especially from 1000 km in

the scale of motion (Figure 2.3), which results from the plate motion, in particular, spin

motion of small plate, and the plate geometrical configuration as shown in Appendix C.

To comprehend the driving force of plate spin motions, which have not been explained

in previous works (Forsyth and Uyeda, 1975; Becker and O’Connell, 2001), we analyzed

individual plate spin motions. Focusing on the plates without a subducting slab, we found
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that there is a rapid change in the rotation rate of spin motion around 1000 km in plate size.

Since a fast-moving plate drives the adjacent small plates via the mechanical interaction

at plate boundaries, as is seen in the global geographical distribution of spin motion (Fig-

ure 3.6), this quantitative relationship constrains strength of the plate boundaries as 3 to

75 MPa (Figure 3.7), which is consistent with several seismological observations, including

those from the northeastern Japan arc associated with the 2011 Tohoku earthquake.

Finally, we investigated forces driving the motion of the Philippine Sea plate (PHS) with

both a relatively high spin rate and subducting slabs. By applying the theory of folding to

explain the wavy geometry of the subducted PHS slab beneath the southwestern Japan arc,

we found that the slab behaves as a viscous layer during the deformation with viscosity to

be 1 to 14×1023 Pa s. Assuming a mantle flow beneath the Kyushu district as the source

of driving force for slab deformation as well as the spin motion of PHS (Seno, 2000), we

estimated the stress to be 4 to 40 MPa, which is within our estimate on the strength of

plate boundaries, suggesting a relatively weak regime for the overall driving force of plate

motions.
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Appendix AAppendix A

Theory of spherical harmonic
expansion

A.1 Condition of toroidal-poloidal decomposition

The condition for the toroidal-poloidal decomposition is that the divergence is zero every-

where in the vector field. In fact, the divergence of toroidal-poloidal flow becomes

divu = div (uT +uP ) = divuT +divuP = 0,

where

divuT = 1

r 2

∂
(
r 2uTr
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r 2 sinθ

∂2Ψ

∂ϕ∂θ
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and
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divuP = 1
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Here, Ψ and Φ are toroidal and poloidal components, respectively. However, in our anal-

ysis, we did not use the radial velocity, uPr , and utilized only the horizontal velocity field

on the surface of the Earth to obtain the toroidal-poloidal power, which is justified since

to obtain the power of poloidal component, bm
l , we calculate

bm
l = r 2(2l +1)(l −m)!

2πl (l +1)(l +m)!

∫ 2π

0

∫ π

0
u ·Bm

l
∗ sinθdϕdθ,

where

Bm
l = 1

r

(
0, B m

lθ , B m
lϕ

)
.

Hence, we do not need the radial velocity to calculate toroidal-poloidal power yet the cal-

culation still meets the condition for the toroidal-poloidal decomposition.

Moreover, considering the summation of divergence in the whole vector field, the con-

dition for the toroidal-poloidal decomposition is achieved when the net mass subducted

into the Earth at subduction zone balances with that generated at ridge. It means that the

expansion and the contraction of the Earth are almost ignorable. This is proven by a pre-

cise observation, such as satellite laser ranging (SLR), Very Long Baseline Interferometry

(VLBI), Global Positioning System (GPS), and Doppler Orbitography and Radioposition-

ing Integrated by Satellite (DORIS), demonstrating that the mean radius of the Earth is not

changing to within 1σ measurement uncertainty of 0.2 mm/yr (Wu et al., 2011). Therefore,
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the expansion/contraction of the Earth is ignorable and the toroidal-poloidal decomposi-

tion is validate.

A.2 How we obtain toroidal-poloidal components

In polar coordinates, assuming ur = 0, we obtain plate motion divided into toroidal and

poloidal parts,

u = uT +uP = (
0,uTθ ,uTϕ

)+ (
0,uPθ,uPϕ

)
(A.1)

where uTθ,upϕ,uPθ ,and uPϕ are toroidal plate motions and poloidal plate motions in the

theta and phi direction, respectively. With toroidal Component Ψ and poloidal compo-

nent Φ, we can also describe plate motion as

u = uT +uP = (∇×Ψ)+ (∇×∇×Φ) . (A.2)

Our goal is to calculate the magnitude of vector fields of toroidal motion and poloidal

motion. For the goal, we can expand both of them with harmonics, which shows the mag-

nitude of each motion at a certain degree. Because we conduct the expansion on a sphere,

we have to utilize spherical harmonics called Legendre polynomial, P m
l where l and m are

degree and order (0 ≤ m ≤ l ), rather than Fourier series for the plane surface.

For instance, expanding a certain scalar function, f
(
θ,ϕ

)
, on a sphere provides

f
(
θ,ϕ

)= ∞∑
l

l∑
m

P m
l (cosθ)

(
c m

c, l cosmϕ+c m
s, l sinmϕ

)
(A.3)

where cs, l and cs, l are the coefficients at degree l and order m. We can obtain the magni-

tude of the scalar function at a degree l , σ (l ), as

σ (l ) =
(
c m

c, l

)2 +
(
c m

s, l

)2
. (A.4)

Therefore, calculating two coefficients cs, l and cs, l is our objective.

Nevertheless, the function which we deal with is plate motion on the sphere, that is,

“vector fields”. For this reason, spherical harmonic expansion of plate motion to calcu-
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late its magnitude needs some techniques. Therefore, we carry out the following way as

previous works did (e.g., Hager and O’Connell, 1978).

Regarding toroidal motion uT , from the definition:

uT =
(
0,

1

r sinθ

∂Ψ

∂ϕ
, −1

r

∂Ψ

∂θ

)
, (A.5)

setting Ψ≡ a f
(
θ,ϕ

)
,where a and f are constant independent of θ and ϕ and scalar func-

tion, respectively, provides
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(
0,

a

r sinθ

∂ f

∂ϕ
, −a

r

∂ f

∂θ

)
= a

(
0,

1

r sinθ

∂ f

∂ϕ
, −1

r
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)
.

When f is normalized, a decides the magnitude of toroidal motion. Consequently, in or-

der to evaluate the magnitude of toroidal motion, we have to expand toroidal component

Ψ like

Ψ=
∞∑
l

l∑
m

P m
l (cosθ)

(
c m

c, l cosmϕ+c m
s, l sinmϕ

)
(A.6)

and all we have to do is to calculate σ (l ).

With regard to poloidal motion uP , from the definition:
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,

setting ∂Φ/∂r ≡ b g
(
θ,ϕ

)
, where b and g are constant independent of θ and ϕ and scalar

function, respectively, offers

uP =
(
0,

b

r
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b
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= b
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(Note that we are setting Ψ ≡ a f in toroidal motion and ∂Φ/∂r ≡ bg in poloidal motion

due to the difference in dimension). When g is normalized, b determines the magnitude

of poloidal motion. As a result, for earning the magnitude of toroidal motion, we have to

expand the partial derivative of poloidal component ∂Φ/∂r as

∂Φ

∂r
=

∞∑
l

l∑
m

P m
l (cosθ)

(
c m

c, l cosmϕ+ c m
s, l sinmϕ

)
. (A.7)

In conclusion, we succeed in expansion of vector fields on the sphere, plate motion,

both for toroidal component and poloidal component. We next express expanded forms

of toroidal and poloidal motions with their expanded components.

A.3 Spherical harmonic expansion for toroidal term

Regarding toroidal motion uT , we conduct spherical harmonic expansion for it as follows.

First of all, as we did in the last section, we expand toroidal component Ψ with spherical

harmonics Yl becomes

Ψ≡ c0Y0
(
θ,ϕ

)+c1Y1
(
θ,ϕ

)+·· · =
∞∑

l=0
cl Yl

(
θ,ϕ

)
(A.8)

where Yl and cl are spherical harmonics and the coefficient at degree l , respectively. Fur-

thermore, we can write the spherical harmonics at degree l , Yl , with Legendre polynomial

P m
l (cosθ) as

cl Yl
(
θ,ϕ

)= c0
l P 0

l (cosθ)+
l∑

m=1
c m

c, l P m
l (cosθ)

(
cosmϕ

)+ l∑
m=1

c m
s, l P m

l (cosθ)
(
sinmϕ

)
=

l∑
m=0

P m
l (cosθ)

(
c m

c, l cosmϕ+c m
s, l sinmϕ

)
. (A.9)

Substituting the equation (A.9) into the equation (A.8) provides

Ψ=
∞∑

l=0

l∑
m=0

P m
l (cosθ)

(
c m

c, l cosmϕ+c m
s, l sinmϕ

)
. (A.10)

As a result, toroidal motion:

uT =∇×Ψ=
(
0,

1

r sinθ

∂Ψ

∂ϕ
,−1

r

∂Ψ

∂θ

)
(A.11)
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is

uT =
∞∑

l=0

l∑
m=0

1

r

(
0,

m

sinθ
P m

l (cosθ)
(
−c m

c, l sinmϕ+c m
s, l cosmϕ

)
,

−∂P m
l (cosθ)

∂θ

(
c m

c, l cosmϕ+ c m
s, l sinmϕ

))
.

