
論文 / 著書情報
Article / Book Information

題目(和文) 正規言語の零壱則

Title(English) Zero-One Law for Regular Languages

著者(和文) 新屋良磨

Author(English) Ryoma Sin'ya

出典(和文) 学位:博士(理学),
 学位授与機関:東京工業大学,
 報告番号:甲第10103号,
 授与年月日:2016年3月26日,
 学位の種別:課程博士,
 審査員:鹿島 亮,小島 定吉,南出 靖彦,渡辺 治,寺嶋 郁二,金沢 誠

Citation(English) Degree:Doctor (Science),
 Conferring organization: Tokyo Institute of Technology,
 Report number:甲第10103号,
 Conferred date:2016/3/26,
 Degree Type:Course doctor,
 Examiner:,,,,,

学位種別(和文) 博士論文

Type(English) Doctoral Thesis

Powered by T2R2 (Science Tokyo Research Repository)

http://t2r2.star.titech.ac.jp/

ZERO­ONE LAW FOR
REGULAR LANGUAGES
正規⾔語の零壱則

Ryoma Sin’ya

Tokyo Institute of Technology,

Department of Mathematical and Computing Sciences.

This thesis is an exposition of the author’s research on automata theory and zero-
one laws which had been done in 2013–2015 at Tokyo Institute of Technology and
Télécom ParisTech. Most of the results in the thesis have been already published in
[58, 57].

Copyright c©2016 Ryoma Sin’ya. All rights reserved.

Copyright c©2015 EPTCS. Reprinted, with permission, from Ryoma Sin’ya, “An
Automata Theoretic Approach to the Zero-One Law for Regular Languages: Algo-
rithmic and Logical Aspects” [58], In: Proceedings Sixth International Symposium
on Games, Automata, Logics and Formal Verification, September 2015, pp.172–185.

Copyright c©2014 Springer International Publishing Switzerland. Reprinted, with
permission, from Ryoma Sin’ya, “Graph Spectral Properties of Deterministic Finite
Automata” [57], In: Developments in Language Theory Volume 8633 of the series
Lecture Notes in Computer Science, August 2014, pp.76–83.

PROLOGUE

The notion of the regularity of a set of words, or regular language, is originally intro-
duced by Kleene in 1951 [29]. The celebrated Kleene’s theorem states that the class
of regular languages (that is, definable by regular expressions) coincides with the
class of recognisable languages (that is, recognisable by finite automata): the birth
of automata theory. In the past half century, automata theory has been established
as one of the most important foundations of computer science, a huge amount of re-
markable research have been made. Automata are the simplest mathematical model
of computation, so simple that they take forms in various diverse areas. An impor-
tant notion often has several different characterisation, the class of regular languages
is exactly such a type: it can be characterised via nondeterministic finite automata
(Rabin-Scott [48]), via monadic second-order logic (Büchi [11]), via finite monoids
(Myhill [43]), and via topological manner (Hunter [27]), etc...

Classifying regular languages
One of the most rich topic in the theory of regular languages is classifying regular
languages. In this topic, the algebraic characterisation of regular languages – finite
monoid recognisability – plays a crucial role. Many important subclasses of reg-
ular languages have been related with subclasses of finite monoids. Refrain from
presenting a comprehensive history, I quote the following from the survey paper by
Diekert et al. [15]: “When considering subclasses of regular languages, it turns out

iii

iv PROLOGUE

that finite monoids are a very advantageous point of view. For instance, Schützen-
berger has shown that a language is star-free if and only if it is recognized by some
finite and aperiodic monoid [54]. Brzozowski and Simon as well as McNaughton
have shown independently that it is decidable whether a regular language is locally
testable by describing an algebraic counterpart [10, 41]. Simon has characterized
piecewise-testable languages in terms of finite J -trivial monoids [56]. Inspired by
these results, Eilenberg has proposed a general framework for such correspondences
between classes of regular languages and classes of finite monoids [18].”

The framework stated in the above quotation is Eilenberg’s variety theory which
was introduced in the book “Automata, Languages and Machines: Volume B” [18]
written by Eilenberg. A variety of languages is a class of regular languages closed
under Boolean operations, left and right quotients and inverses of morphisms. The
algebraic counterpart of a variety is a (pseudo)variety of finite monoids: a class of
finite monoids closed under submonoids, quotients and finite direct products. The
acclaimed Eilenberg’s variety theorem [18] states that varieties of languages are in
one-to-one correspondence with varieties of finite monoids. Since the work of Eilen-
berg, the theory has been deeply studied and it leads developments involving not only
automata theory but also finite semigroup theory, to borrow Margolis’s phrase [39]:
“It is not an overstatement to say that since 1976 with the appearance of Eilenberg’s
Volume B, the vast majority of finite semigroup theory has been involved with the
study of pseudovarieties of finite semigroups and monoids and their relationship to
automata theory.”

Every variety of languages captures some phenomenon which, sometimes trivial,
sometimes essential, but always can be interpreted in various ways: syntactically,
algebraically, and possibly, logically. The thesis sheds new light, by using variety
theoretic techniques, on the relation between two different notions. The first notion,
comes from basic semigroup theory, is the existence of a zero element. The second
notion, comes from finite model theory, is a certain extreme phenomenon named
zero-one law.

Zero-one law for finite graphs
In finite model theory, it is known that many logics can not express, intuitively speak-
ing, any nontrivial counting property of graphs. This phenomenon is called as the
zero-one law for finite graphs (cf. [35]). We say that a logic L over finite graphs has
the zero-one law if every property Φ definable in L is either almost surely true or
almost surely false, namely, either Φ is true for almost all finite graphs, or Φ is false
for almost all finite graphs:

lim
n→∞

the number of all n-vertices graphs that satisfies Φ
the number of all n-vertices graphs

∈ {0, 1}.

It turns out that many nontrivial properties of finite graphs are either almost surely
true or almost surely false. For example, on the one hand, almost all finite graphs
are connected, rigid (i.e., have no nontrivial automorphism) and Hamiltonian, on the
other hand, almost no finite graph is planar (cf. [13]).

PROLOGUE v

The famed Fagin’s theorem [20] states that first-order logic for finite graphs has
the zero-one law. Moreover, any first-order definable property is almost surely true if
and only if it is true on a certain infinite graph: the random graph. Fagin’s beautiful
characterisation leads to the fact that, for any first-order sentence Φ, it is decidable
whether Φ is almost surely true or not (cf. Corollary 12.11 in [35]). After the work
of Fagin, much ink has been spent on the zero-one law for logics over finite graphs.
It is now known that many stronger logics (e.g., logic with a fixed point operator
[7], finite variable infinitary logic [32] and certain fragments of second-order logic
[33]) have the zero-one law. Here I would like to emphasise the remarkable fact
about the zero-one law. It is known that finite satisfiability (i.e., the existence of a
finite model) of first-order definable property for finite graphs is undecidable due to
Trakhtenbrot’s theorem [65]. Thus, for a given first-order sentence Φ, while it is
undecidable whether Φ is true for all finite graphs, it is decidable whether Φ is true
in almost all finite graphs! All these results can be easily extended to arbitrary finite
relational structures (cf. [35]).

By contrast, though many logics have the zero-one law, their extensions with
linear order no longer have it. In fact, while first-order logic over finite graphs has
the zero-one law, its extension with a linear order does not [14].

Zero-one law for regular languages
A logic over finite words is one of the most important instance of logics with linear
order in computer science. The question then naturally arises as to which logical
fragments over finite words, or class of languages, have the zero-one law? The main
topic of the thesis is this one: the zero-one law for finite words, or more emblemat-
ically, the zero-one law for regular languages. We call a language (i.e., set of finite
words) L zero-one, or obeys the zero-one law, if L is either almost empty or almost
full, namely, either L contains almost all finite words, or L does not contain almost
all finite words:

lim
n→∞

the number of all words of length n in L

the number of all words of length n
∈ {0, 1}.

The original motivation of this work is the following question: is there a nice (de-
cidable) characterisation of the class of regular zero-one languages? In this thesis
I give an algebraic and automata theoretic characterisation of the zero-one law for
regular languages. Roughly speaking, I prove the following “Zero-One Theorem”
(precise statement is Theorem 2.3.1, Chapter 2): a regular language L is zero-one
if and only if its syntactic monoid has a zero element, or equivalently L or its com-
plement includes a language of the form A∗wA∗ for some word w. The proof gives
an effective automata characterisation of the zero-one law for regular languages, and
it leads to a linear time algorithm for testing whether a given regular language is
zero-one if it is given by an n-states deterministic automaton.

The key points of the proof of Zero-One Theorem are closure properties of the
class of zero-one languages and Eilenberg’s lemma which was crucial in Eilenberg’s
variety theorem.

vi PROLOGUE

Structure of the thesis
The thesis consists of six chapters. In Chapter 1, I give the necessary definitions and
terminology of basic automata theory. Chapter 2 provides a detailed exposition of the
notion of the zero-one law for regular languages. The main result of the thesis – Zero-
One Theorem – will be stated in this chapter (Theorem 2.3.1). Closure properties of
the class of all zero-one languages are investigated in Chapter 3. Eilenberg’s lemma
is also given in this chapter. An automata theoretic proof of Zero-One Theorem is
given in Chapter 4. In this chapter, I introduce two new classes of automata: zero
automata and quasi-zero automata. These classes of automata play a crucial role in
the proof. Chapter 5 describes a linear time algorithm for testing whether a given
regular language is zero-one (Theorem 5.1.1). Some logical aspects of the zero-one
law for regular languages are also described in this chapter. Zero-One Theorem gives
us a simple necessary and sufficient condition for a regular language to be zero-one,
however, it is not true beyond regular languages. Simple counterexamples, zero-one
languages whose syntactic monoid have no zero element, are given in Chapter 6. In
this chapter, a new technique for proving non-regularity of languages is established.

I try to keep all chapters as self-contained as possible. At the end of each chapter, I
provide “Bibliographic Notes” which can serve as a reader’s guide to explore related
works and topics. I use square brackets as an equivalent to “respectively”, as in the
following sentence: a language L is almost full [almost empty] if it contains [does
not contain] almost all finite words.

R. SIN’YA

Tokyo, November 2015

ACKNOWLEDGMENTS

I gratefully acknowledge helpful discussions with Prof. Ryo Kashima on several
points in the thesis. Special thanks also go to Prof. Yasuhiko Minamide and Prof.
Makoto Kanazawa whose meticulous comments were an enormous help to me. I
would like to acknowledge the encouragements of my colleagues, Naosuke Mat-
suda, Yoshiki Nakamura, and Takuro Umekita. My senior colleague Takeo Uramoto
introduced me to the variety theory and has encouraged me throughout this research.
I wish to express my gratitude to Prof. Masami Ito for his valuable advice. Grateful
acknowledgement is made to The Wiley Publishing Company which provided this
beautiful LATEXtemplate.

