T2R2 東京科学大学 リサーチリポジトリ Science Tokyo Research Repository

論文 / 著書情報 Article / Book Information

題目(和文)	 高層鉄骨架構に配置された座屈拘束ブレースの機構安定性
Title(English)	MECANICAL STABILITY ASSESMENT OF BUCKLING RESTRAINED BRACES DISTRIBUTED IN HIGH-RISE STEEL STRUCTURES
著者(和文)	小﨑均
Author(English)	Hitoshi Ozaki
出典(和文)	学位:博士(工学), 学位授与機関:東京工業大学, 報告番号:甲第10154号, 授与年月日:2016年3月26日, 学位の種別:課程博士, 審査員:竹内 徹,小河 利行,坂田 弘安,堀田 久人,五十嵐 規矩夫
Citation(English)	Degree:Doctor (Engineering), Conferring organization: Tokyo Institute of Technology, Report number:甲第10154号, Conferred date:2016/3/26, Degree Type:Course doctor, Examiner:,,,,
 学位種別(和文)	博士論文
Type(English)	Doctoral Thesis

高層鉄骨架構に配置された座屈拘束ブレースの機構安定性

MECANICAL STABILITY ASSESMENT OF BUCKLING RESTRAINED BRACES DISTRIBUTED IN HIGH-RISE STEEL STRUCTURES

平成二十七年度

東京工業大学大学院理工学研究科

建築学専攻

小﨑 均

目次

第1章	序論	1
1.1	研究の背景	2
1.2	既往の研究	4
1.3	研究の目的	6
第2章	二方向地震入力を受ける制振建物のブレース構面外応答	11
2.1	序	12
2.2	解析モデルの設定	13
	2.2.1 部材のモデル化	14
	2.2.2 各解析モデル	14
2.3	水平二方向入力地震動の設定	19
2.4	解析モデルの性状分析	22
	2.4.1 立体固有值解析結果	22
	2.4.2 多方向静的增分解析結果	22
2.5	水平二方向地震動入力時刻歴応答解析による応答変形の同時性評価	27
	2.5.1 応答変形同時性の評価法	28
	2.5.2 応答変形同時性の評価	28
	2.5.2.1 偏心による影響	28
	2.5.2.2 建物高さによる影響	32
	2.5.2.3 架構の崩壊形式による影響	33
2.6	結	37
第3章	接合部を含む座屈拘束ブレースの機構安定条件	39
3.1	序	40
3.2	機構安定条件の誘導	41
	3.2.1 機構安定限界の誘導	41
	3.2.2 接合部を含めた BRB の最大耐力評価式の誘導	45
	3.2.3 機構安定条件式の誘導	51
3.3	強制構面外変形下の繰返し載荷実験	54
	3.3.1 実験概要	54
	3.3.2 試験体概要	56
	3.3.3 実験結果	58
3.4	提案安定条件式の妥当性の検討	61
3.5	結	66

第4章	多様な形式の座屈拘束ブレースの機構安定条件	75
4.1	序	76
4.2	検討する BRB の概要	77
4.3	強制面外変形下の座屈拘束ブレースの繰返し載荷実験	79
	4.3.1 実験概要	79
	4.3.2 試験体概要	81
	4.3.3 実験結果	85
4.4	機構安定条件式の精度評価	92
	4.3.1 安定限界軸力の評価	92
	4.3.2 評価値と実験値の比較	93
4.5	結	97
第5章	座屈拘束ブレースの安定性能曲線を用いた機構安定評価手法	99
5.1	序	100
5.2	面外座屈安定性能曲線による評価の手順	101
5.3	BRB の特性値	103
	5.3.1 設計変数特性値	104
	5.3.2 評価用特性値	104
5.4	設計変数特性値の検討範囲	108
	5.4.1 BRB 本体に関する設計変数特性値の検討範囲	108
	5.4.2 BRB の接合部回転剛性に関する設計変数特性値	109
5.5	弹性全体座屈荷重	114
	5.5.1 全体座屈荷重の検討モデル	114
	5.5.2 BRB 全体の座屈荷重評価	115
5.6	設計荷重時の拘束材端部の面外変位	117
	5.6.1 初期不整値の検討	117
	5.6.2 座屈前変形による変位の検討	118
5.7	設計用偏心曲げモーメント	121
	5.7.1 接合部の座屈耐力式	121
	5.7.2 接合部座屈荷重の評価	121
	5.7.3 BRB の芯材突出部に生じる偏心曲げモーメントの評価	122
5.8	設計用付加曲げモーメント	124
5.9	BRB 機構安定性の評価手法	127
	5.9.1 芯材突出部の設計用曲げモーメント	127
	5.9.2 拘束材端部の曲げ耐力	129
	5.9.3 面外座屈安定性能曲線	129
	5.9.4 評価用特性値による評価の精度	130

5.10	0 結	133
第6章	K 型配置された座屈拘束ブレースの機構安定設計	137
6.1	序	138
6.2	両端の接合条件が非対称な場合の機構安定条件の誘導	139
	6.2.1 接合条件が非対称な場合の機構安定評価式の概要	139
	6.2.2 接合条件が非対称な場合の座屈拘束ブレースの	
	崩壞時軸力一面外変位関係	142
	6.2.3 各種崩壊モードにおける拘束材端部回転ピンの場合の	
	接合部座屈荷重	152
	6.2.4 強制面外変形を受ける場合の崩壊時軸力評価	153
	6.2.5 接合条件が非対称な場合の座屈拘束ブレースの安定限界軸力	154
6.3	大梁回転剛性を考慮した機構安定評価法の提案	158
	6.3.1 座屈拘束ブレース機構安定性評価法閾値	158
	6.3.1.1 各モデルに元づく接合部座屈軸力	159
	6.3.1.2 接合部座屈軸力による閾値の評価	161
	6.3.2 数値解析による評価モデルの検証	164
6.4	梁側接合部の回転剛性の評価	166
	6.4.1 解析モデル	166
	6.4.2 解析結果	169
	6.4.2.1 載荷点の面外変位	169
	6.4.2.2 回転バネ定数の算出	170
6.5	梁側接合部回転剛性算出のための簡易モデル	172
	6.5.1 簡易的な接合部回転剛性の算出方法	172
	6.5.1.1 大梁周りの水平剛性 _H K _{Rb}	172
	6.5.1.2 梁付接合部の GPL の水平剛性 $_{H}K_{Rg^{2}}$	175
	6.5.1.3 梁付接合部の回転剛性の算出	176
	6.5.2 FEM 解析との比較	177
6.6	結	178
第7章	超高層建物における座屈拘束ブレースの機構安定設計	181
7.1	序	182
7.2	片流れ配置された BRB の機構安定性の検討	183
	4.2.1 設置例1の検討	185
	4.2.2 設置例 2 の検討	187
7.3	K 型配置された BRB の機構安定性の検討	190
	7.3.1 K型配置された BRB の設計上の問題点	190

iii

	7.3.2	ブレースが取付く大梁せいが非常に大きい場合の検討	190
	7.3.3	通常のせいの大梁にブレースが取付く場合の検討	196
	7.3.4	高容量の BRB が通常の成の大梁に取付く場合の検討	203
	7.3.5	K型配置用 BRB の今後の課題	209
7.4	結		211

第8章	結論		215

本研究に関連して発表した論文

223 ~230

- a, b: 大梁回転剛性による上部接合部評価モデルの閾値
- a_r : 初期不整値: $a_r = a_t + e + s_r + (2s_r/L_m)\xi L_0$, a_t : 芯材の元たわみ, e: 加力部の偏心量, s_r : 芯材と拘束材間の片側クリアランス
- yri: 柱梁接合部側の拘束材端部における構面外変位増分
- y_{n2}: 大梁接合部側の拘束材端部における構面外変位増分
- yrel: 柱梁接合部側の拘束材端部における接合部の弾性変位成分
- yre2: 大梁接合部側の拘束材端部における接合部の弾性変位成分
- y_{rsl}: 柱梁接合部側の拘束材端部における接合部の回転ばねによる変位成分
- y_{rs2}: 大梁接合部側の拘束材端部における接合部の回転ばねによる変位成分
- *Ac*: 芯材断面積
- *B*_c: 芯材幅
- EI_B: 座屈拘束材の曲げ剛性
- *K_{Rb}*: ブレースの取付く大梁の部材軸周りの回転剛性
- K_{Rg1}: 柱梁接合部側ガセットプレートの回転剛性
- K'_{Rg2}: 大梁接合部側ガセットプレートの回転剛性
- K_{Rg2}: 取付く大梁の剛性も考慮した大梁接合部の回転剛性
- Lin: 芯材補強部の拘束鋼管内への貫入長
- *L_p*: 芯材の塑性化部長さ
- *M*^{*r*}: 構面外層間変位によって生じる拘束材端部における付加曲げモーメント
- *M*^{*B*}: 拘束材の曲げ耐力
- *M^g*: 軸力を考慮した接合部端部の面外曲げ耐力
- *M*": 拘束材端部の曲げ耐力
- N: 軸力
- N_{cu}: 推定芯材最大軸力
- N_a^B: 接合部端部の回転ばねや接合部剛性を考慮した BRB 全体の最小弾性座屈荷重
- N^r_{cr}: 拘束材端部回転ピンの場合の接合部弾性座屈荷重

- N_{lim}: 安定限界軸力
- N_{lim1}: 接合部が弾性の場合の安定限界軸力
- N_{lim2}: 接合部端部に塑性ヒンジが形成される場合の安定限界軸力
- N_{cu}: 芯材補強部(十字部)の終局耐力
- Ny: 芯材の降伏軸力
- *T*: 外部仕事
- Up: 塑性ヒンジの内力仕事
- Us: 接合部端部の回転ばね弾性エネルギー
- U_ε: 接合部の歪エネルギー
- γ_JEI_B: 接合部曲げ剛性
- δ₀: 構面外層間変位
- *δ*: 軸変形
- *ξ*₁*L*₀: 柱梁接合部側の接合部長
- ξ₂L₀: 大梁接合部側の接合部長
- Δθ_{rl}: 柱梁接合部側の接合部端部の塑性ヒンジ回転角
- Δθ_{r2}: 大梁接合部側の接合部端部の塑性ヒンジ回転角
- Δθ_{s1}: 柱梁接合部側の回転ばねによる接合部端部の回転角
- Δθ_{s2}: 柱梁接合部側の回転ばねによる接合部端部の回転角
- **Δ***u*_g: BRB 両端の節点間変位
- _čκ_{Rg1}: 柱梁接合部側の接合部無次元化回転ばね剛性比 (=K_{Rg1}ξ₁L₀/γ_jEI_B)
- _ξκ_{Rg2}: 大梁接合部側の接合部無次元化回転ばね剛性比 (=K_{Rg2}ξ₂L₀/γ_JEI_B)
- λr: 拘束材端部回転ピンの場合の接合部弾性座屈荷重に対する等価細長比
- *σ_{cy}*: 芯材の降伏応力
- *σ_{rv}*: 座屈拘束材の降伏応力

第1章 序論

1.1 研究の背景

近年,芯材の周囲に座屈拘束材を設けて全体座屈を防止した座屈拘束ブレース(以降 BRB)は,履歴型のエネルギー吸収部材として高層・中低層の新築建物から既存建物の 耐震補強まで広く採用されてきている。その一方で,接合部が不適切に設計された BRB では,地震時の層間変形により BRB に構面外の強制変形が生じた場合,接合部を含む 全体座屈が生じる危険性が指摘されている。

また,最近では10,000kNを超えるような,非常に大きな降伏軸力をもつ BRB が超高 層建物などで採用されるようになってきている(写真 1.1)。このような高容量の BRB を使用する場合は,周辺フレームと現場接合するためのボルト本数が増えるため,必然 的に接合部長さが長くなり,低容量の BRB に比べ,よりいっそう接合部を含めた構面 外不安定現象の発生が懸念される。

このように, BRB の性能を十分に発揮させるためには, 接合部の設計が重要なポイントとなり, 接合部の構面外の拘束条件が BRB の構面外機構安定性に大きく影響を与えることになるが, 接合部の設計は標準化されておらず, 実態としては設計者によってまちまちである。実際に設計されている接合部のディテールをみると, 補強プレートの有無を含めその配置の仕方は様々であり, BRB 接合部端部の構面外の拘束条件は, 完全固定に近いものからピン支持に近いものまで多種多様であるのが実態である。

また、実際の設計で採用されている様々なタイプの接合部ディテールにおいて、BRB の機構安定条件に寄与するのがどの部分であるかという情報が整理されていないので、 機構安定性を確保するために具体的にどのような配慮が必要なのか、一般には理解され ておらず、設計者は試行錯誤的に設計を行っているのが現状である。

さらに, BRB の座屈補剛形式には例えばモルタル充填鋼管を補剛材としたものや, ダブルウェブ型 H 型鋼あるいは二重鋼管を用いたもの等,様々なタイプのものがある が,これら多種多様な補剛形式の BRB の機構安定性を統一的に扱ってよいものなのか どうかの情報も整理されていない。

以上より、接合部も含めた構面外安定性も考慮した BRB の設計法は未だ整理されて

いないのが現状であり、これらのことを踏まえ、接合部の構面外の拘束条件が完全固定 からピン支持までを網羅し、様々な座屈補剛形式の BRB にも適用できる、BRB の構面 外機構安定性の条件式を整備することは、設計の実務において有意義であり、接合部設 計の現状と構面外剛性の定量的な把握も含めた、統一的な整理に基づく簡便な機構安定 評価手法の確立が必要と考えられる。

一方,一般に地震時において, BRB には構面外方向にも層間変形が生じると考えられる。これに関しては,水平二方向地震動入力下での鉄骨架構の応答性状に関して研究が行われているものの,具体的な BRB 付き鉄骨架構に対し,大地震時に構面内および構面外の最大応答変形が同時に発生し得るものなのかどうかについては検証が行われていないのが現状である。

安全側の措置としては、構面内変形と構面外変形の最大値が同時に起こるものとして 設計を行うことが考えられるが、合理的な設計としてどこまで同時性を考慮すべきかを 判断するには、建物に生じる構面内変形と構面外変形の同時性の定量的な評価が必要で ある。また、これに関しては地震動のレベルや架構形式の違いによる影響も考慮する必 要があると考えられる。

このように、二方向地震動入力下での鉄骨架構の応答性状を定量的に把握すれば、実務設計上有意義と考えられる。

写真1.1 超高層建物での高容量 BRB 採用例

1.2 既往の研究

座屈拘束ブレース(以降 BRB)は適切に設計すれば圧縮軸力下で座屈せず安定した履 歴特性を示す軸力材であり、中高層の鋼構造建物や RC 造を含む既存不適格建物の耐震 補強要素、制振部材として広く用いられている。その一方で、接合部が不適切に設計さ れた BRB では芯材が十分な塑性変形を発現する以前に、接合部を含めた材全体が構面 外不安定現象を生じることがしばしば報告され、その安定条件について数多くの研究が なされてきた^{1.1)~1.8}。

例えば Lin, Tsai ら^{1.9} は BRB 付き架構の繰返し載荷実験を通じ, BRB が安定した履 歴を示す前に接合部で曲げヒンジが形成され,いわゆる「首折れ座屈」を生じる場合が あることを指摘している。これに対し,木下,聲高ら^{1.10} は建物構面に配置された BRB に関し,接合部外端が回転剛で接合され,芯材降伏により拘束材端部に塑性ヒンジが形 成される条件(図 1.1(a))のもとで BRB の構面外座屈荷重を評価し,座屈拘束部のクラ イテリアに加え,接合部の安定条件式を提案し,実験による検証を行っている。また引 野,岡崎ら^{1.11} は拘束材端部に塑性ヒンジが形成された場合の接合部の必要剛性を提案 し,その妥当性を振動台実験を通じて検証している。

一方,竹内,山田ら^{1.12)},竹内,松井ら^{1.13)}は拘束材端部に芯材補強部が十分に貫入 していれば,ある程度まで曲げモーメントを伝達し得るものと仮定し(図 1.1(b)),BRB を接合部および拘束材端部に弾塑性回転ばねを有する線材モデルで評価し,有効座屈長 の検討を行ってきた。同様に C.Chou^{1.14)}らはピン接合部を持つ BRB に対し,拘束材端 部の曲げモーメント伝達能力に期待した安定条件の検討を行っている。

しかしながらこれまでの研究においては, 拘束材端部の曲げモーメント伝達能力の効果を考慮した, 様々な接合部端部剛性下における機構安定条件の導出には至っていない。

一般に地震時には構造物にブレース構面外方向にも応答変位が生ずるが,水平2方向 地震動入力下での鉄骨架構の応答性状は,酒井ら^{1.15},和田ら^{1.16}により検討が行われ ているものの,具体的な BRB 付き鉄骨架構に対し,大地震時に BRB の構面内および構 面外の最大応答変形が同時に発生し得るものなのかどうかについては検証が行われて

いないのが現状である。

また、この構面外層間変位によって生じる強制面外変形が上記 BRB の機構安定性に 与える影響についても十分考慮されていないのが現状である。

BRB には様々な座屈補剛形式があり,実際の設計でも様々なタイプの BRB が使われ ている。例えば,ピン接合された二重鋼管ブレースに関しては,安定条件に関する研究 が精力的に行われている^{1.17)~1.19)}。しかし,全ての座屈補剛形式の BRB 機構安定条件 を包括し,手計算レベルで評価できる簡便な設計式は未だ得られていない^{1.20)}。

図 1.1 座屈拘束ブレースの機構安定性の考え方

1.3 研究の目的

中高層の鋼構造建物やRC造を含む既存不適格建物の耐震補強要素,制振部材として 近年広く用いられている座屈拘束ブレース(以降BRB)の機構安定性を,手計算レベルで 評価できる簡便な設計法を確立することが,設計実務上必要と考えられる。そこで本論 文では,拘束材端部の曲げモーメント伝達能力,および様々な接合部剛性を考慮した BRBの構面外安定条件式を誘導し,さらにこの安定条件式に基づくBRBの機構安定性 を視覚的にかつ簡便に評価できる設計手法を提案する。また,超高層建物などで用いら れる大容量のBRBに対し,本設計法の適用性について論じる。

まず第2章では,BRB が配置された中高層鉄骨架構に対し,水平二方向地震動入力 下での時刻歴応答解析を実施し,BRB に構面内-構面外の最大水平応答変形が同時に起 こり得るかどうかについて検討する。構面内-構面外最大水平応答変形の同時性に関し ては,建物の平面的な剛心と重心のずれ(偏心率),建物の高さ(固有周期)による違 いが影響するものと考え,コア部およびBRBの平面配置,建物の高さを変化させた解 析モデルを設定し,同時性の検討を行う。また,梁降伏型か柱降伏型かによる差異等, 架構の崩壊形式が同時性に与える影響についても検討する。

第3章では,拘束材端部の曲げモーメント伝達能力,および様々な接合部剛性を考慮 した BRB の構面外安定条件式を誘導し,また,構面外強制変形の影響および接合部外 端の塑性化の影響について考える。さらに,様々な拘束材端部の曲げモーメント伝達能 力を有するモルタル充填鋼管型 BRB に対して構面外初期変位を与えた繰返し載荷実験 を実施し,拘束材端部の曲げモーメント伝達能力が機構安定性に与える影響を確認する と共に提案した安定条件式との比較を行い,その妥当性を検討する。

第4章では、モルタル充填鋼管型 BRB、鋼モルタル板型 BRB 以外の座屈補剛形式で あるダブルウェブ型のH形鋼を拘束材に用いた BRB およびピン接合された二重鋼管型

の BRB に対して構面外初期変形付き繰返し載荷実験を行い,その挙動を確認すると共に,第3章で定義した機構安定条件式の適用性を検証する。

第5章では、両端の接合条件が対称となる片流れ配置された BRB を対象として、過 去の実績に基づき BRB の主要な特性値の設定可能範囲を明示するとともに、これらと 安定条件との関係を BRB の容量に依らない一般的な形式で図として表現し、主要な特 性値がどの程度安定性に寄与しているかを視覚的に把握できるようにすることで BRB の機構安定条件を容易に評価できる方法を提案する。

第6章では,第3章から第5章で得られた知見を両端の接合条件が非対称となる K 型配置された BRB に適用し,その機構安定評価式を誘導する。また,BRB が取付く大 梁の回転剛性に応じた機構安定評価法の提案を行う。さらに,具体的な梁側接合部の回 転剛性の評価とその剛性算出のための簡易モデルの提案を行う。

第7章では,前章までの知見に基づき,実際の超高層建物に使用されたブレース容量 (ブレース降伏軸力)の大きな BRB の機構安定設計を行い,本評価手法の適用性を示す と共に,大容量 BRB に適した接合部ディテールおよびその補剛方法の提案を行う。

第8章では、ここで得られた知見を総括する。

第1章の参考文献

- 1.1) 井上一朗:鋼構造制振技術の現状と設計指針への期待 -鋼構造における制振とこれから- ②座屈拘束ブレースと接合部,2006 年度日本建築学会大会(構造部門(鋼構造))パネルディスカッション資料,pp.8-17,2006.9
- 1.2) 天畠秀秋, 聲高裕治, 井上一朗: 接合部を含む座屈拘束ブレースの構面外座屈荷
 重, 日本建築学会構造系論文集, 第 581 号, pp.127-134, 2004.7
- 1.3) 藤井俊二,田川浩:丸鋼芯材を二重鋼管により座屈拘束したブレースの挙動特性,
 日本建築学会構造系論文集,第659号,pp.167-174,2011.1
- 1.4) 木下智裕,聲高裕治,井上一朗,飯谷 邦祐:十字形断面をもつ座屈拘束ブレース接合部の構面外曲げ剛性と降伏曲げ耐力,日本建築学会構造系論文集,第632
 号,pp.1865-1873,2008.10
- 1.5) 聲高裕治,木下智裕:座屈拘束ブレース接合部の構面外座屈防止設計法,日本建築学会構造系論文集,第641号,pp.1371-1378,2009.7
- 1.6) Tsuyoshi Hikino, Taichiro Okazaki, Koichi Kajiwara and Masayoshi Nakashima : Out-of-plane Stability of Buckling-Restrained Braces Placed in Chevron Arrangement, Journal of Structural Engineering, ASCE, Vol. 139, pp.1812-1822, 2013.11
- 1.7) Junxian Zhao, Bin Wu and Jinping Qu : A practical and unified global stability design method of buckling-restrained braces, Discussion on pinned connections, Journal of Constructional Steel Research, Vol. 95, pp.106-115, 2014.4
- Chou, C. C., S. Y. Chen: Subassemblage tests and finite element analyses of sandwiched buckling-restrained braces, Engineering Structures, Vol. 32, pp.2108-2121, 2010.8
- 1.9) Lin, M. L., Tsai, K. C. and Tsai, C. Y.: Bi-Direction Sub-Structural Pseudo-dynamic Tests of a Full-Scale 2-Story BRBF, Part2:Compressive Behavior of Gusset Plates, Proceedings of the 8th U.S. National Conference on Earthquake Engineering San Francisco, California, USA, Paper No. 1642, 2006.4
- 1.10) 木下智裕, 聲高裕治, 井上一朗, 飯谷邦祐: 接合部を含む座屈拘束ブレースの構 面外座屈防止条件, 日本建築学会構造系論文集, 第 621 号, pp.141-148, 2007.11

- 1.11) 引野剛,岡崎太一郎,鈴木直幹,大崎純,中島正愛:各種ブレース付き鉄骨平面 骨組の非定常動的応答振動台実験,鋼構造年次論文報告集,pp.361-368, 2010.11
- 1.12) 竹内徹,山田哲,北川まどか,鈴木一弁,和田章:構面外剛性の低い接合部により接合された座屈拘束ブレースの座屈安定性,日本建築学会構造系論文集,第
 575 号, pp.121-128, 2004.1
- 1.13) 竹内徹,松井良太,西本晃治,高橋聡史,大山翔也:拘束材端部回転剛性を考慮した座屈拘束ブレースの有効座屈長,日本建築学会構造系論文集,第 639 号, pp.925-934, 2009.5
- 1.14) Chou, C. C., Chen, P. J. : Compressive behavior of central gusset plate connections for a buckling-restrained braced frame, Journal of Constructional Steel Research, No. 65, pp.1138-1148, 2009
- 1.15) 酒井快典,小川厚治:水平2方向地動を受ける鋼構造骨組の適正な柱梁耐力比,
 日本鋼構造協会鋼構造論文集,第17巻,第67号,pp.53-64,2010.9
- 1.16) 和田 章, 広瀬景一:二方向地震動を受ける無限均等ラーメン構造の弾塑性応答
 性状,日本建築学会構造系論文報告集,第 399 号, pp.37-47, 1989.5
- 1.17) 宮川和明,安井信行,木下智裕:ピン接合型二重鋼管ブレースの端部補強に関する研究 その 1~その 3 ,日本建築学会大会学術講演梗概集,C-1 分冊, pp.765-770, 2012.9
- 1.18) 石井匠,高木伸之,藤澤一善,清水孝憲,宮川和明,喜多村亘:二重鋼管座屈補
 剛ブレースの低サイクル疲労性能,その1~2,日本建築学会大会学術講演梗概集, C-1分冊, pp.781-784, 2012.9
- 1.19) 木下智裕,金城陽介,聲高裕治,吹田啓一郎,宮川和明:座屈拘束材端部の局所 変形を考慮したピン接合形式二重鋼管ブレースの全体座屈防止条件-片側摺動形 式の場合-,日本建築学会構造系論文集,第79巻,第706号,pp.1973-1982,2014.12
- 1.20) 日本建築学会:鋼構造制振設計指針, 2014.11

第2章 二方向地震入力を受ける制振建物のブレース構面外応答

2.1 序

一般に地震時において, BRB にはブレース構面外方向にも層間変形が生じると考え られる。拘束材端部で曲げモーメント伝達を期待し,接合部と拘束材の連成系に対する 安定条件の研究においてはその影響を考慮するため,安全側の仮定として構面外方向に 最大応答時(層間変形角 1/100rad 程度)の強制変形を付与した状態で繰返し載荷実験が 行われている。水平二方向地震動入力下での鉄骨架構の応答性状は,既往の研究^{2.1),22)} で検討が行われているものの,具体的な BRB 付鉄骨架構に対し,大地震時に BRB に構 面内および構面外の最大応答変形が同時に発生し得るものなのかどうかについては検 証が行われていないのが現状である。

そこで本章においては、BRB が配置された中高層鉄骨架構に対し、水平二方向地震動入力下での時刻歴応答解析を実施し、BRB に構面内-構面外の最大水平応答変形が同時に起こり得るかどうかについて検討する。

構面内-構面外最大水平応答変形の同時性に関しては,建物の平面的な剛心と重心の ずれ(偏心率),建物の高さ(固有周期)による違いが影響するものと考え,コア部お よび BRB の平面配置,建物の高さを変化させた解析モデルを設定し,同時性の検討を 行う。また,梁降伏型か柱降伏型かによる差異等,架構の崩壊形式が同時性に与える影 響についても検討する。

2.2 解析モデルの設定

本章では図 2.1 に示すような、片コアおよびセンターコアの平面形状を持つ 11 層, 15 層, 22 層の鉄骨架構を対象に、水平二方向地震動入力下での時刻歴応答解析を実施 し,配置された BRB の構面内-構面外最大水平応答変形の同時性を検討する。解析モデ ルは、X 軸方向、Y 軸方向ともに柱梁直交型のラーメン架構とし、図 2.2 に示すように BRB を K 型または片流れ型に配置する。また、BRB の平面配置によって偏心率を変化 させ、偏心率、建物の高さ、架構の崩壊形式の異なる 8 つの解析モデルを設定する。図 2.3 に解析モデル名称を示す。これらの解析モデルより、構面内-構面外最大水平応答変 形同時性の偏心率・高さ・崩壊形式による影響を検討する。解析には汎用解析プログラ ム SNAP Ver.5²⁷⁾を用いる。

図 2.1 平面形状

図 2.3 モデル名称

2.2.1 部材のモデル化

柱,梁は材端に弾塑性ばねを有する線材に置換する。部材の曲げモーメント-回転角 関係は,全塑性モーメント*M_u=Z_po_y*(柱:*o_y=F*,梁:*o_y*=1.1*F*,*E*=205000N/mm²)に達し た点を折れ点とするバイリニアモデルとし、二次勾配は弾性剛性の 1/1000 倍とする。 せん断およびねじりについては弾性とする。柱・梁接合部には剛域を設定し、その値は パネルゾーンの変形から換算した値を用いる。柱は1階柱脚完全固定とし、柱脚の浮き 上がりは生じないものとする。梁はスラブによる曲げ剛性増大効果を考慮するが、スラ ブによる曲げ耐力増大は考慮しないものとする。

BRB は材端に弾塑性ばねを有する線材に置換する。また,接合部を考慮した半剛接合とし,接合部の回転剛性は後述する第5章5.4節より中剛性を想定して算出した値を用いる。部材の軸力-軸変位関係は,降伏軸力 Nyに達した点を折れ点とするバイリニアモデルとし,二次勾配は弾性剛性の1/1000とする。せん断およびねじりについては弾性とする。

2.2.2 各解析モデル

低層モデル(11 層・49m)は片コア形式の平面形状とする。BRB の配置を変え偏心 率の異なる4モデルを設定し,偏心による影響を検討する。図2.4に各モデルの伏図を, 図2.5に軸組図を示す。BRB はすべてK型に配置している。A-1-L は図2.4(i)のよう に、片軸方向に偏心がないように BRB を配置したモデルであり、A-2-L は図2.4(ii) のように、両軸方向に偏心がないように BRB を配置したモデルである。A-3-L、A-4-L はそれぞれ片軸および両軸方向に BRB を配置しているが、偏心のあるモデルである。

高層モデル(22層・97.4m)も片コア形式のモデルとし、低層モデルと比較して建物 高さ(固有周期)の変化による影響を検討する。平面形状および BRB 配置は低層モデ ルと同様とし、検討は A-1-H, A-2-H, A-4-H の 3 モデルについて行う。高層モデルは 柱を CFT 構造とする。

中層モデル(15層・54.8m)は、センターコア形式とし、コア配置の違いによる影響 を検討する。また、このモデルは柱降伏型とし、応答の特定層集中による影響も検討す る。図 2.6 に伏図を、図 2.7 に軸組図を示す。BRB はスパンの長い部分で K 型配置、短 い部分で片流れ型配置とし、検討は B-2-M の 1 モデルについて行う。なお柱部材は、 軸力-曲げの相互作用を考慮するためファイバーモデルに置換する。

表 2.1 に,各モデルの総重量,単位面積重量および偏心率,主要な柱梁および BRB 芯材の断面寸法を示す。単位面積重量は 6.1~7.4kN/m²程度である。

各モデル諸元
-
Ч.
表

		1年半%	単位面積	でして、「」では、「」では、「」では、「」では、「」では、「」では、「」では、「」では	「薬		大十万法一十十	
		称里里	重量	Х	Υ		土安桝山りな	
		$ imes 10^5 \mathrm{kN}$	kN/m ²	-		柱 (490N/mm ² 級)	粱 (490N/mm ² 級)	BRB芯材 (490N/mm ² 級)
Ĩ	A-1-L	1.11	6.42	0.05	0.00			
は 画 1	A-2-L	1.13	6.55	0.09	0.00	$GP \sim C2 \sim 100 \times 100 \sim -25 \sim -24$	61×71×0<2×0<8-HM	$VL-19\times212 (Ny)=2200000$
日日	A-3-L	1.10	6.11	0.06	0.27	RP-800×800×28~45	WH-1050×450×12×36	$(N_{100} = 0.000) = 0.0000$
	A-4-L	1.11	6.34	0.15	0.26			(TWO OCL (W) 707-07-71 1
高層	A-1-H	2.23	7.23	0.05	0.00	BP-700×700×22~45	WH-850×300×12×22	PL-22×256 (N_y =3500kN)
22層	A-2-H	2.26	7.35	0.09	0.00	2	\$	\$
片コア	A-4-H	2.22	7.22	0.15	0.26	BP-800×800×25~45 (CFT)	WH-1050×450×19×36	PL-36×296 (N_y =6500kN)
中層						BP-350×350×12~22	WH-600×300×12×25	PL-12×135 (N_y =1000kN)
15層	B-2-M	0.64	6.65	0.00	0.00	2	2	2
$C \exists \mathcal{F}$						BP-500×500×22 \sim 36	WH-750×300×16×36	PL-16×177 (N_y =1750kN)

長さ単位:m

図 2.5 軸組図 (片コア形式)

長さ単位:m

図 2.7 軸組図 (センターコア形式)

2.3 水平二方向入力地震動の設定

入力地震動は水平二方向と、日米の観測地震動から 10 種類を採用する。表 2.2 に今 回採用した入力地震動の一覧を示す。また、地震動は入力レベルをそろえるため、レベ ル 2 地震動相当として、水平二方向それぞれの最大速度を 500mm/s に基準化する。表 2.3 に各速度の合成ベクトル最大値および、500mm/s に対する比を示す。入力は、X 軸 および Y 軸方向に水平二方向同時入力とする。入力方向は図 2.8 に示すように、X 軸方 向に EW 方向成分、Y 軸方向に NS 方向成分を入力したものを θ = 0°入力とし、反時計 回りに 45°ずつ回転させて入力する。

観測地震動には強い方向性を有するものがあるが、地震動の方向特性を示すものとし て、地震動主軸が挙げられる。地震動主軸について、和田ら^{2.2)}は応答性状に着目し、 弾性一質点系において水平面内の最大応答変位ベクトルが生起する方向を主軸、これと 直交する方向を副軸と定義し、二方向応答の特性を調査している。また、高田ら^{2.3)}は 地震被害における損傷の程度を表すものとして、塑性歪エネルギーに着目し、弾性一質 点系の総エネルギー入力の最大値が発生する方向を主軸と定義し、水平面内二方向連成 の特性を調査している。このように地震動主軸は、既往の論文^{2.2)-2.6)}で様々に定義され ているが、本研究では地震動の入力エネルギーにもっとも影響すると考えられる速度に ついて、そのオービットが最も励起している方向を地震動主軸と定義する。具体的には、 各時刻における2方向各々の応答値の二乗和平方根が最大値をとる方向とする。表2.4 に算出された各地震動の主軸方向を示す。また、図2.9に地震動主軸の一例として、JMA KOBEの加速度・速度・変位オービットに地震動主軸を重ねて描いたものを示す。本章 における地震動主軸の定義によって、速度・変位の方向性を評価できていることが確認 できる。また他の地震動も同様に、本章において採用した地震動主軸の定義により、地 震動の方向性は概ね評価できていた。

観測地震動名	年月日	方向	最大加速度 (mm/s ²)	最大速度 (mm/s)	継続時間 (S)
インペリアルバレー地震 カリフォルニア エルセントロ	1010 5 10	NS	3417	334	53.8
EL CENTRO	1940.5.18	EW	2100	369	53.6
カーンカウンティ地震 カリフォルニア タフト	1052 7 21	NS	1527	157	54.4
TAFT	1932.7.21	EW	1759	177	54.4
新潟地震 新潟市川岸町アパート	1964 6 16	NS	1571	626	30.0
NIIGATA	1904.0.10	EW	1577	673	30.0
十勝沖地震 八戸港湾	1968 5 16	NS	2310	331	234.0
HACHINOHE	1700.5.10	EW	1812	373	234.0
十勝沖地震 北海道大学	1968 5 16	NS	942	170	39.0
HOKUDAI	1900.5.10	EW	936	115	39.0
宮城県沖地震 東北大学	1978 6 12	NS	2581	362	41.0
ТОНОКИ	1770.0.12	EW	2034	276	41.0
宮城県沖地震 住生仙台ビル	1978 6 12	NS	2518	360	39.0
SUMITOMO	1770.0.12	EW	2381	392	39.0
兵庫県南部地震 神戸海洋気象台	1995 1 17	NS	8180	909	155.0
JMA KOBE	1775.1.17	EW	6173	757	155.0
兵庫県南部地震 JR鷹取	1995 1 17	NS	6055	1212	41.0
JR TAKATORI	1775.1.17	EW	6570	1239	41.0
東北地方太平洋沖地震 仙台第2合同庁舎	2011 3 11	NS	1633	331	301.0
SND	2011.3.11	EW	2590	354	301.0

表 2.2 入力地震動 注2.1)

A 2.5 地展到		取八还反
地震動	合成ベクトル 最大速度 (mm/s)	注1) 最大速度比
EL CENTRO	619	1.24
TAFT	622	1.24
NIIGATA	568	1.14
HACHINOHE	519	1.04
HOKUDAI	536	1.07
TOHOKU	588	1.18
SUMITOMO	601	1.20
JMA KOBE	624	1.25
JR TAKATORI	620	1.24
SND	553	1.11

表 2.3 地震動合成ベクトル最大速度

注1) 500mm/s に対する比率

図 2.8 地震動入力方向

地震動	主軸角度 (deg)
EL CENTRO	120.8
TAFT	145.3
NIIGATA	47.6
HACHINOHE	74.8
HOKUDAI	21.9
TOHOKU	122.1
SUMITOMO	132.3
JMA KOBE	134.7
JR TAKATORI	139.1
SND	26.0

表 2.4 地震動主軸角度

図 2.9 地震動オービットおよび地震動主軸 (JMA KOBE)

2.4 解析モデルの性状分析

本節では、各解析モデルに対し固有値解析および静的増分解析を実施し、各解析モデ ルの振動性状および変形性状を確認する。固有値解析は立体解析とし、各軸方向の並進 振動モードおよびねじれ振動モードを確認する。また、静的増分解析では多方向に解析 を実施し、層せん断力-層間変位関係および降伏変位曲面を確認する。入力する水平力 は Ai 分布をもとに算出した値を用いる。

2.4.1 立体固有值解析結果

表 2.5 に立体固有値解析結果として,固有周期 T および刺激係数 β を示す。同表中の 卓越する振動モードに対応する刺激係数に網掛けを施している。

同表(i)~(iv)は低層モデルにおける結果である。1次モードは並進振動モードが 卓越することが多いが、A-4-Lにおいてはねじれ振動モードが卓越する結果となった。 同表(v)~(vii)は高層モデルにおける結果であるが、A-1-Hは1次、2次モードとも に並進振動モードが卓越する。これに対しA-2-Hは、1次モードは並進振動モードであ るが2次モードがねじれ振動モードとの連成振動となり、低層モデルと異なる結果とな った。A-4-Hにおいては低層モデルと同様に、ねじれ振動モードが卓越する。このよう に高さの変化により、卓越する振動モードが変化する。

同表(viii)は中層モデルにおける結果であるが、1次から3次までの固有周期が近い 結果となり、振動モードはねじれ振動が卓越する結果となった。

2.4.2 多方向静的增分解析結果

図 2.10 に静的増分解析結果として,層せん断力-層間変位関係の例を示す。同図(i) は低層モデルである A-2-L における X 方向載荷時の結果であるが,梁降伏型の崩壊形 式であることから,変形が特定層に集中することなく,各層において一様に変形してい る。同図(ii)は中層モデルである B-2-M における X 方向載荷時の結果である。載荷方 向に配置した BRB の降伏後 1 層の層間変形が進展している。その後,転倒モーメント の影響より,載荷方向と直交する方向に配置した BRB も降伏し,1 層の層間変形がさ らに進展する。圧縮側となる BRB のみが降伏するのは,長期軸力による影響である。 図 2.11 に B-2-M における X 方向載荷時の機構図を示すが,1 層にて柱両端にヒンジが 生じており,柱降伏型の架構であることがわかる。

次に、解析モデル各層の降伏変位曲面を考える。静的増分解析において、各層各構面 の BRB 初期降伏時,架構降伏時(接線剛性が初期剛性の 1/3 となったとき)および架 構耐力時(接線剛性が初期剛性の1/6となったとき)の荷重変位関係を抽出し、荷重の 入力方向に基づきその値をプロットする。図 2.12 に 9°ごとに解析を実施した場合の降 伏変位曲面の例を示す。同図(i)および(ii)の降伏変位曲面は梁降伏型架構である A-2-L における 4 層および 10 層の結果であるが、四角形の形状となっている。これは A-2-L が梁降伏型の架構であるため、降伏変位が各軸方向で連成せず、直交方向架構の 影響を受けなかったためであると考えられる。なお,低層モデルについては,すべて四 角形状の降伏変位曲面となった。また、高層モデルも低層モデルと同様に梁降伏型の架 構であるため、すべて四角形状の降伏変位曲面となった。同図(iii)および(iv)の降 伏変位曲面は、柱降伏型架構である B-2-M における 4 層および 10 層の結果である。降 伏曲面は概ね円形の形状となった。これは B-2-M の崩壊形式が柱降伏型であるため, 降伏変位が各軸方向で連成し、直交方向架構の影響を受けるためであると考えられる。 なお、中層モデルについては、各層において円形状の降伏変位曲面となった。このよう に、架構の降伏性状によって降伏変位曲面の形状が変化し、梁降伏型では四角形状、柱 降伏型では円形状となった。

表 2.5 固有周期および刺激係数

	<i>T</i> (s)	β_x	β_y	β_z	β_r
1	1.311	1.30	0.00	0.00	1.19
2	0.856	0.00	0.00	0.00	2.20
3	0.828	0.00	1.39	0.05	0.16
4	0.442	0.45	0.00	0.00	0.60
5	0.283	0.04	0.00	0.00	14.41
6	0.279	0.00	0.91	2.60	0.37

(i) A-1-L

$T(\mathbf{s}) \boldsymbol{\beta}_{x} \boldsymbol{\beta}_{y} \boldsymbol{\beta}_{z} \boldsymbol{\beta}_{r}$								
1 0.867 1.06 0.00 0.00 9.79								
2 0.822 0.00 1.39 0.04 0.05								
3 0.731 0.31 0.00 0.00 9.89								
4 0.283 0.67 0.00 0.00 6.10								
5 0.274 0.00 1.01 2.83 0.03								
6 0.261 0.44 0.00 0.00 1.24								
 (ii) A-2-L								

	<i>T</i> (s)	β_x	β_y	β_z	β_r
1	1.305	1.25	0.15	0.00	3.61
2	1.154	0.20	0.72	0.01	11.19
3	0.847	0.05	0.63	0.02	12.65
4	0.440	0.43	0.06	0.00	1.34
5	0.386	0.06	0.24	0.02	3.20
6	0.280	0.03	0.68	2.23	11.31

1 1.136 0.30 0.58 0.00 10.36 2 0.935 1.03 0.56 0.01 0.73 3 0.808 0.29 0.46 0.01 10.93 4 0.381 0.11 0.19 0.01 2.94 5 0.304 0.40 0.22 0.05 0.24 6 0.273 0.32 0.38 2.63 9.03		<i>T</i> (s)	β_x	β_y	β_z	β_r
2 0.935 1.03 0.56 0.01 0.73 3 0.808 0.29 0.46 0.01 10.93 4 0.381 0.11 0.19 0.01 2.94 5 0.304 0.40 0.22 0.05 0.24 6 0.273 0.32 0.38 2.63 9.03	1	1.136	0.30	0.58	0.00	10.36
3 0.808 0.29 0.46 0.01 10.93 4 0.381 0.11 0.19 0.01 2.94 5 0.304 0.40 0.22 0.05 0.24 6 0.273 0.32 0.38 2.63 9.03	2	0.935	1.03	0.56	0.01	0.73
4 0.381 0.11 0.19 0.01 2.94 5 0.304 0.40 0.22 0.05 0.24 6 0.273 0.32 0.38 2.63 0.03	3	0.808	0.29	0.46	0.01	10.93
5 0.304 0.40 0.22 0.05 0.24 6 0.273 0.32 0.38 2.63 0.03	4	0.381	0.11	0.19	0.01	2.94
6 0 273 0 32 0 38 2 63 0 03	5	0.304	0.40	0.22	0.05	0.24
0 0.273 0.32 0.38 2.03 9.03	6	0.273	0.32	0.38	2.63	9.03

(iv) A-4-L

	<i>T</i> (s)	β_x	β_y	β_z	β_r
1	2.505	1.35	0.00	0.00	0.58
2	1.941	0.00	1.45	0.03	0.18
3	1.718	0.00	0.00	0.00	1.46
4	0.852	0.52	0.00	0.00	0.33
5	0.56	0.00	0.00	0.00	1.98
6	0.542	0.00	0.68	0.06	0.29

	<i>T</i> (s)	β_x	β_y	β_z	β_r	
1	1.914	0.01	1.44	0.02	0.14	
2	1.83	1.24	0.01	0.00	7.97	
3	1.527	0.17	0.00	0.00	8.34	
4	0.575	0.49	0.00	0.00	3.76	
5	0.533	0.01	0.67	0.06	0.04	
6	0.481	0.13	0.00	0.00	4.26	

(v) A-1-H

(vi) A-2-H

	<i>T</i> (s)	β_x	β_y	β_z	β_r
1	2.248	0.30	1.07	0.01	9.56
2	2.027	1.21	0.41	0.01	3.40
3	1.754	0.15	0.19	0.01	9.39
4	0.736	0.13	0.28	0.01	3.15
5	0.642	0.49	0.23	0.02	0.15
6	0.548	0.09	0.24	0.02	5.36

