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The modern approach for developing software in service robotics is through the use of robotics mid-
dleware platforms. Although the main concept is similar across platforms, their discrepancy among
abstractions hinders the composition and administration of highly integrated systems, resulting in us-
ability issues for the developers. We identify that this can be improved by normalizing the abstractions
of the heterogeneous systems at runtime. We propose a framework that sets the concept of “Roles” to
define a novel method of creating and reasoning system models by normalizing abstractions to pro-
duce practical platform-agnostic representations of systems, which is implemented in a cross-platform
infrastructure and a GUI. This paper verifies and validates the functionality and usability (by bench-
marking) of the proposed framework through a case-study using a real and a simulated mobile robot.
The results from usage trials with test subjects showed improved usability, and demonstrated the
overall advantage of using the proposed approach.
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1. Introduction

Service robots’ application domain is broader than industrial robots; according to ISO-8373, they
are autonomous actuated machines that perform useful tasks for humans or equipment, exclud-
ing industrial automation. Since their required capabilities are usually developed independently
in the respective research fields, their software composition tends to be heterogeneous. Due to
this, there have been various efforts at making the heterogeneity feasible (i.e. middleware, cross-
platform interfaces, and formal component models). However, the impact this has on usability
when the developers perform administration tasks in such heterogeneous and highly integrated
robotic systems has not been thoroughly analyzed. Defined in accordance with ISO-9241, us-
ability is: the effectiveness, efficiency and satisfaction with which the users (i.e. developers) can
achieve specified goals (i.e. compose and administer robotic software systems) in particular en-
vironments (i.e. the development platforms). We identified that this kind of usability can be
achieved through the normalization at runtime of the different abstractions employed by each
software package and their development tools. This is valuable during the prototyping stage of
a robotics application to increase the usability of the involved software and tools, allowing the
developers to unhesitatingly work with the systems and focus on the actual applications that
they want to build and test.

Moreover, by having a method of normalizing software’s abstractions at runtime, the creation
of a global knowledge database that curates the best solutions for robotics software becomes
possible, indicating which software elements and platforms (and associated dependencies) are
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Table 1. List of Robotics Middleware projects with development dates

Projects Year Projects Year

NASREM 1980s MS. Robotics Dev. Studio, MARIE, RSCA,
2006

OPEN-R, SmartSoft 1990s Sensor Data Proc. Middleware, WURDE
CLARAty, Player/Stage 2000 Honda’s Dist. Humanoid Robots Middleware,

2007MIRO, OROCOS, ORiN,
2002

KAIST’s Middleware, KOMoR, PEIS Kernel,
ERSP, YARP, Pyro OPRoS, ASEBA, ROS
URBI 2003 LabView (Robotics Module) 2009
ORCA, Webots 2004 MOOS-IvP 2010
JAUS, CAMUS, RT-Middleware,

2005
CoHoN, Kukanchi 2011

iRobot AWARE, RoboFrame, Remote Data Transm. Middlew. for Telerob., DARC 2013
UPnP Robot Middleware HAMSTER 2014

Figure 1. Accumulative number of existing robotics middleware projects by year.

more suitable for each part of the intended application, how they could be interfaced, and even
benchmarking them. Therefore, we would like to contribute to the study of standards for highly
integrated robotic systems.

Ideally, it should be possible to use any software element from any platform without restric-
tions, directly at runtime to avoid reinventing existing software elements (i.e. refactoring code),
as if they were part of a single environment, where the administration methods for the heteroge-
neous system remain constant independently from the nature of its parts. Keeping a small set of
abstractions as much as possible through normalization allows to generalize specific administra-
tion tasks. The number of possible paths for performing administration tasks on a heterogeneous
system depends on various factors. When a single platform is used for creating a robotic sys-
tem, its administration method relies on the set of abstractions provided by the development
platform, the abstractions introduced by the developers for a specific application, which depend
on the developer itself and on how customizable the platform is (e.g. if it provides a component
model or not, as well as the model’s manipulability and restrictiveness), and how restrictive their
OS and/or hardware dependencies are. However, when two or more platforms become involved
in the creation of a single robotic system (i.e. a highly integrated system), the number of ab-
stractions increases, multiplying the amount of possible paths to take for a single administration
method, making it daunting for the developers to work with the system. Various approaches for
normalizing abstractions in different contexts and with different scopes are presented next.

Robotics Middleware:
Roughly speaking, middleware is a “glue” for joining a distributed set of software elements
to build larger software applications. This allows the reuse, to some extent, of such
software elements in different applications because they employ the same base abstrac-
tions. Formerly, middleware has been employed for various other purposes than robotics.
Today, robotics middleware has become the modern approach for creating software in

2



May 4, 2016 Advanced Robotics AECL˙AdvancedRobotics2016

the robotics community, enabling the collaborative development of complex systems and
opening paths for new technology, currently existing more than 30 projects (Table 1
[1–9]). In the late 1990s open-source platforms began to appear (e.g. Player/Stage [10]).
Later, emerging fields such as cloud robotics (e.g. Rapyuuta [11, 12] and RSi-Cloud [13]
using RSNP [14]), started to adopt features from middleware for their development. Then,
between 2007 and 2008 (Fig. 1), the number of middleware projects per year decreased,
indicating a possible beginning of the consolidation of concepts in this field. Generally,
since in robotics middleware a heterogeneous software system is built and used inside a
single platform, the platform’s abstractions are available natively only for the software
elements designed under the middleware’s policies. Due to the vast number of platforms
with distinct aims, design policies and abstraction levels, there has been a discussion ([2],
[9] and [15]) on the problems derived from the heterogeneity of highly integrated systems
that prevent having a one-for-all solution or a de-facto standard in robotics middleware.

Bridging Communications:
To cope with the heterogeneity required in highly integrated systems, some middleware
platforms are now providing communication bridges to support other platforms on
their own. This is another level of normalization of abstractions that involves distinct
middleware platforms, consisting on parsing and/or mapping abstractions between the
participant platforms, and can be done through a software interface which may or may
not use an intermediate communication protocol. This is the case of ROS-Bridge [16],
which enables communication between ROS and software elements developed in another
platform. Nevertheless, this is not a generalized solution, targeting and centering develop-
ment in ROS. On the other hand, MARIE [17] proposed a set of common adaptors with
basic managers to bridge communications among software elements in different platforms.
However, to operate and monitor both software elements and utilized platforms, it is
still complicated and tedious to deal with each of the internal platforms’ administration
methods and each possible task combination. Moreover, the integration needs to be
done by specialists in this field, which is still prone to ad-hoc implementations. These
projects provided valuable solutions that break communication barriers, but do not take
into account the effect that bridging has for the developers on the overall usability when
administering the highly integrated system.

