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Abstract

Rapid growth and development of space geodetic methods, such as the global positioning
system (GPS), have enabled us to construct high-resolution plate models, including the
small plates (less than several hundred kilometers in plate size) and deformation of the
plates. In this thesis, based on the high-resolution plate models, we analyze plate motion
and the driving forces, particularly focusing on vorticity of the plate velocity field and spin
motion of the individual plates. First, we perform spherical harmonic expansion of the
plate velocity field to higher degrees (up to 1000) than ever and find an increase in the
toroidal/poloidal ratio at the higher spherical harmonic degrees, which is different from
the conventional view that the ratio is broadly constant. We investigate the effect of the
variable geometry and motion of plate upon the toroidal-poloidal power and discuss the
possible causes of the increase in toroidal/poloidal ratio. Next, we decompose the plate
motion into a “spin” motion around the geometrical center of plate and a “straight” mo-
tion along the great circle. We investigate the relationship between the plate size and the
two plate motions and find that the spin rotation rates of most of the small plates (less than
approximately 1000 km in size) are distinctly higher than those of the larger plates. This
relationship constrains the overall strength of plate boundaries to be 3 to 75 MPa, which
is consistent with several seismological estimates, including those constrained from The
2011 off the Pacific coast of Tohoku Earthquake. Finally, we analyze the torque balance
for the spin motion of the Philippine Sea plate (PHS), indicating that an eastward force
is applied to the subducted PHS slab along its northern edge and could have caused the
wavy geometry of the slab beneath southwestern Japan by viscous buckling, not by elastic
deformation. Based on the folding theory, the slab viscosity is estimated to be 1 to 14 x 10?4

Pas.
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Chapter 1

Introduction

1.1 Observations for plate motion

In addition to accumulation of conventionally utilized data from precise determination
of location and slip vector of earthquakes, magnetic anomalies of the sea floor and the
precise bathymetry data to assist detailed determination of plate boundaries, rapid growth
and development of space geodetic methods, such as very long baseline interferometry
(VLBI), satellite laser ranging (SLR) and the global positioning system (GPS), have enabled
us to develop a new stage of plate motion study (e.g., Gordon, 1998), particularly after
2000. PB2002 (Bird, 2003), which we utilized for the analysis of plate motion in this study,
compiled plate motion data and define plate configuration with the higher resolution than
ever (Figure 1.1 and Table 1.1).

In Table 1.1, we compile the observation methods and the estimated errors. The obser-
vations include those from conventional methods, such as focal mechanisms, transform
fault azimuth and magnetic anomaly of the oceanic plate, as well as relatively novel meth-
ods, such as those utilizing space geodesy. There are both advantages and disadvantages
for individual methods. For example, the focal mechanism approach provides us with in-
valuable information on stress for a significant depth range (see Section 3.3.4), although

the amount of displacement is not accurately estimated. On the other hand, the GPS ob-



Chapter 1 Introduction

Table. 1.1 Observations used in the plate model PB2002. Min in the 10 column means
that the observation did not estimate the error and we instead estimate the minimum
error by considering the total errors of the relative Euler poles to obtain the Euler pole
of the plate. For detail, please read the text in Section 3.3.2.

Plate Name Observation reference 1 & [degreel
Africa AF |Focal mechanism, transform fault azirmuth and magretic anormahdDeiets et al [1994] i
Armur AM [GPS Heki et al. [1599] 2751
Antarctica AN |Focal mechanism, transform fault szimuth and magretic anomakyDelets et al [1594] 65.91
Altiplano AP [GFS, paleomagnetism and focal mechanism Larnb [2000] RR:+ 007" /hyr
Arabia AR |Focal mechanism, transform fault szimuth and magretic anomakyDelets et ol [1594] 1221
Asgean Sea AS |GPS MeClusky et al. [2000] 951
Anatolia AT |GPS WeClusky et al. [F000] g.01
Australia AU |Focal mechanism, transform fault azimuth and magretic anomalyDelets et al. [1994] 671
Birds Head BH |GPS Bird [2003] Min
Balmoral Reef BR |Focal mechanism Bird [2003] Min
Banda Sea BS [GPS Rangin et al. [15883] Min
Biurrra BU |Tectonic Map Circurm—Pacific Map. Praj [1886] hin
Caribbean CA |GPs Webar et al. [2001] 1741
Caroling CL [Focal mechanism Seno et al. [1893] 2001
Cocos CO |Focal mechanism, transform fault azimuth and magretic anomahDeMets et al. [1954] 671
Conway Reef CR |Focal mechanism and magnetic anomaly Bird [2003] Min
Easter EA |Focal mechanism and magnetic anomaly Engeln and Stein [19584] 6.3
Eurasia EU |Focal mechanism, transform fault azimuth and magretic anomal{DeMets et al. [1994] iMm
Futuna FT |Focal mechanism and magnetic anomaly Bird [2003] Min
Galapagos GP [Bathymetry and magnetic anomaly Lonsdale [1988] Min
India IN |Focal mechanism, transform fault azimuth and magretic anomahDeMets et al. [1954] 1411
Juan de Fuca JF |Magnetic anomaly YWilsan [1888] hin
Juan Fernandez JZ |Bathymetry and magnetic anomaly Anderson—Fontana et al. [1986] 65.21
Kermadeo KE |GPS and focal mechanism Bird [2003] Min
hariana MA _|GPS and magnetic anomaly Bird [2003] Iin
Manus MN_|Magretic andmaly Wartinez and Tavlor [1996] Win
Maoke MO _|GPS Bird [2003] RR:+04° /Myr
Molucca Sea MS |GPS Rangin et al. [1593] Iin
MNorth America NA |Focal mechanism, transform fault azimuth and magretic anomahDeMets et al. [1954] iMm
MNorth Bismarck NB |GPS Tregoning et al. [1995] 552
MNorth Andes ND |GPS Trenkamp et al. [ 996] lin
Mew Hebrides NH |Magnetic anormaly Bird [2003] hdin
Miuafo'ou Nl |Bathymetry, magnetic anomaly and focal mechanism Zellmer and Taylor 2o ] 891
MNazca NZ |Focal mechanism, transform fault azimuth and magretic anomaliDeiets et al. [1994] 751
Okhotsk OK |Focal mechanism Cook et al. [1886] 1511
Okinawa ON_|GPS Bird [2003] Min
Pacific PA |[Focal mechanism and magnetic anomaly Gripn [2o0z] 571
Panara PM |GPS kellog et al. [1995] RR:E 004" Ahiyr
Philippine Sea PS |Focal mechanism and GPS Seno et al. [1993]; Kato et al. [1538] 2071
Rivera Rl |Focal mechanism, transform fault azimuth and magretic anomahDeMets and Travlen[Z000] 74N
South America SA |Focal mechanism, transform fault azimuth and magretic anomalyiDeiets et al. [1994] 5.9
South Bismarck 5B [GPS Tregoning et al. [159%] G5.07
Sootia 5C |Focal mechanism Pelavo and Wiens [ 9591 & .91
Shetland SL_|Hyvpothetical Bird [2003] Min
Somalia 50 [Focal mechanism and magnetic anomaly Chu and Gardan [1998] 18.41
Solarmon Ses 55 |GPS, transform fault azimuth Bird [2003] hdin
Sunda S5U [GPS Rangin et al. [1 883] lin
Sandwich SW |Focal mechanism Pelayo and Wiens [ 9591 1401
Timor T |GPS Bird [2003] Min
Tonga TO |Bathymetry, magnetic anomaly and focal mechanism Zellmer and Taylor oot ] 7
‘Wioodlark, WL |GFS Tregoning et al. [1 98] 572
‘Yangtze YA |GPS Heki et al. [1999] 3031

RR: Rotation Rate; Min: No Error Estimate
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Fig.1.1 The 52 plates of plate model PB2002 on a Mercator projection from Bird (2003).
The cross-hatched areas are “orogens” where a rigid plate model is not expected to be
accurate. As for two-letter plate abbreviations and plate names, please refer to the plate
name table (Table 1.1).

servation accurately monitors the surface displacement, but it does not necessarily co-
incide the plate motion over a geologic time (which is important for our purpose in this
study) due to, e.g., an elastic response or local deformation of the plate itself (e.g. Heki
et al., 1999; Weber et al., 2001). Accordingly the combination of these methods may pro-
vide more accurate estimates on plate motion. Several Euler poles have been determined
by the combination of the conventional method and GPS data (e.g., Seno et al. (1993); Kato
et al. (1998) for the Philippine Sea plate). As Table 1.1 shows, those various observational
methods and their combination help us acquire the more accurate plate motion data with
the finer scale than ever.

Accordingly there are several remarkably improved aspects which have not been clearly
seen in the earlier works. One aspect concerns the number and distribution of plates

identified and their size variation. For instance, whereas Morgan (1972) defines 15 plates
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in the plate model, PB2002 contains 52 plates, ranging from the largest Pacific plate of
> 10000 km to the smallest Manus plate of ~ 100 km (Table 3.1). Another important aspect
is that, although “plate” is originally defined as a rigid shell that is allowed to move differ-
ently from the adjacent plate, the space geodetic approaches clearly demonstrate that the
plates are not rigid and can deform (e.g., Gordon, 1998). Although the precise observa-
tional methods provide us with the detailed motions of the surface of the Earth, the data
contain both the plate motion and the plate deformation itself. In order to distinguish
these two, Bird (2003) defines “orogen” that represents a region where a significant defor-
mation undergoes (Figure 1.1). In another updated plate model, Kreemer et al. (2014) have
utilized more GPS data than PB2002 and defined plate configuration and motions. They
also defined the deformation zones in their plate model to exclude active deformation
zones (Table 3.1).

Fully utilizing these accurate and fine-scale plate motion data, in this study, we inves-
tigate two essential aspects for understanding the plate motions, the toroidal-poloidal

power of the plate velocity field and the driving force of plate motions as follows.

1.2 Toroidal /poloidal ratio

Although the idea of mantle convection originated in the 19th century (Perry, 1895a,b,c)
and has been developed subsequently by, e.g., Lord Rayleigh (Strutt John William (Lord
Rayleigh), 1916), Benard (Benard, 1901) and Chandrasekhar (Chandrasekhar, 1961), one
of the important characteristics, toroidal-poloidal flow, in the convective regime was not
specifically studied until Hager and O’Connell (1978) who first discovered the equipar-
titioning of the toroidal power (associated with strike-slip motion and the horizontal
spin motion) and the poloidal power (associated with the thermal convection and the

divergent-convergent power). Hager and O’Connell (1978) remarked that the significant
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power of toroidal motion comparable to poloidal motion is unexpected for thermal con-
vection in the Earth, which was thought to primarily induce vertical circulation as a heat
pump system. Subsequently the mechanism to generate a significant toroidal component
(e.g. Bercovici, 1993, 1995a,b, 2003) and the temporal variation of toroidal/poloidal ratio
(Lithgow-Bertelloni and Richards, 1993) have been investigated.

Numerical simulations of mantle convection utilize the toroidal/poloidal ratio and its
spectrum as a benchmark feature upon simulation for reproducing the characteristics of
the Earth. With the development of computer power, more realistic and detailed form of
mantle convection and plate tectonics will be tackled in the near future; thus, it is benefi-
cial to investigate the toroidal/poloidal ratio and its spectrum that can be compared with
the observed plate motion from the global to a finer scale. Moreover, owing to the im-
provement of the observation method about the plate geometry and configuration, we can
attempt to comprehend the relationship between the geometry and the toroidal-poloidal
power, which is still poorly understood. For these reasons, this study first conducts spher-
ical harmonic expansion to higher degrees than ever in Section 2 and tries to understand
the relationship between the plate geometry and toroidal/poloidal ratio in Section 2.1 and

Appendix C.

1.3 Driving forces of plate motion

During the development of theory of plate tectonics, first, a drag force applied to the bot-
tom of plate had been thought to be the primary force of plate motion and continental
drift, as was originally proposed by Holmes (1928), and later suggested by numerical sim-
ulation of mantle convection (e.g., see Turcotte and Oxburgh (1972) for review). In other
words, mantle convection and its near-surface horizontal flow actively drive the plates

on the surface. On the other hand, several studies suggest that the plate motions are
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not driven by basal drag: e.g., Oldenburg and Brune (1972) suggest that the plates are
pull apart passively based on the morphological features of spreading ridge and fracture
zones at mid-ocean ridges, and McKenzie and Bickle (1988) show that the thermal struc-
ture beneath mid-ocean ridges implies no “hot plume” from depth instead the mantle are
dragged by the plate motion to cause passive mantle upwelling at mid-ocean ridges that
may subduct as in the Chile triple junction.

Of the studies concerning the driving forces of plate motion, Forsyth and Uyeda (1975)
have found that there is a correlation between the length of subduction zone and the
speed of the plate motion and investigated the relative importance of forces applied to
the plates, as is schematically illustrated in Figure 1.2. They concluded that the slab pull
force is approximately one order higher than the other forces. This notion supports the
“passive origin” of mid-ocean ridge as stated above. More than 25 years later, Becker and
O’Connell (2001) re-examined the driving forces of plate motion in a similar manner to
Forsyth and Uyeda (1975) but with updated data for plate motions based on improved
methods, including estimates of slab-pull force using seismic tomographic images. How-
ever, their main conclusion is the same as in Forsyth and Uyeda (1975), i.e., the slab pull
force generally can account for the observed plate motions. For example, Figure 1.3 from
Becker and O’Connell (2001) shows that for the major plates, including the Pacific, Aus-
tralia, Nazca, Philippine Sea and Cocos plates, the calculated torque solely by slab pull
(torque: orange star; the direction of straight motion: line with orange diamond in the
figure) may reproduce the observed Euler pole (Euler pole: light-blue star; the direction
of straight motion: upward light-blue vector) reasonably well. However, for the Philippine
Sea and Cocos plate, which demonstrate clear spin motion as will be discussed later, the
slab pull force (line with orange diamond) broadly explains the observed “straight” motion

(upward light-blue vector) although the observed spin motion of the Philippine Sea plate
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Fig. 1.2 Forces acting on plates from Becker and O’Connell (2001).

and the Cocos plate (light-blue two arc segments) cannot be accounted for by the slab pull
force or any other forces raised in their analyses. Forsyth and Uyeda (1975) and Becker
and O’Connell (2001) focused on the major plates and only the primary force for the plate
motion, and as a result they have not discussed the origin of the spin motions.

It is noted that Forsyth and Uyeda (1975) as well as Becker and O’Connell (2001) have
estimated the relative importance of driving forces in terms torque balance in which the
plate spin motion is naturally involved. Nevertheless, the plate spin motion has not been
considered as is partly expressed in their conceptual Figure 1.2 as if the surface toroidal
motion can be neglected. This indicates that, although spin motion is not negligibly small
even for several major plates, unless we specifically aim at analyzing the spin motion, it
could be hidden behind the major configuration consisting of slab-pull, straight motion

and spreading ridge. In addition, as will be shown later, small plates exhibit more signif-
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trans_flt_tang @
trans_flt_ norm O
slab_pull ¢
ridge_push &
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coll_resist A

Fig. 1.3 Torque analysis from Becker and O’Connell (2001). Three letters represent:
AFR, Africa; ANT, Antarctica; ARA, Arabia; AUS, Australia; CAR, Caribbean; COC, Co-
cos; EUR, Eurasia; IND, India; NAM, North America; NAZ, Nazca; PAC, Pacific; PHI,
Philippines; and SAM, South America. Stars represent the location of the observed Euler
pole (light-blue) or the calculated torque (brown: transform fault tangential, dark-blue:
transform normal, orange: slab pull, pink: ridge push, green: subduction resistance,
bronze yellow: colliding resistance). Lines and a pair of circular vectors represents the
straight and spin motion components, respectively. The size of star and the length of
the line and the circular vector show the magnitude of the value.
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icant spin motions, and it is necessary to include not only the major plates but also the
small plates into the analyses of plate motion, in order to envisage the whole picture of
driving forces of plate motion.

In spite of these difficulties, there are a few previous works that have discussed the
spin motions of a large plate (Seno, 2000) or a small plate (Schouten et al., 1993). Seno
(2000) has discussed the driving force of clockwise spin motion of the Philippine Sea plate.
Seno (2000) attributed the driving force to mantle upwelling off the west coast of Kyushu,
which is suggested by the crustal stress variation (Seno, 2000), the electrical conductiv-
ity (Shimoizumi et al., 1997; Handa, 2005) and seismic observations (Sadeghi et al., 2000;
Yoshizawa et al., 2010) in the Kyushu region. Seno (2000) also suggested that the estimated
magnitude of the torque caused by the upwelling may not be sufficient to simulate the ob-
served plate spin motions and another driving force might be necessary. Regarding the
spin motion of small plates, Schouten et al. (1993) observed the bathymetry and the mag-
netic anomaly of a micro plate in southeastern Pacific, the Easter plate, and discussed the
history of the plate motion in the last several million years, which involves the present-day
clockwise spin motion. They argued the relative motions between the adjacent plates, the
Pacific plate and the Nazca plate, and the kinematics among those three plates. Whereas
they pointed out that the interaction between these neighboring plates drives the spin mo-
tion of micro plate like a gear, they did not estimate either the force balance or the actual
stress required for the spin motion.

Based on these improved data and new plate models including Bird (2003) and Kreemer
etal. (2014), we globally investigate the driving force and mechanism of plate spin motions
that have not been assessed in the previous works. Our analyses are different from the
previous studies mainly in the following two points.

First, unlike the previous studies on driving forces of plate motion (Forsyth and Uyeda
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(1975) and Becker and O’Connell (2001), who have consolidated the primary importance
of slab-pull force), we focus on the spin motion of plates and its driving force. Secondly, we
include small plates in our analysis, most of which exhibit significant spin motions as will
be demonstrated. The smallest plate Forsyth and Uyeda (1975) coped with is the Cocos
plate (or the Caribbean plate) and their size is approximately 2000 km in diameter. Many
of the plates they analyzed do not exhibit significant spin motions. For this reason, even if
Forsyth and Uyeda (1975) focused on plate spin motions, they would not have been able to
discuss the driving force of plate spin motion. In contrast, our study adopts detailed plate
configuration and motions based on the improved observations (Bird, 2003; Argus et al.,
2011; Kreemer et al., 2014) which also allow us to exclude the “orogens” or “deformation
zones” that complicate the analysis of plate motion.

