
論文 / 著書情報
Article / Book Information

題目(和文) 記述方式に基づくモバイル端末連携のためのマッシュアップアプリケ
ーション構成法

Title(English) Description-Based Composition Methods of Mashup Applications for
Cooperation of Mobile Devices

著者(和文) ﾌﾟﾙｻｼｬｲﾆﾑﾐｯﾄｺﾗｳｨｯﾄ

Author(English) Korawit Prutsachainimmit

出典(和文) 学位:博士(学術),
 学位授与機関:東京工業大学,
 報告番号:甲第10255号,
 授与年月日:2016年3月26日,
 学位の種別:課程博士,
 審査員:徳田 雄洋,佐伯 元司,徳永 健伸,権藤 克彦,西崎 真也

Citation(English) Degree:Doctor (Academic),
 Conferring organization: Tokyo Institute of Technology,
 Report number:甲第10255号,
 Conferred date:2016/3/26,
 Degree Type:Course doctor,
 Examiner:,,,,

学位種別(和文) 博士論文

Type(English) Doctoral Thesis

Powered by T2R2 (Science Tokyo Research Repository)

http://t2r2.star.titech.ac.jp/

Description-Based Composition
Methods of Mashup Applications for

Cooperation of Mobile Devices

Thesis submitted
for the

Degree of Doctor of Philosophy

Korawit Prutsachainimmit

Department of Computer Science

Graduate School of Information Science and Engineering

Tokyo Institute of Technology

Advisor: Prof. Takehiro Tokuda

2016

i

Abstract

Mashup application composition methods have been proposed for quick development of
new mobile applications from existing resources. The existing methods have succeeded
in developing data-flow mashup applications for single devices. They have limited
capability to deal with event-driven and multiple-device mashup composition. A full
treatment of data-flow and event-driven mashup composition that utilizes cooperation
of mobile devices is not yet achieved. This thesis presents a new methodology for
developing data-flow and event-driven mashup applications for single and multiple
devices. Our hybrid composition method allows integration of mobile applications and
REST Web services in a data-flow and event-driven manner. We propose a device
cooperation model that allows mashup applications to take advantages of data sharing
among multiple mobile devices. Description-based techniques and application generator
tools are applied to reduce development cost. A mashup development system is
implemented in Android mobile platform as a first experimental platform. The
evaluation results show that our method is expressive and efficient in composing typical
mobile mashup applications for single and multiple devices.

ii

Contents

Abstract .. i

Contents ... ii

Chapter 1 Introduction ... 1
1.1 Motivation ... 1
1.2 Organization of the thesis ... 4

Chapter 2 Background and Related Work ... 5
2.1 Background ... 5
2.2 Related Work .. 6

Chapter 3 Mashup Composition for Multiple Mobile Devices 9
3.1 Multiple Device Mashup Scenario and Analysis .. 10

3.1.1 Meeting Point Scenario .. 10
3.1.2 Analysis ... 11

3.2 Constraints of Mashup Composition on Mobile Devices ... 12

Chapter 4 Data-Flow Composition for Multiple Devices ... 17
4.1 Single Devices Mashup Composition .. 17
4.2 Enabling Cooperation of Mobile Devices ... 18

4.2.1 Mashup Execution Environment .. 22
4.3 C-MAIDL .. 26
4.4 Mashup Construction Process .. 32
4.5 Implementation ... 32

4.5.1 Cooperation Mashup Scenarios .. 33
4.5.2 Discussion ... 34

Chapter 5 Improving Reusability of Mobile Application Components 38
5.1 Interoperability of Mobile Applications .. 39

5.1.1 Challenges ... 39
5.1.2 A Sample Scenario .. 41

5.2 LIMA ... 42
5.2.1 Overview ... 43
5.2.2 Specification .. 43
5.2.3 An example of LIMA ... 46

5.3 Implementation ... 48
5.3.1 LIMA Parser Tool .. 48
5.3.2 Applicability of LIMA in Mobile Mashup Composition ... 50
5.3.3 Discussion ... 51

Chapter 6 Event-Driven Composition for Multiple Device 53
6.1 Characteristics of Event-Driven Mashups ... 54

6.1.1 Motivating Scenarios ... 54
6.1.2 Analysis ... 56

6.2 Event-Driven Mashup Composition ... 58

iii

6.2.1 Overview ... 59
6.2.2 Even-Driven Mashup Component Integration .. 60
6.2.3 Mashup Proxy .. 61
6.2.4 Mashup Application Development Process .. 63

6.3 Description Languages ... 65
6.3.1 XLIMA .. 65
6.3.2 MEDAL ... 71

6.4 Implementation ... 75

Chapter 7 Evaluation .. 78
7.1 Usability Evaluation ... 78
7.2 Expressivity Evaluation .. 82
7.3 Comparison to other mashup approaches ... 86
7.4 Discussion .. 86

Chapter 8 Conclusion .. 90

Acknowledgement .. 92

Bibliography .. 93

A : XML Description Files .. 97

1

Chapter 1

Introduction

1.1 Motivation
Mobile devices, such as smartphones and tablets, have recently gained popularity and
become the most common computing and communication device. As a result, millions
of mobile applications are published through major delivery channels, such as the Apple
App Store and Google Play Store, covering a variety of user requirements. Even though
a huge number and large diversity of mobile applications are available, they are still not
covering the long tail of users’ requirements [1]. This situation drives the need for users
to develop their own mobile applications.

 One major problem is that mobile applications are commonly designed for a single
purpose. Completing a common problem sometimes requires more than one application.
In other words, users have to combine functionalities of multiple applications to solve
their specific problems. For example, let us consider a user who wants to translate
content of an email into a specific language. Unfortunately, the available email client
mobile applications are usually designed for sending and receiving email. The
translation features are not included. He/she needs to copy content from an email client
application, and use this as an input for a language translation Website or other
language translation mobile application. An application that is capable of combining
these existing functionalities, i.e., email client and language translation, is needed.
However, developing such an application is not practical for non-programmers because
extensive knowledge of mobile application development and high-level programming
skills are required. Thus, end-users require a tool assisting self-creation of mobile
applications. Mobile mashups, which employ the concept of lightweight composition of
existing resources, are one of the efficient tools supporting mobile applications
development for end-users.

 Mobile mashups allow the creation of new mashup applications by using
lightweight composition of existing resources. They take advantage of a combination of
Web service APIs and device-specific components for enriching mobile services and
enhancing user experiences [2]. In particular, this type of integration is able to create
new results that cannot be achieved by using conventional mashup composition. For
example, location data from a GPS sensor can be integrated with location-based Web
services, i.e., Gourmet Navigator API [3], Google Places API [4] or Yelp [5], to create a
mobile mashup application that displays points of interest near the current user’s
location. Furthermore, recent research has succeeded in enabling integration of

2

functionalities of mobile applications with Web APIs, i.e., Web services and Web
applications. Therefore, mobile mashup becomes a capable composition tool for end-
user mobile application development [6].

 Recently, the usage trend of mobile applications is changing from individual use
to collaborative use. Groupware and social network applications, which take advantage
of shared information among users, are adapted to mobile platforms. Consequently, the
capability of sharing information among multiple mobile devices has become an
important feature of commercial mobile applications. For example, modern mobile
applications allow users to share their current location among friends, and use shared
coordinates to achieve a collaborative purpose, such as finding a central meeting place.
In our view, mashup applications can benefit from cooperation of multiple devices by
exchanging data and sharing mashup results. The shared data among the participating
devices can be integrated with other mashup resources to produce new variety of
mashup output. A simple example is the location-based mashup. A mashup application
may request the current location from two or more mobile devices, and use this to find
the center coordinates among the participating devices. The center coordinates can be
given to a Web service API to find the best-ranked restaurant nearest to this centered
location. Finally, the output of the mashup, i.e., restaurant name and location, can be
shared among all participating devices. However, an efficient method dealing with data
sharing among multiple mobile devices and the proper model for integrating the shared
data with existing mashup resources is still not proposed. The benefits and challenges of
enabling mobile mashups for multiple devices motivates us to explore a new mashup
composition approach that is capable of dealing with data cooperation among multiple
mobile devices.

 Techniques for developing mashup applications for mobile devices mostly
originate from Web mashups, which introduces the concept of lightweight integration of
existing Web resources. Most mobile mashup approaches inherited application
composition techniques from well-engineered Web mashup approaches. As a result,
most of them use data-flow mashup composition as a major component integration
pattern, similar to that of Web mashups. The mashup resources, such as Web services,
Web applications or mobile applications, can be combined as a workflow; passing
input/output parameters between connected components to produce mashup output [9].
The data-flow composition pattern has been proven efficient for Web mashups; however,
there are obstacles that limit the capability of applying data-flow composition pattern
for mobile mashups. For example, let us consider a simple and popular location-aware
mashup that displays a point of interest (POI), e.g., restaurant, hotel or ATM, around
the current user’s location. This mashup passes the device’s location as an input to a
location-based Web service API, e.g., Google Places API, to find coordinates and
additional information of the POIs. After the invocation of the Web service has been
completed, coordinates of POIs will be displayed as pins on a map. However, in a real-
life situation, mobile devices may move to new locations after the mashup execution is
completed. As a result, the displayed pins of POIs are no longer valid. User can update

3

the mashup result by manually executing the mashup application again to get updated
POI locations. One solution of this problem is making the mashup application listen for
a specific event and automatically execute the mashup to update the mashup result. We
can consider this kind of mashup application as an event-driven mashup application.

 In addition to overcoming the limitations of data-flow mashup composition, event-
driven mashup composition is valuable composition pattern for mobile mashups. Since,
mobile devices monitor their states and report changes in an event-driven manner, the
changes of states, such as location or battery status, are notified to other processes as
system events. In our view, mobile mashups can take advantage of that event
notifications by using them as a trigger to control the execution of additional mashup
components. Besides, this event-driven mechanism also improves robustness of the
mashup application. In case of data-flow mashup, the component execution will be
performed in synchronous manner. When problems, such as a loss of the network
connection or Web resources becoming unavailable, have occurred during the execution,
the mashup application will be interrupted or terminated. In contrast to the data-flow
mashup, the event-driven mashup applications can deal with the network connection
and resource availability problems by performing the execution in an asynchronous
manner. However, using event-driven mechanism for mashup composition on mobile
device is still challenging. Since events in mobile devices are produced from different
sources, listening for events in mobile devices requires different techniques and
programming models. Another important challenge is realizing a component integration
model that is suitable for event-driven mashup composition and execution. Hence,
enabling event-driven mashup composition for mobile devices is a challenging topic in
mobile mashup research.

 Even though the event-driven mechanism and the data cooperation among multiple
devices can improve expressivity and robustness of mashup composition, a well-
engineered mashup composition approach is still not presented. Therefore, this thesis
contribution is the presentation of a new methodology for developing data-driven and
event-driven mashup applications for multiple mobile devices. Our approach aims to
improve expressivity and efficiency of mobile mashups by enabling the composition of
mobile applications, REST Web services, and shared information from multiple devices
in both data-driven and event-driven manners.

 We first explore efficient methods for data-flow mashup composition for multiple
mobile devices. We propose a mashup construction approach that allows data-flow
composition of mobile applications, REST Web services, and cooperative data from
multiple devices. We present a centralized data cooperation model and mashup
execution environment that automates data sharing for multiple devices mashup. We
propose a description language called C-MAIDL, which is designed to describe mashup
composition logic and device’s collaboration behavior. The mashup generator tool is
implemented as a quick mashup development tool to reduce development cost. We then
implement sample scenarios on Android platform to demonstrate the applicability of our
system. Finally, we discuss limitations and improvements of our first approach.

4

 We found that the mobile application integration method in our data-flow
composition approach still has limitations and needs improvements. As a result, our
goal is to explore a new solution for improving reusability of mobile mashup
components. We realized that the key to improve reusability is to enhance the
interoperability of mobile applications. We then introduce LIMA, an XML-based
modeling language for describing shared functionalities of mobile applications. LIMA
enhances interoperability of mobile applications by providing an applicable way to
describe abstract and concrete details of shared functionalities. LIMA also encourages
reusability of mobile application components and increases flexibility of our mashup
composition approach by separating component configuration from mashup composition
logic.

 To overcome limitations and expand the expressivity of data-flow mashup
composition, we then explore an event-driven mashup composition method for multiple
devices. We set up practical scenarios that represent usage of data-driven and event-
driven mobile mashup applications for single devices and multiple devices. We then
derive a suitable component and composition model that supports the composition of
our target mashup applications. We apply a description-based mashup development
method to facilitate end-user mashup composition. Description languages are defined to
represent mashup component configurations and describe the execution sequence of
mashup components. To reduce development cost, the description languages are used as
an input to mashup generator tools to generate mashup applications. In this way, our
approach leverages the development effort and reduces required programming skills. To
evaluate the applicability of our approach, we then implement our first prototype on the
Android mobile platform. The evaluation results show that our proposed architecture
and model improve the efficiency of mobile mashup application composition,
particularly the expressivity of user requirements, reusability of mashup components
and applications, and robustness of mashup execution.

1.2 Organization of the thesis
The organization of this thesis is as follows. We review the background and related
works in Chapter 2. The current constraints of mobile application platforms and
solutions for the composition of mashup applications for multiple devices are discussed
in Chapter 3. From Chapter 4 to 6, two different composition methods of mashup
applications for cooperation of mobile devices are explained. Data-flow composition is
presented in Chapter 4. An improved method for enhancing reusability of mobile
application components is explained in Chapter 5. Then, event-driven composition for
multiple mobile devices is presented in Chapter 6. Next, we give an evaluation of
expressivity and reusability, a comparison of our method to other works, and
discussions in Chapter 7. Finally, we discuss the possibility of future development and
give our conclusion in Chapter 8.

5

Chapter 2

Background and Related Work

The objective of this research is to present an approach that deals with data-flow and
event-driven mashup composition for cooperation of multiple mobile devices. In our
view, the current mashup composition methods is targeted to develop data-integration
mashup applications for single devices or a domain-specific mashup applications for
multiple devices. To have a clear view on our research problems and challenges, we
discuss background information about the characteristics and limitations of Web
mashup composition, the definition and advantages of mobile mashup composition, and
related research on mashup composition for mobile devices.

2.1 Background
A mashup is an application that integrates two or more existing components to create a
new kind of service or result [7]. The integration of existing resources, so called
mashup components, is the key process of mashup compositions. Mashup composition
in Web mashup is the development of Web pages or Web applications that use and
combine data, presentation or functionality from existing resources to create new
services [8]. Web mashup applications have recently become popular. As a result, many
Web mashup construction approaches have been proposed. Most of them focus on
various aspects, ranging from data integration to user interface integration [9]. The next
generation of Web mashup is mobile mashup. Mobile devices, such as smartphones and
tablets, were introduced with the capability to access Web resources by using mobile
Internet, and embedded with rich of mobile sensors, such as a GPS sensor,
accelerometer and a camera. As a result, mashup applications running on a mobile
device and integrating Web resources and making use of device-specific components,
are emerged. By considering the architecture of mobile mashup applications, we can
categorize them into two major types:

Web-based mobile mashups. This type of mashup is based on standard Web
technologies. Mashup applications are developed as Web application and accessed via
the mobile Web browser. Given the W3C standards for device APIs, the WAC
proposals and browser extension capability, Web-based mobile mashups can make use
of a limited set of device-specific capabilities. Similar to conventional Web mashups,
Web-based mobile mashups may run by using client-side JavaScript and a back-end
Web server that acts as proxy forwarding requests and responses. In general, this type of

6

mashup is an extended form of Web mashup that uses mobile devices as mashup
viewer/consumer.

Native mobile mashups. This type of mashup is based on the native technology of
mobile platforms. Each mashup applications are platform-specific applications
developed by using a mobile platform SDK. Advantages of native mobile mashups over
that of Web-based are they have better execution performance, better user experience
and full access to the device-specific features [10]. However, developing this type of
mashup requires extensive programming skill along with platform SDK knowledge.
Therefore, it is not practical or less possible for end-users to develop this type of
mashup. Even though using code-to-code development tools that reduce the required
programming skills to Web authoring skills, this task is still not comprehended by end-
users.

 In this research, we focus on developing native mobile mashup applications that
better utilize the device-specific capabilities. Thus, we have to overcome the challenges
of developing native mobile mashup applications by reducing development cost and
required programming skills.

2.2 Related Work
Mobile mashup approaches have been proposed to facilitate mashup composition for
mobile devices. However, the objectives and goals of composing mashup application
are different. In this section, we discuss the existing mobile mashup approaches and
related technologies that help reducing mashup development cost.

 In the beginning, mobile mashup frameworks inherit composition methods from
Web mashup. Web mashup editors such as Yahoo Pipes [11], Intel MashMaker [12] and
a mashup platform proposed by Kaltofen et al. [13] are capable of creating mobile
mashup applications for single and multiple devices. The mobile Web browsers on
mobile devices are used as a channel to deliver mashup applications to users. Since
these mashup tools create web-based mashup applications, they cannot fully access
device-specific data. Moreover, they cannot enable the cooperation of multiple mobile
devices.

 In academic research, domain-specific mashup approaches that allow composition
of native mobile mashup applications for single and multiple devices have been
proposed.

 The TELAR mashup platform [14] presents a solution to combine location data
from GPS sensors with existing Web service APIs to create event-driven mashup
applications for single and multiple devices. However, this approach is limited
capability to create location-based applications. Multiple client devices are possible as
individual execution of mashup applications. The clients cannot perform cooperation.

7

 Telco mashups [15,16,17,18] allow event-driven integration of device APIs and
mobile network services. They are also limited to the integration to telephony functions
and they do not support cooperation of multiple devices.

 MobiMash [19] and its extension [20] allow visual composition of mobile mashup
applications for collaboration of multiple mobile devices. SmartComposition [21] and
MultiMasher [22], allow the distribution of user interface elements to achieve
collaborations of multiple users. These approaches share the same goals as our approach.
However, they focus on user interface integration, and not capable for data cooperation
among devices.

 Our previous research [23] has proposed a mashup construction system for the
integration of Web applications, Web services and mobile applications. This approach
realizes the reusability of Web information and device-specific capabilities. Data-flow
is set as the main composition method, while event-driven composition is possible with
manual programming effort. TeWS is also introduced to enable data cooperation among
multiple devices. This previous work has limitations about the composition method and
still requires manual programming effort. Thus, we use this work as the baseline and
aim to make improvements on event-driven mashup composition and cooperation of
mobile devices.

 Since we use description-based techniques for reducing the mashup composition
cost, description-based mashup approaches, i.e., mashup description languages
[24,25,26,27,28] and end-user mobile mashup composition [29], must be reviewed.
From this existing research, we learn valuable techniques that benefit our mashup
description language design, for example, a parameter mapping technique and a flexible
mashup development process. In addition, related work on event-driven architecture and
mobile device data communication must be studied.

 This research aims to explore an efficient and expressive mashup composition
method that fulfills following goals.

• Utilizing data cooperation of mobile devices: Conventional mobile mashup
approaches have limited capabilities to take advantages from shared data among
multiple mobile devices. Our approach presents a suitable architecture
accommodating data sharing among multiple devices, and realizes the capable
component integration model that utilizes the shared data in mashup application
composition.

• Expanding expressivity with event-driven composition pattern: Most existing
approaches employs data-flow as a major component integration pattern. The
event-driven approaches are proposed. However, they are designed to address
problem of a specific domain, and importantly, less use of device-specific events
in mashup composition. Our approach expands expressivity of mashup
composition by presenting an efficient method for integrating device-specific
feature with other mashup resources in both data-driven and event-driven pattern.

8

• Reducing development cost: End-user mashup composition approaches are
presented to reduce required programming skills and development cost. The
major challenge is balancing between capability of the composition and
complexity of development process. This research presents a description-based
mashup development process that maintains the equivalent level of expressivity
and usability. We delegate the component development process, which requires
higher programming skills, to expert users. Our proposed description languages
and mashup generator tools allows novice users to compose mashup applications
with less development cost.

9

Chapter 3

Mashup Composition for Multiple
Mobile Devices

In general, mashup composition for mobile devices and conventional mashups of Web
resources have different concepts. Mashup composition for mobile devices has its own
methodologies and characteristics. Since mobile devices are built with device-specific
features, such as a camera, a GPS sensor and an accelerometer, these capabilities bring
out the unique characteristics of mobile mashups. A common goal is taking advantages
of mobile network services, device-specific features, and context-aware information, by
integrating such capabilities with other existing resources. As a result, mobile mashups
are able to produce output that cannot be achieved with Web mashups. However, the
trend in mobile application usage is evolving from individual to social or collaborative
use. In addition, mobile platforms are empowered with technologies that facilitate
connectivity among devices. Motivated by these facts, our research aims to discover an
architecture that promotes mobile mashups for multiple devices. In this chapter, we
discuss the mobile technologies that are necessary for enabling cooperation of mobile
devices. We also address challenges of enabling mashup composition for multiple
mobile devices.

Recently, composition of mashup applications for multiple mobile devices has
become a challenging research topic in Web engineering. Many mashup approaches
target to support multiple mobile devices. However, the objectives and characteristics of
our research differ from existing approaches. The existing approaches mainly focus on
user-interface integration of Web resources, or utilize multiple device mashups for
usability purposes. In this research, we focus on the composition of mashup applications
that can enable cooperation among multiple mobile devices. We want to achieve data
sharing among devices, and process that shared data to produce a cooperative mashup
result. In our view, multiple mobile devices can participate in the same mashup
application if they share their context information with other devices. This shared
information from the participating devices can be collected and integrated with
additional mashup components. In this way, the output applications from our mashup
approach are able to address the collaborative user’s requirements.

 To clarify the characteristics and benefits of mashup composition for the
cooperation of mobile devices, let us consider one sample scenario, called “meeting
point”, illustrated in Figure 1.

10

Figure 1. Multiple Devices Mashup Scenario

3.1 Multiple Device Mashup Scenario and Analysis

3.1.1 Meeting Point Scenario
Suppose that there are four tourists traveling in Japan. They are separately visiting four
different places in Tokyo. The travelers want to meet and have dinner together but they
are now in different locations. They want to meet at the best-ranked restaurant located
near the train station that is closest to the center point among them.

 In case of a single traveler, he/she can use mashup technologies to create a mobile
mashup application that combines their current location with a Web service to find a
restaurant around their locations. The restaurant information, usually written in
Japanese, can be translated to a specific language through mashup process with an
additional Web service. However, finding a meeting point between four persons is
challenging and requires the cooperation of four devices.

 To address this problem by using mashup composition, the mashup application
first needs to collect the current locations from each traveler’s devices, and use them to
compute the coordinates that constitute the center point between all four travelers.
These coordinates are then used as input to find the nearest train station by querying
Google Places Web service APIs. After obtaining the train station data, the best-ranked
restaurant near a particular station can be discovered using the Gourmet Navigator APIs.
Through this process, the restaurant that will serve as their meeting point is determined.
Finally, the meeting point, the restaurant’s location and additional information is shared
among the four travelers. This kind of mashup composition is intended to be flexible. It
can be extended and reused by connecting to various available Web service APIs. For

11

example, the restaurant information can be translated into a specific language using a
translation Web service. Or, instead of finding a restaurant, we can easily apply this
mashup composition to find the best hotels or car rental services by integrating with
other Web services.

3.1.2 Analysis
Based on the meeting point scenario and other related scenarios, we define a number of
characteristics of a mashup composition that our approach should fulfill. These are
listed in Table 1.