Formalized Component Models:
A normalization of abstractions targeting a wide compatibility among platforms can be
done during the early development stage of software elements through formalized compo-
nent models. This way of normalizing abstractions encourages “best practices” for pro-
gramming robotics software, making the developers to follow methodological patterns
when developing software elements for different middleware platforms, allowing to port
code among them. A clear separation of concerns is required to highlight the abstraction
similarities among platforms; there being four main concerns (4Cs) identified by Radestock
and Eisenbach [18]: computation, coordination, communication and configuration. Exam-
ples of formalized models are the GenoM [19] and BRICS [20] projects. GenoM proposes
formal descriptions to generate a software element template independently from the tar-
geted middleware platform through the GenoM3 tool, where it is also possible to apply the
BIP methodology [21] for the development of real-time layered components. As for BRICS,
the composition concern is introduced and the BRICS Component Model (BCM) was pro-
posed, applying the four levels of abstraction defined by the Object Management Group
(OMG) [22]; through the BRIDE tool, templates can also be generated to create software
elements on the supported middleware platforms. Both projects offered good approaches
for the cross-platform normalization issue. However, since this approach is targeted to early
software development stages, it would imply to refactor the already available software el-
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ements to make them work natively on a single platform, making it difficult to use the
models in a direct runtime approach when a highly integrated system is required to be
built from existing parts and off-the-shelf components.

1.1 Research objective

The objective of our research is to set the bases for switching the “common ground” of robotics
software composition from a platform-driven level (i.e. relying on a particular platform that
defines its own abstractions) to a model-driven level (i.e. relying on a model that defines nor-
malized abstractions to be applied on any platform), focused on administering highly-integrated
heterogeneous robotic systems. We identified from the previous approaches (middleware, bridging
interfaces, and component models), that it is necessary to normalize at runtime the abstractions
available in the existing platforms to compose and use highly-integrated systems without the
need to refactor existing systems, thereby improving the usability in the administration of the
employed set of software and development tools. To embody this normalization concept, as im-
plied in [7] and [15], interoperability among platforms is a main requisite. This is achieved when
data and services can be accepted from/provided to different parties, and when the means to ma-
nipulate such interactions are provided. Thus, the implementation of the proposed normalization
method must comply with the following three requirements:

(1) Piping resources from one system to another: Bridged connections across platforms and a
normalized system model can be combined to have common abstractions among platforms
at runtime, minimizing the use of ad-hoc connection links.

(2) Executing basic commands in an integral way: Since there will be many specialized soft-
ware subsystems that work properly on a certain platform, we need a way of executing
basic commands on the participant platforms to issue services in a unified way.

(3) Operating the integral system: A front-end for manipulating the highly-integrated sys-
tem’s data and service interactions is provided (e.g. in a debugging task), where the user
expects it to have higher usability than utilizing the development tools independently.

Therefore, we propose the Framework for Integration of Elements and Resources by Roles
(FIERRo): it sets the paradigm of “Roles” to define a novel method of creating and reasoning
a system model by normalizing abstractions of middleware-based software into elements and
resources, where mappings among them are set to compose a heterogeneous system at runtime.
Then, platform-agnostic models of a robotic software system are produced, allowing the develop-
ers to use the system straightforwardly at runtime through its implementation in a cross-platform
infrastructure and a graphic user interface, which are introduced in the following section.

1.2 General Overview

Our proposals can be outlined through the previously introduced 5 concerns ([18] and [22]):

(1) Composition: Defines how the system is coupled and could be coupled to others.
• The Framework for Integration of Elements and Resources by Roles (FIERRo) (Sec-

tion 2) is employed to compose a highly-integrated robotic system through the Hy-
perBot GUI (Section 3), where the system can be visualized and manipulated with
the use of a diagram built from Roles.

(2) Communication: Defining how the results of computations are being communicated.
• Along with each middleware’s protocol, we employ our Intelligent Cross-Platform In-

terface (ICPI) (Section 3), the runtime cross-platform infrastructure that implements
FIERRo for administering and reasoning the highly-integrated system.

(3) Configuration: Setting parameters to define element behaviours.
• Done through middleware services and/or configuration files.
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Figure 2. Layers of the proposal and their pertinent concerns.

(4) Coordination: Indicating when the elements must change their behaviour.
• Achieved through the subsystem’s/software element’s internal structure (e.g. state

machines).
(5) Computation: Processing core functions.

• Done by the software elements inside the middleware platforms.

To summarize: in a system the software elements are in charge of the computation and coordi-
nation, the middleware platforms provide services for the communication and configuration while
assisting the coordination, the ICPI augments the communication, and the FIERRo (through
HyperBot) enables the composition (Fig. 2).

We employed two different modern middleware platforms to carry out a proof of concept and
a usability test (Section 4). They were selected due to their relevance in the robotics community:

• Robot Operating System (ROS) [23]: Released in 2007 by Willow Garage, now maintained
by the Open Source Robotics Foundation [24]; it actively promotes the collaborative de-
velopment of robotics software.
• OpenRTM-aist [25]: Implements the RT-Middleware’s (RTM) RT-Component (RTC) spec-

ification [26], established as standard in 2008 by OMG [27] and the Japanese AIST; it
defines software design patterns and seeks for system reliability.

Our test implementations will be based on the integrated use of both platforms for specific
tasks, performed by test subjects. Conclusions are discussed thereafter (Section 5).

2. Framework for Integration of Elements and Resources by Roles (FIERRo)

This framework is pertinent to the composition concern, as we recognize the importance of
reusing elements from different platforms (composability), while keeping predictable behaviours
once the behaviours of the other elements are known (compositionality). The general concept of
our framework is to create a dynamic and flexible relational database holding the composition
of the system. There are many “elements” that compose a robotic system during an application
lifecycle, independently from the platform(s) used. In this context, an element is: a normalized
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abstraction for any entity inside a middleware platform (and if necessary, its complementary
tools). Elements can become “resources” when they can be resolved, accessed and retrieved;
typically possible through an access point (e.g. a URL address). Then, a robotic system is
composed of a set of elements (and resources) with explicit or implicit relationships among
them. We are providing a means to allow the elements in charge of the other 4Cs to interact
with each other, regardless of their nature.

2.1 Composing Systems by Roles

By definition, a “Role” is a customary function. The purpose of a Role in this context is to
group a set of elements that compose an activity [28]. We define Roles as a “Subject-Verb-
Object” (SVO) sentence (Fig. 3), a widely used word order [29]. Verbs are actions performed by
an object (i.e. subject) over another (i.e. direct object). Therefore, the “object” and “action”
entities are derived. Such entities are related to elements (and resources) composing them:

• Objects: Represent a thing in the system/environment (e.g. a motor, a ball, etc...) and are
related to elements that represent data about them in various formats (e.g. data streams,
static literal values, files, etc...).
• Actions: Represent performed processes (e.g. to move, to bounce, etc...) and are related

to elements that represent runnable software, serving the robot to perform the intended
action (e.g. executable files, firmware, scripts, etc...).