	<i>T</i> (s)	β_x	β_y	β_z	β_r
1	1.483	0.00	0.00	0.00	1.31
2	1.402	1.37	0.00	0.00	0.00
3	1.362	0.00	1.39	0.00	0.00
4	0.514	0.00	0.00	0.00	0.47
5	0.464	0.55	0.00	0.00	0.00
6	0.436	0.00	0.57	0.00	0.00

図 2.11 機構図 (B-2-M)

図 2.12 降伏変位曲面

2.5 水平二方向地震動入力時刻歴応答解析による応答変形の同時性評価

本節では各解析モデルに対し、水平二方向地震動入力下での時刻歴応答解析を実施し、 BRBの挙動および応答変形の同時性を確認する。数値積分法は Newmark-*β* 法を用い、*β* =1/4 とする。積分時間間隔は入力地震動の記録時間間隔によるものとする。構造減衰は、 剛性比例型の内部粘性減衰とし、減衰定数は1次固有周期に対し*h*=0.02 とする。

図 2.13 に採用した地震動の加速度応答スペクトルを示す。図中グレーで示した範囲 は、高さタイプごとにおける解析モデルの1次固有周期帯である。低層モデルの1次固 有周期帯および中層モデルの1次固有周期では、TOHOKU、JMA KOBE、JR TAKATORI の応答スペクトルが卓越しており、高層モデルの1次固有周期帯では、EL CENTRO、 HACHINOHE、JR TAKATORI、SNDの応答スペクトルが卓越している。

2.5.1 応答変形同時性の評価法

図 2.14 に示すように、水平二方向地震動入力下の時刻歴応答解析結果より、各層、 各 BRB の構面内最大変位 u₁および構面内最大変位発生時の構面外変位 u₀を抽出する。 地震動 10 種類、入力方向 4 種類の計 40 パターンの解析を行い、各解析モデルでの最大 値 (u_{1m}, u_{0m})で基準化した変位関係をプロットする。各プロット値は各 BRB の構面内 -構面外水平応答変形の瞬間値である。次にこのプロットが、式(2.1)によって内包さ れるような定数 n を考え、n の値が大きいほど、BRB の構面内-構面外の最大水平応答 変形に同時性が高いものと考える。

$$\left(\frac{u_I}{u_{\rm Im}}\right)^n + \left(\frac{u_O}{u_{Om}}\right)^n = 1$$
(2.1)

図 2.14 時刻歴応答解析結果抽出方法

2.5.2 応答変形同時性の評価

2.5.2.1 偏心による影響

図 2.15 に低層モデルにおいて、応答変形の同時性を評価した結果を示す。同図中に
実線または破線で示されている曲線は式(1)において n=2,3,5 とした曲線である。

図 2.15 (i) に示す A-1-L は、片構面にのみ BRB が配置されたモデルであり、n = 2 程度とした曲線に概ね内包される。同様に片構面にのみ BRB が配置された A-3-L は, 同図(iii)に示すようにn=3程度とした曲線に概ね内包され,同時性がやや高いと考 えられる。また, 同図 (ii) に示す A-2-L は両構面に BRB が配置されたモデルであるが, 内包する曲線はn=5程度に達し、同時性が最も高いと考えられる。同図(ii)中aのよ うに n が大きな値を示す例として, 図 2.16 に A-2-L に JMA KOBE を 90°入力した時の 4 層の応答層間変位および 4 層の X2 構面に配置された BRB の応答変位のオービットを 示す。比較のため,図2.15(ii)中bのようにnが大きな値を示さない例として,図2.17 に A-2-L に HOKUDAI を 45°入力した場合の同位置でのオービットを示す。図 2.16,図 2.17 において(i) は地震動変位オービットを描いたものであり、斜線は定義した地震 動主軸である。地震動主軸は建物の軸から 45°程度回転した方向となっている。(ii) は 層の応答変位に前掲した降伏変位曲面を重ねて描いたものであり、梁降伏型である A-2-L の降伏変位曲面は四角形状である。(iii)は BRB の応答変位である。図 2.16 では 地震動変位および応答変位にパルス的挙動がみられ,層および BRB は 45°方向に応答 変形しており,構面内-構面外水平応答変形の同時性が確認できる。また,図2.17では 応答変位にパルス的挙動がみられず、構面内-構面外水平応答変位の明確な同時性は確 認できない。全般的に、nが大きな値を示すのは、ねじれ振動モードが卓越しないモデ ルにおいて、概ね地震動主軸が建物の軸から 45°程度の方向で、地震動変位および応答 変位にパルス的挙動がみられる場合であった。

図 2.15 (iv) に示す A-4-L は, A-2-L と同様に両構面に BRB を配置したモデルである が, 偏心配置したモデルである。n の値は 2 以下であり, 構面内-構面外最大水平応答変 形の明確な同時性は確認できない。これは A-4-L の BRB が両構面に偏心配置されたこ とにより, ねじれ振動モードが卓越し, X 軸および Y 軸の並進応答が抑制されたため と考えられる。このように BRB の構面内-構面外最大水平応答変形の同時性は, 振動の 卓越モードに影響を大きく受けると考えられる。

図 2.15 基準化構面内最大変位と同時刻における基準化構面外変位

2.5.2.2 建物高さによる影響

図 2.18 (i) ~ (iii) に高層モデルにおける結果を示す。同図 (i) に示す A-1-H は, n = 5 程度となり, n = 2 程度であった低層モデルで BRB が同様に配置された A-1-L の場合 とは異なり,高層モデルでは同時性が高いという結果となった。一方 A-2-L は, n = 5程度と低層モデルにおいて最も応答変形の同時性が高いモデルであったが,同図 (ii) に示すように,高層で同様に BRB を配置した A-2-H においては n = 3 程度となってお り,低層モデルより同時性は低い結果となった。これらは高さの変化に伴い卓越振動モ ードが変化したためと考えられ,低層モデルよりも二方向の並進モードが卓越する A-1-H は n の値が大きくなり,低層モデルよりもねじれ振動モードが卓越する A-2-H は n の値が逆に小さくなった。同図 (iii) に示す A-4-H は,概ね低層モデルと同様に,応 答変形の同時性が低い特徴的な結果が得られた。これは、高層モデルも低層モデルと同 様にねじれ振動モードが卓越するためであると考えられる。

図 2.15 に低層モデルにおいて、応答変形の同時性を評価した結果を示す。同図中に 実線または破線で示されている曲線は式(1)において *n* = 2, 3, 5 とした曲線である。

図 2.15 (i) に示す A-1-L は、片構面にのみ BRB が配置されたモデルであり、n = 2程度とした曲線に概ね内包される。同様に片構面にのみ BRB が配置された A-3-L は、 同図 (iii) に示すように n = 3 程度とした曲線に概ね内包され、同時性がやや高いと考 えられる。また、同図 (ii) に示す A-2-L は両構面に BRB が配置されたモデルであるが、 内包する曲線は n = 5 程度に達し、同時性が最も高いと考えられる。同図 (ii) 中 a のよ うに n が大きな値を示す例として、図 2.16 に A-2-L に JMA KOBE を 90°入力した時の 4 層の応答層間変位および 4 層の X2 構面に配置された BRB の応答変位のオービットを 示す。比較のため、図 2.15 (ii) 中 b のように n が大きな値を示さない例として、図 2.17 に A-2-L に HOKUDAI を 45°入力した場合の同位置でのオービットを示す。図 2.16、図 2.17 において (i) は地震動変位オービットを描いたものであり、斜線は定義した地震 動主軸である。地震動主軸は建物の軸から 45°程度回転した方向となっている。(ii) は 層の応答変位に前掲した降伏変位曲面を重ねて描いたものであり、梁降伏型である A-2-L の降伏変位曲面は四角形状である。(iii) は BRB の応答変位である。図 2.16 では

地震動変位および応答変位にパルス的挙動がみられ,層および BRB は 45°方向に応答 変形しており,構面内-構面外水平応答変形の同時性が確認できる。また,図 2.17 では 応答変位にパルス的挙動がみられず,構面内-構面外水平応答変位の明確な同時性は確 認できない。全般的に,nが大きな値を示すのは,ねじれ振動モードが卓越しないモデ ルにおいて,概ね地震動主軸が建物の軸から 45°程度の方向で,地震動変位および応答 変位にパルス的挙動がみられる場合であった。

図 2.15 (iv) に示す A-4-L は, A-2-L と同様に両構面に BRB を配置したモデルである が, 偏心配置したモデルである。n の値は 2 以下であり, 構面内-構面外最大水平応答変 形の明確な同時性は確認できない。これは A-4-L の BRB が両構面に偏心配置されたこ とにより, ねじれ振動モードが卓越し, X 軸および Y 軸の並進応答が抑制されたため と考えられる。このように BRB の構面内-構面外最大水平応答変形の同時性は, 振動の 卓越モードに影響を大きく受けると考えられる。

2.5.2.3 架構の崩壊形式による影響

図 2.18 (iv) はセンターコアの平面形状を持つ中層モデルの B-2-M における結果であ るが,同時性の高い応答変形を示すプロットが他のプロットから飛びぬけた形で何点か あり,柱降伏型の崩壊形式を持つモデルは,梁降伏型の崩壊形式を持つモデルとはやや 様相が異なる結果を示した。同図中 a のように同時性が高い応答変位を示したプロット は,JR TAKATORI 波を入力した時の1層の応答値であり,応答変形が1層に集中した 影響であると考えられる。図 2.19 に JR TAKATORI 波を 90°入力した時の応答層間変位 および1層の X2 構面に配置された BRB の応答変位のオービットを示す。同図 (i) は 地震動変位オービットを描いたものであり,斜線は定義した地震動主軸である。地震動 主軸は解析モデルの X 軸から反時計回りに 45°程度回転した方向となり,地震動変位に パルス的挙動がみられる。

同図(ii)は層の応答変位に前掲した降伏変位曲面を重ねて描いたものである。柱降 伏型である B-2-M の降伏変位曲面は円形状であり,層応答変位が降伏変位よりも大き く,1層の架構が降伏していることがわかる。同図(iii)は BRB の応答変位であるが,

BRB は 45°方向に応答変形しており,構面内-構面外最大水平応答変形の同時性が確認 できる。このように,架構の崩壊形式が柱降伏型の場合は特定層に損傷が集中する傾向 があるため,特に地震動主軸が解析モデルの軸から 45°程度回転した方向となる場合, 構面内-構面外最大水平応答変形が同時に生じる比率が高くなると考えられる。図 2.18

(iv) において,応答変位の大きくなった他のプロットも,JR TAKATORI 波を入力した場合の1層における応答値であり,概ね図 2.19 と同様に構面内-構面外最大水平応答変形の同時性が確認できた。

図 2.20 に, B-2-M に JR TAKATORI 波を 90°入力した 1 層 X2 構面 BRB の応答変位の 時刻歴波形を示す。入力後 6 秒程度で,構面外方向に大きな応答変形が生じ,その後残 留変形が生じていることがわかる。このような柱降伏型架構においては応答変形の特定 層への集中が生じるため,比較的残留変形が生じやすいと考えられる。この様に残留変 形が生じた建物に連続して地震動入力がある場合,BRB の構面内-構面外の最大水平応 答変形が同時に生じる可能性がより高まるものと考えられる。

以上より BRB には,構面内-構面外の最大水平応答変形が同時に生じる可能性がある ため,BRB の安定性評価において,構面外方向に最大応答時の強制変形を付与した状態での繰返し載荷実験は妥当であり,設計上もこの点に関し配慮する必要があると考え られる。

図 2.18 基準化構面内最大変位と同時刻における基準化構面外変位

本章では、偏心率・高さ・崩壊形式の異なる8つの鉄骨架構の解析モデルにおいて立体固有値解析および多方向静的増分解析を実施し各モデルの振動性状および変形性状を確認した。また、水平二方向地震動入力下での時刻歴応答解析を実施し、建物に配置されたBRBにおける構面内-構面外最大水平応答変形の同時性を検討した。以下に得られた知見を示す。

- 各解析モデルに対し多方向静的増分解析を実施し、降伏変位曲面を描いた結果、梁 降伏型の架構は降伏変位曲面が四角形状、柱降伏型の架構は降伏変位曲面が円形状 となり、降伏変位曲面は架構の崩壊形式に影響を受ける。
- 2) 今回設定した鉄骨架構に配置された BRB には、構面内-構面外の最大水平応答変形 が同時に生じる可能性があることを確認した。
- 3) 梁降伏型直交架構においては、並進振動が卓越し、地震動主軸が建物の軸から 45° 程度の方向にある場合、BRB の構面内-構面外の最大水平応答変形が同時に生じる 可能性がより高いと考えられる。一方、ねじれ振動が卓越する場合は、同時性が低 くなる傾向がある。
- 4) 柱降伏型直交架構においては,降伏変位曲面が円形状となるため,地震動主軸が建 物の軸から 45°程度の方向にある場合,架構が塑性化領域に入りやすく,かつ,応 答変形が特定層に集中しやすいため,BRBの構面内-構面外の最大水平応答変形が 同時に生じる可能性がより高くなると考えられる。

第2章の注記

 2.1) 表 2.2 に示す検討用入力地震動の内, JMA KOBE は 1995 年兵庫県南部地震にお ける気象庁 87 型電磁式強震計データを, JR TAKATORI は同 JR 警報地震計(鷹 取駅, FD シリアル番号 R-063) データを用いた。

第2章の参考文献

- 2.1) 酒井快典,小川厚治:水平2方向地動を受ける鋼構造骨組の適正な柱梁耐力比,
 日本鋼構造協会鋼構造論文集,第17巻,第67号,pp.53-64,2010.9
- 2.2) 和田 章, 広瀬景一:二方向地震動を受ける無限均等ラーメン構造の弾塑性応答
 性状,日本建築学会構造系論文報告集,第 399 号, pp.37-47, 1989.5
- 2.3) 大垣 聡,高田毅士:地震動の方向性を考慮することによる水平面内二方向連成 モデルの塑性歪エネルギー推定法,日本建築学会構造系論文集,第 693 号, pp.1869-1877, 2013.11
- 2.4) 滝澤春男,奈良岡浩二:強地震動の二次元的破壊能 その1.二次元動の特性指標, 日本建築学会北海道支部研究報告集,第52号, pp.5-8, 1980.3
- 2.5) 久保哲夫:三次元地震動の模擬作成に関する研究(その1 地震動の主軸),日本
 建築学会論文報告集,第265号,pp81-91,1978.3
- 2.6) 大野 晋,武村雅之,小林義尚:観測記録から求めた震源近傍における強地震動 の方向性,第10回日本地震工学シンポジウム論文集,pp.133-138, 1998.11
- 2.7) SNAP Ver.5:構造システム, 2011.4

第3章 接合部を含む座屈拘束ブレースの機構安定条件

3.1 序

第2章で述べたように、架構内に配置された座屈拘束ブレース(以降 BRB)には、構面 内、構面外に同時に最大変形が生じる可能性が排除できないことが明らかになった。第 1章で述べたように、接合部が不適切に設計された BRB では芯材が十分な塑性変形を 発現する以前に接合部を含めた材全体が構面外不安定現象を生じることがしばしば報 告され、その安定条件について構面外変形をも考慮する必要があると考えられる。

しかしながらこれまでの研究においては, 拘束材端部の曲げモーメント伝達能力や構 面外変形の影響を考慮した, 様々な接合部端部剛性下における機構安定条件の導出には 至っていない。

そこで本章では、拘束材端部の曲げモーメント伝達能力、および様々な接合部剛性を 考慮した BRB の構面外安定条件式を誘導し、また、構面外強制変形の影響および接合 部外端の塑性化の影響について考える。さらに様々な拘束材端部の曲げモーメント伝達 能力を有する BRB に対して構面外初期変位を与えた繰返し載荷実験を実施し、拘束材 端部の曲げモーメント伝達能力が機構安定性に与える影響を確認すると共に安定条件 式との比較を行い、その妥当性を検討する。

なお,BRB に想定する構面外変形の大きさは,第2章にて検討した構面内一構面外 最大応答変形の同時性の高さを示す式(2.1)における n の値に応じて決める考え方もあ るが,設計時に建物にどのような地震動がどの方向から入力されるかを特定することは 難しく,nの値をあらかじめ規定するのは困難である。そこで本論文においては,実設 計において大地震時に建物に1/100の層間変形角が生じることを想定することが多いこ とを踏まえ,安全側の仮定として,構面外方向にも同時に 1/00 の層間変形角が生じる ものとして以降の検討および実験を行うものとする。

3.2 機構安定条件の誘導

3.2.1 機構安定限界の誘導

鋼構造座屈設計指針^{3.1)} 第3章では,接合部を含むBRBの全体機構安定性確保の条件 として図3.1 に示す2つの考え方が示されている。①芯材の塑性化に伴い拘束材端部で は曲げモーメントの伝達を期待せず,拘束材および接合部に関する安定条件でそれぞれ 設計する(図3.1(a)),②拘束材端部で曲げモーメントの伝達を期待し,接合部と拘束材 の連成系に対する安定条件で設計する(図3.1(b))。①に関して井上^{3.2)},木下,聲高ら^{3.3)} は以下の安定条件式を提案している。

座屈拘束部の安定条件式

$$M_{y}^{R} \ge \frac{(a+e+s)N_{cu}}{1-N_{cu}/N_{cr}^{R}}$$
(3.1)

接合部の安定条件式

$$N_{cr} = \frac{\pi^2 (1 - 2\xi) \gamma_J E I_B}{(2\xi L_0)^2} > N_{cu}$$
(3.2)

ここに、 M_y^R :拘束材の降伏曲げ耐力、 N_{cr}^R :拘束材のオイラー座屈荷重、 N_{cu} :推定 芯材最大軸力(ひずみ硬化の影響も考慮し降伏軸力の 1.2~1.5 倍を採ることが多い)、a: 元たわみ、e:加力点の偏心量、s:芯材拘束材間クリアランス、 $\gamma_J EI$:接合部曲げ剛 性、 L_0 :BRB 全長、 \mathcal{J}_0 :接合部長である。

式(3.2)は、図 3.2(c)のようにガセットプレートを面外補剛し、接合部外端の回転が固定された条件で有効となる。従って、K 形配置のブレースでは、ブレース取り付き部の大梁の面外移動と回転をせいの高い小梁か方杖等で防止しなければならない。一方、②に関して竹内、松井ら³⁴⁾ は図 3.3 に示すように、モルタル充填鋼管拘束材を有する BRBにおいて、十字断面を有する芯材補強部が拘束材に一定以上貫入(貫入長 > 芯材幅 *B*_c)していれば、芯材降伏後も拘束材端部において一定量の曲げモーメント伝達が可能であることを示し、上記の場合においてはガセットプレート端部を完全に回転剛の条件とし

ない安定条件の可能性を示している。この場合には拘束材端部の曲げモーメント伝達能 力は図 3.3 (b), (c)に示すように,拘束材の破壊(貫入部破壊)または突出部の塑性ヒンジ 形成(突出部塑性化)が生ずるまで保証される。

ただし,図 3.2(a)のようにガセットプレートが面外補剛されておらず接合部の面外回 転剛性が低い場合,芯材の元たわみ*a*,加力部の偏心量*e*に加え,芯材と拘束材間の片 側クリアランス*s*,によって接合部に初期不整が生じるものと考えられる。この初期不整 値は,例として図 3.4 のような単純モデルを考えると以下のように表現できる。

$$a_r = a + e + s_r + \frac{2s_r}{L_{in}} \cdot \xi L_0 \tag{3.3}$$

このような初期不整 *a*_rのもとで,両端部に回転ばねを有する圧縮材の軸力 *N*-面外変位 関係は以下のように近似できる^{3.5)}。

$$N = \frac{y_r}{y_r + a_r} N_{cr}^B \tag{3.4}$$

ここに y_r : 拘束材端部における構面外変位増分, N_{cr}^{B} : 接合部端部の回転ばねや接合部 剛性を考慮した材全体の最小弾性座屈荷重である。初期不整付き圧縮材の軸力-変位関 係式は境界条件,初期不整分布により変化するが,何れも図 3.5 に示すように軸力 N が 拘束材端部の面外変位 y_r + a_r の増加に伴い徐々に N_{cr}^{B} に漸近し,式(3.4)で近似される経路 をとる。しかし,実際の BRB においては,軸力が N_{cr}^{B} に達する以前に図 3.3 に示すよう な拘束材端部における塑性ヒンジの形成等により崩壊メカニズムが形成され,安定限界 軸力が規定されることになる。つまり,式(3.4)による初期不整付き弾性軸力 N-面外変 位 y_r + a_r 関係と式(3.40)(後述)による BRB の崩壊メカニズム軸力-変位関係の交点で安定 限界軸力が決定されると考えられる。この時,図 3.5(a)のように芯材最大軸力 N_{cu} がこ の値を下回っていれば機構は安定となり,BRB は芯材降伏後も不安定現象を生ずるこ となく安定した履歴特性を発揮することになる。しかしながら,図 3.5(b)のように芯材 最大軸力 N_{cu} がこの値を上回る場合は、芯材が最大軸力に達する以前に拘束材端部に塑 性ヒンジが形成され崩壊メカニズムに達することになり、機構が不安定になると考えら れる。

図 3.1 座屈拘束ブレースの機構安定性の考え方

図 3.2 接合部ガセットプレート形式と構面外剛性

3.2.2 接合部を含めた BRB の最大耐力評価式の誘導

前項の考え方に基づき,以下接合部も含めた BRB の崩壊メカニズム耐力の評価を図 3.6 に示すような点線の初期不整を有するモデルを用いて試みる。なお図 3.6(c)のモデル は,芯材が塑性化した後上部が図 3.4 の芯材貫入部-拘束材間のクリアランス内でピン状 態で回転し,下部に図 3.3 (b),(c)のような塑性ヒンジが形成されると仮定した崩壊メカ ニズムである。図 3.6(a)~(c)において,接合部は端部に剛性 K_{Rg}の回転ばねを有する弾 性曲げ材,座屈拘束部は剛体と考え,拘束材端部には初期不整 a_rを有し,軸力 N を受 け面外変位が増大し,拘束材端部が曲げ耐力 M^r_pに達したとき不安定になると考える。

まず,接合部端部の境界条件が固定(回転剛性 $K_{Rg} \rightarrow \infty$)である場合を考え,接合部の曲げ変形による面外変位 y を式(3.5)のように仮定し図 3.6(a)の対称崩壊モードについて考える。

$$y = \frac{a_r}{\xi L_0} x + y_r \left[1 - \cos\left(\frac{\pi x}{2\xi L_0}\right) \right]$$
(3.5)

この時, 接合部の歪エネルギーU_εは式(3.6)となる。

$$U_{\varepsilon} = 2 \int_{0}^{\xi L_{0}} \frac{\gamma_{J} E I_{B}}{2} \left(\frac{d^{2}}{dx^{2}} \left(y - \frac{a_{r}}{\xi L_{0}} \right) \right)^{2} dx = \frac{\pi^{4} \gamma_{J} E I_{B} y_{r}^{2}}{32 (\xi L_{0})^{3}}$$
(3.6)

また、対称崩壊モードにおける塑性ヒンジの回転角は式(3.7)となる。

$$\Delta \theta_r = \left. \frac{dy}{dx} \right|_{x=\xi L_0} - \frac{a_r}{\xi L_0} = \frac{\pi y_r}{2\xi L_0}$$
(3.7)

したがって、塑性ヒンジの内力仕事 Upは式(3.8)のように表せる。

$$U_p = 2M_p^r \Delta \theta_r = \frac{\pi y_r}{\xi L_0} M_p^r$$
(3.8)

この時、両端の節点間変位は式(3.9)となる。

$$\Delta u_{g} = 2 \cdot \frac{1}{2} \int_{0}^{\xi L_{0}} \left[\left(\frac{dy}{dx} \right)^{2} - \left(\frac{a_{r}}{\xi L_{0}} \right)^{2} \right] dx = \frac{\pi^{2} y_{r}^{2}}{8\xi L_{0}} + \frac{2a_{r} y_{r}}{\xi L_{0}}$$
(3.9)

したがって、外部仕事 T は式(3.10)となる。

$$T = N\Delta u_g = \frac{\pi^2 (y_r^2 + 16a_r y_r / \pi^2)}{8\xi L_0} N$$
(3.10)

エネルギー変分の釣合により式(3.11)が成り立つ^{3.6)}。

$$\frac{\partial (U_{\varepsilon} + U_{p} - T)}{\partial y_{r}} = \frac{\pi^{4} \gamma_{J} E I_{B} y_{r}}{16(\xi L_{0})^{3}} + \frac{\pi}{\xi L_{0}} M_{p}^{r} - \frac{\pi^{2} (y_{r} + 8a_{r} / \pi^{2})}{4\xi L_{0}} N = 0$$
(3.11)

これより, 接合部端部固定の対称崩壊モードの耐力は変位増分 yrの関数として式(3.12) により算出される。

$$N = \frac{\pi^2 \gamma_J E I_B}{(2\xi L_0)^2} \frac{y_r}{y_r + 8a_r / \pi^2} + \frac{4M_p^r}{\pi (y_r + 8a_r / \pi^2)}$$
(3.12)

 $8/\pi^2 \approx 1$ とすると、式(3.12)は式(3.13)で近似できる。

$$N \approx \frac{\pi^2 \gamma_J E I_B}{(2\xi L_0)^2} \frac{y_r}{y_r + a_r} + \frac{4}{\pi} \frac{M_p^r}{y_r + a_r}$$
(3.13)

同様に、図 3.6(b)の逆対称崩壊モードは以下のように誘導できる。(付録 3.1 参照)

$$U_{p} = \frac{y_{r}}{\xi L_{0}} \frac{\pi - 2\pi\xi + 4\xi}{1 - 2\xi} M_{p}^{r}$$
(3.14)

$$T \approx \frac{\pi^2 N}{8\xi (1 - 2\xi) L_0} (y_r^2 + 16a_r y_r / \pi^2)$$
(3.15)

$$N = \frac{\pi^2 (1 - 2\xi) \gamma_J E I_B}{(2\xi L_0)^2} \frac{y_r}{y_r + 8a_r / \pi^2} + \frac{4(\pi - 2\pi\xi + 4\xi) M_p^r}{\pi^2 (y_r + 8a_r / \pi^2)}$$
(3.16)

 $8/\pi^2 \approx 1$ かつ一般的に用いられる BRB の寸法から $\xi \approx 0.25$ とすると、逆対称崩壊モードにおける崩壊時軸力は変位増分 yrの関数として式(3.17)で近似される。

$$N \approx \frac{\pi^2 (1 - 2\xi) \gamma_J E I_B}{(2\xi L_0)^2} \frac{y_r}{y_r + a_r} + \frac{M_p^r}{y_r + a_r}$$
(3.17)

式(3.17)において、芯材が軸力により塑性化し、拘束材端部が塑性ヒンジとなる場合

(*M^r_p*=0)かつ *a_r*<<*y_r*のとき,式(3.17)は式(3.2)と一致する。式(3.13)と式(3.17)を比較すると,接合部端部が剛接合の場合,崩壊時軸力は逆対称崩壊モードで決定されることがわかる。

次に,接合部端部に弾性回転ばねを有する場合を考える。まず,接合部の無次元化回転ばね剛性比を式(3.18)で定義し,回転ばねによる拘束材端部位置での変位をy_{rs}とする。

$$_{\xi}\kappa_{Rg} = \frac{K_{Rg}\xi L_0}{\gamma_J E I_B}$$
(3.18)

これより, 接合部の歪エネルギーを式(3.19)のように表す。

$$U_{\varepsilon} = \frac{\pi^4 \gamma_J E I_B y_r^2}{32 (\xi L_0)^3} \left(\frac{\xi \kappa_{Rg}}{\xi \kappa_{Rg} + 3} \right)^2$$
(3.19)

 $\xi \kappa_{Rg} = 3 のとき,接合部の弾性変位 <math>y_{re}$ と回転ばねによる変位 y_{rs} が等価となる。対称崩壊モードにおける塑性ヒンジの回転角,塑性ヒンジの内力仕事を式(3.20),(3.21)で近似する。

$$\Delta\theta_{r} = \frac{\pi y_{r}}{2\xi L_{0}} \frac{\xi \kappa_{Rg}}{\xi \kappa_{Rg} + 3} + \frac{y_{r}}{\xi L_{0}} \frac{3}{\xi \kappa_{Rg} + 3} = \frac{y_{r}}{2\xi L_{0}} \frac{\pi_{\xi} \kappa_{Rg} + 6}{\xi \kappa_{Rg} + 3}$$
(3.20)

$$U_p = \frac{y_r}{\xi L_0} \frac{\pi_{\xi} \kappa_{Rg} + 6}{\xi \kappa_{Rg} + 3} M_p^r$$
(3.21)

回転ばねによる接合部端部の回転角は式(3.22)となる。

$$\Delta \theta_s = \frac{y_r}{\xi L_0} \frac{3}{\xi \kappa_{Rg} + 3}$$
(3.22)

これより、接合部端部の回転ばね弾性エネルギーは式(3.23)となる。

$$U_{s} = 2 \cdot \frac{1}{2} K_{Rg} \Delta \theta_{s}^{2} = \frac{\gamma_{J} E I_{B} y_{r\xi}^{2} \kappa_{Rg}}{(\xi L_{0})^{3}} \left(\frac{3}{\xi \kappa_{Rg} + 3} \right)^{2}$$
(3.23)

両端の節点間変位を、 _く $\kappa_{Rg} = 0,\infty$ の場合で補間すると式(3.24)となり、外部仕事は式 (3.25)となる。(付録 3.2 参照)

$$\Delta u_{g} = \frac{y_{r}^{2} + 2a_{r}y_{r}}{\xi L_{0}} \left(\frac{3}{\xi \kappa_{Rg} + 3} + \frac{\pi^{2}}{8} \frac{\xi \kappa_{Rg}}{\xi \kappa_{Rg} + 3} \right) = \frac{\pi^{2} (y_{r}^{2} + 2a_{r}y_{r})}{8\xi L_{0}} \frac{\xi \kappa_{Rg} + 24/\pi^{2}}{\xi \kappa_{Rg} + 3}$$
(3.24)

$$T = \frac{\pi^2 (y_r^2 + 2a_r y_r)}{8\xi L_0} \frac{\xi \kappa_{Rg} + 24/\pi^2}{\xi \kappa_{Rg} + 3} N$$
(3.25)

 $\partial (U_{\varepsilon} + U_s + U_p - T) / \partial y_r = 0$ より、対称崩壊モードにおける崩壊時軸力は式(3.26)で表せる。

$$N \approx \frac{\pi^{2} \gamma_{J} E I_{B}}{\left(2\xi L_{0}\right)^{2}} \frac{\xi \kappa_{Rg}}{\xi \kappa_{Rg} + 24/\pi^{2}} \frac{y_{r}}{y_{r} + a_{r}} + \frac{4}{\pi} \frac{M_{p}^{r}}{y_{r} + a_{r}} \frac{\xi \kappa_{Rg} + 6/\pi}{\xi \kappa_{Rg} + 24/\pi^{2}}$$
(3.26)

式(3.26)において, 接合部端部がピン接合の場合には $\xi \kappa_{Rg} = 0$ を代入し, 式(3.27)を得る。

$$N = \frac{M_p^r}{y_r + a_r} \tag{3.27}$$

また,剛接合の場合, $\xi \kappa_{Rg} \rightarrow \infty$ を代入することで式(3.13)が得られる。このように,式 (3.26)は接合部端部がピン接合から剛接合に至るまでの崩壊時軸力を包含している。

同様に図 3.6(b)の逆対称崩壊モードについても崩壊時軸力を求める。塑性ヒンジの回 転角, 塑性ヒンジの内力仕事は式(3.28), (3.29)となる。

$$\Delta \theta_r = \frac{\pi y_r}{2\xi L_0} \frac{\xi \kappa_{Rg} + 6/\pi}{\xi \kappa_{Rg} + 3} + \frac{2y_r}{(1 - 2\xi)L_0}$$
(3.28)

$$U_{p} = \frac{y_{r}}{\xi L_{0}} \frac{(\pi - 2\pi\xi + 4\xi)_{\xi} \kappa_{Rg} + 6}{(1 - 2\xi)(_{\xi} \kappa_{Rg} + 3)} M_{p}^{r}$$
(3.29)

両端の節点間変位,外部仕事は式(3.30),(3.31)となる。

$$\Delta u_g = \frac{\pi^2 (y_r^2 + 2a_r y_r)}{8\xi L_0} \left(\frac{\xi \kappa_{Rg} + 24/\pi^2}{\xi \kappa_{Rg} + 3} + \frac{16\xi}{\pi^2 (1 - 2\xi)} \right)$$
(3.30)

$$T = \frac{\pi^2 (y_r^2 + 2a_r y_r)}{8\xi L_0} \frac{(\pi^2 - 2\pi^2 \xi + 16\xi)_{\xi} \kappa_{Rg} + 24}{\pi^2 (1 - 2\xi)(_{\xi} \kappa_{Rg} + 3)} N$$
(3.31)

以上より、 $\partial (U_{\varepsilon} + U_{s} + U_{p} - T) / \partial y_{r} = 0$ から逆対称崩壊モードにおける最大耐力は式

(3.32)で表すことができる。

$$N \approx \frac{\pi^2 (1 - 2\xi) \gamma_J E I_B}{(2\xi L_0)^2} \frac{\xi \kappa_{Rg}}{\xi \kappa_{Rg} + 24/\pi^2} \frac{y_r}{y_r + a_r} + \frac{M_p^r}{y_r + a_r}$$
(3.32)

図 3.6(c)の片側崩壊モードについても同様に崩壊時軸力を求めると, 塑性ヒンジの回転 角, 塑性ヒンジの内力仕事は式(3.33), (3.34)となる。

$$\Delta \theta_r = \frac{\pi y_r}{2\xi L_0} \frac{\xi \kappa_{Rg} + 6/\pi}{\xi \kappa_{Rg} + 3} + \frac{y_r}{(1 - 2\xi)L_0}$$
(3.33)

$$U_{p} = \frac{y_{r}}{\xi L_{0}} \frac{\xi \kappa_{Rg} (\pi - 2\pi\xi + 2\xi) + 6(1 - \xi)}{2(1 - 2\xi)(\xi \kappa_{Rg} + 3)} M_{p}^{r}$$
(3.34)

接合部端部の回転ばね弾性エネルギーならびに,接合部の歪エネルギーは式(3.35), (3.36)となる。

$$U_{s} = \frac{\gamma_{J} E I_{B} y_{r\xi}^{2} \kappa_{Rg}}{2(\xi L_{0})^{3}} \left(\frac{3}{\xi \kappa_{Rg} + 3}\right)^{2}$$
(3.35)

$$U_{\varepsilon} = \frac{\pi^4 \gamma_J E I_B y_r^2}{64 (\xi L_0)^3} \left(\frac{\xi \kappa_{Rg}}{\xi \kappa_{Rg} + 3} \right)^2$$
(3.36)

両端の節点間変位,外部仕事は式(3.37),(3.38)となる。

$$\Delta u_g = \frac{\pi^2 (y_r^2 + 2a_r y_r)}{16\xi L_0} \left(\frac{\xi \kappa_{Rg} + 24/\pi^2}{\xi \kappa_{Rg} + 3} + \frac{8\xi}{\pi^2 (1 - 2\xi)} \right)$$
(3.37)

$$T = \frac{\pi^2 (y_r^2 + 2a_r y_r)}{16\xi L_0} \frac{(\pi^2 - 2\pi^2 \xi + 8\xi)_{\xi} \kappa_{Rg} + 24(1-\xi)}{\pi^2 (1-2\xi)(\xi \kappa_{Rg} + 3)} N$$
(3.38)

したがって、 $\partial (U_{\varepsilon} + U_{s} + U_{p} - T) / \partial y_{r} = 0$ より、片側崩壊モードにおける崩壊時軸力は式 (3.39)となる。

$$N \approx \frac{\pi^2 (1 - 2\xi) \gamma_J E I_B}{(2\xi L_0)^2} \frac{\xi^{\kappa_{Rg}}}{(1 - \xi)(\xi^{\kappa_{Rg}} + 24/\pi^2)} \frac{y_r}{y_r + a_r} + \frac{M_p^r}{y_r + a_r}$$
(3.39)

式(3.32), (3.39)において接合部端部がピン接合の場合, _{ξ} $\kappa_{Rg} = 0$ を代入すると式(3.27)

となり,式(3.32)において,剛接合の場合, $\xi \kappa_{Rg} \rightarrow \infty$ を代入し,式(3.17)を得る。このように式(3.32),(3.39)も接合部端部がピン接合から剛接合に至るまでの崩壊時軸力を包含している。式(3.26),(3.32),(3.39)より,接合部端部がピン接合の場合は対称,逆対称,片側崩壊モードの崩壊時軸力は同等であるが,接合部端部が剛接合に近くなると逆対称崩壊モードの崩壊時軸力が低くなることがわかる。したがって,拘束材端部の曲げ耐力,接合部端部の回転剛性を考慮した崩壊時軸力は,式(3.32)より変位増分 y_r の関数として次式で表現できる。

$$N = N_{cr}^r + \frac{M_p^r}{y_r + a_r}$$
(3.40a)

$$N_{cr}^{r} = \frac{\pi^{2} (1 - 2\xi) \gamma_{J} E I_{B}}{(2\xi L_{0})^{2}} \frac{\xi^{\kappa} \kappa_{Rg}}{\xi^{\kappa} \kappa_{Rg} + 24/\pi^{2}}$$
(3.40b)

なお、 N_{cr}^{r} :拘束材端部回転ピンの場合の座屈荷重であり、式(3.40a)第1項で $a_{r} << y_{r}$ と近似している。これは式(3.40a)第一項が支配的、すなわち_ξ κ_{Rg} が大きい領域において a_{r} が小さくなる特性を表現し、 $_{\xi}\kappa_{Rg} \rightarrow \infty$ 、 $M_{p}^{r} = 0$ の際の式(3.2)との連続性を図ったものである。

3.2.3 機構安定条件式の誘導

式(3.40a,b)により与えられる崩壊時軸カー面外変位の関係は,図 3.5 に示すように、 構面外変位 y_r+a_r の増加に伴い軸力が減少していくものである。先述したように、この 関係式と式(3.4)で与えられる初期不整のもとでの圧縮材の軸力 *N*-面外変位関係式の交 点によって与えられる荷重が BRB の安定限界軸力となる。式(3.4)より得られる $y_r = a_r N / (N_{cr}^B - N)$ を式(3.40a)に代入して M_p^r について整理すると、拘束材端部の必要曲 げ降伏耐力が以下のように得られる。

$$M_{p}^{r} = \frac{a_{r}}{1 - N / N_{cr}^{B}} (N - N_{cr}^{r})$$
(3.41)

一方,図 3.7 に示すように座屈拘束ブレースが架構の2方向応答による構面外層間変 位により強制変形を受ける場合,拘束材端部に初期曲げモーメント M'_0 が加わる。 M'_0 は 部材各部の曲げ剛性とクリアランス,構面外層間変位 δ_0 より解析的に求められるが, 一例として K_{Rg} が小さい場合,図 3.7 に示すモデルのように構面外変形により接合部の 回転量が図 3.4 の θ_0 を超えた分が回転ばねにより追随されると考えると、 M'_0 は下式で 近似できる。

$$M_{0}^{r} = (1 - 2\xi) K_{Rg} \left[\frac{\delta_{0}}{L_{0}} - \frac{2s_{r}(1 - 2\xi)}{L_{in}} \right] \ge 0$$
(3.42)

拘束材端部の耐力は、この初期曲げモーメント分低下すると考えると、式(3.40a)は以下のように置換えられる。

$$N = N_{cr}^{r} + \frac{M_{p}^{r} - M_{0}^{r}}{y_{r} + a_{r}}$$
(3.43)

以上をまとめると,式(3.41)の軸力を推定芯材最大軸力 *N_{cu}* に置き換えることにより, 接合部を含めた BRB の機構安定条件を式(3.44)のように表現できる。

$$M_{p}^{r} - M_{0}^{r} \ge \frac{a_{r}}{1 - N_{cu} / N_{cr}^{B}} (N_{cu} - N_{cr}^{r})$$
(3.44)

ただし $M_p^r - M_0^r$ が負数の場合は0とする。式(3.44)の構成を見ると、同式を満足させるためには、以下の2つの方法があることが分かる。

- i) 接合部回転剛性_ξ κ_{Rg} が大きい場合(目安として $1.0 \leq_{\xi} \kappa_{Rg}$)は式(3.44)左辺の拘束材端 部曲げ耐力残存値が小さくなるまたは零となるため、 N_{cr}^{r} が推定芯材最大軸力 N_{cu} より大きくなるよう設計し、右辺()内を小さい値または負とすることで同式を満足 させる。これは図 3.1(a)に示した「芯材の塑性化に伴い拘束材端部で曲げモーメン トの伝達を期待しない設計」に対応し、右辺()内を零または負とする条件は式(3.2) に基づく検定と一致する。
- ii) 接合部回転剛性_ξ κ_{Rg} が小さい場合(目安として_ξ $\kappa_{Rg} \leq 0.5$)は式(44)の左辺中の M'_0 が 小さくなり強制変形時の負担が減るので、芯材降伏軸力下の偏心曲げモーメントを 貫入部で安定して伝達させ、 M'_p を確保することで、同式を満足させる。これは図 3.1(b)に示した「拘束材端部で曲げモーメントの伝達を期待する設計」に対応する。 以上述べたように、式(3.44)は図 3.1 に示した 2 つの設計方針を包含し、任意の接 合部端部剛性に対応した式となっている。

なお,式(3.44)に示す機構安定条件式は接合部が弾性であると仮定しているが,接合 部端部に塑性ヒンジが形成される場合は,図 3.8 に示すような崩壊メカニズムを形成す る。この崩壊モードに対応する機構安定条件式は式(3.44)と同様の過程により以下のよ うに表せる。

$$\left[(1 - 2\xi)M_{p}^{g} - M_{0}^{r} \right] + (M_{p}^{r} - M_{0}^{r}) \ge \frac{a_{r}}{1 - N_{cu}/N_{cr}^{B}} N_{cu}$$
(3.45)

ここで M_p^g は軸力を考慮した接合部端部の面外終局曲げ耐力である。なお $(1-2\xi)M_p^g - M_0^r$ あるいは $M_p^r - M_0^r$ が負数の場合は0とする。

図 3.7 強制面外変形下の曲げモーメント分布仮定

図 3.8 接合部端部に塑性ヒンジを有する場合の崩壊メカニズム

3.3 強制構面外変形下の繰返し載荷実験

3.3.1 実験概要

誘導した評価式の妥当性を確認するため,接合部付き BRB 部材実験を行う。地震動 によって生じる構面外変形を模擬し BRB 端部に層間変形角 1/100 の強制面外変形を与 えた状態で準静的軸変形繰返し載荷を行う。対象はモルタル充填鋼管を拘束材とした BRB であり,貫入長比 *L_{in}/B_c*,端部クリアランス厚,拘束鋼管断面形状および接合部の 剛性を変化させ,芯材軸歪 3%までの正負交番漸増載荷を与えその履歴性状を検証する。

実験のセットアップを図 3.9,写真 3.1 に示す。セットアップ角度はφ=38.2°とする。 載荷履歴は図 3.10 に示すとおり芯材軸歪 0.1, 0.5, 1.0, 2.0, 3.0%の正負交番とし、繰返し 回数は各 3 サイクルとする。3.0%-3 サイクルまでに不安定状態に至らなかった試験体 については 3.0%で載荷を続ける。計測箇所は荷重、変位および拘束鋼管表面歪とし、 節点間変位は上下ガセットプレート間に軸方向に沿って取り付けられた変位計にて算 出する。拘束材端部の面外変位および回転角は上下の芯材補強部ならびに接合部にとり つけた変位計から算出する。

図 3.9 セットアップおよび関連装置概要

図 3.10 載荷履歴

写真3.1 試験体セットアップ

3.3.2 試験体概要

設定した試験体を表 3.1 に示す。なお,表 3.1 中の A_c , σ_{cy} , σ_{ry} は付録 3.4 に説明が記載されており, $\xi'L_0$ は図 3.3 中に示す貫入部を含めた接合部長である。芯材断面は 12mm×90mm(SN400B)とし,芯材補強部の拘束鋼管内への貫入部長は芯材幅と同じ 90mmとしたもの(貫入長比=1)と 2 倍の 180mm(貫入長比=2)としたものの 2 種類,芯材補強部と拘束材間のクリアランスは 1.0mm と 2.0mm の 2 種類とした。また,拘束鋼管の断面形状は角形と円形の 2 種類とし,接合部はスチフナ等の面外補剛材を設けない面外剛性の低い「低剛性接合部」とスチフナ等の面外補剛材を設けた面外剛性の高い「高剛性接合部」の 2 種類とし,計 6 体の試験体を設定する。これらの試験体名の表記法を図 3.11に示し,試験体詳細図を図 3.12 に示す。また,端部クリアランスによる回転角を表 3.2に示す。