I am grateful to Prof. Jacques Sakarovitch whose comments and suggestions
were innumerably valuable throughout the course of my study. I decided to dive into
automata theory, when I was a first year master’s student, because I met his excellent
book “Elements of Automata Theory” [50].

vii

CONTENTS

Prologue iii

Acknowledgments vii

1 Preliminaries 1

1.1 Regular Languages 2
1.2 Automata and Counting 3
1.3 Monoids and Morphisms 6
1.4 Bibliographic Notes 6

2 Zero­One Law for Regular Languages 8

2.1 Zero­One Languages: ZO and ZOReg 9
2.2 Languages with Zero: Z and ZReg 10
2.3 Zero­One Theorem: ZOReg = ZReg 11
2.4 Bibliographic Notes 11

3 Closure Properties of ZO and Eilenberg’s Lemma 13

3.1 Closure Properties of ZO 14
3.2 Eilenberg’s Lemma 15

viii

CONTENTS ix

3.3 Consequence of Eilenberg’s Lemma for ZOReg 16
3.4 Bibliographic Notes 17

4 Equivalence of ZOReg and ZReg 18

4.1 Zero Automata 19
4.2 Proof of Zero­One Theorem (1) 21

4.2.1 1© ⇒ 2© (AL is zero ⇒ L is with zero) 21
4.2.2 2© ⇒ 3© (L is with zero ⇒ L or L contains an ideal

language) 21
4.2.3 3© ⇒ 4© (L or L contains an ideal language ⇒ L

obeys the zero­one law) 21
4.2.4 4© ⇒ 1© (L obeys the zero­one law ⇒ AL is zero) 22

4.3 Quasi­Zero Automata 23
4.4 Proof of Zero­One Theorem (2) 24

4.4.1 1© ⇒ 5© (A/∼ is zero ⇒ A is quasi­zero) 24
4.4.2 5© ⇒ 1© (A is quasi­zero ⇒ A/∼ is zero) 24

4.5 Bibliographic Notes 25

5 Algorithmic and Logical Aspects of ZOReg 26

5.1 Linear Time Algorithm for Testing Membership 27
5.2 Logical Fragments over Finite Words 27
5.3 Bibliographic Notes 30

6 Beyond Regular Languages 32

6.1 Zero­One Theorem for Proving Non­Regularity 33
6.2 Counterexamples 34

6.2.1 Palindromes 34
6.2.2 Dyck Language 34

6.3 Bibliographic Notes 35

Epilogue 36

References 38

CHAPTER 1

PRELIMINARIES

Mais c’est plutôt le sens figuré qui m’intéresse. La théorie des automates comme connais-
sance de base, fondamentale, connue de tous et utilisée partous qui fait partie du «paysage
intellectuel » depuis si longtemps qu’on ne l’y remarquerait plus. Et pourtant, elle y est,
elle le structure, elle l’organise; la connaître permet de s’y orienter.

—Jacques Sakarovitch, “Éleménts de theorie des automates”.

I am more interested, however, in the figurative sense: automata theory as a basic, fun-
damental subject, known and used by everyone, which has formed part of the intellectual
landscape for so long that it no longer noticed. And yet, there it is, structuring it, organising
it: and knowing it allows us to orient ourselves.

—(English translation, “Elements of Automata Theory”[50]).

All automata considered in the thesis are deterministic finite, complete, and acces-
sible (precise definition is given in this chapter). We refer the reader to [50, 34, 46]
for background material.

Zero-One Law for Regular Languages.
By Ryoma Sin’ya Copyright c© 2016

1

2 PRELIMINARIES

1.1 Regular Languages

Let A be a nonempty finite set called an alphabet, whose elements are called letters.
A finite sequence of elements of A is called a finite word over A, or just a word. We
denote the sequence (a0, a1 · · · an) by mere juxtaposition:

a0a1 · · · an.

For a word w = a0a1 · · · an, the length of w is denoted by |w| = n + 1. We
denote by A∗ the set of all words over A, and denote by An the set of all words of
length n over A. A set of words is endowed with the operation of the concatenation,
which associates with two words u = a0a1 · · · ai and v = b0b1 · · · bj the word
uv = a0a1 · · · aib0b1 · · · bj . The concatenation is obviously associative. It has an
identity, the empty word, denoted by ε, which is the empty sequence: |ε| = 0. Note
that A∗ always includes the empty word. We say that a word v is a factor of a word
w if, there exists x, y in A∗ such that w = xvy. For the word w = a0a1 · · · an, we
denote by wr = anan−1 · · · a0 the reversal of w.

A language over A is a set of words over A, that is, a subset of A∗. The set
of all words A∗ over A is called the full language. We denote by L = A∗ \L the
complement of L. The class of regular languages over A is the smallest class of
languages that contains emptyset ∅ and each of the singleton {a} for a ∈ A, and that
is closed under the following three operations:

union: L ∪ K;

concatenation: LK = {vw | v ∈ L,w ∈ K};

Kleene star: L∗ =
∪
n∈N

Ln = {ε} ∪ L ∪ LL ∪ LLL ∪ · · · .

We shall identify the singleton {w} with its unique element w in A∗. It is well known
that the class of regular languages enjoys good closure properties (e.g., closed under
the complement and intersection).

If a language L over A satisfies A∗LA∗ = L, then L is called an ideal language.
The language A∗wA∗ for a word w in A∗ is called the ideal language generated by
w. A∗wA∗ can be regarded as the set of all words that contain w as a factor. A word
w is forbidden for a language L if it is a factor of no element of L, i.e., A∗wA∗∩L =
∅. Dually, a word w is admissible for a language L if every word containing w as a
factor is in L, i.e., A∗wA∗ ⊆ L.

Let L be a language over A and let u be a word of A∗. The left [right] quotient
u−1L [Lu−1] of L by u is defined by:

u−1L = {v ∈ A∗ | uv ∈ L} [Lu−1 = {v ∈ A∗ | vu ∈ L}].

The well-known Myhill-Nerode theorem [44] states that every regular language has
only a finite number of left and right quotients.

AUTOMATA AND COUNTING 3

EXAMPLE 1.1

Here we give a few simple examples of regular languages over A = {a, b}.

Any finite set of words is obviously regular: it can be defined by the finite
combination of concatenations and unions.

The set of all words of even length is regular: it can be defined by (AA)∗ =
{w ∈ A∗ | |w| is even}.

The set of all words beginning with the letter a in A is regular: it can be defined
by aA∗ = {aw | w ∈ A∗}.

The set of all words that contain a sequence of a’s followed by a sequence of
b’s is regular: it can be defined by a∗b∗ = {anbm | n,m ≥ 0}.

Here we give two examples of non-regular languages.

The set of all palindromes {w ∈ A∗ | w = wr} is not regular.

The Dyck language over A = {[,]} (intuitively, the set of all balanced square
brackets):

{ε, [], [[]], [][], [[[]]], [[][]], [[]][], [][[]], [][][], . . .}

is not regular (more formal definition is given in Chapter 6).

The set of all palindromes and the Dyck language are classical examples of non-
regular languages. The non-regularity of these languages can be easily proved via
several ways, like as the pumping lemma or Myhill-Nerode theorem (cf. [50]). In
Chapter 6, however, we give the proof of these non-regularity by using our new
technique.

1.2 Automata and Counting

An (complete deterministic finite) automaton over A is a quintuple A = 〈Q,A, ·, q0, F 〉
where:

Q is a finite set of states;

· : Q × A → Q is a transition function, which can be extended to a mapping
· : Q × A∗ → Q by q · ε = q and q · aw = (q · a) · w where q ∈ Q, a ∈ A and
w ∈ A∗;

q0 ∈ Q is an initial state, and F ⊆ Q is a set of final states.

The language recognised by A is denoted by L(A) = {w ∈ A∗ | q0 · w ∈ F}.
We say that A recognises L if L = L(A).

4 PRELIMINARIES

EXAMPLE 1.2

In this thesis, an automaton is illustrated by its transition diagram like Figure
1.1. Each final state will be indicated by an outgoing edge without a label, and
the initial state will be indicated by an incoming edge without a label. One can
easily observe that the automaton in Figure 1.1 has q0 as its initial and finite
state, and recognises the language (TITECH)∗.

q0

q1 q2

q3

q4q5

T

I

T

E

C

H

1

Figure 1.1 An automaton recognising (TITECH)∗.

It is a basic fact that, for any regular language L, there exists a unique automaton
recognises L which has the minimum number of states: the minimal automaton of L
and we denote it by AL. For each pair of states p, q in Q, we say that q is reachable
from p if, there exists a word w such that p · w = q. A is called accessible if
every state q in Q is reachable from the initial state q0. In this thesis, all considered
automata are accessible. The following theorem is fundamental.

Theorem 1.2.1 (Kleene [29, 30]) A language L is regular if and only if it is recog-
nised by an automaton.

The counting function γn(L) of a language L counts the number of all words of
length n in L:

γn(L) = |{w ∈ L | |w| = n}| = |L ∩ An|.
If L is a regular language, we can represent its counting function γn(L) by using
the nth power of a certain matrix related to an automaton that recognises L. More
precisely, for any regular language L and any automaton A = 〈Q, A, ·, q0, F 〉 that
recognises L, the following equation holds:

γn(L) = IMnF

where M is the |Q| × |Q| matrix, I and F are the row and column vectors defined as
follows:

Mi,j = |{a ∈ A | qi · a = qj}|, Ii =

{
1 if i = 0,

0 if i 6= 0,
Fi =

{
1 if qi ∈ F,

0 if qi /∈ F.

M is called the adjacency matrix of A, I [F] is called the initial [final] vector of A.
Since (Mn)i,j equals to the number of all paths of length n from qi to qj , the right
hand side of Equation 1.1 equals to the number of all paths of n from the initial state
to final states, that is, the number of all words of length n in L.

AUTOMATA AND COUNTING 5

EXAMPLE 1.3

q0 q1 q2
b

a

b
a+ ba

1

Figure 1.2 An automaton Afib.

Consider the automaton Afib which recognises L = {a, ba}∗ illustrated in
Figure 1.2. Let:

M =

1 1 0
1 0 1
0 0 2

 , I =
[
1 0 0

]
, F =

1
0
0


are its adjacency matrix, initial and final vectors. Then the followings hold.

γ0(L) = |{ε}| = 1,

γ1(L) = |{a}| = 1,

γ2(L) = |{aa, ba}| = 2,

γ3(L) = |{aaa, aba, baa}| = 3,

γ4(L) = |{aaaa, aaba, abaa, baaa, baba}| = 5,

...

γn(L) = IMnF =
[
1 0 0

]1 1 0
1 0 1
0 0 2


n 1

0
0



=
[
1 0 0

]
S

2 0 0
0 1

2 (1 −
√

5) 0
0 0 1

2 (1 +
√

5)


n

S−1

1
0
0



where S =

0 1
2 (1 −

√
5) 1

2 (1 +
√

5)
0 1 1
1 0 0


=

1√
5


(

1 +
√

5
2

)n+1

−

(
1 −

√
5

2

)n+1


The last equation means that γn(L) equals to the (n + 1)st Fibonacci number.

6 PRELIMINARIES

1.3 Monoids and Morphisms

A monoid M is a set equipped with an associative binary operation and the identity
element 1 that satisfies m1 = 1m = m for all m in M. In particular, the full language
A∗ is called the free monoid over A: its identity element is ε, and it is equipped with
the concatenation as an associative binary operation. A morphism is a map φ from a
monoid M into a monoid N that satisfies φ(1M) = 1N where 1M [1N] is an identity
of M [N], and φ preserves the binary operation:

φ(xy) = φ(x)φ(y)

for every x, y in M . We say that a monoid M recognises a language L over A if,
there exist a morphism φ : A∗ → M and a subset P of M such that:

φ−1(P) = L.

An element 0 of M is said to be a zero if, 0x = x0 = 0 holds for all x in M . A
monoid M that have a zero element is said to be a monoid with zero.

EXAMPLE 1.4

Let Ml = {1, a, b} be a finite monoid with the identity 1 whose product is
defined as ax = a and bx = b for all x in Ml. Let A = {a, b} be an alphabet
and φ : A∗ → Ml be a morphism such that φ(a) = a and φ(b) = b. Then Ml

recognises three regular languages aA∗, bA∗ and {ε}:

aA∗ = φ−1(a), bA∗ = φ−1(b), φ−1(1) = {ε}.

The syntactic congruence of a language L over A is the equivalence relation ∼L

defined on A∗ by u ∼L v if and only if xuy ∈ L ⇔ xvy ∈ L holds for all x, y in A∗.
The quotient A∗/∼L is called the syntactic monoid of L and the natural morphism
φL : A∗ → A∗/∼L is called the syntactic morphism of L. Let A = 〈Q,A, ·, q0, F 〉
be an automaton. Each word w in A∗ defines the transformation w : q 7→ q · w
on Q. The transition monoid of A is the transformation monoid generated by the
generators a : q 7→ q · a in A. It is well known that the syntactic monoid of a regular
language is equal to the transition monoid of its minimal automaton. The following
well-known theorem states that the converse is also true.

