
論文 / 著書情報
Article / Book Information

題目(和文) フッ化物籠目格子反強磁性体における新奇基底状態

Title(English) Unusual Ground State Observed in a Fluoride Family of Kagome
Lattice Antiferromagnets

著者(和文) 片山和哉

Author(English) Kazuya Katayama

出典(和文)  学位:博士(理学),
 学位授与機関:東京工業大学,
 報告番号:甲第10059号,
 授与年月日:2016年3月26日,
 学位の種別:課程博士,
 審査員:田中 秀数,吉野 淳二,江間 健司,笹本 智弘,髭本 亘

Citation(English)  Degree:Doctor (Science),
 Conferring organization: Tokyo Institute of Technology,
 Report number:甲第10059号,
 Conferred date:2016/3/26,
 Degree Type:Course doctor,
 Examiner:,,,,

学位種別(和文)  博士論文

Type(English)  Doctoral Thesis

Powered by T2R2 (Science Tokyo Research Repository)

http://t2r2.star.titech.ac.jp/


Unusual Ground State Observed in a Fluoride
Family of Kagome Lattice Antiferromagnets

Kazuya Katayama

Department of Physics
Graduate School of Science and Engineering

Tokyo Institute of Technology

February, 2016





Abstract

From the viewpoint of geometrical frustration, the kagome lattice antiferromagnet

(KLAF) is one of the most fascinating systems. It is theoretically known that

small spin KLAFs show exotic quantum effects such as spin liquid ground state

and magnetization plateaus caused by the interplay of frustration and quantum

effects. Thus, the spin-1/2 KLAF is the frontier of quantum magnetism. However,

the experimental studies on the spin-1/2 KLAFs have difficulty in capturing the

essential magnetic properties because of the lattice disorder, impurities and difficulty

in preparing single crystal. Spin-1/2 KLAFs Rb2Cu3SnF12 and Cs2Cu3SnF12 are

almost free from these problems. Cs2Cu3SnF12 has uniform kagome lattice at room

temperature. Cs2Cu3SnF12 undergoes a structural phase transition at Tt = 185 K

and an antiferromagnetic long-range order at TN = 20 K. The magnetic ordering is

described by the q = 0 spin structure. Rb2Cu3SnF12 has a 2a× 2a enlarged chemical

unit cell, which leads to four kinds of nearest-neighbor exchange interaction. The

magnetic ground state of Rb2Cu3SnF12 a singlet with an excitation gap.

In this thesis, I investigated the variation of the exchange parameters and the

ground state in (Rb1−xCsx)2Cu3SnF12, using single crystals. The analysis of mag-

netic susceptibilities shows that with increasing the cesium concentration x, the

exchange parameters increase with the tendency to be uniform. It was found that

the ground state is disordered for x< 0.53 and ordered for x > 0.53. Néel temper-

ature for x > 0.53 approach zero at xc ' 0.53. This indicates that quantum phase

transition from the disordered state to the ordered state occurs at xc. These results

were also confirmed by µSR measurements for xc = 0.53. In the disordered state for

x< xc, the magnetic susceptibility is finite, nevertheless the long-range magnetic

ordering is absent. This nature is characteristic of the valence-bond-glass (VBG)

state, which was recently predicted as a ground state for exchange-disordered frus-
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trated quantum antiferromagnets. The VBG state is an unusual ground state, in

which spins form singlets randomly not only with the nearest-neighbor spins but also

with the second-, third-neighbors and farther spins due to exchange randomness.

This work gives the clear evidence of the VBG state in the KLAFs.

I also report the results of magnetization, specific heat and neutron powder

diffraction measurements on spin-2 KLAF Cs2LiMn3F12. The three-dimensional

magnetic ordering was observed at TN ' 2.0 K. The low-temperature specific

heat is proportional to T 2, which indicates that Cs2LiMn3F12 has a good two-

dimensionality. From neutron powder diffraction, it was found that the spin struc-

ture in the ordered phase is characterized by a propagation vector q = (1/3, 0, 0).

This unusual magnetic ordering that is neither q = 0 structure nor
√

3×
√

3 struc-

ture is the first observation in KLAFs.
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Chapter 1

Introduction

Generally, ubiquitous magnetic properties in conventional magnets are well de-

scribed by spin vector model. The model is given by

H =
∑
i, j

JijSi · Sj, (1.1)

where the spins are labelled as i and j, and the sum runs over all of the nearest

neighbor pairs i, j. The simple model has been revealed a variety of physical prop-

erties, for instance, magnetic susceptibilities of ferromagnetic or antiferromagnetic

order and spin-wave excitations, and the list goes on and on.

Recently, it has been recognized that the quantum effect plays a significant role

for magnetic ground states and excitations in low-dimensional quantum magnets. It

is known that the one- and two-dimensional antiferromagnets that are expressed by

XY and Heisenberg models preclude a magnetic order with breaking translational

symmetry at finite temperature.

Besides, geometrically frustrated antiferromagnets have attracted growing atten-

tion owing to the potential realization of exotic ground states. One of the simplest

and the most intriguing frustrated magnets is a Heisenberg antiferromagnet on the

kagome lattice (KLAF), which is composed of corner-sharing triangles. For small

spins, theoretical studies revealed that a synergetic effect of frustration and quantum

fluctuation can lead to a disordered ground state, while for large spins, the system

undergoes a magnetic order. Motivated by these fascinating theoretical predictions,

many model compounds of KLAF have recently been synthesized and their mag-

netic properties have been actively investigated. These experimental studies also
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stimulated new theoretical studies. In this thesis, I report a promising fluoride fam-

ily of new model compounds of KLAF.

1.1 Quantum Effects

The Hamiltonian of the Heisenberg model is expressed as

H = J
∑
i,j

Si · Sj = J
∑
i,j

{
1

2

(
S+

i S−
j + S−

i S+
j

)
+ Sz

i S
z
j

}
(1.2)

where Si is a spin operator on each site i, and S±
i = Sx

i ± iSy
i . For a ferromagnetic

linear chain with negative J , the ground state is given as

· · · ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ · · · , (1.3)

while for the antiferromagnetic chain with positive J , the Néel ordered state ex-

pressed as

· · · ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ · · · , (1.4)

is not the ground state, because this state has off-diagonal matrix elements for H,

and thus, this is not an eigenstate. The off-diagonal elements give rise to quan-

tum fluctuation. Although the off-diagonal elements are smaller than the diagonal

elements, in some cases, especially in frustrated magnets of interest in this thesis,

the spin systems are enormously affected by the off-diagonal elements, so that the

ground state becomes disordered. In large spin case, the effect of quantum fluctua-

tion can be treated as the zero-point oscillation by a semi-classical spin-wave theory,

which describes the antiferromagnet as an ensemble of harmonic oscillators.

Using the Néel ordered states, or spin-vector model, the energy of the ground

state is expressed as

EN = −1

2
zNJS2, (1.5)

where z and N are the number of the nearest neighbors and sites, respectively. The

result is consistent with a molecular field theory. According to Bogolubov inequality,
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the energy obtained by the molecular field theory is the upper limit of the lowest

free energy [1]. The energy of the ground state using a spin-wave theory is described

as [2–5]

EG = Ecl + E0 +
∑

l

∑
µ

h̄ωl(µ)

{
α†

l (µ)αl(µ) +
1

2

}
, (1.6)

where Ecl is the classical energy, E0 is the energy of quantum correction that is

independent of spin states, l classifies the sublattices, and α†
l (µ) and αl(µ) are

creation and annihelation operators of magnons with momentum µ, respectively.

(1/2)h̄ωl(µ) in the third term is considered as the zero-point energy, which arises

from the quantum fluctuation. For a uniform chain, two-dimensional square lattice

and three-dimensional simple cubic lattice, the energy is expressed as

EG = −zNJS2

[
1 +

1

S

(
1 − 2

N

∑
µ

√
1 − γ2

µ

)]
, (1.7)

where γµ = 1
D

∑D
i=1 cos(µia), D is the dimensionality of the lattice. Thus, the energy

is evaluated as −zNJS(S +1) < EG < −zNJS2. Besides, the magnetic moment of

a sublattice is shrunk by the quantum fluctuation. The magnetic moment of each

sublattice is given by,

〈Sz,tot〉 =
NS

2

[
1 − 1

2S

(
2

N

∑
µ

1√
1 − γµ

− 1

)]
. (1.8)

The second term comes from the quantum fluctuation. In the case of one-dimensional

systems (D = 1), the second term diverges. This means that the quantum fluctu-

ation is so significant to destroy the magnetic ordering. It was demonstrated that

the ground state in low-dimensional antiferromagnets can be disordered and the

magnetic moment becomes zero [2, 6–8].
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1.2 Geometrical Frustration and Kagome Lattice

Antiferromagnets

1.2.1 Geometrical Frustration

Geometrically frustrated quantum antiferromagnets, a research frontier in con-

densed matter physics, have been in the spotlight because of the potential real-

ization of exotic ground states such as the spin-liquid state [9–13]. In this section,

I explain a geometrically frustrated effect using the simplest model, which stems

from the relative configuration of spins.

Figure 1.1(a) depicts the concept of frustration. Spins are situated on the corners

of a single triangle connected by antiferromagnetic interactions of the same strength.

For spins coupled by Ising Hamiltonian on a single triangle lattice, there is no spin

configuration that satisfies the requirement of all the exchange bonds. In this case,

the spins cannot be classified into two sublattices, which is refered to as a non

bipartite lattice.

For classical spins coupled by Heisneberg Hemiltonian on a triangle lattice, the

energy of the spins can be expressed as,

E =
J

2
(S1 + S2 + S3)

2 + const, (1.9)

where the spins on three corners are labelled as S1, S2, S3. The energy is optimized

by 120◦ spin structures, as shown in Fig. 1.1(b), instead of Néel spin structures.

A new degree of freedom called a chirality is generated in this system. The vector

chirality for a single triangle is defined as,

κ =
2

3
√

3
(S1 × S2 + S2 × S3 + S3 × S1). (1.10)

For a coplanar arrangement of spins, the vector κ is normal to the spin plane

with the amplitude of +1 or −1, which indicates anticlockwise and clockwise spin

rotations along the side of the triangle.

Typical geometrically frustrated lattices are triangular and kagome lattices, as

illustrated in Fig. 1.1(c) and (d), respectively. Since the first attractive hypothesis by

Anderson in 1973 on resonating-valence-bond (RVB) ground state in the triangular

lattice [14], the frustrated quantum magnets have been the center of attention in
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(c) (d)

(a) (b)

+

Figure 1.1: Illustration of frustration and frustrated lattices. (a) Ising spins coupled
via antiferromagnetic exchange interaction on a triangle. Any spin configurations
cannot be optimized with respect to Ising Hamiltonian. (b) XY or Heisenberg spins
coupled via antiferromagnetic exchange interaction on a triangle. + and − indicate
a vector chirality κ with the amplitude of +1 or −1. (c) Triangular lattice and (d)
kagome lattice, which are typical geometrically frustrated lattices.

the field of the condensed matter physics. In the case of the vector spins on the

triangular lattice, the ground state should be 120◦ spin structure, as mentioned

above. Although from the Marshall-Lieb-Mattis theorem, it is uncertain whether

the system undergoes a magnetic order, the spin-wave theory for S = 1/2 [15–17]

demonstrates that the quantum fluctuation is insufficient to destroy the magnetic

order with 120◦ spin structure, so that the sublattice has a finite magnetic moment.

Recently, a numerical study shows that the ordered moment is estimated to be

〈S〉 = 0.205 [18].

9



1.2.2 Kagome Lattice Antiferromagnets

One of the simplest and the most intriguing frustrated magnets is a Heisenberg

antiferromagnet on the kagome lattice (KLAF) composed of corner-sharing triangles

[19–22]. Kagome means a woven pattern of bamboo-basket, which Japanese people

are using even now.

Theoretical Background

Order By Disorder

For the classical Heisenberg KLAF with the nearest-neighbor exchange interaction

J , the ground state is infinitely degenerate owing to the local flexibility of the

configuration of the 120◦ spin structure characteristic of the kagome lattice, as

illustrated in Fig. 1.2. Since the degeneracy arises from an accidental degeneracy

that is not related to the global symmetries, respective spin configurations differ

in the energies of low lying excitations and quantum fluctuation. In the classical

case, a specific state with the softest fluctuations tends to be mostly selected by the

thermal fluctuations, because the Boltzmann factor of the state is the largest in all

the spin configurations [23, 24]. This ordering mechanism is called thermal order-

by-disorder, as shown in Fig. 1.3(a) [12]. The spin ordering owing to the order by

disorder mechanism can be induced by the quantum fluctuation, in other words zero-

point motion. The energy of the ground state in quantum antiferromagnets is given

by Eq. (1.6) and the zero-point energy depends on the classical spin configuration.

Therefore, the degeneracy can be lifted by the quantum fluctuation, as illustrated in

Fig. 1.3(b) [10, 12, 25–28]. Consequently, A specific state with the lowest quantum

fluctuation energy Eqf is selected as the ground state. This ordering mechanism is

called quantum order-by-disorder.

Zero Energy Mode

In the case of a nonclassical Heisenberg model with a large spin-quantum number,

it was predicted that the KLAF favors coplanar spin configurations [29] and the so-

called
√

3×
√

3 structure is stabilized by the quantum order-by-disorder mechanism

on the basis of the spin-wave analysis [30–33]. Figures 1.4(a) and (b) show typical
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Figure 1.2: Illustration of the infinitely degenerate classical kagome lattice antifer-
romagnet with the nearest-neighbor coupling J . Notation “+” and “−” denote the
chirality. Three spins on any triangle form the 120◦ spin structure. However, the
arrangement of the chirality cannot be determined uniquely.

ground states of Heisenberg KLAF. The magnetic unit cell of q = 0 structure is

the same as the chemical unit cell, whereas for
√

3×
√

3 structure, the magnetic

unit cell is enlarged to
√

3×
√

3 with respect to the chemical unit cell. Non-planar

states can be generated by continuous local rotation of a planar state without any

energy cost [30, 31, 34], as illustrated in Figs. 1.4(c) and (d). This local excitation

is called zero-energy mode. When there exists the easy-plane anisotropy or the

Dzyaloshinskii-Moriya interaction of the form Di,j · [Si × Sj] with the D vector

perpendicular to the lattice plane, the local excitation costs finite energy, so that

the zero-energy mode is lifted [35].