As a result, focusing on the plate spin motions based on the detailed plate models, our
study may contribute to a step-forward understanding of the driving forces of plate mo-

tion.



Chapter 2

Toroidal-poloidal analysis

First, we performed a spherical harmonic expansion of the plate velocity field (e.g., Hager
and O’Connell, 1978). (Concerning the condition of the toroidal-poloidal decomposi-
tion, please refer to Appendix A.1 “Condition of Toroidal-Poloidal Decomposition”.) Plate
boundaries (which include a narrow deformation zone) are key to the characterization
of plate motions (Gordon, 2000; Bercovici, 2003), therefore, we used the high-resolution
plate model of Bird (2003) (PB2002), which includes 52 plates defined by topography, vol-
canism, magnetic anomalies, moment tensor solutions and geodesy (Figure 1.1 and Table
3.1 and 1.1). Then, we prepared a detailed global dataset at a resolution of 0.1° (Figure
2.1), and, based on a hotspot reference frame (Gripp and Gordon, 2002), we calculated the
toroidal-poloidal components for spherical harmonic degrees that were higher than those
performed in previous studies (I = 1000; i.e., to a resolution of ~ 20 km), by developing
a new code that utilizes the parity of spherical harmonics (Appendix A and B, especially
B.3).

The ratio y(l) of the toroidal power o 7(/) to the poloidal power o p(l) is calculated as

oTEZ \/Z CimC] /\/Zblm . 2.1)

where c;;, and b;;, represent the toroidal and poloidal coefficients of the velocity fields,

respectively, and the asterisk denotes the complex conjugate. Note that the first degree

11



12 Chapter 2 Toroidal-poloidal analysis

Fig. 2.1 Digitization of plate configuration of PB2002. For plate analysis, we digitized
the original plate configuration data of PB2002 (Bird, 2003) (left figure: an example area
from 100° W to 120° W and from 20° S to 40° S) into the digital plate data at a resolution
of 0.1° (right figure: the corresponding area).

term in the toroidal expansion corresponds to the net rotation of the lithosphere, which
depends on an absolute reference frame; we therefore do not discuss this term in this
study.

The result of the spherical harmonic expansion is shown as a blue line in Figure 2.3 (and
the power spectra in Figure 2.2). Although O’Connell et al. (1991) argued that the ratio
of the amplitude of the toroidal to poloidal spectra is nearly constant for / < 32 (at ~0.8),
our new result, applicable to higher harmonics, shows that the amplitude ratio broadly
trends towards higher values for / > 20, which corresponds to a scale < 1000 km, and is
demonstrated by the approximate lines in Figure 2.3.

To estimate the error of this result, caused by the uncertainties in plate motions, we
calculated the toroidal/poloidal ratio of another plate model, NNR-MORVEL (Argus et al.,
2011) (Figure 2.4). The result is indicated by the red line in Figure 2.3 and demonstrates

that there is only a little difference in the toroidal/poloidal ratio between the plate models,
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Fig. 2.2 Toroidal-poloidal power spectrum. The blue and red lines represent spectra
for toroidal power and poloidal power of the plate model PB2002 (Bird, 2003), respec-
tively.

indicating that the error of plate motion in a plate model is negligible and the trend of

toroidal/poloidal ratio in this analysis is robust.
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Fig. 2.3 Ratio of toroidal to poloidal power as a function of spherical harmonic de-
gree. The blue and red spectra represent the ratios of the plate model from PB2002
(Bird, 2003) and NNR-MORVEL (Argus et al., 2011), respectively. The upper horizontal
axis shows the scale of motion corresponding to the spherical harmonic degree. There
are four logarithmic trendlines to fit the data of PB2002: the broken black line is the
quadratic fitting curve for the whole spectrum, the yellow line is the linear fitting line
for the range from 100 km to 1000 km in the scale of motion, and the gray dotted and
solid lines represent linear fitting lines for / < 20 (> 1000 km) and / > 20 (< 1000 km), re-
spectively. The range for the yellow line (100-1000 km) might be related to the analysis
of individual spin motion and the driving force (Figure 3.3 and 3.5). The ratio of total
toroidal power to total poloidal power (I =2,3,...,1000), v, is 0.753 for PB2002.

1000
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2.1 Effect of plate geometry on the toroidal /poloidal ratio

Although toroidal and poloidal components represent the vorticity and the diver-
gence/convergence of plate motions, respectively, yet not only plate motions but also
plate geometry affects the ratio. As a previous work about the effect of plate geometry on
the toroidal/poloidal ratio, Olson and Bercovici (1991) demonstrated that the aspect ratio
of a plate (i.e., the ratio of the plate length along the plate motion L, to the plate length
normal to the motion L) has the following relationship with the toroidal/poloidal kinetic
energy ratio y:
I\2
y ~ (—”) : 2.2)
Ln

Olson and Bercovici (1991) showed that there is a correlation between the plate aspect ra-
tio and the induced toroidal/poloidal ratio in the 2D ideal square plate model. We here
look at the effect of the plate geometry upon the toroidal/poloidal ratio to grasp the com-
plex relationship between them. We impose straight or spin motion on a plate with an
ideal geometries, circle or square. Accordingly, there are four simple examples: (a) a cir-
cular plate with a pure spin motion (left side of Figure 2.5), (b) a circular plate with a pure
straight motion (right side of Figure 2.5), (c) a square plate with a pure spin motion (left
side of Figure 2.6) and (d) a square plate with a pure straight motion (right side of Fig-
ure 2.6). In this model, we utilized the same-magnitude Euler pole (1°/Myr) and put it at
the center of the plate to generate spin motion and at the North pole to generate straight
motion. We calculate the power of toroidal-poloidal spectra to 100 degrees and the re-
sult is Figure 2.5 and 2.6. Whereas the circular plate with a pure spin motion possesses
a dominant toroidal component and almost negligible poloidal component, the square
plate with a pure spin motion demonstrates almost same toroidal-poloidal component

or little higher poloidal component than toroidal one since the pure spin motion gen-
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erates divergence and convergence motion along the plate boundary, indicating that the
roundness of the plate geometry affects the toroidal/poloidal ratio. However, in the case of
straight motion, the effect of roundness almost vanishes. It means that not a single effect
but combination of effects including plate geometry and motion determine the toroidal-
poloidal power and the ratio. It is true that the relationship is intricate, this result, espe-
cially the result of spin motions, clearly shows that the length of divergent or convergent
plate boundary and that of transform fault are vital in toroidal/poloidal ratio. Based on
this general result, we then analyze the effect of size, aspect ratio, roundness of the plate
and we also compile the number of subduction zone, ridge and transform fault with those

length in PB2002 in Appendix C.
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Fig. 2.5 Top: red line and orange vectors represent a model plate boundary and an
imposed plate motion, respectively; bottom: blue and red lines show the toroidal and
poloidal power induced by the plate motion, respectively. Left: a circular plate with a
pure spin motion; right: a circular plate with a pure straight motion.
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Fig. 2.6 Left: a square plate with a pure spin motion; right: a square plate with a pure
straight motion. As for the explanation of the figure, please refer to Figure 2.5
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2.2  Summary

The major aim of this chapter is the general comprehension of the toroidal/poloidal
feature, particularly in high spherical harmonic degree, for which we conducted a
detailed spherical harmonic expansion for the high-resolution plate models. With the
detailed plate models, PB2002 and NNR-MORVEL, our result demonstrates the increase in
toroidal/poloidal ratio at higher degrees for the first time. Although the toroidal/poloidal
ratio are commonly used as a benchmark in a numerical simulation of a mantle convec-
tion (Tackley, 2000a,b; Richards et al., 2001) based on the notion that the toroidal/poloidal
ratio is almost constant irrespective of spherical harmonic degrees. However, our result
clearly demonstrates that the ratio is not constant, instead the spectrum should be exam-
ined. This new notion will be useful for those numerical simulations of mantle convection
to understand plate tectonics-like motions through the comparison with our result, i.e.,
the increase in the ratio at high spherical harmonic degrees from approximately / > 20.
Whereas the increase in the toroidal/poloidal ratio is relevant to the plate motions and
the configuration, the quantitative comprehension of the relationship is not trivial since
all the effects associated with plate configuration and the motion are not independent
but convoluted. However, in order to grasp the geometrical effect on the toroidal-poloidal
power, we calculate toroidal/poloidal ratios with various geometries in Section 2.1 and Ap-
pendix C, which would also help to understand the nature of plate motion and the global

toroidal/poloidal aspect, in both actual data and the numerical results.



Chapter 3

Driving force of plate spin motion

3.1 Division of plate motions

With the finer plate motion data than ever, we explore the driving force of plate spin mo-
tion. To contemplate the force of plate spin motion, we first extract spin motion of ev-
ery individual plate from their observed motions. Hence, we divided plate motions into
two types, spin motion and straight motion. To obtain the spin and straight motions of
individual plates, we divided the Euler vector of each individual plate into two compo-
nents: a vector that passes vertically through the geometric center of the plate, which is
related to the spin motion and has a magnitude (i.e., angular velocity) defined as wc¢, and
a vector perpendicular to the first vector, which passes through the Earth’s center and is
related to the motion along a great circle, and whose magnitude is defined as wg (Table
3.1). Since previous works have already suggested an active spin motions of a small plates
(e.g., Schouten et al., 1993) and detailed plate model PB2002 can exhibit plate motions of
such a small scale, we plots of w¢ and wg as functions of plate size (Figure 3.1). Figure
3.1 shows that w¢ generally decreases with increasing plate size, whereas wg is roughly
constant between 0.1 and 1°/Myr. As a result, for plate sizes less than ~ 1000 km, the dif-
ference between w¢ and wg is large (Figure 3.1). Based on these differential variations, we

discuss the mechanisms and their corresponding force balance for the plate spin motions.

21
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Fig. 3.1 Plate spin (w¢) and straight (wg) motions as a function of plate size. Blue
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blue circles and red triangles connect a w¢, wg pair for each plate, and the color of the
line indicates a larger component of either w¢ (blue lines) or wg (red lines).
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3.2 Driving force of plate spin motion

The driving forces of plate motion are generally classified into three types (e.g., Forsyth
and Uyeda, 1975; Becker and O’Connell, 2001) (Figure 1.2): body forces (e.g., slab-pull and
ridge-push; hereafter expressed as Tgp), plate boundary forces (e.g., collision, suction,
and shear forces between neighboring plates; Tpg), and resultant resistance forces (e.g.,
mantle drag and slab resistance; Trs). Here, mantle drag (a component of Tgg) is treated as
aresistive force rather than a driving force of plate spin motion, because the toroidal com-
ponents in mantle convection are negligible (Hager and O’Connell, 1978) and are unlikely
to excite the spin motion of plates. Of these, Tpp, in particular the slab-pull force, is the
main driving force of the global plate system (Forsyth and Uyeda, 1975); Tpp contributes
primarily to straight plate motion (Figure 1.3), whereas Tpp may cause spin motion when
torque occurs around the center of the plate. However, the slab-pull force sometimes ex-
cites spin motion. One such example is the Cocos plate. Gorbatov and Fukao (2005) have
shown that the northwestern part of the slab was torn away from the deeper Farallon slab.
It induces the heterogeneity of the slab pull forces, including a strong northward force
from the eastern part of the slab, which can lead to the observed counterclockwise spin
motion. Another example is the Philippine Sea plate, which exhibits an active clockwise
spin motion (Seno et al., 1993). (We consider the driving force through the shape of a part
of the slab of the Philippine Sea plate in Chapter 4). Seno (2000) suggests that the spin
motion results from the eastward mantle flow against the Philippine Sea slab subducted
beneath the SW Japan-Ryukyu arc, which is indicated by the crustal stress variation (Seno,
1999), the electrical conductivity (Shimoizumi et al., 1997; Handa, 2005) and seismic ob-
servations (Sadeghi et al., 2000; Yoshizawa et al., 2010) in the Kyushu region. To exclude

such complexities associated with slabs, we focused on plates without slabs (Table 3.1),
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in which case the torque balance around the center of the plate can be described with
relevant Tpg and Tgs forces, as discussed below.
We can express Tpp as the driving shear stress along a plate boundary o pp and the area

receiving the stress Spp as

Tpp=0ppSppR=0ppDppLpgR=2nAcpgDppR* (3.1)

where R is the plate radius, Dpp is the average depth of the plate boundary sustaining
the shear stress, Lpp is the length of the plate boundary along which the driving force is
applied, and A is the ratio of Lpp to the total length of the plate boundary. In equation (3.1),
we assume a planar plate for simplicity in the calculation of its radius and area (which does
not affect the results significantly), and we can assume that the plate is circular rather than
spherical shell because the difference in the result is not sufficiently significant (Figure
3.2), the length of the driving plate boundary is proportional to the plate size, and A is
constant. We also assume the presence of a low-viscosity layer (hereafter referred to as the
asthenosphere) with constant Newtonian viscosity u and thickness Dgs. Then, Trs can be
expressed as

TUwC

R*. 3.2)
ZDRS

R rw
Tgrs :fORsrdS:f 'LL—CZHTZdI’:
o Drgs

From the torque balance and equations (3.1) and (3.2), we obtain

opgp = ——UR", 3.3
PB 4/1DPBDRSM (3.3)

which indicates that opp is proportional to R? and w¢. In other words, equation (3.3)
shows that (for a constant wc) as plate size increases (left to right in Figure 3.1), the driving
shear stress increases such that it induces spin motion onto a larger plate.

In this context, w¢ of a slab-free plate, which is indicated by the blue circles in Figure 3.3,
generally increases with decreasing plate size. Concerning the list of the plate utilized for

this figure, please refer to Table 3.1. One notable feature in Figure 3.3 is the rapid change
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Fig. 3.2 2D/3D ratio of plate area. This result shows that the areal difference is small;
virtually none for plate size below 2000 km, which is the most important range in this
study, and up to 25% difference even for the size of 10,000 km, having a negligible effect
on the results and conclusions.

in wc around the critical plate size of ~ 1000 km: above the critical size, w¢ values are gen-

erally less than the average rotation rate of the global lithosphere (i.e., the net lithospheric

rotation) (Ricard et al., 1991), of ~0.43°/Myr, as based on the hotspot reference frame uti-

lized in this analysis (Gripp and Gordon, 2002); below the critical size, however, except for

two plates, i.e., the Panama plate and the Shetland plate, the motions of which are not

well-determined in PB2002 model, all w¢ values exceed 0.43 °/Myr.

It should be noted that the R-w variation is not significantly affected by the choice of

plate models as in Figure 3.3 (i.e., Pb2002 (Bird, 2003) (Figure 1.1), NNR-MORVLE (Argus

et al., 2011) (Figure 2.4) and GSRM v2.1 (Kreemer et al., 2014) (Figure 3.4) that include

both no-net-rotation and hotspot reference frames for the data acquired by several meth-
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Fig. 3.3 Rotation rate and plate size. Blue circles, red squares, green triangles, and
purple diamonds represent the data from three different models of PB2002 (Bird, 2003),
NNR-MORVEL (Argus et al., 2011), GSRM v2.1 (Kreemer et al., 2014) in no-net-rotation,
and hotspot reference frame, respectively (see Table 3.1 for the details). Vertical bars
represent the difference in rotation rate of a plate among the three plate models and the
downward arrows indicate that both clockwise and counterclockwise rotations occur
depending on the plate models with different reference frames. The dashed line repre-
sents the expected rotation rate driven by the motion of the Pacific plate (~ 10 cm/yr).

ods representing different time-scales. see Table 3.1 for the details): i.e., almost all the
large plates (plate size > 1000 km) show negligibly small w¢ less than the net-rotation
rate (0.43°/Myr), and the rotation direction (clockwise or counterclockwise) of large plates
varies depending on the reference frame chosen (as indicated by large error bars with

downward arrows in Figure 3.3), whereas the large wc is seen only for small plates irre-
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Fig. 3.4 The 50 plates of plate model GSRM v2.1 from Kreemer et al. (2014). Shaded
areas represent the deformation zone, which we cannot deal with as a rigid plate.

spective of the chosen frame (Figure 3.3).

In Figure 3.3, the dashed line indicates the R-w relation expected from the Pacific plate
motion (i.e., assuming that a fast-moving plate drives the spin motion of the surrounding
small plates via mechanical coupling at plate boundaries), which limits the upper bounds
of high rate of the small plates. Within this context, there is a significant gap between the
dashed line and w of the plates larger than ~ 1000 km, indicating that a more rapid de-
crease in w¢ occurs around the plate size of ~ 1000 km than that expected from the dashed
line. This may suggest a rapid change in the stress-strain-rate regime of plate boundary
(e.g., yielding with viscoplastic rheology or shear weakening with pseudo-stick-slip rheol-
ogy (Bercovici, 2003)).

In order to test such a possibility, we examine the relationship between R and o pp (the

plate boundary shear stress driving the spin motion) based on equation (3.3) and observed
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Fig. 3.5 The driving shear stress along a plate boundary o pg obtained from equation
(3.3) as a function of plate size (=2R). The symbols and error bars are the same as in

Figure 3.3. The dashed line is the expected driving stress induced by the motion of the
Pacific plate (corresponding to the dashed line in Figure 3.3)

wc as shown in Figure 3.5, assuming p = 10?° Pa's, Dpg = 40 km, Dgs = 60 km, and A =
0.25. The uncertainties associated with these assumptions will be discussed later. It is
worth noticing that o pp for plates with low rotation rates (the large plates, in general) have
extremely large uncertainties, indicated by the error bars with downward arrows in Figure
3.5, and should be regarded as upper bounds.

The dashed line in Figure 3.5 represents the expected driving stress induced by the mo-

tion of the Pacific plate (corresponding to the dashed line in Figure 3.3), which limits
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the upper bounds of opp for the small plates; whereas for large plates, opp is apprecia-
bly lower than the prediction of the dashed line, indicating that rheological weakening or
yielding operates on the boundaries of large plates, irrespective of the choice of reference
frame (Figure 3.5).