The scope of a Role can range from small subsystems comprised of a few pieces of software to
bigger subsystems that involve the use of an entire platform for their exclusive execution. The
use of Roles allows the composition of systems out of subsystems.

An element can have many representations and access points that could be scattered among the
different objects and actions due to the heterogeneous nature of the system. For this, mappings
between those representations and access points are made to achieve inter-element associations
(e.g. associating data related both to an action and an object). As an example, let a Role
be “GamePad-Drive-Motors” (Fig. 4). The “GamePad” object is related to the data set named
COMMAND, which in turn has “AXIS 0” and “AXIS 1” data fields. Likewise, the “drive” action
is related to the “GamePadX” software element, which has “Port 5” and “Port 8”. Since the
AXIS 0 and AXIS 1 data fields are intended to represent the same data as Port 5 and Port 8
correspondingly, a mapping between these element pairs can be created, indicating that AXIS 0
and AXIS 1 are synonyms of Port 5 and Port 8 respectively. Mappings are not limited to one-
to-one relationships, nor to elements inside a Role, allowing mappings with elements that are
part of other Roles. Elements and their mappings help in the normalization of abstractions.

2.1.1 Chaining Roles

In a system, each subsystem is assigned to do a specific task (having its own dependencies
and resources), while maintaining a link for interaction with the other subsystems that may
or may not be distributed in separate platforms. Here as Roles allow the grouping of elements
to form distinct subsystems regardless of their nature, a robotic system can be composed by
chaining Roles together (Fig. 5). After chaining Roles and creating additional mappings that
help to normalize abstractions, a model describing the composition of the software system is
created and can be represented in a diagram.

2.2 Serialization

To store and retrieve the system composition made by using Roles, a way to serialize this
information is needed. For encoding Roles, objects, actions, mappings and other elements, we
selected the Resource Description Framework (RDF), a standard for encoding metadata and
other knowledge on the Semantic Web [30] which is well-suited to our framework’s general idea.
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Figure 3. A Role definition.

Figure 4. Example Role: Gamepad-Drive-Motors.

Figure 5. Chaining Roles.

This structured information can be spread in a distributed and decentralized manner. Items
are stated in the form of Uniform Resource Identifiers (URI); for instance, every Role, object,
action and element in our framework can be represented as a URI. Through RDF, it is possible
to define elements and state their type by using the “rdf:type” predicate arc. Custom predicate
arcs (i.e. properties) can be declared to define ontologies. For this FIERRo implementation,
the “fierro” namespace was defined with the initial possible properties (and types) described
in Table 2. For formatting, the RDF/XML specification was used. An example of an RDF
definition for a Role is shown in the following listing (other elements can be defined similarly):

<?xml version="1.0"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:fierro="http://www-robot.mes.titech.ac.jp/fierro#" >

<rdf:Description

rdf:about="http://www-robot.mes.titech.ac.jp/MYSUBJECTmyverbMYOBJECT">

<rdf:type rdf:resource="http://www-robot.mes.titech.ac.jp/fierro#role"/>

<fierro:ID>MYSUBJECTmyverbMYOBJECT</fierro:ID>

<fierro:subject rdf:resource="http://www-robot.mes.titech.ac.jp/mysubject"/>

<fierro:action rdf:resource="http://www-robot.mes.titech.ac.jp/myverb"/>

<fierro:directObject rdf:resource="http://www-robot.mes.titech.ac.jp/myobject"/>

</rdf:Description>

</rdf:RDF>
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Table 2. FIERRo namespace properties (and types)

Item Type Properties (from Type col.)

Role role (a) (b), (c), (d), (e), (q)
Object (Subject & Direct Object) object (b), subject (c), directObject (d) (e), (f), (i), (q)
Action action (e) (b), (d), (k), (f), (i), (q)
Data data (f) (g), (q)
Structured (or Hierarchical) Data structuredData (g) (h), (q)
Structured Data Field field (h) (q)
Service service (i) (j), (q)
Operation operation (j) (q)
Software software (k) (l), (q)
Software Element softwareElement (l) (m), (n), (o), (p), (q)
File file (m) (q)
Executable file, script, firmware process (n) (q)
Function or method function (o) (p), (q)
Data Port or Argument port (p) (q)
Mapping mapping (q) any of the above

2.3 Administration by Roles method

To enable the administration of the defined Roles (thus the system in general, including the
participating software elements and platforms), a reasoning mechanism is required. This method
serves for that purpose; it has been revised several times during the course of our research. While
there can be various types of queries to the system (e.g. getting and setting data, piping resources,
initializing and executing software) the common step for them is to resolve the pertinent elements
in the system (i.e. checking for their existence and location) to complete the query. This is
discussed in the next subsection (for implementation, see section 3.2.2).

2.3.1 Resolution of elements

Elements (and resources) in the system can be resolved through propositional calculus. Our
framework defines a set of base premises for reasoning the robotic system’s composition. As for
the Role level, the base premises are:

∀ R, O, A; where: R:= a Role, O:= an Object, A:= an Action

(R→ Oi) ∧ (R→ A) ∧ (R→ Oi+1) (1)

Oi → A (2)

A→ Oi+1 (3)

These three initial premises state that there must be one action and two objects for a Role to
exist, also that the existence of a first object implies an action, and that an action implies the
existence of a second object. Each object and action are associated with elements that describe
them, which in turn can be associated with other elements. Therefore, the following premises
can be used:

∀ O, A, E; where: O:= an Object, A:= an Action, E:= an Element

O → E (4)

A→ E (5)
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Ej → Ek (6)

The three premises shown above state that for an element to be declared, there must be an
object, an action or another element already declared. For instance, when mappings are created
between elements, premise (6) applies.

Taking the previous example of the Role “GamePad-Drive-Motors” (Fig. 4), we may want
to retrieve the data represented by the “AXIS 0” element. For this, the query engine needs to
know the resources: which (data) port is to be accessed, which running process contains this
port (e.g. a software element), and where the process is hosted (the host is represented by
a Role; the hosting mechanism is summarized in section 3.2.2). First, the “Port 5” and the
“GamePadX” elements can be resolved by knowing there is an “AXIS 0” element:

AXIS 0 : Starting Premise (7)

AXIS 0→ Port 5 : Premise(6) (8)

GamePadX → Port 5 : Premise(6) (9)

Port 5 : Modus Ponendo Ponens(7, 8) (10)

GamePadX : Modus Ponendo Ponens(9, 10) (11)

Then, to know where the “GamePadX” process is hosted, the “GamePad-Drive-Motors” Role
can be resolved as follows:

GamePadX : Starting Premise (12)

Drive→ GamePadX : Premise(5) (13)

GamePad-Drive-Motors→ Drive : Premise(1) (14)

Drive : Modus Ponendo Ponens(12, 13) (15)

GamePad-Drive-Motors : Modus Ponendo Ponens(14, 15) (16)

Finally, it can be concluded that the “Port 5” exists and can be accessed by making a call to the
“GamePadX” process through the “GamePad-Drive-Motors” Role, which is the host. A similar
procedure is followed for other types of queries.

