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Abstract

The present thesis studies statistical-mechanical properties of mean-field models to re-
veal an effect of various types of quantum fluctuations against the efficiency of quantum
annealing.

Quantum annealing is a quantum computation model to search the ground state of Ising
spin systems by taking advantage of quantum fluctuations. The quantum fluctuations
are usually induced by the transverse-field term. However, it has been reported that
the quantum annealing with the transverse-field term has a difficulty of exponentially
long running time for certain problems. For example, quantum annealing cannot find
even the ground state of a simple ferromagnetic system. The difficulty is closely related
to the phenomena of quantum phase transitions. Quantum annealing typically requires
exponentially long time to find the ground state of a system, if the system undergoes a
first-order quantum phase transition in the thermodynamics limit. Hence, avoiding first-
order quantum phase transitions is a critical issue for quantum annealing.

A solution to avoid the difficulty mentioned above is to use a degree of freedom of
quantum annealing. Although many studies adopt the transverse-field term to induce
quantum fluctuations, there is no restriction to use the term. The present thesis shows
that the difficulty for the simple ferromagnetic system can be avoided by using transverse
antiferromagnetic interactions. Furthermore, the antiferromagnetic term turns out to be
also effective for a random spin system. We next focus on the macroscopic degeneracy
of the ground states of the antiferromagnetic term. In order to reveal the effect of the
macroscopic degeneracy, the Wajnflasz-Pick model is analyzed. The Wajnflasz-Pick model
is interesting also in terms of providing an alternative way to control the order of quantum
phase transitions.
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Chapter 1.

Introduction

The present thesis analyzes quantum phase transitions of discrete quantum systems from a
point of view of quantum annealing. Quantum annealing [1–6] stems from development of
algorithms for combinatorial optimization problems [7], where researchers in various field
such as physics, mathematics, and computer science contributes. In this chapter, we briefly
review the development of quantum annealing in order to understand the motivation of
the present study. Detailed explanation is given by the subsequent chapters. We start the
present chapter with background of combinatorial optimization problems. Next, Sec 1.2
explains a contribution from physics to combinatorial optimization problems. We then
describe quantum annealing in association with quantum phase transitions in Sec. 1.3.
Finally, Sec. 1.5 is devoted to the overview of the present thesis.

1.1. Combinatorial optimization problems

Combinatorial optimization problems [7] originate in our lives. One would try to find the
shortest route from their home to workplace, and minimize the cost for the commuting.
Combinatorial optimization problems are considered as problems to find an option from
among a set of options so that the option minimizes cost. In economic point of view, such
problems are important to save money, time, and resources. Furthermore, combinatorial
optimization problems are interesting topic also in scientific context. Investigating a low-
energy state of a physics system is helpful to understand low-temperature properties of
the system. Here, the energy corresponds to cost, and the low-energy state to the best
option.

In a computer science context, combinatorial optimization problems are formulated
in the following way. First, one should convert the options of combinatorial optimization
problems to bit strings with an injective mapping. Second, one should construct a function
representing the cost of the problem. The function must be a scalar function of binary
variables whose values correspond to the bit strings denoting the options. The function
is referred to as the cost function. Although the construction of the cost function is not
trivial, we can find examples of the cost function of combinatorial optimization problems
such as the traveling salesman problem [8] and the protein folding problem [9]. The task
of combinatorial optimization problems is to obtain a bit string that minimize the cost
function. For example, the task of the traveling salesman problem is to find the shortest
route from among the possible routes that visits all cities once, and returns to the first
city.

A central issue for combinatorial optimization problems is development of an algorithm
to solve the problems as fast as possible. In general, combinatorial optimization problems
requires much time to solve themselves. The reason is twofold: One is the huge number
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Chapter 1. Introduction

of possible options of combinatorial optimization problems. For example, the number of
possible routes of the traveling salesman problem grows factorially as the number of cities
increases. This means that it is impracticable to check all routes to find the shortest
one for the problem with many cities. The other reason is complex dependency of cost
functions on binary variables. A cost function of a difficult problem looks like a jagged
mountain; that is, the value of the cost function changes rapidly with a little change of
the binary variables, and the function has many-valley structure. This attribute makes it
difficult to find the optimal solution through a simple algorithm such as the method of
steepest descend.