Characteristics Our approach

Integration target Data integration

Cooperative level Data and mashup results

Scope of component integration Mobile applications and Web services

Mashup composition Flow-based and Event-based
Table 1. Characteristic of our approach.

Integration Target. Recently, several mashup composition platforms for multiple
mobile devices have been proposed. The existing approaches focus on different
integration levels. For example, some approaches use multiple mobile devices for
displaying a mashup result to users while some others aim for user interface integration
[30]. To make the best use of a mobile device’s capabilities, our approach targets the
integration of data; we aim to promote data integration. The device-specific data from
multiple mobile devices, such as locations from GPS sensors or photos from cameras,
can be used as input for other mashup components, and the output from one component
can be used as an input to additional components.

Cooperative Level. Our approach focuses on data cooperation and the sharing of
mashup results. The participating devices have two responsibilities: sharing information
and consuming the shared mashup result. Each device contributes to the cooperative
mashup by sending their shared data upon request. When the mashup result is ready,
they all receive the same mashup output.

Scope of Component Integration. Our approach targets the integration of mobile
applications and Web services. By using mobile applications as mashup components,
we can access various kinds of reusable functionalities that are available from installed
mobile applications. For example, a barcode-scanning application can be used as a
mashup component that scans barcodes by taking photos and returns the barcode
number as text. In addition, using mobile applications as mashup components simplifies
the usage of system functions. For example, in order to obtain the current location, we
have to deal with the location service API of the mobile operating system. However,
existing mobile applications are providing more simple mechanisms to retrieve the
current location via their application interface, i.e. using inter-application integration
features. Similarly, huge numbers of available Web services provide access to various

12

kinds of reusable functionalities. As a result, we believe that using mobile applications
and Web services as mashup components enables our mashup composition to cover
many areas of the user’s requirements.

Mashup Composition. We design our approach to support two different mashup
composition paradigms: data-flow composition and event-driven composition. These
two composition paradigms provide different advantages, and each are suited for
solving different problems. Creating data-flow mashup is simple and consumes few
resources. This makes it suitable for the composition of data-driven mashup
applications. In contrast, event-driven mashup composition can represent more complex
mashup scenarios with better stability, but it requires more effort and consumes more
resources. Thus, we believe that allowing mashup compositions of both paradigms
expands the expressiveness and improves the efficiency of mashup composition.

3.2 Constraints of Mashup Composition on Mobile
Devices
The conventional mashup applications for mobile devices are composed as Web
applications and delivered to users via a mobile Web browser. The major disadvantage
is that it tends to make less use of device-specific features. More advanced approaches
develop mashup applications using the device’s native programming language in order
to overcome the limitations of Web-based applications. However, developing a mashup
as a native mobile application has many constraints when compare to developing one
for a desktop environment. First, each manufacturer of mobile devices tends to use a
different operating system, which makes the mashup applications platform-incompatible.
Second, there is the limitation of the mobile platform, which has less bandwidth, less
memory and CPU performance, restricted user interaction, and limited battery life.
Therefore, composing mashup applications for mobile devices is very challenging.

In this section, the constraints related to enabling mashup composition for
multiple mobile devices are presented. The study and evaluation of current mobile
technologies helps us discover the solutions for composing mashup applications that
employ cooperation between multiple devices.

Based on the characteristics of our mashup composition that we defined above,
there are technological constrains that we need to take into account for our approach.
Each characteristic contains challenges that we have to overcome. In particular, to
expand the scope of integration, we have to deal with heterogeneous mashup
components. To allow multiple devices to cooperate, the communication channel and
the connection topology should be carefully selected. To turn general mobile
applications into mashup components, the inter-application communication protocol
should be studied. Finally, to enable event-driven mashup composition, an effective
method to handle generic notifications in mobile device should be determined.

13

Scope of the Integration of mashup components. To extend the expressiveness of our
mashup composition, the scope is set to the integration of mobile application and Web
resources. Integration of heterogeneous mashup components requires a flexible
component integration model. In our previous work [31], we have accomplished the
integration of existing mobile applications, open source Web services and typical Web
applications. Consequently, this research adapts state of the art models to deal with
heterogeneous component integration. However, our previous works revolved around
flow-based mashup composition for single-device usage. Tethering capability for
multiple devices was also developed, however it was designed for cross-platform
compatibility. Thus, this research uses this existing model as a baseline to maintain the
scope of integration, and extends it to support mashup composition for multiple mobile
devices.

Device connectivity. Mashup composition for multiple mobile devices requires a stable
communication channel and a proper connection topology. We choose to implement the
connectivity between devices in the mashup composition by using a client-server
architecture. Since client-server is an architecture that partitions tasks or workloads
between the server device and client device [32], our approach applies this model in
order to allow cooperation of capable and less capable mobile devices.

 Mobile devices are available in various specifications. Many devices are
embedded with powerful processing units and rich with built-in sensors. In contrast,
some devices are built with limited resources. Our design aims to distribute the
resource-consuming tasks to the most capable devices, while the less powerful devices
take care of less resource-consuming tasks. For example, let us consider a mashup of
three mobile devices. The first is a device with an Internet connection, while the second
and third devices have no Internet connection. In general, the execution of mashup
applications requires an Internet connection for invoking additional Web resources.
Hence, the second and third devices cannot execute a mashup application by themselves.
However, by connecting them in a client-server fashion, the second and third devices
can send their device-specific information to the first device, which performs some
mashup process and sends the result back to both client devices.

 Beside the selection of topology, the communication channel is also an important
design consideration. There are many communication technologies (i.e., Bluetooth,
NFC and Wi-Fi) that are capable of connecting mobile devices. However, some
technologies require special hardware or complex configurations. Since most mobile
devices are capable of browsing the Web via a mobile Web browser, our approach
selects the HTTP protocol as the communication channel. To enable HTTP connections
among devices in a client-server architecture, the server device requires Web server
functionality. The Web server on mobile devices is suitable for multi-device mashups
because it can host Web services to facilitate data sharing and communication among
devices. Also, static Web pages can be used for sharing the mashup result. We found
that there are several Web server modules available as ordinary mobile applications, i.e.
i-Jetty [33] for Android. However, mobile Web servers are unavailable for some mobile

14

platforms, particularly iOS. Therefore, in this research we use Android as the first
experimental platform for the server device. For the clients, we aim to support both
Android and iOS devices to experiment with cross-platform compatibility and minimize
the constraints of the client devices.

Application integration. In mobile mashups, mobile applications are used as important
mashup components because they can act as a gateway to the reuse of the capabilities of
mobile devices. Turning a general mobile application into a reusable mashup
component requires a mechanism that exposes those shared functionalities. The
standard method to achieve this goal is using inter-application communication.

 Advanced mobile platforms have implemented inter-application communication
into their operating systems. For example, Android uses Intent [34] while iOS uses URL
scheme [35] as the standard inter-application communication protocol. However, the
capabilities of these integration methods are different in each platform.
Table 2 shows a comparison of inter-application communication for Android and iOS. It
can be concluded that URL scheme has limitations compared to Intent. However, iOS is
currently extending the application integration logic. We found that there is a
specification called “x-callback-url” [36] that provides a standard for iOS developers to
share functionality among applications. By using x-callback-url, a source application
can launch other applications by passing data and providing parameters. The target
application can return data after execution is completed. However, there are only a
limited number of applications that are currently conforming to x-callback-url. In the
Android platform, Intent is a powerful integration protocol that helps turning an
ordinary mobile application into a mashup component. Our previous works have shown
that mobile mashups can benefit from the integration of Intent-supported mobile
applications. In addition, recently, there have been many Android mobile applications
supporting the Intent protocol, and are therefore usable as mashup components. Thus,
we set the scope of integration for our approach to Intent-supported mobile applications
on Android devices, as well as applications that conform to the x-callback-url
specification on the iOS platform.

Features URL Scheme x-callback-url Intent
Availability iOS, Android iOS Android
Invocation Yes Yes Yes
Input parameters Yes Yes Yes
Output parameters No Yes Yes
Parameter type Text Text Text, Number, Binary
Broadcasting No No Yes
Run as service No No Yes

Table 2. Inter-app communication protocol comparison.

15

Event listening. The objectives of our approach are different from traditional event-
driven mashup compositions. We aim to handle general events that happen across the
mobile device, and not just a specific domain or pre-defined events. Therefore, another
challenge of our mashup composition is dealing with events produced by multiple
sources.

In general, events in mobile devices are one of two types: system events or mobile
application events. System events are events that are created by the mobile operating
system to notify other processes about a change in their state. A list of example system
events is shown in

Table 3. Capturing system events may require different protocols and
programming models. For example, system events, such as a change in the user’s
location, can be detected through platform APIs. In contrast, notifications concerning
the battery status, incoming calls and whether the device is “charging” or not are sent
through a “broadcast intent” [37]. Additionally, mobile application events are events
that are created by an installed mobile application to notify the user or other
applications. These kinds of events usually notify the user or other applications via the
standard notification channel of the mobile operating system, e.g. the Notification
Center in case of Android. For example, incoming email, missed calls or SMS
notifications can be detected using the Notification Center. Mobile application events
that are produced by custom protocols, however, are out of our scope. In this way, we
can create a variety of mashup applications and cover various domains of a user’s
requirements using system events and standard mobile application events in mashup
composition. There are other types of events that we consider out of scope: primarily
user interface events that happen when a user interacts with the system or a particular
mobile application.

System Event Description
AIRPLANE_MODE_CHANGED The user has switched the phone into or out of

Airplane Mode.
ANSWER Handle an incoming phone call.
BATTERY_LOW Indicates low battery condition on the device.
BATTERY_OKAY Indicates the battery is now okay after being low.
BOOT_COMPLETED This is broadcast once, after the system has finished

booting.
CALL Perform a call to someone specified by the data.
CAMERA_BUTTON The "Camera Button" was pressed.
DATE_CHANGED The date has changed.
DIAL Dial a number as specified by the data.
DOCK_EVENT A sticky broadcast for changes in the physical

docking state of the device.
DREAMING_STARTED Sent after the system starts dreaming.
HEADSET_PLUG Wired Headset plugged in or unplugged.

16

INPUT_METHOD_CHANGED An input method has been changed.
LOCALE_CHANGED The current device's locale has changed.
MEDIA_REMOVED External media has been removed.
POWER_CONNECTED External power has been connected to the device.
POWER_DISCONNECTED External power has been removed from the device.
SHUTDOWN Device is shutting down.
TIMEZONE_CHANGED The time zone has changed.
TIME_CHANGED The time was set.
TIME_TICK The current time has changed.

Table 3. Android's system events.

Based on the discussion on the constraints of mashup composition on mobile
devices above, this research selects Android as our first experimental platform for
mashup composition across multiple mobile devices. Table 4 shows a summary of the
scope for our mashup composition approach.

Constraints Explanation
Required components Pre-installed software component for client devices and

mobile a Web server for server devices
Communication style HTTP request/response on a client-server architecture
Platform constraints Android for servers and Android or iOS for clients
Mashup component Mobile applications and Web services
Component restrictions Intent or x-call-back-url supported mobile applications and

REST Web services returning JSON or XML
Integration patterns Data-flow and event-driven
Event sources System events and mobile application events
Event restrictions Intent broadcasting and notification center
Cooperative level Data cooperation

Table 4. Scope of our approach.

17

Chapter 4

Data-Flow Composition for Multiple
Devices

Mashup technology is initiated by the integration of Web resources, so called Web
mashups. To integrate functionalities of mashup components, mashup approaches use
composition patterns to capture frequently occurring programming logic. Most existing
mashup approaches are using a data-flow (flow-based) style as a major composition
pattern as it can represent programming logic in terms of data-flow [38]. This chapter
proposes a mashup approach for composition of data-flow applications for multiple
mobile devices. We use a description-based approach for the integration of mobile
applications, Web services, and Web applications in order to realize cooperation of
mobile devices. A description language called C-MAIDL is designed for describing the
configuration of mashup components and the dataflow of component compositions. To
reduce development costs, the description language is used as an input for a mashup
generator intended for generating mashup applications. Finally, we demonstrate that our
approach allows users to create mobile mashup applications dealing with cooperation of
devices easily and efficiently.

4.1 Single Devices Mashup Composition
In general, data-flow mashup composition is based on the data-flow programming
paradigm [38]. The mashup program is defined by the connection of mashup
components. Mashup components are connected as a directed graph and communicate
via message passing.

 Figure 2 shows a simple scenario for a data-flow mashup application that is
running on a mobile device. Pictured is a mobile mashup application that scans a
barcode of a product, and then searches for product information on online stores. The
mashup then translates the product information into a specific language and shares the
translated information on Twitter and Facebook. With flow-based mashup composition,
the first mashup component, i.e. the barcode scanning application, takes a photo of a
barcode and converts it to a barcode number and sends this as an input to the next
component. The next component is a product search Web service that takes the barcode
as an input to query the product information. Then, the product information is translated

18

into a specific language by a translation Web service component. Finally, the translated
text will be used as input for Twitter and Facebook applications to create a post on
either social network. For a single-device mashup scenario, we realize that the data-flow
composition pattern is simple and efficient for a data-driven mobile mashup. Therefore,
we extend our ideas by adapting data-flow mashup composition on single devices for
use with multiple devices. In other words, our approach aims to allow integration of
cooperative data from multiple mobile devices with other mashup components in a data-
flow driven manner.

Figure 2. A simple data-flow mashup component integration

4.2 Enabling Cooperation of Mobile Devices
To achieve the goal of a cooperative mashup for mobile devices, we first design the
device cooperation model that facilitates the cooperative process among devices, as
shown in Figure 3. Our approach uses a client-server architecture to enable cooperation
of devices. The participating devices are categorized into one of two roles: a host device
(server) and guest devices (clients). The execution of a mashup application requires that
a single host device cooperates with one or more guest devices. The guest device is
responsible for providing shared information for the execution of the mashup
application, while the host device takes care of gathering shared information from each
client device and uses the collected information in the mashup process. The mashup
process is executed on the host device by integrating the collected information from
participating devices with additional mashup components to produce the mashup result.
When the mashup result is ready, guest and host devices synchronize and share the
result. The cooperation center and a cooperation agent work together to establish a
connection between the host and guest devices, and accommodate data sharing among
them. This operation involves the interaction between two or more devices. Thus, the

19

synchronization of requests and responses is an important design consideration. In
addition, privacy and permission control must be included in the cooperative process.
Based on these requirements, we design the needed steps for cooperation and group
them into three distinct phases: initiation, execution and publication. Figure 4 illustrates
the coordination phases and the tasks they contain.

Figure 3. Multiple devices cooperation model

Figure 4. Cooperation phases.

Initiation Phase

The initiation phase consists of following 4 sequential tasks.

i. Mashup creation. To start a mashup using cooperation of mobile devices, a
cooperative mashup workspace will be created on the host device. The mashup
workspace contains a mashup application identifier, a list of guest devices, and a
mashup output identifier. This information makes the mashup application unique
and allows multiple mashup applications to run on the same host device.

Initiation	
• Mashup Creation	
• Guest Invitation	
• Guest Validation	

Execution	
• Data Gathering	
• Resume Execution	
• Output Processing	

Publication	
• Result Sharing	
• Mashup Finalization	

20

ii. Guest invitation. Before starting the mashup process, the host device selects
guest devices that will join the created mashup application. Prospective guests
can be selected from a list of email addresses or phone numbers available in the
host’s contact list. After the list of guests is finalized, the host device sends
invitation messages to each selected guest and waits for responses.

iii. Guest validation. Guest devices can either accept or decline to join the mashup.
In case of acceptance, a guest device sends a reply message to notify the host
that this particular guest is ready to join the mashup. Alternatively, if a guest
declines or does not respond to the invitation, the host device can remove that
guest from the participation list and continue listening.

iv. Mashup execution. The above invitation processes help our system manage and
track availability of guest devices. Once the participation list is completed, the
mashup application is started.

 To provider a better understanding on the initiation phase, the sequence diagram
in Figure 5 shows the step-by-step interaction between a host and a guest (sequence
number 1-8).

Figure 5. Sequence Diagram of the Initiation Phase

Execution Phase

The execution phase consists of the following 3 sequential tasks.

i. Data gathering. During mashup execution, data from guest devices may be
required. The host device will send messages to each guest device with a request
for data cooperation. The host device then waits for replies. Once the message
arrives at a guest device, the user of the guest device will get a notification about

21

a pending request for data cooperation. If the user chooses to accept the request,
the guest device sends the requested information back to the host device.

ii. Resume execution. When all requested data has returned from the guest devices,
the host device resumes execution of the mashup process. The collected data is
integrated with additional mashup components. However, the host device may go
back to the information gathering process and resume the mashup execution later
in case other data cooperation is needed.

iii. Output processing. After all mashup logic has been executed, the host arranges
the result and shares it among the participating devices.

 The sequence diagram in Figure 6 explains the detailed steps of the execution
phase (sequence number 9-13).

Figure 6. Sequence Diagrams of the Execution and Publication Phases

Publication Phase

The publication phase consists of the following two sequential tasks.

i. Result sharing. The users of host devices will get notifications about the status of
the mashup result. When the result is ready, the user can start sharing the result
by sending messages to inform all participating devices. The notification
messages include the location of the mashup output and authentication
information. The guest devices then extract the required information from the
received message and browse to the mashup result.

ii. Mashup finalization. Finally, after all cooperative tasks are finished, the host
device terminates the mashup application and releases resources to the system.

22

The sequence diagram in Figure 6 (sequence number 14-16) shows the steps
included in the publication phase.

4.2.1 Mashup Execution Environment
To achieve a mashup for cooperation of multiple devices, the participating devices
require the capability to communicate with each other in order to exchange information.
We develop a mashup execution environment to automate these tasks. Our mashup
execution environment allows the devices to exchange information by using custom
mobile applications called cooperation agents and cooperation centers.

In our mashup execution environment, we have categorized the participating
devices into two types: the guest device (guest) and the host device (host). The guest
device is a mobile device that provides information to be used in mashup applications.
The host device is a mobile device which executes mashup applications by using
information from the guest devices. The cooperation agent and cooperation center work
together to enable information sharing between guests and a host. The cooperation agent
will be installed on the guest devices to extract device-specific information required by
the mashup process. The cooperation center will be installed on the host device to
collect required information from guests. An overview of our mashup execution
environment is shown in Figure 7.

Figure 7. Architecture of mashup execution environment.

Within the mashup execution environment, mobile applications on guest devices
can be integrated into mashup. When a mashup application needs information from
guest devices, it will interact with the cooperation center. The cooperation center
provides programming interfaces for sending request messages to all guests. When a
request has arrived at a guest device, the cooperation agent will invoke a mobile
application corresponding to the request. For example, if a request for barcode scanning

3.3 Mashup Execution Environment

To achieve mashup for cooperation of devices, participating devices need a capability
to communicate with
use a mashup execution environment to automate this task. Our
environment allows the
applications called Cooperation Agent

In our mashup execution environment, w
devices into two types which are
guest device is a mobile device which provide
mashup applications.
applications by using information from
Cooperation Center will work together to enable information sharing between guest
and a host. The Cooperation A
device’s information for
device to collect required information from guests.
execution environment is shown in Figure 3.

With our mashup execution
devices can be integrated in
from guest devices, it will interact with the Cooperation Center
Center provides programming interfaces for
When a request has arrived
mobile application which corresponds to the request. The target mobil
can be specified by using
file. For example, a request for
device will be executed
device received all response messages, it starts integrating
with other mashup component

Figure

Execution Environment

To achieve mashup for cooperation of devices, participating devices need a capability
to communicate with each others for exchanging mashup required information. We

execution environment to automate this task. Our mashup
the devices to exchange information by using custom

Cooperation Agent and Cooperation Center.
mashup execution environment, we have categorized the participating

devices into two types which are Guest Device (Guest) and Host Device (Host)
mobile device which provides device’s information to be used

. The host device is a mobile device which executes mashup
applications by using information from the guest devices. The Cooperation A
Cooperation Center will work together to enable information sharing between guest

Cooperation Agent will be installed on the guest devices to
device’s information for mashup. The Cooperation Center will be installed on the host

collect required information from guests. Overview of our mashup
execution environment is shown in Figure 3.

With our mashup execution environment, mobile applications on guest
devices can be integrated into mashup. When a mashup application needs information
from guest devices, it will interact with the Cooperation Center. The Cooperation
Center provides programming interfaces for sending request messages to all guests.

has arrived to a guest device, the Cooperation Agent will
which corresponds to the request. The target mobile application

can be specified by using the Cooperation Component in the C-MAIDL description
request for barcode scanning, a barcode application on guest

device will be executed to return the scanned code to the host device. When the host
all response messages, it starts integrating the received information

with other mashup components according to the mashup description.

Figure 3. Overview of Mashup Execution Environment

To achieve mashup for cooperation of devices, participating devices need a capability
for exchanging mashup required information. We

mashup execution
custom mobile

participating
(Host). The

device’s information to be used in
ost device is a mobile device which executes mashup

he Cooperation Agent and
Cooperation Center will work together to enable information sharing between guests

devices to provide
installed on the host

Overview of our mashup

mobile applications on guest
information

The Cooperation
request messages to all guests.

gent will invoke a
e application

MAIDL description
e application on guest

return the scanned code to the host device. When the host
information

23

is received, a barcode application on the guest device will be executed to return the
scanned code to the host device. When the host device has received all response
messages, it starts integrating the received information with other mashup components
according to the mashup logic.

Cooperation Messaging. An important mechanism that enables the cooperation of
mobile devices is related to sending and receiving information among devices. An
efficient messaging system must be taken into careful consideration. Our approach
proposes a messaging system for exchanging cooperative information between mobile
devices. In our experiments, we use two different mobile platforms to develop an
efficient messaging system. Google’s Android device is implemented as the host device
while iOS devices are implemented as guest devices. The Android device is selected to
be the host device as it has a flexible mobile operating system. Use of special purpose
modules is possible, i.e., the mobile Web server. We apply functionalities of the i-Jetty
mobile Web server in our messaging system. It is used as a container of Web service
APIs that accommodate the communication between different mobile platforms.
RESTful Web services and the JSON data format are adapted for better execution
performance in a mobile environment [39].

Figure 8 Overview of the architecture for cooperation messaging.

 During implementation of the messaging system that targets both Android and iOS
devices, we found that there is an important limitation inherent to the iOS platform. iOS
does not allow a custom mobile application to run as a background process. Due to this
limitation, the capability of communication software listening to incoming requests is

24

limited. Our messaging system applies different techniques for request and response
activities to overcome this limitation. The overview of the architecture for our
cooperation messaging system is shown in Figure 8.

Request Message. For collecting cooperative information from guest devices, the
cooperation center on the host device creates and sends request messages to all guest
devices. The messages will be sent via a standard messaging protocol such as SMS or
Email. The cooperation agent on guest devices will receive the messages and reply with
the requested information. However, due to iOS limitations, the cooperation agent has
to be activated in order to reply to request messages from the host device. To activate
the cooperation agent, we use a technique called URL Scheme Mapping. A custom URL
scheme can be registered to the iOS device for invoking a particular mobile application.
When a user touches a custom URL that is already registered, the corresponding
application is brought to active context of the iOS device. In our design, the messages
sent to guests include a registered URL Scheme (cma://) and additional parameters.
Users of guest devices can invoke the cooperation agent by touching the URL in the
received messages. Subsequently, the cooperation agent is brought up and extracts part
of the query string in the URL to determine which information is requested. The user
interface of the cooperation agent will ask for confirmation before replying to the
request. An example of a request URL is shown in Figure 9-A. The parameters of the
request message are presented in Table 5.