Ground State in Quantum Kagome Lattice Antiferromagnet

The most intriguing case is spin-1/2 case, where a noteworthy synergistic effect

of the geometric frustration, the local flexibility and the quantum fluctuation is

expected. In this case, the accuracy of the spin-wave analysis should be deteri-

orating owing to enormous quantum effects. A long-standing theoretical debate
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kBT

spin configuration

E

spin configuration

E

Ecl

the softest mode (b )(a)

Equantum

Figure 1.3: Schematic figure of energy level of KLAF with Heisenberg model. (a)
Energy levels of excited states. Since a state with the softest mode has the largest
Boltzmann factor, the state is stabilized in finite temperature T . (b) Energy level
of ground state determined by quantum fluctuation. The dashed line represents the
energy of classical ground state (Ecl), which is infinitely degenerate. Degeneracy
within the classical energy can be lifted by the quantum fluctuation. A specific
state with the lowest quantum-fluctuation energy (Eqf) is stabilized.

has reached a consensus that the quantum-disordered state is more stable than

any ordered state. However, the nature of the ground state has not been theo-

retically elucidated. Recent theory proposed nonmagnetic ground states, such as

the valence-bond-solid (VBS) [36–40] and quantum spin-liquid states including res-

onating valence-bond (RVB) state [41–43], which are described by a static array of

singlet dimers and the linear superposition of various configurations composed of

singlet dimers, respectively, as illustrated in Figs. 1.5(a) and (b).

The nature of low-energy excitations also remains unsolved. The presence of a

gap for the triplet excitation is still controversial [44, 45, 51–53]. Exact diagonar-

ization calculations revealed that the singlet-triplet excitation gap exists, which is

filled with continuous excitations with singlet states. This low-lying singlet excita-

tions are attributable to the spin-liquid state and/or RVB state [44]. Density matrix

renormalization group (DMRG) method supports the singlet-triplet gap [45, 52].

Meanwhile, projective wave function method indicates that the ground state has no

magnetic order and finite susceptibility, which is characteristic of the spinon-Fermi

12



(a)

(c)

(b)

(d)

Figure 1.4: Typical ground states in the classical Heisenberg KLAFs. (a) q = 0
structure, where the magnetic unit cell corresponds with the chemical one. (b)√

3×
√

3 spin structure, where the magnetic unit cell is enlarged to
√

3a×
√

3a.
(c) and (d) are illustrations of continuous local rotation of spins for q = 0 and√

3×
√

3 structures, respectively, without any energy cost.

surface.

Effect of the Dzyaloshinskii-Moriya Interaction

In reality, owing to the lack of inversion symmetry at the middle point of neighbor-

ing lattice points in kagome lattice, an antisymmetric interaction of Dzyaloshinskii-

Moriya (DM) type [46, 47] is inevitable. Dzyaloshinskii pointed out that in some

crystal, an antisymmetric interaction can appear, which results in the weak fer-

romagnetic moment [46]. Moriya derived the antisymmetric interaction from a

microscopic model [47]. The DM interaction is expressed by the vector product of
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(a) Valence-bond-solid (VBS)

(b) Resonating-valence-bond (RVB)

,

....

1

2 (        )

Figure 1.5: Predicted ground states of spin-1/2 quantum Heisenberg KLAF. (a)
Valence-bond-solid (VBS) state, given by a static arrangement of spin-singlet state,
which is two fold degenerate. (b) Resonating-valence-bond (RVB) state described
by the linear superposition of various configurations composed of singlet dimers,
where translational symmetry is not broken.

spins as

HDM =
∑
i,j

Di,j · [Si × Sj] . (1.11)

DM interaction greatly affects the ground state of KLAF to reduce the quantum

fluctuation [48–50, 61]. Because the DM interaction mixes the singlet and triplet

states, which have opposite parity with respect to permutation of the spins, the

total spin is no longer a good quantum number. Therefore, the ground state has

finite S = 1 components, which leads to non zero susceptibility.

A remarkable effect of the DM interaction in an S = 1/2 Heisenberg KLAF is

that this interaction destroys the disordered ground state [50]. Using exact diag-

onalization, it was demonstrated that with increasing the z component D‖ of the

D vectors, which are arranged as shown in Fig. 1.6(a), the disordered ground state

becomes unstable and quantum phase transition from a disordered state to an or-

dered state with the q = 0 spin configuration takes place at D‖ = 0.1J [50]. This

is because the DM interaction with the D vectors arranged as shown in Fig. 1.6(a)

14



(a) (b) (c)

η

Figure 1.6: (a) and (b) Arrangements of the z (D‖) and in-plane (D⊥) components
of the D vectors of Dzyaloshinskii-Moriya interaction in KLAF with mirror planes
passing through each of the center between adjacent sites, respectively. The red and
black arrows indicate spins and DM vectors of the in-plane components, respectively.
The circled dots and circled crosses in (a) and the arrows in (b) represent the
local positive directions of the parallel and perpendicular components D‖ and D⊥ ,
respectively. D‖ stabilizes the q = 0 spin structure represented by red arrows. (c)
Configuration of canted spins. η indicate the canted angle.

prefers the q = 0 spin structure represented by red arrows. Moreover, the in-plane

component D⊥ of the D vectors (Fig. 1.6(b)) produces a canting of ordered moment,

as shown in Fig. 1.6(c) [48]. The canted angle η is given by

tan 2η =
2D⊥

√
3J + D‖

. (1.12)

Magnetization Process in Quantum KLAF

The magnetic properties of quantum KLAFs described above is the case of zero mag-

netic field. Remarkable quantum nature is observed in the magnetization process

of quantum Heisenberg KLAFs. The magnetization process of a classical antifer-

romagnet is monotonical up to saturation, e.g., the magnetization is proportional

to the applied magnetic fields and saturates. For a quantum triangular lattice an-

tiferromagnet, successive phase transitions induced by quantum fluctuation occur

in magnetic fields. A notable feature is that the up-up-down spin state is stabi-
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By contrast, in our grand canonical calculation the size
dependence becomes negligible (less than 10! 3 in two dimen-
sions, see Methods) once we enter a cluster size of the proper
system length. Therefore, one could evaluate the spin gap by the
onset value of H/J in the magnetization curve near zero field. In
Fig. 1, we find D¼ 0.05±0.02 (see the red shaded region), which
is obtained on a hexagonal cluster.

We briefly mention that our results are fully consistent with the
data of the previous conventional DMRG studies: in our grand
canonical DMRG on a cylinder with fixed small circumference
(see Supplementary Fig. S1), the spin gap gives more than twice as
large values as the value mentioned above. This value should be
compared with the data in ref. 9 on a long cylinder with the same
circumference. For a proper extrapolation of the cylindrical
results to a bulk two-dimension, one needs to enlarge both the
length and the circumferences simultaneously23. In fact, our
grand canonical spin gap on a hexagonal cluster is very close to
those of ref. 22 on a square cluster.

Zero and 1/9 plateaus. The zero plateau ranging at 0rH/Jr0.05
is the continuation of the zero-field ground state. Correspond-
ingly, in our calculation the spin structure in real space turned out
to be completely structureless (see Supplementary Fig. S2). One
way to identify the nature of the spin liquid is to calculate the von
Neumann entropy, S¼ !Tr(r ln r), defined on a subsystem of a
long open cylinder by the conventional DMRG, where r is the
reduced density matrix of the subsystem. The value should follow,
SBZ Ly! g, where Ly is the circumference, Z is a constant and
g¼ ln(D) is the topological entropy. In ref. 9, the topological
dimension, D, of the ground state is given as DB2, which
supports the gapped Z2 spin liquid.

In the 1/9-plateau state, the real space profile of the spin
structure is rather intriguing, several geometries breaking the

translational symmetry are quasi-degenerate (see Supplementary
Fig. S2 and Supplementary Note 3), and their stability is sensitive
to the shape and size of the cluster. We consider this to be the
good reason that the symmetry-breaking long order is absent.
Therefore, we perform the conventional DMRG and calculate the
entanglement entropy of the 1/9-plateau state in the same
manner as refs 2 and 9, as shown in Fig. 2; to have the 1/9
magnetization, we need to keep the system size at the multiple of
nine, and thus the choice of the clusters are limited compared
with the calculation on the M/N¼ 0 ground state. The
topological dimension obtained in the Ly¼ 0 limit seemingly
gives the value D¼ 3. Thus, the spin-gapped state at 1/9
magnetization is possibly a Z3 spin liquid, and is the first
example of a spin-liquid plateau induced by the magnetic field.
Even a Z3 spin liquid itself has so far been observed only in a
specified bosonic model24, and the present model gives a more
realistic setup. Further examination is required to identify the
detailed nature of this phase.

Long-range ordered plateaus. In contrast to the first two pla-
teaus, the rest of the plateaus have symmetry-breaking long-range
orders. Figure 3a–c shows the real space profiles of the magne-
tization density for 1/3, 5/9 and 7/9 plateaus. All of them are
based on a same unit of a hexagram, which holds nine lattice sites.
This magnetic (extended) unit cell is three times as large as the
original unit cell, namely, Qmag¼Q# 3¼ 9, with the spin density
shown in Fig. 3d. Such symmetry-breaking requires strong
interaction between bosons, and the emergence of three such
plateaus in a single system is already a quite unexpected matter to
happen.

Discussion
In spin-1/2 quantum magnets, a conventional (non-topological)
non-magnetic state basically comprises a singlet, a unit of
spin 0, often represented by the quantum fluctuation between two
spins, (|mkS–|kmS)/O2. A breaking of singlet yields a bosonic
elementary particle carrying spin 1, which is called a magnon.
The magnetic field controls the density of these bosons, serving as
a chemical potential. As in the Mott insulator, there are particular
values of the boson densities commensurate with the lattice
periodicity25, at which the gapped states are strongly pinned.

M
/M

s
a

t

1

0.5

0
0 1 2 3

H/J

Q = 3

Kagome

7/9

5/9

1/3

1/9

Figure 1 | Magnetization curve of the spin-1/2 kagome Heisenberg

antiferromagnet in a uniform magnetic field. The saturation value of the

magnetization density per site is Msat/N¼ 1/2. The inset shows the
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Figure 1.7: Magnetization as function of magnetic field in S = 1/2 kagome lattice
Heisenberg antiferromagnet [53].

lized in a finite field range, which leads to a magnetization plateau at one third of

the saturation value [62–65]. The 1/3-magnetization plateau induced by the quan-

tum order-by-disorder mechanism was also predicted theoretically. Various numer-

ical studies confirmed that one-third magnetization plateau occurs for S = 1/2

Heisenberg KLAF [53,66–69]. Surprisingly, it was demonstrated that the magneti-

zation of S = 1/2 Heisenberg KLAF is quantized at m = 0 and m = (2n− 1)/9 with

n = 1, 2, · · · , as shown in Fig. 1.7 [53,54].

Effect of Exchange Randomness: Valence-Bond-Glass

In realistic materials of frustrated quantum magnets such as ZnCu3(OH)6Cl2 with

a spin-liquid-like ground state as shown below, there exists certain amount of lat-

tice or charge disorder, which leads to exchange randomness. Motivated by this

situation of realistic materials, the effect of exchange randomness on KLAF was
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investigated theoretically [55–58]. It was demonstrated that a spin-liquid-like state

called “random singlet” [59, 60] or “valence-bond-glass” [55, 70] is induced by the

exchange randomness.

Kawamura and his coworkers [56–58] investigated S = 1/2 triangular and kagome

lattice Heisenberg antiferromagnets with the random antiferromagnetic exchange

bond Jij, which is described as

H =
∑
i,j

JijSi · Sj, (1.13)

where Jij obeys the uniform distribution between (1 − ∆)J and (1 + ∆)J with the

mean J . The parameter ∆ is a index of randomness. ∆ = 0 corresponds to the

uniform latiice, and ∆ = 1 is the most random case. They calculated the sublattice

magnetization, thermodynamic properties and dynamical structure factor, using

exact diagonalization for up to 30-site clusters [57, 58].

It was revealed that when the randomness parameter ∆ exceeds a critical value

of ∆c ∼ 0.4, a disordered ground state changes to a gapless spin-liquid-like state.

For the specific heat, the broad peak at T = 0.1 K characteristic of the uniform

kagome lattice is suppressed with increasing ∆. Finally, specific heat shows a linear

temperature dependence of T at low temperatures, as shown in Fig. 1.8(a). The

low-temperature susceptibility for ∆ = 0 is almost zero. However, with increasing
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Figure 1.9: Illustration of a valence bond glass state. A ellipse represents a singlet
bond, whose color corresponds to the strength of the bonds

∆, the low-temperature susceptibility increases, as shown in Fig. 1.8(b). The 1/3-

magnetization-plateau is smeared with increasing ∆. These results indicate that the

ground state is gapless without magnetic ordering. They also show that dynamical

structure factor has no sharp singularity due to characteristic excitations. These

ground state properties are consistent with those observed in of ZnCu3(OH)6Cl2

shown below. Another research group suggests that the ground state has a pseudo

gap when the pure system has a gaped ground state [70].

A naive concept of the VBG state is such that tightly bound spin singlets are

situated at stronger Jij bonds, while loosely bound singlets at weaker Jij bonds, as

shown in Fig. 1.9 [55]. Because there are many loosely bound singlets, where the

singlet-triplet excitations are gapless, the magnetic susceptibility becomes finite.

Shimokawa et al. [58] argued that in the case of un-frustrated lattice, for instance

square lattice with random antiferromagnetic bonds, the system does not exhibit the

random singlets-state. Their results indicate that the frustration plays a significant

role in the ground state when randomness is introduced.