The combinatorial optimization problems can be classified into two classes according
to the necessary computational time to solve the problem. Since a large-scale problem
naturally requires a long computational time, the point is the scaling of the computational
time as a function of the problem size. Here, the problem size is the number of binary
variables needed to represent the problem. In theoretical computer science, a problem
is considered to be easy if the problem can be solved by an algorithm in a time upper
bounded by a polynomial of the system size for all possible problem sizes. In this case,
the algorithm is called to be efficient. On the other hand, one considers problems as hard
or intractable if the optimal solution cannot be found by any algorithm in a polynomial
time. Unfortunately, intractable problems are not rare. Although no proof of intractability
is obtained, it is generally believed that, for instance, the traveling salesman problem is
intractable because efficient algorithms have not been found despite a lot of studies being
carried out.

An effective solution to deal with intractable problems is using approximate algorithms.
An approximate algorithm can find the optimal solution of a given problem with a prob-
ability. Even though the approximate algorithm fails to find the optimal solution, the
algorithm is expected to return an solution that is close to the optimal solution. An ap-
proximate algorithm for the traveling salesman problem is the combination of a greedy
algorithm followed by the 2-opt algorithm. First, the greedy algorithm constructs an ini-
tial guess by connecting nearest cities one after another. The algorithm is based on our
heuristics that visiting the nearest city is more efficient than going to a far city and coming
back. Next, the 2-opt algorithm refines the initial guess by a local flip of paths. Roughly
speaking, the algorithm removes crosses of paths that make the route longer. Since the
approximate algorithm do not need to search all routes, the computational time can be
significantly reduced. However, the drawback is that the approximate algorithm cannot
be applied to other optimization problems. One have to devise an effective approximate
algorithm for each problem.

1.2. Statistical mechanics in combinatorial optimization
problems

Combinatorial optimization problems can be translated into physics problems of finding
the ground state of an Ising spin system by identifying the binary variables with the
Ising spins, and cost function with a Hamiltonian [7–11]. The transformation enables us
to study combinatorial optimization problems by using ideas and methods developed in
statistical physics. Since our focus is on a scaling of a computational time for large-size
problems, investigation of statistical-mechanical properties of the system makes sense.

A representative contribution to computer science from statistical physics is the devel-

2



1.3. Quantum annealing

opment of simulated annealing (SA) [8]. The idea comes from the analogy of the annealing
process of metal: when a piece of heated metal is cooled slowly enough, it eventually takes
a sturdy and stable structure corresponding to the global minimum of the energy. We in-
troduce artificial temperature into the Ising spin system whose ground state is the desired
optimal solution, and reduce the temperature slowly from a high value to zero. Simulated
annealing makes the system stay close to the thermal equilibrium state at each tempera-
ture by means of the Markov chain Monte Carlo method, and finally, at zero temperature,
outputs the lowest-energy state, i.e., the optimal solution. Simulated annealing can be
regarded as an algorithm to avoid local minima by using thermal fluctuations.

What matters is the schedule of annealing of SA. Too-fast cooling causes failure of
relaxation of the system, leading wrong solution, as a metal cooled rapidly has defects.
Although the appropriate annealing schedule depends on each problem, a certain sufficient
condition valid for any problems has been found by Geman and Geman [5,12]. The paper
has reported that an inverse-logarithmic annealing schedule ensures the success of SA for
any problems in the limit of infinitely long time.

An important nature related to the appropriate annealing schedule of SA is phase tran-
sition phenomena. Divergence of relaxation time at a phase transition point indicates the
failure of SA. Precisely speaking, the relaxation time in SA does not diverge, since SA is
a method for finite size systems. However, finite but large systems have a long relaxation
time that can be actually regarded as an infinitely long time.