Theorem 1.3.1 (Myhill [43]) A language L is regular if and only if it is recognised
by some finite monoid. In particular, L is regular if and only if its syntactic monoid
is finite.

1.4 Bibliographic Notes

Kleene used the term regular events and in his 1951 paper “Representation of events
in nerve nets and finite automata” [29] wrote: “We would welcome any suggestions

BIBLIOGRAPHIC NOTES 7

as to a more descriptive term”. After that, in the later version of the paper [30],
the above phrase was deleted. The definition of the syntactic monoid was firstly
introduced by Schützenberger in 1956 [53]. It later appeared in the paper by Rabin
and Scott [48], where the notion is credited to Myhill. For a semigroup S and its
subset T , the principal congruence determined by T is the equivalent relation ≡T

defined on S by u ≡T v if and only if xuy ∈ T ⇔ xvy ∈ T holds for all x, y in
S (cf. [28]). The syntactic congruence is a particular case of a principal congruence
(when S = A∗). The notion of principal congruence has been studied, albeit with
sometimes different meanings, from early 1940s: by Dubreil in 1941 [17], Teissier
in 1951 [64], Pierce in 1954 [45]. A more detailed and complete history can be found
in [12].

CHAPTER 2

ZERO­ONE LAW FOR REGULAR
LANGUAGES

ある形式文法の族を導入した際に，まずそこで定義される言語の族の閉包性を調べ，決
定問題を考え，正則集合との関係を見るという理論展開の鋳型はこのとき (Bar-Hillel
et al. [3])にできたといえる．

—Setsuo Arikawa, “数理言語学入門” (Japanese translation of [26]).

In this chapter, we provides a detailed exposition of the notion of the zero-one law
for regular languages. The main result of the thesis – Zero-One Theorem – will be
stated in this chapter (Theorem 2.3.1).

8 Zero-One Law for Regular Languages.
By Ryoma Sin’ya Copyright c© 2016

ZERO­ONE LANGUAGES: ZO AND ZOREG 9

2.1 Zero­One Languages: ZO and ZOReg

Let L be a language over a non-empty finite alphabet A. Recall that the counting
function γn(L) of L counts the number of different words of length n in L: γn(L) =
|L ∩ An|. The probability function µn(L) of L is the fraction defined by:

µn(L) =
γn(L)
γn(A∗)

=
|L ∩ An|
|An|

.

The asymptotic probability, or measure, µ(L) of L is defined by:

µ(L) = lim
n→∞

µn(L)

if the limit exists. If two languages L and K over A are mutually disjoint (L ∩ K =
∅), then clearly µ(L ∪ K) = µ(L) + µ(K) and µ(L) = 1 − µ(L) hold if both µ(L)
and µ(K) exist. We can regard µn(L) as the probability that a randomly chosen
word of length n is in L, and µ(L) as its asymptotic probability. Then we introduce
a new class of regular languages which is the main target of this thesis.

Definition 2.1.1 (zero-one language) A zero-one language L is a language whose
asymptotic probability µ(L) is either zero or one. We denote by ZO the class of all
zero-one languages, and by ZOReg the class of all zero-one regular languages.

We call L almost full [almost empty] if µ(L) = 1 [µ(L) = 0] holds. We say that
L obeys the zero-one law if L is either almost full or almost empty.

EXAMPLE 2.1

We now enumerate a few examples of ZOReg.

The full language is almost full, and the empty language is almost empty. That
is, the set of all words A∗ over A satisfies µ(A∗) = 1, and its complement ∅
satisfies µ(∅) = 0.

Consider aA∗ the set of all words which start with the letter a in A. Then the
following holds:

µn(aA∗) =
|aAn−1|
|An|

=
1
|A|

.

Hence µ((aA)∗) = 1/|A| holds and aA∗ is not zero-one if |A| ≥ 2.

Consider (AA)∗ the set of all words with even length. Then:

µn((AA)∗) =

{
1 if n is even,
0 if n is odd.

Hence, its limit µ((AA)∗) does not exist.

10 ZERO­ONE LAW FOR REGULAR LANGUAGES

Thus, for some regular language L, the asymptotic probability µ(L) is either zero
or one, for some, like L = aA∗ where |A| ≥ 2, µ(L) could be a real number
between zero and one, and for some, like L = (AA)∗, it may not even exist. It is
previously known that there exists a cubic time algorithm computing µ(L) for any
regular language L if L is given by an n-states automaton [8] and µ(L) is always
rational [4, 51] (see Section 2.4).

Remark 2.1.1 Technically speaking, the function µ defined here is not a measure
of the standard definition in measure theory (cf. [63]). The µ defined here obviously
satisfies the following properties:

µ(∅) = 0, µ(L) = 1 − µ(L) if µ(L) exists.

the (finite) additivity: whenever two languages K, L are disjoint and both µ(K)
and µ(L) exist, then µ(K ∪ L) = µ(K) + µ(L).

the (finite) subadditivity: µ(K ∪ L) ≤ µ(K) + µ(L) if both µ(K) and µ(L)
exist.

the monotonicity: K ⊆ L implies µ(K) ≤ µ(L) if both µ(K) and µ(L) exist.

But µ does not satisfy the countable additivity. That is, µ(
∪

w∈A∗{w}) = µ(A∗) =
1, although µ({w}) = 0 holds for each word w in A∗.

2.2 Languages with Zero: Z and ZReg

In this thesis, we show that the following class of languages exactly captures the
zero-one law for regular languages.

Definition 2.2.1 A language with zero is a language whose syntactic monoid has a
zero element. We denote by Z the class of all languages with zero, and by ZReg the
class of all regular languages with zero.

EXAMPLE 2.2

We now enumerate a few examples related with ZReg.

The trivial monoid M = {1} is actually with zero: the identity element 1 is
also a zero element. Hence the full language and the empty language over A
are languages with zero, because the syntactic monoid of these languages is the
trivial monoid.

Let L = A∗aA∗ be the set of all words that contain a as a factor. One can
easily verify that the syntactic monoid of L is the two element monoid with
zero ML = {0, 1} and φ−1

L (0) = A∗aA∗. The identity element 1 represents
“any word that does not contain a”, and the zero element 0 represents “any word
that contains at least one a”. Thus L = A∗aA∗ is with zero.

ZERO­ONE THEOREM: ZOREG = ZREG 11

Consider aA∗ the set of all words which start with the letter a in A. The syn-
tactic monoid of aA∗ is the monoid Ml defined in Example 1.4. Since Ml does
not have a zero element, aA∗ is not with zero.

2.3 Zero­One Theorem: ZOReg = ZReg

Now we give a precise statement of the our main result. The definition of two classes
of automata – zero automata and quasi-zero automata – will be given in Chapter 4.

Theorem 2.3.1 (Zero-One Theorem) Let L be a regular language and AL be the
minimal automaton of L. Then the following five conditions are equivalent.

1© AL is zero.

2© L is with zero.

3© L or L contains an ideal language.

4© L obeys the zero-one law.

5© L is recognised by a quasi-zero automaton.

The remarkable fact is that, ZOReg = ZReg holds even though these two notions
seem completely different from each other; ZOReg is defined by the asymptotic be-
havior of its probability, ZReg is defined by the existence of a zero of its syntactic
monoid. The proof of this theorem is given in Chapter 4. We will prove this theo-
rem as a cyclic chain of implications: 1© ⇒ 2© ⇒ 3© ⇒ 4© ⇒ 1©, and 1© ⇔ 5©
independently. We should notice that the most difficult part of this proof is the impli-
cation 4© ⇒ 1©, while the former part 1© ⇒ 2© ⇒ 3© ⇒ 4© is easy. The key point
of this difficult part is closure properties of ZO which stated in the next chapter. Two
automata characterisation 1© and 5© play a crucial role in the proof.

2.4 Bibliographic Notes

Densities and algebraic coding theory
The notion of probability µn for regular languages has been studied by Berstel [4]
from 1973, Salomaa and Soittola [51] from 1978 in the context of the theory of for-
mal power series. They proved that µn(L) has finitely many accumulation points
and each accumulation point is rational. Another approach, based on Markov chain
theory, was presented by Bodirsky et al. [8]. They investigate the algorithmic com-
plexity of computing accumulation points of L and introduced an O(n3) algorithm
to compute µ(L) for any regular language L (and hence whether L is zero-one), if L
is given by an n-states automaton. There is an alternative definition of the asymptotic
probability of L over A:

µ∗(L) = lim
n→∞

∑n
i=0 |L ∩ Ai|∑n

i=0 |Ai|
.

12 ZERO­ONE LAW FOR REGULAR LANGUAGES

In fact, Berstel uses this definition of µ∗ in his first research on this topic [4]. How-
ever, for any language L over A, µ∗(L) exists if and only if µ(L) exists and they
are equal by well-known Stolz–Cesáro theorem and its partial converse (cf. Theorem
1.22 and 1.23 in [42]). Thus our Zero-One Theorem does not depend on the defini-
tion we use.

A similar notion, density of a language have also been studied in algebraic coding
theory (cf. [5, 6]). A probability distribution π on A∗ is a function π : A∗ → [0, 1]
such that π(ε) = 1 and

∑
a∈A π(wa) = π(w) for all w in A∗. As a particular

case, the uniform Bernoulli distribution is a morphism from A∗ into [0, 1] such that
π(a) = 1/|A| for all a in A. We denote by A(n) = {w ∈ A∗ | |w| < n} the set
of all words of length less than n over A. The density δ(L) of L then defined by the
following:

δ(L) = lim
n→∞

1
n

π
(
L ∩ A(n)

)
where π is a probability distribution on A∗. A monoid M is called well founded
if it has a unique minimal ideal, if moreover this ideal is the union of the minimal
left ideals of M , and also of the minimal right ideals, and if the intersection of a
minimal right ideal and of a minimal left ideal is a finite group. An elementary
result from analysis shows that if π is the uniform Bernoulli distribution and µ(L)
exists, then δ(L) = limn→∞

1
n

∑n
i=0 µi(L) also exists and δ(L) = µ(L) holds. The

converse, however, does not hold (e.g., δ((AA)∗) = 1/2). In their book [6], Berstel
et al. proved Theorem 13.4.5 which states that, for any well founded monoid M and
morphism φ : A∗ → M , δ(φ−1(m)) has a limit for every m in M . Furthermore,
this density is non-zero if and only if m in the minimal ideal K of M from which
we obtain δ(φ−1(K)) = 1. Since every monoid with zero is well founded, Theorem
13.4.5 implies that, every language with zero is zero-one (i.e., 2© ⇒ 4©, “easy part”
of our Zero-One Theorem). Some other related results can be found in the theory
of probabilities on algebraic structures initiated by Grenander [25] and Martin-Löf
[40].

The point to observe is that the techniques presented in this thesis are purely
automata theoretic. We did not use, to prove Zero-One Theorem, any probability
theoretic tools: like as measure theory, formal power series, Markov chain, algebraic
coding theory, etc. This point deserves explicit emphasise.

Languages defined by the counting function
There exist other classes of languages related to zero. We call the language A∗ is full.
If the counting function of a language L has bounded density, i.e., γn(L) = O(1)
with respect to n, then L is called slender. A language is sparse if it has a polynomial
density, i.e., γn(L) = O(nk) for some k > 0. Finally, a language L is called
coslender if its complement is slender, and a language L is called cosparse if its
complement is sparse. Gehrke, Grigorieff and Pin [23] proved that both the class of
all sparse or cosparse languages and the class of all slender or coslender languages
are closed under Boolean operations, left and right quotients. Moreover, they showed
that these two class of languages can be defined by certain profinite equation related
to zero. Details of these results can be found in the book by Pin [46].