Experimentally, there are some candidates for the VBG state in triangular lattice

antiferromagnets such as Cs2Cu(Br1−xClx)4 [71, 72]. In Cs2Cu(Br1−xClx)4, The

Néel temperature decreases drastically with increasing chlorine concentration x and
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magnetic ordering is absent for x> xc = 0.17. For x> xc, low-temperature specific

heat is linear in temperature, as predicted by theory [56]. However, for KLAFs

there is no clear evidence of the VBG state.

Previous Experimental Studies on Some KLAFs

On the experimental side, considerable effort has been exerted to search for materi-

als that closely approximate the S = 1/2 Heisenberg KLAF. The candidates include

potassium iron jarosite KFe3(OH)6(SO)4 [73], volborthite Cu3V2O7(OH)2·2H2O [74],

and herbertsmithite ZnCu3(OH)6Cl2 [75]. However, the materials investigated,

many of which are natural minerals, have individual problems such as spatial

anisotropy of the exchange network [76, 77], exchange disorder due to ion substitu-

tion [78] and lattice distortion due to a structural phase transition [79]. For these

reasons, there has been little clear experimental evidence demonstrating the nature

of the ground state and the excitations for the S = 1/2 Heisenberg KLAF. I briefly

review some experimental results on these systems.

(1) Potassium Iron Jarosite: KFe3(OH)6(SO)4

In KFe3(OH)6(SO)4, magnetic ions Fe3+ with spin S = 5/2 form uniform kagome

lattice [73]. The antiferromagnetic ordering occurs at TN = 65 K (see Fig. 1.10(a)

and (b)), and from neutron diffraction experiments [80, 81], its ground state was

found to be q = 0 spin structure as depicted in Fig. 1.4(a). The exchange interaction

J was estimated to be J/kB = 42 K.

It is noted that the potassium iron jarosite is the first report on observing the

rather flat mode, or zero-energy mode as shown in Fig. 1.10(c), which is character-

istic of KLAFs, while the non-dispersive branch is shifted to approximately 8 meV

due to the presence of the anisotropy interaction, say the DM interaction [35, 82].

A stepwise anomaly was observed in the high-field magnetization curves, which is

caused by the spin reorientation, as shown in Fig. 1.10(d) [83, 84]. The results

of dispersion relations, high-field magnetization measurements and ESR spectra of

jarosite can be explained in terms of the DM interaction models [35, 82,84].
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Figure 1.10: Physical properties of potassium iron jarosite, KFe3(OH)6(SO)4. (a)
Temperature dependence of magnetic susceptibilities measured at H = 50 Oe under
zero field cool (ZFC) and field cool (FC) [81]. (b) Temperature dependences of
specific heats for KFe3(OH)6(SO)4 and nonmagnetic KGa3(OH)6(SO)4 [83]. (c)
Dispersion relation along the high-symmetry point measured at T = 10 K [82]. Blue
solid lines indicate fits with the DM model. (d) Magnetization curves measured at
several temperature for H ‖ c [83].

(2) Volborthite: Cu3V2O7(OH)2·2H2O

The first report of synthesis of S = 1/2 KLAF was made on volborthite [74]. Mag-

netic ions Cu2+ with spin S = 1/2 of volborthite form a quasi-kagome lattice. Vol-

borthite undergoes the antiferromagnetic ordering at T = 2 K, as shown in Fig.

1.11(a) and (b) [85, 86]. Quite recently, single crystals were synthesized using

hydrothermal synthesis method [76]. Using the polycristalline and single-crystal

samples, one-third magnetization plateau characteristic of Heisenberg KLAF was
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observed in the wide magnetic field range, as shown in Fig. 1.11(c) [76,86–88]. How-

ever, the results of thermodynamic measurements obtained by single crystals are

significantly different from those by the crystalline one. Besides, the exchange net-

work is different from that of the uniform kagome lattice, the crystal structure is still

disputed [76, 89], and the nearest-neighbor interaction turned out to be ferromag-

netic [77]. Thus, a consensus on the spatially isotropic Hamiltonian in volborthite

has yet to be reached.

(3) Herbertsmithite: ZnCu3(OH)6Cl2

Herbertsmithite is named after a British mineralogist, G. F. Herbert Smith, who

first discovered a mineral of paratacamite, ZnxCu4−x(OH)6Cl2. Herbertsmithite, a

polymorph of kapellasite, is a doped member of the paratacamite family where one-

quarter of the sites of a pyrochlore-like lattice are occupied by diamagnetic Zn2+,

and the remaining sites are occupied by Cu2+ with spin S = 1/2. Cu2+ ions to

form a uniform kagome network; some say herbertsmithite forms a perfect kagome

lattice [75]. From magnetic measurements, the Weiss temperature and nearest-

neighbor exchange interaction were obtained as ΘW = − 314 K and J/kB = 200 K,

respectively [75, 90]. It was reported that there is no magnetic order down to 30

mK and the non-dispersion excitation were observed shown in Fig. 1.12. NMR

measurements revealed that the local magnetic susceptibility at lowest temperature

has a finite value. These results are characteristics of a gapless spin-liquid state [78,

90–93].

However, there still exist controversial arguments about the ground state and

the exited state. Some theories suggest that the gapless excitation is attributable

to the so-called spinon-Fermi surface, while the nature of the gapless ground state

is induced by Cu/Zn anti-site disorders, as mentioned above [94]. For experimental

sides, because 15% of nonmagnetic Zn2+ sites, which are located between kagome

layers, are occupied by magnetic Cu2+ ions [95, 96], the local structure resembles

the end member clinoatacamite, Cu2(OH)3Cl. The Jahn-Teller active Cu2+ ions

substituted for Zn2+ ions will disturb the perfect kagome lattice of herbertsmithite.

The local magnetic impurities make it difficult to unveil the intrinsic low energy

properties [95, 97]. Furthermore, quite recently, NMR measurements and inelastic
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neutron diffraction revealed that the ground state has the singlet-triplet excitation

gap [98,99]. However, the nature of the ground state remains unsolved to date.
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1.3 Previous Studies of Fluoride Kagome Family

1.3.1 Cs2Cu3SnF12 and Rb2Cu3SnF12

Crystal Structure of Cs2Cu3SnF12 and Rb2Cu3SnF12

The cupric fluoride kagome family A2Cu3SnF12 (A=Rb and Cs), which has a

rhombohedral structure, is a promising subject of comprehensive study on spin-

1/2 KLAFs [100,101]. I summarized the atomic coordinates and site symmetries of

Cs2Cu3SnF12 and Rb2Cu3SnF12 in Table 1.1 and 1.2, respectively. Figures 1.13 and

1.14 show the crystal structures of Cs2Cu3SnF12 and Rb2Cu3SnF12 viewed along

the [110]-axis and c axis. CuF6 octahedra are linked by sharing their corners in the

crystallographic ab plane. Magnetic Cu2+ ions with spin-1/2 form a kagome lattice

in the ab plane. The octahedra are elongated along the principal axis owing to the

Jahn-Teller effect, whose axis is approximately parallel to the c axis. Hence, the hole

orbitals d(x2 − y2) of Cu2+ lie in the kagome layer. This leads to a strong superex-

change interaction in the kagome layer and a negligible superexchange interaction

between the kagome layers.

At room temperature, Rb2Cu3SnF12 has a 2a× 2a enlarged chemical unit cell in

the ab plane, as shown in Fig. 1.14(b); thus, the kagome lattice in Rb2Cu3SnF12 is

not uniform [100]. There are four sorts of nearest-neighbor exchange interactions as

depicted in Fig. 1.15 [100]. Cs2Cu3SnF12 has a uniform kagome lattice at room tem-

perature [101], which is the same as that of Cs2Cu3ZrF12 [102]. As the temperature

decreases, Cs2Cu3SnF12 undergoes a structural phase transition from the rhombohe-

dral structure to a monoclinic structure at Tt =184 K [103], which is closely related

to the rhombohedral structure with a 2a× 2a enlarged unit cell [101,104].
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Table 1.1: Atomic coordinates and site symmetries of Cs2Cu3SnF12 whose space
group has R3m (No. 166). Site symmetry in Hermann-Mauguin notation represents
the crystal symmetry at the point where the atoms exist. Adapted from Ref. [101]

Atom Site Symmetry x y z
Cs 3 m 0.0 0.0 0.1060
Cu . 2/m 0.5 0.0 0.0
Sn −3m 0.0 0.0 0.5
F(1) . m 0.2042 −0.2042 0.9845
F(2) . m 0.1312 −0.1312 0.4465

Table 1.2: Atomic coordinates (×104) and site symmetries of Rb2Cu3SnF12 with
space group R3 (No. 148). Site symmetry in Hermann-Mauguin notation represents
the crystal symmetry at the point where the atoms exist. Adapted from Ref. [100]

Atom Site Symmetry x y z
Rb(1) 3 . 6667 3333 −647
Rb(2) 1 3358 1650 641
Cu(1) 1 5946 1665 1682
Cu(2) 1 3516 −723 1769
Sn(1) −1 5000 0 0
Sn(2) −3 . 6667 3333 3333
F(1) 1 6495 651 1700
F(2) 1 7409 2773 1439
F(3) 1 4581 693 2105
F(4) 1 7853 4443 2780
F(5) 1 4464 872 −460
F(6A) 1 4501 310 835
F(7A) 1 6389 1378 95
F(6B) 1 3861 −250 629
F(7B) 1 6066 1320 470
F(8) 1 2465 −2156 1462
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Figure 1.13: Crystal structure of Cs2Cu3SnF12. (a) View along the [110]-axis. Octa-
hedra colored blue represent CuF6. The positions of the Cu2+ ions are located at the
center of the octahedra. (b) View along c-axis, where F− ions out of kagome-plane
are deleted. Dotted lines denote the chemical unit cells.
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Figure 1.15: Exchange interactions Ji (i = 1− 4) for Rb2Cu3SnF12.
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Magnetic Properties of Cs2Cu3SnF12 and Rb2Cu3SnF12

Since high-purity and sizable single crystals are obtainable, the magnetic properties

of these two compounds have been probed in detail by magnetic, neutron scattering

and NMR measurements [104–106,108].

Figure 1.16(a) shows temperature dependence of the magnetic susceptibility in

Rb2Cu3SnF12. With decreasing temperature, the susceptibility exhibits a broad

maximum around 70 K and approaches exponentially toward zero, which is indica-

tive of a spin-gapped ground state. As can be seen in Fig. 1.16(b), the magnetization

is almost zero up to the critical fields Hc ' 13 T for H ‖ c and 20 T for H ⊥ c, and

increases rapidly.

The magnetic ground state of Rb2Cu3SnF12 is a singlet state with an singlet-

triplet excitation gap ∆/kB of 27 K [100,105,106,108]. The magnetic excitations in

Rb2Cu3SnF12 were investigated using inelastic neutron scattering [105,106]. Disper-

sion relations obtained are shown in Fig. 1.17. From the analysis of the dispersion

relations, it was found that the ground state is the pinwheel valence-bond-solid

(VBS) state, in which singlet dimers are situated on the strongest exchange interac-
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sured at T = 1.3 K [105].

tion J1 shown in Fig. 1.15 [105,106,109,110]. The upper and the lower branches are

Sz = 0 and Sz = ±1 excitations. The splitting of these branches is attributed to the

large DM interaction. Individual exchange constant and the magnitude of the DM

interaction were obtained as J1/kB = 216 K, J2 = 0.95J1, J3 = 0.85J1, J4 = 0.55J1

and Dz/J1 = 0.18. The gapped ground state in Rb2Cu3SnF12 arises from the in-

equivalence of the exchange interactions.

On the other hand, Cs2Cu3SnF12 exhibits a magnetic ordering at TN = 20.0 K, as

shown in Fig. 1.18(a) [101]. In the ordered phase, the so-called q = 0 spin structure

is realized [104]. The configuration of the D vectors of the DM interaction in

Cs2Cu3SnF12 is shown in Fig. 1.6, which is approximately the same as that discussed

by Cépas et al. [50]. As previously mentioned, Cépas et al. demonstrated that with

increasing longitudinal component D‖, the disordered state changes at (D‖/J)c ≈ 0.1

to the ordered state with the q = 0 structure. The magnitude of the D vector in

Cs2Cu3SnF12 was evaluated to be D‖/J ' 1/4 from the analyses of the dispersion

relations shown in Fig. 1.18(b) [104]. Thus, the magnetic ordering observed in

Cs2Cu3SnF12 can be attributed to the large DM interaction.

Although the ground state of Cs2Cu3SnF12 is ordered, a noteworthy quantum

many-body effect on the spin-wave excitations was observed [104]. The excitation
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Figure 1.18: (a) Temperature dependence of the magnetic susceptibility of
Cs2Cu3SnF12. Arrows at 184 K and at 20 K indicate the structure and magnetic
phase transition, respectively. Inset is a magnified view of the low temperature
region below 50 K [101]. (b) The dispersion relations of the spin-wave excitations
in Cs2Cu3SnF12 [104,107], which are expressed with respect to the unit cell at room
temperature.

energies observed in Cs2Cu3SnF12 are markedly renormalized downward as much as

40% with respect to the linear spin-wave result. In contrast, the excitation energies

in the conventional quantum renormalization are renormalized upward [111–115].
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1.3.2 Cs2LiMn3F12

Cs2LiMn3F12 crystallizes in a rhombohedral structure, R3 [116], which is closely re-

lated to the structure of Cs2Cu3ZrF12 [102]. Figure 1.19 shows the crystal structure

of Cs2LiMn3F12. I summarized the lattice parameter, and the atomic coordinates

and site symmetries of Cs2LiMn3F12 in Table 1.3 and 1.4, respectively. The mag-

netic Mn3+ ions are located at (0.5, 0, 0) in atomic coordination where the site

symmetry is −1 in Hermann Mauguin notions, which leads to a kagome lattice with

the regular triangle. Mn3+ has the high spin state that causes the Jahn-Teller effect.