1.3. Quantum annealing

Quantum annealing (QA) is a quantum computation model to solve combinatorial opti-
mization problems by taking advantage of quantum fluctuations. Whereas SA uses thermal
fluctuations to avoid local minima, QA uses quantum fluctuations. Quantum annealing
can find the ground states of the Ising spin systems through the simulation of a quantum
system that is governed by the Schrödinger equation. The Hamiltonian of the system
consists of two parts: problem part and driver part. The problem part corresponds to
the cost function. The driver part must not commute with the problem part, and induces
quantum fluctuations into the system. Furthermore, let us assume that the system ini-
tially has an unique easy-to-prepare state. The method starts in the unique state, and
the total Hamiltonian gradually changes from the driver part to the problem part. The
adiabatic theorem of quantum mechanics [13] ensures that the success probability to get
the global minimum of the problem part of the Hamiltonian is close to unity as long as
the running time is much longer than inverse square of the minimum energy gap between
the ground state and the first excited state during the time evolution.

Quantum phase transition is closely related to the efficiency of QA. According to the
finite-size scaling theory, systems that undergo a second-order quantum phase transition
have a minimum energy gap that decays polynomially in the vicinity of the phase transition
point [14,15]. Since the running time of QA increases at most polynomially, QA is efficient
for the problem. On the other hand, systems with a first-order phase transition typically
have a minimum gap that decays exponentially [16–19] except an anomalous case [20].
Hence, QA fails to find the ground state in a reasonable time except special cases. We can
thus estimate the efficiency of QA by analyzing the degree of quantum phase transition of
the system. An central issue of QA is reduction in running time for hard problems. For
this purpose, avoiding first-order quantum phase transitions is an important challenge to

3



Chapter 1. Introduction

be addressed for QA.
An advantage of QA against SA is that QA has flexibility in type of quantum fluc-

tuations. Although many studies adopt the transverse-field term as a driver part of the
Hamiltonian, there is no restriction to use the term. The present thesis shows that first-
order quantum phase transitions can be avoided by using the advantage.

1.4. Purpose of the thesis

The purpose of the present thesis is to explore a way to improve the efficiency of QA by
using the advantage described above. The strategies discussed in the present thesis are (1)
to use antiferromagnetic transverse interactions in addition to a transverse field and (2) to
adjust order of degeneracy of energy levels. To reveal the way to improve QA contributes
to research for quantum computation where its computational ability is still unclear.

1.5. Overview

The present thesis investigates quantum phase transitions in order to explore the way
to improve the efficiency of QA. As mentioned above, QA has a potential to avoid the
difficulty by using the degree of freedom in choosing the type of quantum fluctuations.
We focus on mean-field models because of its facility of analysis. Although the mean-
field models seem not to be realistic, the models are most simplified models involving the
difficulty for QA. Moreover, combinatorial optimization problems are closely related to
mean-field models. Since the cost functions of the combinatorial optimization problems
are constructed artificially, the cost function is not necessarily expressed by a Hamiltonian
of nearest neighbor interactions. For example, the cost function of the traveling salesman
problem given by Hopfield and Tank includes long range interactions [21]. Accordingly,
the analysis of the mean-field models is of significance.

We first overview the basics of QA in Chap. 2. Quantum annealing is originally devel-
oped as a natural extension of SA. The process of QA is explained in Sec. 2.1. We then
introduce an important computation model, quantum adiabatic computation, which is a
restricted version of QA in Sec. 2.2. The development of quantum adiabatic computation
gives criteria of the required running time of QA. We next introduce some examples that
show the advantage of QA over classical algorithms, especially over SA in Sec. 2.3. Finally,
the physics implementation of QA is described in Sec. 2.4.