For small plates (the plate size < 1000 km, i.e., R < 500 km), the shear stress driving
the spin motion increases with R (e.g., the dashed line in Figure 3.5), and above a critical
size R, the stress becomes too large to transmit the stress across the boundary, causing
rheological weakening or yielding. This critical stress is regarded as the strength of the
plate boundary. From Figure 3.5, the critical stress is estimated to be ~ 10 — 20 MPa for
plate sizes between ~ 350 — 630 km. Accordingly, the rotation rate of plates with R > R is
small as compared to the dashed line in Figure 3.3.

It can be confirmed that the spin rates of small plates are higher than those of large
plates, which is the overall result, from Figure 3.6. Figure 3.6 shows that many small plates
along the “sides” (i.e., along strike-slip boundaries) of large fast-moving plates have high
spin rates with a rotation direction (clockwise or counterclockwise) consistent with the
nearly straight motions of large plates that subduct along their margins. This mechanism
has been suggested for several individual microplates (e.g., Schouten et al., 1993). Fig-
ure 3.6, for example, demonstrates that in the southwestern Pacific, the Pacific plate (PA)
excites spin motion of the Niuafo’ou plate (NI) and that the Australia plate (AU) induces
spin motion of the Tonga plate (TO) and the Kermadec plate (KE). Along the East Pacific
Rise, the Pacific plate and the Nazca plate (NZ) drive motions of the Easter plate (EA) and
the Juan Fernandez plate (JZ). Although some of the abovelisted small plates, based on
PB2002 plate model, are located within deforming zones identified by Kreemer et al. (2014)
(shaded regions in Figure 3.4) and could be inappropriate to consider them as rigid plates

to define the spin rate (e.g., KE), the overall configuration remains unchanged, including
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Fig. 3.6 Global geographical distribution of spin motion on a Mercator projection
based on the plate model PB2002 (Bird, 2003). The blue and green curved vectors repre-
sent clockwise and counterclockwise spin motion, respectively. The radius of the vector
is correlated with the rate of spin motion. Black vectors show the directions of plate mo-
tions of the Pacific plate (PA), the Australia plates (AU), and the Nazca plate (NZ). The
two letters with each vector identify the plate, as follows. AU: Australia; EA: Easter; JZ:
Juan Fernandez; KE: Kermadec; NZ: Nazca; NI: Niuafo’'ou; PA: Pacific; TO: Tonga.

large spin motions of NI, EA, and JZ as shown in Figure 3.6.

These features, represented in Figure 3.6, suggest that although some regions (especially
Southeast Asia) exhibit complex spin directions probably due to interactions among the
small plates, the small islands and the intricate subduction zones, large fast-moving plates
with subducting slabs induce spin motion in adjacent small plates through interactions
along plate boundaries, which supports the idea presented above that Tpp drives the plate
spin motions.

In addition, from equation (3.3) and Figure 3.5, we obtain a quantitative relationship be-
tween the viscosity of the asthenospheric mantle beneath the plates p, and the strength
of the plate boundary o ;. We substitute the constraints at the critical condition, as speci-

fied in Figure 3.5 (i.e., wc = 8°/Myr, plate size = 630 km and A = 0.25, corresponding to the
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South Bismarck Plate attaining the maximum o pg), and set Dpp = 40 km as the thickness
of the plate boundary sustaining the shear stress (e.g., Kohlstedt et al., 1995). Then, we

obtain the following equation,

1.1 p,(Pas)

o (MPa) = Lalz o>
st (MPa) 1017 Dpg(km)

(3.4)

which is the basis for Figure 3.7. There is an appreciable uncertainty with regard to the
thickness of the asthenosphere beneath the oceanic plates, as it is dependent on the ob-
servational methods used for measurement (Karato, 2012); the asthenosphere is observed
as a zone of low seismic velocity [e.g., ~ 120 km (Kawakatsu et al., 2009)], a high attenua-
tion layer [e.g., ~ 140 km (Dziewonski and Anderson, 1981); ~ 60 km (Yingjie et al., 2007)]
with significant seismic anisotropy [e.g., ~ 120 km (Beghein and Trampert, 2004)] and a
high electrical conductivity layer [e.g., ~ 60 km (Evans et al., 2005)]. From these observa-
tions, we estimate the thickness of asthenosphere under the oceanic plates (Dgs) to be
60-140 km.

Equation (3.4) and Figure 3.7 impose several constraints on the plate-mantle dynam-
ics. Substituting p, = 10%! Pa s, based on the representative viscosity of the upper man-
tle (Peltier, 1998), into equation (3.4), we obtain o; = 78-183 MPa for Drg = 60-140 km.
Considering a more realistic case and assuming a low-viscosity asthenosphere, which is
estimated from post-glacial rebound, seismic data, and laboratory measurements as 10°-
1020 Pas (e.g., Karato and Wu, 1993; Simons and Hager, 1997; Forte and Mitrovica, 2001),
we substitute p, ~ 1019-102° Pa s, which gives o5; ~ 0.78-18 MPa. This estimate only con-
siders the force along the fractional length of the plate boundary A, as in equation (3.1).
If we consider the resistive forces along the remainder of the plate boundary, with length

1- A, we obtain
OpB = we R* + 1-1
PB = i ADppDrs" A

OR, (3-5)

where o is the average resistive stress along the plate boundary (which must be less than
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Fig. 3.7 Relationship between the strength of a plate boundary and the viscosity of
the asthenosphere. The solid black and gray lines are obtained from equation (3.4) for
Dps = 140 and 60 km, respectively. The dotted black and gray lines are obtained on
the basis of equation (3.5), corresponding to the minimum and maximum estimates
for the strength of plate boundary, respectively. The shaded region shows the range of
viscosity of the asthenosphere estimated from postglacial rebound, seismic data, and
experimental data (e.g., Simons and Hager, 1997; Forte and Mitrovica, 2001; Karato and
Wu, 1993).

the strength of plate boundary o). As a result, a lower viscosity p, is required to repro-
duce the same o, as compared with the results of equation (3.4) (broken lines, Figure
3.7). Setting or(< 05 = 0.78-18 MPa), u, = 1019-10%° Pa s, and Dps = 60-140 km, and

considering the uncertainty of plate size in plate model, we estimate o ; = 3-75 MPa.
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3.3 Discussion

3.3.1 Force balance in spin motion

Our analysis for the driving force of plate spin motion assumes the “rigid” plate and de-
formations are concentrated in the plate boundary. In fact, plate model PB2002 excludes
the active deformation zones (orogens) and our analysis also deals with the other regions.
However, the plates defined as rigid would also deform though the deformation is prob-
ably small. We here consider the effect of the deformation upon the dynamics of spin
motion. With deformation, the driving force along plate boundary is used for the defor-
mation of the plate as well as for the plate motion. As a result, the actual driving stress
might be higher than the estimated driving force in this study, indicating a higher strength
of plate boundary than our estimates.

In addition, for the force balance in the spin motion, we consider the force along plate
boundary induced by the interaction with the motion of the neighboring plates and the
resistive force resulted from the asthenosphere. Another conceivable force exciting plate
spin motion is the “driving” drag force from the asthenospheric mantle flow. In order to ex-
ist such a mantle flow in asthenosphere, there must be the horizontal heterogeneity in the
same scale to the plate size. However, any observation do not support the global hetero-
geneity just beneath the plate in the scale of one thousand or several hundred kilometers
and mantle is mainly driven by the thermal convection, which generates poloidal motions
instead of toroidal motions (Hager and O’Connell, 1978). In short, the forces we consid-
ered in the force balance of the spin motion seem sufficient to investigate the driving force
for the spin motion.

Furthermore, in our analysis we estimated the magnitude of the conceivable forces

within a certain range of several parameters which are poorly constrained, such as the vis-
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cosity and the thickness of the asthenosphere. Another parameter which might vary is the
thickness of plate boundary. We utilized the thickness of oceanic plate at the age of 60 Myr
(Kohlstedt et al., 1995). Whereas the older oceanic plate than 60 Myr would not change
the thickness substantially (Stein and Stein, 1992), there are several plates holding ridge
along the plate boundary, which must contain the thinner plate along the ridge. Along
such a plate boundary, the driving force is transmitted by the thinner plate boundary and
the actual stress might be higher than our estimate. Nonetheless, the upward passive
mantle flow to compensate the plate along the ridge might increase the temperature of
the mantle beneath the plate, which may decrease the viscosity of the asthenosphere
and the resistive force. Hence, while the existence of ridge will affect our analysis of the
plate spin motion, the thin plate boundary and the soft asthenosphere might cancel
the influence of the ridge upon the estimate of the strength of plate boundary and the

difference in the estimate might be small.
3.3.2 Error of spin motion

Compiling the error of the plate motions of PB2002 in Table 1.1, here we consider the effect
of the errors on our suggestion. We extract the error of the spin motion of a plate without
a slab as we did in Figure 3.3. The result is Figure 3.8. Although there are plates, especially
in Southeast Asia, in which the observation for the motion did not estimate the error (red
cross in Figure 3.8), we instead estimate the minimum error by considering the total er-
rors of the relative Euler poles to obtain the Euler pole of the plate. In other words, when
we calculate the Euler pole of a plate, we start the most stable plate, the Pacific plate in
PB2002, and move to one of the neighboring plates, in which we calculate the relative Eu-
ler pole between the neighbor and the Pacific plate, and we continue the movement to the

neighboring plate and the calculation of the relative Euler pole until we arrive at the goal,
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Fig. 3.8 Rotation rate of spin motion with error. Blue circles represent the spin motion
of a plate without slab in PB2002 (Bird, 2003). The vertical bars shows the error from ob-
servation. The red cross represent the estimated minimum error. Regarding the detail,
please read the text.

i.e., the plate that we would like to know the Euler pole. The minimum error represents
the summation of the errors in those relative Euler poles. Figure 3.8 demonstrates that er-
rors in spin motion do not deteriorate the main feature of the result, i.e., small plates spin

actively and large plates hardly hold spin motions.
3.3.3 Effect of slab on geometrical center and Euler pole division

In this study, we calculate the geometrical center of the plate to obtain the spin Euler pole
and the straight Euler pole from the observed Euler pole (Figure 3.1). Here, we consider
the effect of the slab on geometrical center and the calculated Euler pole. We focus on

a small subducting plate, the Cocos plate, because the smaller the plate, the larger the
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Fig. 3.9 The effect of slab on the plate spin (w¢) and straight (wg) motions as a func-
tion of plate size. A light-blue circle and an orange triangle represent the spin and
straight motion of the Cocos plate including the effect of the slab area. For the other
explanation, please refer to Figure 3.1.

effect of the slab on the Euler pole division. With the tomography data of the Cocos plate
(Gorbatov and Fukao, 2005), we estimate the area of the slab between the depth from 0
to 600 km in the upper mantle, and calculate the geometrical center and the divided two
Euler poles. The obtained Euler poles are Figure 3.9. The result shows that the effect of the

subducted slab on the geometrical center and the Euler pole division is almost ignorable.
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3.3.4 Focal mechanism of earthquake and work of plate boundary

We found that the interaction between plates via plate boundary is essential for small-
plate spin motion and especially a fast-moving plate drives the adjacent small plates
through the drag along the plate boundary. In order to make sure the role of plate
boundary of an active-spin plate, here we investigate the seismological data, particularly
the focal mechanism, around the plate since those data contain the information about
the stress distribution on the plate and the direction of the stress. The data of earthquakes
were taken from CMT catalog between the date from 1976/1/1 to 2015/12/1 and at the
depth shallower than 100 km to see the stress of the lithosphere (Dziewonski et al., 1981;
Ekstrom et al., 2012).

First, we look at the seismicity around the Easter plate (EA) and the Juan Fernandez
plate (JZ) because of the relatively simple circumstances where the Pacific plate (PA) and
the Nazca plate (NZ) move westward and eastward, respectively, and excite the spin mo-
tion of the two micro plates (Schouten et al., 1993) (Figure 3.10). Along the northern and
southern plate boundary of the two small plates, which are estimated as a driving plate
boundary, there are strike-slip earthquakes and the direction of the imposed stress seems
consistent with the plate spin motions. For instance, around the southern plate boundary
of the Easter and Juan Fernandez plates there are right-lateral strike-slip faults, implying
that the Pacific plate drag those two plates and induce the clockwise spin motions. An-
other notable characteristic about the focal mechanism is that the beach balls around the
several other plate boundaries, such as the western plate boundary of the Easter plate,
have the opposite stress direction to that along the driving plate boundary; i.e., left-lateral
strike-slip faults, which indicates that those plate boundaries work as a resistive source.

Secondly, we investigate the focal mechanism around the Niuafo’ou plate (NI) off Fiji
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Fig. 3.10 Focal mechanism around the Easter and Juan Fernandez plate in the East
Pacific Ocean. For the explanation, please read the text.

Islands in the South Pacific Ocean because the plate has a high spin motion and is also
an oceanic plate like the Easter and Juan Fernandez plate. The result is Figure 3.11. The
northern plate boundary of the Niuafo’ou plate, which seems the driving plate boundary
based on the direction of the spin motion of the Niuafo’'ou plate and the plate motion
of the Pacific plate, shows consistent focal mechanisms, i.e., left-lateral strike-slip faults.
In contrast, the southwestern plate boundary with the Australia plate (AU) exhibits the
opposite fault, right-lateral strike-slip faults, suggesting that the plate boundary works as

a resistive plate boundary. Another feature about the seismicity is that the earthquakes
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Fig.3.11 Focal mechanism around the Niuafo’ou plate in the South Pacific Ocean. For
the explanation, please read the text.

along the driving plate boundary are rather scattered and those along the resistive plate
boundary are aligned with the line, which might indicate that the driving stress from the
Pacific plate is supported by using the strength of the plate as well as the plate boundary.
This observation implies that our estimates about the strength of the plate boundary, 3-75
MPa, partially represents the strength of the plate itself, which is estimated as 17-170 MPa
(Tackley, 2000b) and 50-150 MPa (Richards et al., 2001) based on the numerical simulation
of mantle convection.

Finally, we attempt to analyze a plate in Southeast Asia, which holds complicated small

subduction zones and many small islands. Therefore, plates in this region may not be
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suitable to be used as an oceanic plate like the examples above. The plate that we fo-
cus on is the South Bismarck plate (SB) (Figure 3.12). The northern plate boundary of
the South Bismarck plate with the North Bismarck plate (NB) shows left-lateral strike-slip
faults. However, from the direction of the spin motion, the plate boundary seems to work
as a resistive plate boundary although the direction of the spin motion of the smallest
plate in PB2002, the Manus plate (MN), is consistent with the focal mechanisms. As the
driving plate boundary for the South Bismarck plate, a candidate is the southwestern plate
boundary with the Woodlark plate (WL). Whereas there are some right-lateral strike-slip
faults around the plate boundary, there is no clear driving plate boundary around the plate
probably because the boundary exists on the islands and is different from the oceanic plate
boundary that we mainly deal with in this study, particularly, in the point of the strength of
the coupling because of the different structure (Kohlstedt et al., 1995). In addition, another
plate model, GSRM v2.1 (Kreemer et al., 2014) defines Southeast Asia as an active deforma-
tion zones rather than rigid plates, suggesting that GSRM v2.1 defines plate configuration
more accurately or at least more consistently to the seismological data than PB2002. But,
please note that our suggestion about the driving force of the spin motion and the esti-

mated strength of plate boundary is robust in both plate models (Figure 3.3 and 3.5).



42 Chapter 3 Driving force of plate spin motion

PA

Y 9.6cm/yr

5 ﬁflstl e Foice? g

g B Tt
Strong coupling due to the island (continental plates)? A U

Fig.3.12 Focal mechanism around the South Bismarck plate in Southeast Asia. For the
explanation, please read the text.
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3.3.5 Strength and rheology of plate and plate boundary

In previous studies, the strength of a plate boundary was estimated based on seismic ob-
servations, particularly the spatial mapping of earthquake focal mechanisms and their
corresponding temporal changes before and after a large earthquake; e.g., Hasegawa et al.
(2012) used high-resolution data on the approximately 4000 earthquake focal mechanisms
in northeast Japan between 2003 and 2011, and found that the 2011 Tohoku earthquake
almost completely released the accumulated stress along the plate boundary, and they
estimated the stress at release to be as small as 5-15 MPa, suggesting that the presence
of water weakened the plate boundary fault. Hardebeck and Hauksson (2001) used the
focal mechanism data of approximately 50,000 earthquakes along the San Andreas Fault,
mainly between 1981 and 1999, including the 1992 Landers earthquake, and estimated
the strength of the fault to be about 10-30 MPa, due in part to the low mechanical strength
of smectite (Carpenter et al., 2011). Compared with those previous studies, our obtained
strength of plate boundary, 3-75 MPa, is consistent with a stress level deduced from high-
resolution seismic observations of specific areas.

To naturally reproduce plate-like structures and motions as part of a mantle convection
process, including the case of rigid plates with soft plate boundaries, three-dimensional
numerical simulations have been used to investigate critical conditions and requirements,
especially those concerning rock rheology. Tackley (2000b) and Richards et al. (2001) es-
timated the required yield stress of a plate to reproduce Earth-like plate motion on the
basis of surface velocity fields, and obtained results of 17-170 MPa and 50-150 MPa, re-
spectively. In addition, Bercovici (1993, 1995b, 2003) suggested that a pseudo-stick-slip
rheology, in which the stress decreases with increasing strain rate after yielding, can repro-

duce plate-like motions, in particular a high toroidal/poloidal kinetic energy ratio of up to
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0.8, which is consistent with ratios observed in previous studies (Hager and O’Connell,
1978; O’Connell et al., 1991; Bercovici and Wessel, 1994) as well as in this study (Fig.2.3).
In this context, after exceeding the yield stress of plates, the strain can be concentrated to
form a plate boundary composed of a “damaged” weak zone (e.g., Bercovici and Ricard,
2014), where the stress level is significantly reduced, possibly to the range estimated from
seismology and this study, especially when water is present to weaken the plate boundary.
However, as we showed in Section 3.3.4 and particularly in Figure 3.11, plate itself as well
as plate boundary might sustain the stress to spin a plate by the interaction between the
plates, which might indicate that we should deal with the driving force and plate motion in
more general theory than conventional plate tectonics only with rigid plate and deforming
narrow plate boundary.