試験体	A _c	σ_{cy}	EI_B	σ_{ry}	K_{Rg}	$\gamma_J EI_B$	L_0	L in	L_p	S _r	ζLo	ξ'L ₀
	(mm^2)	(N/mm ²)	(Nmm ²)	(N/mm^2)	(Nmm)	(Nmm ²)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
MRL1.0S1H	1080	266.0	5.81×10 ¹¹	305.0	6.90×10 ⁸	1.20×10 ¹²	2392	90	1380	1	416	506
MRL2.0S1	1080	266.8	5.81×10 ¹¹	385.8	9.73×10 ⁷	1.20×10 ¹²	2392	180	1200	1	416	596
MRL2.0S2	1080	266.8	5.81×10 ¹¹	391.5	9.73×10 ⁷	1.20×10 ¹²	2392	180	1200	2	416	596
MCL2.0S2	1080	269.7	7.14×10 ¹¹	365.7	9.73×10 ⁷	1.20×10 ¹²	2392	180	1200	2	416	596
MRL1.0S1	1080	266.8	5.81×10 ¹¹	391.5	9.73×10 ⁷	1.20×10 ¹²	2392	90	1380	1	416	506
MRL1.0S2	1080	266.8	5.81×10 ¹¹	391.5	9.73×10 ⁷	1.20×10 ¹²	2392	90	1380	2	416	506

表 3.1 試験体マトリックス

表 3.2 クリアランスによる回転角

試験体	L _{in} (mm)	s _r (mm)	$\theta_0 = 2s_r / L_{in}$ (rad)
MRL1.0S1H	90	1	0.02
MRL2.0S1	180	1	0.01
MRL2.0S2	180	2	0.02
MCL2.0S2	180	2	0.02
MRL1.0S1	90	1	0.02
MRL1.0S2	90	2	0.04

図 3.11 試験体名表記法

3.3.3 実験結果

各試験体の軸力-節点間変位関係を図 3.13 に示す。荷重は引張を正側,圧縮を負側 とする。写真 3.2, 3.3 に載荷後の試験体例を示す。以下に各試験体の履歴性状を列記す る。

(a) MRL1.0S1H(図 3.13(a))

高剛性接合部を持つ本試験体は、芯材軸歪 3.5%-6 サイクル目まで安定した履歴性状 を発揮した後、芯材の疲労破断が生じた。全試験体中最も安定した履歴性状を示した試 験体となった。

(b) MRL2.0S1(図 3.13(b))

芯材軸歪 3%-11 サイクル目まで安定した履歴性状を発揮した。その後 12 サイクル 目で上部の拘束材端部において、モルタルが剥離・脱落したため構面外座屈が生じた。 低剛性接合部を持つ全試験体中最も安定した履歴性状を示した試験体となった。

(c) MRL2.0S2(図 3.13(c))

芯材軸歪 3%-1 サイクル目まで安定した履歴性状を発揮したが,その後2サイクル 目で下部拘束材端部において構面外座屈が起きた。MRL2.0S1の試験体に比べ端部クリ アランスが 2mm であり,クリアランスによる差が機構安定性に影響していることがわ かる。

(d) MCL2.0S2(図 3.13(d))

芯材降伏軸力後も芯材軸歪 1.0%-3 サイクル目までは安定した履歴性状を発揮した。 その後 2.0%で上部芯材突出部において構面外座屈が起きた。拘束材端部の曲げモーメ ント伝達能力を向上させても芯材突出部で曲げ耐力は頭打ちになることが確認された。 (e) MRL1.0S1(図 3.13(e))

芯材塑性化後も芯材軸歪 0.5%までは安定した履歴性状を発揮したが,1.0%-2 サイクル目で上部拘束材端部において構面外座屈が生じた。貫入長比 2.0 に比べ早期に座屈を起こしたことから機構安定性に貫入長比が大きく影響していることが確認できる。 (f) MRL1.0S2(図 3.13(f))

芯材軸歪 0.5%-1 サイクル目で下部補強リブ端部において構面外座屈が生じた。 MRL1.0S1 に比べ面外安定性が低く MRL2.0S2 と同様にクリアランスによる差が機構安 定性に大きく影響していることが確認できる。

本形式の BRB は構面外不安定とならない状態では芯材軸歪 3.0%(軸変位 40mm)程度 まで安定した履歴性状を示すものであるが,強制面外変形を受けた状態でこれと同等の 性能を発揮できた試験体は高剛性接合部を有する MRL1.0S1H と,角形鋼管の貫入長比 2.0 の MRL2.0S1 のみであった。残りの試験体は拘束材端部において面外座屈を起こし 不安定となった。以上のように,面外変形を受ける BRB の機構安定性には接合部剛性 ならびに貫入長比と端部クリアランスが大きく影響していることが確認された。

写真 3.2 載荷後(MRL2.0S2)

写真 3.3 載荷後 (MCL2.0S2)

図 3.13 軸力一節点間変位関係

3.4 提案安定条件式の妥当性の検証

本節では,前節で得られた実験結果と式(3.44)より得られる検定値の検討を行う。3.2 節で誘導した安定条件式(3.44)の検討を行うためには,接合部を含めた BRB の弾性座屈 荷重 N_{cr}^{B} および拘束材端部の終局曲げ耐力 M_{p}^{r} を評価する必要がある。ここでは N_{cr}^{B} は 付録 3.3 の近似式, M_{p}^{r} は竹内・松井ら ^{3.4)}の提案式(付録 3.4)により算定する。算定し た M_{p}^{r} を表 3.3 に示す。また,接合部が弾性の場合,式(3.44)より安定限界軸力は次式で 表現することができる。

$$N_{lim1} = \frac{(M_p^r - M_0^r) / a_r + N_{cr}^r}{(M_p^r - M_0^r) / (a_r N_{cr}^B) + 1} > N_{cu}$$
(3.46)

先述したように, N^r_{cr} は拘束材端部が回転ピンの場合の座屈荷重であり, 弾塑性範囲 を考慮し次式で示される等価細長比 λ, を許容圧縮応力度式^{3.7)} に適用し求める。

$$\lambda_{r} = \frac{2\xi' L_{0}}{i_{c}} \cdot \sqrt{\frac{\xi \kappa_{Rg} + 24 / \pi^{2}}{(1 - 2\xi')_{\xi} \kappa_{Rg}}}$$
(3.47)

ここに, *i_e*は接合部の断面二次半径である。式(3.47)において, 塑性ヒンジは図 3.3(b) に示すように芯材の補強リブ端部に形成される場合があるので, *そのかわりに そ*を用い ている。同様に図 3.8 に示すように接合部端部に塑性ヒンジが形成される場合は, 安定 限界軸力は次式で表現することができる。

$$N_{lim2} = \frac{\left[(1 - 2\xi)M_p^g + M_p^r - 2M_0^r \right] / a_r}{\left[(1 - 2\xi)M_p^g + M_p^r - 2M_0^r \right] / (a_r N_{cr}^B) + 1} > N_{cu}$$
(3.48)

式(3.46)と式(3.48)の内小さい方が安定限界軸力 N_{lim} となる。表 3.4 にこれらの式によ り算定した安定限界軸力と実験により得られた最大軸力を併せて示す。この表からわか るように試験体 MRL1.0S1H と MRL2.0S1 のみ,算定した安定限界軸力が推定芯材最大 軸力 N_{cu} (芯材降伏軸力の 1.5 倍)を超えており,安定限界軸力が推定芯材最大軸力より も小さい他の試験体は全体安定条件を満たしていないことがわかる。図 3.14 に実験よ り得られた軸力-面外変位と式(3.4)および式(3.43)による軸力-面外変位の関係を併せて 示す。なお図 3.14 中において,「突出部」は図 3.3 の芯材突出部が,「貫入部」は図 3.3 の芯材貫入部が塑性化した場合について,「1」および「2」はそれぞれ図 3.6(b)および 図 3.8 の崩壊メカニズムを用いて崩壊時軸力を算定した値を示している。白丸で表され る安定限界軸力を超えると,式(3.43)に沿って耐力低下しながら構面外変位が増大して いく様子がわかる。図 3.15 に式(3.46),(3.48)により得られる安定限界軸力 N_{lim} と実験よ り得られた最大軸力 N^{exp} との比較を示す。多少のばらつきはあるものの,提案式による 値と実験結果は概ね対応を示しており,提案した安定条件式は適切な安全率を設定すれ ば実務的にも適用可能と考えられる。

試験体	芯材突出部 降伏曲げ モーメント	芯材貫入部 降伏曲げ モーメント	M_p^{r} (kNm)					
	M_p^{r-neck} (kNm)	M_p^{r-rest} (kNm)						
MRL1.0S1H	2.46	2.97	2.46					
MRL2.0S1	5.50	8.38	5.50					
MRL2.0S2	6.56	8.56	6.56					
MCL2.0S2	6.50	35.68	6.50					
MRL1.0S1	6.78	4.28	4.28					
MRL1.0S2	6.78	4.28	4.28					

表3.3 拘束材端部の終局曲げ耐力

実験結果	崩壞時軸犬 N _{lim} ^{exp} (KN)	(452)*1	535	507	375	362	300	
	塑性崩壊時 サイクル	No collapse	3.0%-12cycle	3.0%- 2cycle	1.0%- 2cycle	0.5%- 1cycle	0.5%- 1cycle	
判定	$N_{lim} > N_{cu}$	OK	OK	NG	NG	NG	NG	
安定限界軸力(KN)	N_{lim}	818	520	410	432	345	217	
	N _{lim 2} (元(3.48))	1390	520	410	432	345	217	
	N _{lim 1} (元(3.46))	818	520	419	440	367	264	
	M ₀ ' (kNm)	0.00	0.09	0.00	0.00	0.00	0.00	
	N_{cu} (kN)	431	432	432	437	432	432	
	N_{cr}^{r} (kN)	569	82	82	82	111	111	
	<i>a r</i> (mm)	11.4	6.80	12.4	12.4	11.4	21.7	
	N_{cr}^{B} (kN)	1880	1158	1158	1389	1158	1158	
_	試驗体	MRL1.0S1H	MRL2.0S1	MRL2.0S2	MCL2.0S2	MRL1.0S1	MRL1.0S2	

表3.4 安定条件式と実験結果との比較

注1):MRL1.0S1H は実験時にて不安定になっていないため() 内に実験時最大軸力を示す

図 3.14 実験値と提案式の比較(軸カー面外変位関係)

図 3.15 実験値と提案式の比較(崩壊時軸力)

3.5 結

本章では, 接合部を考慮した座屈拘束ブレースの機構安定条件式を提案し, 強制面外 変形を伴う繰返し載荷実験によりその妥当性を確認した。以下に得られた知見を示す。

- 2) 繰返し載荷実験により、低剛性接合部で芯材補強部の拘束鋼管内への貫入長が短く、端部クリアランスが大きい場合、安定した履歴性状を発揮する以前に機構不安定となるが、貫入長が長く、クリアランスが小さい場合には安定した履歴性状を発揮することが確認された。このことは、低剛性接合部を有する座屈拘束ブレースの機構安定性にとって拘束材端部での曲げモーメント伝達能力が大きな要素であることを示している。また、高剛性接合部を有する場合、貫入長が短い場合でも安定した履歴性状を発揮することが確認された。
- 3) 提案した座屈拘束ブレースの構面外安定条件式は拘束材端部の曲げモーメント伝達 能力の影響や様々な接合部剛性に対応でき、実験結果との比較により概ねその妥当 性が確認できた。

付録 3.1

式(3.15)の誘導を以下に示す。図 3.3(b)における逆対称崩壊モードでは,付図 3.1 に示 す拘束材の回転に応じ,式(3.9)の値に加え式(付 3.1.1)の軸変形を生じる。

$$\begin{split} \delta_{2} &- \delta_{1} \\ &= \sqrt{\left\{ \left(1 - 2\xi\right)L_{0} \right\}^{2} - \left\{2\left(a_{r} + y_{r}\right)\right\}^{2}} - \sqrt{\left\{\left(1 - 2\xi\right)L_{0}\right\}^{2} - \left\{2a_{r}\right\}^{2}} \\ &= \left(1 - 2\xi\right)L_{0} \left\{ \sqrt{1 - \left\{\frac{2\left(a_{r} + y_{r}\right)}{\left(1 - 2\xi\right)L_{0}}\right\}^{2}} - \sqrt{1 - \left\{\frac{2a_{r}}{\left(1 - 2\xi\right)L_{0}}\right\}^{2}} \right\} \\ &\approx \left(1 - 2\xi\right)L_{0} \left\{1 - \frac{1}{2} \left\{\frac{2\left(a_{r} + y_{r}\right)}{\left(1 - 2\xi\right)L_{0}}\right\}^{2} - 1 + \frac{1}{2} \left\{\frac{2a_{r}}{\left(1 - 2\xi\right)L_{0}}\right\}^{2}\right\} \\ &= \frac{2\left(y_{r}^{2} + 2a_{r}y_{r}\right)}{\left(1 - 2\xi\right)L_{0}} \end{split}$$
(^{††} 3.1.1)

これより, 逆対称崩壊モードにおける BRB 両端の節点間変位 Δugを式(付 3.1.2)より 評価する。

 Δu_{g}

$$= 2 \cdot \frac{1}{2} \int_{0}^{\xi L_{0}} \left[\left(\frac{dy}{dx} \right)^{2} - \left(\frac{a_{r}}{\xi L_{0}} \right)^{2} \right] dx - (\delta_{2} - \delta_{1})$$

$$= \frac{\pi^{2}}{8\xi L_{0}} \left(y_{r}^{2} + \frac{16a_{r}y_{r}}{\pi^{2}} \right) + \frac{2(y_{r}^{2} + 2a_{r}y_{r})}{(1 - 2\xi)L_{0}}$$
(f[†] 3.1.2)

ここで、*π*²/8≈1 とし、軸力 N を乗じることにより式(3.15)の外部仕事 T を得る。

付図 3.1 拘束材の回転

付録 3.2

式(3.24)の近似は, $\xi \kappa_{Rg} = 0 \geq \xi \kappa_{Rg} \rightarrow \infty$ の場合における BRB 両端の節点間変位を補間 する形で表現している。以下に、導出方法を示す。

図 3.6 で示した接合部の構面外変位 y_rを,接合部の弾性変位 y_rおよび回転ばねによる変位 y_{rs}の和とし,式(付 3.2.1)より表現する。

$$y_r = y_{re} + y_{rs} \tag{(† 3.2.1)}$$

接合部の弾性変位 y_{re}による BRB 両端の節点間変位は,式(3.9)より式(付 3.2.2)で表される。

$$\Delta u_{re} = \frac{\pi^2 y_{re}^2}{8\xi L_0} + \frac{2a_r y_{re}}{\xi L_0}$$
(† 3.2.2)

回転ばねによる変位 yrs は式(付 3.2.3)となる。

$$\Delta u_{rs} = \frac{y_{rs}^2 + 2a_r y_{rs}}{\xi L_0} \tag{(13.2.3)}$$

これより, BRB 両端の節点間変位 Δug を,式(付 3.2.2)および(付 3.2.3)の和として,式(付 3.2.4)より評価する。

$$\Delta u_g = \Delta u_{re} + \Delta u_{rs} \tag{(† 3.2.4)}$$

一方, 接合部端部の構面外方向に作用する力を *P* を *y_{re} お*よび *y_{rs}*より以下のように表現 する。

$$P = \frac{3\gamma_J E I_B}{\left(\xi L_0\right)^3} y_{re} = \frac{\xi \kappa_{Rg} \gamma_J E I_B}{\left(\xi L_0\right)^3} y_{rs}$$
(† 3.2.5)

式(付 3.2.2),(付 3.2.3),(付 3.2.4)および(付 3.2.5)より,BRB 両端の節点間変位 Δugは式(付 3.2.6)となる。

$$\begin{split} \Delta u_{g} &= \frac{\pi^{2} y_{re}^{2}}{8\xi L_{0}} + \frac{2a_{r} y_{re}}{\xi L_{0}} + \frac{y_{rs}^{2} + 2a_{r} y_{rs}}{\xi L_{0}} \\ &= \frac{1}{\xi L_{0}} \Biggl\{ \Biggl(\frac{\pi^{2}}{8} y_{re}^{2} + y_{rs}^{2} \Biggr) + 2a_{r} (y_{re} + y_{rs}) \Biggr\} \\ &= \frac{1}{\xi L_{0}} \Biggl\{ \Biggl(\frac{\pi^{2}}{8} \Biggl(\frac{\xi \kappa_{Rg}}{\xi \kappa_{Rg} + 3} \Biggr)^{2} + \Biggl(\frac{3}{\xi \kappa_{Rg} + 3} \Biggr)^{2} \Biggr) y_{r}^{2} \\ &= \frac{1}{\xi L_{0}} \Biggl\{ \Biggl(\frac{\pi^{2} \xi \kappa_{Rg}^{2} + 72}{8(\xi \kappa_{Rg} + 3)^{2}} \Biggr) y_{r}^{2} + 2a_{r} y_{r} \Biggl(\frac{\xi \kappa_{Rg}}{\xi \kappa_{Rg} + 3} + \frac{3}{\xi \kappa_{Rg} + 3} \Biggr) \Biggr\} \\ &= \frac{1}{\xi L_{0}} \Biggl\{ \Biggl(\frac{(\xi \kappa_{Rg} + 3) \pi^{2} \xi \kappa_{Rg}^{2} + (\xi \kappa_{Rg} + 3) 24 - (3\pi^{2} + 24)_{\xi} \kappa_{Rg}}{8(\xi \kappa_{Rg} + 3)^{2}} \Biggr) y_{r}^{2} \\ &+ 2a_{r} y_{r} \Biggl(\frac{\xi \kappa_{Rg}}{\xi \kappa_{Rg} + 3} + \frac{3}{\xi \kappa_{Rg} + 3} \Biggr) \Biggr\} \end{split}$$
(ff 3.2.6)

π²/8≈1とし,式(付 3.2.6)を式(付 3.2.7)のように近似する。

$$\Delta u_{g} \approx \frac{y_{r}^{2} + 2a_{r}y_{r}}{\xi L_{0}} \left(\frac{\pi^{2}}{8} \frac{\xi \kappa_{Rg}}{\xi \kappa_{Rg} + 3} + \frac{3}{\xi \kappa_{Rg} + 3} \right) - \frac{\left(3\pi^{2} + 24\right)_{\xi} \kappa_{Rg}}{8\xi L_{0} \left(\xi \kappa_{Rg} + 3\right)^{2}} y_{r}^{2}$$
($\ddagger 3.2.7$)

さらに,式(付3.2.7)中の第2項を0とみなし,式(3.24)を得る。例として, $y_r=2$ mm, $a_r=10$ mm, $\zeta L_0=300$ mm と仮定し,この場合における軸変形-無次元化回転剛性関係を付図 3.2 に示 す。式(3.24)は,式(付 3.2.7)の最大値を覆うように補間していることがわかる。式 (3.30),(3.37)は式(3.24)にそれぞれ拘束材の回転による軸変位 $2(y_r^2+2a_ry_r)/(1-2\zeta)L_0$,その $1/2 倍の(y_r^2+2a_ry_r)/(1-2\zeta)L_0$ を加えることで得られる。

付図 3.2 式(付 3.2.7)と式(3.24)の比較

付録3.3

接合部を含む BRB の弾性座屈荷重値 N_{cr}^{B} は固有値解析等により求められるが, $\gamma_{J} \approx 1$ のときは次式で近似できることが知られている^{3.8)}。本試験体では γ_{J} が約2程度であり,安全側の評価として下式を利用する。

$$N_{cr}^{B} = \frac{4\pi^{2} E I_{B}}{L_{0}^{2}} \cdot \frac{_{L}\kappa_{Rg}^{2} + 10_{L}\kappa_{Rg} + 16}{_{L}\kappa_{Rg}^{2} + 14_{L}\kappa_{Rg} + 64}$$
(† 3.2.1)

ここに、 $_L \kappa_{Rg}$:無次元化回転ばね剛性比(材全体)= $K_{Rg}L_0 / EI_B$ である。

なお,初期不整付き圧縮材の軸力-面外変位関係を求めるにあたっては芯材の塑性化 に伴う曲げ剛性の変化をどう評価するかが問題となるが,本稿では芯材の曲げ剛性が拘 束材の曲げ剛性に比べて小さい形式を対象とし,座屈荷重の評価には拘束材の曲げ剛性 *EI*_Bを用いることとしている。また,既往の実験^{3,9)}では載荷中に座屈モードがより低 位のものに移行する現象も報告されていることから,本稿の実験結果の評価にあたって は,上式の対称モード座屈荷重を接合部を含む BRB の弾性座屈荷重値として採用した。

付録 3.4

表 3.3 における各値については,文献 5)を参照し以下の式(付 3.4.1)~(付 3.4.9)を用い て算出している。なお,図 3.14 では式(付 3.4.2)の芯材貫入部曲げ耐力 M_p^{r-rest} ,および 式(付 3.4.3)の芯材突出部(十字部)曲げ耐力 M_p^{r-neck} の両方を示している。

$$M_p^r = \min\left\{M_p^{r-rest}, M_p^{r-neck}\right\}$$
(

芯材貫入部の曲げ耐力

$$M_{p}^{r-rest} = \begin{cases} \min\left\{\alpha_{p}^{r}Z_{p}\sigma_{ry}, \alpha_{p}^{r}\left[K_{Rr1}\theta_{y1}' + K_{R2}\left(\theta_{y2} - \theta_{y1}'\right)\right]\right\} (\text{角形拘束鋼管})\\ \min\left\{Z_{rp}\sigma_{ry}, K_{Rr1}\theta_{y}\right\} \qquad (\Pi \text{Hň束鋼e})\\ \alpha_{p}^{r} = 4.5 - 1.5(L_{in}/B_{c}) \quad (0.5 \le L_{in}/B_{c} \le 2) \end{cases}$$
($\text{ff} 3.4.2$)

芯材突出部(十字部)曲げ耐力(軸力考慮)

$$M_{p}^{r-neck} = \left\{ 1 - \left(\frac{N_{cu} - N_{wy}^{c}}{N_{u}^{c} - N_{wy}^{c}} \right)^{2} \right\} Z_{cp} \sigma_{cy}$$

$$(\ddagger 3.4.3)$$

$$K_{Rr1} = \begin{cases} \frac{ED_{r}l_{r}L_{in}}{3(2B_{r}a_{s}^{3}-3a_{s}^{4})} & (角形拘束鋼管) \\ \frac{2\sigma_{ry}t_{r}L_{in}^{3}}{3\sqrt{a_{s}^{2}+\delta_{y}^{2}}} \frac{\delta_{y}}{\delta_{y}-\delta_{0}} & (円形拘束鋼管) \end{cases}$$
(付 3.4.4)

$$K_{Rr2} = 0.11 \sigma_{ry} B_r^3 \left(\frac{L_{in}}{B_c} \right)^3$$
 (角形拘束鋼管) (付 3.4.5)

$$\delta_{y} = \sqrt{\left(\frac{\pi B_{r} \sigma_{ry}}{4E} + \frac{B_{r}}{2} \cos^{-1} \left(\frac{B_{r} - 2a_{s}}{B_{r} - 2t_{r}}\right)\right)^{2} - a_{s}^{2}}$$
((† 3.4.6)

$$\theta_{y1}' = 1.64 \times 10^{-3} \left(\frac{\sigma_{ry}}{E}\right) \left(\frac{B_r}{t_r}\right) \left(\frac{B_c}{L_{in}}\right)$$
(† 3.4.7)

$$\theta_{y2} = \frac{B_r}{L_{in}} \sqrt{\left(\frac{\sigma_{ry}}{2E}\right)^2 + \left(\frac{a_s \sigma_{ry}}{B_r E}\right)} \tag{(† 3.4.8)}$$

$$\theta_y = \frac{\delta_y}{L_{in}} \tag{(† 3.4.9)}$$

ここで

Ac: 芯材補強部(十字部)の断面積

Acw: 芯材補強部(十字部)ウェブの断面積

*a*_s: 芯材から拘束材への伝達せん断力の作用位置から拘束材縁までの長さ

$$=\frac{B_r-B_c}{4}$$

- *B_c*: 芯材幅
- Br: 拘束鋼管幅
- *E*: ヤング係数
- *K*_{*Rrl*}: 拘束材端部の初期回転剛性
- *K_{Rr2}*: 拘束材端部の2次回転剛性
- *L_{in}*: 芯材補強部の貫入長
- Ny^c: 芯材補強部(十字部)の降伏軸力
- Nu^c: 芯材補強部(十字部)の終局耐力 Acocu
- N_{wv}^c: 芯材補強部(十字部)ウェブの降伏軸力
- N_{wu}^c: 芯材補強部(十字部)ウェブの終局耐力 Acwocu
- *t_c*: 芯材厚
- tr: 拘束鋼管厚
- Z_{cy}: 芯材補強部(十字部)の断面係数
- Z_{cp}: 芯材補強部(十字部)の塑性断面係数
- Z_{rp}: 拘束鋼管の塑性断面係数
- *δ_y*: 円形拘束鋼管の場合の拘束材端部の降伏時軸直交方向変形
- δ₀: 円形拘束鋼管の場合の伝達せん断力作用位置の軸直交方向長さ
- σ_{cy} : 芯材降伏応力
- *σcu*: 芯材引張強さ
- *σ_{ry}*: 拘束鋼管降伏応力
- θ_{νl}': 角形拘束鋼管の場合の見かけの降伏時における拘束材端部回転角
- *θ_{y2}*: 角形拘束鋼管の場合の第2次降伏時における拘束材端部回転角
- *θ_v*: 円形拘束鋼の場合の降伏時における拘束材端部回転角

第3章の参考文献

- 3.1) 日本建築学会:鋼構造座屈設計指針, 2009.11
- 3.2) 井上一朗:鋼構造制振技術の現状と設計指針への期待 -鋼構造における制振とこれから- ②座屈拘束ブレースと接合部,2006 年度日本建築学会大会(構造部門(鋼構造))パネルディスカッション資料,pp.8-17,2006.9
- 3.3) 木下智裕, 聲高裕治, 井上一朗, 飯谷邦祐: 接合部を含む座屈拘束ブレースの構 面外座屈防止条件, 日本建築学会構造系論文集, 第 621 号, pp.141-148, 2007.11
- 3.4) 竹内徹,松井良太,西本晃治,高橋聡史,大山翔也:拘束材端部回転剛性を考慮した座屈拘束ブレースの有効座屈長,日本建築学会構造系論文集,第 639 号, pp.925-934, 2009.5
- 3.5) 藤本盛久:鉄骨の構造設計 全改定2版,技報堂出版,1982.6
- 3.6) 池田清宏, 室田一雄:構造系の座屈と分岐, コロナ社, 2001.11
- 3.7) 日本建築学会:鋼構造設計規準-許容応力設計法-, 2005
- 3.8) 井上一朗, 吹田啓一郎: 建築鋼構造-その理論と設計-, 鹿島出版社, 2007
- 3.9) Chou, C. C., Chen, P. J.: Compressive behavior of central gusset plate connections for a buckling-restrained braced frame, Journal of Constructional Steel Research, No.65, 1138-1148, 2009

第4章 多様な形式の座屈拘束ブレースの機構安定条件

4.1 序

第3章において,座屈拘束ブレース(以降 BRB)の接合部剛性および拘束材端部の曲げ 耐力を考慮した包括的な機構安定条件式を提案し,その妥当性をモルタル充填鋼管を補 剛材とした BRBの繰返し載荷実験を通じて検証した。

BRBにはこのようなモルタル充填鋼管型 BRB 以外にも様々な座屈補剛形式のブレースが存在するが,前章で提案した機構安定条件式は,モルタル充填鋼管型 BRB 以外の様々な座屈補剛形式の BRB にも適用可能である。

様々な補剛形式の内,鋼モルタル板型 BRB については,構面外初期変形付き繰返し 載荷実験により,提案した機構安定条件式の妥当性が確認されている^{4.1}。また,ピン 接合された二重鋼管ブレースに関しては,安定条件に関する研究が精力的に行われてい る^{4.2}~^{4.4}。

本章では上記以外の座屈補剛形式であるダブルウェブ型の H 形鋼を拘束材に用いた BRB ならびにピン接合された二重鋼管型の BRB に対して構面外初期変形付き繰返し載 荷実験を行い,その挙動を確認すると共に,前章で提案した機構安定条件式の適用性を 検証する。

なお、本章における実験では、第3章に示した実験と同様に安全側の仮定として、 BRBには地震時に構面外方向に1/100の層間変形角が生じることを想定し、層間変形角 1/100相当の強制変形を構面外方向に与えた状態で材軸方向に正負交番繰返し載荷実験 を行う。

76

4.2 検討する BRB の概要

BRBの座屈補剛形式としては,図4.1に示すように様々なものが実用化されている^{4.5}。 第3章で検討したものは,図4.1(a),(b)に示すような,芯鋼材と補剛鋼管との間にモル タルを充填したタイプのBRBであったが,本章では図4.1(c)に示す二重鋼管型のBRB と図4.1(d)に示すダブルウェブH形鋼を補剛材として用いたBRBについて検討を行う。 本章で扱うBRBは,両タイプとも芯鋼材と拘束材の間には一定厚の離間材(アンボンド 材)があるのみで,モルタル等を介在せず,鋼材で直接補剛する形式のBRBである。

二重鋼管型の BRB は、図 4.2 に示すように、軸力を伝達する「軸力管」(内側鋼管) と、軸力を伝達せず圧縮時の軸力管全体の座屈を拘束する「補剛管」(外側鋼管)で構 成される^{4.6}。接合方式には、ピン接合タイプと高力ボルト接合タイプの2種類がある が、本章では接合部にクレビスを用いたピン接合タイプを対象とする。

ダブルウェブ H 形鋼を拘束材に用いた BRB は、図 4.3 に示すように、溶接により組 立てられたダブルウェブ H 形鋼の 2 枚のウェブ間にプレート状の芯鋼材を挟み込み、H 形鋼材の剛性にて芯鋼材の座屈を拘束するタイプのものである^{4.7)}。

図 4.3 ダブルウェブ型 H 形鋼を拘束材に用いた BRB の機構

4.3 強制面外変形下の座屈拘束ブレース繰返し載荷実験

4.3.1 実験概要

本章では拘束材としてダブルウェブ型のH形鋼を用いたBRB(HLシリーズ)とピン接合された二重鋼管型のBRB(Dシリーズ)を対象とする。

片流れ配置された BRB が,地震時に構面外方向に 1/100 の層間変形角を受けること を想定し,層間変形角 1/100 相当の強制変形(約 15mm)を構面外方向に与えた状態で, HL シリーズは塑性化部長 *L_p*に対する等価軸歪として 0.1~3.0%, D シリーズはピン間 の長さ(2296mm)に対する等軸価歪として 0.1~2.0%(塑性化部長 *L_p*に対する等価軸歪と して 0.12~2.54%)の正負交番繰返し載荷実験を行う。

図 4.4, 写真 4.1, 4.2 に試験体のセットアップを,図 4.5 に載荷履歴を示す。

図 4.4 試験体セットアップ図

写真 4.1 IL シリーズ セットアップ

写真 4.2 Dシリーズ セットアップ

4.3.2 試験体概要

実験では対象とする BRB の 1/2 縮小モデルを試験体とする。図 4.6 に試験体詳細図, 図 4.7 に拘束材端部詳細図,図 4.8 に接合部ガセットプレート詳細図,図 4.9 に試験体 名称を示す。

HL シリーズの試験体は、芯材–拘束材間のクリアランスを全て 2mm に設定し、パラ メータは貫入長比と接合部形式(接合部回転剛性)とした。貫入長比は芯材端部補強リブ の貫入長 L_{in} を芯材幅 B_c で除した値とする。図 4.8(a)~(c)に示すように、スチフナ等の 面外補剛材の有無により、接合部面外剛性として低・中・高剛性の 3 種類を想定する。 接合部曲げ剛性および回転剛性は文献 4.8) に記載される FEM 解析結果を基に、本試験 体のプロポーションに相当するように概算した。また、各接合部形式の接合部端部回転 剛性 K_{Re} は、第 3 章で定義した無次元化回転はね剛性比 ξK_{Rg} で評価する。

Dシリーズの試験体は、図 4.8(d)に示すように構面内方向をピン支持とするクレビス タイプの接合部とし、面外補剛として補剛リブを設けている。パラメータは貫入長比、 芯材補強部-拘束材間のクリアランスおよび拘束鋼管の径厚比とした。貫入長比は端部 芯材補強部の貫入長 *L*_{in}を芯材径 *B*_cで除した値とする。

表 4.1 に HL シリーズおよび D シリーズの試験体諸元を示す。

図 4.9 試験体名称

試験体諸元
-
4.
表

偏心		в	(mm)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
芯材元	たわみ	а	(mm)	1.2	1.2	1.2	1.2	1.2	1.2	1.1	1.1	1.1	1.1	1.1
7 U V	ランメ	S_{r}	(mm)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	1.0	2.0
		ž		0.182	0.182	0.182	0.182	0.182	0.182	0.048	0.048	0.048	0.048	0.048
接合部長		ζL_0	(mm)	436	436	436	436	436	436	110	110	110	110	110
塑性化部長		L_p	(mm)	1340	1430	1160	1340	1430	1160	1806	1846	1846	1926	1926
貫入長		L_{in}	(mm)	06	45	180	06	45	180	200	160	160	08	08
全長		L_0	(mm)	2392	2392	2392	2392	2392	2392	2296	2296	2296	2296	2296
接合部	曲げ剛性	γEI_B	(Nmm^2)	1.20×10^{12}	2.74×10^{10}									
無次元化	回転剛性比	čKRg		1.892	1.892	0.339	0.339	0.339	0.030	0.00	0.00	0.00	0.00	0.00
接合部	回転剛性	K_{Rg}	(Nmm)	5.21×10^{9}	5.21×10^{9}	9.34×10^{8}	9.34×10^{8}	9.34×10^{8}	8.26×10^{7}	0.00	00.00	00'0	00'0	0.00
拘束材降伏	応力度	σ_{ry}	(N/mm^2)	421	421	421	421	421	421	331.4	331.4	323.9	331.4	331.4
拘束材	曲げ剛性	EI_B	(Nmm^2)	1.52×10^{12}	8.98×10^{11}	8.98×10^{11}	7.14×10^{11}	8.98×10^{11}	8.98×10^{11}					
沿载体法	応力度	σ_{cy}	(N/mm^2)	313	313	313	313	313	313	340.4	340.4	340.4	340.4	340.4
芯材断面積		A_c	(mm^2)	1080	1080	1080	1080	1080	1080	1552	1552	1552	1552	1552
試験体				HL1.0GH	HL0.5GH	HL2.0GM	HL1.0GM	HL0.5GM	HL2.0GL	D3L1.6S2	D3L1.2S2	D4L1.2S2	D3L0.6S1	D3L0.6S2

4.3.3 実験結果

図 4.10, 図 4.11 に実験の結果得られた各試験体の等価軸歪 ε_n - 等価軸応力 σ_n 関係を示す。図 4.10 が HL シリーズ,図 4.11 が D シリーズの結果である。以下に各試験体の破壊性状を記述する。

(1)HL1.0GH 試験体(図 4.10(a))

等価軸歪 3.0%まで安定した履歴性状を示したが, 3.0%載荷時に芯材が拘束材のフラ ンジに近づくように変形していき,芯材補強リブが拘束材のウエブ部分と接触したため, 等価軸応力が上昇する現象が生じた。これは,接触後に拘束材が軸力を負担したためと 考えられる。その後 3.0%-7 サイクル目引張時に芯材破断に至った。

(2)HL0.5GH 試験体(図 4.10(b))

等価軸歪 3.0%まで安定した履歴性状を示し, 3.0%-11 サイクル目引張時に芯材破断に 至った。同じ貫入長比で中剛性の HL0.5GM と比べあまり性状の変化は見られず,中剛 性と高剛性の接合部剛性の違いによる履歴性状の変化はあまり見られなかった。

(3)HL2.0GM 試験体(図 4.10(c))

等価軸歪 3.0%まで安定した履歴性状を示し, 3.0%-13 サイクル目引張時に芯材破断に 至った。

(4)HL1.0GM 試験体(図 4.10(d))

等価軸歪 3.0%まで安定した履歴性状を示し、3.0%-8 サイクル目引張時に芯材破断に 至った。同じ中剛性の接合部を持つ HL2.0GM と比較し、貫入長比の差により破断に至 るまでの繰返し回数に差が表れた。

(5)HL0.5GM 試験体(図 4.10(e))

等価軸歪 3.0%まで安定した履歴性状を示し 3.0%-9 サイクル目引張時に芯材破断に至った。貫入長比が最も小さな試験体であったが、HL1.0GM との履歴性状の大きな差はあまり見られなかった。

(6)HL2.0GL 試験体(図 4.10(f))

HLシリーズ中唯一,等価軸歪 2.0%-2 サイクル目圧縮時に拘束材端部で曲げヒンジ

85

が発生し,機構不安定となった。

HL シリーズにおいては, 接合部回転剛性が試験体中最も小さい低剛性の HL2.0GL の みが拘束材端部で曲げヒンジが発生し, 機構不安定となり, 他の試験体は等価軸歪 3.0% まで安定した履歴性状を発揮し, 3.0%-7~13 サイクル目の引張時に芯材破断が生じた。 結果的には低剛性の試験体のみが機構不安定となり, 接合部の面外回転剛性が機構安定 性に大きく影響することを示す結果となった。また, 中剛性以上の回転剛性を持つ試験 体では貫入長比の違いによる履歴性状の変化はあまり見られなかった。次に二重鋼管に ついて述べる。

(7)D3L1.6S2 試験体(図 4.11(a))

D シリーズ中唯一,等価軸歪 1.5%で引張状態から圧縮状態まで安定した履歴性状を 示した。この時点では拘束材端部には変化が見られず,曲げモーメントが十分に伝達さ れているといえる。1.5%-3 サイクル目で若干の耐力低下が始まり,2.0%でそれが顕著 となり,3.0%引張時に芯材破断に至った。

(8)D3L1.2S2 試験体(図 4.11(b))

1.5%-2 サイクルで芯材の局部座屈により耐力低下を起こし、3 サイクルで急激に耐力 が低下し、その後の引張において芯材破断に至った。D3L1.6S2 と同様に拘束材端部に 変化は見られず、端部性状に違いは確認されなかった。

(9)D4L1.2S2 試験体(図 4.11(c))

1.5%-2 サイクルで芯材の局部座屈により耐力低下を起こした。拘束材端部における
 径厚比の違いは確認できず、D3L1.6S2 と同様に端部性状の違いは確認されなかった。
 (10)D3L0.6S1 試験体(図 4.11(d))

1.5%-2 サイクルで芯材の局部座屈により耐力低下を起こした。貫入長比が最も小さな試験体であったが、拘束材端部において変化は確認されなかった。

(11)D3L0.6S2 試験体(図 4.11(e))

1.5%-2 サイクルで面内回転角が増大し,面内座屈を起こし耐力低下した。3 サイクル でさらに変形が進展した。D3L0.6S1 と比較し、クリアランスによる違いが顕著に表れ た試験体となった。 Dシリーズにおいて,図4.11(a)に示す貫入長比1.6のD3L1.6S2は等価軸至1.5%で3 回以上の安定した履歴を描き,残りの試験体は等価軸至1.5%の引張後の圧縮時に芯材 の局部座屈によって耐力低下が起き,その後引張時に芯材破断に至った。なお,今回の 試験体は拘束鋼管の径厚比が31~40,芯鋼管の径厚比が25.4と機構不安定を誘導する ために通常より薄いものとなっている。通常用いられる拘束鋼管,芯鋼管の径厚比がそ れぞれ30程度以下,15~20程度の二重鋼管では,±1.5%程度の軸至に対し,2~11回 程度の繰り返し変形性能を有する^{4.3}。

図 4.11(e)に示す貫入長比 0.6, クリアランス 2mm の D3L0.6S2 では拘束材端部におい て面内に曲げヒンジが発生し機構不安定となった。クレビスを用いた接合部は構面外に も回転を許容するため構面外変形に伴う付加曲げモーメントは小さく,結果的に回転し やすい構面内で不安定になったものと考えられる。

機構不安定となった HL2.0GL と D3L0.6S2 の試験体最終状況を写真 4.3 と写真 4.4 に 各々示す。また,表 4.2 に HL シリーズおよび D シリーズ試験体の耐力低下発生時期と 試験体最終状況をまとめて示す。

図 4.10 等価軸歪—等価軸応力(HL シリーズ)

図 4.11 等価軸歪—等価軸応力(D シリーズ)

(a)載荷後試験体全景

(b)載荷後下部拘束材端部

(a) 拘束材端部不安定時状況

(b) 載荷後拘束材端部拡大

試験体	耐力低下発生時期	試験体最終状況
HL1.0GH	3.0%-7cycle引張時	芯材破断
HL0.5GH	3.0%-11cycle引張時	芯材破断
HL2.0GM	3.0%-13cycle引張時	芯材破断
HL1.0GM	3.0%-8cycle引張時	芯材破断
HL0.5GM	3.0%-9cycle引張時	芯材破断
HL2.0GL	2.0%-2cycle圧縮時	拘束材端部構面外座屈
D3L1.6S2	1.5%-3cycle引張時	芯材破断
D3L1.2S2	1.5%-2cycle引張時	芯材破断
D4L1.2S2	1.5%-2cycle引張時	芯材破断
D3L0.6S1	1.5%-2cycle引張時	芯材破断
D3L0.6S2	1.5%-2cycle圧縮時	拘束材端部構面内座屈

表 4.2 試験体状況一覧

4.4 機構安定条件式の精度評価

4.4.1 安定限界軸力の評価

第3章によれば,式(4.1)で表される初期不整付き圧縮材の軸力-変位関係式と式(4.2) で表される崩壊メカニズム耐力による軸力-変位関係式の交点で安定限界軸力 N_{lim} が 規定される。

$$N = \frac{y_r}{y_r + a_r} N_{cr}^B$$
(4.1)

$$N = N_{cr}^{r} + \frac{M_{p} - M_{0}}{y_{r} + a_{r}}$$
(4.2)

ここに、 y_r :拘束材端部における構面外変位増分、 a_r :初期不整、 N_{cr}^B :接合部を含めた BRB 全体の弾性座屈荷重、 N_{cr}^r :拘束材突出部の曲げ耐力が無い場合($M_p^r - M_0^r = 0$)の接合部座屈荷重^{4.9}、 M_p^r :拘束材端部終局曲げ耐力、 M_0^r :強制変形時拘束材端部曲 げモーメントである。

一方, 接合部ガセットプレート外端部に塑性ヒンジが生じる場合の崩壊メカニズム耐力は式(4.3)により評価できる。

$$N = \frac{(1-2\xi)M_{p}^{g}}{y_{r}+a_{r}} + \frac{M_{p}^{r}-M_{0}^{r}}{y_{r}+a_{r}}$$
(4.3)

ここに, M_p^g : GPL 曲げ耐力(軸力考慮)である。

以上より,式(4.1),(4.2)の交点の軸力 N を N_{lim1},式(4.1),(4.3)の交点を N_{lim2} とし, 式(4.4),(4.5)より安定限界時の軸力を評価する。

$$N_{lim1} = \frac{(M'_p - M'_0) / a_r + N'_{cr}}{(M'_p - M'_0) / (a_r N^B_{cr}) + 1} > N_{cu}$$
(4.4)

$$N_{lim2} = \frac{\left[(1 - 2\xi)M_p^g + M_p^r - 2M_0^r \right] / a_r}{\left[(1 - 2\xi)M_p^g + M_p^r - 2M_0^r \right] / (a_r N_{cr}^B) + 1} > N_{cu}$$
(4.5)

 N_{lim1} , N_{lim2} の小さい方を安定限界軸力 N_{lim} とし, 推定最大芯材軸力 N_{cu} を上回って

いれば機構安定となり, BRB は芯材降伏後も安定した履歴特性を発揮する。逆に N_{lim} が N_{cu} を下回る場合は、芯材が最大軸力に達する以前に拘束材端部に塑性ヒンジが形成さ れて崩壊メカニズムに達し、BRB が機構不安定になると考えられる。

4.4.2 評価値と実験値の比較

HL シリーズにおいて拘束材端部で曲げヒンジが発生し機構不安定となった HL2.0GL 試験体と D シリーズにおいて拘束材端部で面内に曲げヒンジが発生した D3L0.6S2 試験 体の軸力 - 面外変位関係を評価式と併せて図 4.12 に示す。なお、D3L1.6S2 の不安定現 象は構面内に発生しているが、式(4.1)~(4.5)は接合部座屈荷重 $N'_{cr} = 0$ かつ強制変形に より与えられる拘束材端部曲げモーメント $M'_0 = 0$ とおけばピン形式の接合部を有す る座屈拘束ブレースの構面内・構面外によらない不安定現象を評価できるため上式によ る評価を行う。式(4.1)および式(4.2)中の a_r は、第3章に従い式(4.6)により評価する。た だし、 a_r の値は実験載荷前に与えた強制構面外変形量 δ (HL シリーズで 14.7mm)の値を 超えることは無いと考えられるため、 δ の値で頭打ちとする。

$$a_r = a + s_r + e + \xi L_0 \theta$$

(4.6)

ここに、a:材の元たわみ、 $s_r:$ クリアランス、e: 偏心量、 $L_{in}:$ 貫入長、 $\xi L_0:$ 接合部長、 $\theta:$ 拘束材端部回転角= $2s_r/L_{in}$ である。