The elongated axis owing to the Jahn-Teller effect lie in ab-plane. Elongated and

compressed axes in ab plane alternate, and the configuration of the elongated axes

resembles a wind wheel, as shown in Fig 1.19(b). The nature of the nearest-neighbor

exchange interaction is yet to be defined. Recent ab-iniitio calculation shows the

nearest-neighbor exchange interaction to be ferromagnetic [117]. Magnetic Mn3+

ions with S = 2 form a uniform kagome layer parallel to the ab-plane, which are

separated by a nonmagnetic layer consisting of the Cs2Li. Therefore the interlayer

exchange interaction is expected to be much smaller than the intralayer exchange

interaction.

The magnetization measurements of Cs2LiMn3F12 were conducted by Usui [118].

In temperature dependence of the magnetic susceptibility, no anomaly indicative of

magnetic order was observed down to T = 1.8 K. Using the high-temperature ex-

pansion method [34], the exchange interaction was estimated to be J/kB = 4.4 K.

However, it was found that Cs2LiMn3F12 undergoes the antiferromagnetic order at

TN = 2 K via the heat capacity measurements. Temperature dependence of the

magnetic entropy Smag approaches approximately R ln 5 at 50 K. It was found that

the polycrystalline sample of Cs2LiMn3F12 contains a large number of ferromagnetic

impurities, CsMnF4 and Li2MnF5. Magnetic moment of the impurities hides the

intrinsic magnetization of Cs2LiMn3F12. Usui was not able to find the crystal ori-

entation, because natural surfaces of crystal were difficult to obtain. Therefore, the

high-quality single-crystal samples are necessary for more detailed measurements.

Finally, I mention the possible ground state of Cs2LiMn3F12, proposed by Usui [118].

The powder elastic neutron scattering inferred that the magnetic structure of Cs2LiMn3F12

is characterized by an ordering vector q = (1/3, 0, 0) [118]. To the best of my knowl-
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edge, the spin structures reported to date for KLAF are the q = 0 structures. Thus,

Cs2LiMn3F12 appears to exhibit an unusual magnetic ordered state.

Table 1.3: Lattice parameters of Cs2LiMn3F12 with space symmetry R3 (No. 148)
as compared with those for Cs2Cu3SnF12 and Rb2Cu3SnF12.

Space Group a [Å] c [Å] Reference
Cs2Cu3SnF12 R3m 7.142(4) 20.381(14) [101]
Rb2Cu3SnF12 R3 13.917(2) 20.356(3) [100]
Cs2LiMn3F12 R3 7.44 17.267 [116]

Table 1.4: Atomic coordinates and site symmetries of Cs2LiMn3F12 with space
group has R3 (No. 148). Site symmetry in Hermann-Mauguin notation represents
the crystal symmetry at the point where the atoms exist. Adapted from Ref. [116]

Atom Site Symmetry x y z
Cs 3 . 0.0 0.0 0.12859
Mn −1 0.5 0.0 0.0
F(1) 1 0.4561 0.5261 0.10126
F(2) 1 0.4103 0.1850 0.02408
Li −3 . 0.0 0.0 0.5
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Figure 1.19: Crystal structure of Cs2LiMn3F12. (a) View along the [110]-axis. Oc-
tahedra colored red represent MnF6. The positions of the Mn3+ ions are located at
the center of the octahedra. (b) View along c-axis, where F− ions out of kagome-
plane are deleted. Dotted lines denote the chemical unit cells. Thick black bonds
denote elongated axes of MnF6 octahedra.
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1.3.3 Motivation and Outline of This Study

The kagome materials investigated, many of which are natural minerals as men-

tioned above, have their individual problems, which includes spatial anisotropy of

the exchange network [76, 77], exchange disorder due to ion substitution [78] and

lattice distortion due to a structural phase transition [79]. For these reasons, there

has been little clear experimental evidence demonstrating the nature of the ground

state and the excitations for the spin-1/2 Heisenberg KLAF.

In Rb2Cu3SnF12, the lowest excitation is located at the Γ point, although the

lowest excitation is expected to be located at the K point within the quantum

Heisenberg model. This is because the large DM interaction splits the triply degen-

erate excitations in the triplet state into two levels, Sz = 0 and Sz =±1 branches,

and the energy of the Sz =±1 branch is minimized at the Γ point with increas-

ing the magnitude of D‖ [105, 119]. If the inequivalence of the exchange inter-

actions becomes small, it is expected that the excitation gap at the Γ point will

decrease and a transition from the singlet ground state to the ordered ground state

will occur. The exchange interactions in Cs2Cu3SnF12 are similar to those in the

uniform kagome lattice [104]. Thus, I can expect a quantum phase transition in

mixed system (Rb1−xCsx)2Cu3SnF12 upon varying the cesium concentration x. I

can also expect the experimental realization of the valence-bond-glass (VBG) state

in (Rb1−xCsx)2Cu3SnF12, which is a spin-liquid-like ground state characteristic of

frustrated quantum antiferromagnet with exchange randomness. What I mentioned

above motivates me to investigate the magnetic properties of (Rb1−xCsx)2Cu3SnF12.

In Cs2LiMn3F12 the crystal structure and the magnetic properties have been

reported in Ref. [116, 118]. It is noteworthy that the magnetic ground state of

Cs2LiMn3F12 exhibits unusual q = (1/3, 0, 0) spin structure instead of q = 0 struc-

ture. In the neutron scattering measurement a substantial number of intensities

attributed to impurities were observed, indicating that the quality of the sample is

rather poor [118]. In this thesis, I explore another way of synthesizing single crystal

of Cs2LiMn3F12.

The studies described in this thesis are intended to give some insights into the

ground states of the KLAFs with quantum spins and classical spins. This thesis is

organized as follows. In the next chapter, I will review experimental procedures that
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includes preparation of the samples of a fluoride family and measurement princi-

ples, which includes magnetization measurement, specific heat measurement, elastic

neutron scattering and muon spin relaxation experiments.

In Chapter 3, I show the experimental results of magnetization and thermody-

namic measurements and muon spin relaxation experiments on (Rb1−xCsx)2Cu3SnF12,

and discuss the nature of the ground state. I succeeded in growing high-quality sin-

gle crystals of (Rb1−xCsx)2Cu3SnF12 using platinum tubes as crucibles. I performed

the magnetic measurements for H ‖ c and H ⊥ c to clarify the magnetic ground

states. It was found that the quantum phase transition occurs from a disordered

state to a antiferromagnetic ordered state, when cesium concentration x exceeds

xc = 0.53. I performed muon spin relaxation for H ‖ c to investigate fluctuating

frequencies and values of internal magnetic fields, in the exotic magnetic ground

state. Detailed analyses revealed that the VBG state, one of unusual ground states,

is actually realized in (Rb1−xCsx)2Cu3SnF12.

Chapter 4 focuses on the thermal dynamics measurements and elastic neutron

scattering measurements on Cs2LiMn3F12 with spin-2. I succeeded in synthesizing

highly purified and sizable single crystals of Cs2LiMn3F12. I confirmed the crystal-

lographic axis using x-ray diffractometer. I measured the magnetic measurements

for H ‖ c and H ⊥ c. It was found that Cs2LiMn3F12 exhibits the antiferromagnetic

order at 2 K. I analyzed experimental results using the high temperature expansion

to evaluate the exchange interaction. I performed the specific heat for H ‖ c and

H ⊥ c for understanding the thermodynamics. I verified that the low-temperature

specific heat in the absence of the external fields is proportional to T 2, which is

characteristic of the nature of two-dimensional antiferromagnets. From the powder

neutron scattering with high-purity sample, I confirmed that the spin structure of

the ground state is described by a propagation vector q = (1/3, 0, 0). Chapter 5 is

devoted to conclusion.
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Chapter 2

Experimental Detail

2.1 Sample Preparation

Fluorides have properties of hygroscopy and corrosion. On account of hygroscopy,

raw materials of the compounds were dehydrated by heating in vacuum using a

rotary pump before preparation. I ground the dehydrated raw materials using a

mortar and pestle in a glove box. To synthesize the fluoride family, quartz ampoules

and ceramic crucibles cannot be utilized owing to the corrosiveness. This is the

reason why I use a platinum (Pt) tube of 9.6 mm inner diameter and 100 mm

length as the crucibles as shown in Fig. 2.1(a). One end of the Pt tube was welded

and another end was tightly folded with pliers and placed between nichrome plates

as shown in Fig. 2.1(b). Because a rupture of the Pt tube often occurs during firing

(Fig. 2.1(c)), I covered completely the whole of the Pt tube with two nichrome

downspouts, which were fasten with nichrome wires in order to preclude the rupture

as shown in Fig. 2.1(d).

2.1.1 A2Cu3SnF12 (A = Rb, Cs)

I synthesized single crystals of A2Cu3SnF12 from a melting method through the

following chemical reaction: 2AF + 3CuF2 + SnF4 → A2Cu3SnF12. Single crystals

of A2Cu3SnF12 (A = Cs, Rb) were grown by a similar procedure to that reported

in [100,104–106,108]. AF and CuF2 were dehydrated by heating in vacuum at about

100 ◦C. The dehydrated raw materials of AF, CuF2 and SnF4 were packed into the

Pt tube in the ratio of 3 : 3 : 2. Single crystals were grown from the melting using
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(a)

(b)

(c)

(d)

Figure 2.1: (a) Pt tube used for sample preparation, where one end is welded. (b)
Pt tube with the other end folded and placed between nichrome plates. (c) Pt tube
after rupture. (d) Pt tube covered with with two nichrome downspouts and fasten
with nichrome wires.

the horizontal tube furnace manufactured by Yamada Denki Co., LTD. As depicted

in Fig. 2.2, the temperature at the center of the tube furnace was lowered from

Thigh to Tlow over 100 hours, for A = Cs (resp. A = Rb), Thigh = 850 (800)◦C and

Tlow = 750 (700)◦C, respectively. After collecting the well-formed pieces of crystal,

I repeated the same procedure to improve the quality of the single-crystal samples.

As can be seen in Fig. 2.3, transparent light-green crystal of Cs2Cu3SnF12 with a

maximum size of 30 × 7 × 2 mm3 were obtained.

After picking up the purified single crystals of Cs2Cu3SnF12 and Rb2Cu3SnF12,

I synthesized the solid solution of (Rb1−xCsx)2Cu3SnF12 single crystals from a melt

comprising a mixture of Rb2Cu3SnF12 and Cs2Cu3SnF12 in the ratio of 1 − x to

x. The single crystals of (Rb1−xCsx)2Cu3SnF12 were easily cleaved parallel to the

c-axis.
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The cesium concentration x was determined by inductively coupled plasma mass

spectroscopy (ICP-MS) at the Center for Advanced Materials Analysis, Tokyo In-

stitute of Technology.
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Figure 2.2: Time dependence of temperature at the center of horizontal furnace.

1 cm

Figure 2.3: Photograph of Cs2Cu3SnF12 single crystal.
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Figure 2.4: Photograph of a black single crystal of Cs2LiMn3F12 through a micro-
scope.

2.1.2 Cs2LiMn3F12

I synthesized Cs2LiMn3F12 single crystals from a melting method through the fol-

lowing chemical reaction LiF + 2CsF + 3MnF3 → Cs2LiMn3F12.

CsF, MnF3 and LiF were dehydrated by heating in vacuum at about 100 ◦C.

First the materials were packed into the Pt tube in the ratio of 3 : 3 : 1, as reported

by Usui [118]. A synthetic breakthrough was made by changing the ratio to 2 : 4 :

1. Sizable single crystals were grown from the melting method with this ratio.

The temperature of the furnace was lowered from 875 to 675 ◦C over 100 hours.

After collecting the well-formed pieces of crystal, I repeated the same procedure. As

can be seen in Fig. 2.4, the crystallographic axis and the cleavage plane were easily

identified at a glance. I utilized a X-ray diffractometer, MiniFlexII manufactured

by Rigaku Corp., to determine the c-plane of Cs2LiMn3F12.

2.2 Magnetization measurement

Magnetic susceptibilities were measured in magnetic fields of up to 7 T in the

temperature range 1.8 − 400 K using a SQUID magnetometer (Quantum Design:

MPMS XL). Magnetic fields were applied parallel and perpendicular to the c-axis.

The SQUID detection system in MPMS is composed of the SQUID sensing loops,
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Figure 2.5: Schematic figure of superconducting transformer configurations (pick up
coil) in MPMS. (a) Magnetometer configuration. (b) Second derivative gradiometer.

a superconducting transformer, SQUID sensor, and control electronics [120]. The

SQUID sensing loops are separated by SQUID sensor and consists of a closed loop

of superconducting wire.

When a magnetic flux δΦsample induced by a sample is applied to the pick-up coil,

induced super-current δi(δΦsample) emerges. The induced direct current produces

magnetic flux δΦSQUID applied to the SQUID. Let the mutual inductance Mp-SQ

between the pick up coil and SQUID,

δi(δΦsample) = −δΦsample

Lt + Lp

, (2.1)

δΦSQUID = δi(δΦsample)Mp-SQ. (2.2)

Thus, I am necessary to evaluate how much magnetic flux δΦsample transfer to the

SQUID δΦSQUID.

A radio frequency (RF) coil with flux locked loop and negative feedback are

utilized [121,122]. Once the feedback loop is closed, the SQUID is applied another

magnetic flux δΦFB produced by the feedback current

δΦFB = MFBδIFB =
MFB

RFB

δVout = −δΦSQUID, (2.3)

where RFB and MFB are the resistivity of the feedback, and the mutual inductance

between feedback coil and SQUID, respectively. This equation shows that the flux
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δΦSQUID is proportional to the output voltage δVout and no flux are now applied

to SQUID. The same voltage δVout is simultaneously applied to a integrator in the

parallel circuit. Thus, after the feedback, when the flux δΦSQUID increments, the

output voltage δVout should remain proportional to δΦSQUID. The feedback system

is called the flux locked loop. The integrator integrates δVout, the amount of output

voltage Vout should be linearized the sample flux Φsample. The SQUID response is

shown in Fig. 2.6(a).