For complex expression, setting

cm
l ≡ c m

c, l − i c m
s, l (A.12)

Cm
l ≡ 1

r

(
0,

m

sinθ
P m

l (cosθ)
(
i cosmϕ− sinmϕ

)
,−∂P m

l (cosθ)

∂θ

(
cosmϕ+ i sinmϕ

))
(A.13)

,where i is imaginary unit and cm
l and Cm

l are the complex coefficient and the complex

vector at degree l and order m, respectively, yields

cm
l Cm

l = 1

r

(
0,

m

sinθ
P m

l (cosθ)
(
−c m

c, l sinmϕ+c m
s, l cosmϕ

)
,

−∂P m
l (cosθ)

∂θ

(
c m

c, l cosmϕ+c m
s, l sinmϕ

))
+ i Im

{
cm

l Cm
l

}
.

Consequently, using cm
l and Cm

l , we can describe complex expression of toroidal motion

uT as

uT =
∞∑

l=0

l∑
m=0

Re
{
cm

l Cm
l

}
. (A.14)

Similarly, we will obtain poloidal motion in the next section.

A.4 Spherical harmonic expansion for poloidal term

Concerning poloidal motion, uP , we expand it with spherical harmonics Yl and Legendre

polynomial P m
l (cosθ). To begin with, we substitute expanding ∂Φ/∂r

∂Φ

∂r
≡ b0Y0

(
θ,ϕ

)+b1Y1
(
θ,ϕ

)+·· · =
∞∑

l=0
bl Yl

(
θ,ϕ

)
=

∞∑
l=0

l∑
m=0

P m
l (cosθ)

(
b m

c, l cosmϕ+b m
s, l sinmϕ

)
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into the following equation of poloidal motion, uP ,

uP =∇×∇× (Φr)

=∇×
(
0,

1

r sinθ

∂Φ

∂ϕ
−0, 0− 1

r

∂Φ

∂θ

)
=

(
1

r sinθ

[
∂

∂θ

(
−1

r

∂Φ

∂θ
sinθ

)
− ∂

∂ϕ

(
1

r sinθ

∂Φ

∂ϕ

)]
,

0− 1

r

∂

∂r

[
r

(
−1

r

∂Φ

∂θ

)]
,

1

r

∂

∂r

[
r

1

r sinθ

∂Φ

∂ϕ

]
−0

)
=

(
−∆HΦ= 0,

1

r

∂

∂r

(
∂Φ

∂θ

)
,

1

r sinθ

∂

∂r

(
∂Φ

∂ϕ

))
=

(
0,

1

r

∂

∂θ

(
∂Φ

∂r

)
,

1

r sinθ

∂

∂ϕ

(
∂Φ

∂r

))
=

∞∑
l=0

l∑
m=0

(
0,

1

r

∂

∂θ

[
P m

l (cosθ)
(
b m

c, l cosmϕ+b m
s, l sinmϕ

)]
,

1

r sinθ

∂

∂ϕ

[
P m

l (cosθ)
(
b m

c, l cosmϕ+b m
s, l sinmϕ

)])
=

∞∑
l=0

l∑
m=0

(
0,

1

r

(
∂P m

l (cosθ)

∂θ

)(
b m

c, l cosmϕ+b m
s, l sinmϕ

)
,

m

r sinθ
P m

l (cosθ)
(
−b m

c, l sinmϕ+b m
s, l cosmϕ

))
where the ∆H is horizontal Laplacian operator and we here assume that the radial velocity

of plates is 0. Furthermore, setting

bm
l = b m

c, l − i b m
s, l

Bm
l = 1

r

(
0,

(
∂P m

l (cosθ)

∂θ

)(
cosmϕ+ i sinmϕ

)
,

m

sinθ
P m

l (cosθ)
(
i cosmϕ− sinmϕ

))

generates

uP =
∞∑

l=0

l∑
m=0

1

r

(
0,

(
∂P m

l (cosθ)

∂θ

)(
b m

c, l cosmϕ+b m
s, l sinmϕ

)
,

m

sinθ
P m

l (cosθ)
(
−b m

c, l sinmϕ+b m
s, l cosmϕ

))
=

∞∑
l=0

l∑
m=0

Re
{
bm

l Bm
l

}
.

We are finally successful in spherical harmonic expansion for poloidal motion. In the next

section, to obtain the toroidal coefficients of spherical harmonics, cm
l , we will see an inte-
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gral corresponding to Fourier transform in Fourier series expansion.

A.5 Calculation of the coefficient of toroidal motion

For the coefficients of toroidal motion, cm
l , we calculate the following integral

∫ 2π

0
dϕ

∫ π

0
dθu ·Cm ′

l ′
∗

sinθ (A.15)

where the superscript ∗ represents the conjugate complex number and l ′ and m ′ are de-

gree and order (0 ≤ m ′ ≤ l ′). For the integral, we first consider the integrand, u ·Cm ′
l ′

∗
. As

regards Cm ′
l ′

∗
,

Cm ′
l ′

∗ = 1

r

(
0,

m ′

sinθ
P m ′

l ′ (cosθ)
(
i cosm ′ϕ− sinm ′ϕ

)∗ , −
∂P m ′

l ′ (cosθ)

∂θ

(
cosm ′ϕ+ i sinm ′ϕ

)∗)

= 1

r

(
0,

m ′

sinθ
P m ′

l ′ (cosθ)
(−i cosm ′ϕ− sinm ′ϕ

)
, −

∂P m ′
l ′ (cosθ)

∂θ

(
cosm ′ϕ− i sinm ′ϕ

))
.

Substituting Cm ′
l ′

∗
into u ·Cm ′

l ′
∗

gives (we omit (cosθ) of P m
l (cosθ) for clarity)
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u ·Cm ′
l ′

∗
(A.16)

= (uT +uP ) ·Cm ′
l ′

∗

=
∞∑

l=0

l∑
m=0

Re
{
cm

l Cm
l +bm

l Bm
l

} ·Cm ′
l ′

∗

=
∞∑

l=0

l∑
m=0

1

r 2

{(
0,

m

sinθ
P m

l

(
−c m

c, l sinmϕ+ c m
s, l cosmϕ

)
+

(
∂P m

l

∂θ

)(
b m

c, l cosmϕ+b m
s, l sinmϕ

)
,

−
(
∂P m

l

∂θ

)(
c m

c, l cosmϕ+c m
s, l sinmϕ

)
+ m

sinθ
P m

l

(
−b m

c, l sinmϕ+b m
s, l cosmϕ

))}

·
(

0,
m ′

sinθ
P m ′

l ′
(−i cosm ′ϕ− sinm ′ϕ

)
, −

(
∂P m ′

l ′

∂θ

)(
cosm ′ϕ− i sinm ′ϕ

))

=
∞∑

l=0

l∑
m=0

1

r 2

{
mm ′

sin2θ
P m

l P m ′
l ′

(
c m

s, l cosmϕ− c m
c, l sinmϕ

)(−i cosm ′ϕ− sinm ′ϕ
)

+
(
∂P m

l

∂θ

)(
∂P m ′

l ′

∂θ

)(
c m

c, l cosmϕ+ c m
s, l sinmϕ

)(
cosm ′ϕ− i sinm ′ϕ

)
+ m ′

sinθ

(
∂P m

l

∂θ

)
P m ′

l ′
(
b m

c, l cosmϕ+b m
s, l sinmϕ

)(−i cosm ′ϕ− sinm ′ϕ
)

− m

sinθ
P m

l

(
∂P m ′

l ′

∂θ

)(
b m

s, l cosmϕ−b m
c, l sinmϕ

)(
cosm ′ϕ− i sinm ′ϕ

)}
. (A.17)

To obtain the coefficients, cm
l , we integral the equation (A.17), i.e., calculate the equation

(A.15). Concerning the integration, we will show two facts: (i) when m ̸= m ′,
∫ 2π

0 u·Cm ′
l ′

∗
dϕ

becomes zero and (ii) operating
∫ π

0 sinθdθ on the equation (A.17) vanishes the terms of(
∂P m

l /∂θ
)

P m
l

(i) when m ̸= m ′,
∫ 2π

0 u ·Cm ′
l ′

∗
dϕ becomes zero

We are demonstrating that for m ̸= m ′,
∫ 2π

0 u ·Cm ′
l ′

∗
dϕ becomes zero. First, we integral the

products of si n and cos in the equation (A.17)

∫ 2π

0
cosmϕsinm ′ϕdϕ= 1

2

∫ 2π

0

(
sin

(
m ′+m

)
ϕ+ sin

(
m ′−m

)
ϕ

)
dϕ

=
{

1
2

[ −1
m ′+m cos

(
m ′+m

)
ϕ+ −1

m ′−m cos
(
m ′−m

)
ϕ

]2π
0 = 0 (m ̸= m ′)

1
2

[ −1
m ′+m cos

(
m ′+m

)
ϕ

]2π
0 = 0 (m = m ′).
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This means that all the terms containing the products of si n and cos always become zero.