Chapter 3 is devoted to the analysis of the ferromagnetic p-spin model. The model is
just a ferromagnetic model, and its ground state is the trivial spin-aligned state. Hence,
we deal with the model as an example that exhibits the difficulty of QA, that is quantum
first-order phase transitions, rather than a combinatorial optimization problem. Since the
ferromagnetic p-spin model is the most simplified model that tends to undergo the first-
order phase transition owing to the its mean-field nature, the model is suitable for the first
step to study the way to avoid the difficulty. First, we describe a principal proposition
of the present thesis, which is an extension of QA using antiferromagnetic transverse
interactions in Sec. 3.1. Next, Sec. 3.2 describes the framework of the analysis used in the
present thesis. Section 3.3.1 shows that antiferromagnetic transverse interactions change
the first-order phase transition to the second-order phase transition. Furthermore, we
calculate the energy gap to estimate the running time of QA in Sec. 3.3.2. It is possible
to calculate the energy gap for relatively large size systems because of a symmetry of
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1.5. Overview

the model. The resulting minimum energy gap scales polynomially in the vicinity of
the second-order phase transition point, which is consistent with the result of the phase
diagram. Section 3.4 is devoted to discussion for the large p limit. In this limit, the
ferromagnetic p-spin model reduces to the Grover problem that is known to be intractable
both for classical algorithms and quantum algorithms.

Chapter 4 analyzes the Hopfield model. The main purpose of this chapter is to check
if the antiferromagnetic transverse interactions are also effective for random spin systems.
The model is regarded as a model that covers a wide range of mean-field random spin
systems. The model exhibits various type of phase transitions by adjusting a parameter
called the number of embedded patterns of memory. In addition, the model is interesting
since the phase diagram of the classical Hopfield model and that of quantum Hopfield
model with the transverse-field term are almost the same [22]. The fact suggests that
SA and QA with the transverse-field term has the same efficiency for the model. The
question here is: Is it possible to improve the efficiency of QA by using the degree of
freedom? The analysis of the phase diagram of the model answers the question. We first
define the quantum Hopfield model in Sec. 4.1. We then analyze the system with a finite
number of patterns embedded in Sec. 4.2.1. The resulting phase diagram shows that the
first-order phase transition can be avoided in a similar way as the ferromagnetic p-spin
model. However, in Sec. 4.3, it turns out that the antiferromagnetic term does not help
the process of QA in the case where the number of embedded patterns is proportional to
the system size. In this case, a phase called spin-glass phase hampers the process. The
many patterns are not a direct cause of the difficulty. We show a case where many patterns
are embedded, and the process of QA for the model does not undergo first-order phase
transitions in Sec. 4.4.

Chapter 5 studies the nature of quantum phase transitions in the Wajnflasz-Pick model.
The definition of the Wajnflasz-Pick model is given in Sec. 5.1 First, Sec. 5.2 investigates
the effect of the macroscopic degeneracy of the ground state of the antiferromagnetic
term, which can be considered as a nature that provides exponential speed-up in the
ferromagnetic p-spin model. Next, we explore an alternative way to avoid first-order
quantum phase transitions in Sec. 5.3. The classical Wajnflasz-Pick model is known to
exhibits different phase transitions depending on certain parameters of the model. We
check whether a similar phenomena occurs or not in a quantum case.

We summarize our findings and conclude the thesis in Chap. 6.
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Chapter 2.

Quantum annealing

In this chapter, we introduce the fundamentals of quantum annealing [1–3,6] and quantum
adiabatic computation (QAC) [23] , which are quantum computation model to obtain an
approximate solution for combinatorial optimization problems. In addition, a physics
implementation of QA is described.

2.1. Quantum annealing

This section describes the principle of QA explicitly. Let us consider the problem of finding
the ground state of a Hamiltonian Ĥ0 represented in terms of the z components of the
Pauli matrices σ̂zi (i = 1, . . . , N). In this dissertation, we call Ĥ0 the target Hamiltonian.
For the purpose of introducing quantum fluctuations, an operator V̂ is added to the target
Hamiltonian. The operator V̂ must satisfy the following two conditions: (i) it does not
commute with the target Hamiltonian, [Ĥ0, V̂ ] 6= 0, and (ii) it has a unique trivial ground
state. This noncommutativity introduces quantum fluctuations into the system, causing
state transitions. Hence, let us call this operator the driver Hamiltonian. A typical
example of the driver Hamiltonian is the transverse-field operator V̂TF ≡ −