HL シリーズの拘束材端部曲げ耐力 *M*^{*r*}_{*p*}については,別途拘束材曲げ実験を行い評価 している。また, DL シリーズの拘束材端部曲げ耐力については文献 4.10)の手法に基 づき下式で評価する。

$$M_{p}^{r} = (L_{in} - 0.5x_{n})q \leq Z_{rp}\sigma_{ry}$$

$$q = 2 \cdot x_{n} \cdot t_{r} \cdot \sigma_{ry}$$
(4.7)

ただし, x_n : 貫入部接触長(= 0.4 L_{in})とする。

図 4.12(a)および(b)に見るように,機構不安定となった BRB においては, HL2.0GL 試験体で評価式による安定限界軸力が実験値よりやや大きく評価される結果となってい

るものの、D3L0.6S2 試験体の軸力および両試験体の構面外変位は評価式と概ね一致し ているといえる。また、繰返し載荷に従って構面外変形が進展していった HL2.0GL 試 験体において、実験中最大軸力を示した 2.0%-2 サイクル目圧縮載荷直前の構面外変位 (16.3mm)を初期不整値 a_r とみなして N_{lim} を計算すると $N_{lim} = N_{lim2} = 485$ kN となり、図 4.12(a)中の破線で示すように、評価値はさらに精度よく実験値と整合する結果となる。

表 4.3 に全試験体の安定限界軸力 N_{lim} の評価値と実験値の比較を示す。ここで,評価値は式(4.4)または式(4.5)より求まる安定限界軸力のうちいずれか小さい値とする。なお, D シリーズはピン接合を有する試験体で接合部は弾性状態であるため,評価値は式(4.4) のみから求まる。実験値は,実験中に示した最も高い軸力とする。本実験の場合,低剛 性接合部(GL)および中剛性接合部(GM)の場合,全て N_{lim} は N_{lim2} により決定される。ま た高剛性接合部(GH)の場合, N_{lim} は N_{lim1} により決定される。機構不安定となった試験 体以外は全て $N_{lim} > N_{cu}$ で機構安定との判定結果となっており,実験結果をよく説明し ている。

図 4.13 に第 3 章および文献 4.1)の実験結果と併せて、機構不安定となった全試験体に対する提案式の評価精度を示す。ここで、N^{exp}は実験時に計測された安定限界軸力, N_{lim}は式(4.4)または式(4.5)より得られた安定限界軸力である。同図に見るように、ダブ ルウェブ H 形 BRBの安定限界軸力の実験値は評価式による値と-30%程度(*a*, 値を見直 した場合は-15%程度)、二重鋼管型 BRB では+10%程度の精度で対応しており、これま で行った実験結果を含め、提案された機構安定評価式は 1.2 程度の安全率を採ることで、 BRBの安定限界軸力を評価できていると考えられる。

図 4.12 軸力—面外変位関係

実験結果	N _{lim} exp (kN)	609	495	530	554	493	422	548	550	560	550	536
	塑性崩壊時 サイクル	No collapse	2.0%-2cycle	No collapse	No collapse	No collapse	No collapse	1.5%- 2cycle				
判定	$N_{lim} > N_{cu}$	NО	OK	OK	OK	OK	OK (NG)	OK	OK	OK	OK	NG
(kN)	N_{lim}	1501	1361	168	683	535	539 (485)	1361	1195	937	716	497
定限界軸力($N_{lim 2}$ $(\overline{x} (4.5))$	2448	2443	891	683	535	539 (485)	1	ı	ı	ı	I
安江	$N_{lim 1} = (\overline{x}, (4.4))$	1501	1361	1307	1185	1086	581 (535)	1361	1195	937	716	497
	N_{cu} (kN)	507	507	507	507	507	507	581	581	581	581	581
	M_0^r (kNm)	00.0	0.00	80.0	00.0	0.00	0.08	0.00	0.09	00.0	0.00	0.00
	$M_{ m p}^{s}$ (kNm)	492	492	10.8	10.8	10.8	1.14	I	I	I	I	I
	M _p ' (kNm)	9.3	4.3	16.0	9.3	4.3	16.0	38.2	24.4	18.5	6.1	6.1
	N _{cr} ^r (kN)	1212	1212	696	696	696	121	0	0	0	0	0
	<i>a r</i> (mm)	14.7	14.7	12.9	14.7	14.7	12.9(16.3)	5.3	5.9	5.9	4.9	8.6
	N_{cr}^{B} (kN)	2755	2755	1800	1800	1800	927	1681	1681	1337	1681	1681
試験体		HL1.0GH	HL0.5GH	HL2.0GM	HL1.0GM	HL0.5GM	HL2.0GL	D3L1.6S2	D3L1.2S2	D4L1.2S2	D3L0.6S1	D3L0.6S2

表4.3 安定限界軸力の評価値と実験値の比較

注):() 内は ar を 2.0% - 2 サイクル目 圧縮載荷直前の構面外変位(16.3mm)として算出したものである

ダブルウェブ H 形 BRB および二重鋼管型 BRB の構面外強制変形付繰返し載荷実験 を実施し,第3章で示した拘束材端部の曲げ伝達能力を考慮した機構安定限界軸力評価 式に対する整合性を確認した。以下に,得られた知見を示す。

- 構面外方向の強制変形が層間変形角 1/100 程度の場合, ξ κ_{Rg} が 0.03 程度しかない低 剛性の接合部を有するダブルウェブ H 形 BRB は, 貫入長比が 2.0 と大きい場合でも 等価軸歪 2.0%程度で機構が不安定となった。一方 ξ κ_{Rg} が 0.3 程度の中剛性以上の接 合部を有している場合, 貫入長比によらず芯材軸歪が 3.0%に至るまで, 同ブレース は安定した履歴性状を示すことを確認した。
- 2) 二重鋼管型 BRB の場合,貫入長比 1.6 の試験体についてはピン間の等価軸歪 1.5% で3サイクル以上の安定した履歴性状を示す一方,貫入長比 0.6 かつクリアランス /貫入長比 0.025 の D3L0.6S2 では構面内に機構不安定現象が生じた。同じ貫入長比 0.6 でクリアランスが半分の D3L0.6S1 では機構不安定現象は生じず,クリアランス /貫入長比による違いが顕著に生じた。
- 3) 提案した BRBの安定限界軸力の評価値は、ダブルウェブH形 BRB、二重鋼管型 BRB ともに実験値と-30~+10%程度の精度で対応していることが確認され、既往の研究 結果も併せて、第3章において提案した機構安定条件式は様々な座屈補剛形式の BRBに対して適応性があることが確認された。

第4章の参考文献

- 4.1) 竹内徹,松井良太,三原早紀,大家貴徳,岡本勇紀,小崎均,岩田衛:鋼モルタル板を用いた座屈拘束ブレースの構面外機構安定性,日本建築学会技術報告集,第 20 巻,第 45 号, pp.569-574, 2014.6
- 4.2) 宮川和明,安井信行,木下智裕:ピン接合型二重鋼管ブレースの端部補強に関する研究 その 1~その3,日本建築学会大会学術講演梗概集,C-1分冊, pp.765-770,2012.9
- 4.3) 石井匠,高木伸之,藤澤一善,清水孝憲,宮川和明,喜多村亘:二重鋼管座屈補
 剛ブレースの低サイクル疲労性能,その1~2,日本建築学会大会学術講演梗概集, C-1分冊, pp.781-784, 2012.9
- 4.4) 木下智裕,金城陽介,聲高裕治,吹田啓一郎,宮川和明:座屈拘束材端部の局所 変形を考慮したピン接合形式二重鋼管ブレースの全体座屈防止条件-片側摺動形 式の場合-,日本建築学会構造系論文集,第79巻,第706号,pp.1973-1982,2014.12
- 4.5) 日本建築学会:鋼構造物の座屈に関する諸問題 2013, 2.接合部を含む座屈拘束ブレースの構面外安定条件, pp.19-38, 2013.6
- 4.6) JFE シビル株式会社:技術資料
- 4.7) 日鉄住金関西工業株式会社:技術資料
- 4.8) 竹内 徹,松井良太,西本晃治,高橋聡史,大山翔也:拘束材回転剛性を考慮した座屈拘束ブレースの有効座屈長:日本建築学会構造系論文集,第 639 号, pp.925-934, 2009.5
- 4.9) 松井良太,竹内徹,多田尊紀,西本晃治:繰返し偏心荷重を受ける座屈拘束ブレースの接合部を考慮した機構安定性 その1 機構安定条件式の誘導,日本建築学会大会学術講演梗概集,C-1分冊,pp.755-756,2012.9
- 4.10) 日本建築学会:鋼構造制振設計指針, 2014.11

第5章 座屈拘束ブレースの安定性能曲線を用いた 機構安定評価手法

5.1 序

前章までにおいて,式(5.1)に示す機構安定条件式は様々な補剛形式の座屈拘束ブレース(以降 BRB)に適応できる,包括的な条件式であることを検証してきた。

$$M_{p}^{r} - M_{0}^{r} \ge \frac{a_{r}}{1 - N_{cu} / N_{cr}^{B}} (N_{cu} - N_{cr}^{r})$$
(5.1)

ここに、 M_p^r :拘束材端部曲げ耐力で芯材突出部の曲げ耐力と拘束材端部の曲げ耐力の うち最小値、 M_0^r :強制面外変形に伴う拘束材端部の曲げモーメント、 N_{cu} :設計用最 大軸力(= $\alpha_d N_y$)、 N_y :降伏軸力、 α_d :硬化係数、 a_r :初期不整値、 N_{cr}^B :接合部を含 めた BRB 全体の弾性座屈荷重、 N_{cr}^r : $M_p^r=0$ のときの接合部座屈荷重であり細長比 λ_r を

$$\lambda_r = \frac{2\xi L_0}{i_r} \cdot \sqrt{\frac{\xi \kappa_{Rg} + 24/\pi^2}{(1 - 2\xi)_{\xi} \kappa_{Rg}}}, \ \xi \kappa_{Rg} = K_{Rg} \frac{\xi L_0}{\gamma EI}$$
(5.2), (5.3)

とし、日本建築学会鋼構造設計規準式 ^{5.1)}より求めることとしている。 i_r , ξ , γEI , K_{Rg} は各々接合部の断面二次半径,接合部長さ比,接合部の曲げ剛性,接合部の回転剛性である。

しかしながら,機構安定条件式(5.1)は図 5.1 に示すように数多くの BRB の特性値を 変数としており,実際にこの条件式を用いて設計する場合,設計者はどの特性値をどの 程度変更すれば式(5.1)を満足させられるかを理解しないまま,試行錯誤しながら BRB の機構安定性を満足させなければならず,多くの検討時間を要する問題がある。また, 現実の設計において BRB がどのような特性値の範囲で設定されているかという情報も 得られていない。そこで本章では,過去の実績に基づき BRB の主要な特性値の設定可 能範囲を明示するとともに,これらと安定条件との関係を BRB の容量に依らない一般 的な形式で図として表現した「面外座屈安定性能曲線」を作成し,主要な特性値がどの 程度安定性に寄与しているかを視覚的に把握できるようにすることで BRB の機構安定 条件を容易に評価できる方法を提案する。

なお、本章においては前章までと同様に安全側の仮定として、BRB には地震時に構 面外方向に 1/100 の層間変形角が生じることを想定して機構安定条件の検討を行う。

100
5.2 面外座屈安定性能曲線による評価の手順

評価の手順としてはまず,式(5.1)の*M*^{*r*}₀を右辺に移項して両辺を芯材降伏軸力*N*_{*y*}で除した式(5.4)の形としブレース容量に依存しない式で考える。

式(5.4)の右辺は単位降伏軸力あたりの芯材突出部(図 5.1 参照)に生じる曲げモーメント M'_r/N_y であり、第1項が軸力による偏心曲げモーメント M'_{ec}/N_y を、第2項が強制面外変形に伴う付加曲げモーメント M'_0/N_y を示している。

次に, BRB の特性値を無次元化し,機構安定性への感度が高いもの,もしくは設計 時に数値を調整しやすいものを4つ選定する。これを「設計変数特性値」と呼ぶことと し,これらが式(5.4)の各項に与える影響を図示し,どの項に対して感度が高いかを示す。

最後に,設計変数特性値が機構安定条件に与える影響を図示し,これを「面外座屈安 定性能曲線」と呼ぶこととする。設計者が設計変数特性値を変動させる影響を図上にて 理解しながら,機構安定条件を満足する設計変数特性値を選定できる設計法を提案する。

一方,機構安定性への感度が低く,典型的な BRB においてある程度狭い範囲に分布 する特性値は,簡略化のため一定値として取り扱い,これを「評価用特性値」と呼ぶこ ととする。評価用特性値は対象とする BRB の標準部材表を決定し,特性値を無限化し て数値のばらつきを分析し,安全側に評価できる数値を決定する。また,評価用特性値 を代表値とした場合,式(5.4)の各項をどの程度の精度で評価できるかについて分析する。

尚,本章ではモルタル充填型で座屈補剛は円形鋼管,芯材形状は+のものを標準部材 として各種特性値の検討を行うが,芯材形状が-のもの,あるいは,他の座屈補剛形式 のものであっても同様の手順で,設計変数特性値と機構安定性の関係を図示することが 可能である。

本章での検討条件は次の通りとする。

- ① BRB は片流れ配置とし, 接合部の剛性および長さは両端で概ね等しいものとする。
- ② 設計用最大軸力の降伏軸力に対する比率はα_d=1.3 とする。
- ③ BRB の芯材材質は LYP225 とする。
- ④ 接合部は弾性範囲とする。

5.3 BRB の特性値

BRB 各部位の寸法と剛性の符号を図 5.1 に示す。BRB 全長を L_0 ,接合部長を ξL_0 , 芯材の塑性化させる部位の幅を W_0 ,拘束材端部の拡幅させた幅を W_1 とし,その貫入長 を L_{in} とする。接合部のボルト接合する部位の幅を W_2 とし,幅 W_0 , W_1 , W_2 の各部位の 断面積を A_0 , A_1 , A_2 とする。 A_2 にはスプライスプレートの断面積は含めず、ボルト孔 欠損は考慮しない。拘束鋼管の曲げ剛性を EI とし、接合部(弾性部)の曲げ剛性を γ EI と する。 γ EI の値にはスプライスプレートの断面も含むものとする。以上の寸法の定義に 基づき、BRB の機構安定性を司る各特性値を、主要な変動パラメータとしての「設計 変数特性値」とある程度範囲が限定できる「評価用特性値」に分けて考える。

図 5.1 座屈拘束ブレース寸法および剛性と納まり例

5.3.1 設計変数特性値

BRBの機構安定性への影響が特に大きい設計変数特性値として次の4つを採用する。

- 2) 座屈長さ比 ℓ_{k0} (= L_0/L_k): 全長 L_0 , 曲げ剛性EI, 両端ピンのオイラー座屈荷重が 芯材塑性化部の最大降伏軸力 N_{ymax} (= $\sigma_{ymax} A_0$)の 1.5 倍となるようなブレース長 さを本論文では限界座屈長さ L_k (= $\sqrt{\pi^2 EI/1.5 N_{ymax}}$)と呼び, L_0 を限界座屈長さ L_k で除した値を座屈長さ比 ℓ_{k0} と呼ぶこととする。座屈長さ比 ℓ_{k0} は座屈拘束鋼管剛 性を示す指標であり,設計時には座屈長さ比が1以下(ℓ_{k0} <1), すなわち BRB の 有効座屈長さが,限界座屈長さ以下となるように座屈拘束鋼管を選択する。
- (= L_{in} / W₁): 貫入長 L_{in} は第3章に倣い, W₁との比で表現する。貫入 長比は座屈拘束鋼管端部の剛性・耐力に寄与する指標である。
- 4) 接合部回転ばね剛性比_ξ κ_{Rg}:第3章で定義した,式(5.3)で算出される回転剛性の 比である。接合部の回転剛性については 5.4 節にて検討する。

5.3.2 評価用特性値

本章では実際の設計で採用機会の多いモルタル充填型 BRB 部材^{5.8)}を対象とし,表 5.1 にその標準部材表を示す。ここでは次の 5 つの無次元化された特性値に注目する。

- 接合部の曲げ剛性と座屈拘束鋼管の曲げ剛性の比y
- 2) 接合部断面積と芯材塑性化部断面積の比 A₂/A₀
- 3) 芯材突出部断面積と芯材塑性化部断面積の比 A₁ / A₀
- 4) 座屈拘束鋼管端部の無次元化回転ばね剛性比_L K_{Rr} (= K_{Rr} × L_k / EI)
- 5) 芯材突出部幅に対する限界座屈長さの比 ℓ_{wk} (= L_k/W_1)
- ここで、標準部材の接合部は降伏軸力 N_v (= $\sigma_v A_0$)の 1.3 倍に対して短期許容応力度

以下となるように設計されており、 A_2/A_0 は若干のばらつきがあるものの 1.57~1.75 の範囲に分布する。また、標準部材の芯材突出部は、塑性化部断面積の 1.3 倍以上となるように設計されている。 $_L\kappa_{Rr}$ は文献 5.7)の方法により算出した拘束材端部の回転剛性 K_{Rr} を、座屈拘束鋼管の曲げ剛性と限界座屈長の比 EI/L_k で無次元化したものである。 ℓ_{wk} は貫入長比と合わせて検討する指標であり、 ℓ_{wk} が大きいほど初期不整に伴う拘束材端部の面外変位が大きくなる(5.6 節参照)。一方、 ℓ_{wk} が大きいほど面外変形に伴う付加曲げモーメントは小さくなる(5.8 節参照)。

標準部材における上記5つの無次元化された特性値の分布を図5.2に示す。本章では、 より機構安定性へ影響の大きい特性値に注目するため、ある程度狭い範囲に分布する特 性値は評価用特性値として一定値とする。軸力による偏心曲げモーメントを算出する場 合には、剛性は低いほうが安全側の評価となり、逆に付加曲げモーメントを算出する場 合には、剛性は高い方が安全側の評価となる。このように、無次元化された特性値のう ち機構安定性の検証が安全側となるように、表5.2に示す評価用特性値の数値を設定す る。尚、拘束材端部回転バネ剛性比_L κ_{Rr} の評価式^{5.7)}は、拘束材幅や板厚、芯材突出部 の幅等が変数であるが、貫入長比 ℓ_{in} が最も支配的な変数であり、拘束材端部回転バネ剛 性比_L κ_{Rr} の評価用特性値は、貫入長比 ℓ_{in} ごとに設定した。

の代表例	$\frac{\text{case2}}{\xi L_0^{c^2}(\text{mm})}$	1226	1381	1040	1136	1152	1270	1370	1481	1596
接合部長さ	$\csc 1$ $\xi L_0^{c1}(mm)$	066	1145	817	914	937	1056	1162	1278	1402
	岐弥/座/曲 長さ L k(mm)	5893	5457	6661	6285	7291	6652	7564	7062	8802
剛性	接合部 <i>yEI</i> (Nmm ²)	3677	4213	6820	6226	13840	19928	30245	33103	37268
曲げ	補剛材 EI (Nmm ²)	3444	3444	8632	8632	8632	14746	21946	21946	21946
	補剛管 (STK400)	φ-267.4x6.0	φ-267.4x6.0	φ-318.5x6.0	φ-318.5x6.0	φ-355.6x6.4	φ-355.6x6.4	φ -406.4x6.4	φ -406.4x6.4	φ-457.2x7.9
軸力	最大値 245×A ₀ N _{max} (kN)	1635	1907	2187	2456	2717	3263	3793	4351	4900
降伏	平均値 225×A ₀ N _y (kN)	1502	1751	2008	2255	2495	2997	3483	3996	4500
	接合部 幅 W2(mm)	246	246	296	299	327	333	359	376	413
	突出部 幅 W1(mm)	191	199	249	253	278	265	304	316	353
	塑性化部 幅 Wo(mm)	146	153	191	193	212	203	233	242	270
· (LYP 225)	板厚 t(mm ²)	25	28	25	28	28	36	36	40	40
芯材	接合部 断面積 $A_2(mm^2)$	11675	12992	14175	15960	17528	22680	24552	28480	31440
	拡幅部 断面積 A ₁ (mm ²)	8925	10360	11825	13384	14784	17784	20592	23680	26640
	塑性化部 断面積 A ₀ (mm ²)	6675	7784	8925	10024	11088	13320	15480	17760	20000
	形状	+	+	+	+	+	+	+	+	+
	部材符号	UB225-150+	UB225-175+	UB225-200+	UB225-225+	UB225-250+	UB225-300+	UB225-350+	UB225-400+	UB225-450+

表5.1 座屈拘束ブレース LV225 芯材形状+タイプの標準部材表

図 5.2 標準部材の評価用特性値の分布

	表!	5.2	設定	した評価	间特性间	直
--	----	-----	----	------	------	---

無次元化さ	分布範囲	軸力による 偏心曲げ <i>M^rec /Ny</i>	強制変形 による付加曲げ <i>M^r₀ /N_y</i>	芯材突出部の 曲げ耐力 M ^r p/Ny	適用節 項番号	
接合部曲	1.4~2.4	1.4	2.4	—	5.5.2, 5.8	
接合部断面積比 A2/A0		1.57~	1.57	—	_	5.7.2
芯材突出部断面積比 A1/A0		1.33~	—	—	1.33	5.9.2
应同均古细签提如	$\ell_{in} (=L_{in}/W_1)=1.0$ の場合	1.2~1.9	1.2	1.9	—	
座屈拘束輌官端部 回転ばね剛性比	$\ell_{in} (=L_{in}/W_1)=1.5$ の場合	4.2~6.4	4.2	6.4	—	5.5.2, 5.8
L A Rr	ℓ _{in} (=L _{in} /W ₁)=2.0 の場合	10~15	10	15	—	
芯材突出部幅	22~31	31	22	_	5.6.1, 5.8	

5.4 設計変数特性値の検討範囲

5.4.1 BRB 本体に関する設計変数特性値の検討範囲

既往の論文^{5.7)} では貫入長比と有効座屈長さの関係を検討しており、 ℓ_{in} が大きいほど有効座屈長さは短くなるが、その傾向は $\ell_{in}=2$ 程度で頭打ちとなることが示されている。そのため、貫入長比 ℓ_{in} は 1~2を検討範囲とする。

その他の設計変数特性値の検討範囲を分析するために図 5.3 に示すように BRB をスパン 3600mm, 階高 4500mm, 柱幅 800mm, 梁せい 900mm のフレームに片流れで配置した場合を検討する。BRB を表 5.1 の標準部材とした場合,図 5.4 に示すように ℓ_{k0} は 0.5 ~0.8 程度に分布するため,本章では ℓ_{k0} =1.0, 0.7 を検討の対象とする。

BRB の接合部長さ*Д*₀は BRB の角度やガセットプレートの必要溶接長さ, ボルト締付けの可否などで決定される。図 5.1 に, これまでの設計において採用機会が多い, BRB の角度が 55°である場合について 2 つの納まり例を示す。case1 は鉄骨柱・梁とスプライ スプレートのクリアランスを最小 50mm とする場合であり, case2 は床仕上げを梁から 250mm 上がりとし, 床仕上げからスプラスプレートのクリアランスを 50mm 以上とす る場合である。両 case の接合部長さ *Д*₀^{c1}, *Д*₀^{c2}を表 5.1 に示す。 ℓ_{k0} =1.0, 0.7 となる ように BRB 全長 *L*₀ を設定した場合, case1, case2 各々の*ξ*の分布は図 5.5 に示す通り *ξ*=0.10~0.36 となり, これを本章での検討範囲とする。

図 5.3 BRB の片流れ配置例

5.4.2 BRBの接合部回転剛性に関する設計変数特性値

抽出された実施設計例のうち,高さ 100m クラスの超高層オフィスビルでの標準的な 柱梁寸法に対する柱梁接合部の FEM 解析を行い,式(5.3)で表される無次元化回転ばね 剛性比 $_{\varepsilon}\kappa_{Re}$ について評価する。

解析モデルは図 5.6 に示す通り, 柱を階高の 1/2, 構面内及び構面外の梁をスパンの 1/2 分それぞれ切り出した部分と BRB 接合部とする。各柱梁端の境界条件は, xyz 変位 固定, 回転自由のピン接合とする。BRB の材質を LYP225, 降伏軸力を 2000kN と仮定 し, BRB 接合部先端に面外荷重 P=100kN を与えて載荷点の y 方向変位を算出する。

尚,載荷点の変位には柱梁の変形が含まれるが,柱梁フェイス交点のy方向変位自体 は載荷点変位の1%程度で微小である。

解析モデル一覧を表 5.3 に, BRB 接合部のリブ名称を図 5.6 に, ブレース配置を図 5.7 に, 接合部モデル例を図 5.8 に示す。解析モデルとしては, ブレース配置を 2 ケース, 梁サイズを 2 ケース設定し,表 5.3 中に示すように,ガセットプレートに取り付くリブ の配置を変化させて検討を行う。また,比較のため図 5.8 の斜線部で示すガセットプレ ートの柱梁との境界節点を 6 自由度固定とした場合について検討を行う(名称 100 番台)。

図 5.6 FEM 解析モデル

表 5.3 解析モデル一覧

名称	リブ 配置	BRB 配置	ブレース 角度 ø(deg)	接合部 長さ <i>ξL</i> ₀ (mm)	柱サイズ (SN490C)	梁サイズ (SN490B)	面外梁サイズ (SN490B)		
No.1		伝っパン	55.3	771		H- 900×300×16×22	H- 900×400×16×28		
No.2	4117-	短ハハン	54.3	761		H-1200×300×19×22	H-1200×400×16×28		
No.3	***	巨っぷい	32.7	792		H- 900×250×16×19	H- 900×400×16×28		
No.4		ゼイハン	30.5	820		H-1200×250×19×19	H-1200×400×16×28		
No.5		伝っぷい	55.3	771		H- 900×300×16×22	H- 900×400×16×28		
No.6	リブ	「長えパン	超入ハン	湿ヘハン	54.3	761	\Box -800 \times 800 \times	H-1200×300×19×22	H-1200×400×16×28
No.7	1+2		32.7	792	$\times 28 \times 28$	H- 900×250×16×19	H- 900×400×16×28		
No.8		ゼイハン	30.5	820		H-1200×250×19×19	H-1200×400×16×28		
No.9		伝っぷい	55.3	771		H- 900×300×16×22	H- 900×400×16×28		
No.10	リブ	湿スハン	54.3	761		H-1200×300×19×22	H-1200×400×16×28		
No.11	1+2+3	E マ い	32.7	792		H- 900×250×16×19	H- 900×400×16×28		
No.12	Ĩ	ゼヘハン	30.5	820		H-1200×250×19×19	H-1200×400×16×28		

(a)単スパン型配置

図 5.8 接合部モデル例

(b)長スパン型配置

図 5.7 ブレース配置

図 5.9 に解析で求めた y 方向変位を示す。図中,文献 ^{5.5)} に示される接合部剛性評価 式より求めた y 方向変位を示すが,No.105~112の解析変位と概ね一致した。

第3章に倣いy方向変位を図 5.10 に示すように設定し,回転剛性 K_{Rg}のバネに置換する。尚,柱梁フェイス交点のy方向変位自体は,載荷点変位の 1%程度と微小なため,回転角の原点は柱梁フェイス交点と考える。

式(5.5)のように回転バネを有する変位 y_r はバネの回転成分 y_{rs} と,接合部の弾性変形成分 y_{re} の和である。ここで,FEM 解析で算出した y_r と式(5.6)にて算出できる接合部の弾性変形成分 y_{re} を式(5.7)に代入して接合部回転剛性を算出する。さらに,式(5.3)にて接合部の曲げ剛性 $\gamma EI/\xi L_0$ を用いて接合部回転剛性を無次元化する。

 $y_r = y_{rs} + y_{re}$, $y_{re} = P \times (\xi L_0)^3 / 3\gamma EI$ (5.5), (5.6)

 $K_{Rg} = P \times (\xi L_0)^2 / (y_r - y_{re}) , \qquad \xi \kappa_{Rg} = K_{Rg} \times \xi L_0 / \gamma EI$ (5.7), (5.3)

式(5.3)より求めた,接合部の無次元化回転ばね剛性比_ξ κ_{Rg} を図 5.11 に示す。リブの 配置による_ξ κ_{Rg} の変化が顕著に表れている。また,No.101~112 の_ξ κ_{Rg} は,No.1~12 の値の 2 倍~3 倍程度となっており,ガセットプレートの柱梁との境界節点の 6 自由度 を固定とすることで_ξ κ_{Rg} を過大に評価する傾向がある。一方,No.105~112の範囲では 文献 5.5)の手法で評価した $\xi \kappa_{Rg}$ と FEM 解析結果は概ね良い対応を示している。

本章では接合部剛性を低・中・高の3ケース想定し,BRBの降伏軸力に依らず_ξ κ_{Rg} =0.15,0.30,0.60として検討を行うが、中剛性については5.9節に結果のみを示し、5.5節から5.8節は低剛性および高剛性の場合($_{\xi}\kappa_{Rg}$ =0.15,0.60)のみを示すものとする。

設計変数特性値の検討範囲を表 5.4 にまとめて示す。以下に設計変数特性値が式(5.4) を構成する各項へ与える影響を分析していく。

表 5.4 設計変数特性値の検討範囲

特性値	検討範囲				
ξ K Rg	0.15, (0.3), 0.60				
$\ell_{k0}(=L_0/L_k)$	1.0, 0.7				
ξ	0.10~0.36				
$\ell_{in}(=L_{in}/W_1)$	1.0, (1.5), 2.0				

図5.10 y方向変位の設定

注) ()内の場合は5.9節に結果のみを示す。

図 5.11 無次元化回転ばね剛性比_ε κ_{Rg}

5.5 弹性全体座屈荷重 N^B_{cr}

5.5.1 全体座屈荷重の検討モデル

全体座屈荷重の検討モデルを図 5.12 に示す。 N_{cr}^{B0} は両端をピンと仮定した座屈荷重, N_{cr}^{Bs} は第3章で定義した接合部端部の回転剛性 K_{Rg} を考慮した座屈荷重である。 N_{cr}^{Bm1} , N_{cr}^{Bm2} は K_{Rg} に加え,拘束材端部の回転剛性 K_{Rr} を考慮した対称モード/逆対称モードの 座屈荷重である。 N_{cr}^{Bm1} , N_{cr}^{Bm2} と K_{Rr} の算出方法は文献 5.7) による。また,接合部端部 回転剛性を考慮した座屈荷重 N_{cr}^{Bs} , N_{cr}^{Bm1} , N_{cr}^{Bm2} を総称して N_{cr}^{B} と呼ぶこととする。

図 5.12 座屈検討モデルと座屈モード

5.5.2 BRB 全体の座屈荷重評価

図 5.13 に $\xi \ge N_{cr}^{B} \ge N_{cr}^{B0}$ で除した値との関係を示す。表 5.2 の評価用特性値を用いて 全体座屈荷重を算出した場合と,標準部材(case1,case2)各々の特性値を用いて算出した 場合を比較する。 $\gamma \ge _L \kappa_{Rr}$ の評価用特性値は,安全側の評価となるように,表 5.2 に 示す分布範囲中の最小値を採用した。評価用特性値を用いた全体座屈荷重は標準部材の 全体座屈荷重の下限値を抑えていることがわかる。また,接合部が低剛性ほど,貫入長 が小さいほど,接合部長さが長いほど7要素モデルの座屈荷重は小さくなる傾向にある。 特に, N_{cr}^{Bm1}/N_{cr}^{B0} <1.0 の領域ではブレース長さが限界座屈長さ以下であっても座屈する 危険性があることを示しており,図 5.13 によりその範囲を知ることができる。

図 5.13 両端ピン座屈荷重に対する各モデルの弾性全体座屈荷重

5.6 設計荷重時の拘束材端部の面外変 $da_r/(1 - N_{cu} / N_{cr}^B)$

5.6.1 初期不整値 a_rの検討

BRB 拘束材端部の初期不整値と座屈前変形による変位の増幅について検討する。第3 章に示す初期不整値 a,(図 5.14 参照)を無次元化された特性値で表現すると以下となる。

$$a_{r} = a + e + s_{r} + 2s_{r} \frac{\xi L_{0}}{L_{in}} = a + e + s_{r} + 2s_{r} \xi \frac{\ell_{k0} \cdot \ell_{wk}}{\ell_{in}}$$
(5.8)

ここで、図 5.14 に示すように、e は加力点の偏心距離、 s_r は芯材と拘束材のクリアラ ンスである。また、a は芯材の元たわみ量である。本章ではa+e=3mm、 $s_r=1mm$ と仮定 した。 ℓ_{wk} が大きいほど初期不整量は大きくなるため、表 5.2 で設定した評価用特性値 ℓ_{wk} は分布中の最大値 31 としている。図 5.15 に評価用特性値を用いて算出した初期不 整値と標準部材(case1,case2)各々の特性値を用いて算出した初期不整値を示す。評価用 特性値を用いて算出した値は、標準部材個々の値の上限を抑えていることがわかる。

図 5.14 初期不整値 ar のモデル化

図 5.15 初期不整値 a_rと接合部長さ比 ξ

5.6.2 座屈前変形による変位 *a_r* / (1 - *N_{cu}* / *N^B_{cr}*)の検討

両端ピンのオイラー座屈荷重 N_{cr}^{B0} を降伏軸力の最大値 N_{max} の 1.5 倍としていることを踏まえ、5.5 節で検討した N_{cr}^{B}/N_{cr}^{B0} の値を使って設計荷重時の拘束材端部の変位を表すと式(5.9)のようになる。ただし、 $N_{cu} < N_{cr}^{B}$ の場合に限る。

$$\frac{a_r}{1 - \frac{N_{cu}}{N_{cr}^B}} = \frac{a_r}{1 - \frac{N_{cu}/N_y}{N_{cr}^B/N_y}} = \frac{a_r}{1 - \frac{1.3}{1.5 \cdot 245/225 \cdot N_{cr}^B/N_{cr}^{B0}}}$$
(5.9)

設計荷重時の拘束材端部の変位を算出するために,BRB 構面と直交方向に層間変位 が生じる状況を想定する。この場合 BRB は面外方向に逆対称の変形モードとなるため, 全体座屈荷重としては図 5.12(d)に示す逆対称モード座屈荷重 N^{Bm2} に注目し,比較のた め図 5.12(b)に示す両端バネの対称モード座屈荷重 N^{Bs}_{cr} についても検討する。

表 5.2 の評価用特性値を用いて算出した座屈前変形による変位と標準部材(case1, case2) 各々の特性値を用いて算出した値との比較を行う。図 5.16 に *ξ* と座屈前変形に

よる変位の関係を示す。全体座屈荷重として N_{cr}^{Bm2} を用いた場合,評価用特性値を用いた座屈前変形による変位は,標準部材各々の特性値を用いた変位を包絡していることがわかる。 N_{cr}^{Bs} を用いた座屈前変形による変位は,概ね N_{cr}^{Bm2} を用いた値と同程度であるが,本章ではより精緻なモデルである逆対称モード座屈荷重 N_{cr}^{Bm2} を用いた変位により評価する。座屈前変形による変位量は ξ が大きいほど大きくなる。また,接合部剛性が大きく、貫入長比が大きいほど座屈前変形による変位量は小さくなるが,特に ℓ_{k0} =0.7, ℓ_{in} =2.0 では $_{\xi}\kappa_{Rg}$ の大きさに依らず a_r と同程度の値であり,座屈前変形による面外変位の増幅は非常に小さいことがわかる。

5.7 設計用偏心曲げモーメント M_{ec}^{r}/N_{v}

5.7.1 接合部の座屈耐力式

BRB の座屈拘束材端部曲げ耐力を 0 とした場合の座屈荷重 N'_{cr} について検討する。 N'_{cr} は図 5.17 に示すように, $M'_{p}=0$ のときの接合部座屈荷重である。式(5.2)で示した等 価細長比 λ_{r} を接合部断面積 A_{2} と塑性化部の断面積 A_{0} の比 A_{2}/A_{0} , 座屈長さ比 ℓ_{k0} を用 いて整理すると以下となる。

$$\lambda_r = 2\pi\xi \cdot \ell_{k0} \sqrt{\frac{1}{\gamma} \cdot \frac{A_2}{A_0} \frac{E}{1.5 \cdot \sigma_{y\max}} \cdot \frac{\xi \kappa_{Rg} + 24/\pi^2}{(1 - 2\xi)_{\xi} \kappa_{Rg}}}$$
(5.10)

さらに、 λ_r を用いて日本建築学会鋼構造設計規準^{5.1)}で算出した圧縮許容応力度 f_c^r と A_2/A_0 を使って N_{cr}^r を BRB の降伏軸力 N_y で基準化した値を表すと次式となる。

$$N_{cr}^{r} / N_{y} = 1.5 \cdot f_{c}^{r} / \sigma_{y} \cdot A_{2} / A_{0}$$
(5.11)

図 5.17 接合部座屈荷重のモデル図

5.7.2 接合部座屈荷重 N^r_{cr}/N_vの評価

表 5.2 の評価用特性値を用いた場合と,標準部材(case1, case2) 各々の特性値を用いた場合の接合部座屈荷重 N'_{cr} および等価細長比 λ_r と接合部長さ比 ξ との関係を図 5.18 に示す。グラフには N'_{cr}/N_y =1.3 のときの ξ を点線で示している。これは設計用軸力

N_{cu}=1.3 N_yとした場合,接合部座屈荷重が設計用軸力以上確保できる *ξ*の範囲を示す。 評価用特性値を用いた接合部座屈荷重は標準部材各々の特性値を用いた値の下限を抑 えており,安全側の評価となっている。

5.7.3 BRB の芯材突出部に生じる偏心曲げモーメント M_{ec}^r/N_v の評価

降伏軸力で基準化された機構安定条件式(5.4)の右辺第一項の設計用偏心曲げモーメント*M^r_{ec}/N_v*に注目する。

図 5.16 と図 5.18 の結果を用いて M_{ec}^r/N_y と接合部長さ比 ξ との関係を図 5.19 に示す。 なお、 $N_{cr}^r/N_y > \alpha_d$ (=1.3)の場合は $M_{ec}^r/N_y = 0$ とした。評価用特性値は接合部座屈荷重算 定時と同様とする。評価用特性値を用いて算出した値は、標準部材各々の特性値を用い て算出した値の上限を包括しており安全側の評価となっている。

図 5.19 BRBの設計用偏心曲げモーメント M_{ec}^r/N_y

5.8 設計用付加曲げモーメント M_0^r/N_v

図 5.20 に示すように BRB が構面外層間変形により構面外方向に強制変位 δ_0 を受ける場合,拘束材端部に加わる曲げモーメント M'_0 を 7 要素モデル各部位の変形の和から誘導すると,次式で表すことができる。

$$\frac{M_{0}^{r}}{N_{cr}^{B0}} = \frac{1}{\pi^{2}} (1 - 2\xi) \left\{ \delta_{0} - 2s_{r} (1 - 2\xi) \frac{\ell_{k0} \cdot \ell_{wk}}{\ell_{in}} \right\} \cdot \left(\frac{1}{\ell_{k0}} \right)^{2} \\ \cdot \frac{6\gamma}{2\xi' (3 - 6\xi' + 4\xi'^{2}) + \gamma (1 - 2\xi')^{3} + \frac{6\xi}{\xi \kappa_{Rg}} + \frac{6\gamma (1 - 2\xi')^{2}}{L \kappa_{Rr}}}$$
(5.12)

ここで、 L_0 はブレース長さ、 L_k は限界座屈長さ、 W_1 は芯材突出部幅であり、無次元 化パラメータはそれぞれ $\ell_{k0} = L_0/L_k$ 、 $\ell_{wk} = L_k/W_1$ 、 $\ell_{in} = L_{in}/W_1$ である。一方、第3章 で示したように、 M_0^r は接合部の回転剛性に対して拘束材の曲げ剛性、拘束材端部の回 転剛性が十分に大きい場合を想定し、式(5.13)で近似できる。

$$M_0^r = (1 - 2\xi) \left\{ \frac{\delta_0}{L_0} - (1 - 2\xi) \frac{2s_r}{L_{in}} \right\} \cdot K_{Rg}$$
(5.13)

式(5.13)の K_{Rg} を無次元化回転ばね剛性比で表現し、限界座屈長さ L_k に対する両端ピンの座屈荷重 N_{cr}^{B0} で除すと次式となる。

$$\frac{M_{0}^{r}}{N_{cr}^{B0}} = \frac{1}{\pi^{2}} \left(1 - 2\xi\right) \left\{ \delta_{0} - 2s_{r} \left(1 - 2\xi\right) \frac{\ell_{k0} \cdot \ell_{wk}}{\ell_{in}} \right\} \cdot \left(\frac{1}{\ell_{k0}}\right)^{2} \cdot \frac{\xi^{\kappa} \kappa_{Rg}}{\xi}$$
(5.14)

式(5.12)を $\gamma = 1.0$, $_L \kappa_{Rr} \rightarrow \infty$, $EI \rightarrow \infty$ とすれば最終項は $_{\xi} \kappa_{Rg} / \xi$ となり,式(5.14)と一致 する(付録 5.1 参照)。式(5.12),(5.14)の $2s_r(1-2\xi)$ $\ell_{k0} \ell_{wk} / \ell_{in}$ は拘束材端部のクリア ランスにより生じる変形であり、この項が小さいほど曲げモーメントは大きくなるため、 強制構面外変形による曲げモーメントを検討する場合には ℓ_{wk} を最小の 22 として評価 する。尚,式(5.12),(5.14)は両端ピンのオイラー座屈荷重で除しているが、ここでは 式(5.15)のように降伏軸力 N_y で基準化した設計用付加曲げモーメント M'_0 / N_y を算出す る。 $M_0^r / N_v = M_0^r / N_{cr}^{B0} \cdot 1.5 \cdot 245/225, (N_{cr}^{B0} = 1.5 \cdot 245/225 \cdot N_v)$ (5.15)

面外変位としては階高 4500mm, 層間変形角 1/100 に相当する δ_0 =45mm を仮定し, 強制変位による付加曲げモーメントの評価を行う。接合部曲げ剛性比 γ , 拘束材端部の回転ばね剛性比 $_L\kappa_{Rr}$ の評価用特性値は,安全側の評価となるように,表 5.2 に示す分布範囲中の最大値を採用した。 M'_0/N_y の分布は図 5.20 に示すように端部ほど大きくなる逆対称形であるため,式(5.12),(5.14)ともに ξ が大きくなると M'_0/N_y は小さくなる。

表 5.2 の評価用特性値による式(5.12)および式(5.14)を用いた設計用付加曲げモーメント*M*^{*r*}₀/*N*^{*y*} を図 5.21 に示す。図 5.21 の式(5.12)の値は個々の標準部材の値を包絡した結果となっており,BRB の機構安定条件確認のための設計用付加曲げモーメントとしては、表 5.2 に示す評価用特性値による式(5.12)を用いて算出した値を採用する。

図 5.20 強制面外変形下の曲げモーメント分布

図 5.21 各モデルの設計用付加曲げモーメント M'_0/N_y

5.9 BRB 機構安定性の評価手法

5.9.1 芯材突出部の設計用曲げモーメント*M^r*/N_v

評価用特性値による 5.7 節の設計用偏心曲げモーメント M_{ec}^r/N_y と 5.8 節の設計用付 加曲げモーメント M_0^r/N_y の単純和を設計用曲げモーメント M^r/N_y とする。

 $M^{r}/N_{v} = M^{r}_{ec}/N_{v} + M^{r}_{0}/N_{v}$ (5.16)

前節までと同様に,表 5.2 の評価用特性値を用いた場合と,標準部材(case1, case2)個々 の特性値を用いた場合の比較を行う。図 5.22 に設計用曲げモーメント M'/N_y ,設計用 付加曲げモーメント M'_0/N_y を示す。図 5.22 の $_{\xi}\kappa_{Rg}$ =0.60, ℓ_{k0} =1.0, ℓ_{in} =2.0 のグラフ 中に示すように,実線(M'/N_y)との点線(M'_0/N_y)の差が設計用偏心曲げモーメント M'_{ec}/N_y となる。また、 $N_{cu} < N'_{cr}$ となる ξ の範囲を示す。この範囲は芯材突出部の曲げ モーメントの大きさに関わらず機構安定性を満足し,設計用偏心曲げモーメント M'_{ec} は 0 となる。評価用特性値を用いた設計用曲げモーメントは、標準部材個々の特性値から 算出した値よりもやや高い値となるが、すべてを包絡した評価となっている。

図 5.22 芯材突出部の設計用曲げモーメント

5.9.2 拘束材端部の曲げ耐力*M^r*

座屈拘束材端部の貫入長比 ℓ_{in} (= L_{in}/W_1) \geq 1.5~2.0 とすれば、座屈拘束材端部の曲げ耐 カ M_p^{r-rest} は、芯材突出部の曲げ耐力 M_p^{r-neck} よりも概ね大きくなることが確認されてい る^{5.7)}ため、本節では芯材突出部の曲げ耐力 M_p^{r-neck} について検討する。 M_p^{r-neck} は第3章 付録 3.4 で示したように、式(5.17)で算出でき、実験値とも良い対応を示している。

$$M_{p}^{r} = M_{p}^{r-neck} = Z_{p}^{r} \sigma_{y} \left\{ 1 - \left(\frac{N_{cu} - N_{wy}^{c}}{N_{u}^{c} - N_{wy}^{c}} \right)^{2} \right\}$$
(5.17)