Similarly, the integrals of products of cos and cos and those of si n and si n are

∫ 2π

0
cosmϕcosm ′ϕdϕ= 1

2

∫ 2π

0

(
cos

(
m ′−m

)
ϕ+cos

(
m ′+m

)
ϕ

)
dϕ

=
{

1
2

[ 1
m ′−m sin

(
m ′−m

)
ϕ+ 1

m ′+m sin
(
m ′+m

)
ϕ

]2π
0 = 0 (m ̸= m ′)

1
2

[
ϕ+ 1

m ′+m sin
(
m ′+m

)
ϕ

]2π
0 =π (m = m ′)

∫ 2π

0
sinmϕsinm ′ϕdϕ= 1

2

∫ 2π

0

(
cos

(
m ′−m

)
ϕ−cos

(
m ′+m

)
ϕ

)
dϕ

=
{

1
2

[ 1
m ′−m sin

(
m ′−m

)
ϕ− 1

m ′+m sin
(
m ′+m

)
ϕ

]2π
0 = 0 (m ̸= m ′)

1
2

[
ϕ− 1

m ′+m sin
(
m ′+m

)
ϕ

]2π
0 =π (m = m ′).

In summary, for m ̸= m ′, all the terms become zero and for m = m ′, only the terms includ-

ing cos2 mϕ or sin2 mϕ becomes π though the others become zero.

Now the result of integration of the equation (A.17) becomes

∫ 2π

0
dϕ

∫ π

0
dθu ·Cm ′

l ′
∗

sinθ

=
∞∑

l=0

∫ π

0

π

r 2

{
m2

sin2θ
P m

l P m
l ′

(
−i c m

s, l +c m
c, l

)
+

(
∂P m

l

∂θ

)(
∂P m

l ′

∂θ

)(
c m

c, l − i c m
s, l

)
+ m

sinθ

(
∂P m

l

∂θ

)
P m

l ′
(
−i b m

c, l −b m
s, l

)
− m

sinθ
P m

l

(
∂P m

l ′

∂θ

)(
b m

s, l + i b m
c, l

)}
sinθdθ.

(A.18)

(ii) operating
∫ π

0 sinθdθ on the equation (A.17) vanishes the terms of(
∂P m

l /∂θ
)

P m
l

We, next, prove the fact that operating
∫ π

0 sinθdθ on the equation (A.17) vanishes the terms

of
(
∂P m

l /∂θ
)

P m
l . To begin with, using the integration by parts yields

∫ π

0

1

sinθ

(
∂P m

l

∂θ

)
P m

l ′ sinθdθ =
∫ π

0

(
∂P m

l

∂θ

)
P m

l ′ dθ = [
P m

l P m
l ′

]π
0 −

∫ π

0
P m

l

(
∂P m

l ′

∂θ

)
dθ

= 0−
∫ π

0
P m

l

(
∂P m

l ′

∂θ

)
dθ (for m ̸= 0)
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where
[

P m
l P m

l ′
]π

0
vanishes because Legendre polynomial contains (sinmθ). This calcula-

tion means for m ̸= 0 ∫ π

0

((
∂P m

l

∂θ

)
P m

l ′ +P m
l

(
∂P m

l ′

∂θ

))
dθ = 0. (A.19)

At m = 0, in addition, the terms about P m
l ∂P m

l /∂θ in (A.18) becomes zero because the

terms contain m. Considering the result, (A.18) finally becomes

∫ π

0

∫ 2π

0
u ·Cm ′

l ′
∗

sinθdϕdθ

=
∞∑

l=0

∫ π

0

π

r 2

{
m2

sin2θ
P m

l P m
l ′

(
c m

c, l − i c m
s, l

)
+

(
∂P m

l

∂θ

)(
∂P m

l ′

∂θ

)(
c m

c, l − i c m
s, l

)
+0

}
sinθdϕdθ

=
∞∑

l=0

π

r 2

∫ π

0

[
m2

sinθ
P m

l P m
l ′ + sinθ

(
∂P m

l

∂θ

)(
∂P m

l ′

∂θ

)](
c m

c, l − i c m
s, l

)
dθ

= π

r 2 cm
l

2(l +m)! l (l +1)

(l −m)! (2l +1)
(A.20)

where we use a formula of Legendre polynomial:

∫ π

0

[
m2

sinθ
P m

n (cosθ)P m
l (cosθ)+ sinθ

dP m
n (cosθ)

dθ

dP m
l (cosθ)

dθ

]
dθ =

{
0 [n ̸= l ]
2l (l+1)(l+m)!
(2l+1)(l−m)! [n = l ]

.

(A.21)

In conclusion, we acquire∫ π

0

∫ 2π

0
u ·Cm ′

l ′
∗

sinθdϕdθ = 2π

r 2

(l +m)! l (l +1)

(l −m)! (2l +1)
cm

l . (A.22)

Similarly, we calculate
∫ 2π

0 dϕ
∫ π

0 dθu ·Bm
l

∗ sinθ for the poloidal coefficient bm
l .

A.6 Calculation of the coefficient of poloidal motion

For the coefficients of poloidal motion, bm
l , we calculate the following integral

∫ 2π

0
dϕ

∫ π

0
dθu ·Bm ′

l ′
∗

sinθ. (A.23)

First of all, Bm ′
l ′

∗
is
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Bm ′
l ′

∗ = 1

r

(
0,

(
∂P m ′

l ′ (cosθ)

∂θ

)(
cosm ′ϕ+ i sinm ′ϕ

)∗ ,
m ′

sinθ
P m ′

l ′ (cosθ)
(
i cosm ′ϕ− sinm ′ϕ

)∗)

= 1

r

(
0,

(
∂P m ′

l ′ (cosθ)

∂θ

)(
cosm ′ϕ− i sinm ′ϕ

)
,

m ′

sinθ
P m ′

l ′ (cosθ)
(−i cosm ′ϕ− sinm ′ϕ

))
.

Substituting Bm ′
l ′

∗
into u ·Bm ′

l ′
∗

generates (we omit (cosθ) of P m
l (cosθ) for clarity)

u ·Bm ′
l ′

∗ = (uT +uP ) ·Bm ′
l ′

∗

=
∞∑

l=0

l∑
m=0

Re
{
cm

l Cm
l +bm

l Bm
l

} ·Bm ′
l ′

∗

=
∞∑

l=0

l∑
m=0

1

r 2

{
m

sinθ
P m

l

(
∂P m ′

l ′

∂θ

)(
c m

s, l cosmϕ−c m
c, l sinmϕ

)(
cosm ′ϕ− i sinm ′ϕ

)
− m ′

sinθ

(
∂P m

l

∂θ

)
P m ′

l ′
(
c m

c, l cosmϕ+ c m
s, l sinmϕ

)(−i cosm ′ϕ− sinm ′ϕ
)

+
(
∂P m

l

∂θ

)(
∂P m ′

l ′

∂θ

)(
b m

c, l cosmϕ+b m
s, l sinmϕ

)(
cosm ′ϕ− i sinm ′ϕ

)
+ mm ′

sin2θ
P m

l P m ′
l ′

(
b m

s, l cosmϕ−b m
c, l sinmϕ

)(−i cosm ′ϕ− sinm ′ϕ
)}

.

As we showed in the last section, when m ̸= m ′, all the terms become 0 and for m = m ′,

operating
∫ 2π

0 dϕ vanishes the terms with sin×cos and yields π from the terms with sin2

or cos2. Therefore, integration of (A.23) offers

∫ π

0

∫ 2π

0
u ·Bm ′

l ′
∗

sinθdϕdθ =
∞∑

l=0

π

r 2

∫ π

0

[
m

sinθ
P m

l

(
∂P m

l ′

∂θ

)
+ m

sinθ

(
∂P m

l

∂θ

)
P m

l ′

](
c m

c, l + i c m
s, l

)
+

[(
∂P m

l

∂θ

)(
∂P m

l ′

∂θ

)
+ m2

sin2θ
P m

l P m
l ′

](
b m

c, l − i b m
s, l

)
sinθdθ

=
∞∑

l=0

mπ

r 2

∫ π

0

[
P m

l

(
∂P m

l ′

∂θ

)
+

(
∂P m

l

∂θ

)
P m

l ′

]
dθ

(
c m

c, l + i c m
s, l

)
+

∞∑
l=0

π

r 2 bm
l

∫ π

0

[
sinθ

(
∂P m

l

∂θ

)(
∂P m

l ′

∂θ

)
+ m2

sinθ
P m

l P m
l ′

]
d

dθ
dθ

= 0+ π

r 2 bm
l

2(l +m)! l (l +1)

(l −m)! (2l +1)

= π

r 2 bm
l

2(l +m)! l (l +1)

(l −m)! (2l +1)
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where we use the equations (A.19) and (A.21). In conclusion, we obtain∫ 2π

0

∫ π

0
u ·Bm ′

l ′
∗

sinθdϕdθ = 2π

r 2

(l +m)!