Compared with those previous studies to estimate the strength of plate or plate bound-
ary, seismology and numerical simulations, the uniqueness of our study is the following
point; while the estimate of the strength of plate boundary from seismology contains a
less errors than our estimate, they can only estimate the strength of limited plate bound-
ary where large earthquakes were observed. In contrast, our analysis deals with observed
global plate motions and, therefore, obtained value may be regarded as a globally averaged
value for many plate boundaries based on observations instead of numerical simulations.
In these point, our estimate about the strength of plate boundary has some significance
compared with other estimates from different types of studies.

The exact rheology and the physical-chemical state of plate boundary is a vital prob-
lem that will help understand the mechanisms of plate tectonics (e.g., Gordon, 1998, 2000;
Bercovici and Ricard, 2014). At present, it is difficult to constrain the exact rheology from
the approach in this study; however, by combining with other approaches, such as seis-

mic and geodetic observations on both rigid plates and deformation zones (Gordon, 1998,
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2000; Kreemer et al., 2014), field and laboratory studies on rock and fault rheology (e.g.,
Kohlstedt et al., 1995; Sibson, 2003), and numerical simulation of combined plate motion
and mantle convection (e.g., Tackley, 2000b; Richards et al., 2001; Bercovici, 2003), tighter

constraints can be obtained to quantify the Earth’s dynamics with regard to plate tectonics.

3.4 Summary

The main objective of this chapter was to constrain the driving forces of plate motion, es-
pecially the plate spin motion, for which we analyzed the spin motion of each individual
plate as a function of plate size with detailed plate models. The following results were ob-
tained. First, spin motion of plates without slabs decreases at plate sizes of ~ 1000 km and
greater (Figure 3.3), which indicates the strength for plate boundaries (Figure 3.5). Sec-
ondly, the geographical distribution of spin motion (Figure 3.6) suggests that large plates
with subducting slabs drive the spin motion of surrounding smaller plates, similar to gears
that transmit the shear stress induced by straight motion of large plates. Thirdly, seismic-
ity and the focal mechanism indicates that the driving force to spin a small plate might be
transmitted through not only the plate boundary but also plate itself (Figure 3.11). Finally,
from the force balance of spin motion at the critical plate size, we obtain the relationship
between the strength of the plate boundary and the viscosity of the asthenosphere (Fig-
ure 3.7). Assuming the viscosity and thickness of the asthenosphere to be 1019-10%° Pa s
and 60-140 km, respectively, we roughly estimated the strength of the plate boundary to
be 3-75 MPa, which is comparable to the stress level estimated from several seismological

observations, including those in NE Japan associated with the 2011 Tohoku earthquake.






Chapter 4

Spin motion and buckling of the
Philippine Sea plate

4.1 Introduction

The Philippine Sea plate (hereafter referred to as PHS) is one of the two exceptional plates
(i.e., PHS and the Cocos plate) in terms of the size-rotation rate relation as was discussed
in Chapter 2 and 3. In this Chapter 4, we focus on PHS to investigate possible mechanism
of its spin motion, since a number of observations have been made both on the motion
and the stress applied to PHS more than the Cocos plate as will be stated below. We first
describe a key feature near the northern edge of PHS, i.e., the slab geometry and stress
for the subducted PHS slab beneath the southwestern Japan arc, and show evidences for
east-west compression of the PHS slab, possibly an eastward applied stress. Based on the
analysis, we then discuss the torque balance and spin motion of PHS.

Of the Japanese island arcs, the southwestern Japan arc exhibits a variety of unique char-
acteristics associated with subduction of PHS; the Shikoku Basin is subducting along the
Nankai Trough with an extinct ridge, the Kinan Seamount Chain (Okino et al., 1994, 1999)
(Figure 4.1). Beneath the southwestern Japan arc, the subducted slab is aseismic due to

its young and warm nature (Shiono, 1982), and deep-seated brines and gases with high
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helium isotope ratios comparable to mantle values (Sano et al., 2009; Umeda et al., 2012;
Kusuda et al., 2014), all of which are associated with the young warm slab of PHS. Another
noticeable feature of the PHS slab is the wavy shape (e.g., Baba et al., 2002; Shiomi et al.,
2004; Nakajima and Hasegawa, 2007; Hirose et al., 2008; Shiomi et al., 2008; Ueno et al.,
2008; Tidaka et al., 2009) (Figure 4.2). As a previous work, Ide et al. (2010) investigated the
slab shape assuming that the slab had deformed instantaneously in an elastic or brittle
manner along an extinct ridge (i.e., the subducted Kinan Seamount Chain) due to a sud-
den change of the plate motion at 2 to 4 Ma, based on geological observations (Kimura
et al., 2005; Ikeda et al., 2009).

In order to investigate a possible cause of enigmatic geometry of the PHS slab, we first
quantify the slab geometry. Then, considering a buckling process as a possible mechanism
of the wavy geometry of the PHS slab, we apply the theory of folding (e.g., Biot, 1957; 1961;
Ramberg, 1959; Fletcher, 1974) to the slab geometry, based on which rheology, stress and

buckling process of the PHS slab are discussed.
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Fig. 4.1 Map of the Philippine Sea and the adjacent area. Orange lines and white ar-
rows represent the plate boundary and the speed of the PHS and the Pacific plate (in
reference frame of the Africa plate fixed) in PB2002 (Bird, 2003), respectively.
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Fig. 4.2 Depth contour map of the PHS slab (Baba et al.,, 2002; Nakajima and
Hasegawa, 2007; Hirose et al., 2008) and the Pacific slab (Nakajima and Hasegawa, 2006;
Nakajima et al., 2009; Kita et al., 2010). Blue dashed lines represent the plate boundaries
in PB2002 (Bird, 2003). Regarding the depth of the isodepth contour, please see the color
bar in the figure. The green zone shows the contact area between the PHS slab and the
upper surface of the Pacific slab beneath the Kanto district (Nakajima et al., 2009).
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4.2 Analysis of slab geometry

We utilize the slab geometry acquired by seismicity data and seismic tomography (Baba
et al., 2002; Nakajima and Hasegawa, 2007; Hirose et al., 2008) (Figure 4.2). The slab-
surface geometry, in particular the wavy shape beneath the Shikoku district, is also sup-
ported by more recent study using the receiver function technique with spatially high-
density seismic stations (Ilidaka et al., 2009). The shape of the slab in Figure 4.2 has several
notable features. First, the PHS slab is almost in contact with the upper surface of the
Pacific slab beneath Kanto district (Nakajima et al., 2009) (represented by a green area in
Figure 4.2). Secondly, the wavy shape has three peaks beneath the northern Izu Peninsula,
the Biwa Lake and the western Seto Inland Sea (Figure 4.2). The easternmost peak beneath
the northern Izu Peninsula is located at the triple junction among the PHS, the Eurasia
(Amur) plate and the North America (Okhotsk) plate (Bird, 2003), where the Izu Bonin arc
on PHS has thrusted beneath the Honshu arc since ~ 17 Ma (Aoike, 1999) and now Izu
Peninsula is colliding (e.g., Soh et al., 1998). The collision of the Izu Bonin arc distorted
the slab shape beneath the Kanto district to Central Japan (e.g., Nakajima et al., 2009). In
comparison with the easternmost peak, the other two peaks of the slab shape beneath
the Biwa Lake and the Seto Inland Sea do not have such surface expression of collision or
specific deformation features, suggesting that some slab-mantle interaction, e.g., mantle
flow to cause east-west compression, could have been associated. In addition, compared
with the small easternmost peak, the two western peaks are similar in size, repeating the
folding-like shape, which has an affinity with buckling systems. For these reasons, we are
going to develop analyses and modeling for the geometry including the two western peaks
of subducted PHS slab, based on the theory of folding of strata/rocks and buckling.

In Figure 4.2 and 4.3, the geometry of the slab is shown vertically and obliquely to mea-
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Fig. 4.3 Oblique view of depth contours of the PHS slab (Baba et al., 2002; Nakajima
and Hasegawa, 2007; Hirose et al., 2008). Regarding blue dashed lines and the depth
contours, please refer to Figure 4.2. From this geometry, we roughly estimate the domi-
nant wavelength A4, arclength L and amplitude a.

sure the characteristic lengths (i.e., width and height) of the wavy geometry. From Figure
4.3, assuming the slab shape as sinusoidal, we estimate the dominant wavelength 1, 400
km, arclength L 415 km and amplitude a 25 km. As regards the plate thickness, Yoshioka
and Ito (2001) scrutinized the thickness of the PHS and its horizontal variation along the
Nankai Trough taking into account the thick marine sediment, suggesting that the thick-
ness h is approximately 25 to 35 km. With those parameters, we next apply the folding

theory to this slab geometry.

4.3 Application of folding theory

Buckling is a dynamic instability as a result of series of folding, in which a layer in a me-
dia receives a layer-parallel compression (Biot, 1961; Hudleston and Treagus, 2010). The
folding of the layer occurs due to the different physical properties between the layer and
the media and the buckling can be observed in various conditions and scales (Figure 4.4).
Since the first theory of folding and its applications to geology by Biot (1961), the theory

has been improved to consider various rheologies of the layer and the surrounding media,
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Fig. 4.4 Buckling/Folding in nature in various scales. Left figure: quartz vein in slate.
Right figure: mountains in British Columbia.

such as a Newtonian viscosity (Biot, 1961) and non-Newtonian rheology (e.g., Fletcher,
1974; Smith, 1975, 1977). In this study, we apply various theories, i.e., (i) elastic slab, (ii)
Newtonian slab, (iii) power-law slab and (iv) viscoelastic slab, to the PHS slab. Please note
that we assume Newtonian mantle, i.e., diffusion creep rheology in the surrounding man-
tle, rather than other complex rheologies, such as dislocation creep, which is adopted in a
high strain-rate region (Karato, 2010) (e.g., asthenospheric mantle beneath a fast-moving
plate). First, similarly to the analysis of Ide et al. (2010), we analyze the slab of PHS as an

elastic layer in a Newtonian viscous mantle.
4.3.1 Elastic slab

Here in this section, we consider an elastic slab, such as the outer rise of oceanic plates
(e.g., Caldwell and Turcotte, 1979). Buckling of an elastic layer in a Newtonian viscous
media is expressed by the following equation (Biot, 1961; Turcotte and Schubert, 2002)

E;

o(1-v7)

— =7 4.1)

h

where A4, h, E;, v; and o are the dominant wavelength, the thickness, the elastic moduli,
Poisson’s ratio of the layer and the layer-parallel stress, respectively (Figure 4.5 (a)). Please

note that in this case the equation is independent of the surrounding viscous media since
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Fig. 4.5 Buckling with physical properties in various rheologies: (a) elastic, (b) Newto-
nian, (c) power-law rheology and (d) viscoelastic layer. As for physical properties, please
refer to the text.

the elastic layer sustains the layer-parallel compression and controls the system. When we
set E; 65 GPa and v; 0.25 as representative properties of plate (e.g., Yoshioka and Ito, 2001;
Turcotte and Schubert, 2002), substituting the slab geometry into A4 and h yields o = 2.6—
5.2 GPa. However, when we estimate the negative buoyancy of the slab along the Nankai
Trough, i.e., slab pull force, the net force is approximately 8 x 10'7 N. In this estimate, we
assume an average temperature gap between the PHS slab and the surrounding mantle:
AT =650 K, slab thickness: h = 25 km, slab length: L = 100 km, mantle density: p,, =
3300kg/m™3, thermal expansivity: a = 2 x 107> /K, and the length of the Nankai Trough
from the Izu Peninsula to Kyushu district: L;;epncn = 750 km. Even when all the slab pull
force is used only for the elastic buckling, the stress o = 0.3 GPa, which is one order of
magnitude less than the above estimate for elastic buckling. Therefore, hereafter we do

not deal with the slab as an elastic layer in this analysis.
4.3.2 Newtonian slab

We next analyze the slab as a viscous layer, which is expected from relatively hot tempera-
ture of the young PHS (Okino et al., 1994, 1999; Yoshioka and Ito, 2001). When we assume

a Newtonian viscous slab in a Newtonian viscous mantle, the viscosity contrast and the
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Fig. 4.6 The effect of mechanical shortening upon the dominant wavelength. At the
initiation of compression, 14 = L, however, as the strain accumulates, the dominant
wavelength becomes short A; < L and in folding theory we should utilize the initial
dominant wavelength L.

slab geometry have the following relationship (Biot, 1961),

1
A_dzgn( Hs )3, 4.2)

where us and p,, are the viscosity of the slab and the mantle, respectively (Figure 4.5 (b)).
Substituting the slab geometry, we obtain the viscosity contrast between the PHS slab and
the surrounding mantle approximately 36-100. More precisely, taking into account the
effect of layer-parallel shortening by compression upon the dominant wavelength (Biot,
1965) (Figure 4.6), we substitute arclength L into wavelength 1, in equation (4.2) as the

initial wavelength and obtain the viscosity contrast 40-110.
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4.3.3 Power-law (dislocation creep) slab

Next, we deal with the slab as an Non-Newtonian layer, in this case, a layer of power-law
rheology. When we adopt power-law rheology, the relationship between the geometry of

slab and the viscosity contrast becomes (Fletcher, 1974)

1\3
2
ﬂ:m( Hs ”_m) , 4.3)

h 6Um N
where n; and n,, are the power-law exponents for the slab and the mantle, respectively
(Figure 4.5 (c)). Setting ns = 3.5 as dislocation creep rheology and n,, = 1 as diffusion
creep rheology (Karato et al., 2001) yields us/p, = 130-350. Including the mechanical

shortening by compression as we did for a Newtonian slab, we obtain p/u,, = 140-390.
4.3.4  Viscoelastic slab

Next we consider the combination of two rheologies we analyzed above, i.e., viscoelastic
rheology. In the case of a viscoelastic layer in a Newtonian viscous media (Figure 4.5 (d)),
buckling is controlled mainly by one of the two rheologies, which is determined by the

competition of the physical properties as follows (Schmalholz and Podladchikov, 1999): if

1
2( Hs )3 < Ep
6Ll o(1-v7)

then the viscous rheology dominates buckling and we can adopt only viscous rheology

1
2

) (4.4)

and vice versa. In other words, the smaller dominant wavelength generated by viscous
rheology or elasticity determines the buckling geometry. Setting E; 65 GPa and v; 0.25 as
representative properties and putting us/u, = Ay, we find the condition for the elasticity-
dominant buckling as

oAuS >5.7x 1010, (4.5)
From our estimates of the viscous layers, substituting the viscosity contrast between the

slab and the mantle Au = 40-110 in Newtonian slab into equation (4.5) yields o > 2.5-5
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GPa, which is about one order higher than the stress induced by the slab pull force o = 0.3
GPa as was discussed. This means that, even if the PHS slab has viscoelastic rheology, the
slab is likely to behave viscously during buckling. Based on the buckling analyses with var-
ious rheologies, we suggest that the PHS slab has undergone viscous deformation rather
than elastic one. Next, we constrain the viscosity of the slab based on the obtained viscos-

ity contrast.

4.4 Viscosity of slab

Regarding the viscosity contrast between slab (or lithosphere) and the surrounding man-
tle us/ m (/! wm), numerical simulations and model experiments have estimated p;/ p,, =
500-2000 (Di Giuseppe et al., 2008), u;/ p; = 150-5000 (Newtonian plate) (Funiciello et al.,
2008), us/m = 100-300 (Schellart, 2008), us/ i, = 100-700 (Schellart, 2009). From ob-
served slab stress conditions and fluid modelling, Alpert et al., (2010) put forward the
general viscosity contrast between slabs and upper mantle as us/u;,, = 10-100. In our
study, analyzing the horizontal wavy shape of the PHS slab, we constrain the viscosity
contrast between the slab and the mantle as pg/u;, = 40-110 for Newtonian rheology and
s/ tm = 140-390 for power-law rheology. It is noted that old and cold plates, such as
the Pacific plate beneath the Tohoku district, might be more viscous than our estimates
whereas the effect of water in cold slab and slow grain-growth due to the low temperature
may compensate the increase in viscosity (Karato and Wu, 1993; Karato et al., 2001).

With regard to the estimate of the slab viscosity from the viscosity contrast, we assume
that the mantle wedge (the mantle above the slab) is softer than the suboceanic man-
tle (the mantle beneath the slab) due to the fluid derived from the slab and melting of
the mantle in mantle wedge (e.g., Iwamori, 1998; Iwamori and Zhao, 2000; Iwamori et al.,

2007; Hall, 2012) and also assume that the harder suboceanic mantle controls the system.
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Then, adopting the representative viscosity 2.6 x 102! Pa s (Simons and Hager, 1997), we

estimates the slab viscosity as

s =1~3x10% [Pas] (Newtonian) (4.6)

s =3 ~ 14 x 10?2 [Pas] (power — law). 4.7)

We now investigate the time required to generate the observed strain (i.e., amplitude of
folding) . Buckling of a Newtonian layer and power-law layer are expressed as (Biot, 1961;

Fletcher, 1974; Turcotte and Schubert, 2002)

£ .
o =4 (E) (Newtonian) (4.8)
_aHBs (€ _
o=4 s (At) (power — law) 4.9)

o, € and At are the layer-parallel compressive stress, strain and the time taken for the de-
formation, respectively. As for the strain €, regarding amplitude/wavelength = a/A; <<'1
gives the strain € = (L— A14)/L = 0.036. In the unconstrained parameters, o and At, we es-
timate the compressive stress o from the spin motion of PHS because the active clockwise
spin motion (Section 3 and Figure 4.7) results in the collision between the slab of the PHS
and the Pacific plate (Figure 4.2) (Nakajima et al., 2009) and the driving force for the spin
motion can be regarded as the compressive stress for the buckling. For this reason, next

we estimate the driving force of the spin motion of the PHS in a simple torque analysis.