CHAPTER 3

CLOSURE PROPERTIES OF ZO AND
EILENBERG’S LEMMA

Wherever there is an algebraic structure for recognizing languages, there is an Eilenberg
theorem. This theorem gives a bijective mapping between classes of languages with good
closure properties (language varieties) and classes of monoids with good closure properties
(monoid varieties).

—Mikołaj Bojańczyk and Igor Walukiewicz, “Forest Algebras” [9].

In formal language theory, good closure properties of a class of languages some-
times imply a good structural theorem of that class. The key points of the proof of
Zero-One Theorem are closure properties of the class of all zero-one languages ZO.
In this chapter, we introduce Eilenberg’s lemma which is based on certain closure
properties of a class of languages.

Zero-One Law for Regular Languages.
By Ryoma Sin’ya Copyright c© 2016

13

14 CLOSURE PROPERTIES OF ZO AND EILENBERG’S LEMMA

3.1 Closure Properties of ZO

We first introduce the following lemma.

Lemma 3.1.1 Let L be a language over A and w be a word in Ak for some k ≥ 0.
Then the asymptotic probability of L exists if and only if the asymptotic probability of
the language wL [Lw] exists. Moreover, these limits satisfy the equation µ(wL) =
µ(Lw) = |A|−kµ(L).

Proof : Since wL and Lw clearly have the same counting function, we only have to
prove the case of wL. For every u, v in Ak such that u 6= v, the two languages uL
and vL are mutually disjoint and these counting functions coincides:

γn(uL) = γn(vL) =

{
0 n < k,

γn−k(L) n ≥ k.

This shows that uL and vL have the same asymptotic probability if its exists. We
can easily verify that the following equation holds for any language L over A and
k ≥ 0:

µn+k(AkL) =
|AkL ∩ An+k|

|An+k|
=

|Ak(L ∩ An)|
|AkAn|

=
|L ∩ An|
|An|

= µn(L).

It follows from what has been said that µ(AkL) exists if and only if µ(L) exists and
in that case they are equal µ(AkL) = µ(L). Hence it follows that µ(uL) exists if
and only if µ(L) exists by the following equation:

µ(L) = µ
(
AkL

)
=
∑

u∈Ak

µ(uL) = |A|kµ(uL).

Now we prove that ZO enjoys good closure properties that are necessary to apply
Eilenberg’s lemma introduced in the next section.

Proposition 3.1.1 ZO is closed under Boolean operations, left and right quotients.

Proof : It is obvious that ZO is closed under complement since µ(L) = 1−µ(L) ∈
{0, 1}. Next we assume that µ(L) = µ(K) = 0, then µ(L∪K) = 0 is obvious from
the subadditivity of µ:

µ(L ∪ K) ≤ µ(L) + µ(K) = 0.

Then one can easily verify that the following hold for L,K in ZO:

µ(L ∩ K) = min(µ(L), µ(K)),

µ(L ∪ K) = max(µ(L), µ(K)).

EILENBERG’S LEMMA 15

We then prove that ZO is closed under left quotients. We only have to consider
the left quotient by a letter a−1L since every left quotient w−1L = (a0 · · · an)−1L is
a successive application of letter quotients a−1

n · · · (a−1
0 L). First we assume µ(L) =

0. One can easily verify that aa−1L = L∩aA∗ ⊆ L and hence µ(aa−1L) = µ(L) =
0 for each letter a. In addition, µ(aa−1L) coincides with µ(a−1L) for each letter a,
because µ(aa−1L) = |A|−1µ(a−1L) = 0 by Lemma 3.1.1 whence µ(a−1L) = 0.

Next we assume µ(L) = 1. Then µ(L) = 0 and:

a−1L = {w ∈ A∗ | aw ∈ L}
= {w ∈ A∗ | aw /∈ L} = a−1L

holds. We therefore obtain:

µ(a−1L) = 1 − µ(a−1L)
= 1 − µ(a−1L) = 1 − 0 = 1.

We can prove that ZO is closed under right quotients by the same manner.

Since the class of regular languages is closed under Boolean operations and quo-
tients, the following corollary follows from Proposition 3.1.1.

Corollary 3.1.1 ZOReg is closed under Boolean operations, left and right quotients.

Proposition 3.1.2 ZO is not closed under inverses of morphisms.

Proof : Let L = (aa)∗ be a language over A = {a, b}, let φ : A∗ → A∗ be the
morphism such that φ(a) = φ(b) = a. One can easily verify µ(L) = 0 and hence
L is in ZOReg. Then the inverse image of L is φ−1((aa)∗) = (AA)∗, but (AA)∗ is
not in ZO as we stated in Example 2.2.

Corollary 3.1.2 ZOReg is not closed under inverses of morphisms.

The counterexample given in Proposition 3.1.2 can be found in Pin’s book [46].
He uses it to prove that ZReg is not closed under inverses of morphisms.

3.2 Eilenberg’s Lemma

Let AL = 〈Q,A, ·, q0, F 〉 be an automaton. For any subset P of Q, the past of P is
the language denoted by Past(P) and defined by:

Past(P) = {w ∈ A∗ | q0 · w ∈ P}.

Dually, the future of a subset P of Q is the language denoted by Fut(P) and defined
by:

Fut(P) = {w ∈ A∗ | ∃p ∈ P, p · w ∈ F}.

16 CLOSURE PROPERTIES OF ZO AND EILENBERG’S LEMMA

It is well known that, an (accessible) automaton A is minimal if and only if the
following condition holds:

∀p, q ∈ Q
(
p = q ⇔ Fut(p) = Fut(q)

)
. (M)

In the next chapter, to prove Zero-One Theorem, we will use the following tech-
nical but important lemma.

Lemma 3.2.1 Let AL = 〈Q, A, ·, q0, F 〉 be the minimal automaton of a language
L. Then for any subset P of Q, its past Past(P) can be expressed as a finite Boolean
combination of languages of the form Lw−1 where w in A∗.

Proof : We only have to prove that, for any state q in Q, its past Past(q) can be
expressed as a Boolean combination of languages of the form Lw−1. Our goal is
to prove the following equation with the usual conventions

∩
w∈∅ Lw−1 = A∗ and∪

w∈∅ Lw−1 = ∅:

Past(q) =

 ∩
w∈Fut(q)

Lw−1

 \

 ∪
w/∈Fut(q)

Lw−1

 . (3.1)

The finiteness of this Boolean combination follows from Myhill-Nerode theorem.
We prove first that the left hand side is contained in the right hand side. Let v be

a word in Past(q). If a word w in Fut(q), then vw in L by the definition, and hence
v in Lw−1. If a word w not in Fut(q), then vw not in L by the definition, and hence
v not in Lw−1. It follows that the left hand side is contained in the right hand side in
Equation (3.1).

Then we prove that the right hand side is contained in the left hand side. Let
v be a word in right hand side. Let p be the state satisfying q0 · v = p, that is, v
is a word in Past(p). For any w in Fut(q), by the form of Equation (3.1), v is in
Lw−1 from which we get vw in L whence p · w in F . That is, w also belongs to
Fut(p). Conversely, for any w not in Fut(q), vw is not in L and thus v not in Lw−1.
That is, w does not belong to Fut(p). It follows that p and q have the same future
Fut(p) = Fut(q) from which we get p = q by Condition (M) of the minimality of
AL. Hence we obtain v in Past(q) and thus the right hand side is contained in the
left hand side in Equation (3.1).

3.3 Consequence of Eilenberg’s Lemma for ZOReg

We will use the following lemma, which is a direct consequence of Lemma 3.2.1 and
Proposition 3.1.1.

Lemma 3.3.1 Let L be a regular language in ZOReg, AL = 〈Q,A, ·, q0, F 〉 be its
minimal automaton. Then, for any subset P of Q, its past Past(P) is also in ZOReg.

Proof : By Lemma 3.2.1, for any subset P of Q, its past Past(P) can be expressed
as a finite Boolean combination of languages of the form Lw−1. It follows that

BIBLIOGRAPHIC NOTES 17

Past(P) obeys the zero-one law, since L is in ZOReg and ZOReg is closed under
Boolean operations and quotients by Corollary 3.1.1.

3.4 Bibliographic Notes

Lemma 3.2.1 shows us an importance of the Boolean operations taken in tandem with
quotients. While this lemma is known as a folklore (cf. [19]), which is an “automaton
version” of a key lemma in Eilenberg’s variety theorem, we have not found any
literature that includes a complete proof. The proof given in this thesis is essentially
based on “Proof of Theorem 3.2 and 3.2s” in Eilenberg’s Volume B [18]. The original
Eilenberg’s lemma states about a monoid, not an automaton, as the following kind.

Lemma 3.4.1 (Eilenberg [18]) Let ML be the syntactic monoid of a regular lan-
guage L over A, and let φL : A∗ → ML be the syntactic morphism of L. Then
for each element m of ML, its inverse φ−1

L (m) can be expressed as a finite Boolean
combination of languages of the form u−1Lv−1 where u, v in A∗.

Eilenberg used this lemma to prove his variety theorem: the existence of the one-to-
one correspondence between varieties of languages and varieties of finite monoids.

Technically speaking, ZOReg is not a variety. Recall that a variety of languages is
a class of regular languages closed under Boolean operations, left and right quotients
and inverses of morphisms. Proposition 3.1.2 shows that ZOReg is not closed under
inverses of morphisms. Since the work of Eilenberg, the theory have been extended
several times by relaxing the definition of a variety of languages. Straubing [60] in-
troduced the notion of C-varieties: here C denotes some natural class of morphisms.
A similar notion was introduced independently by Ésik and Ito [19]. The definition
of a C-variety of languages is similar to Eilenberg original definition except that it
only requires closure under inverse images of morphisms belonging to C. More re-
cently, Gehrke et al. [23] proved that any lattice of languages (a class of regular
languages closed under union and intersection) can be defined by a set of profinite
equations, a result that subsumes Eilenberg’s variety theorem. See [46, 61, 47] for
more details.

CHAPTER 4

EQUIVALENCE OF ZOReg AND ZReg

The Variety Theorem provides the framework for talking about recognisable languages and
finite monoids. It says that if you have a pseudovariety of finite monoids then there will
be an associated variety of languages, although it will not tell you what these languages
look like; that involves extra work and depends on the properties of the pseudovariety of
monoids in question. Likewise, if you have a variety of languages, the Theorem tells us
that there is an associated pseudovariety of finite monoids, but again it will not tell us what
they look like; you have to do extra work.

—Mark V. Lawson, “Finite Automata” [34].

An automata theoretic proof of Zero-One Theorem is given in this chapter. In
this chapter, we introduce two classes of automata: zero automata and quasi-zero
automata. Zero automata plays major role in the proof of the difficult implication
4© ⇒ 1©.

18Zero-One Law for Regular Languages.
By Ryoma Sin’ya Copyright c© 2016

ZERO AUTOMATA 19

4.1 Zero Automata

Let A be an automaton 〈Q, A, ·, q0, F 〉. We write p →∗ q if a state q is reachable
from a state p. It is clear that the reachability relation →∗ forms a preorder over
Q, that is, a reflexive and transitive relation over Q. The equivalence relation ↔∗

defined on Q by p ↔∗ q if and only if p →∗ q and q →∗ p hold. A subset P of
Q is called strongly connected component if every state q in P is reachable from
every other state in P , i.e., , p ↔∗ q holds for every p, q in P . A state q in Q is
said to be sink, if q · a = q holds for every letter a in A. We say that a subset P
of Q is sink, if it is strongly connected and there is no transition from any state p in
P to a state which does not in P . That is, Q \ P are not reachable from P . The
family of all sink components of A is denoted by Sink(A). A sink component P is
trivial if it consists of some single state P = {p}. We shall identify a singleton {p}
with its unique element p. Sink components can be regarded as maximal equivalence
classes with respect to ↔∗ over Q. That is, if P is sink, then P is strongly connected
and p →∗ q implies q in P for every p in P and q in Q. Note that, since every
finite set equipped with a preorder has at least one maximal equivalence class, every
(complete) automaton has at least one sink component. One can easily verify that,
for every state q, there exists a sink component that is reachable from q. A word w is
a synchronising word of A if, there exists a certain state q in Q, p · w = q holds for
every state p in Q. That is, w is the constant map from Q to q. We call an automaton
synchronising if it has a synchronising word. Note that any synchronising automaton
has at most one sink state. As we will prove in the next section, the following class
of automata captures precisely the zero-one law for regular languages.