(l −m)!

l (l +1)

(2l +1)
bm

l . (A.24)

A.7 Calculation of power of toroidal motion and poloidal
motion

From the equation (A.22) and (A.24), we acquire the coefficient of toroidal motion, cm
l , and

the coefficients of poloidal motion, bm
l ,

cm
l = r 2(2l +1)(l −m)!

2πl (l +1)(l +m)!

∫ 2π

0

∫ π

0
u ·Cm

l
∗ sinθdϕdθ (A.25)

bm
l = r 2(2l +1)(l −m)!

2πl (l +1)(l +m)!

∫ 2π

0

∫ π

0
u ·Bm

l
∗ sinθdϕdθ. (A.26)

We, thus, obtain the degree power spectra of toroidal and poloidal motion, σT (l ) and

σP (l ),

σ2
T (l ) =

l∑
m=0

cm
l cm∗

l =
l∑

m=0

{(
c m

c, l

)2 +
(
c m

s, l

)2
}

(A.27)

σ2
P (l ) =

l∑
m=0

bm
l bm∗

l =
l∑

m=0

{(
b m

c, l

)2 +
(
b m

s, l

)2
}

. (A.28)

We calculate those coefficients numerically in the next section.
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Appendix BAppendix B

Numerical calculation of spherical
harmonic expansion

B.1 Calculation of toroidal-poloidal power

To obtain the degree power spectra σT (l ) and σP (l ), we need the following coefficients cm
l

and bm
l

σ2
T (l ) =

l∑
m=0

cm
l cm∗

l =
l∑

m=0

{(
c m

c,l

)2 +
(
c m

s,l

)2
}

(B.1)

σ2
P (l ) =

l∑
m=0

bm
l bm∗

l =
l∑

m=0

{(
b m

c, l

)2 +
(
b m

s,l

)2
}

. (B.2)

From the equations (A.25) and (A.26) in the last section, we can calculate them like

cm
l = r 2

2π

(l −m)! (2l +1)

(l +m)! l (l +1)

∫ 2π

0

∫ π

0
u · (Cm

l

)∗ sinθdϕdθ (B.3)

bm
l = r 2

2π

(l −m)! (2l +1)

(l +m)! l (l +1)

∫ 2π

0

∫ π

0
u · (Bm

l

)∗ sinθdϕdθ (B.4)

(this is the correspondence in Spherical harmonic expansion to the Fourier transform in

Fourier series expansion). Furthermore, normalizing Legendre polynomials in Cm
l and Bm

l

yields
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cm
l = r 2

πl (l +1)

∫ 2π

0

∫ π

0
u · (C̃m

l

)∗
sinθdϕdθ (B.5)

bm
l = r 2

πl (l +1)

∫ 2π

0

∫ π

0
u · (B̃m

l

)∗ sinθdϕdθ. (B.6)

where C̃m
l and B̃m

l are normalized and the normalization of Legendre polynomial is

P m
l (cosθ)

nor mal i zati on−−−−−−−−−−−→
√

(2l +1)(l −m)!

2(l +m)!
P̃ m

l (cosθ) (B.7)

because ∫ 1

−1
P m

n (x)P m
l (x)d x =

{
0 [n ̸= l ]

2(l+m)!
(2l+1)(l−m)! [n = l ]

(B.8)

where ˜ represent normalized functions. For clear expression, however, we omit ˜ of

normalized C̃m
l , B̃m

l , and P̃ m
l in the following calculation. Our numerical calculation uti-

lizes summation as integral of the equation (B.3) and (B.4)

cm
l = r 2

πl (l +1)

1801∑
j=0

3600∑
i=0

u
(
ϕ(i ), θ( j )

) · (Cm
l

)∗ sinθ( j )dϕdθ (B.9)

bm
l = r 2

πl (l +1)

1801∑
j=0

3600∑
i=0

u
(
ϕ(i ), θ( j )

) · (Bm
l

)∗ sinθ( j )dϕdθ (B.10)

where the resolution of plate motion is dϕ= dθ = 0.1◦. We next show more concrete form

of the integrands, u · (Cm
l

)∗ and u · (Bm
l

)∗.

B.2 Calculation of integrant

With regard to the integrand about toroidal motion, u ·Cm
l

∗, substituting

Cm
l

∗ = 1

r

(
0,

m

sinθ
P m

l (cosθ)
(
i cosmϕ− sinmϕ

)∗ , −∂P m
l (cosθ)

∂θ

(
cosmϕ+ i sinmϕ

)∗)
= 1

r

(
0,

m

sinθ
P m

l (cosθ)
(−i cosmϕ− sinmϕ

)
, −∂P m

l (cosθ)

∂θ

(
cosmϕ− i sinmϕ

))

into u ·Cm
l

∗ provides
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u ·Cm
l

∗

= (
0, uθ , uϕ

) · 1

r

(
0,

m

sinθ
P m

l (cosθ)
(−i cosmϕ− sinmϕ

)
, −

(
∂P m

l (cosθ)

∂θ

)(
cosmϕ− i sinmϕ

))
= 1

r

[
uθ

m

sinθ
P m

l (cosθ)
(−i cosmϕ− sinmϕ

)−uϕ

(
∂P m

l (cosθ)

∂θ

)(
cosmϕ− i sinmϕ

)]
.

(B.11)

Similarly, the integrand about poloidal motion, u ·Bm
l

∗, becomes

u·Bm
l

∗ = 1

r

[
uθ

(
∂P m

l (cosθ)

∂θ

)(
cosmϕ− i sinmϕ

)+uϕ
m

sinθ
P m

l (cosθ)
(−i cosmϕ− sinmϕ

)]
.

(B.12)

For the integrands above (B.11) and (B.12), we are showing the calculation of Legendre

polynomials P m
l and the derivative ∂P m

l /∂θ, particularly for numerical calculation.

B.3 Calculation of Legendre polynomial functions and the
derivative

To reduce the calculation time, for almost all the Legendre polynomials we do not use the

definition of Legendre polynomials

P m
l (cosθ) = sinm θ

(
dPl (cosθ)

d cosθ

)
(B.13)

where the Pl is Legendre function

Pl (cosθ) =
≤l /2∑
s=0

(−1)s (2l −2s)!

2l s!(l − s)!(l −2s)!
cosl−2s θ, (B.14)

since the calculation takes long time due to the summation and factorials at high degree.

Instead, we utilize recursive formulae of Legendre polynomials. Calculation without sum-

mation provides us with some merits, such as not only reducing the calculation time but

also avoiding numerical errors, like loss of trailing digit. Before starting the calculation of

recursive formula, we raise two important points for numerical calculation: the order of

normalization and the parity of Legendre polynomials.
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B.3.1 Normalization of Legendre polynomials and the derivatives

Normalizing both Legendre polynomials and the derivatives, we have to be cautious about

the order of normalization in our program. If we normalize Legendre polynomials before

calculating the derivative, calculated derivatives become wrong since the derivatives are

decided by various degree Legendre polynomials due to the recursive formulae. Therefore,

we first obtain all the Legendre polynomials and the derivatives and after the calculation

normalize all of them together. In detail, normalization means the result of the integral:∫ 1

−1
P m

l (x)P m
l (x)d x = 2(l +m)!

(2l +1)(l −m)!
(B.15)

becomes 1 and, therefore,

P m
l (cosθ) −→

√
(2l +1)(l −m)!

2(l +m)!
P m

l (cosθ) (B.16)

dP m
l (cosθ)

dθ
−→

d
√

(2l+1)(l−m)!
2(l+m)! P m

l (cosθ)

dθ
=

√
(2l +1)(l −m)!

2(l +m)!

dP m
l (cosθ)

dθ
(B.17)

where the arrows −→ represents normalization.

B.3.2 Parity of Legendre polynomials

In addition, to shorten the calculation time more, we focus on the parity of Legendre poly-

nomials, that is,

P m
l (cos(π−θ)) = P m

l (−cosθ) = (−1)l+mP m
l (cosθ) (B.18)

dP m
l (cosθ)

dθ

θ=π−θ−−−−−→ dP m
l (cos(π−θ))

d(π−θ)
= 1

d(π−θ)
dθ

dP m
l (cos(π−θ))

dθ

= (−1)
d(−1)l+mP m

l (cosθ)

dθ

= (−1)l+m+1
dP m

l (cosθ)

dθ
. (B.19)

It means that calculation for the Northern Hemisphere (0 ≤ θ ≤π/2) can be used to ones of

the Southern Hemisphere (π/2 ≤ θ ≤π), which reduces the calculation time to about half.
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Now, keeping in mind the two points: the order of normalization and the parity, we can

begin to calculate recursive formulae. For the calculation, we classify it into two cases: (a)

θ ̸= 0,π and (b) θ = 0,π since the recursive formulae include 1/sinθ and cannot be used in

the case of (b).