MPMS execute the fit for the output voltage [123]

Vout(Z) =X(1) + X(2) · Z + X(3) ·
{

2
[
R2 + (Z + X(4))2

]−3/2
(2.4)

−
[
R2 + (Λ + Z + X(4))2]−3/2 −

[
R2 + (−Λ + Z + X(4))2]−3/2

}
where, the parameter X(1), X(2), X(3), and X(4) are a constant offset voltage, a

linear electronic drift, amplitude for the output voltage, the shift of the sample along

the axis of the magnet, respectively. Figure 2.4(b) shows the output voltage given

by Eq. (2.4). The magnetic moment M can be obtained from X(3) by applying Eq.

(2.4)

M = αX(3), (2.5)

where α is a coefficient.

2.3 Heat Capacity Measurement

Specific heat measurements were conducted by Physical Property Measurement Sys-

tem (PPMS, Quantum Design) with the relaxation method. Magnetic field up to 9

T was applied along c-axis and kagome plane. Sample temperature was lowered to

0.4 K using Helium-3 Refrigerator option developed by Quantum Design Inc.. The

sample was mounted on the sample stage in a sample puck with a little grease as de-

picted in Fig. 2.7. Since the sample chamber is in high vacuum during measurement,

the platform is thermally isolated.

The relaxation method, first explored by Bachmann et al. [124], is widely utilized

in a field of the low temperature physics. The schematic diagram is depicted in
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Figure 2.6: (a) Typical SQUID response as function of the sample position z and
(b) response with Eq. 2.4, where the parameters X(1) = X(2) = X(4) = 0, X(3) =
1, R = 0.97, and Λ = 1.517 are used.

Fig. 2.7. The system is composed of a sample, substrate including a heater and

thermometer, thermal leak and heat reservoir. From t = 0, power is applied to

the substrate through the heater, which is squirreled away in the internal energy of

the sample and substrate, and dissipating into the heat reservoir via the thermal

leak. The Fourier law shows that the dissipating heat should be proportional to

temperature difference between the two. When the heater power is turned off at a

time t0, the temperature is being lowered down to the temperature of the reservoir,

T0. The energy balance could be described as

P (t) = CtotdT/dt + K(T − T0), (2.6)

where Ctot, T,K are heat capacity of the sample and substrate, temperature of the

substrate, and heat conductance of the thermal leak, respectively. Using Laplace

transformation, the solution for the temperature is given by

T (t) = T0 +
P0

K
(1 − e−t/τ ){Θ(t) − Θ(t − t0)}

+
P0

K
(1 − e−t0/τ )e−(t−t0)/τ{Θ(t − t0)} (2.7)

where τ = Ctot/K, Θ(t) are the relaxation time, Heaviside step function, respec-

tively. Figure 4.3 shows the time dependence of temperature given by Eq. (2.7)
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Figure 2.7: Schematic figure of heat capacity measurement with the relaxation
method.

In reality, there exists thermal conductance between the sample and substrate

due to sample preparation such as grease. In that case, different regions of the sam-

ple could be at different temperatures and the solution for the temperature is a sum

of exponentials [124]. However, when the individual temperature of the sample and

substrate are uniform and the thermal conductance is comparable to that between

the substrate and heat reservoir, the only two components are dominant, which is

referred to the lumped two-effect [125].

The equations for the energy balance are as follow

0 = CsdTs/dt + Ksp(Ts − Tp) (2.8)

P (t) = CpdTp/dt + Kpb(Tp − T0) + Ksp(Tp − Ts) (2.9)

The first equation is for the sample, and the second equation for the substrate.

Since the thermometer monitors the temperature of the substrate, I need to solve

Tp. Using Laplace transformation, the solution is given by

Tp(t) = T0 +
P0

Kpb

(
1 − τ − τ2

τ1 − τ2

e−t/τ1 − τ1 − τ

τ1 − τ2

e−t/τ2

)
{Θ(t) − Θ(t − t0)}

+
P0

Kpb

{
τ2 − τ

τ1 − τ2

e−(t−t0)/τ1
(
e−t0/τ1 − 1

)
+

τ − τ1

τ1 − τ2

e−(t−t0)/τ2
(
e−t0/τ2 − 1

)}
Θ(t − t0)

(2.10)

A nonlinear, least square fitting was executed by PPMS to obtain Kpb, τ, τ1, and τ2.
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Figure 2.8: Time dependence of temperature given by one τ model with Eq. (2.7).
The parameters, T0 = 10, P0/K = 10 × 0.02, t0 = 5, and τ = 10, are used.

2.4 Neutron Scattering Measurement

Neutron scattering is the most suitable to probe crystal and spin structure and ex-

citation. Neutrons is scattered by the so-called strong interaction and the magnetic

dipole of atoms. This indicates that the diffraction intensity, or scattering length,

is independent of atomic numbers and magnetic spin structure can be determined.

Thus, neutron scattering is available to determine the crystal structure with light el-

ements and magnetic structure, instead of x-ray diffraction measurements [126–128].

2.4.1 Elastic Neutron Diffraction

The neutron powder diffraction experiments were performed using the high-resolution

powder diffractometer Echidna installed at the OPAL reactor, ANSTO with a neu-

tron wavelength of 2.4395 Å. Figure 2.9 shows the arrangement of the Echidna

diffractometer. The sample was placed in a cylindrical vanadium can. The sample

temperature was lowered down to 1.5 K.

Here, I summarize the elastic neutron scattering diffraction. The Bragg’s law is

described as,

2d sin θ = nλ, (2.11)
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ECHIDNA
High-resolution powder diffractometer

Echidna will be one of the world’s best reactor-based high-
resolution powder diffraction instruments. Structures that have
been determined by powder diffraction include superconductors,
pharmaceuticals, aerospace alloys, cements, minerals, zeolites,
hydrogen storage media, and optical materials. 

What makes Echidna special?

Echidna uses a single wavelength and a highly collimated (non-divergent) beam of
neutrons to improve resolution. The high-resolution enables closely placed peaks in the
diffraction pattern to be separated. This diffraction technique can accurately resolve both
complex atomic and magnetic structures. 

Applications:

High-resolution powder diffraction can be used to:

> Determine structures of newly created materials, to better understand their properties.

> Study materials with light elements in the presence of heavy ones (e.g. oxides, borides,
carbides) and for magnetic materials. 

> Measure strain, crystallite size, and defects in materials such as metals, hydrogen
storage and electro-chemical materials, and mesoscopic structures.

> Investigate materials that occur in a polycrystalline form under natural or industrial
conditions.

> Investigate materials with complex crystal structures, including catalysts, hybrid
materials, organics, cements, natural minerals, zeolites, and non-linear optical materials. 

> Study the structural and magnetic phase transitions of ferroic and electronic materials
such as superconductors and magnetoresistive materials.

> Investigate bulk samples or samples in extreme environments (pressure, temperature,
stress, magnetic and electric fields, or combinations of these).

Relevant fields include:

Solid-state physics, materials science, chemistry, geoscience, and engineering.

Case Study 1:
Studying cement – making better building products
Using Echidna, cement manufacturers can take the guess work out
of which additives to use and how to process them to engineer
stronger cements. As the world's most popular building material it
may seem surprising that the main component responsible for
cement's strength is not completely understood structurally. This
material, tricalcium silicate, has a very complicated crystal structure
and exists in several different crystal forms known as polymorphs.
Each polymorph can be stabilised in cement and has different
strength properties and using a neutron diffraction instrument such
as Echidna, is the only way to quantitatively determine these forms
in cement.

Case Study 2:
Lithium batteries – increasing their life
Neutron diffraction is the only technique that can be used for
studying real products in real life conditions. With neutrons, we can
study a real battery instead of a model electrochemical cell and
follow phase transformations in electrodes as a function of
charge/discharge cycling or time under load.
With Echidna we can study:

> phase composition of electrodes and weight fractions of phases
>  crystal structural characteristics 
>  particle size and microstrain
This reveals what is happening within the battery during the
charging/recharging cycle and is essential for understanding
mechanisms of capacity fade and performance optimisation
(capacity, charge/recharge life).

Instrument specifications:

Echidna is located on the thermal neutron guide TG1

Wavelength range: 1 – 3 Å (6.3 – 2.1 Å-1) 
Range of momentum transfer: 0.35 – 12.5 Å-1

Max. beam size: 20mm wide by 50mm high
Flux at sample position: up to 107 ncm-2s-1

Monochromators: 

> Ge 115 monochromator, sagittal focussing with fixed 
radius - 24 crystal slabs

> Ge 335 monochromator, [-1 1 0] vertical allowing for 
asymmetric reflections, variable sagittal focussing

Detector:

> Typical scan time: 2-3 hours
> 128 3He position-sensitive detectors of 25 mm diameter x 300

mm high (active length), 10 bar (charge division) 
> 128 collimators with 5' collimation, 15 mm x 300 mm (W x H)

One of the modifications of lithium cobaltate,
LiCoO2, a very popular battery material.

For more information contact:

Dr Max Avdeev: +61 2 9717 9522
maxim.avdeev@ansto.gov.au

Dr James Hester: +61 2 9717 9907
james.hester@ansto.gov.au

Dr Vanessa Peterson: +61 2 9717 9401
vanessa.peterson@ansto.gov.au

Figure 2.9: View of Echidna spectrometer at Australian Nuclear Science and Tech-
nology Organisation (ANSTO) reprinted from Ref. [129]. Echidna is a high resolu-
tion powder diffractometer.

where d, θ, n, and λ are the spacing between the adjacent layers of atoms, the angle

between the incident rays and the layer, a integer, and the wave length, respectively.

Although the angle of the diffraction is determined from the Bragg’s law, the

intensity of diffraction cannot be obtained. The diffraction intensity is given by

A =
∑

n

fn exp (−iK · rn) , (2.12)

where fn, rn, and K are the atomic form factor and the position at n-site atom

and the scattering vector, respectively, and the sum runs the whole of the crystal.

The scattering vector K is given by K = ki−kf , where ki and kf are wave vectors

of incident and scattered neutrons, respectively, as shown in Fig. 2.10. The cross

section from scattering should be 4π
∑

n f 2
n.

46
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Figure 2.10: Definition of scattering vector K in the reciprocal lattice space. ki

and kf are wave vectors of incident and scattered neutrons, respectively.

A reciprocal lattice vector Ghkl is given by

Ghkl = ha∗ + kb∗ + lc∗, (2.13)

where a∗, b∗, and c∗ are three basis unit vector in reciprocal space, and h, k, and l

are integers. These vector can be satisfied with

Ghkl · a = 2πh, Ghkl · b = 2πk, Ghkl · c = 2πl, (2.14)

where a, b, and c are three basis unit vector in real space.

A crystal structure comprise Bravais lattice and basis structure. The position

at n site can deduced as

rn = rl + rp, (2.15)

where l and p are the number of the lattice and basis structure, respectively. Using

Eq. (2.15), the diffraction intensity A can be given by,

A =

{∑
l

exp(−iK · rl)

}
×

{∑
p

fp exp (−iKrp)

}
. (2.16)

The first term is considered as the Bragg’s raw. Once the scattering vector K is

corresponded with the reciprocal lattice vector Ghkl, the first term remains finite

and the diffraction will be observed. Figure 2.10 shows the scattering vector in the
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reciprocal space. The second term is called the structure factor, which determines

the diffraction intensity.

The intensity of scattered neutrons from magnetic materials can be described

using partial differential scattering cross section dσ2/dΩdE [127]. The partial

differential scattering cross section is defined as the number of neutrons scattered

per second per unit incident flux into a range of solid angle dΩ and with range of

energies between E and dE. In general, it is written by

dσ2

dΩ dE
=

(γr0)
2

2πh̄

kf

ki

∑
αβ

(δαβ − κακβ)

∫
〈Sα(−κ, 0)Sβ(κ, t)〉 exp(−iωt) dt (2.17)

where α and β are the matrix component, ki and kf are the wave vectors of incident

and final neutrons. γ is a gyromagnetic ratio for neutrons, r0 is the classical radius

of the electron, 〈...〉 is the thermal average at the temperature, κ is the scattering

vector defined as κ = kf −ki, and S is related to the magnetization operator M

Sβ(κ, t) = exp(iHt/t) Sβ(κ) exp(−iHt/t), (2.18)

S(κ) = − 1

2µB

∑
n

M (rn) exp(iκ · rn). (2.19)

To obtain the elastic cross section, Eq. (2.17) replaces the matrix element by the

values as t → ∞. The correlation function 〈Sα(−κ, 0)Sβ(κ, t)〉 becomes indepen-

dent of t. As can be seen in Eq. (2.16), let GM be a wave vector of the magnetic

reciprocal lattice, 〈S(κ)〉 can only be finite for κ = GM = Ghkl ± q, where q is

called an ordering vector. Thus, in the ordered states, the cross section is given by

dσ

dΩ
=

(γr0)
2

2πh̄

∣∣∣∣∣− 1

2µB

∑
p

〈M⊥(rp)〉 exp(iκ · rp)

∣∣∣∣∣
2

δ(κ − GM). (2.20)

M⊥ represents the component perpendicular to κ of a spin in the unit cell of the

magnetic structure.

2.5 Muon Spin Relaxation

Muon spin relaxation µSR experiment is a powerful tool to investigate the static

and dynamical nature of spins, which includes fluctuating frequencies and values
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Figure 2.11: Schematic view of muon relaxation measurements. Positive muon µ+

(red circle) is perfectly polarized opposite to the momenta. Decay of a µ+ creates
positron e+, which can be detected by two circular detectors placed before and after
the sample.

of internal magnetic fields, in the magnetic ground state. Decay of a positive pion

produces a positive muon whose spin is perfectly polarized opposite to their mo-

menta. When the polarized muons are implanted into a sample, it is possible to

detect relaxation time of muon spin. Since the muon beam is already polarized

before entering the sample, the magnetic properties of sample can be studied in the

absence of the fields.