As for the implementation of this method, in a serialized Role an RDF statement can be seen as
a premise, which can be used to make inferences from other stated premises as described above.
For this, we suggest the use of an SPARQL engine to automate this process, where SPARQL is
a semantic query language for RDF databases [31]. The implementation of this into the ICPI is
discussed in the following section.
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Figure 6. The Intelligent Cross-Platform Interface. The Role definitions are input through the HyperBot GUI, which
communicates with the Administration by Roles module (implementing FIERRo) for processing them, as well as querying
the system and transferring data requested by the user. The Administration by Roles module uses the ICPI Comm. module
to access the clients to complete queries when required.

3. Intelligent Cross-Platform Interface (ICPI)

This interface deals to some extent with the communication concern by providing a common
communication protocol when required by the instantiated subsystems. The ICPI provides the
functional infrastructure to our framework and is based on the client-server approach [32]. This
interface enables the access of resources contained in the software elements that are hosted by
different platforms (e.g. middleware platforms) as in Fig 6. Since we are already dealing with het-
erogeneous software and different platforms that may have their own dependencies/installation
requirements, for the ICPI we intend to have as much as possible a flexible and installation free
environment, in a way that the users can manipulate their systems on-the-fly. Technologies that
adapted well to this concept such as Java and HTML5 were used for this implementation. The
main functional parts, the ICPI-Clients and the ICPI-Server, are explained next.

3.1 ICPI-Client

The client is a software program able to perform basic administration tasks within a platform.
The way such tasks are implemented may vary among platforms, and depending on their imposed
restrictions, the client may be hosted inside or outside of them. The client provides a way to
perform a given task regardless of the platform, like sending data to/getting data from software
elements, as well as calling functions to operate on them by using the corresponding protocols.
For example, considering RTM and ROS, a command for connecting to a Data Port in RTM
should be similar to a command for subscribing to a ROS Topic. Additionally, connecting Data
Ports from RTM to Topics in ROS should be seamless. The ICPI-Client acts like a “gate” that
allows one subsystem to interact with other different subsystems, supported by the ICPI-Server.

3.2 ICPI-Server

The server is a platform independent software program that handles the queries in the system
and executes commands with the help of the ICPI-Clients. It provides the communication means
for the clients (hence the subsystems hosted by the various platforms), as well as modules for
managing them. It is composed of three main modules: The ICPI Communication module, the
Administration by Roles module and the HyperBot module.

10
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3.2.1 ICPI Communication module

This module is in charge of setting a common communication protocol among the subsystems.
Websockets were selected as the base protocol for communication (compatible with HTML5,
see section 3.2.3). Over this protocol, the ICPI has its own protocol for queries. The latest ver-
sion of the protocol is being used here. It is defined as the following concatenated character string:

ICPI-QueryMessage = Destination + “!sn!” + Sender + “!id!” + MessageID + ...

... + “!ak!” + Acknowledgement + “!fx!” + FunctionName + “!ar!” + Arguments + ...

... + “!br!” + BroadcastF lag

(17)

Where,

ICPI-QueryMessage: Resulting string.
Destination: Name of the ICPI-Server/Client that is being queried.
Sender: Name of the ICPI-Server/Client that is issuing the query.
MessageID: Optional identifier that can be used to set priorities or distinguish between similar

messages.
Acknowledgement: Flag defining if the query requires a reply (0 = no, 1 = yes).
FunctionName: Name of the queried function.
Arguments: List of literal and/or numerical values; each one separated by the following con-

catenated string:“(” + Index + “)”, where Index is an integer starting from 0.
BroadcastFlag: Flag defining if the message must be broadcasted to other ICPI-Clients (0 =

no, 1 = yes).

An example of ICPI-QueryMessage is shown next:

”icpicClient0!sn!icpicClient1!id!0!ak!0!fx!MyFunction!ar!(0)0.0(1)1.2(2)true!br!0” (18)

The ICPI-Server includes a Websocket Server that is accessed by the ICPI-Clients. Queries
from other clients or modules can be made through this protocol to the ICPI-Server and vice-
versa. The following two modules make use of this module for communication.

3.2.2 Administration by Roles module

The ICPI-Server comes with a module that enables the administration of the system through
Roles (implementing the method of section 2.3) with the support of a SPARQL engine to re-
solve elements and resources. When the robotic system has been composed using FIERRo, the
serialized system is processed and stored in the internal RDF database. Then, several high-level
orchestration operations can be automated through this module and the ICPI-Clients (a detailed
example is shown in section 4.2, Fig. 12). The module’s flow diagram is summarized in Fig. 7.

3.2.3 Hyper-High Level Interface for Service Robots (HyperBot) module

HyperBot is a Graphic User Interface designed to work with the ICPI-Server (hosted in the
internal HTTP server). This module serves as a visual front-end for our framework, having di-
rect communication with the ICPI-Server [33]. It has a screen called “System Developer Screen”,
where RDF/XML files for Roles, objects, actions and other elements can be created/loaded by
using a set of buttons and inputting the required information. The ICPI-Server processes the
files and the composed system is displayed here in the form of a diagram (example in section
4.1, Fig. 9). Then, the user is able to make queries in the composed system for different admin-
istration purposes, for instance: getting and setting data, initializing software elements, calling
functions, and automating middleware connections. Section 4.2 presents a detailed example of
this through a usability test. Following the idea of an installation free environment, HTML5 was
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Figure 7. Summarized flow-chart of the Administration by Roles module. In (a) the ICPI-Server checks for queued queries
coming from Hyperbot (issued by the users or scripts), from internal server scripts, or from a Role (ICPI-Client) by using
the ICPI Communication module in (i). In (b) the serialized Roles are read and stored, and in (c) they are chained together
with the previously stored ones, updating the database in (d). Upon the initialization of a Role as in (e), its execution script
is automatically generated and initialized in the server, then the Role is assigned an ICPI-Client, which its configuration
is queried in the database, and finally it is launched. In (f), incoming queries are resolved into resource requests or system
operations; this block is detailed in (f)*, where (f.a) and (f.b) use the SPARQL engine. In (g), command calls to the pertinent
Roles (ICPI-Clients) are made; in the detail shown in (g)*, (g.a) uses (i) to access the Role. Then in (h), data replies or
server queries coming either from (f) or (g) are processed, where (h.a) and (h.b.) use the SPARQL engine, then (h.c) gathers
the result of the operation and returns it to the pertinent party. The SPARQL queries shown in the interaction with the
RDF Database can refer to specific database operations (e.g. data insertion, deletion, etc...) and/or a reasoning with the
previously stated premises (section 2.3.1). As for the interactions with the ICPI-Clients through (i), ICPI-QueryMessages
are sent to/received from the ICPI-Clients representing Roles or acting as a GUI (as HyperBot).