(a) Legendre polynomials and its derivatives for θ ̸= 0,π

Here we consider the case of (a) θ ̸= 0orπ. For starting the calculation of recursive formula,

we need initial Legendre polynomials at degree l = 0,1,2.

At degree l=0,1,2, Legendre polynomials and its derivatives are

(at l=0) P 0
0 (cosθ) = 1 −→ 1p

2

dP 0
0 (cosθ)

dθ
= 0 −→ 0

(at l=1) P 0
1 (cosθ) = cosθ −→

√
3

2
cosθ

dP 0
1 (cosθ)

dθ
=−sinθ −→−

√
3

2
sinθ

P 1
1 (cosθ) = sinθ −→

√
3

4
sinθ

dP 1
1 (cosθ)

dθ
= cosθ −→

√
3

4
cosθ

(at l=2) P 0
2 (cosθ) = 1

2

(
3cos2θ−1

)−→ 1

2

√
5

2

(
3cos2θ−1

)
dP 0

2 (cosθ)

dθ
=−3cosθ sinθ −→−

√
5

2
3cosθ sinθ

P 1
2 (cosθ) = 3sinθcosθ −→

√
5

12
3sinθcosθ

dP 1
2 (cosθ)

dθ
= 3cos2θ −→

√
5

12
3cos2θ

P 2
2 (cosθ) = 3sin2θ −→

√
5

48
3sin2θ

dP 2
2 (cosθ)

dθ
= 3sin2θ −→

√
5

48
3sin2θ

where the arrows −→ represent normalization and the normalized results are written un-
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naturally to clarify the effect of normalization. Now, with those initial values, we make use

of recursive formulae for l > 2.

At a certain degree l , we calculate P m
l and dP m

l /dθ for m = 0,1, · · · , l . At m = l , from

formulae of Legendre polynomials, we can obtain

P l
l (cosθ) =(2l −1)!!sinl θ (B.20)

dP l
l (cosθ)

dθ
=(2l −1)!! l cosθ sinl−1θ

=l
cosθ

sinθ
P l

l (cosθ) (B.21)

where

(2l −1)!! = (2l −1)(2l −3)(2l −5) · · ·3 ·1.

For m = l −1, i.e., P l−1
l , using the equation (B.20) and this recursive formula

(l −m)cosθP m
l − (l +m)P m

l−1 + sinθP m+1
l = 0 (B.22)

at m = l −1 yields

(l − (l −1))cosθP l−1
l − (l + (l −1))P l−1

l−1 + sinθP l
l = 0

⇔ cosθP l−1
l − (2l −1)P l−1

l−1 + sinθP l
l = 0

⇔ cosθP l−1
l = (2l −1)

[
(2(l −1)−1)!!sinl−1θ

]
− sinθ

[
(2l −1)!!sinl θ

]
(from (B.20))

= (2l −1)(2l −3)!!sinl−1θ− sinθ
[

(2l −1)!!sinl θ
]

= (2l −1)!!
sinl θ

sinθ
− sinθ

[
(2l −1)!!sinl θ

]
=

(
1

sinθ
− sinθ

)
(2l −1)!!sinl θ

= cos2θ

sinθ
P l

l .

Therefore, Legendre polynomial P l−1
l is

P l−1
l (cosθ) = cosθ

sinθ
P l

l (cosθ) (B.23)

where although we do not consider the case of cosθ = 0 this numerical calculation pro-

vides reasonable results at θ =π/2. With P l
l and P l−1

l , we calculate P m
l (m = 0,1, · · · , l −2)
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recursively. This recursive formula

P m+2
l −2(m +1)

cosθ

sinθ
P m+1

l + (l −m)(l +m +1)P m
l = 0 (B.24)

offers P m
l for m = l −2, l −1, . . . ,1,0:

P m
l (cosθ) = 1

(l −m)(l +m +1)

[
2(m +1)

cosθ

sinθ
P m+1

l (cosθ)−P m+2
l (cosθ)

]
. (B.25)

Moreover, using the definition of Legendre polynomials:

P m
l (cosθ) = sinm θ

(
d mPl (cosθ)

d cosθm

)
, (B.26)

we also acquire the derivatives dP m
l /dθ for m = l −1, l −2, · · · ,0 recursively like

dP m
l (cosθ)

dθ
= d

dθ

(
sinm θ

(
d mPl (cosθ)

d cosθm

))
= m cosθ sinm−1θ

(
d mPl (cosθ)

d cosθm

)
+ sinm θ

d cosθ

dθ

(
d m+1Pl (cosθ)

d cosθm+1

)
= m

cosθ

sinθ
sinm θ

(
d mPl (cosθ)

d cosθm

)
− sinm+1θ

(
d m+1Pl (cosθ)

d cosθm+1

)
= m

cosθ

sinθ
P m

l (cosθ)−P m+1
l (cosθ).

In conclusion, for the case of (a) θ ̸= 0,π, we can obtain all the Legendre polynomials and

the derivatives.

(b) Legendre polynomials and its derivatives at θ = 0,π

Here, we consider the case of (b) θ = 0,π. Because of the parity of Legendre polynomials

and the derivatives (cf. the equation (B.18) (B.19) ), we only explain the case of θ = 0. From

the definition of Legendre polynomials:

P m
l (cosθ = cos0 = 1) = sinm 0

(
d mPl

d cosθm

)
=

{
0 [m ̸= 0]

Pl (1) [m = 0]
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and the characteristics of Legendre polynomials:

Pl (1) = 1, (B.27)

we obtain Legendre polynomials at θ = 0

P m
l (1) =

{
0 [m ̸= 0]

1
nor mal i zati on−−−−−−−−−−−→

√
2l+1

2 [m = 0]
. (B.28)

As regards the derivatives, using the definition of Legendre polynomials (B.26) yields

dP m
l

dθ
= d

dθ

(
sinm θ

d mPl

d cosθm

)
= m cosθ sinm−1θ

d mPl

d cosθm + sinm θ
d cosθ

dθ

d m+1Pl

d cosθm+1

= m cosθ sinm−1θ
d mPl

d cosθm − sinm+1θ
d m+1Pl

d cosθm+1

θ=0−−→
{

0 [m ̸= 1]
dPl (1)
d cosθ [m = 1]

.

To see dP l
l (cosθ)/dθ at m = 1 andθ = 0 carefully, we consider the following recursive for-

mula

(l −m)cosθP m
l − (l +m)P m

l−1 + sinθP m+1
l = 0. (B.29)

At m = 1, the formula becomes

(l −1)cosθP 1
l − (l +1)P 1

l−1 + sinθP 2
l = 0

and operating d
dθ on it yields

(l −1)

[
−sinθP 1

l +cosθ
dP 1

l

dθ

]
− (l +1)

dP 1
l−1

dθ
+

[
cosθP 2

l + sinθ
dP 2

l

dθ

]
= 0.

When θ = 0, we get

(l −1)
dP 1

l

dθ
− (l +1)

dP 1
l−1

dθ
+cosθP 2

l = 0.

From (B.28), because P 2
l (1) = 0 (l > 2), the equation turns into

dP 1
l

dθ
= l +1

l −1

dP 1
l−1

dθ
.
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As a result, we can obtain dP l
l (cosθ)/dθ at m = 1, θ = 0 by the following recursive method,

dP 1
l

dθ
= l +1

l −1

dP 1
l−1

dθ

= l +1

l −1

l

l −2

dP 1
l−2

dθ
...

= (l +1)l · · ·3
(l −1)(l −2) · · ·2 ·1

dP 1
1

dθ

= l (l +1)

2
cos(θ = 0)

= l (l +1)

2

nor mal i zati on−−−−−−−−−−−→ l (l +1)

2

√
(2l +1)(l −1)!

2(l +1)!

=
√

(2l +1)l (l +1)

8
.

Consequently, the derivative of Legendre polynomial is

dP m
l (1)

dθ
=

{
0 [m ̸= 1]√

(2l+1)l (l+1)
8 [m = 1]

. (B.30)

To summarize, the normalized Legendre polynomials and the derivatives at θ = 0 are

P m
l (1) =

{
0 [m ̸= 0]√

2l+1
2 [m = 0]

,
dP m

l (1)

dθ
=

{
0 [m ̸= 1]√

(2l+1)l (l+1)
8 [m = 1]

.

B.4 Integrate through longitude ϕ and latitude θ

With obtained Legendre polynomials and the derivatives, we calculate the summation

(B.9) and (B.10). As regards the terms about toroidal motion (the case of poloidal mo-

tion can be described similarly), u ·Cm∗
l (B.11), the product of it and r is (this expression is

just for clear description)
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r
(
u ·Cm∗

l

)= uθ
m

sinθ
P m

l (cosθ)
(−i cosmϕ− sinmϕ

)−uϕ

(
∂P m

l (cosθ)

∂θ

)(
cosmϕ− i sinmϕ

)
=− m

sinθ
P m

l (cosθ)
[
uθ(θ, ϕ)sinmϕ

]−(
∂P m

l (cosθ)

∂θ

)[
uϕ(θ, ϕ)cosmϕ

]
− i

[
m

sinθ
P m

l (cosθ)
[
uθ(θ, ϕ)cosmϕ

]+(
∂P m

l (cosθ)

∂θ

)[
uϕ(θ, ϕ)sinmϕ

]]
.