A. An example of a Request for a Location (URL Scheme)

B. An example of a Location Response (HTTP)

Figure 9. Examples of request/response messages.

Response Message. In order to return requested data to the host device, the cooperation
agent determines the required resources by extracting parameters from the URL in the
received message. When the URL is decoded, the cooperation agent invokes the target
mobile application and acquires the requested information. For example, given a request
for barcode scanning, the cooperation agent invokes a barcode scanner application and
obtains the result after the user has finished scanning. For an iOS device, we use x-
callback-url to enable integration of existing mobile applications. The x-callback-url is
a specification that aims to standardize inter-application communication. However, only
very few iOS applications currently support the x-callback-url specification. Therefore,
we develop testing applications that conform to the x-callback-url specification to
demonstrate how to enable inter-application integration on the iOS platform. To send
data back to the host device, the cooperation agent builds a reply HTTP request by
adapting the original requested URL, and submits it to the Web service APIs on the host
device. The Web service APIs on the host device are implemented using Java Servlets

cma://host/cooperation/request?mid=cm001&gid=cma@me.com&cmd=gps&lat=[lat]&lng=
[lng]	

http://host/cooperation/request?mid=cm001&gid=cma@me.com&cmd=gps&lat=36.1551&
lng=157.2253	

25

on the i-Jetty mobile Web server. An example of a response URL is shown in Figure 9-
B. The following table shows the composition pattern and parameters of the request
message used in the cooperation messaging system.

Parameter Description
cma Registered URL scheme
host Host device IP Address
spath Host Service API path
message Message name (e.g. invite, request or output)
mid Mashup ID
gid Guest ID
cmd Request data (e.g. gps, barcode or rsvp)
params Other request parameters

Table 5. Parameters of request message.

 The following figure (Figure 10) shows a sample of cooperation messages that are
sent to guest devices to request for barcode scanning and another message that requests
a user’s location. As shown, the messages can be sent to guest devices using SMS and
email messages.

Figure 10. Screenshots of cooperation messages.

cma://<host>/<spath>/<message>?<mid>=<mashupid>&<gid>=<guestid>&<cmd>=<command>&[params=<params>]	

26

4.3 C-MAIDL
C-MAIDL is an XML-based description language, designed for describing the data-flow
of mashup applications. It provides ways to describe the configuration of mashup
components and the data-flow of component integration. The components can be
configured with a set of parameters and connected as a workflow according to the logic
of mashup composers. The output of components is shared with the others through a
publisher-subscriber model. Results from the components in the upper hierarchical
order can be used as input for the lower ordered components. Finally, the composers
configure the output component and export the abstracted model as a C-MAIDL
description file.

An outline of a C-MAIDL XML description file

<project>

 <name> <!--[project name]--> </name>

 <component>

 <name> <!--[component name]--> </name>

 <role>

 <!--[role] tag, use one or both of <publisher><subscriber>-->

 <!--example:<publisher id=002 /><subscriber id=001 />-->

 </role>

 <execution> <!--[single] or [multiple]--> </execution>

 <!--[component configuration] tag chosen from-->

 <!--<mobileapplication><webapplication><webservice><arithmetic>-->

 </component>

 <!-- more components -->

 <output>

 <!--[output configuration] tag chosen from-->

 <!--<mobileapplication><webapplication><webservice>-->

 </output>

</project>

 C-MAIDL is an extension of our proposed mashup description language MAIDL.
The general concept of MAIDL is to provide data flows between mashup components
for their execution and output. MAIDL can be used to describe the composition of the
following components: the Web Application Component (WA), the Web Service
Component (WS), the Mobile Application Component (MA) and the Arithmetic
Component (AR). By configuring these components, the mashup composer can extract
parts of Web pages, invoke Web services for results, call existing mobile applications
and perform arithmetic operations between outputs of components. However, MAIDL
does not support the description of data cooperation among multiple devices. Manual
programming efforts are required to create cooperative mashup applications. Therefore,
we extend C-MAIDL from MAIDL to support cooperative tasks by adding new
components to the existing language definition. Additional mashup components, the
Cooperation Component and the Output Component, are added to expand the
expressiveness. Thus, C-MAIDL mashup components consist of the following.

27

Web Application Component (WA). Web applications are applicable for integration. This
component is used for extracting a part of a Web page or executing queries via an
HTML form. Mashup composers are provided with a Web extraction assistant tool [40]
to indicate the required information on a Web page. The description of this component
will be generated as JavaScript code and executed in the runtime environment on a
mobile device. Figure 11 shows the configuration process of the Web application
component.

Figure 11. Web extraction process of MAIDL.

Example of Web application component configurations for reusing product search on
Amazon.com

<webapplication>

 <mode>active</mode>

 <url>http://www.amazon.com/?ie=UTF8&force-full-site=1</url>

 <inputs>

 <input>

 <input-name>ISBNSearch</input-name>

 <source>null</source>

 <parent>

 <node>table</node>

 <nodeindex>6</nodeindex>

 <id>subDropdownTable</id>

 </parent>

 <child>

 <node>input</node>

 <childindex>0</childindex>

 <id>twotabsearchtextbox</id>

 <name>field-keywords</name>

 <nameindex>0</nameindex>

 <classname>searchSelect</classname>

 <classindex>1</classindex>

 <value>input.ISBN,submit</value>

3.5 MAIDL Mashup Components 17

<filter>split:(;index:0;</filter>
</result>

</results>
</webapplication>

Figure 3.3 Step to extract control tags for WA components.

From Fig. 3.3, a Web extraction tool calledWXTractor is developed as a Web
browser’s extension [78]. JavaScript code is injected into the Web page when the tool is
started and allows mouse-over and mouse-click interaction for element selections. When
composers select an element, the WXTractor pane will show the element’s properties
as described in the following examples and in Table 3.7. The Code Gen module uses
these properties to generate JavaScript code for the mashup execution.

A Web application that runs in active (foreground) mode will switch the display
to a JavaScript-injected WebView. The component, with only results tag config-
ured, runs in passive (background) mode where JavaScript-based extractions in the
execution are substituted with HTML parser-based extractions.

Due to the absence of getElementsByClassName method in some version of WebKit-
based mobile browsers and WebView API [79], we designed the extraction algorithm
based on a node order and the getElementsByTagName method applied to the node and
its parent node of the selected element. Since the page rendered in desktop and mobile
Web browser are di↵erent, we designed the algorithm to match neighboring nodes in the
node index range of ± 10. In addition, the algorithm also matches id, name and class
name attributes when they are available. Fig. 3.4 describes the extraction algorithm
used in the Web application component.

28

 </child>

 </input>

 </inputs>

 <results>...</results>

</webapplication>

Web Service Component (WS). This component is used for consuming a RESTful Web
service by specifying a URL and query expressions (such as XPath or JSON). The target
Web service will be invoked, and a result is returned. We can use the full data or extract
a part of it as output.

Example of a Web service component description for currency conversion using an
Exchangerate API.

<webservice>

 <base>http://www.exchangerate-api.com/</base>

 <paths>

 <path>usd</path>

 <path>jpy</path>

 <path>publisher.results.ProductPrice</path>

 </paths>

 <fields> <field>k</field> </fields>

 <values>

 <value>PQkn3-quzTZ-PNDav</value>

 </values>

 <results>

 <result>

 <result-name>YenPrice</result-name>

 <type>single</type>

 <format>SELF</format>

 <query>null</query>

 <index>null</index>

 <filter>null</filter>

 </result>

 </results>

</webservice>

Mobile Application Component (MA). A mobile application can be described by using this
component description. It allows an application that implements the Intent and Service
messaging protocols to work as a mashup component. The Intent Filter and additional
parameters are required for the configuration of this component.

Example of a Mobile Application component description for calling the Zxing Barcode Scanner
App.

<mobileapplication>

 <mode>active</mode>

 <intent>

 <intent-name>com.google.zxing.client.android.SCAN</intent-name>

 <intent-extra>

29

 <extra-name>SCAN_MODE</extra-name>

 <datatype>string</datatype>

 <extras>

 <extra>BAR_CODE_MODE</extra>

 <extra>...</extra>

 </extras>

 </intent-extra>

 </intent>

 <results>

 <result>

 <result-name>ScanResult</result-name>

 <type>single</type>

 <datatype>string</datatype>

 <value>SCAN_RESULT</value>

 <filter>null</filter>

</result>

 <result>...</result>

 </results>

</mobileapplication>

Arithmetic Component (AR). This component provides pre-defined mathematical
operations between the results from one or more components. The operation includes
addition, subtraction, division, multiplication, summation, comparison, and GPS
distance calculation.

Example of an Arithmetic component description for adding a number to an output parameter
from another component.

<arithmetic>

 <execution>single</execution>

 <operation>add</operation>

 <inputs>

 <input>pulisher.results.YenPrice</input>

 <input>1050</input>

 </inputs>

 <results>

 <result>

 <result-name>TotalPrice</result-name>

 <type>single</type>

 <datatype>number</datatype>

 <value>arithmetic.calculation</value>

 <filter>null</filter>

 </result>

 </results>

</arithmetic>

Cooperation Component (CC). This component will be used for cooperation between
multiple devices. Required information from participating devices can be described in
this component. The description of this component will be converted to code for

30

communicating with the mashup execution environment to exchange information with
other devices.

Example of a Cooperation component description for requesting a barcode scan from
participating devices.

<cooperation>

 <mobileapplication>

 <app-name>bcapp://x-callback-url/scan?</app-name>

 <app-params>

 <param-name>formats</param-name>

 <values>

 <value>EAN13,EAN8,UPCE,QR</value>

 </values>

 <param-name>success</param-name>

 <values>

 <value>scanresult</value>

 </values>

 <param-name>error</param-name>

 <values>

 <value>error</value>

 </values>

 </app-params>

 <mobileapplication>

 <results>

 <result>

 <result-name>scannedcode</result-name>

 <type>single</type>

 <value>code</value>

 <filter>null</filter>

 </result>

 </results>

</cooperation>

Output Component (OC). The output of a mashup application can be defined with this
component. Mashup composers can choose to show the mashup result as pins on the
map view or to display it as a Web page in the Web view.

<output>

 <cooperation>

 <output-type>web</output-type>

 <output-params>

 <title>Shopping Compare Coordination Mashup Result</title>

 <table border=2>

 <tr>

 <td colspan=2>Guest</td>

 <td>cooperation.GuestID</td>

 </tr>

 <tr>

 <td colspan=2>Title</td>

 <td>publisher[003].results.ProductName</td>

31

 </tr>

 <tr>

 <td>Store</td>

 <td>publisher[003].results.StoreName</td>

 <td>Link</td>

 <td>publisher[003].results.StoreURL</td>

 </tr>

 <tr>

 <td>Price(Yen)</td>

 <td>publisher[004].results.YenPrice</td>

 <td>Price(USD)</td>

 <td>publisher[003].results.Price</td>

 </tr>

 </table>

 </output-params>

 </cooperation>

</output>

To illustrate C-MAIDL, examples of the Cooperation Component and Web Service
Component are shown in Figure 12.

Figure 12. Examples of a C-MAIDL description.

 The Cooperation Component is configured as a publisher to provide data to other
components. A target mobile application and its launch parameters are specified to
activate barcode scanning on the participating devices. Output data from this
Cooperation Component is defined (in this case “scannedcode”) to later be referred by
the other components. The Web Service Component is configured as a subscriber and
publisher. As a subscriber, this Web Service Component uses the scanned barcodes
from the Cooperation Component as an input to a Web Service API. As a publisher, the
result from the Web service execution will be available to the other components.

<component>
<name>Barcode</name>
<role>

<publisher>
<publisher-id>001</publisher-id>

</publisher>
</role>
<execution>single</execution
<cooperation>

<mobileapplication>
<app-name>bcapp://x-callback-url/scan?</app-name>
<app-params>

<param-name>formats</param-name>
<values>

<value>EAN13,EAN8,UPCE,QR</value>
</values>
<param-name>success</param-name>
<values>

<value>scanresult</value>
</values>
<param-name>error</param-name>
<values>

<value>error</value>
</values>

</app-params>
<mobileapplication>
<results>

<result>
<result-name>scannedcode</result-name>
<type>single</type>
<value>code</value>
<filter>null</filter>

</result>
</results>

</cooperation>
</component>

<component>
<name>GoogleProduct</name>
<role>

<medium>
<subscriber-id>001</subscriber-id>
<publisher-id>002</publisher-id>

</medium>
</role>
<execution>single</execution>
<webservice>

<base>https://www.googleapis.com/</base>
<paths>

<path>shopping/v1/products/</path>
</paths>
<keys>

<key>key</key>
<key>country</key>
<key>q</key>

</keys>
<values>

<value>10d9098dba2f680sfws5b03b28940d</value>
<value>JP</value>
<value>publisher[001].results.scannedcode</value>

</values>
<format>JSON</format>
<results>

<result>
<result-name>ProductName</result-name>
<type>multiple</type>
<query>//title</query>

</result>
</results>

</webservice>
</component>

Cooperation Component Web Service Component

32

4.4 Mashup Construction Process
The mashup construction process is shown in Figure 13. To compose a mashup
application, a mashup composer creates an abstract model of the mashup by using C-
MAIDL to transform the abstract model into a mashup description. The description file
will be used as an input for the mashup generator to generate Java source code. This
generated code will be compiled into an application, which can be deployed on a target
device as an ordinary mobile application.

Figure 13. Mashup Construction Process.

 This tool takes a C-MAIDL description file as an input to generate a mobile
mashup application according to the mashup generator. First, the generator extracts the
description of a component from the C-MAIDL file, and then generates Java source
code corresponding to the specification. Next, all source code will be manually
compiled into an Android package file (.apk). The package file will then be manually
installed on the target device by using Android Debug Bridge (adb). Once the generated
mashup application is installed and invoked by a mashup user, the flow, which was
defined in the C-MAIDL description, will be executed. The connection between
participating devices will be established as soon as there is a need for cooperation
information. Our mashup execution environment automatically handles the mechanism
of requests and responses using pre-installed software components, cooperation agents
and the cooperation center.

4.5 Implementation
In order to demonstrate the capabilities of our mashup composition approach, we
implemented some sample mobile mashup scenarios. In this section, we present two
cooperation mashup scenarios, called Shopping Assistance and Meeting Point.

 To enable host functionalities, some software components are required. The
cooperation center and i-Jetty mobile Web server must be installed on the host device.
For guest devices, the cooperation agent must be installed to accommodate connectivity
among devices. In addition, to demonstrate mobile application integration on guest
devices, custom mobile applications (e.g. GPS Locator and Barcode Scanner) have been
installed on the guest devices.

Abstraction Compilation Execution

MA MA

WS

AR

CC

WS

OC

C-MAIDL
Description

File Mashup generator

Java codes

Application
Packaging

Mashup
Application

File

re
sponse response

re
quest

request

Cooperation

33

4.5.1 Cooperation Mashup Scenarios

Shopping Assistance: Camera and Data Integration Mashup. This sample scenario
simulates a shopping situation given three members of a family in a department store.
The goal of this mashup is to assist the family in comparing prices of products in a local
department store with online stores. It creates a list of selected products and some
additional information, such as the product title, prices and links. An Android device
works as the host device. Two iOS devices coordinate with the host as guests. The guest
devices will scan barcodes of selected products and send it to the host device. The host
device then executes the mashup by using the collected barcodes to get information of
selected products and creates the summary list. Finally, the list will be shared among
the three devices.

 The mashup model and screenshots of the mashup application are shown in Figure
14. In this mashup, a host device sends a request for a barcode to all guest devices. The
guest devices read the barcodes of selected products and submit it to the host device.
The barcode is given to Google’s Search API for Shopping [41] to find available online
stores and prices. The arithmetic component filters and extracts the lowest price. The
price is converted into the designed currency using the Exchange Rate API [42].
Selected products from each guest are processed and combined into a list. Finally, the
list of products and a comparison of prices is shared among all devices.

Figure 14. Mashup model and screenshots of Shopping Assistance.
*See Appendix A for the full description of C-MAIDL

Meeting Point: a Geo-location Mashup. This mashup scenario aims to find the best-
ranked restaurant located near the center point of participating devices. Coordinates of
three devices are used as input to find the center. The center point obtained from the
arithmetic calculation is used to find the nearest train station via the Google Places API
Web services. The Gourmet Navigator API is used to find the best restaurant that is
nearest to the selected train station. Finally, the details of the meeting point are shared
among all devices using map views. The mashup model and screenshots of the mashup
application are shown in Figure 15.

C
lie

n
t

1
C

lie
n

t
2

S
e

rv
e

r

Request for a
barcode

Invoke
a scanner app

Request for a
barcode

Send a scanned code

Start mashup Publish result

Share result

Share result

Invoke
a scanner app

Send a scanned code

1

2 3

2 3

4 5 6

7

7

[CC]
(Barcode)

[WS]
(GoogleProduct)

Shopping Assistance

product_info[n]

barcode[2]

[WS]
(ExchangeRate)

[AR]
(Filter)

lowest_price

Request
barcodes from
client devices

Get product
information

from barcodes

Filter for the
lowest price

Currency
conversion

[OC]
(WebView)

Show list of
selected
products

product_info[1],price

34

Figure 15. Mashup Model and Screenshots of Meeting Point
See Appendix A for the full description of C-MAIDL

4.5.2 Discussion

Performance of Mashup Execution. From the sample scenario, we found that the
major performance factors for the cooperation mashup application lie in the
consumption of Web resources and the idle time of the messaging system. By using
multiple Web resources in a mashup application, the host device has to create multiple
Internet connections to get the results. This task is resource consuming. For instance, in
the shopping assistance scenario, the primary workload of the host device is to query
the Google Products Web services. Another performance issue is related to cooperation
messaging. Since our system applies standard protocols (e.g. Mail and SMS) for
sending and receiving cooperation messages, the time it takes to send a message and for
a message to arrive is up to the server and network utilization at that moment.

Privacy Protection Trade-offs. Our approach provides a mechanism for privacy
protection. The confirmation dialogs of the cooperation agent allow users to verify
which information will be shared in the mashup. However, there is a trade-off between
mashup execution and privacy protection. When a user enables privacy protection,
his/her confirmation becomes a requirement for sharing information; consequently the
capability of automatic mashup execution will be disabled. User interaction is required
throughout the full process of the mashup.

Robustness of the Messaging System. In the cooperation messaging system, we
assumed that we can use global IP addresses to connect participating devices. The
guests and the host require an Internet connection to access Web resources and to
connect to each other. In some case, losing the network connection may interrupt the
mashup execution. Our messaging system, however, avoids failure by using an
asynchronous architecture. We use standard messaging systems, such as Email or SMS,

G
u

e
st

 1
G

u
e

st
 2

H
o

st

Request for
Location

Accept

Accept

Request for
Location

Submit
Location

Submit
Location

Start
Mashup

Publish
Result

Share Result

Share Result

View
Result

View
Result

1

2

2

3

3

4 5 6

7

7

8

8

[CC]
(Location)

[AR]
(MiddlePoint)

Meeting Point

mid_lat, mid_lng

[WS]
(GourNavi)

[WS]
(GooglePlace)

dest_lat, dest_lng

Request
location data
from guests

and host

Compute the
middle point

among 3
locations

Get the
location of

nearest train
station

Find the best
nearest

restaurant

[MA]
(GPSLocator)

lat, lng

[OC]
(MapView)

Show selected
resturant

35

in which host and guest devices wait for cooperation messages asynchronously. Users
will be notified about incoming messages via the notification features of the mobile
operating system. This allows the guest devices to temporarily disconnect from the
network after they have shared the required information. Later, guest devices will need
the network connection again when the mashup result is ready. However, some timeout
configuration should be implemented in case of a prolonged or permanent disconnection.

Reusability of the Mobile Application Component. The mobile application
component is an important mashup component in our mashup composition because it
contains a large number of reusable functions. However, using a mobile application as a
mashup component is still not efficient enough; namely, the design of the description
language is still very technology-dependent. In the current design of C-MAIDL, the
mashup description file contains a mobile application component section that describes
configurations of mobile applications. The configurations are designed for describing
Intent and Intent Filter configurations. In practice, mashup applications should not be
aware of a specific technology. To make our approach more extensible, the component
description should contain only shared functionalities of components and parameter
details in order to remove the dependency on specific technologies from the mashup
description.

Mashup Composition. The implementation of the sample scenario indicates that our
approach provides an efficient solution for a cooperative mobile mashup. However, our
approach is not designed to support an event-driven mashup where mashup components
are executed by events. In an event-driven mashup, guest devices may publish their
information to the host and update their data when an event is triggered. Host devices
have to be aware of changing cooperation information in order to update the mashup
result. For instance, our approach will request for locations from guests only once, but
in some cases, the participating devices may move to other locations. The host device
needs to trace the new locations to update the mashup results.

Scope of Integration. Our system is able to create mashup applications, which
integrate various types of mashup components. However, we found that some specific
types of resources cannot be included in our mashup composition, e.g., Java Applets,
Flash Objects, Web services that require authentication and especially mobile
applications that are not implemented using an application integration mechanism. In
general, a mobile application is created for a specific purpose. They may not provide the
mechanism to collaborate with other applications. Thus, these kinds of mobile
applications cannot be used in our system.

Mobile Platform Constraints. In this research, we implemented the functionality of
the host device on Android only. Since our messaging system uses Web services, the
target platform must be able to function as a Web server and Web services container.
We found that Android devices are suitable as host devices because of the availability
of several mobile Web server implementations. If there is a new mobile device platform
that can be used as a Web service container, it can function as a host device. For guest

36

devices, the participating devices have to install the cooperation agent that we have
provided for both Android and iOS platforms. We can expand coverage of mobile
platforms by customizing the cooperation agent software for additional mobile
operating systems.

Configuration of the Web Application Component. For the Web application
integration, our previous work applies a Web extraction engine [40] to extract
information from form-based Web applications and uses a wrapper to integrate this
information with other mashup components. However, the process and supporting tools
for turning a Web application into a mashup component are still not efficient enough.
Figure shows the process of extracting information from a Web application using the
WXtractor [6] tool. Recently, several powerful Web extraction platforms that provide
Web service interfaces have become available, facilitating the integration with other
software components. As a result, it is possible to use these new tools to deal with form-
based Web applications instead of using the Web extraction tool from our previous
work. Thus, we can limit our integration scope to mobile applications and Web services
to minimize the complexity of mashup composition while we still maintain the same
level of expressiveness.

Limitations of data-flow composition. Data-flow mashup composition cannot
represent all of a user’s requirements, and still has some limitations when it comes to
mobile mashups. For instance, using the data-flow paradigm, we can compose a simple
location-aware mashup that displays a Point of Interest (POI), e.g. restaurants, hotels or
gas stations, around the user’s current location. This mashup uses the device’s location
from a GPS sensor as an input to a location-based Web service, such as a restaurant
search by location using the Google Places API. When a user executes the mashup
application, it will request the current location from the mobile device and use it as an
input to invoke the Web service API. Once the result from the Web service becomes
available, the locations of POIs will be displayed on a map. The process of this mashup
seems perfect; however, in a real life situation, mobile users may move to a new
location after the mashup execution has been completed. As a result, the current mashup
result becomes invalid. Thus, the user needs to execute the mashup again to get updated
POI locations. To solve the problem highlighted by this sample scenario, the mobile
mashup requires another execution model that listens to a specific event (e.g. location-
changed) and automatically executes the mashup when that specific event has occurred.
This mechanism is a so called event-driven execution model. Another drawback of the
flow-based pattern is the robustness of the execution model. In flow-based mashup
execution, the mashup component is executed in sequence following the mashup logic.
The execution sequence from starting point to final output cannot be interrupted; if it is,
the mashup execution will fail. Unfortunately, in general mobile device usage, network
loss might occur during the execution of mashup. This highlights the robustness
problem of flow-based mashup composition.