chosen for HyperBot’s development, enabling the usage of this GUI on the major web browsers
and operating systems (coded in pure JavaScript and CSS to avoid any plug-in installation).
HyperBot is scalable, where other screens can be added to enhance its usage, such as screens for
designing system operation panels, for scripting administration tasks, and for providing other
ways of visualizing the system (e.g. 3D views).
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Table 3. Hardware and Software setting for the Proof-of-concept. Note that “exe file” refers to executable files in Windows 7, “sln file” refers
to a Visual Studio 2008 (VS2008) solution file, “sh file” refers to an script file for Ubuntu 12.04’s Terminal, and “ttt file” refers to a V-REP
scene file.

Hardware Software

Devices Files Data Interfaces Function Interfaces

Gamepad GamePadX RTC (exe file) GamePadX RTC data ports V-REP’s ROS node services
WLAN router GamePadX RTC (sln file) HeliosIXControl RTC data ports
HELIOS IX robot HeliosIXControl RTC (exe file) V-REP’s ROS services’ arguments
Robot’s Laptop PC (Win. 7, Firefox) HeliosIXControl RTC (sln file)
Desktop PC (Ubuntu 12.04, Firefox) V-REP w/ ROS Node (sh file)
Tablet PC (Android 4.4, Chrome) Robot Scene file (ttt file)

4. Implementation and Usability validation

To evaluate our proposal, we designed various tests based on a series of tasks for composing and
administering a robotic system that uses two different middleware platforms, RTM and ROS.
First in section 4.1, we conduct a case-study of normalization to make a proof of concept and
validate our proposal. Then as stated in the research objective, there are three requirements for
interoperability, which make possible to embody the concept of normalization of abstractions at
runtime. Therefore, three tasks representing each of those requirements will be used to validate
the usability of our framework; they are:

(1) Piping resources from one system to another, regardless of their host platform.
(2) Executing basic commands in an integral way, regardless of the utilized platforms.
(3) Operating the integral system, regardless of its heterogeneity.

Therefore, we consider that by meeting these requirements, we can enable the administration
of a heterogeneous system as discussed before. The performed tests are described in section 4.2,
then results are shown in section 4.3 followed by a discussion in section 4.4.

4.1 Proof of concept

To validate the functionality of our proposal, we composed a heterogeneous system with the
HELIOS IX mobile robot [34] as a case-study. It contains the items listed in Table 3, and in Fig.
8 an overview of the setting is shown. As for the implementation of our approach, two items
were required: The ICPI-Server (which provides the ICPI-Clients through a download) and a
web browser to access the HyperBot. The ICPI-Server was instantiated on the robot’s Laptop
PC for convenience. The system is complex enough to be normalized, and involves the use of the
requirements previously mentioned. The gamepad is used to drive the crawlers of the robot, then
the robot provides feedback on its status, which is displayed in the V-REP robot simulator [35].
The programs that deal with the gamepad and the robot’s control are hosted on one middleware
platform (RTM) and running on the robot’s Laptop PC, while the simulator program is hosted on
another platform (ROS) running on the Desktop PC. Next, the system was composed through
the HyperBot GUI by using the Tablet PC. The robotic system was composed successfully
by using three Roles: “Gamepad-Drive-Motors”, “Motors-Move-RobotBase” and “Simulator-
Display-RobotBase” (Fig. 9). After the system was composed, three ICPI-Clients were launched
by the ICPI-Server (in the pertinent machines), each one representing one Role. Then, the Roles
were initialized by clicking on their respective nodes in the diagram of the HyperBot’s System
Developer Screen, automatically connecting the required RTC ports, and piping data from those
ports to the corresponding ROS service’s arguments. The subsystems interacted with each other
as expected; the gamepad was used to drive the robot on a sample path, and was visualized
through the V-REP simulator. As an additional exercise, the VS2008 solutions were opened
directly from HyperBot to edit the code.

13



May 4, 2016 Advanced Robotics AECL˙AdvancedRobotics2016

Figure 8. Overview of the system setup for the Proof-of-concept. See Fig. 6 for details on the ICPI-Server, Fig. 7 for details
on the Admin. by Roles module, and section 3.2.3 for details on the HyperBot GUI. Role A = “GamePad-Drive-Motors”;
Role B = “Motors-Move-RobotBase”; Role C = “Simulation-Display-RobotBase”.

Figure 9. HyperBot GUI displaying the Role diagram of the Proof-of-concept.

4.2 Usability test

The usability test will give us an idea of the extent to which our proposal improves the overall
usability of the task of composing and administering robotic systems when using separate de-
velopment tools in conjunction. A way to get an estimate of the usability of our proposal is by
having the users grade it on a scale and by measuring their task times. The measured parameters
were the following:

• System Usability Scale (SUS) Score: The subjects completed the SUS questionnaire [36]

(ten-item form) for both approaches (being a within-subjects design test, i.e. paired samples
of SUS scores from approaches A and B). SUS is a simple scale giving a global view of
subjective assessment of usability; its score range is 0–100. This score can be decomposed
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Table 4. Main software tools for Usability test.

Approach Software Tools

(A) Benchmark RT-Middleware: OpenRTP (RTC-Builder and RT-System Editor in Eclipse), RT-naming-service.
ROS: catkin init workspace, catkin make, roscore, rosservice, rostopic and related commands in
Command-line Terminal.
Simple text editor (e.g. Notepad).

(B) Proposed Web browser (HTML5 compatible).
ICPI-Server (with HyperBot GUI, Administration by Roles module and ICPI-Clients).
Simple text editor (e.g. Notepad).

into two factors for further analysis: usability alone and learnability [37]. Our expectations
were that the scores for approach B would be higher, meaning better usability. The internal
reliability of the SUS score samples can be evaluated by the Cronbach’s alpha [38], giving
an estimate of the correlation among test items measuring a construct.
• Time: The time required by the subjects to complete the tasks in each approach was

measured. We expected that the completion of tasks in approach B would take less time.
Additionally, by using the Novice-Expert (NE) ratio [39] we roughly compared the amount
of time required between the two subject groups on each approach:

NE =
NoviceT ime

ExpertT ime
(19)

We tested the procedure for normalizing abstractions at runtime and the three administration
tasks of interest with a sample size of 12 subjects (4 different institutions and 5 nationalities)
as recommended in [37] and [40]. We selected the subjects according to two profiles, each one
forming a group of 6 subjects:

• Expert group: The subjects are directly involved in robotics projects where middleware is
actively used.
• Novice group: The specialization of the subjects is either mechanical or software engineer-

ing. Their programming skills are more suited to those fields than robotics itself, but are
interested in robotics topics.