(B.31)

Operating integral
∫ 2π

0 dϕ, that is, numerically summation
∑3600

i=1 (0.1π/180), on the prod-

uct yields (we extract a part of every term associated with ϕ)

∫ 2π

0

[
uθ(θ, ϕ)sinmϕ

]
dϕ≈

3600∑
i=1

[
uθ(θ, ϕ(i ))sinmϕ(i )

]
(0.1π/180) ≡ T S(m, θ)

∫ 2π

0

[
uϕ(θ, ϕ)cosmϕ

]
dϕ≈

3600∑
i=1

[
uϕ(θ, ϕ(i ))cosmϕ(i )

]
(0.1π/180) ≡ PC (m, θ)

∫ 2π

0

[
uθ(θ, ϕ)cosmϕ

]
dϕ≈

3600∑
i=1

[
uθ(θ, ϕ(i ))cosmϕ(i )

]
(0.1π/180) ≡ TC (m, θ)

∫ 2π

0

[
uϕ(θ, ϕ)sinmϕ

]
dϕ≈

3600∑
i=1

[
uϕ(θ, ϕ(i ))sinmϕ(i )

]
(0.1π/180) ≡ PS(m, θ)

where two-letter functions represent their component, T:uθ , P:uϕ, S:sin, C:cos, and ϕ(i ) =

0.1i ·π/180. At this point,
∫ 2π

0 r
(
u ·Cm

l
∗)

dϕ is

∫ 2π

0
r

(
u ·Cm

l
∗)

dϕ=− m

sinθ
P m

l (cosθ)T S(m, θ)−
(
∂P m

l (cosθ)

∂θ

)
PC (m, θ)

− i

[
m

sinθ
P m

l (cosθ)TC (m, θ)+
(
∂P m

l (cosθ)

∂θ

)
PS(m, θ)

]
.

Next, operating integral of θ,
∫ π

0 sinθdθ, i.e., numerically summation
∑1801

i=1 (0.1π/180), we

can write the result in a simple form by using parity of Legendre polynomials and the

derivatives as follows. In respect to the terms with T S, using the parity of Legendre poly-

nomials (B.18), we can change it like this
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−
∫ π

0

m

sinθ
P m

l (cosθ)T S(m, θ)sinθdθ

=−
∫ π

0
mP m

l (cosθ)T S(m, θ)dθ

=−
[∫ π/2

0
mP m

l (cosθ)T S(m, θ)dθ+
∫ π

π/2
mP m

l (cosθ)T S(m, θ)dθ

]
=−

[∫ π/2

0
mP m

l (cosθ)T S(m, θ)dθ+
∫ π/2

0
mP m

l (cos(π−θ))T S(m, (π−θ))dθ

]
=−

∫ π/2

0
m

[
P m

l (cosθ)T S(m, θ)+P m
l (−cosθ)T S(m, (π−θ))

]
dθ

=−
∫ π/2

0
mP m

l (cosθ)
[

T S(m, θ)+ (−1)l+mT S(m, (π−θ))
]

dθ

≈−
900∑
j=1

mP m
l

(
cosθ( j )

)[
T S(m, θ( j ))+ (−1)l+mT S(m, (π−θ( j )))

]
(0.1π/180)

−mP m
l

(
cos(θ = π

2
)
)

T S(m, (θ = π

2
))(0.1π/180)

≡ T Re1(m)

where θ( j ) = 0.1 j ·π/180 and the function T Re1(m) depends only on the order m. Simi-

larly, using the parity of Legendre polynomials (B.18) and the derivatives (B.19), the terms

with PC , TC , and PS become

−
∫ π

0

(
∂P m

l (cosθ)

∂θ

)
PC (m, θ)sinθdθ

=−
∫ π/2

0

(
∂P m

l (cosθ)

∂θ

)
PC (m, θ)sinθdθ

−
∫ π/2

0
(−1)l+m+1

(
∂P m

l (cosθ)

∂θ

)
PC (m, (π−θ))sin(π−θ)dθ

=−
∫ π/2

0
sinθ

(
∂P m

l (cosθ)

∂θ

)[
PC (m, θ)+ (−1)l+m+1PC (m, (π−θ))

]
dθ

≈−
900∑
j=0

sinθ

(
∂P m

l (cosθ)

∂θ

)[
PC (m, θ)+ (−1)l+m+1PC (m, (π−θ))

]
(0.1π/180)

− sin(θ = π

2
)

(
∂P m

l

(
cos(θ = π

2 )
)

∂θ

)
PC (m, (θ = π

2
))(0.1π/180)

≡ T Re2(m),
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∫ π

0

m

sinθ
P m

l (cosθ)TC (m, θ)sinθdθ

=
∫ π/2

0
mP m

l (cosθ)TC (m, θ)dθ+
∫ π/2

0
m(−1)l+mP m

l (cosθ)TC (m, (π−θ))dθ

=
∫ π/2

0
mP m

l (cosθ)
[

T C (m, θ)+ (−1)l+mTC (m, (π−θ))
]

dθ

≈
900∑
j=0

mP m
l

(
cosθ( j )

)[
TC (m, θ( j ))+ (−1)l+mTC (m, (π−θ( j )))

]
(0.1π/180)

+mP m
l

(
cos(θ = π

2
)
)

TC (m, (θ = π

2
))(0.1π/180)

≡ T Im1(m),

∫ π

0

(
∂P m

l (cosθ)

∂θ

)
PS(m, θ)sinθdθ

=
∫ π/2

0

(
∂P m

l (cosθ)

∂θ

)
PS(m, θ)sinθdθ

+
∫ π/2

0
(−1)l+m+1

(
∂P m

l (cosθ)

∂θ

)
PS(m, (π−θ))sin(π−θ)dθ

=
∫ π/2

0
sinθ

(
∂P m

l (cosθ)

∂θ

)[
PS(m, θ)+ (−1)l+m+1PS(m, (π−θ))

]
dθ

≈
900∑
j=0

sinθ

(
∂P m

l (cosθ)

∂θ

)[
PS(m, θ)+ (−1)l+m+1PS(m, (π−θ))

]
(0.1π/180)

+ sin(θ = π

2
)

(
∂P m

l

(
cos(θ = π

2 )
)

∂θ

)
PS(m, (θ = π

2
))(0.1π/180)

≡ T Im2(m)

where the letters of the resulted functions represent T:toroidal, P:poloidal, Re:Real,

Im:Imaginary, and (1 or 2):the number of the function. In conclusion, r
(
u ·Cm∗

l

)
is

calculated

∫ π

0

∫ 2π

0
r

(
u ·Cm∗

l

)
dϕsinθdθ = T Re1(m)+T Re2(m)− i [T Im1(m)+T Im2(m)]

≡ [T Re(m)]− i [T Im(m)]

=
(
cm

l

πl (l +1)

r 2

)
r (from (B.5))
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and we can thus describe cm
l as

cm
l = r

πl (l +1)
[−T Re(m)− i T Im(m)] . (B.32)

Likewise, we can calculate the coefficient of poloidal motion, bm
l . The important point is

that we can use T S,TC ,PS, and PC calculated above again, which reduces the calculation

time. The r
(
u ·Bm∗

l

)
accordingly becomes

r
(
u ·Bm∗

l

)= uθ

(
∂P m

l (cosθ)

∂θ

)(
cosmϕ− i sinmϕ

)+uϕ
m

sinθ
P m

l (cosθ)
(−i cosmϕ− sinmϕ

)
=

(
∂P m

l (cosθ)

∂θ

)[
uθ(θ, ϕ)cosmϕ

]− m

sinθ
P m

l (cosθ)
[
uϕ(θ, ϕ)sinmϕ

]
− i

[(
∂P m

l (cosθ)

∂θ

)[
uθ(θ, ϕ)sinmϕ

]+ m

sinθ
P m

l (cosθ)
[
uϕ(θ, ϕ)cosmϕ

]]
∫

dϕ−−−→
(
∂P m

l (cosθ)

∂θ

)
TC (θ, ϕ)− m

sinθ
P m

l (cosθ)PS(θ, ϕ)

− i

[(
∂P m

l (cosθ)

∂θ

)
T S(θ, ϕ)+ m

sinθ
P m

l (cosθ)PC (θ, ϕ)

]
∫

sinθdθ−−−−−−→
∫ π

0
sinθ

(
∂P m

l (cosθ)

∂θ

)
TC (θ, ϕ)−mP m

l (cosθ)PS(θ, ϕ)

− i

[
sinθ

(
∂P m

l (cosθ)

∂θ

)
T S(θ, ϕ)+mP m

l (cosθ)PC (θ, ϕ)

]
dθ

≡ PRe1(m)+PRe2(m)− i [PIm1(m)+PIm2(m)]

≡ [PRe(m)]− i [PIm(m)]

=
(
bm

l

πl (l +1)

r 2

)
r

where
∫

dϕ−−−→ and
∫

sinθdθ−−−−−−→ represent operating
∫ 2π

0 dϕ and
∫ π

0 sinθdθ on the equation, re-

spectively. Hence, we can get bm
l

bm
l = r

πl (l +1)
[PRe(m)− i PIm(m)] . (B.33)

Finally, we acquire the coefficients of toroidal and poloidal motion, cm
l and bm

l , and

thus the degree power spectra of toroidal and poloidal motion, σT (l ) and σP (l ), from the

equation (B.1) and (B.2).
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B.5 Formulae of Legendre polynomials

This is the list of definitions and formulae we used in this paper. The references are Ter-

azawa (1983) (in Japanese) and Moriguchi (1987) (in Japanese).