4.5 Force balance for the motion of the Philippine Sea
plate

4.5.1 Euler pole analysis of the Philippine Sea plate

In plate tectonics, slab pull force is the most essential driving force (e.g., Forsyth and
Uyeda, 1975; Conrad and Lithgow-Bertelloni, 2002) and PHS accompanies the Nankai
Trough, the Ryukyu Trench and the Philippine Trench, all of which induce a straight mo-

tion toward the trench but cannot generate a significant spin motion (Figure 1.3). Seno
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Pacific
Plate

Philippine

Sea Plate

Fig. 4.7 Relative motion between the PHS and the Pacific plate in PB2002 (Bird, 2003).
The yellow star represent the relative Euler pole between the PHS and the Pacific plate
and, in the Pacific plate fixed reference frame, therefore, the PHS moves along the or-
ange vector, indicating a strong collision between the two plates at the northern part of
the PHS.
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(1999) investigated the crustal stress variation in Japan and suggested that the Kyushu dis-
trict has a clear variation in the horizontal stress. He argued that beneath the Kyushu re-
gion there is a eastward mantle flow derived from a mantle upwelling off the west coast of
Kyushu, which is supported by the electrical conductivity (Shimoizumi et al., 1997; Handa,
2005) and seismic observations (Sadeghi et al., 2000; Yoshizawa et al., 2010). We utilized
the above two driving forces, the slab pull and the trench-parallel force beneath the south-
western Japan arc, to simulate the observed Euler pole of the PHS in a simple torque model
and compare them to estimate the driving force for the spin motion.

Utilizing the plate model PB2002 (Bird, 2003), we impose uniform forces normal to the
subduction zone of PHS as an “effective” slab pull force (light blue vectors in Figure 4.8).
The effective slab pull is the net force of the slab pull force and the slab resistance and the
magnitude of the force is approximately one order lower than the original slab pull force
(Forsyth and Uyeda, 1975). Then, we put another force along the Nankai Trough as the
stress suggested by Seno (1999, 2000) (pink vectors in Figure 4.8) and chose the direction
and magnitude of the force so as to generate the observed Euler pole. Here we assume
that those considered forces are dominant and determine the direction of the plate mo-
tion, which is justified by the previous studies of torque analysis (e.g., Forsyth and Uyeda,
1975). The ideal vector is acquired in the almost eastward direction at the magnitude of
2.7 larger than the effective slab pull force. In this calculation, we put the density of mantle
p =3300kg/m?3, the difference in temperature between mantle and slab AT ~ 500 K, ther-
mal expansivity @ = 2 x 107>, gravitational acceleration g = 9.8kg/m?, the representative
vertical length L, and thickness ki, of the PHS slab L, ~ 250 km and h, ~ 35 km (Yosh-
ioka and Ito, 2001; Becker and O’Connell, 2001; Turcotte and Schubert, 2002). Assuming
that the obtained stresses along the Nankai Trough is applied to the compression of the

slab buckling beneath southwestern Japan (Seno, 1999, 2000), the imposed stress on the
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slab becomes 4 to 40 MPa, which is in the range of our estimate for the strength of plate
boundary in Chapter 3, 3 to 75 MPa. Although the meaning of this consistent result is not
so clear, yet it might imply that the PHS also has a high spin motion because the driving
stress can be sustained by the strength of the plate boundary or slab. From equation (4.8)
and (4.9), the time of buckling is

At=4.6 ~13 [Myr] (Newtonian) (4.10)

At =4.0~19 [Myr] (power — law). (4.11)
With this result, next we discuss the history of the PHS motion and the dynamics.

4.5.2 History of the Philippine Sea plate

The history of PHS motion has been investigated in many previous works to understand
the geological and tectonic events around the Japan arcs for the last several tens of million
years, such as opening of the Japan Sea and the collision of the Izu arc, although there are
large uncertainties (e.g., Seno and Maruyama, 1984; Hall et al., 1995; Hall, 2002; Kimura
et al., 2005; Gaina and Muller, 2007; Yamazaki et al., 2010). We here raise one unique event
in the history and propose a possibility of the buckling to understand the cause of the
unique wavy shape of the PHS slab and discuss the tectonic evolution with our buckling
analysis.

It is suggested that PHS changed its motion at 2 to 4 Ma based on the geological evi-
dences of temporal change in the regional stress field around the Honshu arc (Takahashi,
2006), the spatio-temporal change of volcanic front in the Chugoku district (Kimura
et al., 2005), the distribution of active fault along the Median Tectonic Line (Ikeda et al.,
2009), and plate reconstruction (e.g., Hall, 2002; Gaina and Muller, 2007). The abrupt
event changed the PHS motion from northward to northwestward and slowed down the
clockwise spin motion (Seno and Maruyama, 1984; Hall et al., 1995; Seno et al., 1993;

Kimura et al., 2005; Gaina and Muller, 2007; Yamazaki et al., 2010), which indicates that



62

Chapter 4 Spin motion and buckling of the Philippine Sea plate

Fig. 4.8 Euler pole analysis of the PHS on a Lambert projection. Black line is the plate
boundary of the PHS. Yellow star, triangle, and circle represent the observed Euler pole,
the straight Euler pole, and the spin Euler pole, respectively. Light blue vectors are im-
posed a uniform effective slab pull. Pink vector is the added force arbitrarily chosen
to reproduce the observed Euler pole. The vector length represented in this picture is
arbitrary, yet the relative length between the blue and pink vectors is correct. All the Eu-
ler poles depicted here are negative Euler poles. For the observed Euler poles, hotspot
reference frame is utilized (Gripp and Gordon, 2002).
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some eastward force was applied along the northern edge of PHS. In addition, seismic
observations revealed the contact zone between the PHS slab and the upper surface of
the Pacific slab beneath the Kanto district (Nakajima et al., 2009), which might represent
collision of the PHS slab to the Pacific slab around 3 Ma, having led to the significant
deformation of the PHS slab beneath Kanto. This quick change of the plate motion might
have caused the unique shape of the PHS slab, as was pointed out by Ide et al. (2010).
However, during the continuous clockwise spin motion before the abrupt change, the PHS
slab had received the driving force for the spin motion and therefore the slab deformation
must have continued for a much longer period of time. Although the initiation age of the
spin motion is not well resolved, a long-term tectonic reconstruction (e.g., Hall, 2002),
including several events around PHS, such as the opening of the Japan sea, especially the
clockwise motion of the southwestern Japan (~ 15 Ma) (e.g., Sato, 1994; Jolivet et al., 1994;
Maruyama et al., 1997), the collision of the Izu arc into the Kanto district dated back to at
least ~ 17 Ma (Aoike, 1999), and the initiation of the subduction of the northern PHS plate
(~ 20 Ma) (Hall, 2002) are consistent with our rough estimate of age, At =4 to 19 Myr, and

might be related to the initiation of slab buckling.

4.6 Discussion

4.6.1 Validity of torque analysis for the Philippine Sea plate

In our torque analysis for the PHS, we first imposed the uniform slab pull force based on
the notion that the slab pull force generally succeed in simulating the observed Euler Pole
(Forsyth and Uyeda, 1975; Becker and O’Connell, 2001). Actually, as we already stated
above (Chapter 1), slab pull can simulate the observed Euler poles of almost all the plates
and the straight motion of the other plates, such as the Philippine Sea and Cocos plate. For

this reason, we first adopted the slab pull force. In addition, Forsyth and Uyeda (1975) and
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Becker and O’Connell (2001) consider uniform slab pull force along the subduction zone
and according to their analysis we also impose uniform slab pull force. The reason that
the uniform slab pull force can generate the observed Euler pole might be associated with
amechanism in which the slab resistance increases as the increase in the driving slab pull.
Then, to generate the PHS spin motion, we need to add a torque which has not been con-
sidered in the previous works (Forsyth and Uyeda, 1975; Becker and O’Connell, 2001). As
the driving force Seno (2000) raised a mantle upwelling off the west coast of Kyushu, which
is indicated based on the crustal stress variation in Kyushu region (Seno, 1999), the electri-
cal conductivity (Shimoizumi et al., 1997; Handa, 2005) and seismic observations (Sadeghi
etal., 2000; Yoshizawa et al., 2010), though he also suggested that the estimated magnitude
of the torque caused by the upwelling may not be sufficient to simulate the observed plate
spin motions and another driving force might be necessary. Another conceivable candi-
date for the driving force is the collision of the Caroline plate (Figure 4.9). The westward
motion seems to push the southern part of the PHS and to induce the clockwise spin mo-
tion. However, the southern plate boundary between the two plates is ridge and the speed
of westward motion of the PHS is faster than that of the Caroline plate. Thus, the Caroline
plate cannot be a driving force for the spin motion of the PHS. Based on these considera-
tions, we imposed uniform slab pull force along the subduction zone and added another

force suggested by Seno (1999, 2000) in the torque analysis of the PHS.
4.6.2 Other possibilities of the wavy slab geometry

Although we assumed the wavy slab geometry as a buckling and applied the folding theory
to the geometry, here we consider another possibility to induce the geometry of the PHS
slab beneath the southwestern Japan. One candidate is the wavy plate boundary when the

plate was subducting. Looking at the slab geometry, generally the geometry is the same as
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Pacific
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Philippine

Sea Plate

Caroline
Plate

Fig. 4.9 Plate motion of the Caroline plate. Although the Caroline plate moves west-
ward, the westward motion of the Philippine Sea plate is faster and as a result, the plate
boundary between the two plates becomes ridge.

the shape of the plate boundary (Hayes et al., 2012). In fact, due to the collision of the PHS
at the Izu peninsula the plate boundary deforms and the slab subducted there has similar
geometry (Figure 4.2). However, the locations we focus on to analyze the slab geometry,

such as around Biwa Lake and Seto Island Sea, are not suggested to deform in these several
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million years; therefore, it is not conceivable that a wavy plate boundary generated the
current deformed slab geometry.

As regards the cause of the wavy slab, Ide et al. (2010) analyzed the slab geometry by
dealing with the slab as an elastic media and suggested that the folding occurred some-
time between 2-4 Ma, causing the split of the slab which they claimed to be observed in
the current seismicity. Although they did not maintain the mechanism to split the slab
suddenly, our analysis showed that approximately a few GPa (approximately one order
higher than that of slab pull stress (Section 4.3.1)) is necessary to deform the elastic slab
and it is difficult to think about any conceivable driving force in the interior of the Earth.
For this reason, we suggest that the slab deformed after the subduction due to the buckling

as a viscous media rather an elastic one.

4.6.3 Thermal condition of southwestern subduction zone and rheology
of slab

Whereas we suggested that the slab beneath the southwestern Japan deforms as a viscous
media, here we discuss the thermal condition of the subduction zone to consider whether
or not the slab can behave as a viscous material in the circumstances. Compared with
other subduction zone such as the northeastern Japan, the subduction zone of the south-
western Japan is suggested to be relatively “hotter” (Peacock and Wang, 1999; Iwamori,
2007) and the temperature of the slab at the depth of 40-60 km, at which the deformation
of the PHS slab is largest (Figure 4.2), is estimated as approximately 500°C or more (500—
600°C at the bottom of the oceanic crust (Peacock and Wang, 1999); 400-600°C along the
slab-wedge interface (Iwamori, 2007)). Moreover, the thickness of a plate in which the
lithosphere behaves as an elastic plate, i.e., the elastic thickness, accords the isotherm of
600°C (Watts and Zhong, 2000). Thus, the lithosphere of less than 600°C behaves elasti-

cally in a short time scale and viscously in a long time scale and that of more than 600°C
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exhibits a viscous characteristic. Consequently, it is enough conceivable that the relatively
hot slab beneath the southwestern Japan deformed as a viscous media to yield the cur-
rent wavy geometry. We estimate the viscosity contrast between the slab and the mantle
by theoretical formulation of rheology (Karato and Wu, 1993; Korenaga and Karato, 2008).
In a simple case, in which we set temperature 500°C for the slab surface and 1000°C for
the surrounding mantle, the depth 50km and the both rheologies wet diffusion creep, the
viscosity contrast becomes roughly 10°-10' (Karato and Wu, 1993; Korenaga and Karato,
2008; Karato, 2010, 2011). The estimated viscosity contrast is large, yet several effects, such
as water and the grain size, might play an important role to reduce such a large viscosity

contrast.

4.7 Summary

We analyzed the geometry of the PHS slab beneath southwestern Japan using the theory of
folding. We found that during the buckling process, the slab behaves as a viscous media,
such as Newtonian or power-law, rather than an elastic slab and the viscosity of the slab
is approximately 1-14 x 10?3 Pa s. The simple Euler pole analysis provides an estimate on
the driving force of the PHS spin motion, i.e., the eastward force of approximately 4-40
MPa. This range is within the stress level that can be sustained by the plate boundary as
was discussed in Chapter 3, although the exact relation between the two estimates are not
clear at present. While there is a large uncertainty of our estimate of the time took for the
buckling (At = 4-19 Myr), important events around the PHS, including the quick change of
the PHS motion (~ 4 Ma), the clockwise motion of the southwestern Japan for the opening
of the Japan Sea (~ 15 Ma) (e.g., Sato, 1994; Jolivet et al., 1994), the collision of the Izu arc
into the Kanto district (~ 17 Ma) (Aoike, 1999), and the initiation of the subduction of the

northern PHS plate (~ 20 Ma) (Hall, 2002), may be important to understand the evolution
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of the PHS and slab, as well as tectonic evolution around the Japan arcs.



Chapter 5

summary and conclusion

In previous works, numerical simulations of mantle convection have been used to ex-
amine the extent to which toroidal velocity components are naturally generated on the
surface, by varying key parameters, notably the rheological properties of plates and plate
boundaries. Here, we took the reverse approach and performed analysis of observed plate
motions with high-resolution plate models to constrain the physical properties and to
comprehend the dynamics of plate motions. We analyzed (i) toroidal/poloidal ratio of
global plate motion, (ii) spin motions of individual plates without a slab and (iii) the Philip-
pine Sea plate with both a high spin rate and subducting slab.

In the toroidal-poloidal analysis, although previous works (e.g., O’Connell et al., 1991)
suggested the toroidal/poloidal ratio is almost constant (~ 0.8) for both low and high de-
grees of spherical harmonic expansion, our detailed analysis up to much higher degrees
than ever demonstrated that there is an increase in the ratio especially from 1000 km in
the scale of motion (Figure 2.3), which results from the plate motion, in particular, spin
motion of small plate, and the plate geometrical configuration as shown in Appendix C.

To comprehend the driving force of plate spin motions, which have not been explained
in previous works (Forsyth and Uyeda, 1975; Becker and O’Connell, 2001), we analyzed

individual plate spin motions. Focusing on the plates without a subducting slab, we found

69
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that there is arapid change in the rotation rate of spin motion around 1000 km in plate size.
Since a fast-moving plate drives the adjacent small plates via the mechanical interaction
at plate boundaries, as is seen in the global geographical distribution of spin motion (Fig-
ure 3.6), this quantitative relationship constrains strength of the plate boundaries as 3 to
75 MPa (Figure 3.7), which is consistent with several seismological observations, including
those from the northeastern Japan arc associated with the 2011 Tohoku earthquake.
Finally, we investigated forces driving the motion of the Philippine Sea plate (PHS) with
both a relatively high spin rate and subducting slabs. By applying the theory of folding to
explain the wavy geometry of the subducted PHS slab beneath the southwestern Japan arc,
we found that the slab behaves as a viscous layer during the deformation with viscosity to
be 1 to 14 x 10 Pa s. Assuming a mantle flow beneath the Kyushu district as the source
of driving force for slab deformation as well as the spin motion of PHS (Seno, 2000), we
estimated the stress to be 4 to 40 MPa, which is within our estimate on the strength of
plate boundaries, suggesting a relatively weak regime for the overall driving force of plate

motions.
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Appendix A

Theory of spherical harmonic
expansion

A.1 Condition of toroidal-poloidal decomposition

The condition for the toroidal-poloidal decomposition is that the divergence is zero every-

where in the vector field. In fact, the divergence of toroidal-poloidal flow becomes

dive =div (ur + up) = divur +divup =0,

where
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Here, ¥ and ® are toroidal and poloidal components, respectively. However, in our anal-
ysis, we did not use the radial velocity, up,, and utilized only the horizontal velocity field
on the surface of the Earth to obtain the toroidal-poloidal power, which is justified since

to obtain the power of poloidal component, b’", we calculate

_ rPRl+ DI -m)!

27n rT
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Hence, we do not need the radial velocity to calculate toroidal-poloidal power yet the cal-
culation still meets the condition for the toroidal-poloidal decomposition.

Moreover, considering the summation of divergence in the whole vector field, the con-
dition for the toroidal-poloidal decomposition is achieved when the net mass subducted
into the Earth at subduction zone balances with that generated at ridge. It means that the
expansion and the contraction of the Earth are almost ignorable. This is proven by a pre-
cise observation, such as satellite laser ranging (SLR), Very Long Baseline Interferometry
(VLBI), Global Positioning System (GPS), and Doppler Orbitography and Radioposition-
ing Integrated by Satellite (DORIS), demonstrating that the mean radius of the Earth is not

changing to within 10 measurement uncertainty of 0.2 mm/yr (Wu et al., 2011). Therefore,
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the expansion/contraction of the Earth is ignorable and the toroidal-poloidal decomposi-

tion is validate.

A.2 How we obtain toroidal-poloidal components

In polar coordinates, assuming u, = 0, we obtain plate motion divided into toroidal and
poloidal parts,

u=ur+up = (0,urg, urg) + (0, upy, upy) (A.1)
where urg, upg, Upg,and upy are toroidal plate motions and poloidal plate motions in the
theta and phi direction, respectively. With toroidal Component ¥ and poloidal compo-

nent ®, we can also describe plate motion as

u=ur+up=Vx¥Y)+(VxVx0). (A.2)

Our goal is to calculate the magnitude of vector fields of toroidal motion and poloidal
motion. For the goal, we can expand both of them with harmonics, which shows the mag-
nitude of each motion at a certain degree. Because we conduct the expansion on a sphere,
we have to utilize spherical harmonics called Legendre polynomial, P;” where [ and m are
degree and order (0 < m < [), rather than Fourier series for the plane surface.