In this study, µSR measurements were carried out at the RIKEN-RAL Muon

Facility in the U.K. using a spin-polarized double-pulsed positive surface-muon beam

with an incident muon momentum of 27 MeV/c. Single crystals were mounted on

a high-purity silver plate by an Apiezon N grease, and were covered tightly by a

high-purity silver foil to ensure thermal contact between the samples and a silver

plate which is connected directly with the cold- head of 3He refrigerator. The

incident muon-spin direction is perpendicular to the ab-plane corresponding to the

kagome plane, and the direction of external longitudinal magnetic fields is parallel

to the c-axis. Forward and backward counters were located on the upstream and

downstream sides of the beam direction shown in Fig. 2.11, which was parallel to

the initial muon-spin direction. The asymmetry A(t) was defined as follows:

A(t) =
F (t) − αB(t)

F (t) + αB(t)
(2.21)

Here, F (t) and B(t) were total muon events counted by the forward and backward

counters at a time t respectively. The α is a calibration factor reflecting relative
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counting efficiencies between the forward and backward counters, and is determined

by the muon-spin-rotation in the transverse field of 20 G. The initial asymmetry

is defined as A(0). In this study, the calibration factor α and the background

subtraction were taken into account for the data analysis. All µSR time spectra,

except for Fig. 3.10, are plotted using the corrected asymmetry which is normalized

by A(0). The detail of the background is explained in the next section. Measured

µSR time spectra were analyzed using the WiMDA computer program.
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Chapter 3

Quantum Phase Transition in
(Rb1−xCsx)2Cu3SnF12

As mentioned in Chapter 1, since the ground states in Rb2Cu3SnF12 and Cs2Cu3SnF12

are different, the solid solution of these two compounds is expected to exhibit the

quantum phase transition from a disordered state to a ordered state. Besides, the

ion substitutions between Rb and Cs will generate randomness of strength of inter-

actions that can induce the exotic ground state of a valence bond glass (VBG), which

has not been observed experimentally in KLAF. In this chapter, I present the results

of magnetic and thermodynamic measurements conducted in (Rb1−xCsx)2Cu3SnF12

and discuss the results. As shown below, I observe the systematic change in the

exchange parameters with cesium concentration x and clear quantum phase transi-

tion from a disordered state to a ordered state. The disordered phase is found to

be VBG.

3.1 Magnetic and Thermodynamic Properties

3.1.1 Systematic Change in Exchange Parameters

Figure 3.1 shows X-ray powder diffraction pattern of (Rb1−xCsx)2Cu3SnF12 ob-

tained using MiniFlexII (Rigaku), which indicates that the diffraction pattern changes

systematically with x. I confirmed that the Bragg peaks are as sharp as those in

pure cases with x = 0 and 1. This result is evidence of high homogeneity of the crys-

tals. Figure 3.2 shows the temperature dependence of the heat capacity above 150 K
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Figure 3.1: X-ray powder diffraction pattern in (Rb1−xCsx)2Cu3SnF12 measured at
room temperature.

for Rb2Cu3SnF12 and Cs2Cu3SnF12. Anomalies indicative of structural phase tran-

sitions are observed at Ts1 = 278 K and Ts2 = 215 K for Rb2Cu3SnF12 and Ts = 180

K for Cs2Cu3SnF12. The structural phase transitions in Rb2Cu3SnF12 were not de-

tected by the magnetic susceptibility measurements [100], while for Cs2Cu3SnF12,

the structural phase transition was observed as small bend anomaly in the temper-

ature dependence of magnetic susceptibility [101].

Figure 3.3 shows the temperature dependence of the magnetic susceptibility χ

of (Rb1−xCsx)2Cu3SnF12 measured at H = 1T for H ‖ c for various x. The data for

x ≤ 0.47 are corrected for the Curie-Weiss term attributable to impurities and/or

randomness in exchange interactions. With decreasing temperature, the suscep-
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tibility for Rb2Cu3SnF12 (x = 0) exhibits a rounded maximum at approximately

Tmax = 70 K and decreases to zero, indicating a gapped singlet ground state. As the

cesium concentration x is increased, Tmax decreases and the magnetic susceptibility

has a finite value at T = 0. With further increasing x, a kink anomaly indicating

magnetic ordering is observed. Details of the low-temperature susceptibility will

be discussed later. For Cs2Cu3SnF12 (x = 1.0), the small bend anomaly shown by

an arrow, indicating a structural phase transition, was observed at Tt = 184 K, as

previously reported [101]. For x = 0.81, the bend anomaly due to the structural

phase transition occurs at Tt = 295 K. This indicates that Tt increases with decreas-

ing x. These results also indicates that the magnetic susceptibility is not given by

the superposition of those for Rb2Cu3SnF12 and Cs2Cu3SnF12, which confirms the
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homogeneity of crystals.

To investigate the systematic change in exchange parameters with cesium con-

centration x, I analyze the magnetic susceptibilities,using the exact diagonalization

of a 12-site kagome cluster under a periodic boundary condition. Assuming that

the configuration of the nearest-neighbor exchange interaction shown in Fig. 1.15 is

common to all (Rb1−xCsx)2Cu3SnF12 on average, I evaluate the exchange parame-

ters Ji (i = 1 − 4). For Cs2Cu3SnF12 (x = 1) I assume a uniform kagome lattice for

simplification as in Ref. [101].

The procedure of the exact diagonalization calculation is the same as that de-

scribed in Ref. [100,101]. I executed the exact diagonalization for the 12-site kagome

cluster under the periodic boundary condition. First, I calculated the uniform case,

J1 = J2 = J3 = J4 = 1, to confirm the accuracy of our calculation. The result ob-

tained is the same as that shown in Ref. [132], which was calculated by the exact

diagonalization for the 12-site kagome cluster. The calculated results were also

close to the results obtained from the exact diagonalization for the 24-site kagome

cluster [133].

From the fitting to the high-temperature magnetic susceptibility for T > 200

K, I evaluate the average exchange interaction Javg = (J1 + J2 + J3 + J4)/4. For

Rb2Cu3SnF12 (x = 0), I confirmed that the magnetic susceptibility above 60 K is sat-

isfactorily reproduced using J1/kB = 216 K, J2 = 0.95J1, J3 = 0.85J1 and J4 = 0.55J1

obtained from the analysis of the dispersion relations [105], as shown in Fig. 3.3.

This confirms that individual values of Ji/J1 can be estimated from the fitting to

the low-temperature magnetic susceptibility for T < 200 K. For 0 < x < 1, I found

that the calculated susceptibility is less sensitive to J3 for 0.5≤ J3/J1 ≤ 1.0. Thus,

J3/J1 cannot not be determined uniquely. Hence, I estimate only J2/J1 and J4/J1.

I fit the calculated results to the susceptibility data for H ‖ c. The solid lines in

Fig. 3.3(a) are fits with the parameters shown in Fig. 3.4. I also performed the same

analysis on the susceptibility data for H ⊥ c, as shown by solid lines in Fig. 3.3(b).

The exchange parameters shown in Fig. 3.4 are obtained by the fitting for both H ‖ c

and H ⊥ c. In the present analysis, I neglect the DM interaction because its effect

on the susceptibility for T > 60 K is expected to be small [104].

As shown in Fig. 3.3, the calculated susceptibilities accurately reproduce the

experimental susceptibilities for T > 60 K in all (Rb1−xCsx)2Cu3SnF12, while for
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T < 60 K, the calculated susceptibility decreases more rapidly than the experimen-

tal susceptibility. This should be due to the finite-size effect. Figure 3.4 summarizes

the x dependence of the magnetic parameters for (Rb1−xCsx)2Cu3SnF12 determined

from the susceptibility analyses using the exact diagonalization calculations. g‖ and

g⊥ denote the g factors for H ‖ c and H ⊥ c, respectively. I incorporate the g factor

into the fitting parameters because it is difficult to determine the g factor by the

usual electron paramagnetic resonance because of the extremely large line-width

arising from the large DM interaction. The g factors obtained with the present

analysis are independent of x. The magnitude of the g factors, i.e., g‖ = 2.4 − 2.5

and g⊥ = 2.1, are consistent with those for K2CuF4 and Rb2CuF4 [134]. As shown

Fig. 3.4(b), the average of the four sorts of exchange interactions Javg increases
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monotonically as x → 1. J4/J1 increases rapidly with increasing x. The calcu-

lated susceptibility is insensitive to J3 for 0.5≤ J3/J1 ≤ 1.0, as mentioned above.

Because the smallest J4/J1 increases with increasing x, I infer that all the exchange

interactions approach a uniform value for x → 1.
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Figure 3.4: g-factors and exchange parameters as a function of the cesium concen-
tration x in (Rb1−xCsx)2Cu3SnF12 evaluated from the analyses of magnetic suscep-
tibilities. The upper panel shows g‖ and g⊥ for H ‖ c and H ⊥ c, respectively. The
lower panel shows the individual exchange parameters normalized by J1 and the
averaged exchange interaction Javg.
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3.1.2 Quantum Phase Transition

Next, I examine the low-temperature magnetic susceptibility of (Rb1−xCsx)2Cu3SnF12

to investigate the ground states. Figure 3.5 shows the magnetic susceptibilities be-

low 60 K in (Rb1−xCsx)2Cu3SnF12 measured at H = 1 T for H ‖ c and H ⊥ c for

various x. For x≤ 0.47, the susceptibility exhibits a small upturn below 7 K. This

should be ascribed mainly to the impurity phase, because the small upturn is ob-

served even in pure Rb2Cu3SnF12. With increasing x, the temperature Tmax giving

the rounded maximum of susceptibility decreases. This behavior of susceptibility

is considered to be related to the fact that the exchange interactions become uni-

form with increasing x. The low-temperature susceptibility for x≤ 0.47 corrected

for the upturn below 7 K shows exponential temperature dependence indicative of

the presence of an excitation gap. For x≤ 0.53, no anomaly indicative of magnetic

ordering is observed. This shows that the ground state is disordered for x≤ 0.53.

On the other hand, the susceptibility for x≥ 0.60 exhibits kink or bend anomalies,

which are indicative of magnetic ordering. For x = 0.60, I assigned the temperature

at which a small bend anomaly appears for H ⊥ c as the ordering temperature TN.

Figure 3.6 shows the temperature dependence of the specific heat for Cs2Cu3SnF12.

A tiny cusp anomaly owing to magnetic ordering is observed at TN = 20.0 K. This

ordering temperature coincides with TN assigned from the anomaly in the suscep-

tibility. The very small anomaly in the specific heat around TN indicates that little

entropy remains for magnetic ordering because of the well-developed short-range

spin correlation caused by the large exchange interaction of J/kB ' 240 K and good

two-dimensionality. For x 6= 1, the specific heat anomaly is so small that it is difficult

to detect the magnetic ordering.

The transition data obtained from the low-temperature susceptibilities are sum-

marized in Fig. 3.7. With decreasing x from x = 1, the ordering temperature TN

decreases, and TN reaches zero at xc ' 0.53.

I analyze the low-temperature susceptibility for x≤ 0.47 using the following for-

mula:

χ(T ) =
C

T − Θ
+ A exp

(
− ∆

kBT

)
+ χ0, (3.1)

where the first term is the Curie-Weiss term, the second term represents the low-
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temperature susceptibility for two-dimensional systems with an excitation gap ∆ [135,

136], and the last constant term arises from the finite susceptibility component in

the ground state. Here, the value of χ0 was evaluated from the magnetization

curves of (Rb1−xCsx)2Cu3SnF12 with 0≤x≤ 0.47 for H ‖ c at 1.8 K, which is shown

in Fig. 3.8. The magnetization data have been corrected for impurity contributions,

which are assumed to follow the Brillouin function. The impurity concentration

were evaluated to be between 0.4 % and 0.7 %.

For Rb2Cu3SnF12 (x = 0), the highest applied field of 7T is smaller than the crit-

ical field Hc = 13 T, where the excitation gap closes [100, 101]. The magnetization

slope below 2T is very small but finite, from which the residual susceptibility χ0 is

estimated to be χ0 ' 1× 10−4 emu/mol. The residual susceptibility χ0 for H ⊥ c is

estimated as χ0 ' 4× 10−4 emu/mol, which is four times larger than that for H ‖ c.

The finite χ0 is attributed to the small transverse component D⊥ of the D vector

for the DM interaction [137].

For x≤ 0.47, the magnetization below 2T is proportional to magnetic field H,

as shown in Fig. 3.8. For x = 0.47, magnetization increases rapidly up to Hc ∼ 6.2
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T and increases linearly with increasing magnetic field. The magnitude of the

gap (∆/kB ' 9.8K) for x = 0.47 is consistent with that obtained from the low-

temperature susceptibility using Eq. (3.1), as shown below. Figure 3.9 summarizes

the residual susceptibility χ0 for x≤ 0.47 estimated from the magnetization slope.

The residual susceptibility χ0 is finite for H ‖ c even in the disordered ground state

and exhibits a rapid increase with increasing x. The ground state for x≤ 0.47 is

unusual, because the magnetic susceptibility is finite, nevertheless the magnetic

ordering is absent.

Fitting Eq. (3.1) to the low-temperature susceptibility of Rb2Cu3SnF12 for H ‖ c

with χ0 ' 1× 10−4 emu/mol, I obtain ∆/kB = 28 K, which is consistent with ∆/kB = 27

K observed by neutron inelastic scattering [105,106]. This guarantees the validity of
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the present analysis. The x dependence of the excitation gap ∆ obtained by fitting

Eq. (3.1) with χ0 shown in Fig. 3.9 is shown in Fig. 3.7. With increasing x from

x = 0, ∆ diminishes and vanishes at xc ' 0.53. Because both the excitation gap

∆ and the ordering temperature TN become zero at xc ' 0.53, I can deduce that a

quantum phase transition from the disordered state to the ordered state takes place

at x = xc. Therefore, xc ' 0.53 should be the quantum critical point.
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3.2 µSR Measurement on Sample with xc = 0.53

As mentioned above, I found that the quantum phase transition from a disordered

state to an antiferromagnetic ordered state in (Rb1−xCsx)2Cu3SnF12 occurs at the

critical concentration xc ' 0.53. Physical properties near and at the quantum

phase transition point are one of current subjects of condensed matter physics. I

conducted µSR measurements on (Rb1−xCsx)2Cu3SnF12 with xc = 0.53, which is at

the quantum critical point, to investigate their ground state nature. In this section,

I report the spin dynamics obtained by the zero- and longitudinal-field muon-spin-

relaxation.