 This chapter has presented a mashup construction approach that enables
composition of cooperative mobile mashups. The mashups created by this approach can

37

enhance cooperation between multiple mobile devices. We proposed a description
language called C-MAIDL, which enables the definition of mashup logic and
collaboration behavior. A mashup generator is implemented as a fast-paced mashup
development tool to aid mashup composition for end-users. We have presented the
mashup execution environment that is used to automate cooperation between devices.
We have demonstrated our system’s applicability for creating cooperative mobile
mashups with a sample scenario.

 Based on the discussion above, we found that our approach still has limitations
and needs improvement. We aim to improve the reusability of the mashup components;
specifically the mobile application component. Event-driven mashup composition where
mashup components are executed by events is an additional important feature that our
approach should fulfill.

38

Chapter 5

Improving Reusability of Mobile
Application Components

One major goal of our mashup approach is turning general mobile applications into
reusable mashup components, and integrating them with other existing resources,
especially with other mobile applications. Therefore, interoperability among mobile
applications is a valuable technique that benefits our mashup composition approach.

 The integration of existing mobile applications is important for mashup
application development on mobile devices. However, most mobile applications do not
yet qualify. A major reason is the lack of an applicable way to describe shared
functionalities. Many applications have published a description of their functionalities,
but the descriptions are written in different formats. Furthermore, detailed information
on how to invoke the offered functionalities, such as the input-output parameters and
data type definitions, are not clearly explained. Therefore, developers still require
adequate information on where and how to access those functions. Major mobile
operating systems, such as Apple iOS and Google Android, have addressed the
interoperability issues between mobile applications by providing application integration
protocols (e.g., URL Scheme for iOS and Intent for Android). These protocols aim to
allow invocation and message passing among applications. However, a standard way to
describe the offered functionalities is still unavailable. The stated conditions have
limited the interoperability among mobile applications. Hence, it becomes essential to
define a structured way for describing the shared functionalities of mobile applications
in order to enhance the interoperability and benefit mashup composition on mobile
devices.

 This chapter presents an XML-based modeling language, called LIMA (Language
for Interoperability of Mobile Applications), which allows developers to describe shared
functionalities of mobile applications for enhancing interoperability. LIMA benefits
developers by accommodating the composition of existing functionalities in the
development process. It provides building blocks for sharing functionalities of a mobile
application and offers an efficient way to reuse the functionalities of other applications.
LIMA provides two levels of modeling, abstraction and implementation, for separating
the conceptual description of functionalities from the technical details associated with a
specific mobile application integration protocol. The abstraction level describes
functions in terms of their signature; functions are given details of input and output
parameters including the definition of data types. At the concrete level, the identity of

39

the mobile application, the configuration of the integration protocol and the invocation
parameters are specified.

 We demonstrate our modeling language by implementing a parser tool that
generates proxy classes for leveraging mobile application development. The parser tool
takes a LIMA description file as input to generate a proxy class, i.e., programming code
corresponding to the input description. The proxy class simplifies the development
process by providing simple programming interfaces that hide the technical details of
invoking the target functions. Notably, we apply LIMA with our mashup composition
approach to improve integration and reusability of mobile application components.
LIMA is applied to the mobile application description process of our previous work (C-
MAIDL) to facilitate mobile application integration as well as to abstract platform-
specific details out of the mashup description. The LIMA application shows the
capability to enhance mobile application integration by providing an efficient way to
deal with mobile application components.

5.1 Interoperability of Mobile Applications
The term interoperability is defined as “the ability of two or more systems or
components to exchange information and to use the information that has been
exchanged” [43]. In the context of mobile application development, interoperability can
be seen as the ability of an application to work with other applications by exchanging
data and functionalities. To enable interoperability, the applications should ensure that
the data and functionalities are managed to promote the exchange and reuse of
information [44]. In other words, the standard description of data formats, shared
operations and communication protocols are fundamental. In the case of mobile
applications, although the basic technologies seem to be in place, we have not yet
achieved sufficient interoperability. This section discusses the challenges and our
proposed solutions of mobile application interoperability. In addition, we present a
sample scenario that realizes the problems and illustrates the contributions of our work.

5.1.1 Challenges
The interoperability of mobile applications seems to be a promising solution to improve
mobile application development. However, there are several challenging issues.

i. Lack of a proper way for describing the shared resources. Describing the shared
resources is necessary for developers to recognize the reusable functionalities.
However, in recent mobile technology, an approach to describe these reusable
resources is not yet proposed. In practice, developers typically create documents
that describe the programming interfaces of their mobile applications. However,
the documents created by various developers usually lack consistency. Therefore,
the developers who want to use the shared functionalities have to put a lot of

40

effort into studying the different specifications for each of the reusable
components. To address this challenge, we have applied techniques related to
Web Service Interoperability as a baseline for our mobile applications
interoperability.
 Web services use a standard description language, WSDL [45], as a key to
succeed in the interoperability of services. WSDL is widely used as the standard
language for developers to describe the functionalities of Web services.
Similarly, a standard method for describing the functionalities of mobile
applications is also essential. Therefore, we have adapted the key ideas of WSDL
to introduce LIMA, an XML-based modeling language for enhancing mobile
application interoperability. Our proposed language is designed to provide an
applicable approach to describe the shared functionalities of mobile applications.
Developers can use it to publish the functionalities of their mobile applications
and consume the shared resources of other mobile applications.

ii. Standard data definitions must be defined. Since the exchanging of information
among applications is important for enabling interoperability, the data types
must be standardized. There is a possibility that the same data can be differently
defined among multiple mobile applications. For example, geographic
coordinates, i.e. latitude and longitude, can be used as different data types among
applications. One application may represent them as a single string variable with
comma separator, while another application may represent it as a complex type
of two string variables. To address this challenge, the data definition must be
standardized for enhancing interoperability. Therefore, LIMA provides a solution
by using primitive and complex data types. The primitive data type is a set of
commonly used types, such as Boolean, Text, and Number. Multiple primitive
data types can be combined into a complex type to represent a custom data
format. For example, the geographic location can be defined as a combination of
two numeric data types. Thus, using primitive and complex data types we can
cover various data formats, and set standard data types for accommodating
interoperability.

iii. Different technical details of invoking the shared functionalities. A mobile
application is designed to work within their specific environment. Each mobile
platform provides exclusive devices, operating systems and application
integration protocols. Even within the same platform, the way to access a
functionality of an application can be different. Some applications are designed
to work as a service, i.e., they allow other applications to call their functions and
return a result, while other applications listen for a specific event and activate
themselves. To address this challenge, the modeling language must provide
multiple configuration sets to support different technical details of invoking the

41

shared functionalities. The specific configuration sections that correspond to the
application integration protocols and the parameters that specify the execution
patterns must be defined. In addition, the technical configurations must be
separated from the logical descriptions in order to maximize the capability of
interoperability. Therefore, the modeling language can be used with any mobile
platforms by changing the technical specifications to match them with the
infrastructure of the target platforms.

5.1.2 A Sample Scenario
This section illustrates a common usage scenario and the benefits of mobile application
interoperability. The sample scenario is about developing a new mobile application that
scans a barcode of a product, searches for product information on online stores,
translates the product information into a specific language and shares the translated
information on Twitter and Facebook. For barcode scanning, a developer has to
manually program the devices’ camera or use an existing barcode scanning library. In
addition, the developer has to deal with Web service APIs of online shopping sites and
find a proper translation API. Moreover, the programming interfaces of Twitter and
Facebook have to be studied. As a result, developing this kind of application is time-
consuming and requires high-level programming skills. In fact, the functionalities that
can be used for developing this kind of application are already available in the form of
downloadable applications via application stores. For example, we can create this
application by using the functionalities of a barcode scanning application, an online
shopping application, and social applications, i.e., Twitter and Facebook. A set of
sample mobile applications, which offer the required functionalities, and the possibility
of interoperability are illustrated in Figure 16. The developer can build the new
application by combining the existing functionalities from the set of these mobile
applications.

Figure 16. A Sample scenario of mobile application interoperability.

42

The interoperability process starts with scanning a barcode of a product by using
the barcode application. Then, the scanned code is used as an input for the shopping
application to search for the product information from online stores. The selected
product name and price are translated into a specific language by using the translator
application. Finally, the translated information can be published to a social network
through the Twitter and Facebook applications. Therefore, developing mobile
applications by using interoperability requires less technical knowledge and
programming effort than that of a manual development approach.

This scenario has presented the usages and benefits of the interoperability of
mobile applications. Instead of manually developing the application, reusing existing
functionalities seems to be an efficient approach. However, to achieve interoperability,
each of the mobile applications has to expose their functionalities and provide a way to
access those functions. Therefore, the contribution of our work is to enhance mobile
application interoperability by providing an efficient way to publish and reuse existing
functionalities.

5.2 LIMA
In this section, we present our modeling language in three subsections: Overview,
Specification, and Example. The overview illustrates the conceptual model of LIMA and
explains the relations among its components. The specification presents elements and
conventions used for encoding a LIMA description. The example shows a sample of
description files and applications of LIMA for different mobile platforms.

Figure 17. The conceptual model of LIMA.

43

5.2.1 Overview
LIMA (Language for Interoperability of Mobile Applications) is an XML-based
modeling language that provides a way to describe shared functionalities of mobile
applications. A major design goal of LIMA is to encapsulate the execution
configuration of shared functionality with a simple programming interface that contains
only minimal technical aspects. Functionality of a mobile application can be modeled
on two levels, abstraction and implementation. The abstraction level describes functions
in terms of their signature, i.e. function name, data types and order of parameters. The
implementation section describes the invocation information, such as identity of mobile
applications, configurations of integration protocols and details of input/output
parameters. The conceptual model of LIMA is shown in Figure 17.

The conceptual model of LIMA consists of three major components: Document,
Abstraction and Implementation. The document component provides a space for
describing target mobile applications in a human-understandable format. The
abstraction component consists of four inner components, which are Data Type,
Packages, Interface, and Operations. These are used for describing data types,
namespaces, abstract interfaces, and logical operations respectively. An operation refers
to pre-defined data types for defining a logical operation. Within the implementation
component, the Binding component is used for linking the execution configuration of a
particular functionality with an abstract interface in the abstraction component. The
execution configuration in a binding component contains an identity of the target
mobile application and a Protocol component that is used for specifying details of the
application integration protocol.

5.2.2 Specification
LIMA provides a set of XML elements and their associated properties for describing
offered functionalities of mobile applications. The following section gives a brief
overview of elements and conventions that are used for encoding a LIMA description.
Figure 18 shows the structure of a LIMA description.

44

Figure 18. The structure of the LIMA description.

A LIMA description contains two types of elements: Scope and Definition. The
scope element groups related definition elements together to facilitate the information
extraction process. For instance, an XML parser tool can simply extract the definition
elements, which contain invocation information, by detecting the “implementation”
element. The scope elements consist of the following elements:

• <lima>
This element must be the root element of all LIMA documents. It indicates that
the content inside this element is a LIMA description.

• <document>
This element is used to provide human-readable documentation.

• <abstraction>
This element is used to indicate that the content within this element is the
abstract description of the target mobile application.

• <implementation>
This element indicates that content within this element describes the concrete
details on how to execute the target functionalities.

The definition elements are used to describe details of functionalities in different
aspects. For example, a “datatype” element is used for describing a custom data format
and a “protocol” element is used for specifying invocation information. In addition,
each definition element contains attributes and child elements that are used for
specifying related information. Details of functionalities can be defined by using the
following definition elements:

• <datatype>
This element is used to define a data type that will be used in interface and
operation declarations. The defined data types can be shared among the
operations by referring to the data type name. To standardize the data types used

45

in LIMA, we define primitive data types, which are a set of data types that are
commonly used in mobile applications. Table 6 shows primitive datatypes of
LIMA.

Data Type Name Description

bool A boolean true or false value

number A number value

text A string value

byte An array of binary value represents binary data
such as images or sound

Table 6. Primitive data type of LIMA.

The primitive data types are used for defining the input and output parameters of
the operation description. However, the primitive data types cannot cover all the
data usage in mobile applications. To address this problem, the data type element
allows us to define complex data types by combining the existing primitive types.
For example, geographic coordinate data that is commonly used in map
applications, i.e. latitude and longitude, can be represented as a combination of
two numbers. An example of a complex type definition is shown in Figure 19.
The description of an operation can refer to a complex type by specifying the
complex type name in its “type” attribute.

Figure 19. An example of a location data definition

• <package>
A package element groups a set of interfaces together in order to make them
organized, and prevent naming conflicts. A related set of functionalities can be
bundled into a same logical package. Furthermore, in the case of a complex
description, it is possible that naming conflicts, i.e. one or more interfaces
sharing the same name, will occur. The package element helps to avoid naming
conflicts by using the “name” attribute to create a new namespace for the
containing interfaces.

• <interface>
An interface element is used to create a logical set of functionalities by grouping
related operation elements together. It can promote the usability of our modeling
language by providing a flexible way to manage set of functionalities. For

46

example, the translation features from multiple applications can be grouped into
an interface element. In this way, developers can access several translation
functions, which are actually offered by different mobile applications,
transparently through a single interface description.

• <operation>
An operation element describes a shared functionality offered by a mobile
application. The operation name, input parameters and return data type are
specified. In other words, an operation element is similar to a method declaration
in a programming language. The mapping between LIMA elements and Java
programming code is shown in Figure 20.

Figure 20. The mapping between LIMA elements and Java programming code

• <binding>

A binding element does the mapping between concrete details of execution and a
logical operation in the abstraction section.

• <protocol>
A protocol element is used for specifying required information for invoking a
function. This element and its child elements describe configurations of a mobile
application integration protocol. For example, a protocol element of an Android
application contains child elements that represent configurations of the Intent
protocol. Furthermore, the protocol element and its child elements enable loose
coupling between operation descriptions and execution details. We can set
different execution configurations for each operation element. Given the
flexibility of the protocol element, we can describe various application
integration protocols used in additional mobile platforms.

5.2.3 An example of LIMA
This section shows samples of LIMA descriptions. The sample descriptions describe
functionalities of two mobile applications, from different mobile platforms. The purpose
of the samples is to illustrate the basic syntax and the conventions for encoding LIMA,
and show that LIMA is flexible enough to be used for different mobile platforms.

The first mobile application is an Android application called “Xzing Barcode
Scanner” [46]. The barcode scanner application uses the device’s cameras for scanning
barcodes of products, and looks up prices and reviews. The capability to scan barcodes

47

from cameras and return them as a number is valuable. We can reuse this functionality
to extract product numbers and use them as input to additional application logic. The
programming interface and related information of this mobile application can be found
on the developers’ website [47]. Required information for reusing the scan functionality
is listed in following table.

Data Description
Action com.google.zxing.client.android.SCAN
Intent Extra : Scan Mode

PRODUCT_MODE: Decode only UPC and EAN barcodes.
This is the right choice for shopping applications that get
prices and reviews for products.
ONE_D_MODE: Decode only 1D barcodes (currently UPC,
EAN, Code 39, and Code 128).
QR_CODE_MODE: Decode only QR codes.

Return SCAN_RESULT: Return the barcode content.

 With the available information, we can compose a LIMA description that
describes scanning functionality of the barcode scanner application as is shown in Table.
In this description, a “document” element contains overview information of the target
functionality. The scan functionality is defined by using an “operation” element. A
“pattern” attribute of the “operation” element is set to “InOut” to indicate the execution
pattern. The corresponding elements, i.e. “input” and “output”, define input and output
parameters of the scan functionality. The data type of each parameter is defined within
the “datatype” attribute. In the implementation section, configurations of the Intent
protocol, such as Intent Filter and Intent Extras are specified. These execution
configurations are linked to the scan operation by using a “ref” attribute of a “binding”
element. Furthermore, this sample description demonstrates how to define a complex
data type. The complex data type, i.e. ScanMode, represents four available scan modes
that are used as input parameters of the scan function. Each scan mode is associated
with a set of supported barcode formats by defining an initial value within a “value”
attribute. The scan operation refers to the supported scan modes by referring the
complex type name in its input parameter description.

<lima>

<document>

This is LIMA sample file to describe zxing barcode scanning application.

</document>

<!-- Abstraction Level -->

<abstraction>

 <datatype name="ScanMode" type="complex">

 <element name="Product" type="text" value="UPC_A,UPC_E,EAN_8,EAN_13"/>

 <element name="1DCode" type="text" value="UPC_A,UPC_E,EAN_8,EAN_13"/>

 <element name="QRCode" type="text" value="QR_CODE"/>

 <element name="All" type="text" value=""/>

 </datatype>

 <package name="com.google.zxing.client.android">

 <interface name="BarcodeScanner">

48

 <operation name="Scan" pattern="InOut">

 <input name="mode" datatype="ScanMode"/>

 <output name="scanResult" datatype="text/plain"/>

 </operation>

 </interface>

 </package>

</abstraction>

<!-- Implementation Level -->

<implementation>

 <binding endpoint="com.google.zxing.client.android" ref="BarcodeScanner">

 <protocol name="intent" type="explicit">

 <activity name="com.google.zxing.client.android.SCAN"

 execution="forResult" ref="Scan">

 <param name="SCAN_MODE" datatype="text/plain" ref="mode"/>

 <return name="SCAN_RESULT" datatype="text/plain" ref="scanResult"/>

 </activity>

 </protocol>

 </binding>

</implementation>

</lima>

 The second mobile application is an iOS version of the first barcode scanner
application [48]. This application offers the same functionality as the Android version;
however, the application integration protocol and configurations are different. Since the
logical functionality of the two sample applications is identical, we can compose a
LIMA description for the second application by reusing the abstraction section of the
first description. Therefore, the abstraction section will remain the same, while the
implementation section is modified to match them with the application integration
protocol of iOS. The implementation section for the second sample description is shown
in Figure.

<!-- Implementation Level -->

<implementation>

 <binding endpoint="zxing" ref="BarcodeScanner">

 <protocol name="urlscheme" type="implicit">

 <urlscheme name="zxing://scan/callback=[self]/[mode]"

 execution="forResult" ref="Scan">

 <parameter name="mode" datatype="text/plain" ref="mode"/>

 <callback target="self"/>

 </urlscheme>

 </protocol>

 </binding>

</implementation>

5.3 Implementation
5.3.1 LIMA Parser Tool
In order to demonstrate the applicability of LIMA, we developed a parser tool that
converts LIMA descriptions into programming code. The parser tool takes a LIMA
description file as input, and then generates a proxy class file as output. The proxy class

49

helps simplify the mobile application development process by hiding complicated
invocation details of the target functionalities. Accordingly, developers can reuse shared
functionalities of a mobile application as if calling an ordinary function. The code
generation process of LIMA parser is illustrated in Figure 21.

	

Figure 21. LIMA Parser Code Generation Process

The LIMA Parser tool consists of four components: Preliminary Parser, Abstraction
Parser, Implementation Parser and Finalize Parser. Each parser component is
responsible for a specific task.

• Preliminary Parser reads a LIMA description file and separates the description
into two parts: Abstraction Elements and Implementation Elements. The
abstraction elements contain abstract specifications of shared functionalities
while the implementation elements contain technical details of the invocation. In
addition, the preliminary parser validates the syntax of LIMA and provides
feedback to users when an error is detected.

• Abstraction Parser takes the abstraction elements as input to generate
Abstraction Code, i.e. a simple programming structure corresponding to abstract
functionalities described in the description file.

• Implementation Parser uses the implementation elements to generate
programming code, called Implementation Code, which contains concrete details
of invoking the target functionalities. Code templates from the Code Template
Repository are used to generate output code corresponding to the specified
protocols. In addition, using code templates allows the parser tool to create
implementation code that supports multiple mobile platforms.

• Finalize Parser combines the abstraction code with the implementation code to
build a complete proxy class that can be used as a utility to simplify the mobile
application development process.

 For the current implementation, we built the LIMA Parser Tool for Android
platforms. The parser tool generates proxy classes by using the Java programming
language. The generated code contains Java packages, classes and operations
corresponding to the input description. The parser tool is implemented as an Eclipse
Plug-In to provide better integration with the existing Android development
environment. Developers can use the plug-in to create proxy classes within Eclipse’s
Android Development Project. Selecting a LIMA description file, and then choosing

50

“Generate LIMA Proxy Class” from the context menu can generate a proxy class. A
screenshot of using the LIMA Parser Plug-in is shown in Figure 22.

Figure 22. Screenshot of the LIMA Parser Plug-in

5.3.2 Applicability of LIMA in Mobile Mashup Composition
To illustrate the applicability of LIMA for mobile mashups, we apply LIMA to our
data-flow composition methods. Our previous work is a description-based mobile
mashup approach focused on integration of mobile applications, Web services, and Web
applications. We proposed a mashup description language called C-MAIDL, which is
designed for describing configurations of mashup components and composition logic of
mashup applications. C-MAIDL is used as input to a mashup generator for creating
mashup applications. Among the supporting mashup components of C-MAIDL, mobile
applications are used as important components to enable integration of mobile devices’
capabilities with Web applications and Web services. To allow the use of a mobile
application as a mashup component, our previous work provides a description section
for describing execution configurations of selected mobile applications. Since a flexible
approach to describe shared functionalities of mobile applications is not yet proposed,
our mashup description language uses a configuration method related to a platform-
specific protocol, i.e. Android Intent, to model the mobile application components.
Embedding concrete technical details in a user-friendly description language can be
considered as a demerit. It makes our description language more complicated and
reduces the possibility to apply it to other mobile platforms. Therefore, in our previous
work, using a mobile application as a mashup component still has limitations due to the
lack of a practical way to describe shared functionalities of mobile applications.

 LIMA enhances our previous approach by providing an efficient way to describe
shared functionalities, separating technical details of invocation from the mashup
description language. We modify a description section that is used for describing
mobile application components by using a LIMA description. The platform-specific
details are removed from the mashup description language, and replaced with an
abstracted LIMA description. The mashup generator tool can extract abstract and

51

concrete information of a mobile mashup component to enable automatic application
integration.

	 Figure 23 is a comparison between the previous description and the new
description. The former description describes a mobile application by using
configurations of the Intent protocol. In contrast, the new description specifies
abstraction level description and location of the full LIMA description. The abstract
information about offered functionalities will be used in the process of mashup
component integration, while the concrete details of invocation will be used at a runtime
of mashup application. The mashup generator tool can uses the URI that locates a full
description to obtain technical details of invoking, and then use them in the mobile
application generation process. This method enables loose coupling between the mashup
description and mobile application components. Since the execution configurations of
those components are separated, the mashup application will not be affected when the
configurations are changed.

Figure 23. Comparison between the former C-MAIDL and new C-MAIDL with LIMA

5.3.3 Discussion
With our modeling language, the interoperability among mobile applications seems to
be a promising solution to accommodate mobile mashup application development.
However, our language still has some limitations. This section discusses limitations of
our work and states related work that must be considered.

 LIMA modeling language is designed to support the data interoperability. The
target functionality must work in form of a service-oriented function, i.e., software
components that can be reused for different purposes. In other words, LIMA cannot deal
with functionalities that require human interaction. Second, there are only a limited
number of published functionalities. The reason is the different points of view on
sharing functionalities. For example, some developers have no intention to share
functionalities of their applications due to commercial issues. To address this problem,

52

a mechanism to gain profit from sharing functionalities is required. According to the
concept of Software as a Service [49], software providers benefit from selling parts of
software as a service. Similarly, in the context of mobile application, once mobile
operating systems provide a mechanism that allows developers to benefit from sharing
functionalities, the number of shared functionalities will increase. Finally, LIMA should
be promoted. Since our modeling language introduces a new paradigm for mobile
application development, we have to encourage developers to use our language as a
standard approach for modeling a mobile application.