Except for our procedure of normalizing abstractions at runtime (section 4.2.1), which is to
the best of our knowledge unavailable in the previous approaches, the tests consisted of a series
of tasks to complete by using two different approaches:

• Approach A. Benchmark: Use of the tools provided by the middleware platforms and op-
erating systems.
• Approach B. Proposed: Use of FIERRo through the ICPI and the HyperBot GUI.

From here on, the benchmark and proposed approaches will be referred to as approach A and
B respectively. The tools used for each approach are listed in Table 4. For each approach, both
groups were given a 25-35 minute tutorial on the tools needed for completing the required tasks.

The usability tests were based on the system from the proof of concept, with minor changes
to keep the experiment simple and let the subjects compose and operate it in a reasonable
time. The resulting setting is listed in Table 5, and in Fig. 10 the data flows and command
paths can be visualized, marked in the following subsections as “DFx” and “CPy” respectively,
where x and y are index numbers. The Roles for composing the system were: “Console-Drive-
RobotBase”, “Console-Show-RobotStatus” and “Simulator-Display-RobotBase” (Fig. 11). Here,
the ConsoleIn RTC sets the angular speed of the robot’s crawlers to the V-REP ROS node, and
the operation’s returned value is displayed in the ConsoleOut RTC. An example implementation
of this operation in the Administration by Roles module (section 3.2.2) showing actual data
flows is presented in Fig. 12. This was a supervised test; some subjects required slight assistance
from the staff when asserting their actions while using the templates in both approaches, mainly
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Table 5. Hardware and Software setting for the Usability test. Note that “exe file” refers to executable files in Windows 7, “sln
file” refers to a Visual Studio 2008 (VS2008) solution file, “sh file” refers to an script file for Ubuntu 12.04’s Terminal, and “ttt
file” refers to a V-REP scene file.

Hardware Software

Devices Files Data Interfaces Function Interfaces

Laptop PC (Win. 7,
Firefox) with Virtual
Machine (Ubuntu
12.04, Firefox)

ConsoleIn RTC (exe file) ConsoleIn RTC data ports V-REP’s ROS node services
ConsoleIn RTC (sln file) ConsoleOut RTC data ports
ConsoleOut RTC (exe file) V-REP’s ROS services’ arguments
ConsoleOut RTC (sln file)
V-REP w/ ROS Node (sh file)
Robot Scene file (ttt file)

Figure 10. Overview of the system setup for the Usability test. See Fig. 6 for details on the ICPI-Server, Fig. 7 for
details on the Admin. by Roles module, and section 3.2.3 for details on the HyperBot GUI. Role A = “Console-Drive-
RobotBase”; Role B = “Console-Show-RobotStatus”; Role C = “Simulation-Display-RobotBase”. Note *I for task 1 ap-
proach B: (DF1) = (A)→(B)→(C)→(D)→(E); (DF2) = (E)→(D)→(C)→(F)→(G). Note *II for task 2 approach B: (CP1)
= (H)→(C)→(B)→(A); (CP2) = (H)→(C)→(D)→(E). Note *III for task 3 approach B: (DF3) = (A)→(B)→(C)→(H);
(DF4) = (H)→(C)→(D)→(E); (CP3) = (H)→(C)→(B).

Table 6. Results for Normalizing abstractions and relating them at runtime, regardless of their
nature. The analysis of variance (One-way ANOVA) for the time data of both groups laid a p-value
of 0.458 (alpha = 0.05), meaning that there are no statistically significant differences between group
means. Additionally, a NE ratio of 1.13 was calculated. Thus, we are inclined to conclude that novices
would take approximately the same amount of time than experts for this task.

Group Time mean [min.] Time std. dev.

Expert 45.6 10.8
Novice 51.7 16.3

for approach A. Additionally, some subjects made minor mistakes while doing the tasks, such as
misspelling items, considered irrelevant to the idea we want to validate. At the end, the results
from the questionnaires and time measurements were collected and analyzed.

4.2.1 Normalizing abstractions and relating them at runtime, regardless of their nature

In this test, the subjects normalized abstractions at runtime (e.g. RTC data ports and ROS
Topics) into elements and resources (with their mappings). They were given RDF templates
(XML formatted files) for Roles, actions, objects and mappings (similar as the listing in section
2.2); by using the keyboard and text editing software, they filled the templates with the necessary
information. First, the Roles templates were filled, declaring the respective objects and actions.
Next, for each object and action, the corresponding elements were declared (e.g. data fields and
software elements) inside the templates. Finally, the normalization was completed by relating
synonym elements and resources through mappings. The resulting files contained the description
of the composed heterogeneous robotic system, where its diagram representation was shown on
the HyperBot GUI (Fig. 11). As we consider that our proposal is relatively easy to use, we
expected that both experts and novices would take nearly the same time to complete this task.
The measured task times suggested that our expectations were correct (Tab. 6, Fig. 13).
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Figure 11. HyperBot GUI displaying the Role diagram of the Usability test.

4.2.2 Task 1: Piping resources across systems, regardless of their host platform

This task’s objective is to send data from a software element in a middleware platform to
another element inside another platform (i.e. bridging data between an RTC and a ROS node).
The assigned task was the following: The subjects entered an integer value corresponding to an
angular speed for the robot’s crawlers on the ConsoleIn RTC. Later, this value was sent to the
V-REP ROS node to move the simulated robot forward/backward (DF1). After the operation’s
completion, the returned value of the function call was sent to the ConsoleOut RTC (DF2),
displaying the value on the screen (see Fig. 10, note *I). The subjects proceeded as follows:

• Approach A: The subjects needed to write/compile code for creating a data bridge be-
tween RTM and ROS by implementing a standard TCP/IP client-server. The TCP/IP
client-server was adopted as a benchmark because it is one of the solutions with the least
dependencies. ROS-Bridge was not taken into account as it would only fit in this particular
case-study using ROS, and we needed to make the comparison with a platform-agnostic
interface that could be used in more general cases. The TCP client was hosted in the
created RTC and the TCP server in the created ROS node.
• Approach B: The subjects generated a data bridge between RTM and ROS by loading and

starting the previously composed robotic system in the HyperBot GUI, which transferred
the RDF files to the ICPI-Server (for resolving the system) and made queries for automat-
ically generating the required data bridges with help from the ICPI-Clients (as declared
by the system model’s mappings). The data was transferred from one party to another.