For xc = 0.53, no magnetic order was observed in magnetic measurements down

to 1.8 K, as shown in previous section. Figure 3.10 shows the zero field and longi-

tudinal field µSR time spectra for x = 0.53 at 0.3 K. Since the sample is a fluoride,

a rotational behavior in ZF time spectra was observed in absence of applied fields

owing to a coupling via a dipole-dipole interaction between µ+ spin and nuclear spin

of F− ions. To unveil the dynamics of Cu2+ spins from the time spectra, longitu-

dinal magnetic fields (LF) above 200 G were applied to suppress the dipole-dipole

interaction between µ+ spin and nuclear spin of F− ions. The rotational signal with

low frequencies disappears, and a relaxation spectrum appears.

Figure 3.11(a) shows the temperature dependence of LF-µSR time spectra of

(Rb1−xCsx)2Cu3SnF12 with x = 0.53. The spin polarization of the implanted muons

appears to relax exponentially, which indicates that spins of the sample fluctuate

with frequencies. Thus, I analyzed the LF-µSR time spectra using the following

formula

A(t) = A0 exp(−λt) (T ≥ 4 K), (3.2)

A(t) = A1 exp(−λ1t) + A2 exp(−λ2t) (T < 4 K). (3.3)

where λ1, λ2 and λ are muon spin relaxation rates in each component. Below 4

K, the time spectra are bended, and a function with two components is necessary

to reproduce the time spectra. It was found that the ratio A1/A2 is fixed to be

' 1.4. Above 4 K, spin polarization tends to display an exponential decay. All

spectra in Fig. 3.11(a) are well fitted by the Eq. (3.2) and Eq. (3.3). Figure 3.11(b)

shows temperature dependence of the deduced relaxation rates, λ1, λ2 and λ. With
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Figure 3.10: Typical µSR time spectra measured at zero magnetic field (ZF) and in
a longitudinal magnetic field (LF) of 200 G. Time dependence of the raw asymmetry
is plotted. Dashed lines denote the backgrounds in both cases.

decreasing temperature, the relaxation rates show a monotonous increase. This in-

dicates an enhancement of spin fluctuation in low frequencies at lower temperature,

because the relaxation rates are in inverse proportion to the spin fluctuation as long

as the applied fields are relatively low.

To obtain further understanding of the spin dynamics, LF-dependence measure-

ments are needed. In many cases of magnetic disordered states, magnetic moments

in materials and implanted muon spins weakly interact with one another through

the dipole-dipole interaction. With increasing the applied fields, the muon spins

decoupled from the internal magnetic field caused by electron spins in magnetic

materials, so that the relaxation rates of muon spins will decrease. Magnetic field

dependence of the muon-spin-relaxation rate λ is described by the Redfield formula

expressed as

λ(HLF) =
2γ2

µH
2
locτ

1 + γ2
µH

2
LFτ 2

, (3.4)
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Figure 3.11: (a) LF-µSR time spectra of (Rb1−xCsx)2Cu3SnF12 with x = 0.53 mea-
sured at various temperature in HLF = 200 gauss. Solid line are fitted results using
the Eq. (3.2) and Eq. (3.3). (b) Temperature dependence of the muon spin relax-
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where γµ is the gyromagnetic ratio of the muon spin (2π× 13.5534 kHz/gauss),

HLF is the external longitudinal-field, Hloc is the internal local magnetic field at

the muon sites, and τ is the correlation time of muon spins. When the fluctuating

frequency of the internal field at the muon sites has a single component, the LF

dependence of λ(HLF) has a cutoff structure, and one can deduce the fluctuating

frequency f = 1/τ using Eq. (3.4).

Figure 3.12 shows LF-µSR time spectra measured at 0.3, 2, and 4 K in various

fields. Using Eqs. (3.3) and (3.2), I analyze LF-µSR spectra for 0.3 K and 2 K and

for 4 K, respectively. All the spectra are well fitted. I fixed he ratio A1/A2 to the

same value, when I analyze the temperature dependence of LF-µSR time spectra

at 200 gauss. Figure 3.13 shows the longitudinal field dependence of muon-spin-

relaxation rates λ1, λ2, and λ. Figure 3.13(a) shows the case of 0.3 K, and Fig.

3.13(b) shows the case of 0.3 K, 2 K, and 4 K for λ and λ1.

I found that at 4 K, the LF dependence of the muon spin relaxation rate λ(HLF)

is almost constant below 4000 gauss as shown in Fig. 3.13 (b). With decreasing
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temperature, the relaxation rates increase at lower fields HLF, although no cutoff

structure is observed in each case. This infers that λ(HLF) can be described by the

superposition of the Redfield formula with a widely spread distribution of the local

magnetic fields Hloc and the fluctuating frequencies f at the muon sites, which is

called the “white” spectrum. I infers that internal local magnetic fields fluctuate at

frequencies lower than an order of MHz at least down to 0.3 K. From the LF-µSR

measurements, I conclude that at the quantum critical point xc = 0.53, the Cu2+

spins in the kagome lattice fluctuate at lower frequencies at least down to 0.3 K.

The ground state of (Rb1−xCsx)2Cu3SnF12 with x = 0.53 has VBG state, as

mentioned in the previous section. The VBG state with a finite magnetic suscep-

tibility is characterized by long-range valence bond correlations and is not related

to any magnetic ordering. The measurement results is not inconsistent with those

theoretical predictions. I infer that the “white” spectrum is attributable to VBG

state that emerges in tightly bound spin singlets, loosely bound spin singlets, and

nearly free spins in random interaction network. However, in order to determine

the magnetic ground state experimentally, measurements at lower temperatures are

needed. LF-µSR measurements at the dilution refrigerator temperature region are

now on progress.
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Figure 3.12: LF-µSR time spectra of (Rb1−xCsx)2Cu3SnF12 with x = 0.53 measured
at (a) 0.3 K, (b) 2 K, and (c) 4 K. Solid lines are fitted results using the Eq. (3.3)
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3.3 Discussion

From the magnetic susceptibility measurements, I observed that with increasing

cesium concentration x, (Rb1−xCsx)2Cu3SnF12 undergoes the quantum phase tran-

sition from the disordered state to the ordered state at xc = 0.53. I also found that

the ground state for 0 <x≤ 0.53 has a finite magnetic susceptibility, nevertheless

the ground state exhibit no long-range magnetic ordering. The absence of the mag-

netic ordering was confirmed via the µSR measurements conducted on the sample

with critical concentration xc = 0.53. Thus, the ground state for 0 <x≤ 0.53 is just

like a gapless spin liquid. The substitution between rubidium and cesium ions will

create exchange randomness. As shown in subsection 3.1.1, all the exchange inter-

actions approach a uniform value for x → 1. Therefore, the magnitude of exchange

randomness increases with decreasing x from x = 0. Thus, it is natural to assume

that the spin-liquid-like ground state arises from the randomness of the exchange

interaction. In what follows, I discuss the nature of the “spin-liquid-like” ground.

As mentioned in Chap. 1, the ground states for the quantum triangular lattice

antiferromagnet (TLAF) and quantum KLAF with bond randomness have been

discussed theoretically [56–58]. It was predicted that when the randomness exceeds

a critical value, the ground state changes from an ordered state with 120◦ structure

to a gapless spin-liquid-like state for quantum TLAF, while for quantum KLAF,

the ground state changes from a quantum disordered state to a gapless spin-liquid-

like state. The gapless spin-liquid-like state was argued to be a “valence-bond-

glass (VBG) state” or “random singlet state”. The VBG state is a state in which

tightly bound spin singlets are localized on stronger bonds, while loosely bound

singlets are situated on weaker bonds, as shown in Fig. 1.9. Because there are

many loosely bound singlets, in which the singlet-triplet excitations are gapless or

close to be gapless, the magnetic susceptibility becomes finite. However, any long-

range magnetic order is absent. To summarize, the VBG state has characteristics

as follows [55–58,70]:

• Magnetic excitation is gapless.

• There is no long-range order.

• Low-temperature specific heat is proportional to temperature.
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The first two characteristics coincides with the ground state nature observed in

(Rb1−xCsx)2Cu3SnF12 with 0 <x≤ 0.53. The T -linear specific heat has not been

clearly observed, because it is difficult to separate the magnetic and lattice contri-

butions. When a pure parent system has a gapped singlet ground state, the mixed

system creates numberless magnetic states inside the gap, which makes a gapless

ground state. Consequently, the gap becomes a pseudo gap when the bond random-

ness is introduced [70]. Thus, I infer that the gap observed in (Rb1−xCsx)2Cu3SnF12,

which is shown in Fig. 3.7, is the pseudo gap modified from the pure gap in

Rb2Cu3SnF12. From these experimental results and theoretical backgrounds, I can

deduce that the ground state of (Rb1−xCsx)2Cu3SnF12 with 0 <x≤ 0.53 is VBG

state.

Theoretical magnetic susceptibility for S = 1/2 random bond Heisenberg KLAF

exhibits fairly large Curie term in the gapless spin-liquid-like state, while the ex-

perimental magnetic susceptibility shown in Fig. 3.5 displays small Curie term. I

consider that this discrepancy arises from the finite size effect in calculation. The

theoretical magnetic susceptibility was calculated, using exact diagonalization for

up to 30-site clusters. Therefore, unpaired spins created on the boundary cannot

form spin singlet. These unpaired spins will form any singlet when the system size

is increased, so that the Curie term decreases. It is considered that for this reason,

the theoretical magnetic susceptibility exhibits large Curie term.

The VBG state is similar to the Bose glass (BG) state, which emerges in an

interacting boson system with random potential [138, 139] and/or in a disordered

dimerized quantum magnet in a magnetic field [140–143]. In the BG state, bosons

are localized owing to random potential. However, the compressibility, which cor-

responds to magnetic susceptibility in magnetic system, is finite, because the depth

of random potential distributes from zero.

It is noted that the temperature dependence of the magnetic susceptibility of

(Rb1−xCsx)2Cu3SnF12 for 0 <x≤ 0.47 is similar to that of the S = 1/2 kagome-

lattice antiferromagnet herbertsmithite, ZnCu3(OH)6Cl2, extracted from the Knight

shift of NMR spectra shown in Fig. 1.12(b) [95, 97]. This will give insight into the

ground state of herbertsmithite. In an actual sample of herbertsmithite, Cu2+

partially substitutes for 10% of Zn2+ [78]. Cu2+ in an octahedral environment

is Jahn-Teller active. Consequently, the substituted Cu2+ pushes and pulls the
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surrounding oxygen ions, which leads to disorder in the oxygen position. Because

the oxygen mediates the superexchange interaction in the kagome layer and the

superexchange interaction is sensitive to the bond angle of Cu2+−O2−−Cu2+ as

observed in Rb2Cu3SnF12, the exchange interaction in the kagome layer is considered

to be nonuniform, as in (Rb1−xCsx)2Cu3SnF12. For this reason, the ground state of

the actual sample of herbertsmithite is a “spin-liquid-like”, which is similar to the

disordered state observed in (Rb1−xCsx)2Cu3SnF12.
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Chapter 4

Magnetic Properties of
Cs2LiMn3F12

Mn3+ ions with S = 2 of Cs2LiMn3F12 forms a uniform kagome lattice. To elu-

cidate KLAF with classical spins, magnetic and thermodynamic measurements of

Cs2LiMn3F12 were conducted, using single crystal. It was found that Cs2LiMn3F12

undergoes magnetic order at TN ' 2 K. I also conducted neutron powder diffraction

using high quality sample, and found that the spin structure in the ordered phase

is characterized by a propagation vector q = (1/3, 0, 0).

4.1 Magnetic and Thermodynamic Properties

Owing to the improvement of sample preparation, I can obtained high quality single

crystal of of Cs2LiMn3F12 with several natural surfaces. To determine the crystal-

lographic c-axis, I performed X-ray diffraction. Figure 4.1 shows an example of the

X-ray diffraction pattern. The observed peaks are identified as (0, 0, 3n) reflections,

which indicates the plane to be the c-plane. After confirming the c-plane with X-ray

diffraction, I conducted the magnetic and specific heat measurements.

To evaluate g-factor of Cs2LiMn3F12, I operated electronic spin resonance (ESR)

measurements. X-band ESR measurement at 9.44176 GHz has been performed.

Figure 4.2 shows ESR spectra observed at room temperature. The ESR spectra for

H ‖ c is almost same as that for H ⊥ c. g-values for H ‖ c and H ⊥ c are obtained

as g‖ = 2.01, and g⊥ = 2.01, respectively.
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Figure 4.1: X-ray diffraction from the crystallographic c-plane of Cs2LiMn3F12.
Diffraction peaks are identified to be (0, 0, 3l) with l = 1, 2, 3, · · · .

4.1.1 Specific Heat

Figure 4.3 shows the temperature dependence of the specific heat measured for H ‖ c.

The peak anomaly of the specific heat is observed at 2.1 K in the absence of the

magnetic fields, Which is indicative of the magnetic phase transition at TN ' 2.1 K.

The magnetic ordering at TN ' 2.1 K was confirmed by neutron powder diffraction

experiment shown next section. The specific heat below 1 K is proportional to

T 2 as shown in Fig. 4.4, which indicates that Cs2LiMn3F12 is magnetically two-

dimensional.

With increasing the external magnetic field, TN increases and the anomaly at

TN is smeared above 3 T, and the temperature dependence of specific heat changes

power law behavior (T 2) to exponential behavior (exp(−∆/kBT )) as shown in

Fig. 4.4. This result suggests that an excitation gap opens when an external mag-

netic field is applied parallel to the c-axis. This magnetic-field-induced gap was

observed in several S = 1/2 one-dimensional antiferromagnet with the staggered g
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Figure 4.2: Electronic spin resonance spectra observed at room temperature using
X band microwave with frequency ν = 9.44176 GHz. The red and blue symbols
indicate the ESR spectra for H ‖ c and H ⊥ c, respectively.

tensor gs and the DM interaction with the staggered D vector Ds [145,146]. In these

systems, a staggered magnetic field is induced perpendicular to the external mag-

netic field H owing to gs and Ds. The staggered magnetic field acts as an effective

anisotropy perpendicular to H , which produces a finite gap in magnetic excitation.