Definition 4.1.1 ([49]) A zero automaton is a synchronising automaton with a sink
state.

EXAMPLE 4.1

Figure 4.1 Zero and non­zero automata

Consider two automata A0 and A1 illustrated in Figure 4.1. A0 is a zero
automaton but A1 is not, though both automata have a sink state q5. A synchro-
nisation word of A0 is aabb: one can easily verify that qi · aabb = q5 for every

20 EQUIVALENCE OF ZOREG AND ZREG

Figure 4.2 Synchronising word vn−1 = w0 · · ·wn−1 in the proof of Lemma 4.1.1

state qi. It is clear that A1 in Figure 4.1 does not have a synchronising word
since it has two sink components. The only difference between A0 and A1 is
the transition result of q4 · a; which equals to q5 in A0, while which equals to q3

in A1. We can easily verify that, A0 has a unique sink component q5, while A1

has two sink components {q3, q4} and q5.

The definition of zero automata can be rephrased as follows.

Lemma 4.1.1 Let A = 〈Q,A, ·, q0, F 〉 be an automaton. Then A is zero if and
only if A has a unique sink component and it is trivial, i.e., Sink(A) = {{p}} for a
certain sink state p.

Proof : First we assume A is zero with a sink state p. Then there exists a synchro-
nising word w and it clearly satisfies q · w = p for each q in Q since p is sink. This
shows that there is no sink component in Q \ p.

Now we prove the converse direction, we assume A has a unique sink component
and it is trivial, say p. We can verify that for every state q in Q, there exists a word
w in A∗, such that q · w = p. Indeed, if there does not exist such word w for some
q, then the set of all reachable states from q : {r ∈ Q | ∃w ∈ A∗, q · w = r} must
contains at least one sink component which does not contain p. This contradicts
with the uniqueness of the sink component p in A. The existence of a synchronising
word w is guaranteed, because we can concretely construct it as follows. Let n be
the number of states n = |Q| and let Q = {q0, · · · , qn−1 = p}. We define a word
sequence wi inductively by w0 = uq0 and wi = u(qi·vi−1) where each uqi is a
shortest word satisfying qi · uqi = p, and vi−1 is the word of the form w0 · · ·wi−1.
As shown in Figure 4.2, we can easily verify that the word vn−1 = w0 · · ·wn−1 is a
synchronising word satisfying q · vn−1 = p for each q in Q.

For example, consider the zero automaton A0 in Figure 4.1. Then each uqi , wqi

and vqi are defined as follows.

uqi wqi vqi

q0 aab aab aab
q1 ab b aabb
q2 b ε aabb
q3 aa ε aabb
q4 a ε aabb

The obtained word vq4 = aabb is a synchronising word of A0.

PROOF OF ZERO­ONE THEOREM (1) 21

4.2 Proof of Zero­One Theorem (1)

We show the implication 1© ⇒ 2© ⇒ 3© ⇒ 4© ⇒ 1©. The former implication
1© ⇒ 2© ⇒ 3© ⇒ 4© is easy, but we include a complete proof here to be self-

contained.

4.2.1 1© ⇒ 2© (AL is zero ⇒ L is with zero)

Let AL = 〈Q,A, ·, q0, F 〉 be the minimal automaton of L and assume that AL is
zero with a sink state p. Let M be the transition monoid of AL and φ : A∗ → M
be the syntactic morphism of L. Then we can verify that M has a zero element 0 as
the transformation 0 : q 7→ p for all q in Q, that is, 0 is the constant map from Q
to p. The existence of 0 is guaranteed since AL is synchronising. Indeed, for any
synchronising word w, φ(w) = 0 holds. One can easily verify that m0 = 0m = 0
for all m in M . This proves that M the syntactic monoid of L has the zero.

4.2.2 2© ⇒ 3© (L is with zero ⇒ L or L contains an ideal language)

Let L be a regular language in ZReg, M be its syntactic monoid with a zero element
0 and φ : A∗ → M be its syntactic morphism. Choose a word w0 from the preimage
of 0: w0 ∈ φ−1(0). Note that the word w0 is always exists by the definition of the
syntactic monoid.

Now we prove that L contains the ideal language A∗w0A∗ if w0 is in L. By the
definition of zero, we have

φ(xw0y) = φ(x)φ(w0)φ(y) = φ(x)0φ(y) = 0

for any words x, y in A∗. That is, if w contains w0 as a factor, then φ(w) = φ(w0) =
0 holds and hence w also in L. This implies that the language of the form A∗w0A∗,
the set of all words that contains w0 as a factor, is contained in L. Dually, we can
prove that L contains A∗w0A∗ if w0 is not in L.

4.2.3 3© ⇒ 4© (L or L contains an ideal language ⇒ L obeys the
zero­one law)

We assume that L contains A∗wA∗ for some word w. The probability µn(A∗wA∗)
is nothing but the probability that a randomly chosen word of length n contains w
as a factor. The infinite monkey theorem (cf. Note I.35 in [21]), sometimes called
Borges’s theorem, ensures that µn(A∗wA∗) tends to one if n tends to infinity.

Infinite Monkey Theorem. Take any fixed finite set Π of words in A∗. A random
word in A∗ of length n contains all the words of the set Π as factors with probability
tending to one exponentially fast as n tends to infinity.

This and the monotonicity of µ shows µ(L) = µ(A∗wA∗) = 1. Conversely, if the
complement L contains A∗wA∗, one can easily verify that µ(L) = 1 − µ(L) = 0.

22 EQUIVALENCE OF ZOREG AND ZREG

4.2.4 4© ⇒ 1© (L obeys the zero­one law ⇒ AL is zero)

Let L be a regular language in ZOReg and AL = 〈Q,A, ·, q0, F 〉 be its minimal
automaton, let Sink(AL) = {P1, · · · , Pk} for some k ≥ 1. Our goal is to prove
k = 1 and Sink(AL) = {{p}} for a certain sink state p. It follows that AL is zero
by Lemma 4.1.1.

For any sink component Pi, there exists a word wi such that q0 ·wi in Pi because
AL is accessible. Lemma 3.1.1 and µ(A∗) = 1 implies:

µ(wiA
∗) = |A|−|wi|µ(A∗) = |A|−|wi| > 0. (4.1)

Since Pi is sink, the language wiA
∗ is contained in Past(Pi). For each Past(Pi)

has the asymptotic probability and it is either zero or one by Lemma 3.3.1. The
monotonicity of µ and Inequation (4.1) imply:

µ(Past(Pi)) = 1 (4.2)

holds for every sink component Pi.
Now we prove k = 1. By Equation (4.2), we can easily verify that

µ

(
k∪

i=1

Past(Pi)

)
=

k∑
i=1

µ(Past(Pi)) = k

holds because AL is deterministic and thus all Past(Pi) are mutually disjoint. This
clearly shows k = 1, that is, there exists a unique sink component, say P , in AL:
Sink(AL) = {P}.

Next we let P = {p1, · · · , pn} and prove n = 1. Since P satisfies µ(Past(P)) =
1 by Equation (4.2), there exists exactly one state p in P that satisfies µ(Past(p)) = 1
by Lemma 3.3.1. Further, because P is strongly connected, for every state pi in P ,
there exists a word wi such that p · wi = pi and thus Past(pi) contains Past(p)wi.
Lemma 3.1.1 and µ(Past(p)) = 1 implies:

µ(Past(p)wi) = |A|−|wi|µ(Past(p)) = |A|−|wi| > 0. (4.3)

Each Past(pi) has the asymptotic probability and it is either zero or one by Lemma
3.3.1. The monotonicity of µ and Inequation (4.3) imply:

µ(Past(pi)) = 1 (4.4)

holds for every pi in P . From Equation (4.4), we obtain:

µ(Past(P)) =
n∑

i=1

µ(Past(pi)) =
n∑

i=1

1 = n = 1,

because AL is deterministic and thus all Past(pi) are mutually disjoint. We now
obtain n = 1, that is, P is singleton and hence Sink(AL) = {p}. That is, AL is
zero.

QUASI­ZERO AUTOMATA 23

4.3 Quasi­Zero Automata

Let A = 〈Q,A, ·, q0, F 〉 be an automaton. The Nerode equivalence ∼ of A is the
relation defined on Q by p ∼ q if and only if Fut(p) = Fut(q). One can easily verify
that ∼ is actually a congruence, in the sense that p ∼ q implies p · w ∼ q · w for
all w ∈ A∗. Hence it follows that there is a well defined new automaton A/∼, the
quotient automaton of A:

A/∼= 〈Q/∼, A, ·, [q̃0], F/∼〉

where [q̃] is the equivalence class modulo ∼ of q, S/∼= {[q̃] | q ∈ S} is the set of the
equivalence classes modulo ∼ of a subset S ⊆ Q, and where the transition function
· : Q/∼ ×A → Q/∼ is defined by [p̃] · a = [p̃ · a]. We define the natural mapping
φ̃ : Q → Q/∼ by φ̃(q) = [q̃]. Condition (M) for minimal automata implies that, for
any automaton A, its quotient automaton A/∼ is the minimal automaton of L(A).
We shall identify the quotient automaton A/∼ with the minimal automaton of L(A)
(cf. [50]).

We now introduce a new class of automata which is a generalisation of the class
of zero automata.

Definition 4.3.1 (quasi-zero automaton) An automaton A = 〈Q,A, ·, q0, F 〉 is quasi-
zero if either

∪
Sink(A) ⊆ F or

∪
Sink(A) ∩ F = ∅ holds.

Since every zero automaton A satisfies
∪

Sink(A) = {p} for a certain state p
(Lemma 4.1.1), every zero automaton is quasi-zero.

Before proving the equivalence 1© ⇔ 5© in Zero-One Theorem, we introduce the
following lemma.

Lemma 4.3.1 Let A = 〈Q,A, ·, q0, F 〉 be an automaton and A/∼ be its quotient
automaton. Then the following hold:

1. For any sink component P in A, P/∼ is also a sink component in A/∼.

2. For any sink component R in A/∼, there is at least one sink component P in A
satisfying P/∼= R.

Proof : (1) Let P be a sink component in A. Since P is strongly connected, for
each pair of states [p̃], [q̃] in P/∼, there exists a word w satisfying p · w = q and
hence [p̃] · w = [p̃ · w] = [q̃]. That is, [p̃] →∗ [q̃] holds and one can easily verify that
[q̃] →∗ [p̃] also holds. This shows that P/∼ is strongly connected. Moreover, for any
[p̃] in P/∼ and for any word w, [p̃] · w = [p̃ · w] is also in P/∼ because P is sink and
p · w is in P . That is, P/∼ is sink component in A/∼.

(2) Let R be a sink component in A/∼ and S be its preimage S = φ̃−1(R).
Clearly, for any state s in S and for any word w, s · w is in S since [s̃ · w] = [s̃] · w
is in R. Since every finite set equipped with a preorder has at least one maximal
equivalence class, S has at least one sink component, say P . Let p be a state in P .
Since R is strongly connected, for any state in [r̃] in R, there exists a word w such
that [p̃] · w = [p̃ · w] = [r̃]. This shows that for every state [r̃] in R, there exists a
state p · w in P for some w because P is sink. That is, P/∼= R.

24 EQUIVALENCE OF ZOREG AND ZREG

4.4 Proof of Zero­One Theorem (2)

The following proposition shows that the minimal automaton of any quasi-zero au-
tomaton is zero and vice versa (this justifies the term “quasi-zero”). This proposition
shows exactly the equivalence 1© ⇔ 5© in Zero-One Theorem.