The subjects completed the corresponding tasks, being able to pipe information across the
systems. According to the subjects’ comments, this was the most troublesome task if using
approach A, which agreed with our expectations. The results (Tab. 7) suggest that independently
from the users being novices or experts, approach A has less usability.
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Figure 12. Data flows between middleware platforms for case-study. See Fig. 10 for details on the system setup for this
case-study (Usability test), and Fig. 11 for the Role diagram representing this case-study. The following is an example
implementation of a call to the function “/vrep/simRosSetJointTargetVelocity” as in Fig. 11 by using resource requests: 1)
As this function requires of the “Handle” and “TargetVelocity” arguments, a script was generated in (A) (see Fig. 7 (e))
to get their resource values before calling this function; 2) Resources for “Handle” are requested (see Fig. 7 (f)), requiring
only a database query (see Fig. 7 (h.a)); 3) Resources for “TargetVelocity” are requested (see Fig. 7 (f)), requiring a call
to an ICPI-Client (see Fig. 7 (g)) by using (B); 4) An ICPI-MessageQuery through connection (I) travels to (C) requesting
the data from “Port 0” in (D); 5) (C) instantiates an RTC Data Input Port to read (D)’s “Port 0” using connection (II); 6)
(C) replies to (B) with the data from (D)’s “Port 0” through conn. (I); 7) (A) processes this information (see Fig. 7 (h)); 8)
Now the server is ready to call the function (see Fig. 7 (f), Fig. 7 (h.b) and Fig. 7 (g)); 9) An ICPI-MessageQuery through
conn. (III) travels to (E) requesting a call to the function in (F); 10) (E) parses the received request and calls the function
using conn. (IV); 11) The function is executed in (F), sending a reply back through conn. (IV); 12) (E) receives the reply,
which is parsed into a ICPI-MessageQuery and sent back to (B) through conn. (III); 13) (A) processes the information
(see Fig. 7 (h.a)), updating “REPLY STATUS”; 14) Since (H)’s “Port 0” is mapped with “REPLY STATUS” (see Fig.
11), a data write request to (H)’s “Port 0” is issued (see Fig. 7 (f)), requiring a call to an ICPI-Client (see Fig. 7 (g)) by
using (B); 15) An ICPI-MessageQuery through conn. (V) travels to (G) requesting writing data to “Port 0” in (H); 16)
(G) instantiates an RTC Data Output Port to write data to (H)’s “Port 0” using conn. (VI); 17) (G) replies to (B) if the
operation was successful or not through conn. (V); 18) Finally, (A) processes this information as in Fig. 7 (h), ending the
scripted operation. Other data flows and command paths as the ones of Fig. 10 (DFx and CPy) can be performed similarly.

Figure 13. Time comparison between experts and novices for composing the robotic system by normalization of abstractions.

Table 7. Results for task 1: Piping resources across systems, regardless of their host platform. The obtained NE ratio for approach
A (1.27) indicates that this task was slightly more difficult for novices than for experts. For approach B, The NE ratio was
surprisingly 1.04, meaning that novices performed as well as experts.

Approach SUS mean SUS std. dev. Usability Learnability Cronbach’s alpha Time mean [min.] NE ratio

(A) Benchmark 18.6 12.7 20.2 12.5 0.74 49.2 1.27
(B) Proposed 72.1 16.7 74.7 61.5 0.88 6.80 1.04
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Table 8. Results for task 2: Executing basic commands in an integral way, regardless of the utilized platforms. This task had the
highest SUS scores (31.5 and 79.5), but also the highest NE ratios (1.48 and 1.33), suggesting that the experts are quite used to
operate multiple applications simultaneously and are familiar to more than one operating system.

Approach SUS mean SUS std. dev. Usability Learnability Cronbach’s alpha Time mean [min.] NE ratio

(A) Benchmark 31.5 12.0 31.3 32.3 0.69 5.64 1.48
(B) Proposed 79.5 17.5 79.2 80.7 0.91 1.17 1.33

4.2.3 Task 2: Executing basic commands in an integral way, regardless of the utilized platforms

The objective for this task is sending commands to the executed software elements hosted on
the independent middleware platforms. The assigned task was: To issue the “Activate” command
to the CommandIn RTC in RTM (CP1), and to call the “/vrep/simRosStartSimulation” service
at the V-REP ROS node in ROS (CP2). Then both programs reacted to the commands, executing
them (see Fig. 10, note *II). The subjects proceeded as follows:

• Approach A: The subjects accessed both platform’s tools. The RT-System Editor was
used to “Activate” the said RTC, and the Terminal to call the ROS service through the
“rosservice” command. Thereafter, the RTC changed its state to “Active” and the V-REP
started the simulation.
• Approach B: The subjects accessed the HyperBot GUI. Through the Role diagram in the

System Developer Screen, the subjects directly clicked on the required elements represent-
ing the CommandIn RTC and the V-REP ROS node, where from a pop-up menu the said
commands were issued. Similarly, the RTC changed to “Active” and the V-REP started
the simulation.

The subjects executed the commands successfully and the programs behaved as expected.The
subjects commented that this was the simplest task, confirmed by the high SUS scores (Tab. 8).
Also, from the results it is suggested that approach A has less usability.

4.2.4 Task 3: Operating the integral system, regardless of its heterogeneity

The subjects performed a simulated debugging routine, involving working simultaneously with
both platforms. The assigned task was as follows: Data from the ConsoleIn RTC was read by
the subjects (DF3). Then by using the keyboard, the read data was typed into the V-REP ROS
node to test the movement of the simulated robot (DF4). Thereafter, the ConsoleIn RTC was
closed and its source code was opened for editing and recompilation (VS2008), executing it again
at the end (CP3) (see Fig. 10, note *III). The subjects proceeded as follows:

• Approach A: The subjects were required to find a way of visualizing the data from the
RTC and to type it into the ROS node, as well as locating the RTC’s source code. The
subjects employed an additional RTC that displays the data from the ConsoleIn RTC, and
used one of the V-REP ROS node’s ROS services to input the data. Later, the subjects
located the folder of the source code of the RTC, and proceeded to modify its variables
through the VS2008. Then the ConsoleIn RTC was executed again.
• Approach B: The subjects used the HyperBot GUI to work with the system. The Role

diagram in the System Developer Screen was used to visualize the data from the RTC by
clicking on the element that represented its data port. Then by clicking on the element
representing the required ROS service in the V-REP ROS node, the data was typed and
sent. Later, by clicking on the element that represented the source code of the RTC, the
GUI opened the file through the VS2008. After edition, the RTC was run again by clicking
on the element that represented the executable file.

Compared with previous tasks, this one was of average difficulty. The same conclusion as in
the previous task can be drawn (Tab. 9).