ここで、 N_{wy}^{c} :ウェブの降伏軸力、 N_{u}^{c} :芯材突出部の終局耐力(= σ_{u} A_{1})、 Z_{p}^{r} :芯材 突出部の塑性断面係数である。 A_{1}/A_{0} の評価用特性値を表 5.2 に示す通り 1.33、芯材材 質 LYP225 に対し引張強さと降伏応力度の比 σ_{u}/σ_{y} を 300/225=1.33、簡単のためウェブ の降伏軸力 N_{wy}^{c} =0.5 $A_{1}\sigma_{y}$ とすると N_{y} で基準化された M_{p}^{r} は以下のように整理できる。

$$\frac{M_p^r}{N_y} = \frac{Z_p^r \sigma_y}{N_y} \left\{ 1 - \left(\frac{\alpha_d - 0.5 A_1 / A_0}{A_1 / A_0 \cdot \sigma_u / \sigma_y - 0.5 A_1 / A_0} \right)^2 \right\} = 0.67 \frac{Z_p^r}{A_0}$$
(5.18)

5.9.3 面外座屈安定性能曲線

図 5.23 に図 5.22 の M'/N_y の実線部分のみを取り出し、式(5.18)から算出される標準 部材の N_y ごとの拘束材端部の曲げ耐力 M'_p/N_y との比較を示す。尚、 M'/N_y について は接合部が中間の剛性である $\xi \kappa_{Rg} = 0.3$ と貫入長比 $\ell_{in} = 1.5$ の場合も併せて示している。 これを面外座屈安定性能曲線と呼ぶこととする。図 5.23 の設計用曲げモーメント M'/N_y は N_y に依らずに一つのグラフに表現できるため、ブレース容量によらず設計変 数特性値 ξ , ℓ_{in} , $\xi \kappa_{Rg}$ の機構安定性への影響を視覚的に把握することができる。設計 時において $\ell_{k0} = 0.7 \sim 1.0$ の場合には $\ell_{k0} = 1.0$ のグラフを、 $\ell_{k0} \leq 0.7$ の場合には $\ell_{k0} = 0.7$ を使うものとする。芯材突出部の設計用曲げモーメント M'/N_y は設計変数特性値 ξ , ℓ_{in} , $\xi \kappa_{Rg}$ から、芯材突出部の曲げ耐力 M'_p/N_y は BRB の N_y から、それぞれグラフか ら読み取り、 $M'_p/N_y > M'/N_y$ であれば面外座屈安定条件を満足することを示す。例 えば ℓ_{k0} =1.0, N_y =2000kN, ξ =0.20, $\xi \kappa_{Rg}$ =0.15, ℓ_{in} =1.0 の場合,設計用曲げモーメン ト M'/N_y は図 5.23 中の A 点の値となり,芯材突出部の曲げ耐力 M'_p/N_y (N_y =2000kN の線)より大きく,安定条件を満足していないことになる。この場合,貫入長を長くし て ℓ_{in} =2.0 とする(同 B 点),あるいは接合部にリブ等を配置して接合部の面外回転剛性 を高めて $\xi \kappa_{Rg}$ =0.60 とする(同 C 点),または超高力ボルトの採用等により接合部長さを 短くして ξ =0.15 とする(同 D 点)等により,安定条件を満足させる ($M'_p/N_y > M'/N_y$) ことが可能となる。

尚,面外座屈安定性能曲線において, $\xi \kappa_{Rg}$ が大きいと M'/N_y が 0 から立ち上がる ξ の値が大きくなる。これは、 N'_{cr} が $\xi \kappa_{Rg}$ に依存して大きくなるためであり、接合部の剛性と耐力を高めて BRB の安定性を確保する設計法に対応している。一方、表 5.1 にブレース容量の異なる新たな BRB の部材リストを追加する場合でも、評価用特性値の値が表 5.2 の範囲内であれば、図 5.23 の M'/N_y は汎用的に使うことができる点がこの安定性能曲線の利点である。

5.9.4 評価用特性値による評価の精度

評価用特性値を用いることで M'/N_y をどの程度の誤差で評価しているかを検討する。 図 5.24 は、横軸に評価用特性値による M'/N_y の評価値を、縦軸に標準部材個々の特性 値による M'/N_y の評価値を示している。また、表 5.5 には(評価精度) = (標準部材個々 の特性値による M'/N_y) / (評価用特性値による M'/N_y)として計算した評価精度の平 均値と標準偏差を示す。評価用特性値を使うことで M'/N_y をやや過大に評価する傾向 にあるものの、第 3 章で示したように、式(5.1)が安全側に 30%、危険側に 15%程度の精 度で実験結果と整合していることを考慮すれば、概ね安全側で機構安定性を評価できて いると考える。

図 5.23 BRB の面外座屈安定性能曲線(LYP225 芯材形状+タイプ)

図 5.24 本検討範囲における M^r / N_y の精度

Mark	ℓ_{k0}	ℓ_{in}	平均值	標準偏差
0		2.0	0.68	0.068
•	1.0	1.5	0.63	0.112
٠		1.0	0.50	0.176
0		2.0	0.73	0.065
•	0.7	1.5	0.70	0.072
٠		1.0	0.64	0.010

表 5.4 評価用特性値を使うことによる評価精度

本章では、実際の建物に用いられている BRB および接合部ディテールを調査・分析 し、本研究で提案した BRB の機構安定条件式中の各項の値に寄与する各種特性値を特 定すると共に、BRB の機構安定性を視覚的に評価できる手法を提案した。以下に得ら れた知見を示す。

- 1) 実際に用いられている接合部ディテールの FEM 解析により,接合部端部の構面外 回転剛性を評価した結果,取付く柱梁の剛性の影響が大きく,面外変形を拘束する ためのリブを設けた場合においても,接合部端部が柱梁と回転剛で接合された場合 の回転剛性の半分程度以下となる場合があり,特に剛な接合部を評価する場合は, 柱梁を含めた接合部の構面外回転剛性の影響を考慮する必要がある。
- 2) 実際使われている BRB や接合部ディテールを調査・分析し,機構安定条件式の各項 に寄与する特性値の内,主要な変動パラメータとしての設計変数特性値と一定値と して取り扱える評価用特性値を特定した。また,設定した評価用特性値は,実際に 多く用いられている BRB の機構安定性を安全側に評価できていることが確認され た。
- 3) これらの特性値を用いて算定した拘束材端部位置での単位降伏軸力あたりの設計用 曲げモーメントと、単位降伏軸力あたりの拘束材端部の曲げ耐力の大小関係を面外 座屈安定性能曲線上で比較することにより、第3章で提案した BRBの機構安定条件 を条件式に数値を代入することなく視覚的に評価できることを示した。

付録 5.1

式(5.12)にて接合部の回転変形以外を無視した場合について以下に示す。 式(5.12)の $\gamma \rightarrow 1$, $1/_L \kappa_{Rr} \rightarrow 0$ とすると以下となる。

$$\begin{split} M_{0}^{r} &= \frac{1}{\pi^{2}} (1 - 2\xi) \left\{ \delta_{0} - 2s_{r} (1 - 2\xi) \frac{L_{0}}{L_{in}} \right\} \cdot \left(\frac{L_{k}}{L_{0}} \right)^{2} \cdot \frac{6}{1 + \frac{6\xi}{\xi K_{Rg}}} N_{cr}^{B0} \\ &= \frac{1}{\pi^{2}} (1 - 2\xi) \left\{ \delta_{0} - 2s_{r} (1 - 2\xi) \frac{L_{0}}{L_{in}} \right\} \cdot \left(\frac{L_{k}}{L_{0}} \right)^{2} \cdot \frac{6}{1 + \frac{6\xi}{K_{Rg}}} \frac{N_{cr}^{B0}}{\gamma EI} \\ &= \frac{1}{\pi^{2}} (1 - 2\xi) \left\{ \delta_{0} - 2s_{r} (1 - 2\xi) \frac{L_{0}}{L_{in}} \right\} \cdot \left(\frac{L_{k}}{L_{0}} \right)^{2} \cdot \frac{6}{1 + \frac{6\xi}{K_{Rg}} \cdot \frac{\xi L_{0}}{\gamma EI}} \frac{\pi^{2} EI}{L_{k}^{2}} \\ &= (1 - 2\xi) \left\{ \delta_{0} - 2s_{r} (1 - 2\xi) \frac{1}{L_{in}} \right\} \cdot \frac{1}{\frac{L_{0}}{6EI} + \frac{1}{K_{Rg}}} \end{split}$$
 (ff 5.1)

式(付 5.1)には鋼管の曲げ剛性が含まれているため、1/EI→0 とすると本文式(5.13)と同じであり、無次元化パラメータを使って表現すると式(5.14)となる

第5章の参考文献

- 5.1) 日本建築学会:鋼構造設計規準-許容応力度設計法-,2005.9
- 5.2) 天畠秀秋, 聲高裕治, 井上一朗: 接合部を含む座屈拘束ブレースの構面外座屈荷 重, 日本建築学会構造系論文集, 第 581 号, pp.127-134, 2004.7
- 5.3) 木下智裕, 聲高裕治, 井上一朗, 飯谷邦祐: 接合部を含む座屈拘束ブレースの構 面外座屈防止条件, 日本建築学会構造系論文集, 第 621 号, pp.141-148, 2007.11
- 5.4) 藤井俊二,田川浩:丸鋼芯材を二重鋼管により座屈拘束したブレースの挙動特性, 日本建築学会構造系論文集,第659号, pp.167-174, 2011.1
- 5.5) 木下智裕,聲高裕治,井上一朗,飯谷 邦祐:十字形断面をもつ座屈拘束ブレース接合部の構面外曲げ剛性と降伏曲げ耐力,日本建築学会構造系論文集,第632号,pp.1865-1873,2008.10
- 5.6) 竹内 徹,山田哲,北川まどか,鈴木一弁,和田章:構面外剛性の低い接合部に より接合された座屈拘束ブレースの座屈安定性,日本建築学会構造系論文集,第 575 号, pp.121-128, 2004.1
- 5.7) 竹内 徹,松井良太,西本晃治,高橋聡史,大山翔也:拘束材回転剛性を考慮した座屈拘束ブレースの有効座屈長,日本建築学会構造系論文集,第 639 号, pp.925-934, 2009.5
- 5.8) 新日鉄住金エンジニアリング株式会社:アンボンドブレース技術資料
第6章 K型配置された座屈拘束ブレースの機構安定設計

6.1 序

前章までは、図 6.1.1(a)に示すような、両端の接合部条件が対称となる片流れ配置された BRB の機構安定条件について論じてきた。実際の設計において BRB を配置する場合、このような片流れ配置だけではなく、図 6.1.1(b)に示すような、BRB の片側を梁に取り付けるいわゆる K 型配置とすることも多い。

K型配置とした場合,BRB 両端の接合部の長さや形状が異なると共に,梁側接合部 は取付く大梁の回転剛性の影響を大きく受けるため,両端の接合部条件が非対称となる。 このような接合部条件が両端で非対称となる場合における,拘束材端部の曲げモーメン ト伝達能力を考慮した機構安定評価式は,三原ら^{6.1)-6.3)}によって検討が行われている。

そこで本章においては、K型配置のように接合部条件が非対称となる座屈拘束ブレースの機構安定条件を第3章と同様の手法を用いて文献 6.1)に基づき導出し、提案した機構安定評価式を実際の設計に適用する場合の手法について論じる。さらに、梁側接合部の回転剛性を具体的に評価するため、実設計を想定した K型配置された BRB を含むフレームモデルの FEM 解析を実施すると共に、梁側接合部の回転剛性を簡便に評価できる手法についても検討する。

図 6.1.1 BRB の配置方法と接合部条件

6.2 両端の接合条件が非対称な場合の機構安定条件の誘導

6.2.1 接合条件が非対称な場合の機構安定評価式の概要

本節では第3章の考え方に基づき,K型配置を想定した接合条件非対称の場合の機構 安定評価式を展開する。

まず,K型配置された座屈拘束ブレースの梁側接合部では,図 6.2.1(a)に示すように 大梁の捩れ変形により接合部長が実質的に長くなり,回転剛性も低下する。これを図 6.2.1(b),(c)のように大梁の回転中心までを接合部長 $\xi_2 L_0$ とし,回転剛性を大梁の部材 軸回りの回転剛性 K_{Rb} と上部ガセットプレート(GPL)の回転剛性 K_{Rg2} を足し合わせた 上部接合部回転剛性 $K_{Rg2} = (1/K_{Rg2} + 1/K_{Rb})^{-1}$ として評価する。このモデル化により,機 構安定条件の評価は第3章の接合条件対称の場合と同様に以下の展開となる。

図 6.2.1 K型配置された座屈拘束ブレースの崩壊メカニズム

接合部の面外回転剛性が低い場合,芯材の元たわみ a,加力部の偏心 e に加え,芯材

と拘束材間のクリアランス s_r によって接合部に初期不整 a_r が生じる。この初期不整の もと、両端部に回転ばねを有する圧縮材の軸力 N - 面外変位 y_r + a_r 関係は第 3 章の式 (3.4)と同様に下式のように近似できる。

$$N = \frac{y_r}{y_r + a_r} N_{cr}^B \tag{6.2.1}$$

ここに, y_r:拘束材端部の構面外変位, N^B_{cr}:接合部端部の回転ばねや接合部剛性を 考慮した材全体の最小弾性座屈軸力である。

軸力 N は、図 6.2.2 に示すように拘束材端部の面外変位 $y_r + a_r$ の増加に伴い N_{cr}^B に漸近しながら式(6.2.1)の経路を通る。しかし、 N_{cr}^B に到達する前に拘束材端部において塑性ヒンジが形成され、図 6.2.1(b)、(c)に示すような崩壊メカニズムのもとで安定限界軸力が規定される。すなわち、下式に示す、次項にて導く BRB の崩壊メカニズム時軸力N- 面外変位 $y_r + a_r$ 関係との交点にて安定限界軸力 $N_{\rm lim}$ が決定される。

・接合部弾性範囲内(図 6.2.1(b))

$$N = N_{cr}^{r} + \frac{M_{p}^{r} - M_{0}^{r}}{y_{r} + a_{r}}$$
(6.2.2)

・接合部塑性範囲内(図 6.2.1(c))

[逆対称崩壊モード]

$$N = \left(\frac{M_p^{g_1} - M_0^r}{\xi_1} + \frac{M_p^{g_2} - M_0^r}{\xi_2}\right) \frac{1}{\left[\frac{1}{\xi_1} + \frac{1}{\xi_2} + \frac{4}{(1 - \xi_1 - \xi_2)}\right]} \frac{1}{y_r + a_r} + \frac{M_p^r - M_0^r}{y_r + a_r}$$
(6.2.3)

[片側崩壊モード]

$$N = \frac{M_p^{g^2} - M_0^r}{y_r + a_r} \frac{1 - \xi_1 - \xi_2}{1 - \xi_1} + \frac{M_p^r - M_0^r}{y_r + a_r}$$
(6.2.4)

式(6.2.1)と式(6.2.2)または式(6.2.1)と式(6.2.3)あるいは式(6.2.4)の交点によって決定される安定限界軸力 N_{lim}は下式となる。

・接合部弾性範囲内(式(6.2.1)と式(6.2.2)の交点)

$$N_{lim1} = \frac{\left(M_p^r - M_0^r\right) / a_r + N_{cr}^r}{\left(M_p^r - M_0^r\right) / \left(a_r N_{cr}^B\right) + 1}$$
(6.2.5)

· 接合部塑性範囲内

[逆対称崩壊モード] (式(6.2.1)と式(6.2.3)の交点)

$$N_{\lim 2} = \frac{\left(M_p^r - M_0^r + C_3\right) / a_r}{\left(M_p^r - M_0^r + C_3\right) / \left(a_r N_{cr}^B\right) + 1}$$
(6.2.6)

$$C_{3} = \left(\frac{M_{p}^{g_{1}} - M_{0}^{r}}{\xi_{1}} + \frac{M_{p}^{g_{2}} - M_{0}^{r}}{\xi_{2}}\right) \frac{1}{\left[\frac{1}{\xi_{1}} + \frac{1}{\xi_{2}} + \frac{4}{(1 - \xi_{1} - \xi_{2})}\right]}$$
(6.2.7)

[片側崩壊モード] (式(6.2.1)と式(6.2.4)の交点)

$$N_{\lim 2} = \frac{\left(M_p^r - M_0^r + C_4\right) / a_r}{\left(M_p^r - M_0^r + C_4\right) / \left(a_r N_{cr}^B\right) + 1}$$

$$C_4 = \frac{1 - \xi_1 - \xi_2}{1 - \xi_1} \left(M_p^{g2} - M_0^r\right)$$
(6.2.9)

ここに、N^r_{cr}: 拘束材端部回転ピンの場合の接合部座屈荷重である。

図 6.2.2(a)に示すように安定限界軸力 N_{lim} が芯材最大軸力 N_{cu} を上回る場合, 芯材降伏 後も不安定現象を生じることなく機構安定となる。図 6.2.2(b)に示すように安定限界軸 カ N_{lim} が芯材最大軸力 N_{cu} を下回る場合, 拘束材端部に塑性ヒンジを形成し機構不安定 となる。安定限界軸力の値は, 式(6.2.5), (6.2.6), (6.2.8)のうち最も小さい値とする。

図 6.2.2 座屈拘束ブレースの機構安定条件

6.2.2 接合条件が非対称な場合の座屈拘束ブレースの崩壊時軸カー面外変位関係

6.2.1 項の考え方に基づき、本項では接合部を含めた座屈拘束ブレースの崩壊メカニ ズム時の耐力評価を第3章と同様に、図6.2.3 に示すような初期不整を有するモデルを 用いてエネルギー法にて導出する。

図 6.2.3(b)は、下部接合部は端部に剛性 K_{Rg1} 、上部接合部は K_{Rg2} の回転ばねを有する 弾性曲げ材、座屈拘束部は剛体とし、拘束材端部の初期不整を a_r とする。軸力Nを受 け面外変位 y_r+a_r が増大し、拘束材端部が曲げ耐力 M_p^r に達した時に不安定になる。図 6.2.3(a)の各モデルは、図 6.2.3(b)における上下接合部端部が剛接合(回転剛性 $K_{Rg1,2} \rightarrow \infty$) の場合とする。

想定する崩壊メカニズムとして,図 6.2.3(a)(i),(b)(i)の対称崩壊モード,図 6.2.3(a)(ii), (b)(ii)の逆対称崩壊モード,図 6.2.3(a)(iii),(b)(iii)の片側崩壊モードの3種類とする。尚, 片側崩壊モードは芯材が塑性化した後,下部が芯材 - モルタル間のクリアランス内にて ピン状態で回転し,上部に塑性ヒンジが形成されると仮定した崩壊メカニズムである。

図 6.2.3 崩壊メカニズム^{6.1)}

本項ではまず,図 6.2.3(b)(i)~(iii)の3つのメカニズムについて崩壊時軸力-面外変位 関係を導出する。また,逆対称崩壊モードおよび片側崩壊モードについてガセットプレ ートが塑性化した場合の崩壊時軸力 - 面外変位関係を導出する。最後に各種崩壊モード の安定限界軸力を算出する。

接合部が回転ばねを有するため、内部エネルギーとしては接合部の弾性歪エネルギー U_e、接合部の塑性歪エネルギーU_pにさらに接合部端部回転ばね弾性歪エネルギーU_eが 加わる。外部仕事をTとすると、エネルギー変分の釣合いより下式が成り立つ。

$$\frac{\partial \left(U_{\varepsilon} + U_{p} + U_{s} - T\right)}{\partial y_{r}} = 0$$
(6.2.10)

各崩壊メカニズムにおける接合部の弾性歪エネルギーU_ε, 接合部の塑性歪エネルギー U_p, 接合部端部回転ばね弾性歪エネルギーU_s, 外部仕事 T を算出し, 式(6.2.10)に代入 して解くことで, それぞれの崩壊時軸力 - 面外変位関係を導出する。

接合部が回転ばねを有するため,図 6.2.4 に示すように面外変位 yrについて,弾性変位 yre,回転ばねによる変位 yrsに分割するのは第3章と同じである。

図 6.2.4 面外変位 yr

図 6.2.5 材端条件によるたわみ量

ここで yreおよび yrs について、上下接合部について下式のように表すことができる。

$$y_{re} = \begin{cases} \frac{\xi \kappa_{Rg1}}{\xi \kappa_{Rg1} + 3} y_{r1} & (\bar{\Gamma} \oplus \bar{B}) \\ \frac{\xi \kappa_{Rg2}}{\xi \kappa_{Rg2} + 3} y_{r2} & (\bar{L} \oplus \bar{B}) \end{cases}$$

$$y_{rs} = \begin{cases} \frac{3}{\xi \kappa_{Rg1} + 3} y_{r1} & (\bar{\Gamma} \oplus \bar{B}) \\ \frac{3}{\xi \kappa_{Rg2} + 3} y_{r2} & (\bar{L} \oplus \bar{B}) \end{cases}$$
(6.2.12)

図 6.2.6 崩壊メカニズム(接合部:回転ばね,対称モード)

①接合部の弾性歪エネルギーUε

$$U_{\varepsilon} = U_{\varepsilon_{1}} + U_{\varepsilon_{2}}$$

$$= \frac{\gamma_{J} E I_{B} \pi^{4}}{64 L_{0}^{3}} \left\{ \frac{y_{r_{1}}^{2}}{\xi_{1}^{3}} \left(\frac{\xi \kappa_{Rg1}}{\xi \kappa_{Rg1} + 3} \right)^{2} + \frac{y_{r_{2}}^{2}}{\xi_{2}^{3}} \left(\frac{\xi \kappa_{Rg2}}{\xi \kappa_{Rg2} + 3} \right)^{2} \right\}$$
(6.2.13)

②接合部の塑性歪エネルギーUp

$$U_{p} = M_{p}^{r} \Delta \theta_{r1} + M_{p}^{r} \Delta \theta_{r2} = \frac{M_{p}^{r}}{2L_{0}} \left\{ \frac{y_{r1} \left(\pi_{\xi} \kappa_{Rg1} + 6\right)}{\xi_{1} \left(\xi \kappa_{Rg1} + 3\right)} + \frac{y_{r2} \left(\pi_{\xi} \kappa_{Rg2} + 6\right)}{\xi_{2} \left(\xi \kappa_{Rg2} + 3\right)} \right\}$$
(6.2.14)

③接合部端部回転ばね弾性歪エネルギーU。

$$U_{s} = \frac{1}{2} K_{Rg1} \Delta \theta_{s1}^{2} + \frac{1}{2} K_{Rg2} \Delta \theta_{s2}^{2}$$

$$= \frac{\gamma_{J} E I_{B}}{2} \left[\frac{\xi \kappa_{Rg1}}{\xi_{1} L_{0}} \left(\frac{y_{r1}}{\xi_{1} L_{0}} \frac{3}{\xi \kappa_{Rg1} + 3} \right)^{2} + \frac{\xi \kappa_{Rg2}}{\xi_{2} L_{0}} \left(\frac{y_{r2}}{\xi_{2} L_{0}} \frac{3}{\xi \kappa_{Rg2} + 3} \right)^{2} \right]$$
(6.2.15)

④外部仕事 T

ここで、 $a_{r2} = a_r$ 、 $a_{r1} = r_a a_r$ 、 $y_{r2} = y_r$ 、 $y_{r1} = r_a y_r$ とすると

$$T \approx \frac{y_r^2 + 2y_r a_r}{2L_0} \times \left(\frac{r_a^2}{\xi_1} \left(\frac{\pi^2}{8} \frac{\xi \kappa_{Rg1}}{\xi \kappa_{Rg1} + 3} + \frac{3}{\xi \kappa_{Rg1} + 3} \right) + \frac{1}{\xi_2} \left(\frac{\pi^2}{8} \frac{\xi \kappa_{Rg2}}{\xi \kappa_{Rg2} + 3} + \frac{3}{\xi \kappa_{Rg2} + 3} \right) \right) \cdot N$$
(6.2.16)

⑤崩壞時軸力

①~④より,式(6.2.10)に式(6.2.13),式(6.2.14),式(6.2.15),式(6.2.16)を代入して下式 を得る。

$$\frac{\partial (U_{\varepsilon} + U_{p} + U_{s} - T)}{\partial y_{r}} = \frac{\gamma_{J} E I_{B} \pi^{4} y_{r}}{32 L_{0}^{3}} \left\{ \frac{r_{a}^{2}}{\xi_{1}^{3}} \left(\frac{\varepsilon \kappa_{Rg1}}{\varepsilon \kappa_{Rg1} + 3} \right)^{2} + \frac{1}{\xi_{2}^{3}} \left(\frac{\varepsilon \kappa_{Rg2}}{\varepsilon \kappa_{Rg2} + 3} \right)^{2} \right\}$$

$$+ \frac{M_{p}^{r}}{2 L_{0}} \left\{ \frac{r_{a} \left(6 + \pi_{\varepsilon} \kappa_{Rg1} \right)}{\xi_{1} \left(\varepsilon \kappa_{Rg1} + 3 \right)} + \frac{\left(6 + \pi_{\varepsilon} \kappa_{Rg2} \right)}{\xi_{2} \left(\varepsilon \kappa_{Rg2} + 3 \right)} \right\}$$

$$+ \frac{9 \gamma_{J} E I_{B} y_{r}}{L_{0}^{3}} \left\{ \frac{r_{a}^{2} \varepsilon \kappa_{Rg1}}{\xi_{1}^{3} \left(\varepsilon \kappa_{Rg1} + 3 \right)^{2}} + \frac{\varepsilon \kappa_{Rg2}}{\xi_{2}^{3} \left(\varepsilon \kappa_{Rg2} + 3 \right)^{2}} \right\}$$

$$- \frac{y_{r} + a_{r}}{L_{0}} \left(\frac{r_{a}^{2}}{\xi_{1}} \left(\frac{\varepsilon \kappa_{Rg1} \pi^{2} / 8 + 3}{\varepsilon \kappa_{Rg1} + 3} \right) + \frac{1}{\xi_{2}} \left(\frac{\varepsilon \kappa_{Rg2} \pi^{2} / 8 + 3}{\varepsilon \kappa_{Rg2} + 3} \right) \right) \cdot N$$

$$= 0$$

$$(6.2.17)$$

ここで、 $\pi^2/8 \approx 1$, 288/ $\pi^4 \approx 3$, 4/ $\pi \approx 1$, $a_r \ll y_r$ とすると、下式により崩壊時軸力 - 面外変位関係を導出できる。

$$N = N_{cr}^{r} + \beta \frac{M_{p}^{r}}{y_{r} + a_{r}}, \qquad \beta = \frac{4}{\pi} \cdot \frac{\frac{1}{\xi_{1}} \frac{\xi \kappa_{Rg1} + 6/\pi}{\xi \kappa_{Rg1} + 3} + \frac{1}{\xi_{2}} \frac{\xi \kappa_{Rg2} + 6/\pi}{\xi \kappa_{Rg2} + 3}}{\frac{1}{\xi_{1}} \frac{\xi \kappa_{Rg1} + 24/\pi^{2}}{\xi \kappa_{Rg1} + 3} + \frac{1}{\xi_{2}} \frac{\xi \kappa_{Rg2} + 24/\pi^{2}}{\xi \kappa_{Rg2} + 24/\pi^{2}} \approx 1$$

(6.2.18) , (6.2.19)

$$N_{cr}^{r} = \frac{\pi^{2} \gamma_{J} EI_{B}}{\left(2L_{0}\right)^{2}} \frac{\frac{r_{a}^{2} \xi^{\kappa} \kappa_{g1}}{\xi_{1}^{3} \left(\xi \kappa_{Rg1} + 3\right)} + \frac{\xi^{\kappa} \kappa_{Rg2}}{\xi_{2}^{3} \left(\xi \kappa_{Rg2} + 3\right)}}{\frac{r_{a}^{2}}{\xi_{1}} \frac{\xi^{\kappa} \kappa_{Rg1} + 24/\pi^{2}}{\xi^{\kappa} \kappa_{Rg1} + 3} + \frac{1}{\xi_{2}} \frac{\xi^{\kappa} \kappa_{Rg2} + 24/\pi^{2}}{\xi^{\kappa} \kappa_{Rg2} + 3}}$$
(6.2.20)

尚,接合部端部が剛の場合 ($_{\xi}\kappa_{Rg1,2} = \infty$),式(6.2.18),(6.2.19)は接合部が剛接合の場合の崩壊時軸力 - 面外変位関係と一致する。

(2) 接合部が回転ばねを有する場合(逆対称崩壊モード)

図 6.2.7 崩壊メカニズム(接合部:回転ばね,逆対称モード)

①接合部の弾性歪エネルギー U_{ϵ}

$$U_{\varepsilon} = U_{\varepsilon_{1}} + U_{\varepsilon_{2}}$$

$$= \frac{\gamma_{J} E I_{B} \pi^{4}}{64 L_{0}^{3}} \left\{ \frac{y_{r_{1}}^{2}}{\xi_{1}^{3}} \left(\frac{\xi \kappa_{Rg_{1}}}{\xi \kappa_{Rg_{1}} + 3} \right)^{2} + \frac{y_{r_{2}}^{2}}{\xi_{2}^{3}} \left(\frac{\xi \kappa_{Rg_{2}}}{\xi \kappa_{Rg_{2}} + 3} \right)^{2} \right\}$$
(6.2.13 再揭)

②接合部の塑性歪エネルギーUp

$$U_{p} = \frac{M_{p}^{r}}{2L_{0}} \begin{bmatrix} \frac{\xi \kappa_{Rg1} \left\{ 4\xi_{1} + \pi \left(1 - \xi_{1} - \xi_{2}\right) \right\} + 6\left(1 + \xi_{1} - \xi_{2}\right)}{\xi_{1} \left(\xi \kappa_{Rg1} + 3\right)\left(1 - \xi_{1} - \xi_{2}\right)} y_{r1} \\ + \frac{\xi \kappa_{Rg2} \left\{ 4\xi_{2} + \pi \left(1 - \xi_{1} - \xi_{2}\right) \right\} + 6\left(1 + \xi_{2} - \xi_{1}\right)}{\xi_{2} \left(\xi \kappa_{Rg2} + 3\right)\left(1 - \xi_{1} - \xi_{2}\right)} y_{r2} \end{bmatrix}$$
(6.2.21)

③接合部端部回転ばね弾性歪エネルギーU。

$$U_{s} = \frac{1}{2} K_{Rg1} \Delta \theta_{s1}^{2} + \frac{1}{2} K_{Rg2} \Delta \theta_{s2}^{2}$$

$$= \frac{\gamma_{J} EI_{B}}{2} \left[\frac{\xi \kappa_{Rg1}}{\xi_{1} L_{0}} \left(\frac{y_{r1}}{\xi_{1} L_{0}} \frac{3}{\xi \kappa_{Rg1} + 3} \right)^{2} + \frac{\xi \kappa_{Rg2}}{\xi_{2} L_{0}} \left(\frac{y_{r2}}{\xi_{2} L_{0}} \frac{3}{\xi \kappa_{Rg2} + 3} \right)^{2} \right]$$
(6.2.15 再揭)

④外部仕事 T

ここで、 $a_{r2} = a_r$ 、 $a_{r1} = r_a a_r$ 、 $y_{r2} = y_r$ 、 $y_{r1} = r_a y_r$ とすると

$$T = \frac{\pi^{2} \left(y_{r}^{2} + 2y_{r}a_{r}\right)}{16L_{0}} \begin{bmatrix} \frac{\xi \kappa_{Rg1} \left\{\pi^{2} \left(1 - \xi_{1} - \xi_{2}\right) + 16\xi_{1}\right\} + 24\left(1 + \xi_{1} - \xi_{2}\right)}{\pi^{2} \xi_{1} \left(1 - \xi_{1} - \xi_{2}\right) \left(\xi \kappa_{Rg1} + 3\right)} r_{a}^{2} \\ + \frac{\xi \kappa_{Rg2} \left\{\pi^{2} \left(1 - \xi_{1} - \xi_{2}\right) + 16\xi_{2}\right\} + 24\left(1 + \xi_{2} - \xi_{1}\right)}{\xi_{2} \left(1 - \xi_{1} - \xi_{2}\right) \left(\xi \kappa_{Rg2} + 3\right)} \end{bmatrix} N$$

$$(6.2.22)$$

⑤崩壞時軸力

①~④より,式(6.2.10)に式(6.2.13),式(6.2.15),式(6.2.21),式(6.2.22)を代入して下式 を得る。

$$\frac{\partial (U_{\varepsilon} + U_{p} + U_{s} - T)}{\partial y_{r}} = \frac{\gamma_{J} E I_{B} \pi^{4} y_{r}}{32 L_{0}^{3}} \left\{ \frac{r_{a}^{2}}{\xi_{1}^{3}} \left(\frac{\xi \kappa_{Rg1}}{\xi \kappa_{Rg1} + 3} \right)^{2} + \frac{1}{\xi_{2}^{3}} \left(\frac{\xi \kappa_{Rg2}}{\xi \kappa_{Rg2} + 3} \right)^{2} \right\}
+ \frac{M_{p}^{r}}{2 L_{0}} \left[\frac{\xi \kappa_{Rg1} \left\{ 4\xi_{1} + \pi \left(1 - \xi_{1} - \xi_{2} \right) \right\} + 6\left(1 + \xi_{1} - \xi_{2} \right)}{\xi_{1} \left(\xi \kappa_{Rg1} + 3 \right) \left(1 - \xi_{1} - \xi_{2} \right)} r_{a} \right]
+ \frac{\frac{9 \gamma_{J} E I_{B} y_{r}}{2 L_{0}} \left\{ \frac{r_{a}^{2} \xi \kappa_{Rg1}}{\xi_{1}^{3} \left(\xi \kappa_{Rg1} + 3 \right)^{2}} + \frac{\xi \kappa_{Rg2}}{\xi_{2} \left(\xi \kappa_{Rg2} + 3 \right) \left(1 - \xi_{1} - \xi_{2} \right)} \right] \right]
+ \frac{9 \gamma_{J} E I_{B} y_{r}}{L_{0}^{3}} \left\{ \frac{r_{a}^{2} \xi \kappa_{Rg1}}{\xi_{1}^{3} \left(\xi \kappa_{Rg1} + 3 \right)^{2}} + \frac{\xi \kappa_{Rg2}}{\xi_{2}^{3} \left(\xi \kappa_{Rg2} + 3 \right)^{2}} \right\}$$

$$(6.2.23)
- \frac{\pi^{2} \left(y_{r} + a_{r} \right)}{8 L_{0}} \left[\frac{\xi \kappa_{Rg1} \left\{ \pi^{2} \left(1 - \xi_{1} - \xi_{2} \right) + 16\xi_{1} \right\} + 24\left(1 + \xi_{1} - \xi_{2} \right)}{\xi_{2} \left(1 - \xi_{1} - \xi_{2} \right) \left(\xi \kappa_{Rg1} + 3 \right)} \right] N
= 0$$

ここで、288/ $\pi^4 \approx 3$ 、 $\pi^2/16 \approx 1/2$ 、 $a_r \ll y_r$ とすると、下式により崩壊時軸力 - 面外変位関係 を導出できる。

$$N = N_{cr}^{r} + \frac{M_{p}^{r}}{y_{r} + a_{r}}$$
(6.2.18 再掲)

$$N_{cr}^{r} = \frac{\pi^{2} \gamma_{J} E I_{B}}{\left(2L_{0}\right)^{2}} \frac{C_{2}}{C_{1}}$$
(6.2.24)

$$C_{2} = \frac{r_{a}^{2} \xi \kappa_{Rg1}}{\xi_{1}^{3} \left(\xi \kappa_{Rg1} + 3\right)} + \frac{\xi \kappa_{Rg2}}{\xi_{2}^{3} \left(\xi \kappa_{Rg2} + 3\right)}$$

$$C_{1} = \frac{\left(\xi \kappa_{Rg1} + 24/\pi^{2}\right) \left(r_{a}^{2} + r_{a}\xi_{1} - r_{a}^{2}\xi_{2}\right)}{\xi_{1} \left(1 - \xi_{1} - \xi_{2}\right) \left(\xi \kappa_{Rg1} + 3\right)} + \frac{\left(\xi \kappa_{Rg2} + 24/\pi^{2}\right) \left(1 + r_{a}\xi_{2} - \xi_{1}\right)}{\xi_{2} \left(1 - \xi_{1} - \xi_{2}\right) \left(\xi \kappa_{Rg1} + 3\right)}$$

$$(6.2.25)$$

(3) 接合部が回転ばねを有する場合(片側崩壊モード)

図 6.2.8 崩壊メカニズム(接合部:回転ばね,逆対称モード)

①接合部の弾性歪エネルギーU_ε

$$U_{\varepsilon} = \frac{\gamma_{J} E I_{B} \pi^{4} y_{re2}^{2}}{64 \left(\xi_{2} L_{0}\right)^{3}} = \frac{\gamma_{J} E I_{B} \pi^{4} y_{r}^{2}}{64 \left(\xi_{2} L_{0}\right)^{3}} \left(\frac{\varepsilon^{\kappa_{Rg2}}}{\varepsilon^{\kappa_{Rg2}} + 3}\right)^{2}$$
(6.2.26)

②接合部の塑性歪エネルギーUp

$$U_{p} = M_{p}^{r} \left(\frac{y_{r} \left(6 + \pi_{\xi} \kappa_{Rg2} \right)}{2\xi_{2} L_{0} \left(\xi \kappa_{Rg2} + 3 \right)} + \frac{y_{r}}{\left(1 - \xi_{1} - \xi_{2} \right) L_{0}} \right)$$

$$= \frac{M_{p}^{r} y_{r}}{2L_{0}} \frac{\xi \kappa_{Rg2} \left\{ \pi \left(1 - \xi_{1} - \xi_{2} \right) + 2\xi_{2} \right\} + 6\left(1 - \xi_{1} \right)}{\xi_{2} \left(1 - \xi_{1} - \xi_{2} \right) \left(\xi \kappa_{Rg2} + 3 \right)}$$
(6.2.27)

③接合部端部回転ばね弾性歪エネルギーUs

$$U_{s} = \frac{1}{2} K_{Rg2} \Delta \theta_{s2}^{2} = \frac{\xi \kappa_{Rg2} \gamma_{J} E I_{B} y_{r}^{2}}{2 (\xi_{2} L_{0})^{3}} \left(\frac{3}{\xi \kappa_{Rg2} + 3} \right)^{2}$$
(6.2.28)

④外部仕事 T

$$T = N \frac{\pi^2 \left(y_r^2 + 2y_r a_r \right)}{16\xi_2 L_0} \left[\frac{\xi \kappa_{Rg2} \left\{ \pi^2 \left(1 - \xi_1 - \xi_2 \right) + 8\xi_2 \right\} + 24 \left(1 - \xi_1 \right)}{\pi^2 \left(\xi \kappa_{Rg2} + 3 \right) \left(1 - \xi_1 - \xi_2 \right)} \right]$$
(6.2.29)

⑤崩壞時軸力

①~④より,式(6.2.10)に式(6.2.13),式(6.2.27),式(6.2.28),式(6.2.29)を代入することで下式を得る。

$$\begin{aligned} \frac{\partial \left(U_{\varepsilon} + U_{p} + U_{s} - T\right)}{\partial y_{r}} &= \frac{\gamma_{J} E I_{B} \pi^{4} y_{r}}{32 \left(\xi_{2} L_{0}\right)^{3}} \left(\frac{\varepsilon^{\kappa} \kappa_{g2}}{\varepsilon^{\kappa} \kappa_{g2} + 3}\right)^{2} + \frac{M_{p}^{r}}{2 L_{0}} \frac{\varepsilon^{\kappa} \kappa_{g2} \left\{\pi \left(1 - \xi_{1} - \xi_{2}\right) + 2\xi_{2}\right\} + 6\left(1 - \xi_{1}\right)}{\xi_{2} \left(1 - \xi_{1} - \xi_{2}\right) \left(\varepsilon^{\kappa} \kappa_{g2} + 3\right)} \\ &+ \frac{\varepsilon^{\kappa} \kappa_{g2} \gamma_{J} E I_{B} y_{r}}{\left(\xi_{2} L_{0}\right)^{3}} \left(\frac{3}{\varepsilon^{\kappa} \kappa_{g2} + 3}\right)^{2} \\ &- N \frac{\pi^{2} \left(y_{r} + a_{r}\right)}{8\xi_{2} L_{0}} \left[\frac{\varepsilon^{\kappa} \kappa_{g2} \left\{\pi^{2} \left(1 - \xi_{1} - \xi_{2}\right) + 8\xi_{2}\right\} + 24\left(1 - \xi_{1}\right)}{\pi^{2} \left(\varepsilon^{\kappa} \kappa_{g2} + 3\right)\left(1 - \xi_{1} - \xi_{2}\right)}\right] \\ &= 0 \end{aligned}$$

(6.2.30)

ここで、288/ $\pi^4 \approx 3$ 、8/ $\pi^2 \approx 1$ 、4/ $\pi \approx 1$ 、 $a_r \ll y_r$ とすると、下式により崩壊時軸力 - 面外変 位関係を導出できる。

$$N = N_{cr}^{r} + \frac{M_{p}^{r}}{y_{r} + a_{r}}$$

$$N_{cr}^{r} = \frac{\pi^{2} (1 - \xi_{1} - \xi_{2}) \gamma_{J} EI_{B}}{(2\xi_{2}L_{0})^{2}} \frac{\xi \kappa_{Rg2}}{(1 - \xi_{1}) (\xi \kappa_{Rg2} + 24/\pi^{2})}$$
(6.2.18 再揭)
(6.2.31)

(4) 接合部が塑性化した場合(逆対称崩壊モード)

図 6.2.9 ガセットプレート塑性化後崩壊メカニズム(逆対称モード)

接合部が塑性化した後は、内部エネルギーとして接合部の塑性歪エネルギー*Up*のみとなる。外部仕事Tとして、エネルギー変分の釣合いより下式が成り立つ。

$$\frac{\partial \left(U_{p}-T\right)}{\partial y_{r}}=0 \tag{6.2.32}$$

①接合部の塑性歪エネルギーUp

$$U_{p} = M_{p}^{g1} \Delta \theta_{g1} + M_{p}^{g2} \Delta \theta_{g2} + M_{p}^{r} \left(\Delta \theta_{g1} + \Delta \theta_{rr} \right) + M_{p}^{r} \left(\Delta \theta_{g2} + \Delta \theta_{rr} \right)$$

$$= M_{p}^{g1} \frac{y_{r1}}{\xi_{1}L_{0}} + M_{p}^{g2} \frac{y_{r2}}{\xi_{2}L_{0}} + M_{p}^{r} \left(\frac{y_{r1}}{\xi_{1}L_{0}} + \frac{y_{r2}}{\xi_{2}L_{0}} + \frac{2(y_{r1} + y_{r2})}{(1 - \xi_{1} - \xi_{2})L_{0}} \right)$$
(6.2.33)

②外部仕事 T

$$\mathbb{C} \subset \mathbb{C}, \ a_{r2} = a_r, \ a_{r1} = r_a a_r, \ y_{r2} = y_r, \ y_{r1} = r_a y_r \succeq \frac{1}{2} \mathbb{Z} \succeq \mathcal{E}$$

$$T = N \bigg[\frac{r_a^2 (y_r^2 + 2a_r y_r)}{2\xi_1 L_0} + \frac{y_r^2 + 2a_r y_r}{2\xi_2 L_0} + \frac{(r_a^2 + 1)(y_r^2 + 2a_r y_r)}{(1 - \xi_1 - \xi_2) L_0} \bigg]$$

$$(6.2.34)$$

③崩壞時軸力

①②より、式(6.2.32)に式(6.2.33)、式(6.2.34)を代入することで下式を得る。

$$\frac{\partial \left(U_{p}-T\right)}{\partial y_{r}} = \frac{M_{p}^{g1}r_{a}}{\xi_{1}L_{0}} + \frac{M_{p}^{g2}}{\xi_{2}L_{0}} + M_{p}^{r}\left(\frac{r_{a}}{\xi_{1}L_{0}} + \frac{1}{\xi_{2}L_{0}} + \frac{2(r_{a}+1)}{(1-\xi_{1}-\xi_{2})L_{0}}\right) \\ -N\left(y_{r}+a_{r}\right)\left[\frac{r_{a}^{2}}{\xi_{1}L_{0}} + \frac{1}{\xi_{2}L_{0}} + \frac{2(r_{a}^{2}+1)}{(1-\xi_{1}-\xi_{2})L_{0}}\right] \\ = 0$$

$$(6.2.35)$$

以上より、下式により崩壊時軸力 - 面外変位関係を導出できる。

$$N = \left(\frac{M_p^{g_1} r_a}{\xi_1} + \frac{M_p^{g_2}}{\xi_2}\right) \frac{1}{\left[\frac{r_a^2}{\xi_1} + \frac{1}{\xi_2} + \frac{2(r_a^2 + 1)}{(1 - \xi_1 - \xi_2)}\right]} \frac{1}{y_r + a_r} + \frac{M_p^r}{y_r + a_r}$$
(6.2.36)

(5) 接合部が塑性化した場合(片側崩壊モード)

図 6.2.10 ガセットプレート塑性化後崩壊メカニズム (片側モード)