53

Chapter 6

Event-Driven Composition for Multiple
Device

Mobile devices, e.g. smart phones and tablets, are context-aware devices. The devices
keep track of context information by monitoring sensors and report the changes to users.
Users are informed about events such as a change of location, receipt of mail, and low
battery with notifications. These notifications can be viewed as events that can be used
as triggers to develop applications in an event-driven manner. Event-driven mobile
applications are becoming popular. There are many applications that take advantage of
events in mobile devices. They help users executing pre-defined tasks when a specific
event occurs. For example, a popular commercial application for Android called
“Taskers” [50] listens to changes in time, location, or hardware/software state, and can
perform about 200 actions ranging from launching an app to automatically making a
phone call when its listening events are fired. While many applications can use the
event notification mechanism of mobile devices to expand coverage of the user’s
requirements, mobile mashups still cannot take advantage of these features as much as
they should; especially considering the limitation of flow-based mobile mashups that we
have discussed before. As such, we aim to explore how to use the lightweight
integration concept of mobile mashups to develop event-driven mobile applications.

Figure 24. Data-flow and even-driven component integration.

 Event-driven mobile mashups are based on event-driven programming. This can
be defined as an architectural style in which one or more components are executed in
response to receiving event notifications [51]. Thus, we can define event-driven mashup
composition as a mashup composition style in which one or more components in the
application logic executes in response to receiving one or more event notifications.

54

Figure 24 shows the characteristics of event-driven mashup composition compared to
conventional data-flow (flow-based) composition. Event-driven mobile mashup
applications work as a set of individual components that monitor changes of their
internal state and notify other components as events, as well as listen to events produced
by other components. When an event notification occurs, the components that are
listening for this event invoke a function or service of other components. Thus, we can
compose typical event-driven applications by mapping events to existing functionalities.

 In this chapter, we propose a mashup approach that offers a full treatment of
event-driven mashup composition on mobile devices. Our approach aims to enable the
integration of mobile applications and Web services as well as to utilize data
cooperation among multiple mobile devices. We set up sample scenarios that illustrate
the different aspects of event-driven applications for mobile devices. From these
scenarios we realize suitable components and a composition model for event-driven
mashup composition. Our approach uses description languages and generator tools to
leverage development efforts and reduce the required programming skills. To evaluate
the applicability of our approach, we implement our first prototype on the Android
mobile system.

6.1 Characteristics of Event-Driven Mashups

6.1.1 Motivating Scenarios
In this section, we present three scenarios that illustrate the benefits of event-driven
mobile applications. These scenarios represent different aspects that reflect unique
problems and usages of event-driven mobile applications. The first scenario is an
“event-trigger mashup”. This type is a typical mashup application that is similar to the
common problem that most existing approaches aim to solve. It starts out by listening
for an event and performs additional mashup logic when the event is fired. The second
scenario is a “data streaming mashup”. This mashup deals with handling the stream of
data that is continuously produced from events, and automatically executes additional
logic to update mashup results. Finally, for scenario “event-driven mashup for multiple
devices”, we study how to use the event-driven composition model for cooperation of
multiple devices. Given these scenarios, we derive requirements needed to achieve
event-driven mashup composition and discover challenges that need to be solved.

1. Email Translator Scenario. This scenario focuses on a common event-trigger
application where an event notification of a mobile device is used as a trigger to execute
additional mashup logic. This scenario simulates a requirement for translating content
of emails. The situation is an international student studying in Japan. He/she uses an
Android smartphone for receiving emails from colleagues and university newsletters.
However, sometimes the content of the emails is written in Japanese. Unfortunately, in

55

general, email client applications do not provide translation functions. When a new
Japanese-language email is received, he/she has to copy and paste the content into a
translation application and save the result in a note application. To solve this problem,
a mobile application that helps translating email from Japanese to English is needed. In
addition, the application can benefit from an event-driven architecture by listening to
new incoming emails and automatically translating the title and content into a specific
language. It can then save the translated content in a note application. In addition, the
application should allow him/her to specify which email will be translated by creating
filters for email from a specific person or email containing a specific keyword.

2. Around Me Scenario. The second scenario addresses a data streaming mashup in
which the system is continuously notified of events as a stream of data. In this scenario,
we reuse the common scenario of a location-aware mashup that continuously monitors
the “location-changed” event and integrates location with a Web service to display a
POI on a map [52]. This scenario simulates a situation where a tourist is travelling in
Japan. While he is travelling in a city, he wants to find a restaurant around his/her
current location by using a smartphone. Using a map application, e.g. Google Maps,
he/she can use the Local Search feature to search for restaurants nearby. However, when
he/she walks around or moves to another place, the search result becomes invalid. Thus,
he/she has to do the search again to update the restaurant location on the map. In this
situation, he/she needs a mobile application that keeps track of the current location and
continuously pinpoints nearby restaurants. In the other words, the application should
automatically update the result when the “location-changed” event is fired.

3. Barcode Book Review Scenario. Our third scenario focuses on a problem that is
usually solved using data-flow mashup composition. To compare event-driven
composition with data-flow composition, we reuse a scenario presented in our previous
work [23]. The scenario simulates a mobile mashup application that helps users find
information about selected books from online services by using barcode scanning. The
situation depicts a developer who wants to buy a book from a bookstore. Before
deciding whether to buy or not, he/she wants to compare the price of the local bookstore
with that of online stores. He/she also wants to read reviews and comments of people
who have read that book. With his/her smartphone, he/she needs an application that
uses the camera as a barcode reader to scan a book’s barcode. The scanned code is then
used as an input for a bookstore and a book review Website to get the title, price,
description and first review entry of the selected book.

4. Library Assistant Scenario. This scenario focuses on mashup composition for
cooperation of mobile devices. The scenario simulates a situation in a library where
staff wants to create a list of all available books in a library room. The information that
is required in the list are, among others, title, author, price and publisher. If done
manually, the staff would have to take each book from the shelf to get a title or ISBN,
and use that information to search for additional information from an online bookstore,
and record the information to a list. Multiple staff could work together to speed up this
task, but this kind of manual operation requires huge effort. As a result, the staff needs a

56

mobile application that allows a device’s camera to be used as a barcode scanner to get
the ISBN from the books. The scanned code can then be used to obtain the required
information from online bookstores. Finally, the book information is combined into a
list. It is important to note that staff should be able to work together by using multiple
mobile devices. The information that is scanned from each device must be combined to
create a shared list of available books.

6.1.2 Analysis
Based on the scenarios in Section 2, we derive objectives that our approach should
fulfill and address challenges that we should overcome.

Maximize usage of system event and mobile application events. In our sample
scenarios, we found that a key feature is integration of device-specific information with
Web resources. Information produced from sensors and the mobile operating system,
such as a “location-changed” (in Scenario 2) and a “photo-taken” (in Scenario 3) event,
are used as triggers for the mashup process. In addition, mobile applications act as event
producers. They make changes in their states known by sending notifications. Mobile
applications, such as email clients (in Scenario 1), social networks, etc., inform users
and other applications about their state through events. In our view, these notifications
are valuable components in mashup application composition. Thus, our approach aims
to deal with events produced from the mobile operating system and events produced
from mobile applications. However, the major challenge of using an event-driven
architecture in mashup composition is that we have to deal with events that are
produced from different sources, already discussed in Section 3.2.

Encourage reusability of mashup components. From the scenarios, we found that
mashup components can be reused for more than one scenario. However, reuse of
components requires different component configurations. For instance, scenarios 1 and
3 use the translation Web services for translating Japanese to English and English to
Japanese. In practice, the general configurations of the translation Web service in both
mashup applications are identical. However, the source and target language parameters
that are passed to the translation Web service are changed. Thus, to enhance reusability
of mashup components, mashup components used in our approach should be flexible
enough to allow for a change in execution parameters for different mashup
compositions.

 Similar to other existing mashup platforms, our approach aims at reusing mashup
components in multiple compositions. Our proposed techniques use a component
descriptor to save and maintain changes in component configurations at design-time.
However, we notice from sample scenarios that providing runtime configurations for
each of the components makes the components more flexible, and reduces the required
user effort on component development. To enable this feature, the mashup components
should not only provide the common interfaces for integration but also a user interface

57

for managing component configurations at run-time. The boundary between technical
configurations and the execution parameters must be carefully considered.

Support an event-driven execution model. In a conventional data-flow mashup, users
start the mashup application and wait for the result. However, our sample scenarios
require a more efficient execution model. In Scenario 2, users use the mashup
application and move to other locations. The mashup application should handle this
execution automatically. In addition, users should be able to switch to others
applications and use their mobile devices as usual. The mashup applications should
automatically activate themselves when new email is received. Similarly, robustness of
scenario 3 (data-flow composition with synchronous execution) should be improved.
According to Scenario 4, when a participating device has finished scanning a barcode, it
should notify other devices to trigger additional mashup processes and add the new
information to the list. To address these problems, our approach should support event-
driven mashup execution, in which the components are executed asynchronously in
response to specific events.

 Since we design our mashup composition output for mobile applications, an
execution model should be considered that optimizes performance on the target device.
Event driven execution is different from data-flow in terms of the execution model.
Data-flow mashups execute components following the composition logic to produce a
result, and then terminate the process. In contrast, event-driven mashups keep listening
for events, holding up the mashup execution, and stopping the listening process when a
condition is met or a user action is received. Given this condition, resource consumption,
such as the number of background processes, should be well managed. In addition, to
improve the robustness of mashup applications, component interaction should be done
in an asynchronous manner. The data and logical components, such as Web service
components, should contain both functionality and events that notify others of their
execution state.

Simplify the mashup development. We targeted all sample scenarios to users who do
not have skills in programming. Therefore, we assume that our targeted users cannot
deal with device-specific configurations or the mashup composition process that
requires manual programming. The technical knowledge on developing mashup
components, as well as the composition of multiple components should be leveraged.

 Since recent research shows that end-users cannot deal with a configuration
process that requires programming skills [23], our approach has to provide tools that
simplify the configuration and composition process. However, when we increase
simplicity, expressive capability will be limited. Therefore, another challenge is to
strike a balance between simplicity of configuration and capabilities of the approach.

58

6.2 Event-Driven Mashup Composition
To achieve our objectives and address the problems that we have stated in the previous
section, we proposed an approach that allows for the composition of event-driven
mashup applications for multiple devices. We handle the integration of mobile
applications and Web services in event-driven manner. The general concept of our
approach is the orchestration of mashup components, which work as a proxy for actual
mashup resources and provide a uniform event-driven integration interface. Instead of
performing integration between mashup components directly, our approach uses a
separated process to control the orchestration and enhance loose coupling among
components. Communication among mashup components is simplified by an event bus
system adapted from the state of the art in event-driven architecture [18]. To utilize data
cooperation among multiple devices, we apply the concept of using a mobile Web
server and Web services from our previous approach. A mashup composer can use the
XML description language to serialize configurations of mashup components and record
the composition logic. The description language is used as an input to the code
generator tool to generate the mashup components and the composite application. The
final output is a native mobile application that is deployed to the target device and
executed as an ordinary mobile application. In the following subsections, we describe
the overall architecture of our approach. We also highlight the key ideas and techniques
that we have applied to deal with challenges in enabling event-driven mashups on
mobile devices.

Figure 25. Overview architecture of event-driven mashup composition.

59

6.2.1 Overview
An overview of the architecture we use in our approach is shown in Figure 25. There
are four types of mashup resources (Web services, mobile applications, sensors/system
notification and data cooperation) that can be combined to create mashup applications.
The Mashup Orchestration Process (MOP) is responsible for controlling the execution
of mashup logic and managing the orchestration of mashup components. It provides a
user interface that a mashup user can use to start/stop the mashup application, and view
the mashup result. A Mashup Proxy (MP) is used to facilitate component integration.
An MP acts as an intermediary between the MOP and the actual mashup components by
transforming a technology-specific programming interface into a common integration
protocol. They also augment the mandatory event-driven mechanism to ordinary
mashup components. More specifically, each MP listens to actual events of a particular
mashup component by using a proper programming interface, and sends notifications of
triggered events to the MOP. The MOP uses this notification and its parameters as a
trigger to start particular mashup logic. To call a function of a mashup component,
MOP sends a message and parameters to a corresponding MP. The target MP then
translates the message into the proper programming interface, regarding the
specification of the actual component, and invokes the target functionality for a result.
Finally, the result from the invocation is transformed to a standard format and sent back
to the MOP. In this way, the mashup process is completed by cooperation between an
MOP and MPs.

 To enable cooperation between devices, the MOP can request data from a guest
device by subscribing to the events of a cooperation MP, designed for cooperation tasks.
The cooperation MP interacts with the cooperation center to collect data from all guest
devices. Once the data from a guest device is received, the cooperation MP will send it
to the MOP as an event with parameters. In this way, the MOP is totally separated from
the cooperation task. Replacement of the cooperation center to support different
connectivity architectures will not affect the mashup process.

Figure 26. Event-driven mashup component integration

60

6.2.2 Even-Driven Mashup Component Integration
This section presents the cooperation process between MOP and MPs, which is the key
mechanism of our mashup composition approach. We use an orchestration process and
proxy components to manage the integration of mashup components, as well as provide
loose coupling in the integration. A messaging system and a delivery channel are used
to facilitate the communication between MOP and MPs. A conceptual model that
describes the integration process is illustrated in Figure 26.

 The model depicts a simple event-driven mashup process that performs the
integration of two mashup components. This model emphasizes two key mechanisms,
event listening and function calls, which are important for enabling event-driven
component integration. The model consists of the following components.

Mashup Orchestration Process (MOP). This is a process that controls the execution of
mashup logic and interacts with a mashup user.

Event Source (C1). This component represents a mashup component that produces
notifications to other components: for example, system events or notification messages
from installed mobile applications.

Service Provider (C2). This component represents a mashup component that provides
functionality that other mashup components can invoke for a result. For example, Web
services or mobile applications which provide programming interfaces.

Mashup Proxy (MP1, MP2). This component works as intermediary between actual
mashup resources and the mashup orchestration process. Each actual mashup
component has a designated MP to transform a technology-specific programming
interface into a common programming interface.

Delivery Channel. This component is a communication channel that delivers events to
facilitate the cooperation between MOP and MPs.

 The model describes the minimum building blocks of event-driven mashup
component integration; that is, the invocation of a mashup component from an event.
The goal is to use an event E1 of event source C1 as a trigger to invoke function F1 of
service provider C2. In order to get a result from F1, the mashup application has to
extract parameters from event E1 and use them as input parameters for invoking F1.

i. MP1 is used as an intermediary component between C1 and MOP. It listens to an
actual event E1(p1), E1 with parameter p1, and transforms that technology-
specific event into an event message EM1(p1), EM1 with parameter p1.

ii. MP1 posts the transformed event onto the delivery channel to notify the MOP.
Instead of listening for notifications from actual components, the MOP listens
for EM1 event messages via the delivery channel. Once the MOP receives the
event notification, it extracts parameter p1 and uses it to invoke function F1.

61

iii. The MOP sends an invocation message FM1(p1) through the delivery channel and
then listens for a callback event EM2 to process the result.

iv. MP2 receives the invocation message, transforms the message into the proper
programming interface, and forwards the call and parameters F1(p1) to actual
component C2.

v. After C2 has finished the execution, it informs MP2 as a callback F1 with a result
r1. MP2 then transforms F1(r1) into an event message EM2(r1) and posts the
message onto the delivery channel.

vi. Finally, the MOP receives the EM2(r1) notification, extracts r1 and uses it for the
rest of the mashup process.

6.2.3 Mashup Proxy
The mashup component proxy (MP) plays an important role in our component
integration. It acts as an intermediary between actual mashup components and the
orchestration process. An MP is responsible for forwarding function calls from other
mashup components to an actual mashup resource as well as passing the event
notifications from an actual resource to the other mashup components. Each mashup
resource has a dedicated mashup proxy to transform a heterogeneous programming
interface into a unified integration protocol. The conceptual model of a mashup proxy
illustrated in Figure 27.

Figure 27. Architecture of Mashup Proxy.

 To fulfill the requirements of an MP, the design contains 4 groups of components:
Actual Component Interface, Abstraction Interface, Delivery Interface and Parameterize
UI.

62

Actual Component Interface. This group of components is connected to the Event
Source and Service Component. They handle the heterogeneous events and invocation
protocols by supplying corresponding technical configurations. An Actual Component
Interface contains two major components: an Event Manager and an Invocation
Manager. An Event Manager is responsible for listening to events that are produced
from actual mashup components. It uses an Event Listener module to register itself to a
specific event channel and handles listening events by using an Event Handler module.
To support multiple kinds of event channels and notification protocols, both the Event
Listener and Handler are configurable during MP development. On the other hand, an
Invocation Manager is used to deal with functional invocation of service components,
e.g. REST Web services, mobile applications and system functions. An Asynchronous
Invoker module creates invocation commands and submits them to the actual mashup
components. A Callback Manager module receives the returned result and extracts the
required information. Similarly, an Asynchronous Invoker and a Callback Handler are
also configurable during MP development to deal with various the types of invocation
protocols.

Abstraction Interface. This component group is used for defining abstract events and
functions of an MP, and links them with actual events and functions from an Actual
Component Interface. Our architecture allows one MP to bind its events and function to
multiple mashup components. Within a Binding component, the Event Binding module
takes care of the mapping between abstract and actual events while the Invocation
Binding module is responsible for function mapping. There are two additional
components that facilitate the binding process: Event Transformation and Parameter
Mapping.

We found that raw events (events directly produced from a mashup component) are not
efficient for event-driven mashup composition. For example, in a location-aware
mashup, the “location-changed” event is used as the trigger for executing additional
mashup logic. In practice, a GPS sensor produces the “location-changed” notifications
even if the device does not move to new location, or has moved only within close
distance. This situation leads to a performance problem because the additional mashup
logic is frequently executed even though the mashup result does not require updating.
As a result, we designed an Event Transformation to help transforming raw events into
more usable events by defining conditional filters and corresponding actions. With
Event Transformation, we can define a filter that ignores small changes in the location,
e.g. changes within 100 meters will not affect the mashup result.

 In our mashup component integration, each event and function contains input and
output parameters. To link them together, the parameters have to be converted from a
technology-specific style into an abstract style and vice versa. We use a Parameter
Mapping module to facilitate this task by providing mapping rules. The mapping rules
are used to specify how a parameter should be mapped from a source to its destination.
Our architecture applies this mapping rule technique using a novel mashup component
description language (MCDL) [24], which includes 3 rules: direct, template and parse.

63

Delivery Interface. Components in this group take care of delivering events and
function calls to the Delivery Channel. An Event Producer component reads the binding
configuration from an Event Binding and posts the abstract event onto the Delivery
Channel. A Call Handler listens to the Delivery Channel for a function call. When a
function call is received, the Call Handler reads the binding configuration and passes
the abstract function call to an Asynchronous Invoker.

Parameterize UI. An additional role of a mashup proxy is to manage runtime
configurations of the corresponding mashup component to enhance reusability. In
practice, a mashup proxy deals with a specific invocation protocol and parameters by
receiving and passing them among mashup components. Some invocation parameters
might be constant values while others may be different for each execution. For example,
calling a weather forecast Web service requires a constant URI and data extraction rule
that remains the same in all invocations. On the other hand, a mashup user may change
certain parameters, such as geographic coordinates and units, in every execution. For
this reason, we have designed the mashup proxy to be able to provide a user interface
for managing invocation parameters of actual mashup components. Component
developers can use our description language to select which parameters to publish as
runtime parameters and define a specific type of user interface to handle the selected
parameters.

6.2.4 Mashup Application Development Process
In general, mashup development consists of two major processes: component
development and mashup composition. The component development process is
describing functionality and properties of a component that will be used in the
composition, while the composition process is defining how components interact with
each other. However, we have learned from current research that developing a high
quality mashup component requires high technical knowledge that end-users cannot
accomplish by themselves [53]. For example, developing a Web service component may
require a good understanding of the REST protocol and the JSON data format in order
to extract information from a Web service specification. Therefore, our approach
divides the mashup development process into 3 stages, which are 1) Component
development, 2) Mashup Composition and 3) Mashup Execution. Each state is designed
for different roles and levels of technical skill in order to optimize the efficiency of the
overall development process. An overview of our approach is shown in Figure 28.

1. Component Development. The goal of this process is transforming actual
mashup resources into a reusable mashup component. To develop a component,
the component developer composes a component description file, which contains
configurations of functionalities and events. This file is then used as an input for
the component builder tool to generate the output mashup component. Finally,
the generated component is published to the component repository. This process
requires computer skills, such as an understanding of Web service APIs, mobile

64

application integration protocols, XML or JSON, to describe the functionalities
and events that are available in each component. Thus, we recommend that this
process should be performed by an IT specialist or hobby programmer who
understands the stated technology.

2. Mashup Composition. This is the process of building a new mashup application
using existing mashup components. The process starts with a mashup composer,
which describes composition logic of mashup applications and saves it as a
mashup composition file. During the composition process, the mashup composer
can query the component repository to see which mashup components are
available. After finishing the design of the composition logic, the mashup
composition file is used as an input for the mashup generator tool in order to
generate a mashup application. The output application is stored in mashup
application repository. This process requires less technical knowledge than
composition development. Since the component description in this stage is
abstracted to be technologically independent, the mashup composer can be a user
who understands how to compose an XML description.

3. Mashup Execution. In the mashup execution state, the target mashup
application is installed to a target device. The execution engine then validates the
required components of the installed application. In case a required mashup
component is not installed, the execution engine will ask the mashup user to
confirm the installation of additional mashup components. Once all validation is
complete, the mashup application can be run as an ordinary mobile application.

Figure 28. Mashup Composition Process.

65

6.3 Description Languages
In our approach, we separate the mashup development process into two major tasks:
component development and mashup composition. For the component development
process, we design a description language called XLIMA (eXtended Language for
Interoperability of Mobile Applications). XLIMA inherits the concepts and design from
LIMA, a description language from our work on interoperability of mobile application
that we presented in Chapter 5. A mashup component developer can use XLIMA for
describing abstract functionalities and technical configurations of mashup components,
mobile application components and Web services components. XLIMA description files
are then used as input for the component builder tool to generate mashup proxies as
native mobile applications. For mashup composition, we design another description
language called MEDAL, Mashup Event-Driven Annotation Language, to represent
event-driven mashup composition logic. MEDAL inherits concepts and design from our
proposed description language C-MAIDL, and extends the capability to represent event-
driven mashup composition. However, instead of including mashup component
configurations together with mashup composition descriptions as C-MAIDL does,
MEDAL contains only the description of mashup component integration but provides a
mechanism to link to URIs of mashup component configuration files (XLIMA files).
Thus, developing event-driven mashup applications with our approach requires both
XLIMA for component description and MEDAL for mashup application description.
Similarly, MEDAL description files are used as input for the mashup application builder
to generate mashup applications as native mobile applications. The following sections
present the specification and features of XLIMA and MEDAL.