19



May 4, 2016 Advanced Robotics AECL˙AdvancedRobotics2016

Table 9. Results for task 3: Operating the integral system, regardless of its heterogeneity. NE ratios are smaller than in the
previous task (1.29 and 1.18), yet similar usability scores (27.0 and 78.3).

Approach SUS mean SUS std. dev. Usability Learnability Cronbach’s alpha Time mean [min.] NE ratio

(A) Benchmark 27.0 11.6 27.7 24.0 0.70 13.8 1.29
(B) Proposed 78.3 13.3 78.1 79.2 0.81 3.26 1.18

Figure 14. Comparison of tests’ completion Time in tasks 1 (a), 2 (b) and 3 (c) for approaches A and B.

Figure 15. Comparison of tests’ SUS scores in tasks 1 (a), 2 (b) and 3 (c) for approaches A and B.

4.3 Results

The procedure provided by our framework for normalizing abstractions at runtime was validated
by a proof-of-concept through a case-study robotic system. The system behaved as expected,
demonstrating that it is possible to compose the system by working with the proposed framework
through the supporting infrastructure and the GUI. The result was a platform-agnostic model
for the heterogeneous robotic system; its description was serialized and displayed into a diagram
through the GUI, which was the front-end to operate the system.

In the usability validation, 12 subjects performed the normalization of abstractions at runtime
and completed three basic administration tasks on a simplified version of the proof-of-concept
system by using the benchmark approach (A) and our proposed approach (B); task completion
time was measured and the subjects graded the tasks by using the System Usability Scale (SUS)
(Fig. 14 and Fig. 15). The sample size of 12 subjects corresponds to having a margin of error
of +/- 9.00 points around the reported SUS score, and to having an 80.0% chance of detecting
a difference of 18.5 points or more (confidence level = 95.0%) between two average SUS Scores
when compared using a within-subjects design test [40]. The SUS score samples had a Cronbach’s
alpha between 0.69 and 0.91, which can be considered to be inside an acceptable range [38]. By
using analysis of variance (One-way ANOVA, alpha = 0.05), there was no statistical evidence
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Figure 16. Comparison of General SUS scores between approach A and B.

Table 10. Results of the general evaluation. A comparison of both approaches’ scores laid out a
difference of 54.9 points in favor to our proposed approach (19.9 vs. 74.8). Also, it can be seen
that our approach is both usable and learnable when the SUS score is decomposed in these two
factors (75.4 and 72.4).

Approach SUS mean SUS std. dev. Usability Learnability Cronbach’s alpha

(A) Benchmark 19.9 11.6 20.7 16.7 0.76
(B) Proposed 74.8 14.8 75.4 72.4 0.84

that belonging to the expert or novice group will have an influence over SUS scores. Additionally,
the subjects completed another SUS questionnaire, evaluating both approaches from a general
perspective (Fig. 16, Tab. 10); the benchmark (A) scored 19.9 points and our proposal (B) 74.8
points. It is known that for this kind of usability test the average SUS score is 68.00 points,
meaning that our proposal’s score was higher than 72.58% of all usability tests overall. Thus, by
using the percentile based Sauro and Lewis curve grading conversion [41], it translates into a B
(lowest score is F and highest is A+). In conclusion, the results suggest that the usability of our
proposed approach is superior when compared to the benchmark approach.

As for the time measurements, the proposed approach shows shorter task times (Fig. 14),
especially for task 1, which involved the development of two relatively complex software programs
for transferring data from one platform to another. The time taken for developing those programs
(section 4.2.2, Fig. 14 (a)) was comparable to the time needed for composing the robotic system
by using our approach (section 4.2.1, Fig. 13), though without the benefits that our approach
provides. As complementary information, we roughly analyzed the Novice-Expert (NE) ratios
to get an idea of the performance difference between novices and experts. However, to make a
more in depth analysis on NE ratios, among other things, larger samples would be required.

4.4 Discussion

Our proposal makes it possible for the developers/integrators to choose features from a variety of
platforms, while keeping the administration tasks simple and independent from the abstractions
provided by the (strongly or weakly formalized) platforms, helping to converge on a unified
solution. It also provides the means to make practical use of middleware platforms’ similarities
on-the-fly with relatively little effort, without needing to refactor (or even discard) the existing
systems, or sacrificing in new systems the flexibility and features available natively inside specific
platforms. Moreover, with our proposal the current programming methods could be enhanced
when scripts and natural language processing algorithms are combined with our framework.

There are still improvements to be done to our proposed communication interface, for example,
a current issue is the quite limited data transfer rate. While it is possible to stream relatively big
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amounts of data, other approaches for bridging communications are still superior in this aspect.
A possible solution could be the implementation of such existing approaches in our framework
and communication infrastructure. Also, we found that although the subjects did not have a
difficult time normalizing the abstractions by using the given templates, this process can benefit
from a tool that automates this task. Such aspects may also impact usability.

In our opinion, the field of robotics middleware is just starting to mature, yet is still far from
the ideal situation. Many core abstractions are converging, and some platforms are starting
to provide interfaces that will make them compatible with other platforms. Some middleware
platforms are being widely adopted in the robotics community (hobbyists, mainstream/academia
developers). It happens that those platforms are conceptually similar, but due to their abstraction
levels and special features, the way to administer them is different. An example of this is ROS
and RTM. This reinforces our belief that variety in middleware will persist; it is necessary to
provide the tools for intuitively sharing and using the knowledge contained in the developed
software packages, like our proposal intends. Even if the moment of having a de-facto robotics
middleware platform is reached, alternative platforms with different design policies and purposes
must exist to keep evolving for the sake of improvement.

5. Conclusions

In this paper, we identified that by normalizing abstractions at runtime in highly-integrated
heterogeneous robotic systems, the overall usability in the administration of their software and
development tools can be improved, producing practical platform-agnostic representations of
the robotic systems. We proposed the Framework for Integration of Elements and Resources by
Roles (FIERRo), which allows the user to compose a system through the definition of “Roles”,
implemented in a runtime cross-platform infrastructure (ICPI) and its graphic interface (Hyper-
Bot). Our proposed framework complements the existing middleware platforms by providing a
means for integrating the administration of features available in the various platforms.

The functionality of our approach was confirmed. Moreover, tests subjects performed trial
tasks to evaluate the usability of our proposal. The results showed improved usability, and
demonstrated the overall advantage of using the proposed framework.

Future work includes: application extensions of this framework through HyperBot (where the
operation of additional screens will rely on FIERRo for the system abstractions), improvements
on the communication infrastructure of the ICPI, as well as improvements on the Administration
by Roles module. Further case studies in progress include the humanitarian demining robot
GRYPHON [42]; it has a complex software system requiring constant changes for adapting it to
new technology and ameliorations of the way tasks are done. Likewise, usability tests focused
on this and other robots will be applied and analyzed.
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