同様に、エネルギー変分の釣合いより下式が成り立つ。

$$\frac{\partial \left(U_p - T\right)}{\partial y_r} = 0 \tag{6.2.32 再揭}$$

① 接合部の塑性歪エネルギーUp

$$U_{p} = M_{p}^{r} \left(\Delta \theta_{r2} + \Delta \theta_{rr} \right) = M_{p}^{g2} \frac{y_{r}}{\xi_{2} L_{0}} + M_{p}^{r} \left(\frac{y_{r}}{\xi_{2} L_{0}} + \frac{y_{r}}{\left(1 - \xi_{1} - \xi_{2}\right) L_{0}} \right)$$
(6.2.37)

②外部仕事 T

$$T = N \left[\frac{y_r^2 + 2a_r y_r}{2\xi_2 L_0} + \frac{y_r^2 + 2y_r a_r}{2(1 - \xi_1 - \xi_2) L_0} \right]$$
(6.2.38)

③崩壞時軸力

①②より、式(6.2.37)に式(6.2.38)、式(6.2.32)を代入することで下式を得る。

$$\frac{\partial \left(U_{p}-T\right)}{\partial y_{r}} = \frac{M_{p}^{g2}}{\xi_{2}L_{0}} + M_{p}^{r} \left(\frac{1}{\xi_{2}L_{0}} + \frac{1}{\left(1-\xi_{1}-\xi_{2}\right)L_{0}}\right) - N\left[\frac{y_{r}+a_{r}}{\xi_{2}L_{0}} + \frac{y_{r}+a_{r}}{\left(1-\xi_{1}-\xi_{2}\right)L_{0}}\right] = 0 \quad (6.2.39)$$

以上より、下式により崩壊時軸力 - 面外変位関係を導出できる。

$$N = \frac{M_p^{g^2}}{y_r + a_r} \frac{1 - \xi_1 - \xi_2}{1 - \xi_1} + \frac{M_p^r}{y_r + a_r}$$
(6.2.40)

6.2.3 各種崩壊モードにおける拘束材端部回転ピンの場合の接合部座屈荷重 N^r_{cr}

$$N = N_{cr}^{r} + \frac{M_{p}^{r}}{y_{r} + a_{r}}$$
(6.2.18 再揭)

ここで,接合部端部がピン接合である場合 ($_{\xi}\kappa_{Rg1,2}=0$)は下式となり,対称,逆対称, 片側崩壊モードのいずれも崩壊時軸力は同等となる。

$$N = \frac{M_p^r}{y_r + a_r} \tag{6.2.41}$$

式(6.2.18)の N'_{cr} については、対称、逆対称、片側崩壊モードで異なる値を示す。ここ に、 N'_{cr} :拘束材端部回転ピンの場合の接合部座屈荷重であり、対称崩壊モードは式 (6.2.20)、逆対称崩壊モードは式(6.2.25)、片側崩壊モードは式(6.2.31)より、 N'_{cr} は下式 となる。概ね逆対称または片側崩壊モードの場合の崩壊時軸力が低くなる。

$$N_{cr}^{r} = \begin{cases} \frac{\pi^{2} \gamma_{J} EI_{B}}{(2L_{0})^{2}} \frac{\frac{r_{a}^{2} \xi^{K}_{Rg1}}{\xi_{1}^{2} (\xi K_{Rg1} + 3)} + \frac{\xi^{K}_{Rg2}}{\xi_{2}^{3} (\xi K_{Rg2} + 24/\pi^{2})} & (\sharp \hbar \pi \pm - \aleph) \\ N_{cr}^{r} = \begin{cases} \frac{\pi^{2} \gamma_{J} EI_{B}}{(2L_{0})^{2}} \frac{C_{2}}{\xi_{1}^{2} (2L_{0})^{2}} & (\vdots \# \pi \pi \pm - \aleph) \\ \frac{\pi^{2} \gamma_{J} EI_{B}}{(2L_{0})^{2} (1 - \xi_{1} - \xi_{2}) \xi K_{Rg2}} & (\vdots \# \pi \pi \pm - \aleph) \\ \frac{\pi^{2} \gamma_{J} EI_{B}}{(2\xi_{2}L_{0})^{2} (1 - \xi_{1}) (\xi K_{Rg2} + 24/\pi^{2})} & (f \oplus \pi \pm - \aleph) \\ \frac{\pi^{2} \gamma_{J} EI_{B}}{(2\xi_{2}L_{0})^{2} (1 - \xi_{1}) (\xi K_{Rg2} + 24/\pi^{2})} & (f \oplus \pi \pm - \aleph) \\ \end{cases}$$

$$C_{2} = \frac{r_{a}^{2} \xi K_{Rg1}}{\xi_{1}^{3} (\xi K_{Rg1} + 3)} + \frac{\xi K_{Rg2}}{\xi_{2}^{3} (\xi K_{Rg2} + 3)} \\ C_{1} = \frac{r_{a}^{2} (\xi K_{Rg1} + 24/\pi^{2}) (1 + \xi_{1} - \xi_{2})}{\xi_{1} (1 - \xi_{1} - \xi_{2}) (\xi K_{Rg1} + 3)} + \frac{(\xi K_{Rg2} + 24/\pi^{2}) (1 - \xi_{1} + \xi_{2})}{\pi^{2} \xi_{2} (1 - \xi_{1} - \xi_{2}) (\xi K_{Rg2} + 3)} \end{cases}$$

$$(6.2.42)$$

6.2.4 強制面外変形を受ける場合の崩壊時軸力評価

6.2.3 節より, 接合部が弾性時は各力学モデルの下, 崩壊時軸力は下式となる。

$$N = N_{cr}^{r} + \frac{M_{p}^{r}}{y_{r} + a_{r}}$$
(6.2.18 再掲)

- また、接合部が塑性化した場合、崩壊時軸力は下記の通りとなる。
- ・逆対称崩壊モード

$$N = \left(\frac{M_p^{g_1} r_a}{\xi_1} + \frac{M_p^{g_2}}{\xi_2}\right) \frac{1}{\left[\frac{r_a^2}{\xi_1} + \frac{1}{\xi_2} + \frac{2(r_a^2 + 1)}{(1 - \xi_1 - \xi_2)}\right]} \frac{1}{y_r + a_r} + \frac{M_p^r}{y_r + a_r}$$
(6.2.36 再揭)

・片側崩壊モード

$$N = \frac{M_p^{g^2}}{y_r + a_r} \frac{1 - \xi_1 - \xi_2}{1 - \xi_1} + \frac{M_p^r}{y_r + a_r}$$
(6.2.40 再掲)

一方,座屈拘束ブレースが架構の2方向応答による構面外層間変位により強制変形を 受ける場合,拘束材端部に初期曲げモーメント*M*^o₀が加わる。そのため,拘束材端部曲 げ耐力は,この初期曲げモーメント*M*^o₀分低下すると考えられる。これを考慮し,*r*_a=1 とすると、崩壊時軸力は下記の通りとなる。

· 接合部弹性時

$$N = N_{cr}^{r} + \frac{M_{p}^{r} - M_{0}^{r}}{y_{r} + a_{r}}$$
(6.2.2 再掲)

・接合部塑性化時(逆対称崩壊モード)

$$N = \left(\frac{M_p^{g_1} - M_0^r}{\xi_1} + \frac{M_p^{g_2} - M_0^r}{\xi_2}\right) \frac{1}{\left[\frac{1}{\xi_1} + \frac{1}{\xi_2} + \frac{4}{(1 - \xi_1 - \xi_2)}\right]} \frac{1}{y_r + a_r} + \frac{M_p^r - M_0^r}{y_r + a_r}$$
(6.2.3 再揭)

・接合部塑性化時(片側崩壊モード)

$$N = \frac{M_p^{g^2} - M_0^r}{y_r + a_r} \frac{1 - \xi_1 - \xi_2}{1 - \xi_1} + \frac{M_p^r - M_0^r}{y_r + a_r}$$
(6.2.4 再揭)

式(6.2.2)より, 接合部弾性時は第3章と同じ式となる。

6.2.5 接合条件が非対称な場合の座屈拘束ブレースの安定限界軸力

(1) 接合部が弾性の場合の安定限界軸力

6.2.1 項の図 6.2.2 に示す安定限界軸力を算定する。この時,式(6.2.1)および式(6.2.2) について, Nおよび yrについての2元連立方程式を解くことで,式(6.2.43)を得る。

$$N = \frac{y_r}{y_r + a_r} N_{cr}^B$$
(6.2.1 再揭)
$$N = N_{cr}^r + \frac{M_p^r - M_0^r}{y_r + a_r}$$
(6.2.2 再揭)

$$\therefore y_r = \frac{N_{cr}^r a_r + \left(M_p^r - M_0^r\right)}{N_{cr}^B - N_{cr}^r}$$
(6.2.43)

式(6.2.43)を式(6.2.1)に代入することで、下式を得る。

$$N = \frac{\frac{N_{cr}^{r}a_{r} + \left(M_{p}^{r} - M_{0}^{r}\right)}{N_{cr}^{B} - N_{cr}^{r}}}{\frac{N_{cr}^{r}a_{r} + \left(M_{p}^{r} - M_{0}^{r}\right)}{N_{cr}^{P} - N_{cr}^{r}}} + a_{r}} N_{cr}^{B} = \frac{N_{cr}^{r}a_{r} + \left(M_{p}^{r} - M_{0}^{r}\right)}{N_{cr}^{r}a_{r} + \left(M_{p}^{r} - M_{0}^{r}\right) + a_{r}\left(N_{cr}^{B} - N_{cr}^{r}\right)} N_{cr}^{B}}$$

$$= \frac{\left(M_{p}^{r} - M_{0}^{r}\right)/a_{r} + N_{cr}^{r}}{\left(M_{p}^{r} - M_{0}^{r}\right)/\left(a_{r}N_{cr}^{B}\right) + 1}$$
(6.2.5 再掲)

この時得られる軸力 N が N_{liml} であり, 第3章の N_{liml} と同じ式となる。ここで, N'_{cr} は

6.2.3 項で述べたように,拘束材端部回転ピンの場合の接合部座屈荷重であり,各崩壊 メカニズム時の等価細長比 λ,を求め,鋼構造設計規準に示される許容圧縮応力度式に適 用し,弾塑性範囲を考慮した接合部座屈荷重 N'_aを算出する。

(i)対称崩壊モード

まず,弾塑性範囲を考慮した等価細長比 λ_r を算出する。 N_{cr}^r を座屈応力度 σ_{cr}^r として表すと,下式となる。

$$\sigma_{cr}^{r} = \frac{\pi^{2} i_{c}^{2} E}{\left(2L_{0}\right)^{2}} \frac{\frac{\xi^{\kappa}_{Rg1}}{\xi_{1}^{3} \left(\xi^{\kappa}_{Rg1}+3\right)} + \frac{\xi^{\kappa}_{Rg2}}{\xi_{2}^{3} \left(\xi^{\kappa}_{Rg2}+3\right)}}{\frac{1}{\xi_{1}} \frac{\xi^{\kappa}_{Rg1}+24/\pi^{2}}{\xi^{\kappa}_{Rg1}+3} + \frac{1}{\xi_{2}} \frac{\xi^{\kappa}_{Rg2}+24/\pi^{2}}{\xi^{\kappa}_{Rg2}+3}}$$
(6.2.44)

$$i_c = \sqrt{\frac{\gamma_J I_B}{A_e}} \tag{6.2.45}$$

ここに、 $\gamma_J I_B$:接合部の断面二次モーメント、 A_e :接合部断面積である。また、等価 細長比 λ_r と座屈応力度 σ_{cr}^r は下式の関係にある。

$$\sigma_{cr}^{r} = \frac{\pi^{2}E}{\lambda_{r}^{2}}$$
(6.2.46)

以上より等価細長比 λ, は下式となる。

$$\lambda_{r} = \frac{2L_{0}}{i_{c}} \sqrt{\frac{\frac{r_{a}^{2} \xi \kappa_{Rg1} + 24/\pi^{2}}{\xi_{1}} + \frac{1}{\xi_{2}} \frac{\xi \kappa_{Rg2} + 24/\pi^{2}}{\xi \kappa_{Rg2} + 3}}{\frac{r_{a}^{2} \xi \kappa_{Rg1}}{\xi_{1}^{3} (\xi \kappa_{Rg1} + 3)} + \frac{\xi \kappa_{Rg2}}{\xi_{2}^{3} (\xi \kappa_{Rg2} + 3)}}$$
(6.2.47)

この等価細長比 λ_r を用いて鋼構造設計規準で算出した許容圧縮応力度 f_c と接合部断面 積 A_e から,弾塑性範囲を考慮した座屈軸力 N_{cr}^r を下式で求める。

$$N_{cr}^{\ \ r} = f_c A_e \tag{6.2.48}$$

(ii)逆対称崩壊モード

弾塑性範囲を考慮した座屈軸力 N_{cr}^r は、対称崩壊モードの場合と同様であるため、等価細長比の算出方法のみ示す。ここで、 N_{cr}^r を座屈応力度 σ_{cr}^r として表すと下式となる。

$$\sigma_{cr}^{r} = \frac{\pi^{2} i_{c}^{2} E}{\left(2L_{0}\right)^{2}} \frac{C_{2}}{C_{1}}$$
(6.2.49)

$$C_{2} = \frac{r_{a\ \xi}^{2}\kappa_{Rg1}}{\xi_{1}^{3}\left(\xi\kappa_{Rg1}+3\right)} + \frac{\xi\kappa_{Rg2}}{\xi_{2}^{3}\left(\xi\kappa_{Rg2}+3\right)}$$

$$C_{1} = \frac{r_{a}^{2}\left(\xi\kappa_{Rg1}+24/\pi^{2}\right)\left(1+\xi_{1}-\xi_{2}\right)}{\xi_{1}\left(1-\xi_{1}-\xi_{2}\right)\left(\xi\kappa_{Rg1}+3\right)} + \frac{\left(\xi\kappa_{Rg2}+24/\pi^{2}\right)\left(1-\xi_{1}+\xi_{2}\right)}{\pi^{2}\xi_{2}\left(1-\xi_{1}-\xi_{2}\right)\left(\xi\kappa_{Rg2}+3\right)}$$
(6.2.25 再掲)

ここで、 $\gamma_J I_B$:接合部の断面二次モーメント、 A_e :接合部断面積である。以上より等価 細長比 λ_i は下式となる。

$$\lambda_r = \frac{2L_0}{i_c} \sqrt{\frac{C_1}{C_2}}$$
(6.2.50)

(iii) 片側崩壊モード

逆対称崩壊モードと同様に、弾塑性範囲を考慮した座屈軸力 N'_{cr} は、対称崩壊モードの場合と同様であるため、等価細長比の算出方法のみ示す。ここで、 N'_{cr} を座屈応力度 σ'_{cr} として表すと、下式となる。

$$\sigma_{cr}^{r} = \frac{\pi^{2} \left(1 - \xi_{1} - \xi_{2}\right) i_{c}^{2} E}{\left(2\xi_{2} L_{0}\right)^{2}} \frac{\xi \kappa_{Rg2}}{\left(1 - \xi_{1}\right) \left(\xi \kappa_{Rg2} + 24/\pi^{2}\right)}$$
(6.2.51)

以上より等価細長比 Ar は下式となる。

$$\lambda_{r} = \frac{2\xi_{2}L_{0}}{i_{c}}\sqrt{\frac{\left(1-\xi_{1}\right)\left(\xi \kappa_{Rg2}+24/\pi^{2}\right)}{\left(1-\xi_{1}-\xi_{2}\right)\xi \kappa_{Rg2}}}$$
(6.2.52)

(2) 接合部が塑性化した場合の安定限界軸力

(i)逆対称崩壊モード

弾性時と同様,式(6.2.1)および式(6.2.36)について,Nおよびyrについての2元連立方 程式を解くことで,式(6.2.53)を得る。

$$N = \frac{y_r}{y_r + a_r} N_{cr}^{\mathcal{B}}$$
(6.2.1 再揭)
$$N = \left(\frac{M_p^{g_1} - M_0^r}{\xi_1} + \frac{M_p^{g_2} - M_0^r}{\xi_2}\right) \frac{1}{\left[\frac{1}{\xi_1} + \frac{1}{\xi_2} + \frac{4}{(1 - \xi_1 - \xi_2)}\right]} \frac{1}{y_r + a_r} + \frac{M_p^r - M_0^r}{y_r + a_r}$$
(6.2.3 再揭)

$$\therefore y_r = \frac{C_3 + M_p^r - M_0^r}{N_{cr}^B}$$
(6.2.53)

$$C_{3} = \left(\frac{M_{p}^{g^{1}} - M_{0}^{r}}{\xi_{1}} + \frac{M_{p}^{g^{2}} - M_{0}^{r}}{\xi_{2}}\right) \frac{1}{\left[\frac{1}{\xi_{1}} + \frac{1}{\xi_{2}} + \frac{4}{(1 - \xi_{1} - \xi_{2})}\right]}$$
(6.2.7 再掲)

式(6.2.53)を式(6.2.1)に代入することで、下式を得る。これが逆対称崩壊モード時の安 定限界軸力 N_{lim2}である。

$$N_{\lim 2} = \frac{\left(M_p^r - M_0^r + C_3\right) / a_r}{\left(M_p^r - M_0^r + C_3\right) / \left(a_r N_{cr}^B\right) + 1}$$
(6.2.6 再揭)

(ii)片側崩壊モード

逆対称モードと同様に,式(6.2.1)および式(6.2.40)について N および yr についての 2 元連立方程式を解くことで,式(6.2.54)を得る。

$$N = \frac{y_r}{y_r + a_r} N_{cr}^B$$
(6.2.1 再揭)

$$N = \frac{M_p^{g^2} - M_0^r}{y_r + a_r} \frac{1 - \xi_1 - \xi_2}{1 - \xi_1} + \frac{M_p^r - M_0^r}{y_r + a_r}$$
(6.2.4 再掲)

$$\therefore y_r = \frac{C_4 + M_p^r - M_0^r}{N_{cr}^B}$$
(6.2.54)

$$C_4 = \frac{1 - \xi_1 - \xi_2}{1 - \xi_1} \left(M_p^{g^2} - M_0^r \right)$$
(6.2.9 再揭)

式(6.2.54)を式(6.2.1)に代入することで、下式を得る。これが片側崩壊モード時の安定 限界軸力 *N*_{lim2} である。

$$N_{\lim 2} = \frac{\left(M_p^r - M_0^r + C_4\right) / a_r}{\left(M_p^r - M_0^r + C_4\right) / \left(a_r N_{cr}^B\right) + 1}$$
(6.2.8 再揭)

逆対称崩壊モードおよび片側崩壊モードは何れも $\xi_1 = \xi_2$, $M_p^{g1} = M_p^{g2}$ のとき,第3章 に示す接合条件が対称の場合の式と一致する。

6.3 大梁回転剛性を考慮した機構安定評価法の提案

前節で K 型配置された座屈拘束ブレースの機構安定性評価式を非対称ばねモデルを 用いて提案した。また、その妥当性は別途実験により確認されている^{6.1)-6.3)}。しかし、 前節による評価式は図 6.3.1 右のモデルのように、大梁中心から接合部回転が始まるこ とを前提とするため、大梁回転剛性が高い場合には、耐力を過小評価することになる。

本節では、大梁の回転剛性が安定限界軸力に与える影響について分析することで、大梁の回転剛性をパラメータとした接合部モデルを設定し、接合部条件が非対称な場合についての機構安定性の評価方法の提案を行う。更に、回転ばねとはり要素を用いた座屈拘束ブレース数値解析より、K型配置された座屈拘束ブレースの機構安定性を検証する。

図 6.3.1 接合条件非対称の場合の力学モデル^{6.1)}

6.3.1 座屈拘束ブレース機構安定性評価法閾値

ブレースが取り付く大梁の回転剛性は、図 6.3.2(a)に示すように、大梁自身の捩り剛 性および大梁に取り付く直交小梁の曲げ剛性により決定される。K型配置の機構安定性 を評価する際,上部大梁の回転剛性*K_{Rb}*が接合部端部の回転剛性に対し高くなるにつれ, 図 6.3.2 (b)~(d)に示す 3 つのモデルを使い分けることを考える。

・モデル1;低剛性梁 $(K_{Rb}/K_{Rg2} < a)$

6.2 節の手法を適用し、 $K_{Rg2} = (1/K_{Rg2'} + 1/K_{Rb})^{-1}$ とする。上部接合部長さも大梁中心より $\xi_2 L_0$ を取る。

・モデル2;中剛性梁 $(a \leq K_{Rb} / K_{Rg2} < b)$

6.2節の手法を適用し、 $K_{Rg2} = (1/K_{Rg2'} + 1/K_{Rb})^{-1}$ とするが、GPL による回転が主体と考え上部接合部長は大梁下端より $\xi_g L_0$ をとる。

・モデル3;高剛性梁 $(b \le K_{Rb} / K_{Rg2})$

第3章の対称条件式を適用する。安全側で評価するため,接合部回転剛性は上下部 のうち小さい値,接合部長は上下部のうち長い方を採用する。

6.3.1.1 各モデルに元づく接合部座屈荷重

各モデルの閾値について,図 6.3.2 の接合部モデルにおいて各部材を剛体,拘束材端 部をピン接合とし,接合部座屈荷重 N^r_{cr} と分析する。大梁とガセットプレート接合部の 回転剛性の比率に応じ,図 6.3.2 (a)の上部接合部 2 ばねモデルと図 6.3.2(b)~(d)の縮約 モデルの座屈荷重評価値 N^r_{cr}を比較する。図 6.3.2 (b)はモデル 1,図 6.3.2 (c)はモデル 2, 図 6.3.2 (d)はモデル 3 に相当し,各モデルより N^r_{cr}は弾性座屈荷重として下記のように 算出される。

(1) モデル1

図 6.3.2 (b)より,エネルギー変分の釣合いとして下式が成り立つ。

$$\frac{\partial (U_s - T)}{\partial y_r} = 0$$
(6.3.1)

軸力Nの仕事Tは軸力Nによる接合部の鉛直変位分 Δu_g を用いて下式のとおりである。 $T = N\Delta u_g = N \frac{y_r^2}{2\xi_r L_0}$ (6.3.2)

図 6.3.2 (b)より接合部の回転ばね弾性エネルギーU。は下式のとおりである。

$$U_{s} = \frac{1}{2} K_{Rg2} \left(\frac{y_{r}}{\xi_{2} L_{0}} \right)^{2}$$
(6.3.3)

エネルギー変分の釣合いより下式が成立するとき, N^r_{cr}は式(6.3.5)より導かれる。

$$\frac{\partial (U_s - T)}{\partial y_r} = \frac{K_{Rg2}y_r}{(\xi_2 L_0)^2} - \frac{Ny_r}{\xi_2 L_0} = 0$$
(6.3.4)

$$N_{cr}^{r} = \frac{K_{Rg2}}{\xi_{2}L_{0}} = \frac{1}{\xi_{2}L_{0}} \frac{1}{\frac{1}{K_{Rg2}} + \frac{1}{K_{Rb}}}$$
(6.3.5)

(2) モデル 2

図 6.3.2 (c)よりモデル 1 と同様に算出すると、 N_{cr}^r は下式より導かれる。

$$N_{cr}^{r} = \frac{K_{Rg2}'}{\xi_{g}L_{0}} = \frac{1}{\xi_{g}L_{0}} \frac{1}{\frac{1}{K_{Rg2}'} + \frac{1}{K_{Rb}}}$$
(6.3.6)

(3) モデル3

図 6.3.2 (d)よりモデル1と同様に算出すると、 N^r_{cr}は下式より導かれる。

$$N_{cr}^{\ r} = \frac{K_{Rg2}}{\xi_b L_0} \tag{6.3.7}$$

(4)2 ばねモデル

図 6.3.2 (a)より軸力 Nの仕事 Tは軸力 Nによる接合部の鉛直変位分 Δu_g より、下式の

とおりである。

$$T = N\Delta u_g = N\left(\frac{y_{r1}^2}{2\xi_b L_0} + \frac{y_{r2}^2}{2\xi_g L_0}\right)$$
(6.3.8)

図 6.3.2 (a)より接合部の回転ばね弾性エネルギーUsは下式のとおりである。

$$U_{s} = \frac{1}{2} K_{Rg2} \left(\frac{y_{r2}}{\xi_{g} L_{0}} - \frac{y_{r1}}{\xi_{b} L_{0}} \right)^{2} + \frac{1}{2} K_{Rb} \left(\frac{y_{r1}}{\xi_{b} L_{0}} \right)^{2}$$
(6.3.9)

エネルギー変分の釣合いより下2式が成立する。

$$\frac{\partial (U_s - T)}{\partial y_{r_1}} = \frac{\partial}{\partial y_{r_1}} \left(\frac{1}{2} K_{Rg2} \left(\frac{y_{r_2}}{\xi_g L_0} - \frac{y_{r_1}}{\xi_b L_0} \right)^2 + \frac{1}{2} K_{Rb} \left(\frac{y_{r_1}}{\xi_b L_0} \right)^2 - N \left(\frac{y_{r_1}^2}{2\xi_b L_0} + \frac{y_{r_2}^2}{2\xi_g L_0} \right) \right)$$

$$= -\frac{K_{Rg2}}{\xi_b L_0} \left(\frac{y_{r_2}}{\xi_g L_0} - \frac{y_{r_1}}{\xi_b L_0} \right) + \frac{K_{Rb} y_{r_1}}{(\xi_b L_0)^2} - N \frac{y_{r_1}}{\xi_b L_0} = 0$$
(6.3.10)

$$\frac{\partial (U_s - T)}{\partial y_{r2}} = \frac{\partial}{\partial y_{r2}} \left(\frac{1}{2} K_{Rg2} \left(\frac{y_{r2}}{\xi_g L_0} - \frac{y_{r1}}{\xi_b L_0} \right)^2 + \frac{1}{2} K_{Rb} \left(\frac{y_{r1}}{\xi_b L_0} \right)^2 - N \left(\frac{y_{r1}^2}{2\xi_b L_0} + \frac{y_{r2}^2}{2\xi_g L_0} \right) \right)$$

$$= \frac{K_{Rg2}}{\xi_g L_0} \left(\frac{y_{r2}}{\xi_g L_0} - \frac{y_{r1}}{\xi_b L_0} \right) - N \frac{y_{r2}}{\xi_g L_0} = 0$$
(6.3.11)

式(6.3.10)より式(6.3.12)、式(6.3.11)より式(6.3.13)を導ける。

$$Ny_{r1} = -K_{Rg2} \cdot \left(\frac{y_{r2}}{\xi_g L_0} - \frac{y_{r1}}{\xi_b L_0}\right) + \frac{K_{Rb} y_{r1}}{\xi_b L_0}$$
(6.3.12)

$$Ny_{r2} = K_{Rg2} \left(\frac{y_{r2}}{\xi_g L_0} - \frac{y_{r1}}{\xi_b L_0} \right)$$
(6.3.13)

上2式を連立することで、2ばねモデルの接合部座屈荷重N^r_{cr}を算出できる。

$$N = K_{Rg2} \left(\frac{\xi_g L_0 \left(K_{Rb} / K_{Rg2} + 1 \right) + \xi_b L_0 - \sqrt{\left(\xi_g L_0 \left(K_{Rb} / K_{Rg2} + 1 \right) - \xi_b L_0 \right)^2 + 4\xi_g L_0 \xi_b L_0}}{2\xi_g L_0 \xi_b L_0} \right)$$
(6.3.14)

6.3.1.2 接合部座屈荷重による閾値の評価

前項にて導出した各モデルの接合部座屈荷重をまとめると下記の通りとなる。

$$N_{cr}^{\ r} = \begin{cases} \frac{1}{1/K_{Rg2}' + 1/K_{Rb}} \cdot \frac{1}{\xi_2 L_0} & \left(K_{Rb}/K_{Rg2}' \le a : \mp \mathcal{P} \mathcal{N} 1 \text{ 低剛性梁}\right) \\ \frac{1}{1/K_{Rg2}' + 1/K_{Rb}} \cdot \frac{1}{\xi_g L_0} & \left(a < K_{Rb}/K_{Rg2}' \le b : \mathcal{P} \mathcal{P} \mathcal{N} 2 \text{ 中剛性梁}\right) \quad (6.3.15) \\ \frac{1}{K_{Rg2}'} \cdot \frac{1}{\xi_g L_0} & \left(b < K_{Rb}/K_{Rg2}' : \mathcal{P} \mathcal{N} 3 \text{ 高剛性梁}\right) \end{cases}$$

2 ばねモデルの場合の N' は下記のように算出される。

$$N = K_{Rg2} \cdot \left(\frac{\xi_g L_0 \left(K_{Rb} / K_{Rg2} + 1 \right) + \xi_b L_0 - \sqrt{\left(\xi_g L_0 \left(K_{Rb} / K_{Rg2} + 1 \right) - \xi_b L_0 \right)^2 + 4\xi_g L_0 \xi_b L_0}}{2\xi_g L_0 \xi_b L_0} \right) (6.3.14 \ \text{Fz}$$

図 6.3.3 に上部接合部長 $\zeta_2 L_0$ に対する上部 GPL 部長 $\zeta_g L_0$ の比率 (ξ_2 / ξ_g) が 1.0, 1.5, 1.8, 2.0, 2.5, 3.0 の場合についてモデル 1~3 にて算出される接合部座屈荷重 N_{cr}^r およ び 2 ばねモデルを用いて算出される N_{cr}^r を比較する。ここで、各部材の諸元値を表 6.3.1 に示す。同図に見るように、2 ばねモデルの N_{cr}^r は、 K_{Rb} / K_{Rg2} ' = a にてモデル 2 に近づ き、 K_{Rb} / K_{Rg2} ' = b でモデル 3 の 9 割程度に達する。これより、前項の閾値を下式のよう に設定する。

$$a = \xi_2 / \xi_g - 1 \tag{6.3.16}$$

b = 10

(6.3.17)

図 6.3.3 より, 上2式は $1 \le \xi_2 / \xi_g \le 2$ 程度内で概ね閾値設定の前提と対応しているが, 2.5 $\le \xi_2 / \xi_g$ では徐々に 2 ばねモデルが早い段階でモデル 2 へと漸近する様子が確認で きる。

ξ_2/ξ_1	上部接合部 長 $\xi_2 L_0$ (mm)	上部GPL 長 <i>ξ_gL</i> 0 (mm)	上部大梁部 長 $\xi_b L_0$ (mm)	上部GPL 回転剛性 K _{Rg2} ' (kN/m)	а	b
1.0	380	380	0	351	0.0	10
1.5	570	380	190	351	0.5	11
1.8	684	380	304	351	0.8	12
2.0	760	380	380	351	1.0	13
2.5	950	380	570	351	1.5	14
3.0	1140	380	760	351	2.0	15

表 6.3.1 各モデル諸元値

図 6.3.3 接合部回転剛性比率 - 接合部座屈荷重関係 6.1)

6.3.2 数値解析による評価モデルの検証

前項で提案した評価法による N_{im1} を図 6.3.4 に示す数値解析モデルを用いて検証する。 図 6.3.4 に示すように、5 つのばねを有する 13 部材のモデルとする。各ばねは、大梁中 央、上部ガセットプレート、上部拘束材端部、下部拘束材端部、下部ガセットプレート 位置にあるものとする。前項で提案した設計法と比較するため、大梁中央から上部ガセ ットプレートに位置するばね間の部材を剛体として設定する。また、各ばね間の部材に ついては剛接とする。図 6.3.4 のモデルが図 6.3.5 のように対称形状になるよう初期不整 を設定し、弾性軸カー面外変位関係を算出する。式(6.2.2)より崩壊時軸カー面外変位関 係を導き、弾性軸カー面外変位関係との交点を図 6.3.4 の数値解析モデルの N_{im} として 評価する。参考文献 6.3)の L-RN'2 の場合を例として、 $N_{im} > K_{Rb} / K_{Rg2}$ 'との関係を逆対 称モードの崩壊メカニズムにて式(6.2.5)より得られた結果と合わせて示す。図 6.3.6 よ り、解析結果は前項で仮定した閾値によりモデル 1→2→3 に近接することが確認できる。

最後に、本節にて提案した評価モデルを用いて、安定限界軸力を評価し、第3章およ び参考文献 6.3)の実験結果と比較する。図 6.3.7 より、評価モデルを用いることで、6.2 節で提案した手法に比べ精度が向上することがわかる。

$$N = \frac{y_r}{y_r + a_r} N_{cr}^B$$
(6.2.1 再揭)
$$N = N_{cr}^r + \frac{M_p^r - M_0^r}{y_r + a_r}$$
(6.2.2 再揭)

$$N_{lim1} = \frac{\left(M_p^r - M_0^r\right) / a_r + N_{cr}^r}{\left(M_p^r - M_0^r\right) / \left(a_r N_{cr}^B\right) + 1}$$
(6.2.5 再掲)

図 6.3.5 初期不整の設定^{6.1)}

6.4 梁側接合部の回転剛性の評価

前節において, BRB の梁側接合部の回転剛性を高めることは BRB の機構安定条件に 大きく寄与することを示した。既往の研究^{6.4)}では, RBSM(剛体ばねモデル)によって接 合部の回転剛性の簡易的な算出法が提案されているが, 梁周りの回転剛性は考慮されて おらず, 梁側接合部の回転剛性が接合部のディテールや接合部に取付く直交梁によって どのように変化するかについては明らかになっていない。

そこで本節では、K型配置された BRB の梁側接合部を対象に、実設計を想定した K型配置された BRB と周辺フレームを仮定し、FEM 解析により大梁周りの回転剛性を考慮した接合部の回転剛性について検討を行う。

6.4.1 解析モデル

図 6.4.1 に K 型配置接合部の検討範囲を示す。ブレースが取りつく梁の両側節点から, 柱を階高の 1/2,梁をスパンの 1/2 切り出した部分と BRB 接合部を 4 節点シェル要素 でモデル化する。尚,コア周辺を想定し小梁は片側のみに取付く場合を想定する。また, 引張側の BRB やスラブの寄与は無視する。各柱・梁端部は,端部芯で xyz 変位固定,回 転自由の支持条件とし,平面保持させるために剛体棒要素で端部節点と支持節点を結合 する。BRB は材質 LYP225,降伏軸力を 2000kN と仮定する。

図 6.4.2 に接合部のディテールを示す。センタースチフナーはすべてのモデルである ものとし、センタースチフナーのみのモデル(TYPE1)と、サイドウェブスチフナーがあ るモデル(TYPE2)、フィンスチフナーが大梁下フランジと接合されるモデル(TYPE3)の3 ケースを検討する。

図 6.4.1 K型配置 BRB 接合部の検討範囲

図 6.4.2 梁側接合部のディテール

図 6.4.3 にブレース面外方向のディテール (図 6.4.1 の A 断面)を示す。面外方向に梁 が取りつかない場合と長さ 7,500mm の梁が取りつく場合を想定し,ブレース構面との 接合部を (a)構面外梁なし,(b)ピン接合(構面外小梁せいが大梁せいの 1/3 程度),(c)方 杖接合(構面外小梁せいが大梁せいの 1/3 程度),(d)剛接合 1 (構面外小梁せいが大梁せい の 1/2 程度),(e)剛接合 2 (構面外小梁せいが大梁せいの 2/3 程度)の 5 種類を検討する。

図 6.4.3 面外梁の取付き詳細

図 6.4.4 に示すように x 方向のスパンは 6.4m, y 方向を 15m と仮定し,スパンの半分 でピン支持とする。BRB 接合部先端に面外荷重 P=100kN を載荷し,載荷点の y 方向変 位を算出する。また,大梁周りの部材の変形の影響を分析するために,図 6.4.5 に示す ように GPL 以外の要素のヤング率を 100 倍した場合についても検討を行う。

図 6.4.5 に示すように大梁周りの回転剛性を考慮した面外変位を y_r,大梁周りの剛性 を極大としガセットプレートの剛性のみを考慮した面外変位を y_{r2} とする。また、大梁 周りの回転に伴う変形 y_{Rb} は次式にて算出するものとする。

$$y_{Rb} = y_r - y_{r2}$$

(6.4.1)

図 6.4.4 FEM 解析モデル図

図 6.4.5 大梁周りの境界条件と面外変位記号

6.4.2 解析結果

6.4.2.1 載荷点の面外変位

FEM 解析によって算出した載荷点の面外変位を図 6.4.6 に示す。

GPL の曲げ変形は直行方向の梁の影響を受けないため、すべてのモデルで等しい値と なっている。一方で、周辺フレームによる変形量は、面外梁の接合が同じであっても TYPE1, TYPE2 とで異なる。これはウェブスチフナーの剛性が影響していると考えら れる。

6.4.2.2 回転バネ定数の算出

図 6.4.7 に大梁の回転に伴う変位を含む接合部の力学モデルを示す。大梁の回転剛性 と上部 GPL の回転剛性は次によって算出する。

$$K_{Rg2}'=1/(1/_{H}K_{Rg2}'-\xi_{g}L_{0}^{3}/3\gamma EI)\times\xi_{g}L_{0}^{2}$$
(6.4.2)

$$K_{Rb} = {}_{H}K_{Rb} \times \xi_{2}L_{0}^{2} \tag{6.4.3}$$

ここで、 $_HK_{Rg2'} = P/y_{r2}$, $_HK_{Rb} = P/y_{Rb}$ であり、 y_{r2} , y_{Rb} は FEM 解析によって算出した載荷点の面外変位である。 $_HK_{Rg2'}$, $_HK_{Rb}$ は回転剛性と区別するため、水平剛性と呼ぶことにする。図 6.4.8 に式(6.4.2), (6.4.3)より算出した $K_{Rb}/K_{Rg2'}$ を示す。検討モデルの ξ_2/ξ_g は 1180/513=2.3 となる。前節による中剛性梁の条件

$$K_{Rb}/K_{Rg2}^{2} < \xi_{2}/\xi_{g} - 1 = 1.3 \tag{6.4.4}$$

を図 6.4.8 の赤点線で示す。TYPE1 では方杖タイプと剛接 1,2 の場合, TYPE2 では剛接 2 の場合は中剛性梁,その他はすべて低剛性梁に分類される。前節により,梁の接合部 の回転剛性 K_{Rg2} は式(6.4.5)にて,BRB の接合部十字断面の曲げ剛性 $\gamma EI / \xi_g L_0$ により無 次元化した回転バネ定数比 $_{\xi}\kappa_{Rg}$ は式(6.4.6)にて算出できる。

$$K_{Rg2} = (1/K_{Rg2}' + 1/K_{Rb})^{-1}$$
(6.4.5)

$$\xi \kappa Rg2 = K_{Rg2}'/(\gamma EI/\xi_g L_0) \tag{6.4.6}$$

図 6.4.9 に各モデルの_ξ κ_{Rg} の値と,第5章で定義した,低剛性タイプ_ξ κ_{Rg} =0.15,高剛 性タイプ_ξ κ_{Rg} =0.60 を青点線で合わせて示す。図 6.4.9 から TYPE1,2 では低剛性タイプ 程度であり, TYPE3 のようにフィンスチフナーを大梁下フランジに接合させるディテ ールは接合部の回転剛性を高めることに有効であるが,前述のように大梁は低剛性梁と 見なす必要がある。

K型配置の梁接合部では大梁周りの剛性を高めることも含めて検討しないと接合部 を高剛性化は困難であり、かつ GPL を高剛性化すると接合部長さは大梁中心を起点す る必要性が出てくることがわかる。

図 6.4.8 大梁の回転剛性と上部 GPL 回転ばねの比

6.5 梁側接合部回転剛性算出のための簡易モデル

前節で K 型配置 BRB の梁側接合部を対象に, FEM 解析によりその回転剛性について 検討を行ったが,実設計において BRB 接合部の回転剛性を評価するために,その都度 FEM 解析を実施することは実務設計上現実的ではないため,簡易的な算出法を確立す る必要がある。

既往の研究^{6.4}において,ガセットプレートの回転剛性を RSBM によって算出する方 法が示されているが,梁側接合部の回転剛性評価に影響の大きい,大梁まわりの回転剛 性が考慮されていない。

そこで、本節では K 型配置 BRB の梁側接合部を対象に、接合部回転剛性を簡易的に 算出する手法を提案し、前節の FEM 解析と比較することでその妥当性を検証する。

6.5.1 簡易的な接合部回転剛性の算出方法

6.5.1.1 大梁周りの水平剛性_{HKRb}

大梁周りの回転剛性算出用のモデル化を図 6.5.1 に示す。大梁捩れのバネ_HK_Tと直交 梁のバネ_HK_Bは並列とし、それに対して大梁のウェブスチフナーの曲げのバネ_HK_Gは直 列に接合されていると仮定し、大梁周りの水平剛性_HK_{Rb}は次式により算出する。

 ${}_{H}K_{Rb} = \{ 1 / ({}_{H}K_{T} + {}_{H}K_{B}) + 1 / {}_{H}K_{G} \}^{-1} = P / y_{Rb}$ (6.5.1)

図 6.5.1 大梁周りの水平剛性算出用の簡易モデル
$_{H}K_{T}$ を算出する場合には $_{H}K_{B}$ を0 $\sigma_{H}K_{G}$ を剛,また, $_{H}K_{T}$ を算出する場合には $_{H}K_{B}$ を0 $\sigma_{H}K_{G}$ を剛, $_{H}K_{G}$ を算出する場合には $_{H}K_{T}$, $_{H}K_{B}$ を剛と見なすための境界条件を設定し, 荷重 Pと載荷点の面外変位 δ との関係からバネ剛性は $_{H}K=P/\delta$ により求める。以下に荷 重 Pに対する各バネに相当する部位の面外変位 δ の算出式を示す。

(1) 大梁の捩れによる面外変 δ_T

簡単のため,接合部先端に載荷された荷重 P のねじりモーメント M_Tは,梁スパン中 央に載荷されていると仮定する。

$$M_T = P \times h_G \tag{6.5.2}$$

ここで、h_Gは載荷点から梁芯までの高さとする。捩れの一般解は次式にて表される。

$$\varphi = C_1 + C_2 \cosh \nu x + C_3 \sinh \nu x + \frac{M_T}{GJ} x$$
(6.5.3)

ここで、 $v = \sqrt{GJ/EC_W}$ であり、*G*はせん断弾性率、*J*はサンブナンの捩じり定数、*E*はヤング係数、*C*Wは反り定数である。また、*C*₁、*C*₂、*C*₃は積分定数である。

境界条件から両端で捩じりは 0, 両端と中央で反りが拘束されているとして, x=0; $\varphi=0$, $d\varphi/dx=0$, $x=\ell_G$; $d\varphi/dx=0$ として積分定数を算出し, $x=\ell_G$ を代入して変形 δ_T を算出すると 次式となる。

$$\delta_{T} = \frac{Ph_{G}^{2}}{2GJ} \cdot \frac{1}{\nu} \cdot \left\{ \frac{\left(\cosh\nu\ell_{G} - 1\right)^{2}}{\nu\sinh\nu\ell_{G}} - \sinh\nu\ell_{G} + \nu\ell_{G} \right\}$$
(6.5.4)

大梁の回転剛性の力学モデルを図 6.5.2 に示す。

(2) 直交梁の変形による面外変 δ_B

図 6.5.3 に直交梁ピン接合タイプの力学モデルを示す。直交梁はウェブ取り合い部断 面と梁の直列要素とする。ウェブ取り合いの接合部のボルトが滑らないと仮定する。図 6.5.4 に直交梁頬杖タイプの力学モデルを示す。方杖の軸変形は無視して剛体と仮定し、 小梁と大梁の接合はピン接合とする。図 6.5.5 に直交梁剛接合タイプの力学モデルを示 す。各モデルの荷重 *P* と変位関係 *δ^B* は次式となる。

ピン接合:
$$\delta_{\scriptscriptstyle B} = \frac{P\ell_{\scriptscriptstyle G}^{\,2}}{\ell_{\scriptscriptstyle B}^{\,2}} \cdot \left\{ \frac{\ell_{\scriptscriptstyle b}^{\,3}}{3EI_{\scriptscriptstyle B}} + \frac{\ell_{\scriptscriptstyle p}}{3EI_{\scriptscriptstyle p}} \cdot \left(3\ell_{\scriptscriptstyle p}\ell_{\scriptscriptstyle b} + 3\ell_{\scriptscriptstyle b}^{\,2} + \ell_{\scriptscriptstyle p}^{\,2} \right) \right\}$$
(6.5.5a)

方杖:
$$\delta_{B} = \frac{P\ell_{b}\ell_{B}}{6EI_{B}} \cdot \frac{\ell_{a}^{2}}{\ell_{G}} \cdot \left(1 - \frac{\ell_{b}^{2}}{\ell_{B}^{2}}\right)$$
 (6.5.5b)

剛接合:
$$\delta_B = \frac{P\ell_G^2 \ell_B}{3EI_B}$$
 (6.5.5c)

(3) 大梁のウェブ曲げによる面外変位のバネ $H\delta_{Gb}$

図 6.5.6 に示すように梁のウェブの曲げ変形が寄与する剛性を算出するため、上フランジ下端を固定端、ウェブは片持ち梁とし、GPL は剛体と考える。荷重に *P* に対する載荷点の面外変位 _Hδ_{Gb} は次式となる。

$${}_{H}\delta_{Gb} = \frac{P\ell_{h}^{3}}{3EI_{G}} \cdot \left(3\frac{\ell_{g}^{2}}{\ell_{h}^{2}} + 3\frac{\ell_{g}}{\ell_{h}} + 1\right)$$
(6.5.6)