6.3.1 XLIMA
XLIMA is an XML description file that is required for mashup component development.
It contains configurations for: component identification, abstract declaration of
functions and events, invocation configuration, mapping abstract and invocation
configuration, and user interface description for parameterize user interfaces.
Composers describe a mashup component by declaring abstract functions and events
and specifying invocation configurations in the file. The binding section is used for
mapping the declared abstract and invocation information together. The parameterize UI
section describes user interface elements that will assist mashup users in run-time
configuration editing of the mashup component. The structure of XLIMA files and a
brief description of each section are shown in Figure 29.

66

Figure 29. Components of XLIMA.

Abstract information. The abstract information section of XLIMA is designed for
describing functions, events, and data types of mashup components. The description is
written in terms of technology-independent configurations. In other words, functions
and events are described with an identifier, input/output parameters names and data
types or function names in a programing language. The script below shows a sample
description of a language translator component, which contains one function and one
event.

An example of function and event declaration in XLIMA

<abstraction>

 <component id="com.korawit.mashup.component.translate">

 <operation id="translate">

 <parameters>

 <param id="text" datatype="string" />

 </parameters>

 </operation>

 <event id="on_translated">

 <parameters>

 <param id="output" datatype="string" />

 </parameters>

 </event>

 </component>

 </abstraction>

Implementation information. The implementation information section of XLIMA is
designed for describing invocation configuration of functions and events that are
declared in the abstract information section. The description in this section is written in
terms of technology-dependent configurations. In other word, functions and events are
described with their specific invocation protocols. Since our approach focuses on the
composition of mobile applications, Web services and cooperation among data among

67

devices, this section can contain descriptions of mashup components using three sets of
XML tags: <mobileapplication>, <webservice>, and <cooperation>.

i. Mobile application component. This set of tags describes Android’s Intent
configurations as inter-application communication protocols. Intent and Intent filter
information is used in configurations of functionalities while Intent Broadcasting
configurations are used for event listening. The examples below show a sample
description of a mobile application component that sends a tweet message through a
Twitter client mobile application.
An example of the SendTweet function description in XLIMA

 <mobileapplication id="com.twitter.android">

 <function id="SendTweet">

 <protocol name="intent" type="implicit">

 <intent-filter>

 <action mode="query">com.twitter</action>

 <settype>application/twitter</settype>

 <extras>

 <extra id="text" name="android.intent.extra.TEXT" datatype="string" />

<extra id="photo" name="android.intent.extra.STREAM" datatype="uri" />

 </extras>

 <flags>

 <add>FLAG_GRANT_READ_URI_PERMISSION</add>

 </flags>

 </intent-filter>

 </protocol>

 </function>

 </mobileapplication>

In order to describe a mashup component that listens to events in mobile devices,
the Intent Broadcasting configuration is used. The examples below show a sample
description of a mobile application component that listens to new incoming Email
and triggers an event as Intent Broadcasting.

An example of OnEmailReceived event description of XLIMA

 <mobileapplication id="com.fsck.k9">

 <listener id="K9EmailListener">

 <protocol name="intent" type="broadcast">

 <intent-filter>

 <action>com.fsck.k9.intent.action.EMAIL_RECEIVED</action>

 <data-scheme>email</data-scheme>

 <extras>

 <extra id="subject" name="com.fsck.k9.SUBJECT" datatype="string" />

 <extra id="from" name="com.fsck.k9.FROM" datatype="string" />

 <extra id="preview" name="com.fsck.k9. PREVIEW" datatype="string" />

 </extras>

 </intent-filter>

 </protocol>

 </listener>

 </mobileapplication>

68

From the above examples, we list the essential properties and their descriptions of
mobile application components in the following table.

Tags Description
function Set of properties for describing a function
listener Set of properties for describing an event
protocol

Inter-application communication protocol
name: name of selected inter-application communication protocol
type: type of inter-application communication protocol

intent-filter Configuration of Android’s Intent protocol
action: identifier of target mobile applications
Extra: collection of invocation parameters

ii. Web service component. This set of tags describes Web service APIs and their

required parameters. Web service components in XLIMA support the REST
architecture Web service with JSON or XML data format. The description contains
the location of the target Web service, required query parameters and the output
extraction pattern. The examples below show a description of a translation Web
service component.

An example of Web service component description of XLIMA

<implementation>

 <webservice id="wsTranslate">

 <entrypoint url="http://mymemory.translated.net/api/get">

 <protocol name="http" type="rest">

 <query>

 <key name="q" urlencode="UTF-8"/>

 <key name="langpair" urlencode="UTF-8"/>

 </query>

 <results>

 <result id="translateText">

 <value rule="json" path="/responseData[0]/translatedText" />

 </result>

 </results>

 </protocol>

 </entrypoint>

 </webservice>

</implementation>

From the above examples, we list the essential properties and their descriptions of
mobile application components in following table.

Tags Description
entrypoint URI of a Web service
protocol Invocation protocol, i.e., http or https
query

Set of required invocation parameters
key: parameter name
*value of each parameter will be determined in the binding description

69

results Set of return results from the target Web service
result: define name of result to be integrated with other components
value: configuration for extraction of required information from total
result

iii. Cooperation component. Required information from participating devices can be

specified in this component. We use the cooperation mechanisms of our C-MAIDL
approach to facilitate data exchange among participating devices. The request
message will be sent to all participating devices. The client software, cooperation
agent, on the guest device invokes the local component to extract the requested data,
and sends it back to the host device. Once data from a guest device has been sent
back to host device, the cooperation component notifies the mashup application by
embedding cooperation data as an event parameter, and posts the event onto the
delivery channel. In this way, the mashup orchestration process receives the
cooperation data from multiple guest devices as ordinary events; it is not aware
about connectivity and the cooperation process. As a result, this set of tags describes
required data from guest devices as well as the target mashup component on guest
devices. The examples below show a description of data cooperation, in which the
host device requests a barcode scan from all guest devices. The guest devices will
invoke a mobile application, ScannerGo which support x-callback-url, to scan a
barcode and return the barcode number.

An example of a cooperation component description in XLIMA

 <cooperation>

 <mobileapplication id="com.levelup.scannergo">

 <function id="BarcodeScan">

 <protocol name="urlscheme" type="x-callback">

 <urlscheme scheme="ilu://x-callback-url/scanner-go">

 <x-query>sg-camera=BACK&sg-history=NO</x-query>

 <x-error>error</x-error>

 </urlscheme>

 </protocol>

 </function>

 </mobileapplication>

 <results>

 <result id="scancode" datatype="text" />

 </results>

 </cooperation>

Binding. The binding section of XLIMA is designed for describing the mapping
between the abstract declaration of function and events and invocation information in
the implementation section. This section is separated from the abstract and
implementation sections in order to provide maximum loose coupling. Mashup
composers are free to create a group of related functions and events that come from

70

difference actual components. The description in this section is written in term of
mapping rules. Each pair of abstract and implementation information requires a rule to
bind them together, as well as a specification of how parameters of the pairs are mapped.
The script below shows a sample of a binding section that maps an abstract event
declaration to invocation details.

An example of a function and event binding description of XLIMA

<bindings>

 <binding type="invoke" trigger="translate" action="wsTranslate">

 <mapping rule="direct" source="translate.text" target="wsTranslate.q" />

 <mapping rule="direct" source="userinterface.uiLang" target="wsTranslate.langpair" />

 </binding>

 <binding type="event" trigger="wsTranslate" action="on_translated">

<mapping rule="direct" source="wsTranslate.translatedText"

target="event.on_translated.output" />

 </binding>

From the above examples, we list the essential properties and their description of the
binding section in Table.

Tags Description
binding Function and event mapping

type: type of mapping (invoke or event)
trigger: reference to function or event id in the implementation section
action: reference to function or event id in the abstract information
section

mapping Parameter mapping rules
rule: type of mapping method (direct or template)
source: source parameter
target: destination parameter

Parameterize UI. This section of XLIMA is intended for the description of user
interface elements and the mapping between those elements and invocation parameters.
The description in this section will be generated as a screen of the mashup proxy
component. The script below shows an example of the parameterize UI section.

71

An example user interface description in XLIMA

<userinterface>

 <element id="uiFrom" datatype="string" uitype="EditText">

 <display-name>From Filter</display-name>

 <default>korawit@gmail.com</default>

 </element>

 <element id="uiSubject" datatype="string" uitype="EditText">

 <display-name>Subject Filter</display-name>

 <default-value>""</default-value>

 </element>

</userinterface>

Given the above examples, we list the essential properties and their description of the
parameterize UI section in following table. The screen that was generated from the
sample description is shown above.

Tags Description
element Specification of a user interface component

datatype: Data type of the parameter
uitype: UI type (EditText, Password or List)
display-name: Caption for the UI element
default: default value
*Abstract information section can directly refer to parameters of this
section

6.3.2 MEDAL
MEDAL is an XML description file that is required for the composition of event-driven
mashup applications. It is designed for representing event-driven mashup composition
logic; in other words, for describing the integration of mashup components in an event-
driven manner. MEDAL contains a set of XML tags for declaring the required mashup
components, specifying which events will be listened for, and configuring the
corresponding action to those events. An event listener description contains properties
for linking an abstract event of a mashup component with one or more event handlers.
The event handler contains invocation descriptions that specify which functions will be
invoked corresponding to the event. The structure of MEDAL files and a brief
description of each section are shown in Figure 30.

72

Figure 30. Components of MEDAL

Declaration. This section of MEDAL is intended for the declaration of mashup
components, which are required for the composition of a mashup application. A mashup
component can be declared by specifying the URI of an XLIMA description file. Once
the declaration is complete, another part of the MEDAL description can refer to events
and function of that mashup component. The script below shows a sample declaration
section that declares three mashup components.

An example of component declaration in MEDAL

<declaration>

 <components>

 <component

 id="com.korawit.mashup.component.email" alias="K9Email"

 url="http://localhost/mobilemashup/cpr/k9email_proxy.xlima">

 <component

 id="com.korawit.mashup.component.translate" alias="Translator"

 url="http://localhost/mobilemashup/cpr/translate_proxy.xlima">

 <component

 id="com.korawit.mashup.component.note" alias="Evernote"

 url="http://localhost/mobilemashup/cpr/note_proxy.xlima">

 </components>

</declaration>

73

Given the above examples, we list the essential properties and their descriptions for the
declaration section in Table.

Tags Description
component Reference information of mashup component in the composition

alias: alias name of mashup component
url: URI pointing to the XLIMA description file of the component

Mashup Logic. This section of MEDAL is intended for the description of component
integration in an event-driven manner. Mashup developers can create multiple event
listeners to intercept target events. An event listener contains one or more event
handlers, where each event handler specifies one or more actions to be performed after
the event has occurred. For example, actions such as invocation of a Web service or call
to a mobile application for a result can be defined in the event handler. The script below
shows a sample mashup logic section.

An example description of event-driven integration in MEDAL

<mashup>

 <listener id="emailListener" alias="OnEmailReceived"

 publisher="K9Email" event="on_email_received">

 <handler>

 <invocation component="Translator" operation="translate" >

 <mapping mode="single">

 <direct src="OnEmailReceived.content" dest="translate.text" />

 </mapping>

 </invocation>

 </handler>

 </listener>

 <listener id="translationListener" alias="OnTranslated"

 publisher="Translator" event="on_translated">

 <handler>

 <invocation component="Evernote" operation="addnew" >

 <mapping mode="single">

 <direct src="OnTranslated.output" dest="addnew.text" />

 </mapping>

 </invocation>

 </handler>

 </listener>

</mashup>

Given the above examples, we list the essential properties and their descriptions for the
mashup logic section in the following table.

Tags Description
listener Define which event will be listened for

alias: alias name of event that will be referred to by other elements
publisher: mashup component that produces this event
event: event name

74

handler Define action or set of actions that will be performed given this event
invocation Define target functionality and parameters

component: target component name
operation: function name
mapping:

mapping Parameter mapping rules
rule: type of mapping method (direct or template)
source: source parameter
target: destination parameter

Event transformation. As discussed above, we found that sometimes events that are
directly produced from mashup components are less useful. Thus, this section of
MEDAL is designed for describing event transformation rules for turning less useful
events into more interesting events. For example, battery status information frequently
alerts other processes in Android mobile devices. Mashup applications may be
interested in a notification that the remaining battery is less than 5 percent. The script
below shows an event transformation description of the battery status example.

An example description of event transformation in MEDAL

<listener id="batteryListener" alias="OnBatteryStatusChanged"

 publisher="BatteryNotification" event="battery_status_changed">

 <transformation>

 <filter parameter="percentage" operator="less" value="5" action="raise" >

 </transformation>

 <handler>

 …

 …

 …

</listener>

In the above example, the mashup application is listening to “battery_status_changed”
events. The event provides a parameter called “percentage” that indicates the current
remaining battery. If the value of the percentage parameter is more than 5, the mashup
application will ignore this event by not invoking the actions defined in its event
handler. On the other hand, the mashup application will perform actions in the event
handler in case the battery status is less than 5 percent. We list the essential properties
and their descriptions of mashup logic section in Table.

Tags Description
transformation Define event transformation rule
filter Specify filter condition of event parameter

parameter: event parameter that will be used as a condition
operator: filter operator (less, equal, more)
value: criteria value
action: action to perform after meeting the filter condition (raise or
ignore)

75

Output description. This section of MEDAL is designed for formatting the display of
the mashup output. Some mashup applications require user interface elements, such as
textboxes, tables or maps to display the mashup result. This section provides two types
of output description: Web view and Map view. Mashup composer can create Web view
by composing HTML tags embedded within output data from the mashup components.
A Map view is a configuration of data to display on a map as pins. The output acts as a
built-in mashup component. The final mashup component can display the result to the
mashup user by invoking the output component with parameters. The script below
shows a sample of showing a mashup result in Map View, in which search results from
the Google Places Web service is displayed as pins. The configuration of maps, such as
mode, zoom level or pin icon can be specified in the <output> tag.

An example description of the Map View output in MEDAL

<mashup>

…

<listener id="queryResultListener" alias="OnResultCompleted"

 publisher="GooglePlace" event="Callbacked">

 <handler>

 <invocation component="output" operation="showPOI" >

 <mapping mode="collection">

 <direct src="Callbacked.lat" dest="output.latitude" />

 <direct src="Callbacked.lng" dest="output.longitude" />

 <direct src="Callbacked.name" dest="output.title" />

 </mapping>

 </invocation>

 </handler>

 </listener>

</mashup>

<output>

 <mapview mode="map" zoom="16" userlocation="on">

 <pinpoints mode="multiple" icon="red_simple">

 </mapview>

</output>

6.4 Implementation
In order to demonstrate the capabilities of our event-driven mashup composition
approach, we implemented sample mashup scenarios. In this section, we present the
Email Translation Scenario, one of the event-driven mashup scenarios presented in
6.1.1. This scenario simulates a language translation requirement that helps translating
the content of emails. The mashup application listens for new incoming emails. When
an email has arrived, it translates the content from Japanese into English, and save the
translated text to a note application. The required components of this mashup
application are as follows.

76

i. Email Client Application. This is a mobile application component: an open-source e-
mail client on Android called K-9 Email [54]. When new email is received, this
application produces event notifications in the form of Intent Broadcasting.

ii. Translation Web Service API. This is a Web service component: an online language
translation API called Mymemory Translator [55]. This Web service API uses the
REST architecture and JSON data format.

iii. Note Application. This is a mobile application component: a popular mobile
application on Android called Evernote [56]. This application provides Intent
integration information for creating a new note and other operations.

 The mashup application development process of this scenario starts from
developing mashup components. XLIMA description files of two components, an Email
Proxy for K-9 Email and a Translator Proxy for the translation Web service, must be
created. Since the Evernote application is used an output component, a mashup proxy is
not required. Therefore, three description files are used as input for the mashup
component generator to generate a mashup proxy as three mobile applications, which
are installed on the target device. At this point, we have three ready-to-use mashup
components that can be reused in many mashup compositions. The next step is to create
a mashup application by composing a mashup application description file with MEDAL,
and generating the output application with the mashup application generator tool. The
final step is installing the mashup application on the target device. However, since this
mashup application integrates two existing mobile applications which require
authentication, the K-9 Email and Evernote applications must be installed and we must
be logged in with a user account before the mashup application is started. Finally, the
user can run the mashup application as an ordinary mobile application. The composition
model of this mashup scenario is shown in Figure 31.

Figure 31. Mashup composition model of automatic email translation scenario.

77

 The event-driven mashup process starts from the Email Translator Mashup
(mashup application), which subscribes to event “on_email_received” of the Email
Proxy component. The Email Proxy then uses Intent configurations, specified in the
XLIMA file, to register an actual event notification of the K-9 Mail application. When
the K-9 Mail application receives a new email, it notifies the Email Proxy and supplies
two parameters, subject and content of the new email. The Email Proxy then creates a
mashup event and posts it onto the delivery channel, which is also implemented using
Intent Broadcasting. The mashup application then receives the event notification with
attached parameters. Next, the subject parameter is used as an input to invoke the
“translate” function of the Translator Proxy. At the same time, the mashup application
subscribes to the event “on_translated” of the Translator Proxy to receive the translation
result. Once the result from the Web service returns to the Translator Proxy, a mashup
event is created, with the translated text as a parameter, and the event is posted onto the
delivery channel. As a result, the mashup application receives the translated text as a
parameter from such an event. Next, the mashup application invokes the Evernote
application by using the translated content as parameter for Evernote’s Intent. The same
process can be repeated for translating content data. Finally, the translated text is saved
to the note application, and the mashup process waits for the next event notification.
The full XLIMA and MEDAL descriptions are shown in Appendix. The screenshots of
mashup components for this scenario are presented in Figure 32. With the parameterize
UI feature, users can use the Email Proxy application to customize target email to be
translated by editing filter values. Similarly, the Translator proxy provides a language
pair parameter that allows changing the target language.

i. Run-time parameters to filter email
from specific person or subject

ii. Run-time parameters to select
language pair for translation

Figure 32. Screenshots of mashup components

78

Chapter 7

Evaluation

The evaluation of this research is divided into three sections. We explain the
expressivity of our mashup composition in Section 7.1 and show result of usability
evaluation in section 7.2. The comparison of our approach to other related mashup
approaches is discussed in section 7.3. In the final section, 7.4, we discuss problems and
limitations found in the current composition method as well as further improvements.

7.1 Usability Evaluation
The main purpose of our mashup composition method is reducing effort and required
skills in developing mobile mashup applications. We aim to minimize the required skills
of a mashup composer to the level of advanced user or novice programmer, i.e. a user
who has experienced in composing XML documents and understand basic programming
concept. In order to evaluate applicability of our method, a usability evaluation by
human composers is conducted.

The evaluation focuses on the mashup composition process. We used pre-
questionnaires to select 10 mashup composers who have background knowledge in
composing XML documents and understand the concept of operation, event, and
parameter. The selected composers were asked to use MEDAL to complete two mashup
compositions, a tutorial and a freestyle composition. For the tutorial, composers
followed a step-by-step guide to build a mashup example called “email translator”. The
tutorial also explains concepts of our mashup composition approach and describes the
specification of the MEDAL language. Output of the tutorial is a complete MEDAL
description file, which will be verified by the mashup application generator. We then
explained the composition model and demonstrated the output mashup application
before the composers continued to the freestyle composition.

In the freestyle composition, composers were asked to create a mashup application
from existing mashup components using concepts they have learned in the prior task.
The mashup components are created using XLIMA and the mashup proxy builder. The
list of mashup components and their descriptions are shown in Table 7.

Name Type Description
Input components
Barcode Scanner MA Scan barcodes and return as a text by using device’s camera.
Location MA Get current user location
Photo MA Take photos using device’s camera

79

System MA Device’s status monitoring
Email MA Monitor incoming email and get the content
Location-based processing components
GooglePlace WS Search for places around a location
GourNavi WS Search for restaurant around a location
OpenWeatherMap WS Search for weather information by location
GeoName WS Search for place name of a location
Yelp WS Search for local business around a location
Flickr Location WS Retrieve photos from the Flickr photo sharing service
Text-based processing components
Flickr Search WS Retrieve photos from the Flickr photo sharing service
Online Shopping WS Search for product information from online stores by using

barcode or keyword
YouTube WS Retrieve video link from the YouTube
Translate WS Translate text to a specific language
OCR WS OCR Scan function that converts text in an image to a text
Exchange Rate WS Do currency conversion
Train Schedule WS Search Japanese train schedule information
Output components
Facebook MA Update status with current logged in Facebook account
Twitter MA Tweet a message with current logged in Twitter account
Evernote MA Create note messages on a note application
SMS MA Send SMS
Email MA Send Email
Text2Speech MA Read input text out as speech
Dropbox MA Save a file to Dropbox
Launcher MA Launch an application

Table 7 Generated mashup components for usability evaluation

26 mashup components are generated. The mobile application components were
selected from commonly used applications that contain reusable functions and available
in the top charts of the Google Play Store. Web service components were selected from
the popular APIs listed by ProgrammableWeb [57]. The components are categorized
into input, processing, and output components for better understanding of the composers.
Composers were allowed to study a component specification document before the
composition began. The document contains details of available components, including
list of functions, events and their parameters.

We then observed three elements in the evaluation: Composition Pattern, Planning
Time and Composition Time. We measured the complexity of the composition by
considering the component integration model and the number of components used in
each composition. For planning time, we measured the time that composers used to
finish the planning document, which contains the description of the mashup application,
a list of selected mashup components and a component integration model. Finally, the
composition time was measured from the time spent in using a text editor to create the
MEDAL description file. Table 8 shows result of the evaluation.

80

Table 8 Usability evaluation result

It appears that all users succeeded in developing a mashup application using our
method. All 10 composers have finished their mashup composition with a little support,
e.g. concerning the detailed specification of MEDAL and configuration of particular
mashup components. The result shows that the total composition time is related to
complexity of composed mashup applications, i.e. the number of used components. The
average time to compose a simple mashup application, using 3 mashup components as
input, processing, and output, is less than 30 minutes. This is significantly lower when
compared to manual development. The planning and composition time is also related to
the complexity of the mashup application. However, for some particular users, i.e. C006
and C008, it can be seen that the total planning time is quite different even if the
complexity is identical. In this case, we found that U008 stated in the pre-questionnaire
that he/she has experience in mobile mashup development. It could be inferred that that
planning time may have related to user’s experiences in mashup composition, especially
data-flow or event-driven styles. Therefore, we can assume that the planning and
composing time might be reduced when the composers are more familiar with the
hybrid composition model and the MEDAL specification.

After the freestyle task, the composers were asked to fill out post-questionnaires
to evaluate satisfaction of the mashup approach and comprehension of MEDAL
description language. The post-questionnaires consist of 10 of 5-points Likert scale
questions and additional questions about personal opinions. Figure 33 shows the 5-
points Likert scale result of the post-questionnaires.

Composition Pattern

No. of Component Total Usage Comp. Avg. Total Usage Comp. Avg. Total Usage Comp. Avg.

C001 2 0:12 0:06 0:10 0:05 0:22 0:11
C002 4 0:14 0:03 0:13 0:03 0:27 0:06
C003 5 0:13 0:02 0:21 0:04 0:34 0:06
C004 4 0:11 0:02 0:12 0:03 0:23 0:05
C005 4 0:13 0:03 0:15 0:03 0:28 0:07
C006 3 0:23 0:07 0:13 0:04 0:36 0:12
C007 4 0:22 0:05 0:11 0:02 0:33 0:08
C008 3 0:05 0:01 0:05 0:01 0:10 0:03
C009 3 0:22 0:07 0:11 0:03 0:33 0:11
C010 4 0:15 0:03 0:17 0:04 0:32 0:08

Avg. Total Time 0:15

0:03

0:12

0:07

0:27

Mashup Planning Time (minutes) MEDAL Composition Time (minutes) Total Time (minutes)
Composer

0:04Avg. Time/Component

81

Figure 33 Post-questionnaire result

• Most composers gave high ratings concerning the ability of MEDAL to assist
their compositions and the comprehensibility of configurations for defining
data-flow and even-driven mashup logic. They also indicated that they are
able to create additional mashup applications using our approach. The result
also shows that composers understand the expressivity limitation of our
approach.