∑N
i=1 σ̂

x
i ,

where the σ̂xi (i = 1, . . . , N) are the x components of the Pauli matrix. Thus the total
Hamiltonian is represented by

Ĥ(t) = Ĥ0 + Γ(t)V̂ , (2.1)

where Γ(t) is the time-dependent control parameter which tunes the strength of quantum
fluctuations. We slowly reduce Γ from a high value to zero. A quantum state |Ψ(t)〉 follows
the Schrödinger equation

i
d

dt
|Ψ(t)〉 = Ĥ(t)|Ψ(t)〉, (2.2)

where we set ~ = 1. If the quantum fluctuations are controlled ingeniously, the quantum
state finally reaches the ground state of Ĥ0 with a high probability.

Similarly to SA, a convergence condition of QA has been found. Morita and Nishimori
have shown that, when the transverse field is adopted as the driver Hamiltonian, the
power-law annealing schedule

Γ(t) = a(δt+ b)−1/(2N−1) (2.3)

guarantees the success of QA in the infinite-time limit [5]. Here, a and b are constants of
the order of N0, and δ is a small parameter. This power law decreases much faster than
the inverse-logarithmic law for the control parameter in SA. In this sense, QA outperforms
SA.

7



Chapter 2. Quantum annealing

2.2. Quantum adiabatic computation

We next introduce quantum adiabatic computation (QAC). The idea of QAC is essentially
equivalent to QA at the point that both algorithms take advantage of tunneling effects
induced by quantum fluctuations1. An important difference between the algorithms is
that QAC puts an emphasis on the adiabatic evolution of quantum states.

To be more explicit, let us consider the following total Hamiltonian:

Ĥ(t) = s(t)Ĥ0 + [1− s(t)]V̂ . (2.4)

The total Hamiltonian Ĥ0 and the operator V̂ have already been defined in Sec. 2.1. The
time-dependent control parameter s(t) starts at zero and increases monotonically to unity.
In other words, the total Hamiltonian varies smoothly from the driver Hamiltonian V̂ to
the target Hamiltonian Ĥ0. We assume s(τ) = 1, that is, the running time of QAC is τ .
For simplicity, the linear function s(t) = t/τ is adopted in most studies.

The basic idea of QAC is the following. We first prepare the initial state which is
the trivial ground state of V̂ , and then simulate the time evolution of the state which
obeys the Schrödinger equation. If the control parameter changes slowly (τ � 1), the
state will stay very close to the instantaneous ground state during the time evolution.
Eventually, the system reaches the ground state of Ĥ0 at t = τ , which is the desired
optimal solution (Fig. 2.1).

Figure 2.1.: A schematic view of quantum adiabatic computation. The bottom curve rep-
resents the instantaneous ground-state energy, and the top curve the first
excited energy. The trivial initial ground state |Ψ0〉 evolves adiabatically, and
the system eventually reaches the optimal solution |Ψopt.〉 at t = τ .

The condition for the system to stay close to the ground state is given by the adiabatic
theorem [13]. In the following, we show the condition explicitly. Let us adopt the linear
function as the control parameter. Remember that the total Hamiltonian depends on time
only through the control parameter s. Hence, the kth instantaneous eigenstate and the
corresponding eigenvalue of the total Hamiltonian are also functions of s:

Ĥ(s)|k(s)〉 = Ek(s)|k(s)〉. (2.5)

1In other sections of this dissertation, we refer to QAC as QA.
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2.2. Quantum adiabatic computation

We define ∆(s) ≡ E1(s)− E0(s), the instantaneous energy gap between the ground state
and the first excited state. From the adiabatic theorem, the condition

τ >
1

ε

|〈1(s)|dĤ(s)
ds |0(s)〉|

[∆(s)]2
, ∀s ∈ [0, 1] (2.6)

ensures that, at the end of the evolution, the probability to find the system out of the
ground state will be of the order of ε2. Note that the matrix elements of dĤ(s)/ds are of
the order of N . Thus, Eq. (2.6) can be simplified as

τ � N∆−2
min, (2.7)

where ∆min denotes the minimum energy gap during the evolution.
Equation (2.7) implies that the efficiency of QAC is governed largely by the minimum

energy gap. In the case where the minimum energy gap decays polynomially in N , QAC is
an efficient algorithm. On the other hand, if the minimum energy gap decays exponentially,
QAC costs exponentially long time to solve the problem.