Definition of Legendre function:

Pl (cosθ) =
≤l/2∑
s=0

(−1)s (2l −2s)!

2l s!(l − s)!(l −2s)!
cosl−s2θ (B.34)

Legendre function at the endpoint:

Pl (cosθ) =
{

1 [θ = 0]

(−1)l [θ =π]
(B.35)

Definition of Legendre polynomials:

P m
l (cosθ) = sinm θ

d mPl (cosθ)

d cosθm (B.36)

Definite integrals of Legendre polynomials:∫ 1

−1
P m

n (x)P m
l (x)d x =

{
0 [n ̸= l ]

2(l+m)!
(2l+1)(l−m)! [n = l ]

(B.37)

∫ π

0

[
m2

sin2θ
P m

n (cosθ)P m
l (cosθ)+ dP m

n (cosθ)

dθ

dP m
l (cosθ)

dθ

]
sinθdθ =

{
0 [n ̸= l ]
2l (l+1)(l+m)!
(2l+1)(l−m)! [n = l ]

(B.38)

Recursive formula of Legendre polynomials:

(l −m +1)P m
l+1 − (2l +1)cosθP m

l + (l +m)P m
l−1 = 0 (B.39)

(l −m)cosθP m
l − (l +m)P m

l + sinθP m+1
l = 0 (B.40)

P m+2
l −2(m +1)

cosθ

sinθ
P m+1

l + (l −m)(l +m +1)P m
l = 0 (B.41)

Parity of Legendre polynomials:

P m
l (cos(π−θ)) = P m

l (−cosθ) = (−1)l+mP m
l (cosθ) (B.42)

dP m
l (cos(π−θ))

d(π−θ)
=−dP m

l (cos(π−θ))

dθ
= (−1)l+m+1

dP m
l (cosθ)

dθ
(B.43)

Legendre polynomials for order m = l :

P l
l (cosθ) = (2l −1)!!sinl θ (B.44)
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where

(2l −1)!! = (2l −1)(2l −3)(2l −5) · · ·3 ·1
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Appendix CAppendix C

Effect of plate geometry on the
toroidal/poloidal ratio

Here we investigate the effect of various plate geometries on the toroidal/poloidal ratio.

We consider the effect of the size, aspect ratio, roundness of plate and the ratio of trans-

form fault to ridge and subduction zone.

C.1 Effect of plate size

First, we consider the effect of plate size on the toroidal/poloidal ratio. We make four

virtual square plates with a different plate size (Large: 60◦×60◦, Small: 30◦×30◦, Tiny: 10◦×

10◦, Micro: 2◦×2◦) and impose a straight motion by putting the same Euler pole (1◦/Myr) at

the North Pole (Figure C.1) or a spin motion by putting the same Euler pole (1◦/Myr) at the

center of the plate (Figure C.4). The results of spherical harmonic expansion (2 < l < 1000)

are Figure C.2, C.3, C.5 and C.6.

With a straight motion, the correlation between the plate size and the toroidal/poloidal

ratio is weak compared with that of a spin motion. Although the result of the small plates

are almost constant, they are expected to take the small peaks at higher spherical har-

monic degrees than 1000. Figure C.3 shows l−1 decay, which is a common feature of the

toroidal-poloidal spectrum in plate tectonics (O’Connell et al., 1991). Another notable fea-
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Fig. C.1 Straight motion of ideal plates with a different plate size. The size: [top, left]
Large: 60◦ × 60◦; [top, right] Small: 30◦ × 30◦; [bottom, left] Tiny: 10◦ × 10◦; [bottom,
right] Micro: 2◦×2◦. All the plate has the same Euler pole at the North Pole and orange
vectors represents the induced eastward motion.

ture is a soaring of spectrum of small plates, indicating that smaller plate might affect the

observed toroidal/poloidal ratio at higher degrees.

With a spin motion, similarly to the case of straight motion, the plate size affects the

spherical harmonic degrees taking the peak of the spectra, i.e., the smaller the plate, the

higher the spherical harmonic degrees of the peak of the spectrum. One notable feature
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Fig. C.2 Toroidal/poloidal ratio of plates with a different size in the case of a straight
motion. Blue, green, orange and red lines represent the result of Large, Small, Tiny and
Micro, respectively.

about the power spectra is that spectra of small plates (bright blue and orange lines in

Figure C.6) exhibit soaring instead of l−1 decay. Moreover, considering a fast spin motion

of a small plate (Figure 3.3), the magnitude of the spectra (dashed bright blue and orange

lines in Figure C.6) is comparable to that of the large plates (red and blue lines in Figure

C.6)and the difference between the observed toroidal and poloidal power spectra (gray

and black line in Figure C.6). Therefore, it is conceivable that the spin motions of small

plates affect the observed toroidal/poloidal ratio at high spherical harmonic degrees as we

showed in Figure 2.3. From these results, we argue that there is a correlation between the

plate size and the toroidal/poloidal ratio particularly when the plate holds a spin motion.

Accordingly, in order to comprehend the effect of plate size especially with a spin mo-

tion, we focus on the Easter plate, at which an active spin motion is observed in previ-
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Fig. C.3 Toroidal-poloidal power spectrum of plates with a different size in the case of
a straight motion. Solid and dashed lines represent toroidal and poloidal power spec-
trum, respectively. Blue, green, orange and red lines represent the result of Large, Small,
Tiny and Micro, respectively.

ous work (Schouten et al., 1993), and extract a part of the observed Euler pole compo-

nent which passes the center of the Easter plate, ωC in Section 3.1. Then, we impose only

the extracted Euler pole on the Easter plate to generate the spin motion and calculate the

toroidal/poloidal ratio. Please note that in this case the other plates do not move and solely

the Easter plate holds its spin motion by excluding the straight component. The result is

Figure C.7. Figure C.7 shows that the spin motion of the Easter plate clearly increases the

toroidal/poloidal ratio at high spherical harmonic degrees (l > 100), which reinforces a

strong correlation between the size of plate with a spin motion and the toroidal/poloidal

ratio. Please ensure that since the toroidal-poloidal decomposition is a linear analysis the

result of the whole toroidal/poloidal ratio from observed global plate motion is summa-
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Fig. C.4 Spin motion of ideal plates with a different plate size. Regarding the size of
plate, please refer to the caption of Figure C.1. All the plate has the same Euler pole
at the center and orange vectors represents the induced counterclockwise spin motion
(we put a large circular vector in the case of Micro plate for clarity).

tion of that of a part of the plate motion, such as the spin of the Easter plate of this example.

Therefore, we conclude that there is a clear relationship between the spin motion of indi-

vidual plate and the toroidal/poloidal ratio. As a future work, we need to investigate how

important the spin motion of small plate is in the observed toroidal/poloidal ratio.
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Fig. C.5 Toroidal/poloidal ratio of plates with a different size in the case of a spin mo-
tion. Blue, green, orange and red lines represent the result of Large, Small, Tiny and
Micro, respectively.
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Fig. C.6 Toroidal-poloidal power spectrum of plates with a different size in the case of a
spin motion. Blue and red lines represent toroidal and poloidal power spectrum of spin
motion of “Large” plate, respectively. Bright blue and yellow lines represent toroidal and
poloidal power spectrum of spin motion of “Tiny” plate, respectively. In the model plate
cases, the rotation rate of solid and dashed lines are 1 and 10 degree/Myr, respectively.
Gray and black lines are observed toroidal and poloidal power spectrum, respectively
(Figure 2.2).
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Fig. C.7 Toroidal/poloidal ratio of the spin motion of the Easter plate. We analyze only
the extracted Euler pole on the Easter plate to generate the spin motion and calculate
the toroidal/poloidal ratio. Please note that in this case the other plates do not move
and solely the Easter plate holds its spin motion by excluding the straight component.
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C.2 Effect of aspect ratio

In order to examine the effect of plate aspect ratio upon the toroidal/poloidal ratio, we im-

pose straight (Figure C.8) or spin motion (Figure C.11) on one virtual rectangular plate on

the Earth which we change its aspect ratio from 1 (square) to 3 with keeping the area al-

most same. The results of spherical harmonic expansion (2 < l < 100) are Figure C.10 and

C.13. We also plot the toroidal-poloidal power spectra (Figure C.9 and C.12) since the mag-

nitude of each power spectra is important to change the ratio of global toroidal/poloidal

ratio (Figure 2.3).