• Composers have given additional comments about our method. They
requested more mashup components, configuration sections supporting
conditional statements, and assistant tools such as visual mashup composition
or a MEDAL editor.

• Composers are interested in developing mashup components. In our approach,
developing mashup components requires XML editing skills and additional
knowledge on Web service specifications and mobile application
configurations. The evaluation results of a previous study shows that even
novice composers can deal with component configuration using a description
language and a generator tool [19]. Thus, we believe that mashup composers
should be capable of developing mashup components using our approach.
However, a component development evaluation should be conducted.

82

7.2 Expressivity Evaluation
In order to evaluate the expressivity, we simulated the possible mashup compositions
that can be built by using our approach. To the best of our knowledge, the number of
possible mashup compositions can express the capability to deal with a variety of user
requirements and bounds on expressiveness of our mashup composition method.

The simulation uses two common composition patterns with the set of mashup
components used in Section 7.1. The result from 7.1 indicated that the commonly used
composition patterns are input-process-output (IPO) and input-process-process-output
(IPPO), which is consistent with the common patterns found in the evaluation result of
previous study. By using a simple composition model such as IPO or IPPO, our method
can create mashup applications that cover broad areas of requirements. Let us consider
an example of creating location-based mashup applications in Figure 34. By using GPS
locations combined with one of 5 possible location-based Web services and 8
alternative mobile applications, we can generate 40 mashup applications using the IPO
pattern. In addition, if we added one more component that converts location into text,
i.e. GeoName, the location name can be integrated to additional text-based components
to create more 56 mashup applications with the IPPO pattern. Moreover, our integration
model also supports multiple output components that help increase the number of
possible compositions.

Figure 34 Simulations on generating location-aware mashup applications

Even though the number of possible mashup compositions is considerably large,
some compositions might not practical. Therefore, instead of only doing simulations,
real mashup application development is conducted. We define three sets of reusable
components: mobile applications, Web services and mobile events. We then use our
mashup description and generators to develop mashup applications from these sets of
components. The number of applications that we can generate expresses the capability

83

to deal with a variety of user requirements and expressivity of our mashup composition
method.

 The selected mobile application components are taken from the frequently used
functionalities in mobile devices. We survey frequently used functionalities from
popular applications on two major application delivery channels, Google’s Play Store
and Apple’s App Store. To create our sample list, we select reusable functionalities,
available as existing applications or system APIs that support Intent integration. We
divide the list of functionalities into several categories as shown in Table 9.

 Category Name Description

Sensor GPSLocator Get current device’s location

 Location notifier Detect an enter/exit action of the registered location

 Date and Time* Get current date and time

Camera Zxing Barcode Read QR code using the camera

 Photo* Take a photo

Language Dictionary Look up the definition of a word

 Text2Speech Speak the received text

 Speech input Translate the user’s speech into text

 Translate Intent Translate the given text into another language

Telecom Phone dialer* Call a phone number

 SMS* Send an SMS to the receiver’s phone number

 Email* Send an Email to the receiver’s address

Map Google Maps Show a pin on a map and navigate to it

Storage ES File Explorer Open files

 Dropbox Download or save a file on cloud storage

Social Network Facebook Update Facebook status, send a message

 Twitter Tweet a message

 YouTube Play a YouTube video from the given URL

Utility App Launcher* Launch other mobile applications

 Evernote Add a text as a new note

 Web Search* Perform a Web search of the given keyword

 Music player* Launch a music player with the given file URI

*Built-in Android application

Table 9. List of sample mobile application components.

 There are large numbers of Web service APIs available for mashups as listed in
API directory Websites, i.e. Programmable Web [57]. We select frequently used Web
service APIs that are compatible with our approach: those offering a REST interface
with JSON or XML output. Since our approach focuses on the integration of data, some

84

popular Web service APIs, such as Google Maps which allows the embedding of maps
onto web pages, are not selected. The list of Web services is shown in

Table 10.

Category Name Description

Ecommerce Google Shopping Search for product information, e.g. title, price or picture,
from online stores using keywords or barcode numbers [58].

Video YouTube Search for videos by keywords [59].

Photos Flickr Retrieve photos from the Flickr photo sharing service using a
variety of parameters [60].

Social Facebook Graph Query Facebook data using its graph API [61].

Music Last.fm Search for music related information, e.g. artist, album or
track name [62].

Conversion MyMemory
Translate

Translate the given text into another language [55].

 ExchangeRate
API

Currency exchange rate Web service [42].

Reference Wikipedia Search for Wikipedia content by keywords [63].

 FlightStat Search for flight status and tracking information [64].

 GeoName Resolve the place name from a geographic location [65].

Location-based
Recommendations

Yelp Retrieve business reviews and rating information for a
particular geographic region or location [5].

 Google Places Search for POIs using particular geographic coordinates [4].

 GourNavi Retrieve restaurant reviews and rating information for a
particular geographic location [3].

 OpenWeatherMap Retrieve weather information for a particular geographic
location [66].

Web Extraction Import.io A partial Web extraction engine that provide Web service
APIs to access the extraction result [67].

Table 10. List of sample Web services

 Given a set of mobile components, Web services components and system events
listed in section 3.2, we are able to generate various data-flow and event-driven mashup
applications by using simple composition logic. The sample applications are listed in

Table 11.

Application Component Pattern Description

Last Train
Display last train
schedule using
current location

[MA]GPSLocator
[WS]GooglePlace
[WS]Train Schedule*

Data-Flow Use the current location to find nearest train
station and use the station name to find the
schedule for the last train.

Photo Diary
Create a diary in a
note application
including photo and
related information
about the place it
was taken

[MA] Camera
[M] GPSLocator
[WS]GeoName
[WS] Wikipadia
[MA] Evernote

Data-Flow Use the camera to take photos and find
related information about that photo by
using the current location to find the place
name. The place name is used to find a
Wikipedia article. Finally, the photo and
related information is saved to Evernote.

85

Wish List
Tweet a message
about interesting
items to buy

[MA]Xzing Barcode
[WS]GoogleShopping
[WS] Translate
[WS] ExchangeRate
[MA]Twitter

Data-Flow Use the Xzing application to scan barcodes
of interesting items and find title, price and
a link from online stores. Then translate the
information into a desired language.
Finally, tweet the translated information as
a wish list.

Check In
Automatically send
a message to friends
when you arrived at
a place.

[E]Wi-Fi Connected
[MA] Facebook

Event-Driven When connected to a Wi-Fi network, use
the network name to determine arrival
status, and send a message to a friend using
the Facebook application.

Battery Tweet
Tweet a message
when the remaining
battery status
becomes critical

[E] Battery Status
[MA] Twitter

Event-Driven When battery status is lower that 5 percent,
tweet a message to notify friends

Blind Buddy
Assist the blind by
speaking the current
place name out loud

[E] Location Changed
[WS] GeoName
[WS] Translate
[MA] Text2Speech

Event-Driven When the location has changed, speak the
new place name out loud.

[MA]: mobile application component, [WS]: Web service component, [E]: Event
*The APIs to find the last train schedule of two stations are not available as a Web service. We can use a Web extraction tool to
get the required information from the Website Jorudan [], and access this information via the Web service API of the Web
extraction tool.

Table 11. List of generated applications

 With a small set of mashup components, our approach can generate various kinds
of mashup applications. The simple integration model that integrates a mobile
application component with a Web services component can express broad areas of
requirements. For example, the Web service component of the Last Train application,
which finds the schedule for the last train, can be replaced with other Web services,
such as a restaurant and hotel search, weather information, photo retrieval or some other
location-based service to address different user’s requirements. Similarly, the simple
integration of an event and a mobile application component, i.e. Arrival Status and
Battery Tweet, can be easily customized to address different problems. For example, we
can change the event and mobile application component to other pair of components,
such as when an SMS is received the message is spoken out loud, or when an email is
received the text is translated or when the location has changed, another Web service
component is called in order to find nearby POIs.

 The result from this experiment shows that our mashup composition method is
expressive and flexible enough to generate a variety of mashup applications. Integration
of exiting mobile applications and Web service APIs can address problems of various
domains. Supporting both data-flow and event-driven composition is another key to
enhancing expressivity. Notably, the capability to integrate data from multiple devices
makes our approach unique and more expressive than other existing approaches.

86

7.3 Comparison to other mashup approaches
Many mobile mashup approaches have been proposed. Some of them share the same
goals as our approach. Table 12 shows a comparison of our approach with other
approaches. We select mashup approaches with similar objectives; that is, development
of event-driven mashup applications for mobile devices. The first selected approach is
TELAR [14], which is a context-aware mobile mashup platform that integrates Web
services and context information of local sensors. With TELAR, users can create event-
driven mashup applications that show POIs around their current location. Next is telco
mashup, which is mobile mashup for multiple devices. Telco mashup allows integration
of Telco services and/or device APIs to encourage collaboration among multiple users
[17]. Another one is MobiMash [19], which is a mashup composition approach that
generates hybrid mobile applications based on data integration and service orchestration.
We also added our previous work MAIDL to illustrate the improvement of the approach.

Features TELAR TELCO MobiMash MAIDL XLIMA+MEDAL

Component
Integration

LocationP/
WSP

TelephonyP WA / WS

MA / WS / WA
/ TeWS

MA + WS

Mashup Output Web-based Web-based Hybrid App Native App Native App

Composition Event-Driven Event-Driven Event-Driven
(UI events)

Data-flow
 / Event-DrivenP

Data-flow
 / Event-Driven

Event Coverage Location Telephony User Interface Pre-defined System / Mobile Apps

Event Handler Manual Manual Automatic
(UI events)

Manual Automatic

Component
Execution

Sync Sync Sync Sync Async

Resource
Consumption Level

Browser Browser Native App Native App Native App

Cooperation
Characteristic

Multiple
Clients

Multiple
Clients

User Interface
Synchronization

Tethered Web
services

Data Cooperation

P denotes pre-defined components

Table 12. Comparison with other related mashup approaches.

7.4 Discussion
The results of the expressivity evaluation and the comparison to other mashup
approaches indicate that our mashup composition provides an efficient solution to
mobile mashup composition for multiple mobile devices. The scope of integration and
expressivity of our approach is expanded from existing mashup approaches as shown in
Figure 35. Our approach achieves integration of device-specific features by using
mobile applications as a proxy to access sensor and context-aware data. REST Web
services and device-specific data from multiple mobile devices are also usable as

87

mashup components. The mashup composition can be composed in an event-driven or
data-flow manner. However, our approach is still unable to address some challenges.
This section discusses problems and limitations found in our current composition
method and a further plan for improvement.

Figure 35. Scope of integration of our approach.

Constraints of mobile application components. Our approach uses the capabilities of
Android Intents to turn mobile application into mashup components. However, not all
applications support Intent integration. Furthermore, the level of supporting differs per
application. We can use Intent to invoke functionality of some mobile applications as
service functions, sending input parameters and receiving output, such as barcode reader
or translator applications. On the other hand, some mobile applications take inputs from
Intents and bring themselves to active context without returning a value. As a result, the
composer should consider supporting the Inter feature of mobile application
components. Some applications can work as a service function, while some applications
can work as a final component to display or receive the output. Recently, the Android
operating system has implemented a Shared Intent [68] feature, which allows
applications to send data to other applications. For instance, we can share a photo with
social network applications by pressing the share button on the photo gallery, and
selecting a target from a list of compatible applications. As a result, most recent mobile
applications can be used as output components in our mashup composition.

Limitations of event-driven composition. Our approach allows using events from the
Android system via Intent Broadcasting and events of mobile applications through the
notification center. Multiple events can be listened for and handled in a mashup
application. One event may have multiple handlers to execute multiple mashup logic.
However, the current composition model still does not support simultaneous events with
one or multiple handlers. This composition style becomes a limitation because most
event notifications of the Android system using a single event model. However,

88

Android has a mechanism called Sticky Broadcast Intent [37], which holds the Intent
Broadcasting as a background service. Sticky Intent allows other processes or
applications to access the notification at any time. However, we did not include this
mechanism in the scope of our mashup composition because listening for an event
requires a background process which consumes more resources. More importantly,
simultaneous events composition is rarely used in typical event-driven applications.

Extension to Mesh Networking. We use a mobile Web server, i-Jetty, for enabling
connectivity between a host device and guest devices. The communication request
messages are sent through Email or SMS while the response message uses HTTP
requests to Web service interfaces. We found that execution time of our mashup is
heavily dependent on the efficiency of the network that delivers Email and SMS
messages. In addition, the i-Jetty Web server is not compatible with more recent
versions of the Android operating system. As a result, these problems reduce efficiency
of the cooperation process of our approach. Improved mobile device connectivity
technology should be considered.

 Recently, we found that there is research and commercial software aimed at
creating mesh networking for mobile devices; for instance, OpenGarden [69] and Serval
Project [70]. By using mesh networking, mobile devices are connected to other devices
in a peer-to-peer fashion through various channels, e.g., Bluetooth or Wi-Fi. Since the
mesh network topology allows connections to reach every node, cooperation of data on
this type of network is more flexible. The cooperation mashup scenario can be more
complex and expressive. In addition, the available mesh networking frameworks show
that they provide simple configuration and satisfactory performance. Thus, we plan to
use mesh networking as a new communication infrastructure for execution of
cooperative mashup applications.

Mashup Development Process. This research aims to reduce the development cost by
using description languages and mashup generator tools. We inherit concepts from our
previous work, MAIDL, and improve the development process in order to reduce the
required programming skills and efforts. The evaluation results of MAIDL show that
managing configurations of mashup components requires technical knowledge and
effort. This is a common problem for mashup approaches that aim to support end-users.
In facts, end-users cannot deal with complex configurations of Web service APIs or
Intent parameters. In some cases, they cannot comfortably edit the XML description file.
As a result, state-of-the-art mashup approaches apply two techniques to address this
problem [30]. The first technique is to delegate the component development process to
users with higher programming skills; so called component developers. Our approach
applies this concept to improve our mashup development process. We separate the
component description language from the mashup composition language to allocate this
task to skilled users or developers. XLIMA, a technology-dependent language, is used
by component developers while MEDAL, a technology-independent language, is
designed for users who are familiar with editing XML tags. In addition, we enhance
reusability and maintainability of our mashup components by building them as mobile

89

applications. Updating the configuration of mashup components does not affect the
mashup application. Notably, the run-time configuration feature of our mashup
components is a key to improving component reusability. In this way, our approach can
reduce the development cost in comparison to our previous approach. However, we plan
to implement a visual composition tool for supporting end-user mashup composition.

Execution Performance and Resource Consumption. In general, mobile mashup
applications are created as Web applications, hybrid mobile applications or native
mobile applications. Native mobile applications can be considered to be the most
resource-consuming. The conventional mobile mashup approaches build mashup output
as a single native mobile application. The modules, which work as mashup components,
and the orchestration process, are placed in one mobile application. In case of a
complex mashup composition that uses many mashup components, the mashup process
execution requires more resources from mobile devices. In addition, let us consider
multiple mashup applications that use the same mashup components but composed
using different logic. During the execution of these mashup applications, each identical
mashup component allocates their own resources from devices even if they perform the
same task.

 To address this problem, a unique idea of our mashup composition is that mashup
components and mashup applications are built as mobile applications, and integrated
using an inter-application communication protocol. One reason behind this idea is that
we want to utilize the automatic resource management of the Android system and
reduce resource consumption. Separating the processes of mashup components and
mashup applications can enhance reusability and reduce resource consumption. The
mashup components run as ordinary mobile applications, which will be kept as inactive
mobile applications when there is no component interaction activity. In this way,
multiple mashup processes, which contain only integration logic, can invoke the
mashup components in different orders while keeping the resource consumption level
equal to that of one mashup application.

90

Chapter 8

Conclusion

This research proposed description-based composition methods for data-flow and event-
driven composition for cooperation between mobile devices. The methods allow for the
composition of intent-supported mobile applications, REST architecture Web services,
and cooperation data from multiple mobile devices. The output mashup can be created
as a mobile application running on single devices, or as a data cooperation application
running on multiple devices. The composition methods also allow the creation of both
data-flow and event-driven mashups in order to increase expressivity. The integration of
cooperation data from multiple devices with other existing resources also expands the
coverage and expressivity to the higher level when compared to conventional multiple-
device mobile mashup approaches.

To realize mashup composition methods for multiple mobile devices, we studied
constraints of mobile technologies and discussed related design considerations. As a
result, we selected Android as our first experimental platform. The HTTP protocol with
a client-server architecture is selected as the connectivity model. A mobile Web server
module is used as a Web service container to host the communication interface on the
server device. To allow cooperation between devices, pre-installed software for the
clients and server are the minimum requirements.

We first explored data-flow mashup composition for cooperation of mobile
devices by using our previous mobile mashup approach, MAIDL, as the baseline. We
proposed a mashup construction system that allows composition of mobile applications
and Web services in data-flow driven manner. The mashup created by this approach was
targeted towards data cooperation among multiple mobile devices. We proposed an
XML-based description language called C-MAIDL, which is designed for representing
mashup component configurations and mashup application logic in data-flow driven
manner. We built mashup generator tools for aiding end-users in mashup application
development. Custom agents are pre-installed on the guest devices and a custom
communication center is pre-installed on the host device to accommodate the
communication processes. To develop a mashup application, mashup composers specify
the intended mashup configuration in a C-MAIDL file. A mashup generation engine
takes the description file as an input to generate Java code for the cooperating mashup
applications. The generated code is packed into an Android package file and installed
on the host device. We demonstrated the applicability for our system for cooperative
mobile mashups with sample scenarios. Finally, the limitations and required
improvements were discussed.

Our first approach took advantage of the integration of mobile applications with
other resources. However, the mobile application integration method still has limitations

91

and needs improvement. As a result, we introduced LIMA, an XML-based modeling
language for describing shared functionalities of mobile applications. LIMA aims to
enhance interoperability of mobile applications by providing an applicable way to
describe abstract and concrete details of shared functionalities. The design of LIMA has
adopted successful ideas from other contexts of software interoperability. Developers
can use LIMA to share functionalities of their mobile applications, and to reuse
functionalities of other mobile applications. We illustrated a conceptual design and
specification including examples of LIMA descriptions. The most important application
of LIMA is to enhance integration capability of mobile application components. In other
word, LIMA encourages reusability of mobile application components and increases
flexibility of our mashup composition approach by separating component configuration
from mashup composition logic.

Given the limitations of data-flow based mashup composition, we proposed
another mashup composition method for developing event-driven mashup applications.
This method aims to allow the composition of mobile applications, REST Web services,
and shared information from multiple devices in both data-driven and event-driven
ways. We set up sample scenarios that illustrate real situations of both data-driven and
event-driven mashups for single devices and for multiple devices. We realize the design
and characteristics of component configurations and integration by analyzing the
sample scenarios. We used description languages and code generator tools to leverage
mashup development cost. The XLIMA description language is defined to represent
mashup component configurations, and MEDAL for describing execution logic of
mashup components. To evaluate the applicability of our approach, we implemented our
first prototype on the Android mobile platform and used the mashup system to create a
mashup application following the sample scenarios.

We then evaluated the expressivity of our mashup composition and compared our
approach to other related mashup approaches. The evaluation results showed that our
proposed architecture improves expressivity and reduces the development cost of
mobile mashup application composition. Finally, we discussed problems and limitations
found in our current composition methods. In the future, we aim to expand the
expressivity of mashups by supporting more types of mashup components and reducing
mashup composition effort by implementing a visual composition tool. Improving
device connectivity with better mobile network technology, i.e. mesh networking on
mobile devices, is also one of our future goals.

92

Acknowledgement
I would like to express my gratitude to my academic supervisor, Prof. Takehiro Tokuda
for his kindness and encouragement throughout the course of my study. I would also
like to express my sincerest thanks to Prof. Motoshi Saeki, Prof. Takenobu Tokunaga,
Prof. Katsuhiko Gondow, and Asst. Prof. Shin’ya Nishizaki, who together with my
supervisor constitute as my thesis committees, for their valuable comments and
suggestions.

I would like to give my thanks to Mr. Prach Chaisatien, Mr. Tomoya Noro and Mr.
Kristian Slabbekoorn for their supportive assistance to my research. My gratitude also
goes to all Tokuda laboratory members for their warmest regards. This research will not
be successfully finished without the greathearted support from Thai students in Tokyo
Institute of Technology.

Finally, to my family, for giving me strength and support to continue my study.

Korawit Prutsachainimmit

Department of Computer Science

Graduate School of Information Science and Engineering

Tokyo Institute of Technology 2016

93

Bibliography

1. Anderson, C. The Long Tail: Why the Future of Business Is Selling Less of More by Chris Anderson.
Journal of Product Innovation Management, 24, (2007), 1–30.

2. Maximilien, E. M. (2008, August). Mobile Mashups: Thoughts, Directions, and Challenges. In ICSC
(Vol. 8, pp. 597-600).

3. Gourmet Navigator API. http://api.gnavi.co.jp/api/manual.htm.

4. Google Places API. https://developers.google.com/places/documentation/.

5. Yelp Serach API. http://www.yelp.com/developers/documentation/v2/search_api.

6. Chaisatien, P. and Tokuda, T. A Description-based Approach to Mashup of Web Applications, Web
Services and Mobile Phone Applications. Artificial Intelligence and Applications, (2011).

7. Wong, J. and Hong, J. What do we mashup when we make mashups? Proceedings of the 4th
international workshop on End User Software Engineering (2008), 35–39.

8. Zang, N. and Rosson, M.B. What’s in a mashup? And why? Studying the perceptions of web-active end
users. In Visual Languages and Human-Centric Computing, 2008. VL/HCC 2008. IEEE Symposium on.
2008, pp. 31–38.

9. Daniel, F., Matera, M., Milano, P., and Weiss, M. Next in Mashup Development : Apps on the Web.
Current, 13, October (2011), 22–29.

10. Xu, K., Zhang, X., Song, M., & Song, J. (2009, September). Mobile mashup: Architecture, challenges
and suggestions. In Management and Service Science, 2009. MASS'09. International Conference on (pp.
1-4)

11. Yahoo Pipe. https://pipes.yahoo.com/.

12. Intel Corp.: Mash maker (2007). http://mashmaker.intel.com/web/.

13. Kaltofen, S., Milrad, M., and Kurti, A. A cross-platform software system to create and deploy mobile
mashups. Web Engineering, (2010), 518–521.

14. Brodt, A. and Nicklas, D. The TELAR mobile mashup platform for Nokia internet tablets. Proceedings
of the 11th international conference on Extending database technology Advances in database
technology - EDBT ’08, (2008), 700.

15. Chudnovskyy, O. and Weinhold, F. Integration of telco services into enterprise mashup applications.
Current Trends in Web (2012).

16. Sanders, R.T. End-user Configuration of Telco Services Putting the end user in the loop – without losing
enterprise control. (2012), 72–74.

17. Gebhardt, H., Gaedke, M., Daniel, F., et al. From mashups to telco mashups: A survey. IEEE Internet
Computing 16, 2012, 70–76.

94

18. Stecca, M. and Maresca, M. An execution platform for event driven mashups. Proceedings of the 11th
International Conference on Information Integration and Web-based Applications & Services -
iiWAS ’09, (2009), 33.