図 6.5.6 大梁ウェブの曲げ変形

6.5.1.2 梁付接合部の GPL の水平剛性 HKRg2'

(1) リブがない場合(TYPE1)

図 6.5.7 に示すように GPL を梁要素部材 j, g, c を使って線材置換する。GPL のブレ ース芯線上の長さを 2a とし, 部材 j は載荷点を点 A とし, 部材芯と梁面の交点を点 C としピン支持とする。点 C からの距離 a の点 B を部材 g, c に片持ち梁で支持されてい ると仮定する。荷重 P に対する載荷点の変位量 δ_i と水平剛性 $_{HK_{Rg2}}$ は次式となる。

$$\delta_{j} = P\{(a+\ell)/a\}^{2}/(3EI_{g}/\ell_{g}^{3}+3EI_{c}/\ell_{c}^{3})+P\ell^{2}(\ell+a)/3EI_{j}$$
(6.5.7)

 $HK_{Rg2}^{2} = 1/\left[\left\{ (a+\ell)/a \right\}^{2} / (3EI_{g}/\ell_{g}^{3} + 3EI_{c}/\ell_{c}^{3}) + \ell^{2}(\ell+a)/3EI_{j} \right]$ (6.5.8)

(2) 鉛直リブがある場合(TYPE2)

剛体バネモデル(RBSM)にて算出する。詳細は参考文献 6.4)による。

(3) フィンスチフナーが大梁したフランジに直接接合する場合(TYPE3)

GPL 端部を固定端とし曲げ変形のみを考慮し次式とする。

 $_{HKRg2}$ '= $3\gamma EI/\xi_g L_0^3$

(6.5.9)

図 6.5.7 リブなし GPL の回転剛性算出用線材モデル

6.5.1.3 梁付接合部の回転剛性の算出

式(6.5.1),式(6.5.8)などで算出した大梁周りの水平剛性 _HK_{Rb}と GPL の水平剛性 _HK_{Rg2}, を用いて, 6.4 節の式(6.4.2),(6.4.3)よって大梁周りの回転剛性と上部 GPL の回転剛性 を算出する。 6.4 節の図 6.4.7 に示す、荷重 P=100kN に対する載荷点の大梁周りの回転に伴う変位 y_{Rb} と GPL の面外変位 y_{r2} について、簡易手法と FEM 解析による値との比較を図 6.5.8 に示す。

図 6.5.8 載荷点の変位の比較

簡易手法は FEM 解析と同程度の値であるが、剛接合 1,2の TYPE1 では簡易手法が 過小評価している。これは、面外梁剛性が大きい場合、TYPE1 のようにセンターウェ ブスチフナーのみの場合には下フランジが局部的に捩れる変形が生じることによるた めと考えられる。TYPE2,3のように GPL 直上にウェブスチフナーを配置することで、 大梁ウェブの曲げ変形と下フランジの局部的な捩れ変形を抑制し、回転剛性を高めるこ とに有効であり、かつ、簡易手法での算出精度を高めることできる。

6.6 結

本章では,K型配置のように,両端の接合条件が非対称となる場合のBRBの機構安 定条件を導くと共に,その機構安定条件式を実際の設計に適用する場合の手法について 提案した。また,柱梁側接合部に比べて,接合部回転剛性の評価が複雑となる梁側接合 部の回転剛性を簡易的に評価できる手法を提案した。以下に得られた知見を示す。

- 梁側接合部の回転剛性を、大梁部材軸周りの回転剛性と上部ガセットプレートの回転剛性を足し合わせた回転剛性と評価することにより、第3章と同様の手法を用いて、K型配置されたBRBの様に、接合部条件が非対称となる場合の機構安定評価式を誘導した。
- 大梁の回転剛性に応じた上部回転剛性および接合部長の評価モデルを3種類提案し、 接合部座屈荷重との対応から各モデルの閾値を示した。また、閾値により各評価モ デルを使い分け、数値解析によりその評価法の妥当性を確認した。
- 3) 実設計を想定した K型配置された BRB の梁側接合部の回転剛性を FEM 解析結果に 基づき算出し,梁の剛性モデルの閾値と無次元化回転バネ定数の検討を行った。その結果,K型配置の梁接合部は,柱梁側接合部と比較すると回転剛性は低くなる傾向にあること,直交小梁等により大梁自身の回転剛性を高めないと梁側の接合部を 高剛性化することは困難であること,GPL のみ高剛性化すると,座屈長さは大梁中 心を起点とする必要性があることが解った。
- 4) 梁側接合部の簡易的な回転剛性算出法について提案し、その妥当性を検証した。簡易 評価法と FEM 解析との比較から、ウェブセンターのみにしかスチフナーがない場 合は、下端フランジに局部的な変形が生じるため、簡易評価法は剛性を過大に評価 する傾向にあるが、サイドスチフナーも設置した場合やガセットプレートフィンス チフナーと梁下フランジを直接溶接する場合では総じて、提案した簡易評価法は FEM 解析結果とよく整合していることが解った。

第6章の参考文献

- 6.1) 三原早紀: K型配置された座屈拘束ブレースの構面外機構安定性,東京工業大学
 平成26年度修士論文,第2章および第5章,2015.3
- 6.2) 長路秀鷹,松井良太,三原早紀,竹内徹,小崎均,小西克尚,帆足勇磨,大山翔 也:接合部を考慮した座屈拘束ブレースの機構安定性 その 12 K型配置に対 する評価式の導出および実験計画,日本建築学会大会学術講演梗概集(関東), C-1 分冊, pp.1089-1090, 2015.9
- 6.3) 竹内徹,松井良太,三原早紀,小崎均,小西克尚,帆足勇磨,大山翔也:接合部 を考慮した座屈拘束ブレースの機構安定性 その 13 K型配置実験の結果と数 値解析,日本建築学会大会学術講演梗概集(関東), C-1 分冊, pp.1091-1092, 2015.9
- 6.4) 聲高裕治,木下智裕:座屈拘束ブレースの構面外座屈防止設計法,日本建築学会
 構造系論文集,第74巻,第641号,pp.1371-1378,2009.7

第7章 超高層建物における座屈拘束ブレースの機構安定設計

7.1 序

第1章で記述したように,超高層建物に座屈拘束ブレース(以降 BRB)を使用する場合 は、中高層建物で使用するものよりブレース容量(ブレース降伏軸力)が大きくなり、場 合によっては 10,000kN を超えるようなブレースも使われている。この時の問題点とし ては、ブレースの降伏軸力が増えると、接合部のボルト本数も多くなり、必然的に接合 部が長くなるため、前章までに論じてきた、構面外機構安定性状的には不利な状況とな ることが予測される。また、高容量ブレースならではの設計上の配慮も必要となる。

本章では,前章までに得られた知見を総合し,実際の超高層建物に使用されている BRB を対象として,本論文で提案する機構安定条件式に基づき,その機構安定性を検 証すると共に,問題がある場合の設計方法を検討する。特にブレースの片側が大梁に取 付く K 型配置の BRB に対しては,第6章の検討も踏まえて,機構安定性を考慮した上 での接合部ディテールを提案する。

なお、本章における BRB の機構安定性の評価においては、前章までと同様に安全側の仮定として、BRB には地震時に構面外方向に 1/100 の層間変形角が生じることを想定して検討を行う。

7.2 片流れ配置された BRB の機構安定性の検討

実際の超高層建物に使用されている BRB の内,まずは両端の接合部条件が対称となる、片流れ配置された BRB に対して、第5章で提案した機構安定評価手法に従って、 BRB の機構安定性の検討を行う。

検討対象とする片流れ配置された BRB 付きフレームを図 7.1 に示す。設置例 1 としてスパン 3450mm(内法スパン 2650mm), 階高 4960mm(内法高さ 2400mm)のフレームに降伏軸力 N_y =4000kN の BRB を配置した場合と,設置例 2 としてスパン 3450mm(内法 スパン 2550mm), 階高 5000mm(内法高さ 3120mm)のフレームに降伏軸力 N_y =9000kN の BRB を配置した場合を考える。表 7.1 に採用した BRB の部材表を示す。

(a)設置例1

(b)設置例 2

図 7.1 片流れ配置された BRB の検討例

表 7.1 検討で採用した BKB の部材表

				拉	† (SN490)				降伏	軸力		曲げ	剛性	限界座屈長	接合部長
検討例	形状	塑性化部 断面積 A 0(mm ²)	拡幅部 断面積 $A_1(mm^2)$	接合部 断面積 $A_2(mm^2)$	板厚 t(mm)	塑性化部 幅 W ₀ (mm)	突出部 幅 W1(mm)	接合部 幅 W2(mm)	平均値 355×A ₀ N _y (kN)	最大値 385×A ₀ N _{ymax} (kN)	補剛管 (STK400)	補剛材 EI (kNm ²)	接合部 <i>yEI</i> (kNm ²)	L_k (mm)	ξL_0 (mm)
設置例1	+	12275	14775	15725	25	238	308	327	4003	4726	ϕ -355.6 \times 6.4	21946	37514	5768	1174
設置例2	+	25360	33200	36800	40	337	435	480	9003	9764	ϕ -508.0 \times 7.9	79565	198290	7322	1231

7.2.1 設置例1の検討

接合部の設計を通常の高力ボルト(F10T, M22)による摩擦接合とすると, 図 7.1(a)に 示すように、2 列千鳥配置として接合部長さ ξL_0 は 1174mm となる。接合部の無次元化 回転ばね剛性比は安全側の仮定として、第5章で記述した低剛性タイプの $\xi \kappa_{Rg}$ =0.15 と し、貫入長比は ℓ_{in} =1.0 とする。第5章で定義した、設計変数特性値および評価用特性 値をまとめると表 7.2 上段のようになる。

	設計変数	效特性值				評価用特性値	ĺ	
接合部長さ比 <i>ぐ</i>	座屈長さ比 L_0/L_k	貫入長比 L _{in} / W ₁	回転剛性比 _ξ K _{Rg}	曲げ剛性比 γ	断面積比 A ₂ /A ₀	断面積比 A_1/A_0	回転剛性比 LK _{Rr}	長さ比 L_k/W_1
0.328	0.620	1.0	0.15	1.71	1.40	1.31	1.52	18.7
0.328	0.620	1.5	0.15	1.71	1.40	1.31	5.12	18.7

表 7.2 片流れ配置(設置例 1)の特性値

これらの特性値から,第5章に示す機構安定条件式(5.4)右辺の設計用曲げモーメント M'/N_y を計算すると下記となる。ここで、芯材の元たわみ及び芯材と拘束材のクリア ランスは a+e=3mm, $s_r=1$ mm と仮定し、面外変位としては層間変形角 1/100 に相当する $\delta_0=50$ mm を考える。なお、 N_{cr}^B および $_L\kappa_{Rr}$ は第5章と同様に、文献 5.7)の方法により 算出している。

$$M^{r} / N_{y} = \frac{a_{r}}{1 - N_{cu} / N_{cr}^{B}} (\alpha_{d} - N_{cr}^{r} / N_{y}) + M_{0}^{r} / N_{y}$$

= $\frac{11.6}{1 - 5203 / 34006} (1.3 - 927 / 4003) + 2.70 \times 1.5 \times \frac{385}{355} = 14.6 + 4.4 = 19.0 \text{ [mm]}$

一方,式(5.4)左辺の拘束材端部の曲げ耐力は,芯材突出部の曲げ耐力で決まり式(5.17) を用いて計算すると下記となる。

 $M_p^r / N_v = 152.9 / 4003 \times 10^3 = 38.2 \text{ [mm]}$

 $M_{p}^{r}/N_{y} = 38.2 > M^{r}/N_{y} = 19.0$ となり、機構安定条件を満足していることが検証できる。

以上の検討では、ひずみ硬化係数は第5章にならい α_d =1.3としたが、BRB を制振ブ レースとして積極的に早期に降伏させ、大きなエネルギー吸収を期待する設計とした場 合、 α_d =1.5程度まで上昇することも考えられる。そこで、以下に α_d =1.5とした場合 の検討例を示す。

$$M^{r} / N_{y} = \frac{a_{r}}{1 - N_{cu} / N_{cr}^{B}} (\alpha_{d} - N_{cr}^{r} / N_{y}) + M_{0}^{r} / N_{y}$$

= $\frac{11.6}{1 - 6004 / 34006} (1.5 - 927 / 4003) + 2.70 \times 1.5 \times \frac{385}{355} = 17.9 + 4.4 = 22.3 [mm]$

拘束材端部の曲げ耐力は、芯材突出部の曲げ耐力で決まり下記となる。

 $M_p^r / N_v = 102.8 / 4003 \times 10^3 = 25.7 \text{ [mm]}$

従って, $M_p^r/N_y = 25.7 > M^r/N_y = 22.3$ となり,本例の場合は $\alpha_d = 1.5$ としても機構安定条件を満足していることがわかる。

ただし、曲げ耐力と設計用曲げモーメントの比が 1.15 程度であるため、安定条件式の精度を考慮すると、もう少し安全率を持つことが望ましい。そこで、貫入長比 ℓ_{in} =1.5 として検討を行うと、設計変数特性値および評価用特性値は表 7.2 下段のようになり、設計用曲げモーメントは以下となる。

$$M^{r} / N_{y} = \frac{a_{r}}{1 - N_{cu} / N_{cr}^{B}} (\alpha_{d} - N_{cr}^{r} / N_{y}) + M_{0}^{r} / N_{y}$$

= $\frac{9.1}{1 - 6004 / 92611} (1.5 - 927 / 4003) + 2.91 \times 1.5 \times \frac{385}{355} = 12.3 + 4.7 = 17.0 \text{ [mm]}$

拘束材端部の曲げ耐力は,貫入長比を変えても芯材突出部の曲げ耐力は同じなので下記 となる。

 $M_p^r / N_v = 102.8 / 4003 \times 10^3 = 25.7 \text{ [mm]}$

従って、 $M_p^r/N_y = 25.7 > M^r/N_y = 17.0$ となり、貫入長比 $\ell_{in} = 1.5$ とすれば、曲げ耐力と設計用曲げモーメントの比が 1.51 程度の余裕をもって機構安定条件を満足させることができる。

7.2.2 設置例2の検討

 N_y =9000kN のような,高容量 BRB の接合部を通常の高力ボルト(F10T, M22)による 摩擦接合とすると,図 7.2(a)に示すように、3 列千鳥配置としても接合部がかなり長く なり、十分な芯材塑性化部の長さが確保できなくなる。本例では塑性化部の長さが 158mm となり,層間変形角 1/100 の変形が生じた場合,塑性化部以外は変形しないとす ると、全長 L_0 に対する軸ひずみは 15%程度と非常に大きくなってしまう。

そこで,超高力ボルト(F14T, M22)を用いて接合部の設計を行い,ボルト本数を減ら すことにより,接合部を短くすることを考える。超高力ボルトを採用すれば,図7.2(b) に示すように,塑性化部長さを 698mm 確保することができる。層間変形角 1/100 の変 形が生じた場合,全長 L₀に対する軸ひずみは 3%程度となるが,建物全体の曲げ変形分 や,塑性化部以外の変形も考慮すれば,実際に塑性化部に生じる軸ひずみは十分 2%以 下には納まるものと考えられる。

図 7.2 高容量 BRB の現場接合部検討例

以下に,超高力ボルトを用いた場合の機構安定性の検討を示す。接合部の無次元化回転ばね剛性比_そ K_{Rg}は,安全側の仮定として設置例1と同様に低剛性タイプの0.15とし,

貫入長比は ℓ_{in} =1.0 とする。設計変数特性値および評価用特性値をまとめると表 7.3 のようになる。

	設計変数	效特性值				評価用特性値		
接合部長さ比 <i>ぐ</i>	座屈長さ比 L_0/L_k	貫入長比 L _{in} / W ₁	回転剛性比 _ξ K _{Rg}	曲げ剛性比 γ	断面積比 A ₂ / A ₀	断面積比 A_1 / A_0	回転剛性比 LK _{Rr}	長さ比 L_k/W_1
0.305	0.550	1.0	0.15	2.49	1.45	1.31	1.17	16.8

表 7.3 片流れ配置(設置例 2)の特性値

これらの特性値から,機構安定条件式(5.4)右辺の設計用曲げモーメント M'/N_y を計算すると下記となる。ここで、芯材の元たわみ及び芯材と拘束材のクリアランスは先ほどと同様に、a+e=3mm、 $s_r=1$ mm と仮定し、面外変位としては層間変形角 1/100 に相当する $\delta_0=50$ mm を考える。

$$M^{r} / N_{y} = \frac{a_{r}}{1 - N_{cu} / N_{cr}^{B}} (\alpha_{d} - N_{cr}^{r} / N_{y}) + M_{0}^{r} / N_{y}$$

= $\frac{9.7}{1 - 11704 / 89885} (1.3 - 5054 / 9003) + 6.12 \times 1.5 \times \frac{385}{355} = 8.2 + 10.0 = 18.2 \text{ [mm]}$

一方,式(5.4)左辺の拘束材端部の曲げ耐力は,座屈拘束材端部の曲げ耐力で決まり下記 となる。

 $M_p^r / N_y = 464 / 9003 \times 10^3 = 51.5$ [mm]

従って, $M_p^r/N_y = 51.5 > M^r/N_y = 18.2$ となり, 機構安定条件を満足していることが検証できる。

前例と同じように、ひずみ硬化係数を $\alpha_d = 1.5$ とした場合の検討を以下に示す。

$$M^{r} / N_{y} = \frac{a_{r}}{1 - N_{cu} / N_{cr}^{B}} \left(\alpha_{d} - N_{cr}^{r} / N_{y} \right) + M_{0}^{r} / N_{y}$$
$$= \frac{9.7}{1 - 13504 / 89885} \left(1.5 - 5054 / 9003 \right) + 6.12 \times 1.5 \times \frac{385}{355} = 10.7 + 10.0 = 20.7 \text{ [mm]}$$

拘束材端部の曲げ耐力は、 $\alpha_d = 1.3$ とした場合とは異なり、芯材突出部の曲げ耐力で決まり下記となる。

 $M_p^r / N_v = 329 / 9003 \times 10^3 = 36.5 \text{[mm]}$

従って, $M_p^r/N_y = 36.5 > M^r/N_y = 20.7$ となり, $\alpha_d = 1.5$ としても機構安定条件を満足していることがわかる。

以上示したように、片流れ配置された BRB に対し、本論文で提案した評価手法により、比較的簡単な計算により、構面外機構安定性を検証することが可能となる。

なお,設置例2に示すように,高容量のBRBを配置する場合は,超高力ボルトの採 用や現場溶接接合の採用等,接合部長さを短くし,必要な塑性化部長さを確保する配慮 が必要である。

また, BRB を制振ブレースとして積極的に早期から塑性化させてエネルギー吸収を 期待する場合は、ひずみ硬化係数を α_d =1.5 として検討する配慮も必要であり、安定条 件を満たさない場合、あるいは安定条件に余裕を持たせる場合は、貫入長比を大きくと る等の設計上の配慮が必要となる。

7.3 K型配置された BRB の機構安定性の検討

7.3.1 K型配置された BRB の設計上の問題点

本節では実際の超高層建物に使用されている BRB の内, ブレースの片側が大梁に取付くため, 両端の接合部条件が非対称となる K 型配置された BRB に対して, 第6章で 提案した機構安定評価手法に従って, BRB の機構安定性の検討を行う。

K型配置された BRB の設計を行う際の問題点を整理すると以下のようになる。

- 1) BRB が取付く大梁のせい及び回転剛性により,梁側接合部の長さ,回転剛性が大きく影響を受ける。
- 上記のような場合、片側の接合部長がブレース全長の半分以上となり、本論で提案した検証方法が適用できず、また設計的にも問題がある。
- 4) 梁せいがそれ程大きくなく、 *ξ*2 が 0.35 程度以下であれば、第6章で定義した"低 剛性梁"タイプで設計する方法と"中剛性梁"で設計する方法の二通りの考え方 がある。

以下に具体的な検討例を通じて、上記の問題点に対する検証を行う。

7.3.2 ブレースが取付く大梁せいが非常に大きい場合の検討

検討対象とする K 型配置された BRB 付きフレームを図 7.3 に示す。スパン 10500mm(内法スパン 9800mm), 階高 4960mm(内法高さ 3300mm)のフレームにおいて, 梁せいが 1800mm と非常に大きい大梁に降伏軸力 N_y =4000kNの BRB が取付く場合を考 える。採用した BRB は 7.2 節の設置例 1 と同じ断面である。

接合部の設計を通常の高力ボルト(F10T, M22)による摩擦接合とすると, 図 7.3 に示 すように 2 列千鳥配置として,下部柱梁接合部側の接合部長さ*ξ*₁*L*₀ は 1326mm となる。 一方,上部大梁接合部側は,取付く大梁を 6.3 節で定義した"低剛性梁"として,接 合部長さを大梁中心から取ると、 $\xi_2 L_0$ は 2928mm となり、ブレース全長 L_0 は 5908mm となる。この場合、 $\xi_2 = 0.50$ つまり接合部長さがブレース全長の半分となり、提案した検討式が適用できず、またこれほど長い接合部とすることは、設計的にも問題がある。

そこで、大梁の回転剛性を"中剛性梁"以上確保することにして、上部接合部長さを 大梁下端から取れるように設計するとすれば、 $\xi_g L_0 = 1316$ mm、 $L_0 = 4296$ mm となり、 $\xi_g = 0.31$ となるので、提案した検討式で機構安定性を検証できるようになる。

図 7.3 K型配置された BRB の検討例(取付く大梁成が非常に大きい場合)

次に、"中剛性梁"以上の回転剛性を確保するための検討を 6.5 節で提案した簡易的 な回転剛性算出法を用いて行う。回転剛性を確保する対策として、実設計で採用機会の 多い、方杖付き小梁を大梁直交方向に設置することを考える。面外梁のせいを 3 種類、 長さを 2 種類、センタースチフナーおよびサイドスチフナーの板厚を 2 種類設定し、大 梁回転剛性の指標となる大梁回転剛性と接合部回転剛性の比 K_{Rb}/K_{Rg2} と梁側接合部 の無次元化回転ばね剛性比_ξ κ_{Rg2} を算出する。算出した K_{Rb}/K_{Rg2} と $_{\xi}\kappa_{Rg2}$ を表 7.4 に示 す。また、補強スチフナーの配置を図 7.4 に示す。

方杖タイン	Ĵ	K_{Rb} /	K _{Rg2} '	_ξ Κ	Rg2
古六小洲	面外梁	①PL-16+	①PL-25+	①PL-16+	①PL-25+
直文小朵	長(mm)	2PL-16	2)PL-25	2)PL-16	2)PL-25
II 209x140x5 5x9	7200	0.50	0.62	0.49	0.56
п-298х149х3.3х8	3600	0.68	0.91	0.59	0.70
II 600w250w12w10	7200	0.87	1.31	0.68	0.83
H-000x250x12x19	3600	0.92	1.42	0.70	0.86
$H_{000y}^{200y}^{16y}^{10}$	7200	0.92	1.43	0.70	0.86
n-900x300x10x19	3600	0.94	1.46	0.71	0.87

表 7.4 回転剛性の比 K_{Rb} / K_{Rg2} と回転ばね剛性比 $\xi \kappa_{Rg2}$

図 7.4 補強スチフナーの配置図

ここで、面外梁:H-600x250x12x19、面外梁長:7200 mm、ウェブスチフナー板厚=25 mm とした場合の大梁回転剛性と接合部回転剛性の比 K_{Rb}/K_{Rg2} と梁側接合部の無次元 化回転ばね剛性比_ξ κ_{Rg2} の算出過程を 6.5 節の提案式に従って以下に示す。図 7.5 に検討 に用いる記号をまとめて示す。また、面外荷重 P:100kN、ヤング係数 E:205800N/mm², せん断弾性係数 G:77000N/mm²とする。

図 7.5 検討に用いる各種記号

①大梁周りの回転剛性 K_{Rb}の算出

サンブナンの捩じり定数 $J = (2B t_f^3 + H t_w^3)/3 = 7.76 \times 10^6 \text{ mm}^4$,

反り定数 $C_W = H^2 B^3 t_f / 24 = 1.45 \times 10^{14} \text{ mm}^6$ より

$$v = \sqrt{GJ / EC_W} = 1.42 \times 10^{-4}$$

*ℓ*_{*G*}=4900mm, *h*_{*g*}=1636mm なので,式(6.5.4)より

$$\delta_T = \frac{Ph_G^2}{2GJ} \cdot \frac{1}{\nu} \cdot \left\{ \frac{\left(\cosh\nu\ell_G - 1\right)^2}{\nu\sinh\nu\ell_G} - \sinh\nu\ell_G + \nu\ell_G \right\} = 42.0 \text{mm} \quad \Box \rangle \qquad {}_{H}K_T = P / \delta_T = 2379 \text{ N/mm}$$

(2) 直交梁 H-600x250x12x19の変形に対する剛性_{HKB}の算出

 I_B =9.90×10⁸ mm⁴, ℓ_G =2236 mm, ℓ_B =7200 mm, ℓ_a =1500 mm, ℓ_b =5700mm なので, 式(6.5.5b) より

$$\delta_B = \frac{P\ell_b\ell_B}{6EI_B} \cdot \frac{\ell_a^2}{\ell_G} \cdot \left(1 - \frac{\ell_b^2}{\ell_B^2}\right) = 1.88 \text{mm} \qquad \qquad \Box \rangle \quad HK_B = P/\delta_B = 53200 \text{ kN/mm}$$

(3)大梁のウェブ曲げによる面外変形に対する剛性_HK_Gの算出

センタースチフナー①板厚=25 mm, ②板厚=25 mm よりΣt_s =50 mm, 大梁幅 Bs=350mm なので

 $I_G = B_s^3 \Sigma t_s / 12 = 1.79 \times 10^8 \text{mm}^4$

*ℓ*_{*h*}=1775 mm, *ℓ*_{*j*}=736mm なので, 式(6.5.6)より

$$\delta_{G} = \frac{P\ell_{h}^{3}}{3EI_{G}} \cdot \left(3\frac{\ell_{j}^{2}}{\ell_{h}^{2}} + 3\frac{\ell_{j}}{\ell_{h}} + 1\right) = 14.0$$

 \Box $_{H}K_{G} = P / \delta_{G} = 7148 \text{ kN/mm}$

(4) 各バネの合成

式(6.5.1)より $_{H}K_{Rb} = \{1/(_{H}K_{T} + _{H}K_{B}) + 1/_{H}K_{G}\} = 6330 \text{ kN/mm}$ 式(6.4.3)より $K_{Rb} = _{H}K_{Rb} \times \xi_{2}L_{0}^{2} = 6330 \times 2928^{2} = 5.43 \times 10^{10} \text{ kNmm}$

②G.PL の回転剛性

リブ付ガセットプレートの回転剛性は RBSM モデル ^{7.1)}にて算出する。文献 7.1)の式 (10)で表されるガセットプレートのリブを考慮した構面外剛性 *EI**は, *EI**= 1.227×10¹³ N/mm であるため, ガセットプレートの変形 y_{r2} は, $\xi_g L_0$ =1317 であること考慮して $y_{r2} = P(\xi_g L_0)^3/(3EI^*) = 6.21$ mm $\mu K_{Rg2}' = P/y_{r2} = 1.61 \times 10^4$ N/mm $\gamma EI=3.75 \times 10^{13}$ N/mm であること考慮して,式(6.4.2)より

 K_{Rg2} ' = 1/(1/_H K_{Rg2} ' - $\xi_g L_0^3/3 \gamma EI$) × $\xi_g L_0^2$ = 4.15 × 10¹⁰ N/mm

③接合部回転剛性率 K_{Rb} / K_{rg2}'の計算

以上の検討より、大梁回転剛性と接合部回転剛性の比は下記の通り算出できる。 K_{Rb}/K_{Rg2} '= 5.43×10¹⁰/4.15×10¹⁰ =1.31

④接合部無次元化回転ばね剛性比

大梁周りの回転剛性と G.PL の回転剛性を合成すると以下となる。

$$K_{Rg2} = \frac{1}{1/K_{Rg2} + 1/K_{Rb}} = 2.35 \times 10^{10} \text{N/mm}$$

接合部の回転剛性との比をとり、無次元化回転バネ剛性比を算出すると以下となる。

$$_{\xi}\kappa_{Rg} = K_{Rg2} \times (\xi_g L_0)/(\gamma EI) = 2.35 \times 10^{10} \times 1317/(3.75 \times 10^{13}) = 0.83$$

中剛性梁以上とするための閾値は, 6.3 節の式(6.3.16)より

 $a = \xi_2 / \xi_g - 1 = 0.496 / 0.223 - 1 = 1.22$

となるため、大梁せいの 1/3 程度以上の梁成を有する方杖付き小梁を直交方向に設置す ると共に、センタースチフナーおよびサイドスチフナーを設け、その板厚 25mm 程度以 上確保すれば、中剛性梁として、上部接合部長さを大梁下端からとして設計することが できる。また、今回の検討例のような場合、図 7.4 に示すように、サイドスチフナーと センタースチフナーの間隔がかなり大きいので、大梁の回転剛性を確実に確保する上に おいては、サイドスチフナーの位置にも大梁直交方向に、方杖付き小梁を設置すること が必要と考える。

このような対策を行って、中剛性梁となる回転剛性を確保すれば、今回の場合、接合 部長は大梁接合部側より柱梁接合部側のほうが長くなり、また_{$\xi} <math>\kappa_{Rg2}$ も 0.8 以上の高剛 性が期待できるので、構面外の機構安定性は柱梁接合部側で行えばよいことになる。</sub>

柱梁接合部側の無次元化回転ばね剛性比_ξ κ_{Rg1} を高剛性タイプの 0.60 とし、貫入長比 $\delta \ell_{in}$ =1.0 とすると、設計変数特性値および評価用特性値は表 7.5 上段のようになる。

	設計変数	汝特性値				評価用特性値	ĺ	
接合部長さ比 <i>ぐ</i>	座屈長さ比 L_0/L_k	貫入長比 L _{in} / W ₁	回転剛性比 _ξ K _{Rg}	曲げ剛性比 γ	断面積比 A ₂ /A ₀	断面積比 A_1/A_0	回転剛性比 LK _{Rr}	長さ比 L_k/W_1
0.309	0.745	1.0	0.60	1.71	1.39	1.31	1.82	18.7
0.309	0.745	1.5	0.60	1.71	1.39	1.31	6.15	18.7

表 7.5 K型配置例の特性値(取付く大梁成が非常に大きい場合)

これらの特性値から,設計用曲げモーメント M'/N_y を計算すると下記となる。ここで,片流れ配置の検討と同様に, a+e=3mm, $s_r=1$ mm, $\delta_0=50$ mm と仮定している。

$$M^{r} / N_{y} = \frac{a_{r}}{1 - N_{cu} / N_{cr}^{B}} \left(\alpha_{d} - N_{cr}^{r} / N_{y} \right) + M_{0}^{r} / N_{y}$$
$$= \frac{12.6}{1 - 5203 / 27130} \left(1.3 - 2639 / 4003 \right) + 6.32 \times 1.5 \times \frac{385}{355} = 10.0 + 10.3 = 20.3 \text{ [mm]}$$

一方、拘束材端部の曲げ耐力は、芯材突出部の曲げ耐力で決まり下記となる。

 $M_p^r / N_v = 153 / 4003 \times 10^3 = 38.2 \text{ [mm]}$

従って, $M_p^r/N_y = 38.2 > M^r/N_y = 20.3$ となり, 機構安定条件を満足することができる。

また、片流れ配置での検討と同様に、ひずみ硬化係数 $\alpha_d = 1.5$ として検討を行うと以下の通りである。

$$M^{r} / N_{y} = \frac{a_{r}}{1 - N_{cu} / N_{cr}^{B}} \left(\alpha_{d} - N_{cr}^{r} / N_{y} \right) + M_{0}^{r} / N_{y}$$

= $\frac{12.6}{1 - 6004 / 27130} \left(1.5 - 2639 / 4003 \right) + 6.32 \times 1.5 \times \frac{385}{355} = 13.6 + 10.3 = 23.9 \text{ [mm]}$

拘束材端部の曲げ耐力は、同様に芯材突出部の曲げ耐力で決まり下記となる。

 $M_p^r / N_v = 103 / 4003 \times 10^3 = 25.7 \text{ [mm]}$

従って, $M_p'/N_y = 25.7 > M'/N_y = 23.9 となり, 本例の場合は<math>\alpha_d = 1.5$ としても機構安定条件を満足している。ただし,曲げ耐力と設計用曲げモーメントの比が 8%程度であるため,安定条件式の精度を考慮すると,もう少し安全率を持つことが望ましい。そこで,片流れ配置の時と同様に,貫入長比 $\ell_{in}=1.5$ として検討を行うと,設計変数特性値および評価用特性値は表 7.5 下段のようになり,設計用曲げモーメントは以下となる。

$$M^{r} / N_{y} = \frac{a_{r}}{1 - N_{cu} / N_{cr}^{B}} (\alpha_{d} - N_{cr}^{r} / N_{y}) + M_{0}^{r} / N_{y}$$

= $\frac{9.7}{1 - 6004 / 50363} (1.5 - 2639 / 4003) + 7.36 \times 1.5 \times \frac{385}{355} = 9.3 + 12.0 = 21.3 \text{ [mm]}$

拘束材端部の曲げ耐力は、貫入長比を変えても同じなので下記となる。

 $M_p^r / N_v = 103 / 4003 \times 10^3 = 25.7 \text{ [mm]}$

従って, $M_p^r/N_y = 25.7 > M^r/N_y = 21.3$ となり, 貫入長比 $\ell_{in} = 1.5$ とすれは, 曲げ耐力と設計用曲げモーメントの比が 20%程度まで確保できる。

7.3.3 通常の成の大梁にブレースが取付く場合の検討

検討対象とする K 型配置された BRB 付きフレームを図 7.6 に示す。スパン

10500mm(内法スパン 9750mm), 階高 4960mm(内法高さ 3950mm)のフレームで,梁成が 1300mmの大梁に降伏軸力 N_v =4000kN の BRB が取付く場合を考える。

接合部の設計を通常の高力ボルト(F10T, M22)による摩擦接合とすると,図 7.6 に示 すように 2 列千鳥配置として,下部柱梁接合部側の接合部長さ $\xi_1 L_0$ は 1623mm となる。 上部大梁接合部側は,取付く大梁を"低剛性梁"として,接合部長さを大梁中心から取 ると, $\xi_2 L_0$ は 2258mm,ブレース全長 L_0 は 6274mm となり, ξ_2 =0.360 となる。

一方,取付く大梁を"中剛性梁"として,接合部長さを大梁下端から取ると, $\xi_g L_0$ は 1226mm,ブレース全長 L_0 は5242mmとなり, ξ_g =0.233となる。

このように、本検討例においては低剛性梁としても接合部は長め(*ξ*₂=0.360)となるものの、設計可能な範囲と考えられるため、取付く大梁を中剛性梁として設計する場合と低剛性梁として設計する場合の両方の検討を以下に行う。

図 7.6 K 型配置された BRB の検討例(取付く大梁が通常の梁成の場合)

(1) 中剛性梁として設計する場合

先程と同様に、中剛性梁以上の回転剛性を確保するための検討を 6.5 節で提案した簡 易的な回転剛性算出法を用いて行う。回転剛性を確保する対策として、先程と同じ方杖 付き小梁を大梁直交方向に設置することを考える。面外梁の成を2種類,長さを2種類, センタースチフナーおよびサイドスチフナーの板厚を2種類設定し,大梁回転剛性の指 標となる大梁回転剛性と接合部回転剛性の比 K_{Rb}/K_{Rg2} と梁側接合部の無次元化回転 ばね剛性比_く κ_{Rg2} を算出する。算出した K_{Rb}/K_{Rg2} と $_{\xi}\kappa_{Rg2}$ を表 7.6 に,スチフナーの配 置を図 7.7 に示す。

方杖タイプ	ſ	K_{Rb} /	K_{Rg2}	_ξ K	Rg 2
古六小洲	面外梁	①PL-16+	①PL-25+	①PL-16+	①PL-25+
直父小朵	長(mm)	2PL-16	2)PL-25	2)PL-16	2)PL-25
II 200-140-5 5-9	7200	0.55	0.68	0.32	0.36
H-298x149x5.5x8	3600	0.76	1.03	0.39	0.46
II 450-250-0-1(7200	0.92	1.35	0.43	0.52
H-430x230x9x16	3600	0.99	1.50	0.45	0.54

表 7.6 回転剛性比 K_{Rb}/K_{Rg2} と無次元化回転ばね剛性比 $_{\xi}\kappa_{Rg2}$ (中剛性梁)

図 7.7 補強リブの配置図(中剛性梁)

中剛性梁以上とするための閾値は 6.3 節の式(6.3.16)より以下となる。

 $a = \xi_2 / \xi_g - 1 = 0.360 / 0.195 - 1 = 0.84$

以上の検討により,大梁せいの 1/3 程度以上の梁成を有する方杖付き小梁を直交方向に 設置すると共に,センタースチフナーおよびサイドスチフナーを設け,その板厚 16mm 程度以上確保すれば,中剛性梁として,上部接合部長さを大梁下端からとして設計でき ることになる。

このような対策を行って、中剛性梁となる回転剛性を確保すれば、今回の場合も、接合部長さは大梁接合部側より柱梁接合部側のほうが長くなり、また_そ κ_{Rg2} も 0.4 以上の中剛性が期待できるので、構面外の機構安定性は接合部長さの長い、柱梁接合部側で行えばよいことになる。

柱梁接合部側の無次元化回転ばね剛性比_ξ κ_{Rg1} を中剛性タイプの 0.30 とし、貫入長比 $t_{in} = 1.0$ とすると、設計変数特性値および評価用特性値は表 7.7 上段のようになる。

表7.7 K型配置例の特性値(通常の梁成で中剛性梁の場合)

	設計変数	汝特性値				評価用特性値	ĺ	
接合部長さ比 <i>ぐ</i>	座屈長さ比 L_0/L_k	貫入長比 L _{in} / W ₁	回転剛性比 _ξ K _{Rg}	曲げ剛性比 γ	断面積比 A ₂ / A ₀	断面積比 A_1/A_0	回転剛性比 LK _{Rr}	長さ比 L_k/W_1
0.310	0.909	1.0	0.30	1.71	1.39	1.31	2.22	18.7
0.310	0.909	1.5	0.30	1.71	1.39	1.31	7.51	18.7

これらの特性値から,設計用曲げモーメント M'/N_y を計算すると下記となる。ここで,先程と同様に,a+e=3mm, $s_r=1$ mmとし,面外変位としては層間変形角 1/100 に相当する $\delta_0=45$ mm と仮定している。

$$M^{r} / N_{y} = \frac{a_{r}}{1 - N_{cu} / N_{cr}^{B}} (\alpha_{d} - N_{cr}^{r} / N_{y}) + M_{0}^{r} / N_{y}$$

= $\frac{14.5}{1 - 5203 / 17692} (1.3 - 1016 / 4003) + 2.04 \times 1.5 \times \frac{385}{355} = 21.5 + 3.3 = 24.8 \text{[mm]}$

一方、拘束材端部の曲げ耐力は、芯材突出部の曲げ耐力で決まり下記となる。

 $M_p^r / N_y = 153 / 4003 \times 10^3 = 38.2 \text{ [mm]}$

従って, $M_p^r/N_y = 38.2 > M^r/N_y = 24.8$ となり, 機構安定条件を満足している。

先程と同様に、ひずみ硬化係数 α_d = 1.5 として検討を行うと以下の通りである。

$$M^{r} / N_{y} = \frac{a_{r}}{1 - N_{cu} / N_{cr}^{B}} \left(\alpha_{d} - N_{cr}^{r} / N_{y} \right) + M_{0}^{r} / N_{y}$$

= $\frac{14.5}{1 - 6004 / 17692} \left(1.5 - 1016 / 4003 \right) + 2.04 \times 1.5 \times \frac{385}{355} = 27.4 + 3.3 = 30.7 \text{ [mm]}$

一方、拘束材端部の曲げ耐力は、芯材突出部の曲げ耐力で決まり下記となる。

$$M_p^r / N_y = 103 / 4003 \times 10^3 = 25.7 \text{[mm]}$$

従って, $M_p^r/N_y = 25.7 < M^r/N_y = 30.7$ となり, 機構安定条件を満足していないことになる。そこで, 貫入長比 $\ell_{in}=1.5$ として検討を行うと, 設計変数特性値および評価用特性値は表 7.7 下段のようになり, 設計用曲げモーメントは以下となる。

$$M^{r} / N_{y} = \frac{a_{r}}{1 - N_{cu} / N_{cr}^{B}} (\alpha_{d} - N_{cr}^{r} / N_{y}) + M_{0}^{r} / N_{y}$$

= $\frac{11.0}{1 - 6004 / 34836} (1.5 - 1016 / 4003) + 2.40 \times 1.5 \times \frac{385}{355} = 16.6 + 3.9 = 20.5 \text{ [mm]}$

拘束材端部の曲げ耐力は、貫入長比を変えても同じなので下記となる。

 $M_p^r / N_v = 103 / 4003 \times 10^3 = 25.7 \text{ [mm]}$

従って, $M_p^r/N_y = 25.7 > M^r/N_y = 20.5$ となり, 貫入長比 $\ell_{in} = 1.5$ とすれば機構安定条件を満足することができる。

(2) 低剛性梁として設計する場合

何らかの理由で直交方向にピン接合の梁せい 300mm 程度の小梁しか設けられない場合,表 7.8 に示すように回転剛性比 K_{Rb}/K_{Rg2} は 0.3 程度であるため,低剛性梁として接合部長さを大梁中心から取り,接合部長さの長い大梁接合部側で検討を行う必要がある。また, $_{\xi}\kappa_{Rg2}$ は 0.20 程度であるため,低剛性タイプの $_{\xi}\kappa_{Rg2}$ =0.15 とし,貫入長比 ℓ_{in} を 1.0 として設計変数特性値および評価用特性値を算定すると表 7.9 上段のようになる。

ピン接合タイ	イプ	K_{Rb} /	K_{Rg2}	_ξ Κ	Rg 2
古六小洌	面外梁	①PL-16+	①PL-25+	①PL-16+	①PL-25+
直 文小朵	長(mm)	2)PL-16	2)PL-25	2)PL-16	2)PL-25
11 209×140×5 5×9	7200	0.29	0.32	0.20	0.22
н-298х149х5.5х8	3600	0.34	0.39	0.23	0.25
II 450-250-0-1(7200	0.57	0.72	0.33	0.38
H-430x230x9x16	3600	0.64	0.83	0.35	0.41

表 7.8 回転剛性比 K_{Rb}/K_{Rg2} と無次元化回転ばね剛性比 $_{\xi}\kappa_{Rg2}$ (低剛性梁)

図 7.8 補強リブの配置図(低剛性梁)

表 7.9 K 型配置例の特性値(通常の梁成で低剛性梁の場合)

	設計変数	放特性值				評価用特性値		
接合部長さ比 <i>ぐ</i>	座屈長さ比 <i>L</i> ₀ / <i>L</i> _k	貫入長比 L _{in} / W ₁	回転剛性比 _炎 K _{Rg}	曲げ剛性比 γ	断面積比 A2/A0	断面積比 A1/A0	回転剛性比 L ^K Rr	長さ比 <i>L_k / W</i> 1
0.360	1.09	1.0	0.15	1.71	1.39	1.31	2.66	18.7
0.360	1.09	1.5	0.15	1.71	1.39	1.31	8.99	18.7

これらの特性値から、設計用曲げモーメント M'/N_y を計算すると下記となる。ここで、先程と同様に、a+e=3mm、 $s_r=1$ mm とし、 $\delta_0=45$ mm と仮定する。

$$M^{r} / N_{y} = \frac{a_{r}}{1 - N_{cu} / N_{cr}^{B}} (\alpha_{d} - N_{cr}^{r} / N_{y}) + M_{0}^{r} / N_{y}$$

= $\frac{18.7}{1 - 5203 / 15371} (1.3 - 204 / 4003) + 0.53 \times 1.5 \times \frac{385}{355} = 35.3 + 0.9 = 36.2 \text{ [mm]}$

一方、拘束材端部の曲げ耐力は、芯材突出部の曲げ耐力で決まり下記となる。

 $M_p^r / N_v = 153 / 4003 \times 10^3 = 38.2 \text{ [mm]}$

従って, $M_p^r/N_y = 38.2 > M^r/N_y = 36.2 となり, 機構安定条件を満足することになるが, ほとんど余裕がないため, 貫入長比 <math>\ell_{in}$ を 1.5 として再検討する。この時の設計変数特性値および評価用特性値を算定すると表 7.9 下段のようになる。

これらの特性値から,設計用曲げモーメントM^r/N_vを計算すると下記となる。

$$M^{r} / N_{y} = \frac{a_{r}}{1 - N_{cu} / N_{cr}^{B}} (\alpha_{d} - N_{cr}^{r} / N_{y}) + M_{0}^{r} / N_{y}$$