For instance, expanding a certain scalar function, f (6, ¢), on a sphere provides

1
F(0,9)=).> P/"(cos6) (CC’"; cosme + CS’”; sin m(,b) (A.3)
m

~[18

where c¢; ; and ¢ ; are the coefficients at degree [ and order m. We can obtain the magni-

tude of the scalar function at a degree [, o (), as
2 2
o) = (CC,”Z) + (Cs,n;) . (A.4)

Therefore, calculating two coefficients c; ; and c;,; is our objective.
Nevertheless, the function which we deal with is plate motion on the sphere, that is,

“vector fields”. For this reason, spherical harmonic expansion of plate motion to calcu-
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late its magnitude needs some techniques. Therefore, we carry out the following way as
previous works did (e.g., Hager and O’Connell, 1978).

Regarding toroidal motion u7, from the definition:

(0 1 o¥Y 1 6‘1’)
u = ) ) )
g rsinf ¢ r 00

(A.5)

setting ¥ = a f (0, ¢) ,where a and f are constant independent of § and ¢ and scalar func-

tion, respectively, provides

- 07 PR
rsinf o¢p- r 00
1 0 10
:a(O / f).

uT_( a Of aaf)

" rsinf ¢’ r a0
When f is normalized, a decides the magnitude of toroidal motion. Consequently, in or-

der to evaluate the magnitude of toroidal motion, we have to expand toroidal component

¥ like

l
Y= Zle (cosB) (CC"Z cosm¢p + ¢} sin mcp) (A.6)
m

~[18

and all we have to do is to calculate o (/).

With regard to poloidal motion up, from the definition:

up =V xV x (®r)
B ( 1 0D 16@)

X 07—_)
rsin@ o¢  r 00

—(A(D—O 15([15@)10( 16@))
I "IT7e0 ) Tar rrsinGO(/)

- (0335 57) 735 (a7 )
~\"roe\or) rsin@op\or))

setting 0®/0r = bg(6,¢), where b and g are constant independent of 8 and ¢ and scalar

function, respectively, offers

bo b 0
uP:(Oy__g) . _g)
r 00 rsinf d¢
1
:b(O,_a_g) El a_g).
r 80 rsinf 0¢




A.3 Spherical harmonic expansion for toroidal term 93

(Note that we are setting ¥ = af in toroidal motion and 0®/0r = bg in poloidal motion
due to the difference in dimension). When g is normalized, b determines the magnitude
of poloidal motion. As a result, for earning the magnitude of toroidal motion, we have to

expand the partial derivative of poloidal component 0®/dr as
oo |
- ZZ (cosH)( ¢, cosmep + cs'”ll sin mcp). (A.7)
I m

In conclusion, we succeed in expansion of vector fields on the sphere, plate motion,
both for toroidal component and poloidal component. We next express expanded forms

of toroidal and poloidal motions with their expanded components.

A.3 Spherical harmonic expansion for toroidal term

Regarding toroidal motion ur, we conduct spherical harmonic expansion for it as follows.
First of all, as we did in the last section, we expand toroidal component ¥ with spherical

harmonics Y; becomes
Y=Yy (0,0)+c1Y1(0,¢)+ Zcmmp (A.8)

where Y; and ¢; are spherical harmonics and the coefficient at degree [, respectively. Fur-
thermore, we can write the spherical harmonics at degree [, Y;, with Legendre polynomial

le (cosf) as

Y, (6,¢) = ¢) P} (cos) + Z .1 P["(cos) (cos mep) + Z ¢,’1 P;"(cos ) (sin mep)

I
= Z (cosQ)( ¢/} cosmep+ ¢} sin m(p) (A.9)

m:
Substituting the equation (A.9) into the equation (A.8) provides
P = Z Z Pj (cosH)( "l cosmp+c] smmcp) (A.10)
1=0m=0
As aresult, toroidal motion:

1 oY 1o0¥
) (A.11)

=Vx¥=(0,———,————
" * ( rsinf 0¢p  r 00
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is

u _i Zl: 1(0 ” Pm(COSH)( Cmsinm(p+cmcosm(p)
T & = Wsing ! 1 N :
0P]"(cos0)

36 (CC’"; cosme + ¢} sin m(,b)) .

For complex expression, setting

¢/’ = cC"; —ic (A.12)

sl

1 0P™(cos0)
= . 0, %Pl’"(cose) (i cosm¢p —sinmep), _IT

(cosme + isin m([))) (A.13)
,where i is imaginary unit and ¢;" and C[" are the complex coefficient and the complex

vector at degree [ and order m, respectively, yields

1
/' = - (0, %le(cos 0) (—CC,"; sinm¢ + ¢, cos m(p) ,
0P/"(cos0)
00 (

m
C,; cosmp+c "' sin rn(p))

+iIm{c/"C["}.

Consequently, using ¢, and C}", we can describe complex expression of toroidal motion

ur as

l
Z Re{c]" C"}. (A.14)
om=0

i Mg

Similarly, we will obtain poloidal motion in the next section.

A.4 Spherical harmonic expansion for poloidal term

Concerning poloidal motion, up, we expand it with spherical harmonics Y; and Legendre

polynomial P;" (cos6). To begin with, we substitute expanding d®/dr

0D

5. =h0Yo(0,9)+ b1 Yi(60,9) +-+= 3 biYi(6,9)
=0

M8

!
Y le(cose)( o cosmp+ b smmqb)

m=0

~
Il
o
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into the following equation of poloidal motion, up,

up =V xVx(dr)
_Ux ( 1 00 16(13)
"rsinfop  r o6

( [ ( 10<I>Sin9)_ 6( 1 0@)]
rsin@ r 00 op \rsinf o¢ ||’

ror r 00 ro rsinf o¢

NSy (acp) 1 0 (0@))
=" 0r\ 00 ) rsind or \o¢

0 10 (0@) 1 o (0@))
"ro0\or) rsinf o\ or

0( [Pm(cose)( N "cosmp+b lsmmgb)]

—_—

[l
—_—

I
M8

~
Il
O

1
rsinf 6(,[)

Pl’”(cose)
(0, p (0—6) (bc jcosmp+ b, s1nm<p)

[Pm(cose)( lcosm(p+b lsmmcp)])

™M~

00
=)
1=0

0

3
I

m m
rsin@P (cosH)( lsmmcp+b lcosmgb))

where the Ap is horizontal Laplacian operator and we here assume that the radial velocity

of plates is 0. Furthermore, setting

by'=b ~ib"

Cc

1 Pl’”(cose) m
B" = . (0, (T) (cos m¢p + isinme), mPl (cosB) (i cos m¢p —sin mqb))

generates

-5y

1 ( (aPl’”(cosH)
iI=om=0"T

30 )(bc  cosmep+ Db smm(p)

mpm(cosg) ( N ™ sin m¢p + b | cos mcb))

-5 repp'.

I Mg

We are finally successful in spherical harmonic expansion for poloidal motion. In the next

section, to obtain the toroidal coefficients of spherical harmonics, ¢]”*, we will see an inte-

l )
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gral corresponding to Fourier transform in Fourier series expansion.

A.5 Calculation of the coefficient of toroidal motion

For the coefficients of toroidal motion, c;", we calculate the following integral
21 T L%
f d(/b[ dfu-CJ" sinf (A.15)
0 0

where the superscript * represents the conjugate complex number and !’ and m' are de-
gree and order (0 < m’ < ['). For the integral, we first consider the integrand, u - Ci‘,"*. As

/%
regards C{‘,“ ,

C{’,"* -1 (0 i,P’q?’(cose) (icosm’¢p—sinm'¢p)” —M (cosm'¢p+ isinm'(p)*)
r| " sinf ! ' a0
1 m' _ , _ ) aPl”,”(cose) , o )
== (0, Mpl' (cos0) (—icosm'¢p—sinm'¢p), —T(cosm ¢—isinm (,b))

Substituting C{‘," "into u- C{‘," ) gives (we omit (cos6) of P/ (cos6) for clarity)
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u-cr” (A.16)
=(ur+ up)- C{P,*
l *
= lz;‘) ZORe{cmCm +b"B"} - C}
m=

oo [ 1
P (0

[=0m=0

g (s foosma) 5 ) (i cosmpfsmms).
sing " ! G sinm+ e cosmp) + a0 | \Pei cosmep o1 Sinme

apm m .
(66 )(cclcosmgb+ ls1nm(p)+ﬁpl ( bcls1nm(/>+ lcosmgb))}

P

00

!/
m /
-0, —P" —icosm'c/)—sinm’(,b ,
( sing ! ( )

(cosm'¢p—isin m'(,b))

oo [ /
=y > L MM pm pm’ ¢, cosmp— ¢ sinmep|(—icosm'dp—sinm’'p)
2 =1 \%sl ¢l

=m0 1% |sin?0

aPl}n aplrzl, ! !

+( 3 ) 36 (cc,’?cosm<p+cs,’?sinm¢>)(cosm p—isinm'ep)
m' (0 m | | | |

+ — 9( 30 )Pl”? (bclcosm<p+ lsmmcp)(—lcosm ¢$—sinm (p)

sin

— um Plrzl (bmcosm _bm )( / s ,) (A17)
sinf ! 00 s, 1 ¢ CylSIHWL(P cosm'¢p—isinm ). .

To obtain the coefficients, ¢, we integral the equation (A.17), i.e., calculate the equation
(A.15). Concerning the integration, we will show two facts: (i) when m # m’, 02 & u-C{?/ : d¢
becomes zero and (ii) operating |y sinfd6 on the equation (A.17) vanishes the terms of
(ap;”/ 06) PI"

(i) when m#m’, [ u- Cm "d¢ becomes zero

*
We are demonstrating that for m # m’, 02” u- C{’/‘, d¢ becomes zero. First, we integral the

products of sin and cos in the equation (A.17)

fzncosmd)sinm’cpd(p: %fbr (sin(m'+m)¢+sin(m'—m)p)de
0 0

:{%[ 7 €os (m' )¢+mr mcos(m'=m)ly =0 (m#m)
%[ml cos (m' )‘P] (m=m').
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This means that all the terms containing the products of sin and cos always become zero.

Similarly, the integrals of products of cos and cos and those of sin and sin are

fzncosmcpcosm'(,bdd): 1f2n (cos(m'—m)¢p+cos(m'+m)p)dep
0 2Jo

_ 3 lgmsin(m’ = m) g+ g sin(m' + m)$J" =0 Gm# m")
%[¢+m’+m81n(m +m)(:b]0 =7 (m=m')

fznsinmcpsinm’gbdcp— f cos(m'—m)¢p—cos(m'+m)p)dep
0

|35 sin(m’ - m)(p—m+ms1n(m +m)(p]0 =0 (m#m')
%[</>——m1+msm(m +m)gb]0 =7 (m=m').

In summary, for m # m’, all the terms become zero and for m = m’, only the terms includ-
ing cos? m¢ or sin® m¢ becomes 7 though the others become zero.
Now the result of integration of the equation (A.17) becomes
2m T .
f d(pf dfu-CJ" sinf

m? oP™\ (OGP _
_ZO rz{ PPy (i Sl+c";)+(a—é)(a—é)(cg-w&7)

sin®6
m aplrn m . m m m a t 1
+E(E)P,, (—zbc,l—b&l)—ﬁp (ae )(b +ib, )}smede.
(A.18)

(ii) operating [, sinfd6 on the equation (A.17) vanishes the terms of
(oP]"106) P}
We, next, prove the fact that operating [y’ sinfd6 on the equation (A.17) vanishes the terms
of (0P]"/060) P]". To begin with, using the integration by parts yields
m

T_1 (9PF P"sin0dO = PI"dg =[PP\ " pm il de
fosme(ae)l’sm f( )” [P ]Ofo’(ae)

m

HP’" ap do f
_o_fo 1(69) (for m #0)
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b/
where [lePl"? . vanishes because Legendre polynomial contains (sin m6). This calcula-

tion means for m #0
6 m m

P
fo (( = )Pl”?+Pm( aé ))d@:o. (A.19)

At m = 0, in addition, the terms about leOle/ 00 in (A.18) becomes zero because the

terms contain m. Considering the result, (A.18) finally becomes

T 21 %
ff u-C' sinfd¢pdo

2 opP™" OPm
—Z | rz{sz HP’"P’"( l_iCs,7)+(a_é)( 36 )( I —ic, )+0}sm6d¢d9
o apm GPlrfl e m
Z Orzf _sm0P P +sm9( 30 )( 30 ) (Cc,l_lcs,l)dg

T, 2(l+m)i(l+1)

= A.20
24 (I-m)!@l+1) (A.20)
where we use a formula of Legendre polynomial:
™[ m? dP™M(cosf) dP" (cosH) 0 [n#1]
——P™(cosB) P (cosB) + sinfd —= ] = )
fo [sm@ 4 ! do do AU =1

(A.21)

In conclusion, we acquire

2 2n (I+m)!l(1+1
ff uCi‘,1 s1n6d(pd9 ZEI m;!(2(1+licl' (A.22)

Similarly, we calculate f;" d¢ [; dOu-B™* sinf for the poloidal coefficient b™.

A.6 Calculation of the coefficient of poloidal motion
For the coefficients of poloidal motion, b!", we calculate the following integral
27 T L%
f dcpf dfu-B}' sinf. (A.23)
0 0

First of all, B{‘," ’ is
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=)

~B
|

~N |

U (cos ) / . 1 op) * m' m' . / . PR
0| ——35— (cosm'¢p+isinm'p) Fenvtat (cosB) (icosm'¢p—sinm'¢p)

- Lo OP (cos9) (cosm'¢p—isinm'p) i,P’”/(cose)(—icosm’ —sinm’¢)
S\ o i’ ) gV ¢-sinm'g)).

Substituting B;‘,“/* into u - B;‘,“/* generates (we omit (cos6) of le (cos0) for clarity)

I * 1%
u~B{‘,‘ = (u:r-l-up)'B;f1

oo I
=Y Y Re{c’C™+Db"B™} B
I=0m=0

oo 1 oP r71
=2 ) {sme 1 ( aé )(CS,TCOSWCP—CC’”;Sinmqb)(Cosm’([)—isinm'(p)

I=om=0"T

90
oPI
90

sinf

oP

()
!/

+ _mrf PPy} (b "lcosm¢p—Db, lsmm(,b)(—icosm/(,b—sinm'd))}.

m, apm m . / . I
( )Pl, (Clcosm(p+ lsmmcp)(—zcosm ¢ —sinm'¢p)

) (bcf’l’ cosme¢+ b/} sin mgb) (cosm'¢p—isinm’'p)

sin- @

As we showed in the last section, when m # m’, all the terms become 0 and for m = m’,
operating f02 " d¢p vanishes the terms with sin x cos and yields 7 from the terms with sin?

or cos?. Therefore, integration of (A.23) offers

Top2m L%
|| wenpsinagas =y, % f
0 JoO ol

OPm m Gle
sinf Py ( 00 ) ( 00

m
s

sinf (Cl+lcl)

OP™\ (0PI m% N\
’ ( 00 )( 50 )" sinZo’ ! sz](bc,l—zbm)slnede
oP]!\ (OP™\
lorzf [ ( ) (ae )Pl’]dg( T ic])
ad dP/"\ (OP]} 4
_bmf . 9( l )( l ) PmPn}]—dG
+l§: 271 Sin 50 T +81n9 ; =
=0+ Zpm m2(+mli(+1)
r27h (I-m)l@l+1)

o p2Uemlld+])
_rZ Fa-m@l+1)




A.7 Calculation of power of toroidal motion and poloidal motion 101

where we use the equations (A.19) and (A.21). In conclusion, we obtain

21w % 2n (l+m) I(l+1)
‘B sinfd¢pdl = — b". A.24
fo fou p sinbag 2 (l-m) 2l+1) ! A2

A.7 Calculation of power of toroidal motion and poloidal

motion

From the equation (A.22) and (A.24), we acquire the coefficient of toroidal motion, c;", and

the coefficients of poloidal motion, b;",

r2@lI+1)(-m)! 2 [7
m _ .CM™* i A2
o 2nl(l+1)(l+m)!fo .[o u-C" sinfdpdo (A.25)

m_ PRI+ - m)!
F 7 onl(l+ 1)L+ m)!

21 7
f f u-B" " sin0d¢pdo. (A.26)
0 Jo

We, thus, obtain the degree power spectra of toroidal and poloidal motion, or (I) and

op(D),
l l 2 2
o)=Y "=y {(ccﬁg) +(e7) } (A.27)
m=0 m=0
1 l 2 2
A=Y bpr =Y {(bcj?;) +(p,7) } (A.28)
m=0 m=0

We calculate those coefficients numerically in the next section.