The magnetic-field-induced gap also gives rise to the smearing the magnetic phase

transition. Thus, I infer that in Cs2LiMn3F12, the staggered magnetic field that is

conjugate to the ordered spin structure is induced in the external magnetic field.

4.1.2 Magnetic Susceptibility and Magnetization

The temperature dependence of the magnetic susceptibility is shown in Fig. 4.5.

Using the Curie-Weiss fit, the Weiss temperatures Θ for H ‖ c and H ⊥ c are obtained

as Θ = 40 K and 32 K, respectively. To analyze the susceptibility data, I used the

high temperature expansion of Ref. [147,148]. I confirmed that the result obtained

is the same as that obtained by Rosner et. al. for the J1 − J2 square lattice [149]
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and that obtained by Bernu et. al. for the kagome lattice J1 − J2 − Jd−Heisenberg

model. [150] The analysis reproduce well the experimental data. When I set the g-

value as g = 2.01 obtained by the ESR spectra, the exchange constant is estimated

as J/kB = 4.4 K, which is consistent with that obtained from Curie Weiss fitting.

Solid line in Fig. 4.5(b) is a fit of calculated result to the experimental susceptibility

with these parameter.

Figure 4.6 shows low-temperature magnetic susceptibilities measured for H ‖ c

and H ⊥ c. A bend anomaly is observed at TN ' 2.1 K for H ‖ c, which is attributed

to the magnetic phase transition, because the temperature giving the anomaly co-

incides with TN observed in specific heat measurement. Below 2 K, the magnetic

susceptibility is independent of the temperature, which indicates that Cs2LiMn3F12

exhibits the easy plane type order. For applied magnetic fields higher than 1 T, the

susceptibility anomaly is smeared.

To elucidate the field dependence of the anomaly, I measured the magnetization

as a function of magnetic field. The result is shown in Fig. 4.7. The observed

weak moment is Mwf = 0.17 µB. Two peaks in the field derivative of magnetization

dM/dH are observed at 1.2 T and 2.4 T, which is indicative of the spin flop transi-

tions. I suspect that these transitions are related to the change in the umbrella spin

structures between neighboring kagome layers due to the in-plane components of

the D vector for the DM interaction, as reported for KFe3(OH)6(SO)4 [84]. On the

basis of the magnetic susceptibility and magnetization measurements for H ‖ c, I can

assume that tCs2LiMn3F12 has weak anisotropy of easy plane type and spins lie in

the c-plane making triangular structure. Using a relation J ′ = −MwfH/S2, I obtain

the interlayer exchange constant J⊥ of 0.08 K. The ratio of interlayer and intralayer

exchange constants is estimated as J ′/J ' 0.02, which attests Cs2LiMn3F12 has

good two dimensionality.
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4.2 Neutron Diffraction

In order to investigate the magnetic structure in the ordered phase in Cs2LiMn3F12,

I performed neutron powder diffraction with purified sample, in which the impurity

phase is much smaller than the previous sample [118],using high-resolution powder

diffractometer ECHIDNA installed at OPAL in ANSTO. The wavelength of the

incident neutron was set at λ = 2.43950 Å. The temperature of the sample was

lowered down to 1.5 K.

Figure 4.8 shows neutron diffraction patterns of Cs2LiMn3F12 measured at 1.5

and 4 K. Diffraction peaks observed at 4 K can be assigned by nuclear Bragg peaks

with the atomic coordinates shown in Table 1.4. Additional weak peaks are observed

at 1.5 K. From the specific heat and magnetic susceptibility measurements shown

in the previous section, it was found that Cs2LiMn3F12 exhibits the magnetic order

in at 2 K. Thus, magnetic diffraction can be obtained by subtracting diffraction

intensity measured at 4.0 K from that measured below TN ' 2.0 K.

Figure 4.9 shows the intensity difference I(1.5 K)− I(4.0 K) as a function of

diffraction angle 2θ. In Fig. 4.9, I also show the data of I(1.5 K)− I(4.0 K) collected

in 2011 [118]. In the previous experiment in 2011 [118], magnetic diffractions were

observed below TN ' 2.0 K. However, it was difficult to judge whether observed

magnetic peaks are intrinsic, because the sample used contains considerable amount

of impurities as CsMnF4 and Li2MnF5, which exhibit magnetic orderings at 18 and

11 K, respectively.

Two diffraction data obtained in the present experiment and in 2011 are consis-

tent with each other. This confirms that diffraction peaks are intrinsic to Cs2LiMn3F12.

I can see several magnetic reflections, which occur below TN ' 2.0 K. This re-

sult indicates that Cs2LiMn3F12 undergoes magnetic ordering at TN ' 2.0 K. The

magnetic structure of the ground state reported to date is limited to the q = 0

structure [80, 81, 104]. The
√

3×
√

3 structure is also known as a candidate of the

ground state, which is stabilized by the quantum fluctuation (see Fig. 1.4) [30–33].

However, observed magnetic reflections can be explained in terms of neither q = 0

structure nor
√

3×
√

3 structure. The best description of the magnetic structure is

given by a propagation vector q = (1/3, 0, 0). Arrows in Fig. 4.9 indicate diffraction

angles corresponding to Q = G±q with the reciprocal wave vector G. At present, I
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have not succeeded in solving the spin structure that produces the observed diffrac-

tion pattern.
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Figure 4.8: Neutron diffraction intensities of Cs2LiMn3F12 measured at 1.5 K and
4 K. Small magnetic peaks indicated by arrows are observed.
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Chapter 5

Conclusion and Outlook

Theoretical consensus on S = 1/2 Heisenberg kagome lattice antiferromagnet (KLAF)

is that the ground state is disorder owing to the interplay of strong frustration

and quantum fluctuation. However, the nature of the disordered ground state

has been under debate. Recent theory on quantum KLAFs with bond random-

ness predicts that when the randomness exceeds a critical value, the ground state

changes from the disordered state to a gapless spin-liquid-like state. Motivated by

these theoretical debate and predictions, I investigate the magnetic properties of

(Rb1−xCsx)2Cu3SnF12, which is a mixture of two S = 1/2 KLAFs: Rb2Cu3SnF12

with gapped ground state and Cs2Cu3SnF12 with ordered ground state.

The most important point to obtain reliable experimental results is to pre-

pare high-quality single crystals. I first grow single crystals of two parent systems

Rb2Cu3SnF12 and Cs2Cu3SnF12 from a melting method, using platinum tubes as

crucibles. Mixing stoichiometric amount of these parent crystals, I prepare sizable

single crystals of (Rb1−xCsx)2Cu3SnF12 with various cesium concentration x from

the melting method. Details of the sample preparation is described in section 2.2.

The homogeneity of crystals was confirmed by X-ray diffraction.

Using single crystals obtained, I have performed magnetization, thermodynamic

and µSR measurements. The magnetic susceptibilities for (Rb1−xCsx)2Cu3SnF12

shows systematic change with x, i.e., the magnetic susceptibility is not given by

the superposition of those for Rb2Cu3SnF12 and Cs2Cu3SnF12, which confirms the

homogeneity of crystals. From high-temperature magnetic susceptibility data for

T ≥ 60 K, I evaluated the four kinds of exchange interaction Ji (i = 1 − 4), using
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the exact diagonalization for the 12-kagome cluster. It was found that all the

exchange interactions approach a uniform value for x → 1, as shown in subsection

3.1.1. The substitution between rubidium and cesium ions will also create exchange

randomness. Therefore, it is considered that the magnitude of exchange randomness

increases with decreasing x from x = 0.

From the low-temperature magnetic susceptibility measurements, I observed

that with increasing cesium concentration x, (Rb1−xCsx)2Cu3SnF12 undergoes the

quantum phase transition from the disordered state to the ordered state at xc = 0.53.

I also found that the ground state for 0 <x≤ 0.53 has a finite magnetic suscepti-

bility, nevertheless the ground state exhibits no long-range magnetic ordering. For

0 <x≤ 0.53, the excitation gap decreases with increasing x, and vanishes at the

critical point xc = 0.53. The absence of the magnetic ordering was confirmed via

the µSR measurements conducted down to 0.3 K on the sample with critical concen-

tration xc = 0.53. Thus, the ground state for 0 <x≤ 0.53 is just like a spin liquid.

I discussed this ground state nature according to recent theory that investigate the

ground state for S = 1/2 Heisenberg KLAF with exchange randomness. The the-

ory predicts that with increasing the magnitude of randomness, the ground state

changes from quantum disordered state to a gapless spin-liquid-like state, which is

described as valence-bond-glass (VBG). The VBG state is a state in which tightly

bound spin singlets are localized on stronger bonds, while loosely bound singlets are

situated on weaker bonds, as shown in Fig. 1.9. The characteristic properties asso-

ciated to the VBG are as follows: (1) magnetic excitation is gapless, (2) long-range

magnetic ordering is absent, and (3) low-temperature specific heat is in proportion

to temperature. The first two theoretical results are consistent with our experimen-

tal results for the ground state for 0 <x≤ 0.53, though I failed to observe the T−
linear specific heat at low temperature, because the exchange interaction is rather

large. Therefore, I concluded that the ground state in (Rb1−xCsx)2Cu3SnF12 with

0 <x≤ 0.53 is the VBG state. This is the first clear report on the ground state of

VBG with random kagome lattice.

Experimental magnetic susceptibility for 0 < x≤ 0.53 shown in Fig. 3.5 displays

small Curie term, though theoretical magnetic susceptibility for S = 1/2 random

bond Heisenberg KLAF exhibits fairly large Curie term in the gapless spin-liquid-like

state. I consider that this discrepancy arises from the finite size effect in calculation.
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The theoretical magnetic susceptibility was calculated, using exact diagonalization

for up to 30-site clusters. Therefore, unpaired spins created on the boundary cannot

form spin singlet, which leads to the Curie term in magnetic susceptibility. These

unpaired spins will form any singlet when the system size is increased, so that the

Curie term decreases.

In VBG, it has been proposed that the ω dependence of the dynamic struc-

ture factor S(q, ω) at Γ point is fairly flat [57, 58]. Dynamic structure factor can

be observed through inelastic neutron scattering (INS) experiments. Thus, INS

experiments are necessary to elucidate the nature of the disordered ground state

in (Rb1−xCsx)2Cu3SnF12. The INS results in our system will give insight into

the ground state of herbertsmithite, which is well-known as an S = 1/2 Heisen-

berg KLAF, because the spin-liquid-like ground state observed in herbertsmithite

is considered to be ascribed to the exchange randomness.

For Cs2LiMn3F12, which is described as S= 2 KLAF, I have investigated the mag-

netic properties via the magnetic susceptibility, specific heat and neutron scattering.

I succeeded in synthesizing purified and sizable single crystals of Cs2LiMn3F12. I

confirmed the crystallographic axis using x-ray diffractometer for the first time. I

measured the magnetic measurements and specific heat for H ‖ c and H ⊥ c using

single crystal sample. It was found that Cs2LiMn3F12 exhibits the antiferromagnetic

order at TN ' 2.1 K in both susceptibility and heat capacity measurements. I ana-

lyzed the results of magnetic susceptibilities using the high temperature expansion

to evaluate the exchange interaction of J/kB = 4.4 K. It was observed that the low-

temperature specific heat is proportional to T 2, which indicates that Cs2LiMn3F12

has a good two-dimensional character. In addition, I observed that the excitation

gap is induced by the applied magnetic field, which should be attributed to the alter-

nating D vector of the DM interaction. I conducted the powder neutron diffraction

to unveil a magnetic ground state. Several magnetic reflections were observed below

TN ' 2.0 K. However, observed magnetic reflections can be explained in terms of

neither q = 0 structure nor
√

3×
√

3 structure. It was found that the best descrip-

tion of the magnetic structure is given by a propagation vector q = (1/3, 0, 0). To

the best of my knowledge, such an unusual magnetic ordering is the first obser-

vation in KLAFs. At present, I have no reasonable solution of the spin structure

that produces the observed diffraction pattern. To solve the spin structure of the
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ordered state in Cs2LiMn3F12 is an important future problem. Because there is no

theory on the magnetic excitations for classical and quantum KLAFs with a mag-

netic order characterized by a propagation vector q = (1/3, 0, 0), INS experiments

on Cs2LiMn3F12 are of great interest.
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G. Perring, G. Aeppli, O. Syljůasen, K. Lefmann, and C. Rischel, Phys. Rev.

Lett. 87, 037202 (2001).

[116] U. Englich, C. Frommen, and W. Massa, J. Alloys and Comp. 246, 155 (1997).

[117] G. Xu, B. Lian, and S.-C. Zhang, Phys. Rev. Lett. 115, 186802 (2015).

[118] T. Usui, Master thesis, Tokyo Institute of Tech. (2012).

[119] K. Hwang, K. Park, and Y. B. Kim, Phys. Rev. B 86, 214407 (2012).

[120] Quantum Design, Magnetic Property Measurement System: MPMS XL Hard-

ware Reference Manual.

[121] A. Barone and G Paterno, Physics and Applications of the Josephson Effect

(Wiley and Sons Inc. 1982), Chapter 13.

[122] S. Kobayashi, Progress of measurements for condensed matter physics Vol. 2

- SQUID, SOR, and electron emission - Edited by S. Kurihara, J. Sone, and

E. Maruyama (Maru-Zen, 1996, in Japanese).

[123] Quantum Design, Subtracting the Sample Holder Background from Dilute

Samples, MPMS Application Note 1014-213.

[124] R. Bachmann, F. J. DiSalvo, Jr. T. H. Geballe, R. L. Greene, R. E. Howard,

C. N. King, H. C. Lee, R. E. Schwall, H.-U. Thomas, and R. B. Zubeck, Rev.

Sci. Instrum. 43, 205 (1972).

95



[125] J. P. Shepherd, Rev. Sci. Instrum. 56, 273 (1985).

[126] J. R. Hook and H. E. Hall, Solid State Physics, 2nd Edition (Wiley, 1991).

[127] G. L. Squires, Introduction to the theory of thermal neutron scattering, (Cam-

bridge).
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