= $\frac{13.8}{1 - 5203 / 30115} (1.3 - 204 / 4003) + 0.60 \times 1.5 \times \frac{385}{355} = 20.8 + 1.0 = 21.8 \text{[mm]}$

拘束材端部の曲げ耐力は芯材突出部の曲げ耐力で決まるため、同様に下記となる。

 $M_p^r/N_y = 153/4003 \times 10^3 = 38.2$ [mm] 従って, $M_p^r/N_y = 38.2 > M^r/N_y = 21.8$ となり,余裕をもって機構安定条件を満たすことができる。

次に、貫入長比 ℓ_{in} を 1.5 とした場合で、先程と同様にひずみ硬化係数 α_d = 1.5 として 検討を行うと以下の通りである。

$$M^{r} / N_{y} = \frac{a_{r}}{1 - N_{cu} / N_{cr}^{B}} (\alpha_{d} - N_{cr}^{r} / N_{y}) + M_{0}^{r} / N_{y}$$

= $\frac{13.8}{1 - 6004 / 30115} (1.5 - 204 / 4003) + 0.60 \times 1.5 \times \frac{385}{355} = 25.0 + 1.0 = 26.0 \text{ [mm]}$

拘束材端部の曲げ耐力は芯材突出部の曲げ耐力で決まり下記となる。

 $M_{p}^{r}/N_{v} = 103/4003 \times 10^{3} = 25.7 \text{ [mm]}$

従って, $M_p^r/N_y = 25.7 < M^r/N_y = 26.0$ となり, 貫入長比 ℓ_m を1.5とした場合でも機構 安定条件を満足することができない。

K型配置された BRB の場合,大梁接合部側の梁回転剛性は中剛性梁を満足する程度 に補剛して設計するのが原則と考えるが,設計上の制約から剛性が高められない場合は, 貫入長比を大きく取る等の対応により,低剛性梁としても設計が可能となる。ただし, 制振部材として積極的に BRB を降伏させ,大きなエネルギー吸収を期待する設計とす る場合には,低剛性梁として設計すると構面外不安定現象を生じる危険性があるため, 中剛性梁を満足する補剛を行うと共に,貫入長比を 1.5 程度以上確保する等の設計上の 配慮が必要となる。

7.3.4 高容量の BRB が通常の成の大梁に取付く場合の検討

検討対象とする K 型配置された BRB 付きフレームを図 7.9 に示す。スパン 6400mm(内 法スパン 5500mm), 階高 4880mm(内法高さ 3735mm)のフレームで,梁成が 1300mm の 大梁に降伏軸力 N_y =9000kN の BRB が取付く場合を考える。採用した BRB は 7.2 節の 設置例 2 と同じ断面である。

接合部の設計を通常の高力ボルト(F10T, M22)による摩擦接合とすると、片流れ配置 の場合と同様に、芯材塑性部の長さが確保できないので、図 7.8 に示すように、超高力 ボルト(F14T, M22)を用いて 3 列千鳥配置とする。この時、下部柱梁接合部側の接合部 長さ ξ_1L_0 は 1518mm となる。上部大梁接合部側は、取付く大梁を"低剛性梁"として、 接合部長さを大梁中心から取ると、 ξ_2L_0 は 1742mm、ブレース全長 L_0 は 5176mm とな り、 ξ_2 =0.337 となる。一方、取付く大梁を"中剛性梁"として、接合部長さを大梁下 端から取ると、 ξ_gL_0 は 975mm、ブレース全長 L_0 は 4409mm となり、 ξ_g =0.221 となる。

このように、本検討例においても低剛性梁としても接合部は長め(*ξ*₂=0.337)となるものの、設計可能な範囲と考えられるため、取付く大梁を中剛性梁として設計する場合と低剛性梁として設計する場合の両方の検討を以下に行う。

203

図 7.9 K 型配置された BRB の検討例(高容量の BRB が取付く場合)

(1) 中剛性梁として設計する場合

先程と同様に、中剛性梁以上の回転剛性を確保するための検討を 6.5 節で提案した簡 易的な回転剛性算出法を用いて行う。回転剛性を確保する対策として、先程と同じ方杖 付き小梁を大梁直交方向に設置することを考える。面外梁の成を2種類、長さを2種類、 センタースチフナーおよびサイドスチフナーの板厚を2種類設定し、大梁回転剛性の指 標となる大梁回転剛性と接合部回転剛性の比 K_{Rb}/K_{Rg2} と梁側接合部の無次元化回転 ばね剛性比_ξ κ_{Rg2} を算出する。算出した K_{Rb}/K_{Rg2} 'と_ξ κ_{Rg2} を表 7.10 に示す。また、スチ フナーの配置を図 7.10 に示す。

方杖タイン	Ĵ	K_{Rb} /	'K _{Rg2} '	_ξ Κ	Rg 2
赤れ初	面外梁	①PL-25+	①PL-40+	①PL-25+	①PL-40+
山25朵	長(mm)	2)PL-25	②PL-40	2)PL-25	②PL-40
LL 200-140-5 5-9	7200	0.62	0.79	0.09	0.10
H-298x149x5.5x8	3600	0.77	1.05	0.10	0.12
II 450-250-0-1(7200	0.94	1.38	0.11	0.13
H-430x230x9x16	3600	1.03	1.58	0.11	0.14

中剛性梁以上とするための閾値は 6.3 節の式(6.3.16)より以下となる。

 $a = \xi_2 / \xi_g - 1 = 0.337 / 0.188 - 1 = 0.79$

以上の検討により,大梁せいの 1/3 程度以上の梁成を有する方杖付き小梁を直交方向に 設置すると共に,センタースチフナーおよびサイドスチフナーを設け,その板厚 25mm 程度以上確保すれば,中剛性梁として,上部接合部長さを大梁下端からとして設計でき ることになる。 このような対策を行って、中剛性梁となる回転剛性を確保すれば、今回の場合も、接合部長さは大梁接合部側より柱梁接合部側のほうが長くなるが、 $\xi \kappa_{Rg2}$ が 0.11 程度と小さいため、構面外の機構安定性は安全側の仮定として、接合部長さは長い方、回転ばねは小さい方で検討を行うこととする。

無次元化回転ばね剛性比_{ξ} κ_{Rg} を 0.10 とし、貫入長比は ℓ_{in} =1.0 とすると、設計変数特性値および評価用特性値は表 7.11 のようになる。

表 7.11 高容量 BRB の K 型配置例の特性値(通常の梁成で中剛性梁の場合)

	設計変数	数特性值				評価用特性値	I	
接合部長さ比 <i>ξ</i>	座屈長さ比 L_0/L_k	貫入長比 L_{in}/W_1	回転剛性比 _ξ K _{Rg}	曲げ剛性比 γ	断面積比 A ₂ / A ₀	断面積比 A1 / A0	回転剛性比 LK _{Rr}	長さ比 L_k/W_1
0.344	0.602	1.0	0.10	2.49	1.45	1.31	1.28	16.8

これらの特性値から,設計用曲げモーメント M'/N_y を計算すると下記となる。ここで,先程と同様に,a+e=3mm, $s_r=1$ mmとし,面外変位としては層間変形角 1/100 に相当する $\delta_0=45$ mmと仮定している。

$$M^{r} / N_{y} = \frac{a_{r}}{1 - N_{cu} / N_{cr}^{B}} \left(\alpha_{d} - N_{cr}^{r} / N_{y} \right) + M_{0}^{r} / N_{y}$$

= $\frac{11.0}{1 - 11704 / 99436} \left(1.3 - 1808 / 9003 \right) + 2.31 \times 1.5 \times \frac{385}{355} = 13.7 + 3.8 = 17.5 \text{ [mm]}$

一方、拘束材端部の曲げ耐力は、座屈拘束材端部の曲げ耐力で決まり下記となる。

 $M_p^r / N_y = 464 / 9003 \times 10^3 = 51.5$ [mm]

従って, $M_p^r/N_y = 51.5 > M^r/N_y = 17.5$ となり,機構安定条件を満足している。 先程と同様に,ひずみ硬化係数 $\alpha_d = 1.5$ として検討を行うと以下の通りである。

$$M^{r} / N_{y} = \frac{a_{r}}{1 - N_{cu} / N_{cr}^{B}} \left(\alpha_{d} - N_{cr}^{r} / N_{y} \right) + M_{0}^{r} / N_{y}$$

= $\frac{11.0}{1 - 13504 / 99436} \left(1.5 - 1808 / 9003 \right) + 2.31 \times 1.5 \times \frac{385}{355} = 16.5 + 3.8 = 20.3 \text{ [mm]}$

一方、拘束材端部の曲げ耐力は、今度は芯材突出部の曲げ耐力で決まり下記となる。

 $M_p^r / N_y = 329 / 9003 \times 10^3 = 36.5$ [mm]

従って, $M_p^r/N_y = 36.5 > M^r/N_y = 20.3$ となり, ひずみ硬化係数 $\alpha_d = 1.5$ としても機構 安定条件を満足していることがわかる。

(2)低剛性梁として設計する場合

高容量の BRB の場合, 方杖付きの小梁を直交方向に配置すべきと考えるが, 何らかの理由で直交小梁の成が取れず, 梁成 300mm 程度の方杖付き小梁しか設置できない場合, 表 7.10 に示すように, K_{Rb}/K_{Rg2} , は 0.6 程度となり中剛性梁の剛性が確保できないため, 低剛性梁として検討する必要がある。この時大梁接合部側の $\xi \kappa_{Rg2}$, は 0.09 程度とさらに小さい値となる。接合部長さが長く, 回転剛性も小さい大梁接合部側で検討することとし, $\xi \kappa_{Rg2}$ =0.08, 貫入長比 ℓ_{in} を 1.0 として設計変数特性値および評価用特性値を算定すると表 7.12 のようになる。

	設計変数	效特性值				評価用特性値	Î	
接合部長さ比 <i>ぐ</i>	座屈長さ比 L_0/L_k	貫入長比 <i>L_{in} / W</i> 1	回転剛性比 _ξ K _{Rg}	曲げ剛性比 γ	断面積比 A2 / A0	断面積比 A1/A0	回転剛性比 LK _{Rr}	長さ比 L_k/W_1
0.337	0.707	1.0	0.08	2.49	1.45	1.310	1.50	16.8

表 7.12 高容量 BRB の K 型配置例の特性値(通常の梁成で低剛性梁の場合)

これらの特性値から、設計用曲げモーメント M'/N_y を計算すると下記となる。ここで、先程と同様に、a+e=3mm、 $s_r=1$ mm とし、 $\delta_0=45$ mm と仮定する。

$$M^{r} / N_{y} = \frac{a_{r}}{1 - N_{cu} / N_{cr}^{B}} \left(\alpha_{d} - N_{cr}^{r} / N_{y} \right) + M_{0}^{r} / N_{y}$$

= $\frac{12.0}{1 - 11704 / 63789} \left(1.3 - 1161 / 9003 \right) + 1.39 \times 1.5 \times \frac{385}{355} = 17.2 + 2.3 = 19.5 \text{ [mm]}$

一方、拘束材端部の曲げ耐力は、座屈拘束材端部の曲げ耐力で決まり下記となる。

 $M_n^r / N_v = 464 / 9003 \times 10^3 = 51.5 \text{[mm]}$

従って, $M_p^r/N_y = 51.5 > M^r/N_y = 19.5$ となり, 低剛性梁としても機構安定条件を満足していることが解る。

先程と同様に、ひずみ硬化係数 $\alpha_d = 1.5$ として検討を行うと以下の通りである。

$$M^{r} / N_{y} = \frac{a_{r}}{1 - N_{cu} / N_{cr}^{B}} (\alpha_{d} - N_{cr}^{r} / N_{y}) + M_{0}^{r} / N_{y}$$

= $\frac{12.0}{1 - 13504 / 63789} (1.5 - 1161 / 9003) + 1.39 \times 1.5 \times \frac{385}{355} = 20.9 + 2.3 = 23.2 \text{ [mm]}$

一方、拘束材端部の曲げ耐力は、今度は芯材突出部の曲げ耐力で決まり下記となる。

 $M_p^r / N_v = 329 / 9003 \times 10^3 = 36.5 \text{[mm]}$

従って, $M_p^r/N_y = 36.5 > M^r/N_y = 23.2$ となり, ひずみ硬化係数 $\alpha_d = 1.5$ としても機構 安定条件を満足していることがわかる。

特に高容量の BRB を K 型配置する場合は,大梁接合部側の梁回転剛性は中剛性梁を 満足する程度に補剛して設計するのが原則と考えるが,設計上の制約から回転剛性が高 められない場合は,低剛性梁として接合部長さを大梁中心から取るものとして検討を行 う必要がある。ただし,いずれの場合も大梁の面外方向の水平移動は拘束しなければな らないため,スラブが取付かない大梁等に BRB を K 型配置する場合は,直交方向に小 梁等を配置し,水平移動を拘束する必要がある。

これまで示してきたように、本評価手法を適用することにより、様々なタイプの BRB 配置、接合部条件に対して構面外機構安定性の検討をすることが可能となり、設計の自 由度がより広がるものと考えられる。
7.3.5 K型配置用 BRB の今後の課題

BRB を K 型配置する場合において,取付く大梁の回転剛性を何らかの理由で高めら れない場合の対処方法として,図 7.11 に示すように,芯材突出部にリブを付けて補剛 する,カラーを付ける等、拘束材端部の曲げ耐力を向上する方法が考えられる。また, 図 7.12 に示すように大梁接合部側の拘束材端部と芯材を固定して,芯材突出部の曲げ 剛性を補剛鋼管と同程度に補剛できれば,図 7.13 に示すような大梁接合部側の剛性を ピンとして回転剛性を期待しない設計も考えられる。特に,制振ブレースとして積極的 に早期に BRB を降伏させ,大きなエネルギー吸収を期待する設計とする場合で,ひず み硬化係数を α_d =1.5 程度以上考慮しなければならない場合等に有効となると考えられ る。今後の検討課題としたい。

図 7.11 芯材突出部の補剛例

図 7.12 K 型配置用 BRB

本章では超高層建物等に用いられている,片流れ配置および K 型配置された座屈拘 東ブレース(以降 BRB)を対象に,本論文で提案した構面外機構安定性の評価手法を 適用し,検証法の有効性を示すと共に,検討結果に基づき,望ましい接合部ディテール を提示した。以下に得られた知見を示す。

- 実際に用いられている片流れ配置された BRB を対象とした検討例により、本論文で 提案した機構安定評価手法の実用性を示した。また、特に超高層建物で設置事例の 多い高容量の BRB の接合部に関しては、超高力ボルトの採用や現場溶接接合の採用 等により、接合部長さを短くする設計上の配慮が必要なことを示した。
- 2) 実際に用いられている K 型配置された BRB を対象とした検討例により、本論文で 提案した機構安定評価手法の実用性を示した。BRB が成の大きな大梁に取付く場合 等,大梁接合部側の接合部長さが長くなる場合は、方杖付きの直交小梁を設ける等, 大梁の回転剛性を高める補剛をし、"中剛性梁"として接合部の設計を行う必要があ ることを示した。BRB が通常の成の大梁に取付く場合は、"中剛性梁"として設計 する方法だけではなく、貫入長比を大きくとることにより"低剛性梁"として設計 する方法も考えられることを提示した。なお、大梁の回転剛性を高める手法として 大梁両サイドにプレートを当て、日の字型の閉断面にする補強も有効であると考え るが、本章においてはより簡単なディテールで実設計での採用機会も多い、直交小 梁を設ける補剛方法を示した。何らかの理由で直交小梁が設けられない場合は、大 梁を閉断面化する補強方法が有効になると考える。
- 3) 制振部材として積極的に BRB を降伏させ、大きなエネルギー吸収を期待する設計と する場合には、ひずみ硬化係数 α_d =1.5 として機構安定性の検討を行う必要があり、 この場合、貫入長比を大きくする等の配慮が必要となる場合がある。特に K 型配置

で取付く大梁の回転剛性が小さい場合,構面外不安定現象を生じる危険性があるため,"中剛性梁"を満足する補剛を行うと共に,貫入長比を1.5程度以上確保する等の配慮が必要となる。

4) 以上の検討例を通じて、本論文で提案した評価手法により、様々なタイプの BRB 配置や接合部条件に対して、構面外機構安定性の検討を行うことが可能となり、多 様な設計が行えることを示した。

第7章の参考文献

 7.1) 木下智裕,聲高裕治,井上一郎,飯谷邦祐:十字形断面をもつ座屈拘束ブレース
 接合部の構面外曲げ剛性と降伏曲げ耐力,日本建築学会構造系論文集,第73巻, 第632号,pp1865-1873, 2008.10

第8章 結論

本研究では、座屈拘束ブレース(以降 BRB)の拘束材端部の曲げモーメント伝達能 カ、様々な接合部剛性、および構面外変形を考慮した BRB の構面外機構安定条件式を 誘導すると共に、この安定条件式に基づく BRB の機構安定性を視覚的にかつ簡便に評 価できる設計手法を提案した。また、実際の超高層建物で使用された BRB を対象に、 提案した設計手法の適用性を検討した。以下に本研究で得られた知見を示す。

第1章では,研究の背景と既往の関連研究,並びに本研究の目的について述べている。

第2章では,偏心率・高さ・崩壊形式の異なる8つの鉄骨架構の解析モデルにおいて 立体固有値解析および多方向静的増分解析を実施し各モデルの振動性状および変形性 状を確認した。また,水平二方向地震動入力下での時刻歴応答解析を実施し,建物に配 置された BRB における構面内-構面外最大水平応答変形の同時性を検討した。以下に得 られた知見を示す。

- 各解析モデルに対し多方向静的増分解析を実施し、降伏変位曲面を描いた結果、梁 降伏型の架構は降伏変位曲面が四角形状、柱降伏型の架構は降伏変位曲面が円形状 となり、降伏変位曲面は架構の崩壊形式に影響を受ける。
- 2) 今回設定した鉄骨架構に配置された BRB には、構面内-構面外の最大水平応答変形 が同時に生じる可能性があることを確認した。
- 3) 梁降伏型直交架構においては、並進振動が卓越し、地震動主軸が建物の軸から 45° 程度の方向にある場合、BRBの構面内-構面外の最大水平応答変形が同時に生じる 可能性がより高いと考えられる。一方、ねじれ振動が卓越する場合は、同時性が低 くなる傾向がある。
- 4) 柱降伏型直交架構においては,降伏変位曲面が円形状となるため,地震動主軸が建物の軸から45°程度の方向にある場合,架構が塑性化領域に入りやすく,かつ,応答変形が特定層に集中しやすいため,BRBの構面内-構面外の最大水平応答変形が同時に生じる可能性がより高くなると考えられる。

以上の知見より, BRB の機構安定性の検討においては,構面内-構面外最大水平応答 変形が同時に発生し得るものとして検討を行うべきであることがわかった。 第3章では,接合部を考慮した座屈拘束ブレースの機構安定条件式を提案し,強制面 外変形を伴う繰返し載荷実験によりその妥当性を確認した。以下に得られた知見を示す。

- 接合部を含めた座屈拘束ブレースの全体安定条件を,接合部端部に回転ばね,拘束 材端部に塑性ヒンジを有する簡易な線材モデルで評価し,構面外機構不安定を防止 する安定条件式を誘導した。これらの条件式は鋼構造座屈設計指針(2009)で述べら れている2つの設計思想にも対応する。
- 2) 繰返し載荷実験により、低剛性接合部で芯材補強部の拘束鋼管内への貫入長が短く、 端部クリアランスが大きい場合、安定した履歴性状を発揮する以前に機構不安定と なるが、貫入長が長く、クリアランスが小さい場合には安定した履歴性状を発揮す ることが確認された。このことは、低剛性接合部を有する座屈拘束ブレースの機構 安定性にとって拘束材端部での曲げモーメント伝達能力が大きな要素であること を示している。また、高剛性接合部を有する場合、貫入長が短い場合でも安定した 履歴性状を発揮することが確認された。
- 3) 提案した座屈拘束ブレースの構面外安定条件式は拘束材端部の曲げモーメント伝 達能力の影響や様々な接合部剛性に対応でき、実験結果との比較により概ねその妥 当性が確認できた。

以上の知見より, 接合部を考慮した座屈拘束ブレースの機構安定性を, 提案した条件 式により, 適切な安全率の設定の元, 実務的にも行うことができるようになった。

第4章では、ダブルウェブH形 BRB および二重鋼管型 BRB の構面外強制変形付繰返し載荷実験を実施し、第3章で示した拘束材端部の曲げ伝達能力を考慮した機構安定限界軸力評価式に対する整合性を確認した。以下に、得られた知見を示す。

1) 構面外方向の強制変形が層間変形角 1/100 程度の場合, $\xi \kappa_{Rg}$ が 0.03 程度しかない低 剛性の接合部を有するダブルウェブ H 形 BRB は、貫入長比が 2.0 と大きい場合で も等価軸歪 2.0%程度で機構が不安定となった。一方 $\xi^{\kappa_{Rg}}$ が 0.3 程度の中剛性以上 の接合部を有している場合、貫入長比によらず芯材軸歪が 3.0%に至るまで、同ブ レースは安定した履歴性状を示すことを確認した。

- 2) 二重鋼管型 BRB の場合,貫入長比 1.6 の試験体についてはピン間の等価軸歪 1.5% で3サイクル以上の安定した履歴性状を示す一方,貫入長比 0.6 かつクリアランス /貫入長比 0.025 の D3L0.6S2 では構面内に機構不安定現象が生じた。同じ貫入長 比 0.6 でクリアランスが半分の D3L0.6S1 では機構不安定現象は生じず,クリアラ ンス/貫入長比による違いが顕著に生じた。
- 3) 提案した BRB の安定限界軸力の評価値は、ダブルウェブ H 形 BRB、二重鋼管型 BRB ともに実験値と-30~+10%程度の精度で対応していることが確認され、既往の 研究結果も併せて、第3章において提案した機構安定条件式は様々な座屈補剛形式 の BRB に対して適応性があることが確認された。

以上の知見により,提案した条件式は様々な座屈補剛形式の BRB の構面外機構安定 性評価に適用できることが確認された。

第5章では,実際の建物に用いられている BRB および接合部ディテールを調査・分析し,本研究で提案した BRB の機構安定条件式中の各項の値に寄与する各種特性値を 特定すると共に, BRB の機構安定性を視覚的に評価できる手法を提案した。以下に得 られた知見を示す。

- 1) 実際に用いられている接合部ディテールの FEM 解析により,接合部端部の構面外 回転剛性を評価した結果,取付く柱梁の剛性の影響が大きく,面外変形を拘束する ためのリブを設けた場合においても,接合部端部が柱梁と回転剛で接合された場合 の回転剛性の半分程度以下となる場合があり,特に剛な接合部を評価する場合は, 柱梁を含めた接合部の構面外回転剛性の影響を考慮する必要がある。
- 2) 実際使われている BRB や接合部ディテールを調査・分析し、機構安定条件式の各項に寄与する特性値の内、主要な変動パラメータとしての設計変数特性値と一定値として取り扱える評価用特性値を特定した。また、設定した評価用特性値は、実際に多く用いられている BRB の機構安定性を安全側に評価できていることが確認された。
- 3) これらの特性値を用いて算定した拘束材端部位置での単位降伏軸力あたりの設計

218

用曲げモーメントと,単位降伏軸力あたりの拘束材端部の曲げ耐力の大小関係を面 外座屈安定性能曲線上で比較することにより,第3章で提案した BRB の機構安定 条件を条件式に数値を代入することなく視覚的に評価できることを示した。

以上の知見より,片流れ配置された BRB の機構安定性を簡便にかつ視覚的に評価で きるようになった。

第6章では,K型配置のように,両端の接合条件が非対称となる場合のBRBの機構 安定条件を導くと共に,その機構安定条件式を実際の設計に適用する場合の手法につい て提案した。また,柱梁側接合部に比べて,接合部回転剛性の評価が複雑となる梁側接 合部の回転剛性を簡易的に評価できる手法を提案した。以下に得られた知見を示す。

- 梁側接合部の回転剛性を、大梁部材軸周りの回転剛性と上部ガセットプレートの回転剛性を足し合わせた回転剛性と評価することにより、第3章の手法を用いて、接合部条件が非対称となる K型配置された BRBの機構安定評価式を誘導した。
- 2) 大梁の回転剛性に応じた上部回転剛性および接合部長の評価モデルを 3 種類提案 し,接合部座屈荷重との対応から各モデルの閾値を示した。また,閾値により各評 価モデルを使い分け,数値解析によりその評価法の妥当性を確認した。
- 3) 実設計を想定した K 型配置された BRB の梁側接合部の回転剛性を FEM 解析結果 に基づき算出し,梁の剛性モデルの閾値と無次元化回転バネ定数の検討を行った。 その結果,K型配置の梁接合部は,柱梁側接合部と比較すると回転剛性は低くなる 傾向にあること,直交小梁等により大梁自身の回転剛性を高めないと梁側の接合部 を高剛性化することは困難であること,GPL のみ高剛性化すると,座屈長さは大 梁中心を起点とする必要性があることが解った。
- 4) 梁側接合部の簡易的な回転剛性算出法について提案し、その妥当性を検証した。簡易評価法と FEM 解析との比較から、ウェブセンターのみにしかスチフナーがない場合は、下端フランジに局部的な変形が生じるため、簡易評価法は剛性を過大に評価する傾向にあるが、サイドスチフナーも設置した場合やガセットプレートフィンスチフナーと梁下フランジを直接溶接する場合では総じて、提案した簡易評価法は

219

FEM 解析結果とよく整合していることが解った。

以上の知見より, K 型配置された BRB に対しても,本研究で提案した検証法を用い ることにより,構面外機構安定性が評価できるようになった。また,梁接合部側の回転 剛性を比較的簡単な計算で評価できるようになった。

第7章では、実際の建物に用いられている、片流れ配置および K 型配置された BRB を対象に、本論文で提案した構面外機構安定性の評価手法を適用し、検証法の有効性を 示すと共に、検討結果に基づき、望ましい接合部ディテールを提示した。以下に得られ た知見を示す。

- 実際に用いられている片流れ配置された BRB を対象とした検討例により、本論文 で提案した機構安定評価手法の実用性を示した。また、特に超高層建物で設置事例 の多い高容量の BRB の接合部に関しては、超高力ボルトの採用や現場溶接接合の 採用等により、接合部長さを短くする設計上の配慮が必要なことを示した。
- 2) 実際に用いられている K 型配置された BRB を対象とした検討例により、本論文で 提案した機構安定評価手法の実用性を示した。BRB が成の大きな大梁に取付く場 合等、大梁接合部側の接合部長さが長くなる場合は、方杖付きの直交小梁を設ける 等、大梁の回転剛性を高める補剛をし、"中剛性梁"として接合部の設計を行う必 要があることを示した。BRB が通常の成の大梁に取付く場合は、"中剛性梁"とし て設計する方法だけではなく、貫入長比を大きくとることにより"低剛性梁"とし て設計する方法も考えられることを提示した。
- 3) 制振部材として積極的に BRB を降伏させ、大きなエネルギー吸収を期待する設計 とする場合には、ひずみ硬化係数 a_d =1.5 として機構安定性の検討を行う必要があ り、この場合、貫入長比を大きくする等の配慮が必要となる場合がある。特に K型 配置で取付く大梁の回転剛性が小さい場合、構面外不安定現象を生じる危険性があ るため、"中剛性梁"を満足する補剛を行うと共に、貫入長比を 1.5 程度以上確保 する等の配慮が必要となる。
- 4) 以上の検討例を通じて、本論文で提案した評価手法により、様々なタイプの BRB

配置や接合部条件に対して,構面外機構安定性の検討を行うことが可能となり,多 様な設計が行えることを示した。

以上の知見より,様々な接合部条件,様々な座屈補剛形式,様々な容量の BRB の構 面外機構安定性を本研究で提案した条件式により評価することができるようになり,安 全かつ適切な設計により,より自由度の高い構造設計を行うための技術的資料が提示で きたと考えている。 本研究に関連して発表した論文

【審査付論文】

第2章

 小崎均,長路秀鷹,松井良太,竹内徹:二方向地震動入力を受ける座屈拘束ブレース付鉄骨架構のブレース構面外応答,日本建築学会構造工学論文集,Vol.61B, pp.401-408, 2015.3

第3章

- 竹内徹, 小崎均, 松井良太: 拘束材端部の曲げモーメント伝達能力を考慮した座屈 拘束ブレースの構面外機構安定性評価, 日本建築学会構造系論文集, 第 78 巻, 第 691 号, pp.1621-1630, 2013.9
- Toru Takeuchi, <u>Hitoshi Ozaki</u>, Ryota Matsui, Fatih Sutcu : Out-of-plane stability of buckling-restrained braces including moment transfer capacity, Earthquake Engineering of Structural Dynamics, Vol.43, Issue 6, pp.851–869, 2014.5
- 第4章
- 4) 竹内徹, 小崎均, 松井良太, 三原早紀:ダブルウェブH形拘束材およびピン接合形 式二重鋼管を用いた座屈拘束ブレースの機構安定性, 日本建築学会技術報告集, Vol. 21, No.49, pp.1065-1070, 2015.10

第5章

 小崎均,小西克尚,松井良太,竹内徹:片流れ配置された座屈拘束ブレース機構安定条件の要因分析,日本建築学会構造系論文集,第79巻,第706号,pp.1919-1929, 2014.12

【口頭発表】

第2章

 長路秀鷹,竹内 徹,小崎 均,松井良太:二方向地震入力を受ける制振建物のブレース構面外応答,日本建築学会大会学術講演梗概集(近畿),C-1分冊,pp.1095-1096, 2014.9.12 - 9.14

第3章

 S. Mihara, T. Takeuchi, <u>H. Ozaki</u>, R. Matsui: Out-of-plane Stability of Buckling-restrained Braces Including Moment Transfer Capacity at Restrainer Ends, Proceedings of The 5th Asia Conference on Earthquake Engineering (Taipei, Taiwan), ID: 39(USB Memory), October 16th - 18th, 2014

第5章

- 3) 小西克尚,竹内 徹,松井良太,帆足勇磨,小崎 均,木村征也,井田茉利,大山 翔也:接合部を考慮した座屈拘束ブレースの構面安定性 -その 1 標準部材と無次 元化パラメータの導入-,日本建築学会大会学術講演梗概集(北海道), C-1 分冊, pp.1245-1246, 2013.8.30 - 9.2
- 4) 井田茉利,竹内 徹,松井良太,小西克尚,帆足勇磨,小崎 均,木村征也,大山 翔也:接合部を考慮した座屈拘束ブレースの構面安定性 -その 2 ブレース接合部 の回転ばね剛性の検討-,日本建築学会大会学術講演梗概集(北海道), C-1 分冊, pp.1247-1248, 2013.8.30 - 9.2
- 5) 樋口公平,竹内 徹,松井良太,小西克尚,帆足勇磨,小崎 均,木村征也,井田 茉利:接合部を考慮した座屈拘束ブレースの構面安定性 -その 3 ブレース接合部 の座屈耐力算定法に関する検討-,日本建築学会大会学術講演梗概集(北海道), C-1 分冊, pp.1249-1250, 2013.8.30 - 9.2
- 6) 大山翔也,竹内 徹,松井良太,小西克尚,帆足勇磨,小崎 均,木村征也,井田 茉利:接合部を考慮した座屈拘束ブレースの構面安定性 -その 4 座屈拘束ブレー スの弾性全体座屈軸力-,日本建築学会大会学術講演梗概集(北海道), C-1 分冊, pp.1251-1252, 2013.8.30 - 9.2
- 7) 市川 康,竹内 徹,松井良太,小西克尚,帆足勇磨,小崎 均,木村征也,大山 翔也:接合部を考慮した座屈拘束ブレースの構面安定性 -その 5 設計軸力時の座 屈拘束材端部の面外変位-,日本建築学会大会学術講演梗概集(北海道), C-1 分冊, pp.1253-1254, 2013.8.30 - 9.2

- 8) 木村征也,竹内 徹,松井良太,小西克尚,帆足勇磨,小崎 均,井田茉利,大山 翔也:接合部を考慮した座屈拘束ブレースの構面安定性 -その 6 接合部の回転ば ね剛性を考慮した設計用偏心曲げモーメント-,日本建築学会大会学術講演梗概集 (北海道), C-1分冊, pp.1255-1256, 2013.8.30 - 9.2
- 9) 帆足勇磨,竹内 徹,松井良太,小西克尚,小崎 均,木村征也,井田茉利,大山 翔也:接合部を考慮した座屈拘束ブレースの構面安定性 -その 7 強制面外変形に 伴う設計用付加曲げモーメント-,日本建築学会大会学術講演梗概集(北海道),C-1 分冊,pp.1257-1258, 2013.8.30 - 9.2
- 10) 小崎 均,竹内 徹,松井良太,小西克尚,帆足勇磨,木村征也,井田茉利,大山 翔也:接合部を考慮した座屈拘束ブレースの機構安定性 -その 8 芯材突出部の曲 げ耐力と設計用曲げモーメントの比較-,日本建築学会大会学術講演梗概集(北海道), C-1 分冊, pp.1259-1260, 2013.8.30 - 9.2
- 11) 小西克尚,竹内 徹,松井良太,帆足勇磨,小崎 均,木村征也,井田茉利,大山 翔也:接合部の塑性化を考慮した座屈拘束ブレースの安定性に関する研究 その1 接合部の曲げ耐力の算出,日本建築学会大会学術講演梗概集(近畿), C-1 分冊, pp.1079-1080, 2014.9.12 - 9.14
- 12) 帆足勇磨,竹内 徹,松井良太,小西克尚,小崎 均,木村征也,井田茉利,大山 翔也:接合部の塑性化を考慮した座屈拘束ブレースの安定性に関する研究 その 2 接合部の曲げ耐力の評価法,日本建築学会大会学術講演梗概集(近畿), C-1 分冊, pp.1081-1082, 2014.9.12 - 9.14
- 13) 小崎 均,竹内 徹,松井良太,帆足勇磨,小西克尚,木村征也,井田茉利,大山 翔也:接合部の塑性化を考慮した座屈拘束ブレースの安定性に関する研究 その 3 曲げ耐力と設計用モーメントの比較,日本建築学会大会学術講演梗概集(近畿), C-1 分冊, pp.1083-1084, 2014.9.12 - 9.14

第6章

- 14) 渡辺 厚,竹内 徹,松井良太,小西克尚,帆足勇磨,小崎 均:接合部を考慮した座屈拘束ブレースの機構安定性 その 10 実大座屈拘束ブレースを用いた実験計画,日本建築学会大会学術講演梗概集(関東),C-1分冊,pp.1085-1086,2015.9.4-9.6
- 15) 引野 剛,竹内 徹,松井良太,小西克尚,帆足勇磨,小崎 均:接合部を考慮した座屈拘束ブレースの機構安定性 その 11 実大座屈拘束ブレース実験の結果と検証,日本建築学会大会学術講演梗概集(関東),C-1分冊,pp.1087-1088, 2015.9.4-9.6
- 16) 長路秀鷹,松井良太,三原早紀,竹内 徹,小崎 均,小西克尚,帆足勇磨,大山 翔也:接合部を考慮した座屈拘束ブレースの機構安定性 その12 K型配置に対す る評価式の導出および実験計画,日本建築学会大会学術講演梗概集(関東),C-1分冊, pp.1089-1090, 2015.9.4 - 9.6
- 17) 竹内 徹,松井良太,三原早紀,小崎 均,小西克尚,帆足勇磨,大山翔也:接合部を考慮した座屈拘束ブレースの機構安定性 その 13 K型配置実験の結果と数値解析,日本建築学会大会学術講演梗概集(関東),C-1分冊,pp.1091-1092,2015.9.4-9.6
- 18) 小崎 均,竹内 徹,松井良太,小西克尚,木村征也,井田茉利,大山翔也:接合部を考慮した座屈拘束ブレースの機構安定性 その 14 梁接合部の回転剛性について、日本建築学会大会学術講演梗概集(関東)、C-1分冊、pp.1093-1094、2015.9.4-9.6
- 19) 大山翔也,竹内 徹,松井良太,帆足勇磨,小崎 均,小西克尚,木村征也,井田 茉利,:接合部を考慮した座屈拘束ブレースの機構安定性 その 15 梁接合部回転 剛性算出のための簡易モデル,日本建築学会大会学術講演梗概集(関東), C-1分冊, pp.1095-1096, 2015.9.4 - 9.6

【本研究関連以外の発表論文】

- 鈴木敏郎,小河利行,小崎 均:個材の座屈,塑性化で耐力の定まる複層立体トラ ス平板の大変形解析,日本建築学会構造系論文集,第359号,pp.26-34,1986.1
- 2) 鈴木敏郎,五十嵐規矩夫,薩川恵一,小崎 均:中立軸補強による極めて短い梁の 塑性変形能力改善,日本建築学会構造系論文集,第 589 号,pp.157-164, 2005.3
- 村上勝英,北村春幸,小崎均,山梨知彦:中間層に免震層を持つ建物の設計,日本建築学会技術報告集,No.7,pp.51-56,1999.2
- 4) 竹内 徹,松井良太,三原早紀,大家貴徳,岡本勇紀,小崎 均,岩田 衛:鋼モ ルタル板を用いた座屈拘束ブレースの構面外機構安定性,日本建築学会技術報告集, Vol.20, No.45, pp.569-574, 2014.6
- 5) <u>Ozaki Hitoshi</u>, Kouno Toshihiko, Asakawa Takeshi: HYBRID STRUCTURE REDUCING PERMANENT DRIFT, 38th World Seminar on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures, Yerevan, Armenia, October 6-10, 2003
- 6) <u>Hitoshi OZAKI</u>: CHALLENGING APPLICATIONS OF SEISMIC DAMPERS FOR RETROFIT OF TALL BUILDING, The 14th World Conference on Earthquake Engineering, Beijing, China, October 12-17, 2008
- 7) 鵜飼邦夫、山口 猛、高垣利夫、小崎 均:H形状の連層鋼板耐震壁(ウエブにあた る部分を市松状配置)を有する超高層ビルの構造設計、日本建築学会大会学術講演梗 概集(近畿)、C分冊、pp.951-952、1987.10
- 8) 小崎 均,北村春幸,森川尚一,鈴木重信,藤田隆史,藤田 聡,古屋 治:円筒 型高減衰ゴムダンパを用いた制震構造の開発 その 1 実建物への適用例,日本建 築学会大会学術講演梗概集(近畿), B-2 分冊, pp. 861-862, 1996.9
- 9) 鈴木重信,森川尚一,北村春幸,小崎 均,藤田隆史,藤田 聡,古屋 治:円筒 型高減衰ゴムダンパを用いた制震構造の開発 その2 実大ダンパの動的加力実験, 日本建築学会大会学術講演梗概集(近畿), B-2分冊, pp. 863-864, 1996.9
- 10) 窪田伸, 岡田忠義, 山口種美, 木原碩美, 小崎 均, 山根尚志: 建築構造用高性能

780N/mm²鋼の特性を活かせる構造の検討,日本建築学会大会学術講演梗概集(近畿), C-1分冊, pp. 711-712, 1996.9

- 11) 小崎 均,向野聡彦,渡辺一成,藤田隆史,芳沢利和,鈴木重信:超高層免震建物 に適用する天然ゴム系積層ゴムに関する研究 その 1 積層ゴムに必要とされる性 能の抽出,日本建築学会大会学術講演梗概集(東北), B-2 分冊, pp. 639-640, 2000.9
- 12) 鈴木重信,菊地隆志,芳沢利和,藤田隆史,向野聡彦,小崎 均:超高層免震建物 に適用する天然ゴム系積層ゴムに関する研究 その 2 積層ゴムの引張実験,日本 建築学会大会学術講演梗概集(東北), B-2 分冊, pp. 641-642, 2000.9
- 13) 牧野俊雄,鈴木敏郎,五十嵐規矩夫,小崎 均,中 哲也:高力ボルト摩擦接合されたH形鋼梁継手部の耐力と変形性状に関する研究 その1. 実験概要および基本 性状,日本建築学会大会学術講演梗概集(東北), C-1分冊, pp. 577-578, 2000.9
- 14) 小崎 均,鈴木敏郎,五十嵐規矩夫,常木康弘,田村欣也:せん断曲げを受けるH
 形鋼梁の最大耐力決定要因と塑性変形能力に関する研究 その1 最大耐力決定要
 因,日本建築学会大会学術講演梗概集(関東),C-1分冊,pp. 577-578, 2001.9
- 15) 牧野俊雄,鈴木敏郎,五十嵐規矩夫,常木康弘,小崎 均:高カボルト摩擦接合部のすべり挙動に関する研究,日本建築学会大会学術講演梗概集(関東), C-1 分冊, pp. 981-982, 2001.9
- 16) 小崎 均,常木康弘,五十嵐規矩夫,鈴木敏郎:中立軸補強された境界梁の塑性変形能力 境界梁のせん断補強 その 2,日本建築学会大会学術講演梗概集(北陸), C-1 分冊, pp.473-474, 2002.8.2 - 8.4
- 17) 向野聡彦, 小崎 均, 朝川 剛, 田原一徳:ハイブリッドチューブ構造による高層 集合住宅 その1 計画概要,日本建築学会大会学術講演梗概集(北陸), C-1 分冊, pp. 981-982, 2002.8.2 - 8.4
- 18) 田原一徳,向野聡彦,小崎 均,朝川 剛:ハイブリッドチューブ構造による高層 集合住宅 その2 設計の概要,日本建築学会大会学術講演梗概集(北陸),C-1分冊, pp. 983-984, 2002.8.2 - 8.4
- 19) 朝川 剛, 向野聡彦, 小崎 均, 田原一徳: ハイブリッドチューブ構造による高層

集合住宅 その3 解析検討概要,日本建築学会大会学術講演梗概集(北陸), C-1分冊, pp. 985-986, 2002.8.2 - 8.4

- 20) 飯田智裕,鈴木敏郎,五十嵐規矩夫,小崎 均,船場 琢:せん断崩壊型H形鋼部 材の塑性変形能力改善に関する研究 その2 繰返し載荷実験,日本建築学会大会 学術講演梗概集(東海), C-1分冊, pp. 599-600, 2003.9.5 - 9.7
- 21) 小崎 均,鈴木敏郎,五十嵐規矩夫,船場 琢,飯田智裕:せん断崩壊型H形鋼部 材の塑性変形能力改善に関する研究 その3 補強効果,日本建築学会大会学術講 演梗概集(東海), C-1分冊, pp. 601-602, 2003.9.5 - 9.7
- 22) 小崎 均, 常木康弘, 鈴木敏郎:極低降伏点鋼材による薄鋼板壁のせん断座屈と座 屈後変形, 日本建築学会大会学術講演梗概集(北海道), C-1 分冊, pp. 847-848, 2004.8.29 8.31
- 23) 石井正人,伊藤浩資,小崎 均,引野 剛,笠井和彦:鋼構造建物における制振の効果を検証する震動台実験の予備検討 E-ディフェンス鋼構造建物実験研究 その 37,日本建築学会大会学術講演梗概集(中国), C-1分冊, pp. 865-866, 2008.9.18 - 9.20

最初に,筆者の東京工業大学建築学科時代に,建築構造の面白さや物事に取組む姿勢 を教えていただき,その後も長きにわたり御指導を賜りました恩師である東京工業大学 名誉教授 鈴木敏郎博士に心より感謝申し上げます。そして,東京工業大学教授 小河利 行博士には,学部生時代からの非常に長きにわたり,終始懇切丁寧な御指導と励ましを 賜りました。ここに,謹んで厚く御礼申し上げます。また,BRB の開発者でもあり, 終始適切なご助言と励ましをいただきました東京工業大学名誉教授 和田章博士に深く 感謝いたします。

本論文をまとめるにあたり、そのきっかけを作っていただくと共に、終始適切なご指 導・ご助言ならびに温かい励ましをいただき、論文をより良い方向に導いていただいた 東京工業大学教授 竹内徹博士に心より感謝の意を表します。また、東京工業大学助教 松井良太博士には研究を通じて終始適切なご指導・ご助言をいただきました。さらに、 論文審査を通じて、東京工業大学教授 坂田弘安博士、同准教授 堀田久人博士、五十嵐 規矩夫博士には貴重なご意見をいただきました。ここに謹んで御礼申し上げます。

本研究は,筆者等が新日鉄住金エンジニアリング㈱と共同で,BRB の設計法の確立 を目指して行った BRB 研究会での成果も含めてまとめたものであります。特に新日鉄 住金エンジニアリング 小西克尚博士には,本研究をまとめるにあたり多大なるご協力 をいただきました。また,研究会のメンバーである新日鉄住金エンジニアリング 帆足 勇磨氏,日建設計 木村征也氏,井田茉利氏,大山翔也氏には様々なご協力をいただき ました。さらに,実験や解析を行うに当たっては三原早紀氏(当時),長路秀鷹氏を始め とする,竹内研究室の皆様から常に様々なご協力をいただきました。ご協力をいただき ました新日鉄住金エンジニアリング㈱の関係各位および竹内研究室の関係各位に深く 感謝いたします。

最後に、本研究の機会を与えて下さり終始温かい励ましをいただいた日建設計取締役 常木康弘博士をはじめ日建設計、日建ハウジングシステム、ならびにご支援いただいた 構造設計グループの皆様に深く感謝いたします。

小﨑 均