When we impose solely straight motion on a rectangular plate by putting the same Eu-

ler pole (1◦/Myr) at the North pole (Figure C.10), the toroidal/poloidal ratio, especially the

maximum value, increases to approximately 8 in the case of aspect ratio 3 as the correla-

tion was pointed out by Olson and Bercovici (1991). The reason of the correlation is that,

as the aspect ratio increases, the length of plate boundary with the strike-slip motion in-

creases and that with the divergent-convergent motion decreases (Figure C.8).

When we put a spin motion on a plate by imposing the same Euler pole (1◦/Myr) at

the center of the plate (Figure C.13), generally there is a correlation between the aspect

ratio and the toroidal/poloidal ratio, yet the amplitude of the spectrum is less than that

generated by straight motions. This feature is shown more clearly in power spectra (Figure

C.12), in which the amplitude of toroidal-poloidal spectra is almost same. Another notable

characteristic is that the high amplitude in the result of spin motion with the aspect ratio

2.5 and 3 continues to a higher spherical harmonic degrees, i.e., smaller scale of motions,

compared with the result of the straight motion, which implies that the short sides of rect-

angular plates generate a high toroidal/poloidal ratio in the case of spin motion. Faster

motion along the short sides because of higher aspect ratio, i.e., longer distance from the
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Fig. C.8 Straight motion of ideal plates with a different aspect ratio. Top: left to right,
the aspect ratio is 1,1.5 and 2. Bottom: left to right, the aspect ratio is 2.5 and 3. The
aspect ratio is defined as the ratio of “the length of a plate parallel to the plate motion”
to “that normal to the plate motion”. All the plates have the same area.

Euler pole at the center of the plate, might produce the higher toroidal/poloidal ratio. An-

other features of the result is that, whereas the amplitude of spectra of the aspect ratio 2.5

and 3 is large, that of the aspect ratio 1,1.5 and 2 does not vary so much, indicating that

the effect of aspect ratio with spin motion is not strong especially when we compare it with

the result of the straight motion.

Though the correlation between the aspect ratio of a plate with a spin motion and the

toroidal/poloidal ratio is not strong, we confirm that generally there is a correlation be-

tween the aspect ratio and the toroidal/poloidal ratio. In order to understand the effect

of the aspect ratio on the observed toroidal/poloidal ratio, we plot the aspect ratio (the

length of a plate parallel and normal to the observed plate motion) and its plate size in

Figure C.14. Figure C.14 demonstrates that although several plates hold a high aspect ra-
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Fig. C.9 Toroidal-poloidal power of the plate with a different aspect ratio in the case
of straight motion. Orange and green lines represent the result of toroidal and poloidal
spectrum of the aspect ratio 1, respectively. Blue and red lines represent the result of
toroidal and poloidal spectrum of the aspect ratio 3, respectively.

tio, there is no systematic correlation between the aspect ratio and the plate size. Thus, the

aspect ratio of plate geometry does not induce the increase in the toroidal/poloidal ratio.
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Fig. C.10 Toroidal/poloidal ratio of the plate with a different aspect ratio in the case of
straight motion. Dark-blue, light-blue, green, orange and red lines represent the result
of the aspect ratio 1,1.5,2,2.5 and 3, respectively.
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Fig. C.11 Spin motion of ideal plates with a different aspect ratio. Please refer to Figure
C.8 for the explanation.
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Fig. C.12 Toroidal-poloidal power of the plate with a different aspect ratio in the case
of spin motion. Orange and green lines represent the result of toroidal and poloidal
spectrum of the aspect ratio 1, respectively. Blue and red lines represent the result of
toroidal and poloidal spectrum of the aspect ratio 3, respectively.



C.2 Effect of aspect ratio 133

Fig. C.13 Toroidal/poloidal ratio of the plate with a different aspect ratio in the case of
spin motion. Dark-blue, light-blue, green, orange and red lines represent the result of
the aspect ratio 1,1.5,2,2.5 and 3, respectively.
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Fig. C.14 Aspect ratio of each plate as a function of plate size. Note that small plates in
this figure (left side) correspond to high spherical harmonic degrees in Figure 2.3 (right
side).
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C.3 Effect of roundness

When a plate has a spin motion, as the geometry of the plate becomes circular, i.e., in-

creases the roundness, the toroidal power increases since the vorticity (toroidal compo-

nent) along the plate boundary is generated but the divergence (poloidal component) al-

most vanishes (Figure 2.5). To confirm the correlation between the roundness of a plate

with a spin motion and the toroidal/poloidal ratio, we consider three virtual plates on

the Earth, hexagon (six sides and angles), octagon (eight sides and angles) and dodecagon

(twelve sides and angles) and impose spin motion by putting the same Euler pole (1◦/Myr)

at the center of the plate (Figure C.15). The result of spherical harmonic expansion (2 < l <

100) is Figure C.16 (power spectra) and C.17 (ratio). Figure C.17 shows that, although the

minimum value of the spectra of the ratio does not vary, the maximum amplitude corre-

lates with the roundness although Figure C.16 exhibits that the roundness does not change

the amplitude of the power spectrum and, thus, the effect of roundness on the observed

toroidal/poloidal ratio would not be strong. In order to consider the effect of the round-

ness on the observed toroidal/poloidal ratio, in PB2002 we calculate the length from the

center of a plate to the plate boundary, compile the data by each plate and obtain how

disperse the length from the average, i.e., standard deviation. Please note that the average

length of a plate represents the radius of the plate size. In order to compare the deviation

of each plate, we calculate the coefficient of variation (= standard deviation / average).

The smaller the coefficient of variation, the higher roundness the plate geometry has. The

result is Figure C.18, demonstrating that there is no systematic decrease in the coefficient;

therefore, the roundness is not the cause of the increase in the observed toroidal/poloidal

ratio.
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Fig. C.15 Ideal plate with a different roundness. The geometry of those plates is
hexagon, octagon and dodecagon (left to right). All the plates have the same Euler pole
at the center.

Fig. C.16 Toroidal-poloidal power spectrum of the plate with a different roundness.
Orange and green lines represent the result of toroidal and poloidal spectrum of
hexagon, respectively. Blue and red lines represent the result of toroidal and poloidal
spectrum of dodecagon, respectively.
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Fig. C.17 Toroidal/poloidal ratio of the plate with a different roundness. Blue, green
and red lines represent the result of the hexagon, octagon and dodecagon, respectively.
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Fig. C.18 Coefficient of variation of each plate in PB2002. For comparison, we delin-
eate three lines to represent the coefficient of variation of a square (∼ 0.1), hexagon
(∼ 0.06) and dodecagon (∼ 0.02).
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C.4 Effect of ridge-transform fault system

Because the Earth is sphere, the geometry of a plate receives its influence and, as a re-

sult, the geometry of subduction zone, for example, becomes arc instead of a straight

line (e.g., Laravie, 1975). Another example which is expected to be more influential in

the toroidal/poloidal ratio is ridge-transform fault system, in which a ridge is divided into

small parts by transform faults. This geometry might affect the toroidal/poloidal ratio es-

pecially at high spherical harmonic degrees. To estimate the effect, we investigate ridges,

subduction zone and transform faults in PB2002 and compile the number of each kind of

plate boundary with its length. The result is Figure C.19. There are several notable fea-

tures. First, although long subduction zones (mainly over 1000 km) exists (blue line in

Figure C.19), ridge and transform fault are generally shorter than several hundred kilome-

ters (red and green lines in Figure C.19, respectively), indicating that a sufficient length

(mass) is necessary for plate to subduct and, in contrast, a long ridge cannot exist and is

divided into short parts by short transform faults. Second, the ratio of transform fault (as-

sociated with toroidal component) to ridge and subduction zone (associated with poloidal

component) (orange dashed line in Figure C.19) does not show a systematic increase until

the plate boundary length becomes shorter than several ten kilometers. Hence, the effect

of division of ridge by transform fault is not directly related to the increase in the observed

toroidal/poloidal ratio in Figure 2.3 although the effect may induce the increase in the

toroidal/poloidal ratio at very high spherical harmonic degrees, such as over 400.
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Fig. C.19 The number of plate boundaries as a function of the length. The horizontal
axis means the length of plate boundary and the left vertical axis shows the number of
the plate boundary. For example, if the number of ridges with the length of 90 km in the
horizontal axis is 30, it means that there are 30 ridges whose length is between 90–100
km. The value at 1000 km in the horizontal axis means the number of plate boundaries
whose length is more than 1000 km. Green, red and blue lines show the number of
transform faults, ridges and subduction zones, respectively. The right vertical axis and
orange dashed line represent the ratio of the number of transform faults to that of ridges
and subduction zones.