19. Cappiello, C., Matera, M., and Picozzi, M. MobiMash: end user development for mobile mashups.
Proceedings of the 21st (2012), 473–474.

20. Cappiello, C., Matera, M., and Picozzi, M. End-User Development of Mobile Mashups. (2013), 641–
650.

21. Krug, M., Wiedemann, F., and Gaedke, M. SmartComposition: A Component-Based Approach for
Creating Multi-screen Mashups. In Web Engineering. Springer, 2014, pp. 236–253.

22. Husmann, M., Nebeling, M., Pongelli, S., and Norrie, M.C. MultiMasher: Providing Architectural
Support and Visual Tools for Multi-device Mashups. In Web Information Systems Engineering--WISE
2014. Springer, 2014, pp. 199–214.

23. Chaisatien, P. and Tokuda, T. A description-based composition method for mobile and tethered mashup
applications. Journal of Web Engineering, 12, 1&2 (2013), 93–130.

24. Aghaee, S., & Pautasso, C. (2011, December). The mashup component description language. In
Proceedings of the 13th International Conference on Information Integration and Web-based
Applications and Services (pp. 311-316).

25. Pérez, I., Herranz, Á., Munoz, S., and Moreno-Navarro, J. Modeling Mash-Up Resources. (2008).

26. EMML. http://www.openmashup.org/.

27. Sabbouh, M., Higginson, J., Semy, S., and Gagne, D. Web mashup scripting language. Proceedings of
the 16th international conference on World Wide Web WWW 07, pages, (2007), 1305–1306.

28. Maximilien, E.M., Wilkinson, H., Desai, N., and Tai, S. A Domain-Specific Language for Web APIs
and Services Mashups. ServiceOriented Computing–ICSOC 2007, 4749, (2007), 13–26.

29. Cappiello, C., Matera, M., and Picozzi, M. DashMash: a mashup environment for end user development.
Web Engineering, (2011), 152–166.

30. Daniel, F., Casati, F., Benatallah, B., and Shan, M. Hosted universal composition: Models, languages
and infrastructure in mashart. Conceptual Modeling-ER (2009), 428–443.

31. Chaisatien, P. and Tokuda, T. A description-based composition method for mobile and tethered Mashup
applications. Journal of Web Engineering, 0, 0 (2013).

32. Berson, A. Client-server architecture. McGraw-Hill, 1992.

33. i-Jetty. https://code.google.com/p/i-jetty/.

34. Intent. http://developer.android.com/reference/android/content/Intent.html.

35. iOS URL Scheme.
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide
/Inter-AppCommunication/Inter-AppCommunication.html.

36. x-callback-url. http://x-callback-url.com.

37. Intent Broadcasting. http://developer.android.com/reference/android/content/BroadcastReceiver.html.

95

38. Chowdhury, S.R.O.Y., Birukou, A., Daniel, F., and Casati, F. Composition Patterns in Data Flow Based
Mashups. 1, 212 (2011).

39. Tsai, C. L., Chen, H. W., Huang, J. L., & Hu, C. L. (2011, March). Transmission reduction between
mobile phone applications and RESTful APIs. In Proceedings of the 2011 ACM Symposium on Applied
Computing (pp. 445-450).

40. Guo, J., Chaisatien, P., Han, H., Noro, T., and Tokuda, T. Partial Information Extraction Approach to
Lightweight Integration on the Web. Current Trends in Web, 6385s, (2010), 372–383.

41. Google Search API for Shopping. http://code.google.com/apis/shopping/search/.

42. Exchange Rate API. http://www.exchangerate-api.com/.

43. Miller, P. Interoperability. What is it and Why should I want it. Ariadne, 24, 10 (2000).

44. Gasser, U. and Palfrey, J. When and How ICT Interoperability Drives Innovation. (2007).

45. Chinnici, R., Moreau, J.-J., Ryman, A., and Weerawarana, S. Web Services Description Language
(WSDL) Version 2.0 Part 1: Core Language. Interface 26, 2007, 1–103. http://www.w3.org/TR/wsdl20/.

46. Xzing Barcode Scanner (Android).
https://play.google.com/store/apps/details?id=com.google.zxing.client.android&hl=en.

47. Xzing API. https://code.google.com/p/zxing/.

48. Xzing Barcode Scanner (iOS). https://itunes.apple.com/en/app/barcodes-scanner/id417257150?mt=8.

49. Cusumano, M.A. The Changing Software Business: Moving from Products to Services. Computer, 41, 1
(January 2008), 20–27.

50. Tasker. https://play.google.com/store/apps/details?id=net.dinglisch.android.taskerm&hl=en.

51. Bruns, R. and Dunkel, J. Event-Driven Architecture. Springer Berlin Heidelberg, 2010.

52. Voulodimos, A.S. and Patrikakis, C.Z. Using personalized mashups for mobile location based services.
In IWCMC 2008 - International Wireless Communications and Mobile Computing Conference. 2008, pp.
321–325.

53. Cappiello, C. and Daniel, F. Information quality in mashups. Internet Computing, …, (2010).

54. K-9 Email. https://play.google.com/store/apps/details?id=com.fsck.k9&hl=en.

55. MyMemory Translation API. http://mymemory.translated.net/doc/spec.php.

56. Evenernote (Android). https://play.google.com/store/apps/details?id=com.evernote&hl=en.

57. ProgrammableWeb. http://www.programmableweb.com.

58. Google Conent API for Shopping. https://developers.google.com/shopping-content/.

59. YouTube APIs. https://www.youtube.com/yt/dev/api-resources.html.

60. Flickr API Garden. https://www.flickr.com/services/api/.

96

61. Facebook Graph API. https://developers.facebook.com/docs/graph-api.

62. Last.fm REST API. http://www.last.fm/api/rest.

63. MediaWiki API. http://www.mediawiki.org/wiki/API:Main_page.

64. FlightStat API. https://developer.flightstats.com/api-docs/how_to.

65. GeoName API. http://www.geonames.org/export/.

66. OpenWeatherMap API. http://openweathermap.org/api.

67. import.io. https://import.io.

68. Android Shared Intent. http://developer.android.com/reference/android/content/BroadcastReceiver.html.

69. Open Garden. https://opengarden.com.

70. Serval Project. http://www.servalproject.org.

97

A : XML Description Files

C-MAIDL
To demonstrate the syntax of C-MAIDL, we provide three C-MAIDL XML description
files. There are two example description files of Shopping Assistance and Meeting Point
scenarios that we presented in section 4.5.

Shopping Assistance C-MAIDL Mashup Descriptions

<project>

 <component>

 <name>Barcode</name>

 <role>

 <publisher>

 <publisher-id>001</publisher-id>

 </publisher>

 </role>

 <execution>single</execution>

 <cooperation>

 <mobileapplication>

 <app-name>bcapp://x-callback-url/scan?</app-name>

 <app-params>

 <param-name>formats</param-name>

 <values>

 <value>EAN13,EAN8,UPCE,QR</value>

 </values>

 <param-name>success</param-name>

 <values>

 <value>scanresult</value>

 </values>

 <param-name>error</param-name>

 <values>

 <value>error</value>

 </values>

 </app-params>

 <mobileapplication>

 <results>

 <result>

 <result-name>scannedcode</result-name>

 <type>single</type>

 <value>code</value>

 <filter>null</filter>

 </result>

 </results>

 </cooperation>

 </component>

98

 <component>

 <name>GoogleProduct</name>

 <role>

 <medium>

 <subscriber-id>001</subscriber-id>

 <publisher-id>002</publisher-id>

 </medium>

 </role>

 <execution>single</execution>

 <webservice>

 <base>https://www.googleapis.com/</base>

 <paths>

 <path>shopping</path>

 <path>search</path>

 <path>v1</path>

 <path>public</path>

 <path>products</path>

 </paths>

 <keys>

 <key>key</key>

 <key>country</key>

 <key>q</key>

 <key>alt</key>

 </keys>

 <values>

 <value>10d9098dba2f680c748de5b03b28940d</value>

 <value>JP</value>

 <value>publisher[001].results.scannedcode</value>

 <value>json</value>

 </values>

 <format>JSON</format>

 <results>

 <result>

 <result-name>ProductName</result-name>

 <type>multiple</type>

 <query>//title</query>

 <index>null</index>

 <filter>null</filter>

 </result>

 <result>

 <result-name>StoreName</result-name>

 <type>multiple</type>

 <query>//author/name</query>

 <index>null</index>

 <filter>null</filter>

 </result>

 <result>

 <result-name>Price</result-name>

 <type>multiple</type>

 <query>//inventories/price</query>

 <index>null</index>

 <filter>null</filter>

 </result>

99

 <result>

 <result-name>StoreURL</result-name>

 <type>multiple</type>

 <query>//link</query>

 <index>null</index>

 <filter>null</filter>

 </result>

 </results>

 </webservice>

 </component>

 <arithmetic>

 <name>BestPrice</name>

 <role>

 <medium>

 <subscriber-id>002</subscriber-id>

 <publisher-id>003</publisher-id>

 </medium>

 </role>

 <execution>multiple</execution>

 <operation>lowest-filter</operation>

 <input>

 <value>GoogleProduct.results.Price</value>

 </input>

 <results>

 <result>

 <result-name>ProductName</result-name>

 <type>single</type>

 <value>arithmetic.results.ProductName</value>

 </result>

 <result>

 <result-name>StoreName</result-name>

 <type>single</type>

 <value>arithmetic.results.StoreName</value>

 </result>

 <result>

 <result-name>Price</result-name>

 <type>single</type>

 <value>arithmetic.results.Price</value>

 </result>

 <result>

 <result-name>StoreURL</result-name>

 <type>single</type>

 <value>arithmetic.results.StoreURL</value>

 </result>

 </results>

 </arithmetic>

 <component>

 <name>ExchageRate</name>

 <role>

 <medium>

 <subscriber-id>003</subscriber-id>

100

 <publisher-id>004</publisher-id>

 </medium>

 </role>

 <execution>single</execution>

 <webservice>

 <base>http://www.exchangerate-api.com/</base>

 <paths>

 <path>usd</path>

 <path>jpy</path>

 <path>publisher.results.Price</path>

 </paths>

 <keys>

 <key>k</key>

 </keys>

 <values>

 <value>PQkn3-quzTZ-PNDav</value>

 </values>

 <format>XML</format>

 <results>

 <result>

 <result-name>YenPrice</result-name>

 <type>single</type>

 <query>null</query>

 <index>null</index>

 <filter>null</filter>

 </result>

 </results>

 </webservice>

 </component>

 <output>

 <cooperation>

 <output-type>web</output-type>

 <output-params>

 <title>Shopping Compare Coordination Mashup Result</title>

 <table border=2>

 <tr>

 <td colspan=2>Guest</td>

 <td>cooperation.GuestID</td>

 </tr>

 <tr>

 <td colspan=2>Title</td>

 <td>publisher[003].results.ProductName</td>

 </tr>

 <tr>

 <td>Store</td>

 <td>publisher[003].results.StoreName</td>

 <td>Link</td>

 <td>publisher[003].results.StoreURL</td>

 </tr>

 <tr>

 <td>Price(Yen)</td>

 <td>publisher[004].results.YenPrice</td>

101

 <td>Price(USD)</td>

 <td>publisher[003].results.Price</td>

 </tr>

 </table>

 </output-params>

 </cooperation>

 </output>

</project>

Meeting Point C-MAIDL Mashup Descriptions

<project>

 <component>

 <name>HostLocator</name>

 <role>

 <publisher>

 <publisher-id>001</publisher-id>

 </publisher>

 </role>

 <execution>single</execution>

 <mobileapplication>

 <mode>passive</mode>

 <intent>

 <intent-name>com.prach.GPSLocator</intent-name>

 <intent-extra>

 <extra-name>MODE</extra-name>

 <extras>

 <extra>PASSIVE</extra>

 </extras>

 <extra-name>TYPE</extra-name>

 <extras>

 <extra>null</extra>

 </extras>

 </intent-extra>

 </intent>

 <results>

 <result>

 <result-name>Latitude</result-name>

 <type>single</type>

 <value>LAT</value>

 <filter>null</filter>

 </result>

 <result>

 <result-name>Longitude</result-name>

 <type>single</type>

 <value>LNG</value>

 <filter>null</filter>

 </result>

 </results>

 </mobileapplication>

 </component>

 <component>

102

 <name>GuestLocation</name>

 <role>

 <publisher>

 <publisher-id>002</publisher-id>

 </publisher>

 </role>

 <execution>single</execution>

 <cooperation>

 <mode>passive</mode>

 <mobileapplication>

 <app-name>gpsapp://x-callback-url/getLocation?</app-name>

 <app-params>

 <param-name>mode</param-name>

 <values>

 <value>current</value>

 </values>

 </app-params>

 </mobileapplication>

 <results>

 <result>

 <result-name>Latitude</result-name>

 <type>single</type>

 <value>lat</value>

 <filter>null</filter>

 </result>

 <result>

 <result-name>Longitude</result-name>

 <type>single</type>

 <value>lng</value>

 <filter>null</filter>

 </result>

 </results>

 </cooperation>

 </component>

 <arithmetic>

 <name>MiddleLat</name>

 <role>

 <medium>

 <subscriber-id>001</subscriber-id>

 <subscriber-id>002</subscriber-id>

 <publisher-id>003</publisher-id>

 </medium>

 </role>

 <execution>single</execution>

 <operation>average</operation>

 <values>

 <value>HostLocator.results.Longitude</value>

 <value>GuestLocator.results.Longitude</value>

 </values>

 <results>

 <result>

 <result-name>MiddleLatResult</result-name>

 <type>single</type>

103

 <value>arithmetic.calculation</value>

 <filter>null</filter>

 </result>

 </results>

 </arithmetic>

 <arithmetic>

 <name>MiddleLng</name>

 <role>

 <medium>

 <subscriber-id>001</subscriber-id>

 <subscriber-id>002</subscriber-id>

 <publisher-id>004</publisher-id>

 </medium>

 </role>

 <execution>single</execution>

 <operation>average</operation>

 <values>

 <value>HostLocator.results.Longitude</value>

 <value>GuestLocator.results.Longitude</value>

 </values>

 <results>

 <result>

 <result-name>MiddleLngResult</result-name>

 <type>single</type>

 <value>arithmetic.calculation</value>

 <filter>null</filter>

 </result>

 </results>

 </arithmetic>

 <component>

 <name>GourNavi</name>

 <role>

 <medium>

 <subscriber-id>003</subscriber-id>

 <subscriber-id>004</subscriber-id>

 <publisher-id>005</publisher-id>

 </medium>

 </role>

 <execution>single</execution>

 <webservice>

 <base>http://api.gnavi.co.jp/</base>

 <paths>

 <path>ver1</path>

 <path>RestSearchAPI</path>

 </paths>

 <keys>

 <key>keyid</key>

 <key>input_coordinates_mode</key>

 <key>coordinates_mode</key>

 <key>latitude</key>

 <key>longitude</key>

 <key>hit_per_page</key>

 <key>range</key>

104

 </keys>

 <values>

 <value>10d9098dba2f680c748de5b03b28940d</value>

 <value>2</value>

 <value>2</value>

 <value>publisher[002].results.MiddleLatResult</value>

 <value>publisher[003].results.MiddleLngResult</value>

 <value>8</value>

 <value>2</value>

 </values>

 <format>XML</format>

 <results>

 <result>

 <result-name>Name</result-name>

 <type>multiple</type>

 <query>//name</query>

 <index>null</index>

 <filter>null</filter>

 </result>

 <result>

 <result-name>Category</result-name>

 <type>multiple</type>

 <query>//category</query>

 <index>null</index>

 <filter>null</filter>

 </result>

 <result>

 <result-name>Latitude</result-name>

 <type>multiple</type>

 <query>//latitude</query>

 <index>null</index>

 <filter>null</filter>

 </result>

 <result>

 <result-name>Longitude</result-name>

 <type>multiple</type>

 <query>//longitude</query>

 <index>null</index>

 <filter>null</filter>

 </result>

 </results>

 </webservice>

 </component>

 <arithmetic>

 <name>DistanceCalculator</name>

 <role>

 <subscriber>

 <subscriber-id>003</subscriber-id>

 <subscriber-id>004</subscriber-id>

 <subscriber-id>005</subscriber-id>

 </subscriber>

 </role>

 <execution>multiple</execution>

105

 <operation>gpsdistance</operation>

 <values>

 <value>publisher[002].results.MiddleLatResult</value>

 <value>publisher[003].results.MiddleLngResult</value>

 <value>publisher[004].results.Latitude</value>

 <value>publisher[004].results.Longitude</value>

 </values>

 <results>

 <result>

 <result-name>Distance</result-name>

 <type>multiple</type>

 <value>arithmatic.calculation</value>

 <filter>null</filter>

 </result>

 </results>

 </arithmetic>

 <output>

 <cooperation>

 <feature-id>map</feature-id>

 <feature-extras>

 <points>

 <array>

 <loop>

 <object>

 <name>name</name>

 <value>GourNavi.results.Name</value>

 <name>category</name>

 <value>GourNavi.results.Category</value>

 <name>latitude</name>

 <value>GourNavi.results.Latitude</value>

 <name>longitude</name>

 <value>GourNavi.results.Longitude</value>

 <name>distance</name>

 <value>DistanceCalculator.results.Distance</value>

 <name>unit</name>

 <value>km</value>

 </object>

 </loop>

 </array>

 </points>

 </feature-extras>

 </cooperation>

 </output>

</project>

106

XLIMA and MEDAL XML
To demonstrate the syntax of XLIMA and MEDAL, we provide two XLIMA and one
MEDAL XML description files used in the sample scenario of event-driven mashup
composition that we presented in section 6.4.

Automatic Email Translation Mashup Application

XLIMA Description file for Email Proxy Component

<XLIMA>

 <name>New Email Notification Proxy</name>

 <description>

 This is a XLIMA sample file to describe event-driven mobile mashup component.

 When a new email received, K9 email client will send intent broadcasting.

 This component intercept that event and transform to on_email_received event.

 </description>

 <abstraction>

 <component id="com.korawit.component.email">

 <event id="on_email_received">

 <parameters>

 <param id="from" datatype="string" />

 <param id="subject" datatype="string" />

 <param id="content" datatype="string" />

 </parameters>

 <trasformation>

 <filter parameter="from" type="contain"

 value="userinterface.uiForm" action="raise" />

 <filter parameter="subject" type="contain"

 value="userinterface.uiSubject" action="raise" />

 </trasformation>

 </event>

 </component>

 </abstraction>

 <implementation>

 <mobileapplication id="com.fsck.k9">

 <listener id="K9EmailListener">

 <protocol name="intent" type="broadcast">

 <intent-filter>

 <action>com.fsck.k9.intent.action.EMAIL_RECEIVED</action>

 <data-scheme>email</data-scheme>

 <extras>

 <extra id="subject"

 name="com.fsck.k9.intent.extra.SUBJECT" datatype="string" />

 <extra id="from"

 name="com.fsck.k9.intent.extra.FROM" datatype="string" />

 <extra id="preview"

 name="com.fsck.k9.intent.extra.PREVIEW" datatype="string" />

 </extras>

 </intent-filter>

107

 </protocol>

 </listener>

 </mobileapplication>

 <event-binding trigger="K9EmailListener" event="on_email_received">

 <mapping rule="direct" source="K9EmailListener.subject"

 target="event.on_email_received.subject" />

 <mapping rule="direct" source="K9EmailListener.from"

 target="event.on_email_received.from" />

 <mapping rule="direct" source="K9EmailListener.preview"

 target="event.on_email_received.content" />

 </event-binding>

 </implementation>

 <userinterface>

 <element id="uiFrom" datatype="string" uitype="EditText">

 <display-name>From Filter</display-name>

 <default>korawit@gmail.com</default>

 </element>

 <element id="uiSubject" datatype="string" uitype="EditText">

 <display-name>Subject Filter</display-name>

 <default-value>""</default-value>

 </element>

 </userinterface>

</XLIMA>

XLIMA Description file for Translate Proxy Component

<XLIMA>

 <identification>Translation Proxy</identification>

 <description>

 This is a XLIMA sample file to describe event-driven mobile mashup component.

 Translation proxy is a Web service proxy component. It receive input text and

 translate

 into designed language.

 </description>

 <abstraction>

 <component id="com.korawit.mashup.component.translate">

 <operation id="translate">

 <parameters>

 <param id="text" datatype="string" />

 </parameters>

 </operation>

 <event id="on_translated">

 <parameters>

 <param id="output" datatype="string" />

 </parameters>

 </event>

 </component>

 </abstraction>

 <implementation>

 <webservice id="wsTranslate">

 <entrypoint url="http://mymemory.translated.net/api/get">

 <protocol name="http" type="rest">

108

 <query>

 <key name="q" urlencode="UTF-8"/>

 <key name="langpair" urlencode="UTF-8"/>

 </query>

 <results>

 <result id="translateText">

 <value rule="json" path="/responseData[0]/translatedText" />

 </result>

 </results>

 </protocol>

 </entrypoint>

 </webservice>

 </implementation>

 <bindings>

 <binding type="invoke" trigger="translate" action="wsTranslate">

 <mapping rule="direct" source="translate.text" target="wsTranslate.q" />

 <mapping rule="direct" source="userinterface.uiLang" target="wsTranslate.langpair" />

 </binding>

 <binding type="event" trigger="wsTranslate" action="on_translated">

 <mapping rule="direct" source="wsTranslate.translatedText"

 target="event.on_translated.output" />

 </binding>

 </bindings>

 <userinterface>

 <element id="uiLang" datatype="string" uitype="EditText">

 <display-name>Language Pair</display-name>

 <default>ja|en</default>

 </element>

 <element id="uiPreview" datatype="string" uitype="EditText">

 <display-name>Preview</display-name>

 <default>ja|en</default>

 <value rule="direct" source="wsTranslate.translatedText" trigger="wsTranslate" />

 </element>

 </userinterface>

</XLIMA>

MEDAL Description file for Automatic Email Translation Mashup

<MEDAL>

<identification>

 <mashupid>com.korawit.mashup.emailtranslation</mashupid>

 <name>Automatic Email Translation</name>

</identification>

<document>

A sample scenario of even-driven mobile mashup that listens to new incoming email, translate

the email content into a apecific language, finally save the translated text to a note app.

</document>

<declaration>

 <components>

 <component id="com.korawit.mashup.component.email"

 alias="K9Email"

 url="http://localhost/mobilemashup/cpr/k9email_proxy.xlima">

109

 <component id="com.korawit.mashup.component.translate"

 alias="Translator"

 url="http://localhost/mobilemashup/cpr/translate_proxy.xlima">

 <component id="com.korawit.mashup.component.note"

 alias="Evernote" url="http://localhost/mobilemashup/cpr/note_proxy.xlima">

 </components>

</declaration>

<mashup>

 <listener id="emailListener" alias="OnEmailReceived"

 publisher="K9Email" event="on_email_received">

 <handler event="OnEmailReceived">

 <invocation component="Translator" operation="translate" >

 <mapping mode="single">

 <direct src="OnEmailReceived.content" dest="translate.text" />

 </mapping>

 </invocation>

 </handler>

 </listener>

 <listener id="translationListener" alias="OnTranslated"

 publisher="Translator" event="on_translated">

 <handler event="OnTranslated">

 <invocation component="Evernote" operation="addnew" >

 <mapping mode="single">

 <direct src="OnTranslated.output" dest="addnew.text" />

 </mapping>

 </invocation>

 </handler>

 </listener>

</mashup>

</MEDAL>