Appendix B

Numerical calculation of spherical
harmonic expansion

B.1 Calculation of toroidal-poloidal power

To obtain the degree power spectra o 7 (I) and o p (1), we need the following coefficients c;”

and b;”

o ()= i c/le/" = i {(CCT)2+ (CST)Z} (B.1)
m=0

m=0
o2 () = i LD = i {(bcf'})2+(bsj’;)2}. (B.2)
m=0 m=0

From the equations (A.25) and (A.26) in the last section, we can calculate them like

2 (l-m)@l+1) 277 .
"o (G7) s B.
T Urmid+ 1) Jo fo u-(G")" sinfd¢pdo (B.3)
m_ 2 U-mIRl+1)

L " on(+mi+1)

2m e .
f u- (B")" sin0d¢pdo (B.4)
0 JoO

(this is the correspondence in Spherical harmonic expansion to the Fourier transform in
Fourier series expansion). Furthermore, normalizing Legendre polynomials in C" and B

yields

103
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2 2
P — fji[nu-(ém)*sinﬁd(pde (B.5)
! nl(l+1) Jo Jo 1

27 1t
m_ - (B™)* si ) B.
bj nl(l+1)fo fo u-(B")" sin0d¢pdo (B.6)

where C{n and ﬁ{“ are normalized and the normalization of Legendre polynomial is

le (cos6) normalization @I+ -m)! ﬁm( s0) (B.7)
2(1+ m)!
because
1 0 (n#l]
f P (x)P"(x)dx = { - (B.8)
-1 elxna-mi n=1l

where ~ represent normalized functions. For clear expression, however, we omit ~ of
normalized C{n, E{“, and 131’” in the following calculation. Our numerical calculation uti-

lizes summation as integral of the equation (B.3) and (B.4)

r2 1801 3600

4= 0D ]ZO IZO u (@, 0())-(C")" sinb(j) dpdo (B.9)
1’2 1801 3600 i}
Y w6, 00)) (BM) sin6(j) dpdo (B.10)

3 nl(l+1)] — =

where the resolution of plate motion is d¢ = df = 0.1°. We next show more concrete form

of the integrands, u - (Ci“)* and u- (B{“)*

B.2 Calculation of integrant

With regard to the integrand about toroidal motion, u-Cj"*, substituting

1 ., 0P(cosO) .
= ;(0, %Pl’n(cosﬁ) (i cos m¢p —sinmgp) ’_IT cos me + i sin me) )
1(0 T prcosd) (i in m) o (COSH)( si ))
==10, =— - —sin e —isin
“\% sme cos i cos me¢p — sin md 30 cos me¢ — i sinmep

into u-C"* provides
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u-c*”*
1 m . _ ) 0P/"(cosb) o
= (0, up, ugp) - - (0, siﬁpl (cos) (—icosme¢p —sinme), — (0—6) (cosme¢p — zsmm(,b))
1 m ) . 0P}"(cosb) o
== [uewPl (cos) (—icos m¢p — sin mep) — ug (T) (cos m¢p— i sin mcp)] :

(B.11)

Similarly, the integrand about poloidal motion, u-B{"*, becomes

1

. Gle(cosG)
u-B{n :; ug(—

00

) (cos m¢p—isinme) + u(p%le(cos 0) (—i cos m¢p —sin mcp)] .

(B.12)
For the integrands above (B.11) and (B.12), we are showing the calculation of Legendre

polynomials P;" and the derivative dP}" /30, particularly for numerical calculation.

B.3 Calculation of Legendre polynomial functions and the

derivative

To reduce the calculation time, for almost all the Legendre polynomials we do not use the

definition of Legendre polynomials

apP 0
P (cos) = sin™ 0 (ﬂ) (B.13)
dcos0
where the P; is Legendre function
U2 21-2s)!
Pi(cosf) = ) (-1)° ( S cos 2%, (B.14)

= 2L81(1 = $)!I(1 - 25)!
since the calculation takes long time due to the summation and factorials at high degree.
Instead, we utilize recursive formulae of Legendre polynomials. Calculation without sum-
mation provides us with some merits, such as not only reducing the calculation time but
also avoiding numerical errors, like loss of trailing digit. Before starting the calculation of
recursive formula, we raise two important points for numerical calculation: the order of

normalization and the parity of Legendre polynomials.
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B.3.1 Normalization of Legendre polynomials and the derivatives

Normalizing both Legendre polynomials and the derivatives, we have to be cautious about
the order of normalization in our program. If we normalize Legendre polynomials before
calculating the derivative, calculated derivatives become wrong since the derivatives are
decided by various degree Legendre polynomials due to the recursive formulae. Therefore,
we first obtain all the Legendre polynomials and the derivatives and after the calculation

normalize all of them together. In detail, normalization means the result of the integral:

1 2(1+m)!
m m _
f—lpl (x)Pl (x)dx_—(2l+l)(l— N (B.15)

becomes 1 and, therefore,

QI+ 1D(I-m)!
/" (cos0) \/—2(l+ oy /" (cos0) (B.16)
app'icost) Ay FFrPeosd)  [rena—mydPficose)
a0 do N 2(1+ m)! o '

where the arrows — represents normalization.
B.3.2 Parity of Legendre polynomials

In addition, to shorten the calculation time more, we focus on the parity of Legendre poly-

nomials, that is,

Pl"(cos(m —0)) = P" (- cosb) = (—1)”’”P2"(cos€) (B.18)
dP"(cosb) g_, o dP/"(cos(n—0)) 1 dP/"(cos(n—0))
do d(m—0) ~ d@-0) do
do
d(=1)"*™ P (cos6)
=(-1
do
dP™(cos0)
=(-plmi L B.19
(=D 70 ( )

It means that calculation for the Northern Hemisphere (0 < 6 < /2) can be used to ones of

the Southern Hemisphere (7/2 < 0 < &), which reduces the calculation time to about half.
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Now, keeping in mind the two points: the order of normalization and the parity, we can
begin to calculate recursive formulae. For the calculation, we classify it into two cases: (a)
0 # 0,7 and (b) 6 = 0, 7 since the recursive formulae include 1/sin@ and cannot be used in

the case of (b).
(a) Legendre polynomials and its derivatives for 6 # 0,7

Here we consider the case of (a) 0 # 0 or . For starting the calculation of recursive formula,
we need initial Legendre polynomials at degree [ =0, 1, 2.

At degree 1=0,1,2, Legendre polynomials and its derivatives are

1
(atl=0)  P%cosf)=1— —
0 \/z

dPJ(cosb) ~
o

— 0

3
(atl=1)  P)(cos) = cos® — \/;COSH

dP%(cosO 3
% =—sinf — —\/;sinﬁ

3
Pl1 (cosf) =sinf — \/gsiHQ

dP; (cosb) \/§
—Qa - cosf — ZCOSH

(atl=2)  PY(cos) = % (3cos*0—1) — %\/g (3cos®0-1)

dPS(cosB)

5
70 :—3c039sin9—>—\/;3cosesin9

5
P;(cos®) = 3sinf cosh — E?)sine cos0

dPl(cosb /
#:3c0329—> i3c032(9
do 12

5
P5(cosf) = 3sin* 0 — ESsinZH

dP%(cosf
A1) _ 4 6inoo — \/23sin20
do 48

where the arrows — represent normalization and the normalized results are written un-
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naturally to clarify the effect of normalization. Now, with those initial values, we make use
of recursive formulae for [ > 2.
At a certain degree [, we calculate P;" and dP;"/d6 for m =0,1,---,1. At m = [, from

formulae of Legendre polynomials, we can obtain

P}(cos8) =(21 - D!sin'0 (B.20)
dPll(cose) -1
T =2]-1)!"lcosOsin'~ "0
0
== P{(cos0) (B.21)

where

@l-N'=@2l-1)2l-3)2]1-5)---3 1.

Form=1-1,i.e., Pll‘l, using the equation (B.20) and this recursive formula

(I-m)cosOP" - (I+ m)P/", +sir1t9leJrl =0 (B.22)

at m=[—1yields

(I-(I-1)cosOP, ' = (I+(-1)P})"} +sinfP! =0
o cost9Pll_1 -21- 1)Pllj + sinHPll =0
& cosOP|™ = @I-1)[@U-1-Disin"' 0] - sing |21~ Dlisin'0|  (from (B.20))

= (21-1)(21-3)!sin'"' 6 —sin6 [(21 — 1)!!sin’9]
1

Y IR Ll [(21— 1)!!sin19]
sinf
1
= (ﬁ —sinH) 21- 1)!!sinlt9
_ cosZGPl
"~ sing U

Therefore, Legendre polynomial Pll_1 is
-1 cosf
P;""(cosf) = ——P; (cosb) (B.23)
sinf

where although we do not consider the case of cos@ = 0 this numerical calculation pro-

vides reasonable results at 6 = /2. With Pll and Pll_l, we calculate le (m=0,1,---,1-2)
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recursively. This recursive formula

PM2—2(m+ )= P" + (1= m) I+ m+ 1P} =0 (B.24)

cos@
sinf

offersle form=1-2,1-1,...,1,0:

1 cosf
P"(cos0) = 2(m+1)—— P! (cos0) — P]"**(cos0) | . B.25
st = i ma |2 Vsng T (cosO)— B cost) (B.25)
Moreover, using the definition of Legendre polynomials:
m o ma[d™Pi(cosO)
Pl (COSQ)—SIH 0 W (B26)

we also acquire the derivatives dP;"/df for m=1-1,1-2,---,0 recursively like

d™P;(cosB)
. me
st ( dcosgm ))
del(cose))+S, dcosf (d’"”Pl(cosH))

dPj"(cost) 4
do _E(

m

0
dcos@m n do dcos@m+l
cosf . . d’”Pl(cose)) el (d’”“Pl(cose))
sinf st 9( dcosOm sin”0 dcosgm+1

0
cose P["(cosb) — le“ (cosB).

= mcosOsin” 10 (

=m

=m

Sin

In conclusion, for the case of (a) 6 # 0,7, we can obtain all the Legendre polynomials and

the derivatives.
(b) Legendre polynomials and its derivatives at 8 = 0,7

Here, we consider the case of (b) 8 = 0,7. Because of the parity of Legendre polynomials
and the derivatives (cf. the equation (B.18) (B.19) ), we only explain the case of @ = 0. From

the definition of Legendre polynomials:

amp
Pl’"(COSG:COSO:I):sin’”O( ! )

dcosg™
o [m # 0]
pP;(1) [m=0]
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and the characteristics of Legendre polynomials:

P;(1)=1, (B.27)

we obtain Legendre polynomials at § =0

m 0 [m # 0]
Pl 1) = 1 normalization \/212T1 (m = 0] . (B.28)

As regards the derivatives, using the definition of Legendre polynomials (B.26) yields

dpm "
Y i (sinmgﬂ)
do ~ do dcos0™
dmp dcosf d™p
B . m—-1 l i :
= mcos0sin™ HW +sin™6 df dcosfm+l
de dm+1p
) 1 I . 1 !
= mcosOsin™ Hm—smm+ HW
o=0 [0 [m #1]
Tl e

To see dPll (cos0)/d0O at m = 1 andf = 0 carefully, we consider the following recursive for-

mula
(I-m)cos@P" — (I+ m)P" | + sinHle+1 =0. (B.29)

At m =1, the formula becomes

(I-1)cosOP; — (I+1)P; | +sinfP; =0

and operating % on it yields

Pl dp!

(I-1) |-sin6P! +cos€h —(+n—LELy
! dao do

P2

cosOP? +sinf—L | =0,
! do

When 0 =0, we get

1

I 1dpl I 16“)’1‘1 OP2=0
(—)%—(+)d9 +cosOP; =0.

From (B.28), because Plz(l) =0 (I >2), the equation turns into

dPll l+1dPll_l
do 1-1 db
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As aresult, we can obtain dPll (cos0)/d6 at m =1, 0 = 0 by the following recursive method,

dP] [+1dP] |

a6 1-1 do
1411 ar; ,
1-11-2 db

I+ DI--3 dp;
T (U-1D(U-2)---2-1 db
_l(l+1)

cos(@ =0)

1+
2

normalization L(I+1) [(2I+1)(I-1)!
2 200+ 1)!

_ @I+DI+1])

Vs —

Consequently, the derivative of Legendre polynomial is

ar"(1) [m#1]

0
= ) (B.30)
do { (21+1)81(l+1) [m — 1]

To summarize, the normalized Legendre polynomials and the derivatives at 8 = 0 are

0 [m # 0] dp"(1) {0 [m #1]

P (M) :{ /212_+1 m=0] 40 /(21+1§3l(l+1) m=1]
B.4 Integrate through longitude ¢ and latitude 6

With obtained Legendre polynomials and the derivatives, we calculate the summation
(B.9) and (B.10). As regards the terms about toroidal motion (the case of poloidal mo-
tion can be described similarly), u- C{“* (B.11), the product of it and r is (this expression is

just for clear description)
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6Pl’"(cos 0)

r(u-Cf**) = uQ%le(cosH) (—icosm¢p —sinme) - u(,,( 5

) (cos m¢p — i sinmgp)

m . m ) 0P]"(cosb)
- SinHPl (cos ) [ug(e, $)sin m¢] - T) [u¢(9, ¢) cos m(/)]
.| m 0P/"(cosb) .
—! inGle(cose) [ug(8, ¢) cos mep] + (T) [ (6, P)sin mcp]] .

(B.31)

Operating integral fozn d¢, that is, numerically summation Z?Sgo (0.17/180), on the prod-

uct yields (we extract a part of every term associated with ¢)

on 3600
f [ug (0, p)sinmp|dp = > [ug(8, p(i))sinmep(i)] (0.17/180) = TS(m, 6)
0

i=1

2n 3600
f [ugp(®, p)cosmep|dp = Y [up®, $(i)) cos mep(i)] (0.17/180) = PC(m, 6)

0 i=1

3600

Y [ug(®, ¢p(i)) cos mep(i)] (0.17/180) = TC(m, 6)

i=1

2m 3600

j [ugp(O, p)sinmep| dp = Z [ug (0, p(i)) sinmep(i)] (0.17/180) = PS(m, 0)
0 i=1

21
fo [ug (6, p) cosmep| dp ~

where two-letter functions represent their component, T:ug, P:uy, S:sin, C:cos, and ¢(i) =

0.1i-7/180. At this point, f5" r (u-C™*)deis

Ole(cos 0)
00
OPl’”(cos 0)
00

2
f r (€} dp = = P["(cos0) TS(m, 0) - (
0

0 )PC(m, 0)

—i | PM™(cos0) TC(m, 0) + ( )PS(m, 9)] .
sin0

Next, operating integral of , [’ sin6d®, i.e., numerically summation ¥ }%9' (0.17/180), we
can write the result in a simple form by using parity of Legendre polynomials and the

derivatives as follows. In respect to the terms with T'S, using the parity of Legendre poly-

nomials (B.18), we can change it like this
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/4

- —P’”(cos@) TS(m, 0)sin0do
0 Sin 0

—f mP/"(cos®) TS(m, 6)do
0

T

/2

— [f mP["(cos0) TS(m, 6)d6 + mP]"(cos0) TS(m, H)dB]
0 /2

/2

/2
=— [f mP/"(cosf) TS(m, 6)d6 + mP;"(cos(mw —0)) TS(m, (n—@))d@]
0 0

/2
—j m[P]"(cos0) TS(m, 0) + P]"(—cos0) TS(m, (n —0))] dO
0

/2
—f mP]"(cos0) | TS(m, 0) + (~1)"*" TS(m, (x - 0))| o

900
— Y mP"(cos6())) [TS(m 0(j)) + (=)™ TS(m, (7 — 9(])))] (0.17/180)
j=1

- mP{"(cos(0 = ) TSm, (6 = 5)(0.1x/180)
= TRel(m)

where 0(j) = 0.1 -7/180 and the function T Rel(m) depends only on the order m. Simi-
larly, using the parity of Legendre polynomials (B.18) and the derivatives (B.19), the terms

with PC, TC, and PS become

m Gle(cosH)
—f (—)PC(m, 0)sin0d6
0 00

fﬂ/Z( ale(cose)
0

30 )PC(m, 0)sin0do

T2 e (OPC0SO) .
—f (-1 (T)PC(m,(n—G))sm(n—H)dH
0

2 le(COSQ) [+m+1
= —f sinf (T) [PC(m, 0)+ (-1 PC(m, (n—@))] dao
0

900 6P (cos0)
—Zsm ( 54 )[PC(m 0)+ (-1 pC(m, (n - 9))](0 17/180)
0P["(cos(6 = 3)
—sm(e_—) ( T 2l PC(m, (9:%))(0.17:/180)

= TRe2(m),
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T

—Pm(cos 0) TC(m, 0)sin0d6O
0 sm@

/2
:f mP|"(cos0) TC(m, 9)d6+f m(—l)”mle(cosG) TC(m, (1 —0))do
0 0

/2
:f mP{"(cos6) | TC(m, 0) + (~1)"*" TC(m, (- 0))| do
900

~ Y mP"(cos6(;)) [TC(m 0(j) + (=)™ TC(m, (1 - 9(])))] (0.177/180)
j=0

+mP]"(cos(0 = 2)) TCm, (0 = 2))(0.17/180)
= TIml(m),

00
w2 ale(COSH)
_fo ( 96
w2 0P™(cos0)
-1 l+m+1( l
+f0 (-1 0

n aplm(COSQ)
f (—)PS(m, 0)sin0do
0

)PS(m, 0)sin0do
) PS(m, (m—0))sin(zt—0)do

/2 P™M(cosB)
:f sinH(lT) [PS(m, 0) + (=)™ pS(m, (n—H))] do
0

900 opPIm 0
~ Z sin@ ( ;COS )) [PS(m 0) + (1) pS(m, (r — 9))] (0.177/180)

ale(COS(Q =)
00

="
+sin(0 = 2)

b3
PS(m, (0 = E))(O.lﬂ/180)

=TIm2(m)

where the letters of the resulted functions represent T:toroidal, P:poloidal, Re:Real,

Im:Imaginary, and (1 or 2):the number of the function. In conclusion, r (u-C™) is

calculated

2m
ff u-C"") dpsinfd6 = TRel(m) + TRe2(m) — i [TIml(m) + TIm2(m)]

= [TRe(m)] —i[TIm(m)]

_ (sz ”l(l; 1 ) r (from (B.5))
r
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and we can thus describe cl’” as

.
'=————I[-TR -iTI : B.32
C nl(l+1)[ e(m) —i TIm(m)] (B.32)

Likewise, we can calculate the coefficient of poloidal motion, b;". The important point is
that we canuse T'S, TC, PS, and PC calculated above again, which reduces the calculation

time. The r (u-B[™*) accordingly becomes

i 6Pl’”(cos6)

r(u-B™) =up (T

(Gle(cose)
00

_[{OP]"(cos0)
! [( 30

[dg OPIm(COSH)

( 00
_ [(OPI’”(COSB)

) (cos m¢p — i sinmep) + uy %le(cos 0) (=i cos m¢ — sin mep)
) [ug (6, p) cos m¢p] — %Pl’n(cosm (10, p)sinme|

) [1g (0, p)sinmep| + %le(cos 0) [ug (8, p) cos me]

__M pm
) TC©, §) ~ = P{"(cos0) PS(, ¢)

_ m om
i 30 ) TS, ¢)+ sinHPl (cos@) PC(6, (/))]

[singdo [T 0 (GP,’”(COS 0)
0o 30

) TC(, ¢) — mP;"(cosO) PS8, ¢)

) (ale(COSH)
—i|sinf | ——

00
= PRel(m)+ PRe2(m)—i[PIml(m)+ PIm2(m)]
= [PRe(m)] —i[PIm(m)]

Tl +1)
:(bl 3 )r

) TS, ¢) + mP"(cos0) PC(H, (p)] do

JSd¢ Jsin6do

where — and represent operating fozn d¢ and [y sinfd6 on the equation, re-

spectively. Hence, we can get b;"

m _ r g
b," = 20D [PRe(m)— i PIm(m)]. (B.33)

Finally, we acquire the coefficients of toroidal and poloidal motion, ¢;* and b;", and
thus the degree power spectra of toroidal and poloidal motion, o7 (/) and op (I), from the

equation (B.1) and (B.2).
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B.5 Formulae of Legendre polynomials

This is the list of definitions and formulae we used in this paper. The references are Ter-
azawa (1983) (in Japanese) and Moriguchi (1987) (in Japanese).