Proposition 4.4.1 An automaton A = 〈Q,A, ·, q0, F 〉 is quasi-zero if and only if
A/∼ is zero.

4.4.1 1© ⇒ 5© (A/∼ is zero ⇒ A is quasi­zero)

Let p be the unique sink state of A/∼. To prove this direction, it is enough to consider
the case when p ∈ F/∼, i.e., Fut(p) = A∗. We now show∪

Sink(A) ⊆ F (4.5)

by contradiction. Let us assume that Inclusion (4.5) does not hold, that is, we assume
there exists a non-final state q in

∪
Sink(A). Let P be the sink component of A that

contains q. Since P is sink, φ̃(P) is also sink in A/∼ by Lemma 4.3.1. Moreover,
φ̃(P) does not contain the sink state p, because q /∈ F implies that, for any state q′

in P , Fut(q′) 6= A∗ from which we obtain Fut([q̃′]) 6= Fut(p) and [q̃′] 6= p. That is,
A/∼ has at least two sink components φ̃(P) and p. This is contradiction.

4.4.2 5© ⇒ 1© (A is quasi­zero ⇒ A/∼ is zero)

To prove this direction, it is enough to consider the case when
∪

Sink(A) ⊆ F . Since
A is quasi-zero, all states in

∪
Sink(A) have the same future A∗, i.e., Fut(q) = A∗

for every state q in
∪

Sink(A), because
∪

Sink(A) ⊆ F implies q ·w ∈ F for every
state q in

∪
Sink(A) and every word w. This implies that

(∪
Sink(A)

)
/∼ consists of

a single equivalence class, say p. Moreover, this equivalence class p is a sink state in
A/∼ by the definition of sink and Condition (M) of the minimality of A/∼. We now
show that, by contradiction, A/∼ has only one sink component p:∪

Sink(A/∼) = {p} (4.6)

from which we obtain A/∼ is zero by Lemma 4.1.1. Let us assume that Equation
(4.6) does not hold, that is, we assume there exists another sink component R in A/∼
that does not contain p. By Lemma 4.3.1, there exists a sink component P in A
such that P/∼= R. This implies that P 6⊆ F because R does not contain p. This
is contradicts with the assumption

∪
Sink(A) ⊆ F . This completes the proof of

Zero-One Theorem.

BIBLIOGRAPHIC NOTES 25

4.5 Bibliographic Notes

From the proof in this chapter, we can obtain the followings as a corollary.

Corollary 4.5.1 Let L be a regular language and AL be the minimal automaton of
L. Then the following four conditions are equivalent.

1. L is almost full.

2. L contains an ideal language.

3. AL is zero and its sink state is final.

4. L is recognised by a quasi-zero automaton A such that all states in
∪

Sink(A)
are final.

The direction 3© ⇒ 4© of Zero-One Theorem is nothing but the well known
Infinite Monkey Theorem, as we proved in Section 4.2.3. The remarkable fact of this
theorem is that its converse 4© ⇒ 3© is also true. Things are, however, getting more
complicated if we consider beyond regular languages. There exist several simple
counterexamples that imply ZO 6= Z and we will explain such languages in Chapter
6.

In contrast to the class of monoids with zero, their natural counterpart, the class of
zero automata has not been given much attention. To the best of our knowledge, only
few studies (e.g., [49]) have investigated zero automata in the context of the theory
of synchronising word for Černý’s conjecture.

CHAPTER 5

ALGORITHMIC AND LOGICAL
ASPECTS OF ZOReg

There are many brilliant surveys on formal language theory. Quite many surveys cover
first-order and monadic second-order definability. But there are also nuggets below. There
are deep theorems on proper fragments of first-order definability.

—Diekert et al., “A Survey on Small Fragments of First-Order Logic over Finite Words” [15].

In this chapter, we describes a linear time algorithm for testing whether a given
regular language is zero-one if it is given by an n-states automaton (recall that all
automata considered in the thesis are deterministic). Some logical aspects of the
zero-one law for regular languages are also investigated.

26Zero-One Law for Regular Languages.
By Ryoma Sin’ya Copyright c© 2016

LINEAR TIME ALGORITHM FOR TESTING MEMBERSHIP 27

5.1 Linear Time Algorithm for Testing Membership

The equivalence of zero-automata and the zero-one law gives us an effective algo-
rithm. For a given n-states automaton A, we can determine whether L(A) obeys the
zero-one law by the following steps: (i) Minimise A to obtain its minimal automaton
A/∼. (ii) Calculate the family of all strongly connected components P of A/∼. (iii)
Check whether P contains exactly one strongly connected sink component and it is
trivial, i.e., whether A/∼ is a zero automaton (Lemma 4.1.1). It is well known that
Hopcroft’s automaton minimisation algorithm has an O(n log n) time complexity
and Tarjan’s strongly connected components algorithm has an O(n + n|A|) = O(n)
complexity where n|A| means the number of edges. Hence we can minimise A to
obtain A/∼ in O(n log n) on the step (i), and can calculate P in O(n) on the step (ii).
One can easily verify that the step (iii) above can be done in O(n). To sum up, we
have an O(n log n) algorithm for testing whether a given regular language obeys the
zero-one law.

We can obtain, however, more efficient algorithm by avoiding minimisation. Quasi-
zero automata gives us more effective algorithm.

Theorem 5.1.1 There is an O(n) algorithm for testing whether a given regular lan-
guage is zero-one, if its is given by an n-states automaton.

Proof : For a given n-states automaton A, we can determine whether L(A) obeys
the zero-one law by the following steps: (i) Calculate the family of all strongly con-
nected components P of A. (ii) Extract all strongly connected sink components from
P to obtain Sink(A). (iii) Check whether, in

∪
Sink(A), either all states are final or

all states are non-final, i.e., whether A is quasi-zero. By Zero-One Theorem, L(A)
obeys the zero-one law if and only if A is quasi-zero. Hence this algorithm is correct.
All steps (i) ∼ (iii) can be done in O(n), this ends the proof.

5.2 Logical Fragments over Finite Words

We denote by MSO[<] monadic second-order logic over finite words and denote
by FO[<] first-order logic over finite words. We can interpret words as logical
structures with a linear order composed of a sequence of positions labeled over
a finite alphabet A, < denotes the linear order over the natural numbers. Given
a word w = a0a1 · · · an in A∗ where each ai is a letter, we define the structure
Mw = 〈U,<, (Pa)a∈A〉 of w as follows: the universe U is {0, 1, · · · , n} which cor-
responds to positions in the word, < the usual linear order on the natural numbers,
and the unary predicate Pa of a letter a in A is defined as:

Pa(i) is true ⇔ ai = a.

We shall identify each predicate Pa as the set of positions Pa = {i ∈ U | ai = a}.
For a logical sentence Φ of some logic L, we denote by L(Φ) the language defined
by Φ:

L(Φ) = {w ∈ A∗ | Mw |= Φ}.

28 ALGORITHMIC AND LOGICAL ASPECTS OF ZOREG

We say that a language L is definable in a logic L if, there exists a sentence Φ of L
such that L(Φ) = L.

EXAMPLE 5.1

The structure of a word w = abaab is defined by

Mw = 〈{1, 2, 3, 4, 5}, <, Pa, Pb〉

where < is the usual ordering, and Pa[Pb] contain positions in w where a[b]
occurs: that is, Pa = {1, 3, 4} and Pb = {2, 5}.

We can easily observe that first-order logic over finite words FO[<] does not have
the zero-one law.

EXAMPLE 5.2

A simple counterexample is the language aA∗ which can be defined by the
FO[<] sentence ΦaA∗ = ∃i

(
Pa(i) ∧ ∀j(i ≤ j)

)
. aA∗ satisfies µn(aA∗) =

1/|A| as we stated in Example 2.2, hence ΦaA∗ does not obey the zero-one law
in general. It follows that FO[<] does not have the zero-one law.

We summarise well-known logical and algebraic characterisations of classes of lan-
guages, including the class of zero-one languages ZOReg, in Table 5.1. We use
standard abridged notation for the following first-order fragments over finite words:

FOn[<] for first-order logic with distinct n variables;

Σn[<] for FO formulas with n blocks of quantifiers and starting with a block
of existential quantifiers;

BΣn[<] for the Boolean closure of Σn[<].

Details and full proofs of these results can be found in a very nice survey [15] by
Diekert et al. A monomial over A is a language of the form A∗

0a1A
∗
1a2 · · · akA∗

k

where ai in A and Ai is a subset of A for each i. A monomial A∗
0a1A

∗
1a2 · · · akA∗

k is
unambiguous if for all w ∈ A∗

0a1A
∗
1a2 · · · akA∗

k there exists exactly one factorisation
w = w0a1w1aw · · · akwk with wi in A∗

i for each i. A language L over A is called:

star-free if it is expressible by union, concatenation and complement, but does
not use Kleene star;

polynomial if it is a finite union of monomials;

unambiguous polynomial if it is a finite disjoint union of unambiguous mono-
mials;

simple polynomial if it is a finite union of languages of the form A∗a1A
∗a2 · · · akA∗.

piecewise testable if it is a finite Boolean combination of simple polynomials;

LOGICAL FRAGMENTS OVER FINITE WORDS 29

Table 5.1 Language Hierarchy

Languages Monoids Logic

regular finite MSO[<]

star-free aperiodic FO[<]

polynomials Σ2[<]

unambiguous polynomials DA FO2[<]

zero-one zero ?

piecewise testable J -trivial BΣ1[<]

simple polynomial Σ1[<]

B{A∗ | A ⊆ Σ} semilattice FO1[<]

The question then arises as to which fragments of FO[<] over finite words have the
zero-one law. The algebraic characterisation of the zero-one law partially answers
this question. Since every J -trivial syntactic monoid has a zero element (cf. [46]),
Zero-One Theorem leads to the following corollary.

Corollary 5.2.1 The Boolean closure of existential first-order logic over finite words
has the zero-one law.

One can easily verify that the sentence ΦaA∗ in example 5.2, which only uses two
variables i and j, is in FO2[<]. It follows that FO2[<] does not have the zero-one
law, hence Corollary 5.2.1 shows us a “separation” between FO2[<] and BΣ1[<]. It
must be noted that the class of zero-one languages ZOReg and unambiguous polyno-
mials are incomparable. To take a simple example, consider two languages (aa)∗ and
aA∗ over A = {a, b}. The language (aa)∗ is zero-one but not unambiguous polyno-
mial since its syntactic monoid is not aperiodic (i.e., having no nontrivial subgroup).
Conversely, aA∗ is not zero-one but unambiguous polynomial since it is definable in
FO2[<] as we have stated in Example 5.2. An interesting open problem is whether
there exists a logical fragment that exactly captures the zero-one law (Figure 5.1).

Figure 5.1 Logical fragments and ZOReg

30 ALGORITHMIC AND LOGICAL ASPECTS OF ZOREG

5.3 Bibliographic Notes

Zero-one law for finite graphs That first-order logic has the zero-one law was
proved first by Glebskii et al. in 1969 [24], and independently by Fagin in 1976
[20]. As Kolaitis and Vardi put it: “ In the past, 0-1 laws for various logics L were
proved by establishing first a transfer theorem for L of the following kind:

There is a certain infinite structure R over the vocabulary σ such that for any
property P expressible in L we have:

R |= P ⇔ P is almost surely true.

This method was discovered by Fagin (1976) in his proof of the zero-one law for first-
order logic on finite structures.” And such infinite structure R is called the random
structure. There are other known methods for proving the zero-one law: the quan-
tifier elimination (i.e., every formula with just one quantifier in front of it is almost
everywhere equivalent to a quantifier-free formula) and game theoretic approaches
(e.g., pebble games). [32]. These three methods are rely on the extension axioms
introduced by Gaifman [22]. Blass, Gurevich, and Kozen [7], and independently,
Talanov and Knyazev [62] proved that first-order logic with a fixed point operator
has the zero-one law. Kolaitis and Vardi [32] gave three different proofs for the zero-
one law for finite variable infinitary first-order logic; the first proof is by the transfer
theorem, the second proof is by the quantifier elimination, and the third proof is by
the pebble games. The study of the zero-one law for fragments of existential second-
order logic was initiated by Kolaitis and Vardi [31] and they provide a survey on this
topic [33]. We refer to Chapter 12 of the book [35] by Libkin for more details.

Zero-one law and logical fragments over finite words
Ehrenfeucht has shown that first-order logic with linear order has the convergence
law: every definable property has an asymptotic probability (the proof can be found
in Lynch [36]). Lynch [37] proved that first-order logic with unary functions also has
the convergence law.

The connection between logic and languages firstly discovered by Büchi in 1960
[11]. He gave an effective transformations of MSO[<] sentences into finite automata
and vice versa. This shows that the definability in MSO[<] captures exactly the class
of regular languages. Since the work of Bühi, many connections between logic and
languages have been shown as we summarised in Table 5.1. Some results about the
zero-one law for finite words considered in this thesis is also given by Lynch [38].
He proved that first-order logic over finite words has the convergence law, that is,
in our terms, µ(L) exists for every first-order definable language L. Moreover, he
proved that monadic second-order logic over finite words has the following weak
convergence law: for every regular language L, there is a positive integer a such that
for all non-negative integer b < a:

lim
n→∞

µan+b(L)

BIBLIOGRAPHIC NOTES 31

exists. Lynch uses the game theoretic approach (Ehrenfeucht-Fraïssé game) and
Markov chains [38]. The second result is related to the previous result by Bers-
tel [4], Salomaa and Soittola [51]: µn(L) has finitely many accumulation points
and each accumulation point is rational for any regular language L. We refer the
reader to Compton’s comprehensive survey about zero-one laws for various logics
and structures [13] for more history on this topic.

CHAPTER 6

BEYOND REGULAR LANGUAGES

Concevons qu’on ait dressé un million de singes á frapper au hasard sur les touches d’une
machine á ècrire et que, sous la surveillance de contremaîtres illettrés, ces singes dacty-
lographes travaillent avec ardeur dix heures par jour avec un million de machines à écrire
de types variés. Les contremaîtres illettrés rassembleraient les feuilles noircies et les re-
lieraient en volumes. Et au bout d’un an, ces volumes se trouveraient renfermer la copie
exacte des livres de toute nature et de toutes langues conservés dans les plus riches bib-
liothéques du monde. Telle est la probabilité pour qu’il se produise pendant un instant
très court, dans un espace de quelque étendue, un écart notable de ce que la mècanique
statistique considère comme la phénomène le plus probable.

—Émile Borel, “La mécanique statistique et l’irréversibilité”.

The implication 3© ⇒ 4© of Zero-One Theorem is nothing but the well-known
Infinite Monkey Theorem. In general, it is very difficult to extend some result about
regular languages into beyond regular languages. Many deep results in the theory of
regular languages, of course, heavily depend on the regularity of regular languages.
Zero-One Theorem is not true beyond regular languages. Some counterexamples are
given in Section 6.2. These languages obey the zero-one law but are not with zero.
This implies that ZO properly contains Z , while ZOReg coincides with ZReg.

32Zero-One Law for Regular Languages.
By Ryoma Sin’ya Copyright c© 2016

ZERO­ONE THEOREM FOR PROVING NON­REGULARITY 33

6.1 Zero­One Theorem for Proving Non­Regularity

First of all, we prove that Z is contained in ZO. This is easy and the following
proposition is folklore (cf. [61]), but we include the proof for self-containedness.

Proposition 6.1.1 A language L over A is with zero if and only if L or L contains
an ideal language.

Proof : The “only if” part is what we exactly proved in Section 4.2.2. Note that we
did not use any assumption of the regularity of L in Section 4.2.2. Now we prove the
“if” part. Let ML be the syntactic monoid of L and φL be the syntactic morphism
of L. We can assume that L contains an ideal language, say A∗wA∗ for some word
w, without loss of generality. Then, for any v, x, y in A∗, xwy, xvwy and xwvy
are obviously in A∗wA∗. Hence w, vw and wv are all equivalent on the syntactic
congruence of L: φL(vw) = φL(wv) = φL(w). Because φL is surjective, we obtain
the following equation for all x in ML:

xφL(w) = φL(w)x = φL(w).

This implies that φL(w) is a zero element of ML.

Proposition 6.1.1 and Infinite Monkey Theorem immediately imply the following.

Corollary 6.1.1 ZO contains Z .

Zero-One Theorem implies that if L is in ZO but not in Z , then L is not reg-
ular. Before proving the non-regularity of the set of all palindromes and the Dyck
language, we sum up the above discussion in the following lemmata. Recall that a
word w is forbidden [admissible] for a language L if A∗wA∗∩L = ∅ [A∗wA∗ ⊆ L]
holds.

Lemma 6.1.1 (Zero Lemma) Let L be an almost empty language over A. If L does
not have a forbidden word, then L is not regular.

Proof : From the assumption µ(L) = 0, we can easily verify that L does not contain
an ideal language by Infinite Monkey Theorem. Assume that L does not have a
forbidden word. Then for any word w not in L, the ideal language A∗wA∗ is not
disjoint from L: A∗wA∗ ∩L 6= ∅. Hence every ideal language is not contained in L.
That is, if L is almost empty and does not have a forbidden word, then L is not with
zero. Since L is in ZO but not in Z , L is not regular by Zero-One Theorem.

Corollary 6.1.2 Let L be an almost full language over A. If L does not have an
admissible word, then L is not regular.

34 BEYOND REGULAR LANGUAGES

6.2 Counterexamples

6.2.1 Palindromes

Recall that the set of all palindromes P over A is defined as follows:

P = {w ∈ A∗ | w = wr}.

Note that, if A is singleton (|A| = 1), then P = A∗ and hence P is regular.

Proposition 6.2.1 The set of all palindromes P over A is not regular if A consists
of at least two letters.

Proof : One can easily verify that:

µn(P) =


|A|n/2

|A|n = 1
|A|n/2 if n is even,

|A|×|A|(n−1)/2

|A|n = 1
|A|(n−1)/2 if n is odd.

Hence its limit µ(P) converges to zero. That is, P is almost empty. Moreover, for
every word w in A∗, the word wwr is in P . This shows that P does not have a
forbidden word. Hence P is not regular by Zero Lemma.

Corollary 6.2.1 P is in ZO but not in Z .

Corollary 6.2.2 ZO properly contains Z .

6.2.2 Dyck Language

Recall that the Dyck language D over A = {[,]} is the set of all balanced square
brackets:

D = {ε, [], [[]], [][], [[[]]], [[][]], [[]][], [][[]], [][][], . . .}.

Here we give a more formal definition of D. Let w be a word over A = {[,]}. We
define the trim function Trim : A∗ → A∗ that maps a word w to more shorter word
by deleting all factors of the form [] in w. For example, the words [], [[] and [[]][][are
mapped by deleting all doubly underlined factors [] as follows:

Trim([]) = ε, Trim([[]) = [, Trim([[]]][][) = []][.

It is clear that by the definition of Trim, for every word w, Trim has the fixed point
by starting with w: there exists some m ≥ 1 that satisfies Trimn(w) = Trimm(w)
for all n ≥ m, and we call such Trimm(w) the reduced word of w. We denote by
Trim∗(w) the reduced word of w. Then the Dyck language D can be defined as
follows:

D = {w ∈ A∗ | Trim∗(w) = ε}.

BIBLIOGRAPHIC NOTES 35

Proposition 6.2.2 The Dyck language D over A = {[,]} is not regular.

Proof : It is well known that γ2n(D) for each n ≥ 1:

γ2(D) = 1, γ4(D) = 2, γ6(D) = 5, γ8(D) = 14, · · ·

is equal to the nth Catalan number which has Θ(4n

n3/2) asymptotic complexity (cf. [21]).
Thus we obtain the following equation:

µn(D) =

{
Θ
(

1
n3/2

)
if n is even,

0 if n is odd.

Hence its limit µ(D) converges to zero. That is, D is almost empty. Now we show
that D does not have a forbidden word. Let w be an arbitrary word in A∗. By
definition, the reduced word of w is of the form:

Trim∗(w) =]n[m

for some n, m ≥ 0. Then the word [nw]m is in D since the following equation holds:

Trim∗([nw]m) = Trim∗([n]n[m]m) = ε.

Hence D is not regular by Zero Lemma.

Corollary 6.2.3 D is in ZO but not in Z .

6.3 Bibliographic Notes

It is well known that the syntactic monoid of the Dyck language D is infinite and
has two generators p, q satisfying pq = 1 and qp 6= 1. This monoid is called bicyclic
monoid, and D can be represented by the inverse of the identity 1 of the bicyclic
monoid: D = φ−1

D (1) (cf. [52]). It is also known that the free monoid over A is the
syntactic monoid of the set of all palindromes P over A, if A consists of at least two
letters (cf. Theorem 2.2.5 in [16], Exercises 27 of Section 4.9 in [55]). That is, the
syntactic congruence ∼P of P is the identity: u ∼P v ⇔ u = v for all words u, v
in A∗. A language whose syntactic congruence is the identity, like as P , is called
disjunctive (cf. [28, 16]).

EPILOGUE

In this thesis, the class of regular zero-one languages was characterised in various
ways: (i) syntactic monoids with zero (ii) ideal languages (iii) zero automata and
(iv) quasi-zero automata. The last characterisation – quasi-zero automata – gives
us a linear time algorithm for testing the zero-one law. I can conclude that, from
the algebraic point of view, the zero-one law for regular languages is completely
unraveled.

One line of extension of my results is investigating zero-one laws beyond reg-
ular languages. For example, characterising the zero-one law for visibly pushdown
languages (VPLs), for deterministic context-free languages (DCFLs), for unambigu-
ous context-free languages (UCFLs), and for context-free languages (CFLs). Visibly
pushdown languages are introduced by Alur et al. [1] in 2004, and it is known that
the class of VPLs enjoys good closure properties (e.g., Boolean operations, Kleene
star, and concatenation). Moreover, VPLs has a congruence-based characterisation
that resembles the syntactic congruence for regular languages [2].

Another line of extension of my results is investigating zero-one laws for another
structures. For example, characterising the zero-one law for regular tree languages
(cf. [9]), ω-regular languages.

The key points of Zero-One Theorem are the closure properties of ZO (closed
under Boolean operations and quotients), and this points are also applicable beyond
regular languages, and possibly, for another structures.

36

EPILOGUE 37

Once again, I would like to emphasise the fact about the zero-one law which was
stated in PROLOGUE:

It is known that the finite satisfiability (i.e., the existence of a finite model) of first-
order definable property for finite graphs is undecidable due to Trakhtenbrot’s the-
orem [65]. Thus, for a given first-order sentence Φ, while it is undecidable whether
Φ is true for all finite graphs, it is decidable whether Φ is true for almost all finite
graphs!

In this sense we can regard the zero-one law as a theoretically nice approximation
of the satisfiability problem. Though regular languages are very tractable (many
decision problems are decidable) and no approximation would be needed in most
cases, this point of view – theoretically nice approximation of some decision problem
– might be worthwhile for more intractable language classes. In particular, it is well
known that the universality problem (deciding whether a given language is full) for
CFLs is undecidable (cf. [59]). Zero-one laws beyond regular languages could be an
interesting subject for research in future.

REFERENCES

[1] Rajeev Alur, Viraj Kumar, P. Madhusudan & Mahesh Viswanathan (2004): Visibly push-
down languages. In: Proceedings of the 36th Annual ACM Symposium on Theory of
Computing, Chicago, IL, USA, June 13-16, 2004, ACM Press, pp. 202–211.