Definition of Legendre function:

<l/2
K (21 - 25)' 1—
Pi(cosf) = Y (-1)° 52 B.34
1(cosf) S;)( U= - 291 (B34
Legendre function at the endpoint:
1 [0 =0]
Pj(cos0) = B.35
1( ) {(_1)1 0= 7] (B.35)
Definition of Legendre polynomials:
) d™P;(cosB)
P/"(cosf) =sin™ HW (B.36)
Definite integrals of Legendre polynomials:
1 0 [n#1]
f P (x) P (x)dx = { srm_ g (B.37)
-1 elni-mi M=
T m? dP"(cos) dP]"(cos0) 0 [n#1]
——P"(cosO)P]" (cosO) + —=2 sinfdo =
fo sin?g " : do do AL [n=1]
(B.38)
Recursive formula of Legendre polynomials:
(I-m+1)P}, —@2l+1)cosOP;" + (I+m)P;" =0 (B.39)
(1-m)cosOP" — (I+ m)P]" +sinfP"*' =0 (B.40)
0
P2 ~2(m+ 1) PP 4 (L= m)(L+ m+ DP]" =0 (B.41)
Parity of Legendre polynomials:
P (cos(rr —0)) = P}" (- cos8) = (-1)*™P" (cos0) (B.42)
dP;"(cos(m - 0)) _ dP;" (cos(m - 0)) _ (_pleme dP}"(cosb) (B.43)
d(m—0) do do ’

Legendre polynomials for order m = [:

P}(cosf) = (21-1)!sin’ 0 (B.44)
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where
l-D'=2I-1@2I-3)2l-5)---3-1






Appendix C

Effect of plate geometry on the
toroidal /poloidal ratio

Here we investigate the effect of various plate geometries on the toroidal/poloidal ratio.
We consider the effect of the size, aspect ratio, roundness of plate and the ratio of trans-

form fault to ridge and subduction zone.

C.1 Effect of plate size

First, we consider the effect of plate size on the toroidal/poloidal ratio. We make four
virtual square plates with a different plate size (Large: 60° x60°, Small: 30° x30°, Tiny: 10° x
10°, Micro: 2°x2°) and impose a straight motion by putting the same Euler pole (1°/Myr) at
the North Pole (Figure C.1) or a spin motion by putting the same Euler pole (1°/Myr) at the
center of the plate (Figure C.4). The results of spherical harmonic expansion (2 < I < 1000)
are Figure C.2, C.3, C.5 and C.6.

With a straight motion, the correlation between the plate size and the toroidal/poloidal
ratio is weak compared with that of a spin motion. Although the result of the small plates
are almost constant, they are expected to take the small peaks at higher spherical har-
monic degrees than 1000. Figure C.3 shows [~! decay, which is a common feature of the

toroidal-poloidal spectrum in plate tectonics (O’Connell et al., 1991). Another notable fea-

119
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Fig. C.1 Straight motion of ideal plates with a different plate size. The size: [top, left]
Large: 60° x 60°; [top, right] Small: 30° x 30°; [bottom, left] Tiny: 10° x 10°; [bottom,
right] Micro: 2° x 2°. All the plate has the same Euler pole at the North Pole and orange
vectors represents the induced eastward motion.

ture is a soaring of spectrum of small plates, indicating that smaller plate might affect the
observed toroidal/poloidal ratio at higher degrees.

With a spin motion, similarly to the case of straight motion, the plate size affects the
spherical harmonic degrees taking the peak of the spectra, i.e., the smaller the plate, the

higher the spherical harmonic degrees of the peak of the spectrum. One notable feature
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Size Effect with Straight Motion
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Fig. C.2 Toroidal/poloidal ratio of plates with a different size in the case of a straight
motion. Blue, green, orange and red lines represent the result of Large, Small, Tiny and
Micro, respectively.

about the power spectra is that spectra of small plates (bright blue and orange lines in
Figure C.6) exhibit soaring instead of I~! decay. Moreover, considering a fast spin motion
of a small plate (Figure 3.3), the magnitude of the spectra (dashed bright blue and orange
lines in Figure C.6) is comparable to that of the large plates (red and blue lines in Figure
C.6)and the difference between the observed toroidal and poloidal power spectra (gray
and black line in Figure C.6). Therefore, it is conceivable that the spin motions of small
plates affect the observed toroidal/poloidal ratio at high spherical harmonic degrees as we
showed in Figure 2.3. From these results, we argue that there is a correlation between the
plate size and the toroidal/poloidal ratio particularly when the plate holds a spin motion.

Accordingly, in order to comprehend the effect of plate size especially with a spin mo-

tion, we focus on the Easter plate, at which an active spin motion is observed in previ-



122 Appendix C Effect of plate geometry on the toroidal/poloidal ratio

Plate Size Effect on Power Spectrum (Straight Motion)
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Fig. C.3 Toroidal-poloidal power spectrum of plates with a different size in the case of
a straight motion. Solid and dashed lines represent toroidal and poloidal power spec-
trum, respectively. Blue, green, orange and red lines represent the result of Large, Small,
Tiny and Micro, respectively.

ous work (Schouten et al., 1993), and extract a part of the observed Euler pole compo-
nent which passes the center of the Easter plate, w¢ in Section 3.1. Then, we impose only
the extracted Euler pole on the Easter plate to generate the spin motion and calculate the
toroidal/poloidal ratio. Please note that in this case the other plates do not move and solely
the Easter plate holds its spin motion by excluding the straight component. The result is
Figure C.7. Figure C.7 shows that the spin motion of the Easter plate clearly increases the
toroidal/poloidal ratio at high spherical harmonic degrees (I > 100), which reinforces a
strong correlation between the size of plate with a spin motion and the toroidal/poloidal
ratio. Please ensure that since the toroidal-poloidal decomposition is a linear analysis the

result of the whole toroidal/poloidal ratio from observed global plate motion is summa-
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Fig. C.4 Spin motion of ideal plates with a different plate size. Regarding the size of
plate, please refer to the caption of Figure C.1. All the plate has the same Euler pole
at the center and orange vectors represents the induced counterclockwise spin motion
(we put a large circular vector in the case of Micro plate for clarity).

tion of that of a part of the plate motion, such as the spin of the Easter plate of this example.
Therefore, we conclude that there is a clear relationship between the spin motion of indi-
vidual plate and the toroidal/poloidal ratio. As a future work, we need to investigate how

important the spin motion of small plate is in the observed toroidal/poloidal ratio.
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Size Effect with Spin Motion
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Fig. C.5 Toroidal/poloidal ratio of plates with a different size in the case of a spin mo-
tion. Blue, green, orange and red lines represent the result of Large, Small, Tiny and
Micro, respectively.
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Power Spectrum (deg/Myr)

Plate Size Effect on Power Spectrum
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Fig. C.6 Toroidal-poloidal power spectrum of plates with a different size in the case ofa
spin motion. Blue and red lines represent toroidal and poloidal power spectrum of spin
motion of “Large” plate, respectively. Bright blue and yellow lines represent toroidal and
poloidal power spectrum of spin motion of “Tiny” plate, respectively. In the model plate
cases, the rotation rate of solid and dashed lines are 1 and 10 degree/Myr, respectively.
Gray and black lines are observed toroidal and poloidal power spectrum, respectively
(Figure 2.2).
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Spin Motion of the Easter Plate Only
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Fig. C.7 Toroidal/poloidal ratio of the spin motion of the Easter plate. We analyze only
the extracted Euler pole on the Easter plate to generate the spin motion and calculate
the toroidal/poloidal ratio. Please note that in this case the other plates do not move
and solely the Easter plate holds its spin motion by excluding the straight component.
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C.2 Effect of aspect ratio

In order to examine the effect of plate aspect ratio upon the toroidal/poloidal ratio, we im-
pose straight (Figure C.8) or spin motion (Figure C.11) on one virtual rectangular plate on
the Earth which we change its aspect ratio from 1 (square) to 3 with keeping the area al-
most same. The results of spherical harmonic expansion (2 < I < 100) are Figure C.10 and
C.13. We also plot the toroidal-poloidal power spectra (Figure C.9 and C.12) since the mag-
nitude of each power spectra is important to change the ratio of global toroidal/poloidal
ratio (Figure 2.3).

When we impose solely straight motion on a rectangular plate by putting the same Eu-
ler pole (1°/Myr) at the North pole (Figure C.10), the toroidal/poloidal ratio, especially the
maximum value, increases to approximately 8 in the case of aspect ratio 3 as the correla-
tion was pointed out by Olson and Bercovici (1991). The reason of the correlation is that,
as the aspect ratio increases, the length of plate boundary with the strike-slip motion in-
creases and that with the divergent-convergent motion decreases (Figure C.8).

When we put a spin motion on a plate by imposing the same Euler pole (1°/Myr) at
the center of the plate (Figure C.13), generally there is a correlation between the aspect
ratio and the toroidal/poloidal ratio, yet the amplitude of the spectrum is less than that
generated by straight motions. This feature is shown more clearly in power spectra (Figure
C.12), in which the amplitude of toroidal-poloidal spectra is almost same. Another notable
characteristic is that the high amplitude in the result of spin motion with the aspect ratio
2.5 and 3 continues to a higher spherical harmonic degrees, i.e., smaller scale of motions,
compared with the result of the straight motion, which implies that the short sides of rect-
angular plates generate a high toroidal/poloidal ratio in the case of spin motion. Faster

motion along the short sides because of higher aspect ratio, i.e., longer distance from the
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Aspect: 1 Aspect: 1.5 Aspect: 2

Aspect: 2.5 Aspect: 3

Fig. C.8 Straight motion of ideal plates with a different aspect ratio. Top: left to right,
the aspect ratio is 1,1.5 and 2. Bottom: left to right, the aspect ratio is 2.5 and 3. The
aspect ratio is defined as the ratio of “the length of a plate parallel to the plate motion”
to “that normal to the plate motion”. All the plates have the same area.

Euler pole at the center of the plate, might produce the higher toroidal/poloidal ratio. An-
other features of the result is that, whereas the amplitude of spectra of the aspect ratio 2.5
and 3 is large, that of the aspect ratio 1,1.5 and 2 does not vary so much, indicating that
the effect of aspect ratio with spin motion is not strong especially when we compare it with
the result of the straight motion.

Though the correlation between the aspect ratio of a plate with a spin motion and the
toroidal/poloidal ratio is not strong, we confirm that generally there is a correlation be-
tween the aspect ratio and the toroidal/poloidal ratio. In order to understand the effect
of the aspect ratio on the observed toroidal/poloidal ratio, we plot the aspect ratio (the
length of a plate parallel and normal to the observed plate motion) and its plate size in

Figure C.14. Figure C.14 demonstrates that although several plates hold a high aspect ra-
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Power Spectrum (Straight Motion)
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Fig. C.9 Toroidal-poloidal power of the plate with a different aspect ratio in the case
of straight motion. Orange and green lines represent the result of toroidal and poloidal
spectrum of the aspect ratio 1, respectively. Blue and red lines represent the result of
toroidal and poloidal spectrum of the aspect ratio 3, respectively.

tio, there is no systematic correlation between the aspect ratio and the plate size. Thus, the

aspect ratio of plate geometry does not induce the increase in the toroidal/poloidal ratio.



130 Appendix C Effect of plate geometry on the toroidal/poloidal ratio

Aspect Effect with Straight Motion

8
—Aspect: 1
7 | —Aspect: 1.5
—Aspect: 2
6 | —Aspect: 2.5
—Aspect: 3 ﬂ

o

w

N

Toroidal power/Poloidal power
N

[EY

o

10
spherical harmonic degree

Fig. C.10 Toroidal/poloidal ratio of the plate with a different aspect ratio in the case of
straight motion. Dark-blue, light-blue, green, orange and red lines represent the result
of the aspect ratio 1,1.5,2,2.5 and 3, respectively.
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Fig. C.11 Spin motion of ideal plates with a different aspect ratio. Please refer to Figure
C.8 for the explanation.
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Fig. C.12 Toroidal-poloidal power of the plate with a different aspect ratio in the case
of spin motion. Orange and green lines represent the result of toroidal and poloidal
spectrum of the aspect ratio 1, respectively. Blue and red lines represent the result of
toroidal and poloidal spectrum of the aspect ratio 3, respectively.
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Fig. C.13 Toroidal/poloidal ratio of the plate with a different aspect ratio in the case of
spin motion. Dark-blue, light-blue, green, orange and red lines represent the result of
the aspectratio 1,1.5,2,2.5 and 3, respectively.
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Fig. C.14 Aspectratio of each plate as a function of plate size. Note that small plates in
this figure (left side) correspond to high spherical harmonic degrees in Figure 2.3 (right
side).
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C.3 Effect of roundness

When a plate has a spin motion, as the geometry of the plate becomes circular, i.e., in-
creases the roundness, the toroidal power increases since the vorticity (toroidal compo-
nent) along the plate boundary is generated but the divergence (poloidal component) al-
most vanishes (Figure 2.5). To confirm the correlation between the roundness of a plate
with a spin motion and the toroidal/poloidal ratio, we consider three virtual plates on
the Earth, hexagon (six sides and angles), octagon (eight sides and angles) and dodecagon
(twelve sides and angles) and impose spin motion by putting the same Euler pole (1°/Myr)
at the center of the plate (Figure C.15). The result of spherical harmonic expansion (2 < [ <
100) is Figure C.16 (power spectra) and C.17 (ratio). Figure C.17 shows that, although the
minimum value of the spectra of the ratio does not vary, the maximum amplitude corre-
lates with the roundness although Figure C.16 exhibits that the roundness does not change
the amplitude of the power spectrum and, thus, the effect of roundness on the observed
toroidal/poloidal ratio would not be strong. In order to consider the effect of the round-
ness on the observed toroidal/poloidal ratio, in PB2002 we calculate the length from the
center of a plate to the plate boundary, compile the data by each plate and obtain how
disperse the length from the average, i.e., standard deviation. Please note that the average
length of a plate represents the radius of the plate size. In order to compare the deviation
of each plate, we calculate the coefficient of variation (= standard deviation / average).
The smaller the coefficient of variation, the higher roundness the plate geometry has. The
result is Figure C.18, demonstrating that there is no systematic decrease in the coefficient;
therefore, the roundness is not the cause of the increase in the observed toroidal/poloidal

ratio.
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Fig. C.15 Ideal plate with a different roundness. The geometry of those plates is

hexagon, octagon and dodecagon (left to right). All the plates have the same Euler pole
at the center.
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Fig. C.16 Toroidal-poloidal power spectrum of the plate with a different roundness.
Orange and green lines represent the result of toroidal and poloidal spectrum of
hexagon, respectively. Blue and red lines represent the result of toroidal and poloidal
spectrum of dodecagon, respectively.
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Fig. C.17 Toroidal/poloidal ratio of the plate with a different roundness. Blue, green
and red lines represent the result of the hexagon, octagon and dodecagon, respectively.
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Fig. C.18 Coefficient of variation of each plate in PB2002. For comparison, we delin-
eate three lines to represent the coefficient of variation of a square (~ 0.1), hexagon

(~0.06) and dodecagon (~ 0.02).
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C.4 Effect of ridge-transform fault system

Because the Earth is sphere, the geometry of a plate receives its influence and, as a re-
sult, the geometry of subduction zone, for example, becomes arc instead of a straight
line (e.g., Laravie, 1975). Another example which is expected to be more influential in
the toroidal/poloidal ratio is ridge-transform fault system, in which a ridge is divided into
small parts by transform faults. This geometry might affect the toroidal/poloidal ratio es-
pecially at high spherical harmonic degrees. To estimate the effect, we investigate ridges,
subduction zone and transform faults in PB2002 and compile the number of each kind of
plate boundary with its length. The result is Figure C.19. There are several notable fea-
tures. First, although long subduction zones (mainly over 1000 km) exists (blue line in
Figure C.19), ridge and transform fault are generally shorter than several hundred kilome-
ters (red and green lines in Figure C.19, respectively), indicating that a sufficient length
(mass) is necessary for plate to subduct and, in contrast, a long ridge cannot exist and is
divided into short parts by short transform faults. Second, the ratio of transform fault (as-
sociated with toroidal component) to ridge and subduction zone (associated with poloidal
component) (orange dashed line in Figure C.19) does not show a systematic increase until
the plate boundary length becomes shorter than several ten kilometers. Hence, the effect
of division of ridge by transform fault is not directly related to the increase in the observed
toroidal/poloidal ratio in Figure 2.3 although the effect may induce the increase in the

toroidal/poloidal ratio at very high spherical harmonic degrees, such as over 400.
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Fig. C.19 The number of plate boundaries as a function of the length. The horizontal
axis means the length of plate boundary and the left vertical axis shows the number of
the plate boundary. For example, if the number of ridges with the length of 90 km in the
horizontal axis is 30, it means that there are 30 ridges whose length is between 90-100
km. The value at 1000 km in the horizontal axis means the number of plate boundaries
whose length is more than 1000 km. Green, red and blue lines show the number of
transform faults, ridges and subduction zones, respectively. The right vertical axis and
orange dashed line represent the ratio of the number of transform faults to that of ridges
and subduction zones.