[2] Rajeev Alur, Viraj Kumar, P. Madhusudan & Mahesh Viswanathan (2005): Congruences
for Visibly Pushdown Languages. In Luís Caires, GiuseppeF. Italiano, Luís Monteiro,
Catuscia Palamidessi & Moti Yung, editors: Automata, Languages and Programming,
Lecture Notes in Computer Science 3580, Springer Berlin Heidelberg, pp. 1102–1114.

[3] Yehoshua Bar-Hillel, Micha Perles & Eli Shamir (1961): On Formal Properties of Sim-
ple Phrase Structure Grammars. Zeitschrift für Phonetik, Sprachwissenschaft und Kom-
munikationsforschung 14, pp. 143–172.

[4] Jean Berstel (1973): Sur la densité asymptotique de langages formels. In: International
Colloquium on Automata, Languages and Programming (ICALP, 1972), North-Holland,
France, pp. 345–358.

[5] Jean Berstel & Dominique Perrin (1985): Theory of codes. Pure and applied mathemat-
ics, Academic Press, Orlando, San Diego, New York.

[6] Jean Berstel, Dominique Perrin & Christophe Reutenauer (2009): Codes and Automata
(Encyclopedia of Mathematics and Its Applications), first edition. Cambridge University
Press, New York, NY, USA.

[7] Andreas Blass, Yuri Gurevich & Dexter Kozen (1985): A Zero-One Law for Logic with
a Fixed-Point Operator. Information and Control 67(1-3), pp. 70–90.

38Zero-One Law for Regular Languages.
By Ryoma Sin’ya Copyright c© 2016

REFERENCES 39

[8] Manuel Bodirsky, Tobias Gärtner, Timo von Oertzen & Jan Schwinghammer (2004):
Efficiently Computing the Density of Regular Languages. In Martín Farach-Colton, ed-
itor: LATIN 2004: Theoretical Informatics, Lecture Notes in Computer Science 2976,
Springer Berlin Heidelberg, pp. 262–270.

[9] Mikołaj Bojańczyk & Igor Walukiewicz (2008): Forest algebras. In: Logic and Au-
tomata: History and Perspectives [in Honor of Wolfgang Thomas]., pp. 107–132.

[10] Janusz A. Brzozowski & Imre Simon (1971): Characterizations of Locally Testable
Events. In: SWAT (FOCS), IEEE Computer Society, pp. 166–176.

[11] Julius Richard Büchi (1960): Weak second-order arithmetic and finite automata. Z.
Math. Logik und Grundl. Math. 6, pp. 66–92.

[12] Alfred H. Clifford & Gordon B. Preston (1967): The Algebraic Theory of Semigroups,
Volume II. Mathematical Surveys, American Mathematical Society, Providence, Rhode
Island.

[13] Kevin J. Compton (1989): Laws in Logic and Combinatorics. In Ivan Rival, editor:
Algorithms and Order, NATO ASI Series 255, Springer Netherlands, pp. 353–383.

[14] Kevin J. Compton, C.Ward Henson & Saharon Shelah (1987): Nonconvergence, unde-
cidability, and intractability in asymptotic problems. Ann. Pure Appl. Logic 36, pp.
207–224.

[15] Volker Diekert, Paul Gastin & Manfred Kufleitner (2008): A Survey on Small Fragments
of First-Order Logic over Finite Words. International Journal of Foundations of Com-
puter Science 19(3), pp. 513–548.

[16] Pal Domosi, Sándor. Horváth & Masami Ito (2014): Context-Free Languages and Prim-
itive Words. World Scientific Publishing Company Pte Limited.

[17] Paul Dubreil (1941): Contribution à la théorie des demi-groupes. Mémoires de
l’Académie des sciences 63, pp. 1–52.

[18] Samuel Eilenberg & Bret Tilson (1976): Automata, languages and machines. Volume B.
Pure and applied mathematics, Academic Press, New-York, San Franciso, London.

[19] Zoltán Ésik & Masami Ito (2003): Temporal Logic with Cyclic Counting and the Degree
of Aperiodicity of Finite Automata. Acta Cybernetica 16(1), pp. 1–28.

[20] Ronald Fagin (1976): Probabilities on Finite Models. J. Symb. Log. 41(1), pp. 50–58.

[21] Philippe Flajolet & Robert Sedgewick (2009): Analytic Combinatorics, first edition.
Cambridge University Press, New York, NY, USA.

[22] Haim Gaifman (1964): Concerning measures in first order calculi. Israel Journal of
Mathematics 2(1), pp. 1–18.

[23] Mai Gehrke, Serge Grigorieff & Jean-Éric Pin (2008): Duality and Equational Theory of
Regular Languages. In: Proceedings of the 35th International Colloquium on Automata,
Languages and Programming, Part II, ICALP ’08, Springer-Verlag, Berlin, Heidelberg,
pp. 246–257.

[24] Y. V. Glebskii, D. I. Kogan, M. I. Liogonkii & V. A. Talanov (1969): Range and degree of
realizability of formulas in the restricted predicate calculus. Cybernetics 5, pp. 142–154.

[25] Ulf Grenander (1963): Probabilities on algebraic structures. Wiley, New York.

[26] Maurice Gross & André Lentin (1970): Notions sur les grammaires formelles. Collec-
tion Programmation, Gauthier-Villars.

40 REFERENCES

[27] Robert P. Hunter (1988): Certain Finitely Generated Compact Zero Dimensional Semi-
groups. Journal of the Australian Mathematical Society (Series A) 44, pp. 265–270.

[28] Helmut Jürgensen (2001): Disjunctivity. In Masami Ito, Gheorghe Paun & Sheng Yu,
editors: Words, Semigroups, and Transductions, World Scientific, pp. 255–274.

[29] Stephen C. Kleene (1951): Representation of events in nerve nets and finite automata.
Rand Corporatin.

[30] Stephen C. Kleene (1956): Representation of events in nerve nets and finite automata.
In Claude Shannon & John McCarthy, editors: Automata Studies, Princeton University
Press, Princeton, NJ, pp. 3–41.

[31] Phokion G. Kolaitis & Moshe Y. Vardi (1987): The Decision Problem for the Proba-
bilities of Higher-order Properties. In: Proceedings of the Nineteenth Annual ACM
Symposium on Theory of Computing, STOC ’87, ACM, New York, NY, USA, pp. 425–
435.

[32] Phokion G. Kolaitis & Moshe Y. Vardi (1992): Infinitary logics and 0-1 laws. Informa-
tion and Computation 98(2), pp. 258–294.

[33] Phokion G. Kolaitis & Moshe Y. Vardi (2000): 0-1 Laws for Fragments of Existential
Second-Order Logic: A Survey. In Mogens Nielsen & Branislav Rovan, editors: MFCS,
Lecture Notes in Computer Science 1893, Springer, pp. 84–98.

[34] Mark V. Lawson (2005): Finite Automata. Birkhäuser.

[35] Leonid Libkin (2004): Elements of Finite Model Theory. SpringerVerlag.

[36] James F. Lynch (1980): Almost sure theories. Ann. Mathematical Logic 18, pp. 91–135.

[37] James F. Lynch (1985): Probabilities of first-order sentences about unary functions.
Trans. Amer. Math. Soc. 287, pp. 543–568.

[38] James F. Lynch (1993): Convergence laws for random words. Australas. J. Combin. 7,
pp. 145–156.

[39] Stuart W. Margolis (2014): The q-theory of finite semigroups: history and mathematics.

[40] Per Martin-Löf (1965): Probability theory on discrete semigroups. Zeitschrift für
Wahrscheinlichkeitstheorie und Verwandte Gebiete 4(1), pp. 78–102.

[41] Robert McNaughton (1974): Algebraic Decision Procedures for Local Testability. Math-
ematical Systems Theory 8(1), pp. 60–76.

[42] Marian Mureşan (2009): A concrete approach to classical analysis. CMS books in
mathematics , Springer.

[43] John R. Myhill (1957): Finite Automata and the Representation of Events. Technical
Report WADC TR-57-624, Wright-Paterson Air Force Base.

[44] Anil Nerode (1958): Linear automaton transformations. Proceedings of the American
Mathematical Society 9(4), pp. 541–544.

[45] Richard S. Pierce (1954): Homomorphisms of Semigroups. Annals of Mathematics 59,
pp. 287–291.

[46] Jean-Éric Pin: Mathematical foundations of automata theory. Available at http://
www.liafa.jussieu.fr/~jep/PDF/MPRI/MPRI.pdf.

[47] Jean-Éric Pin (1986): Varieties of formal languages. Plenum Publishing Corp., New
York. With a preface by Marcel-Paul Schützenberger, Translated from the French by A.
Howie.

http://www.liafa.jussieu.fr/~jep/PDF/MPRI/MPRI.pdf
http://www.liafa.jussieu.fr/~jep/PDF/MPRI/MPRI.pdf

REFERENCES 41

[48] Michael O. Rabin & Dana S. Scott (1959): Finite Automata and Their Decision Prob-
lems. IBM J. Res. Dev. 3(2), pp. 114–125.

[49] Igor Rystsov (1997): Reset words for commutative and solvable automata. Theoretical
Computer Science 172(1–2), pp. 273–279.

[50] Jacques Sakarovitch (2009): Elements of Automata Theory. Cambridge University Press,
New York, NY, USA.

[51] Arto Salomaa & Matti Soittola (1978): Automata Theoretic Aspects of Formal Power
Series. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

[52] Mark V. Sapir (2014): Combinatorial algebra syntax and semantics. Springer Mono-
graphs in Mathematics, Springer, Cham.

[53] Marcel-Paul Schützenberger (1956): Une théorie algébrique du codage. Séminaire
Dubreil. Algèbre et Théorie des Nombres 9, pp. 1–24.

[54] Marcel-Paul Schützenberger (1965): On finite monoids having only trivial subgroups.
Information and Control 8(2), pp. 190–194.

[55] Jeffrey Shallit (2008): A Second Course in Formal Languages and Automata Theory,
first edition. Cambridge University Press, New York, NY, USA.

[56] Imre Simon (1975): Piecewise Testable Events. In: Proceedings of the 2nd GI Confer-
ence on Automata Theory and Formal Languages, Springer-Verlag, London, UK, UK,
pp. 214–222.

[57] Ryoma Sin’ya (2014): Graph Spectral Properties of Deterministic Finite Automata. In
Arseny M. Shur & Mikhail V. Volkov, editors: Developments in Language Theory, Lec-
ture Notes in Computer Science 8633, pp. 76–83.

[58] Ryoma Sin’ya (2015): An Automata Theoretic Approach to the Zero-One Law for Reg-
ular Languages: Algorithmic and Logical Aspects. In: Proceedings Sixth International
Symposium on Games, Automata, Logics and Formal Verification, GandALF 2015, pp.
172–185.

[59] Michael Sipser (2006): Introduction to the theory of computation: second edition, sec-
ond edition. PWS Pub., Boston.

[60] Howard Straubing (2002): On Logical Descriptions of Regular Languages. In Sergio
Rajsbaum, editor: LATIN 2002: Theoretical Informatics, Lecture Notes in Computer
Science 2286, Springer Berlin Heidelberg, pp. 528–538.

[61] Howard Straubing & Pascal Weil (2015): Varieties. CoRR abs/1502.03951.

[62] V. A. Talanov & V. V. Knyazev (1986): The asymptotic truth value of infinite formulas
(in Russian). In: All-Union seminar on discrete mathematics and its applications, pp.
56–61.

[63] Terence Tao (2011): An Introduction to Measure Theory. Graduate studies in mathemat-
ics, American Mathematical Soc.

[64] Marianne Teissier (1951): Sur les équivalences regulières dans les demi-groupes.
Comptes rendus de l’Académie des sciences 232, pp. 1987–1989.

[65] Boris Trakhtenbrot (1950): The Impossibility of an Algorithm for the Decidability Prob-
lem on Finite Classes. In: Proceedings of the USSR Academy of Sciences (in Russian),
70, pp. 569–572.