The difficulty of QAC has a relation to a statistical-mechanical property of spin systems.
It is well known that the energy gap ∆(s) vanishes at a quantum phase transition point in
the thermodynamic limit N →∞ [24]. Hence, the size scaling of the gap in the vicinity of
the transition point determines the efficiency of QAC. If a system undergoes a first-order
phase transition, the gap usually decays exponentially at the transition point [16–19].
In contrast, second-order phase transitions are associated with polynomially vanishing
gaps [14,15]. Therefore the analysis of the phase diagram is useful to estimate the efficiency
of QAC.

A simple example of such hard problems is to find the ground state of the ferromagnetic
p-spin model for p > 2 using the transverse-field operator. The target Hamiltonian of the
model is given by

Ĥ0 = −N
( 1

N

N∑
i=1

σ̂zi

)p
, (2.8)

where σ̂zi denotes the z-component of the Pauli matrix at site i. Jörg et al. have shown
that the system undergoes a quantum first-order transition, and the minimum energy
gap decays exponentially at the transition point [18]. This model is a good benchmark
because we can easily study the model both analytically and numerically. In particular,
it is possible to numerically calculate the energy gap for a relatively large N . That is, we
can learn the scaling of the energy gap probably independently of finite size effects. We
will discuss the model closely in Chap. 3.

The difficulty of the first-order quantum phase transition is due to a precipitous tran-
sition of the ground state. To understand this, let us consider the following simplified
Hamiltonian:

Ĥ(t) = −|↑ · · · ↑〉〈↑ · · · ↑| − Γ(t)|→ · · ·→〉〈→ · · ·→| (2.9)

Here Γ(t) is a time-dependent coefficient corresponding to the transverse field. The quan-
tum state |↑ · · · ↑〉 represents the all-spin-up state, and |→ · · ·→〉 the state that all spins
points at +x direction. Actually, the Hamiltonian describes the ferromagnetic p-spin model
with the transverse-field term near the phase transition point [18]. The state |→ · · ·→〉
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Chapter 2. Quantum annealing

corresponds to the ground state before the phase transition, and the all-spin-up state to
the ground state after the transition. Since the Hamiltonian (2.9) is just a two-level sys-
tem, we can easily diagonalize the Hamiltonian, then obtain the minimum energy gap.
The resulting minimum energy gap is

∆min = 4× 2−N/2, (2.10)

indicating the failure of QA. The exponential factor in the above minimum energy gap
comes from the exponentially small overlap between the ground states before the phase
transition and after the transition.

2.3. Advantage of QA

In this section, we introduce studies that show advantages of QA over classical algorithms.
We first review studies that have shown the advantage of QA against SA. Next, we show
a problem that can be solved efficiently by QA, whereas the problem is intractable for
classical algorithms.

As mentioned above, QA outperforms SA in a sense that the sufficiently slow annealing
schedule of QA (2.3) converses to zero faster than that of SA. In addition, Morita and
Nishimori have shown the sufficiently slow annealing schedule of QA with transverse fer-
romagnetic interactions instead of the transverse field [5]. Quantum annealing has degree
of freedom that we can choose the driver Hamiltonian so that QA can find the ground
state efficiently. Morita and Nishimori investigate the annealing schedule of the model
described by the following Hamiltonian:

Ĥ(t) = ĤIsing − Γ(t)
∏
i

(1 + σ̂xi ), (2.11)

where ĤIsing represents a Hamiltonian of any classical Ising spin system. The driver
Hamiltonian denotes transverse ferromagnetic interactions. The sufficient slow annealing
schedule for the Hamiltonian (2.11) is given by

Γ(t) ∝ 2N−2

δ′t
. (2.12)

Here, δ′ is a small parameter. In order to compare the annealing schedules (2.3) and
(2.12), we calculate the time at which the transverse field decreases to a small value ε.
The system is expected to be close to the optimal solution for sufficiently small ε. The
time estimated from Eq. (2.3) is

τ ≈ 1

δ

(
1

ε

)2N−1

, (2.13)

where we have neglected some constants. On the other hand, the time estimated from
Eq. (2.12) is

τ ≈ 2N−2

δ′ε
. (2.14)

Considering that we are interested in relatively large size systems, we can find that the
time for the latter case is smaller than the former case for sufficiently small ε. The result
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suggests that we can achieve speed-up of QA by using the degree of freedom of the driver
Hamiltonian.

Another study showing an advantage of QA over SA is given in Ref. [25]. The authors
of the paper have established a mapping from the transition matrix of classical Marko-
vian dynamics of the Ising model to quantum Hamiltonian and vice versa in a context of
quantum annealing. Such a mapping has already been given by the Suzuki-Trotter de-
composition of the Boltzmann factor, which is the path-integral formulation of quantum
mechanics. The difference of the mapping from the decomposition is that the mapping
given in Ref. [25] does not change the spatial dimension. The mapping thus provide a fair
comparison between SA and QA. The paper has shown that the efficiency of QA is at least
comparable to that of SA in a sense that problems expressed in terms of a short-range Ising
model that is easy for SA can be solved efficiently by using QA. Furthermore, the authors
has pointed that Schrödinger dynamics of the quantum Hamiltonian including transverse
antiferromagnetic interactions introduced in the subsequent chapter of the present thesis
cannot be expressed by Markovian dynamics using the mapping. The result suggests that
QA with the antiferromagnetic term has a potential to solve problems efficiently that are
intractable for classical algorithms.

Finally, we introduce an problem that can be solved efficiently by QA whereas expo-
nential time is required for any classical algorithm. Somma et al. have studied QA on two
binary trees glued randomly [26]. The task of the problem is to transfer a quantum state
initially localized at one root of the binary graph to the other root. Since the number of
vertices of the graph increases exponentially, classical algorithms take exponentially long
time to reach the goal. Surprisingly, QA can solve the problem efficiently even though
the system undergoes first-order quantum phase transitions. The key point is that the
first-order quantum phase transitions occur twice. Somma et al. have calculated overlap
of the evolved state with the instantaneous ground state and the first-excited state. The
result has shown that the quantum state that initially follows the instantaneous ground
state transits to the first-excited state at the first phase transition point, and goes back to
the ground state at the second transition point. Although the problem is a special case,
it is of great importance that the paper have shown a specific example of the advantage
of QA over classical algorithms.

2.4. Physics implementation of QA

Simulation of QA is quite hard for today’s computers. Since the number of the matrix
elements of the Hamiltonian grows exponentially in N as 22N , classical computers cannot
simulate the dynamics of systems with a large number of spins. For this reason, the realiza-
tion of QA relies on quantum computer, which is a powerful simulator of quantum systems.
Simulations executed on quantum computers are called quantum computation [27].

In this section, we present how to simulate quantum annealing procedures. To this
end, we first describe the basic model of quantum computation called the quantum circuit
model. Next, we show that QA reduces to a quantum circuit model with an arbitrary
precision and with a polynomial overhead.

11



Chapter 2. Quantum annealing

2.4.1. Quantum circuit model

First, let us introduce a qubit (quantum bit), the unit of quantum information. A qubit
is the quantum mechanical analog of a bit. Corresponding to a bit taking two values
(namely, 0 and 1), a qubit is a quantum two-state system such as spin-1/2. Without loss
of generality, we adopt the eigenstates of the z component of Pauli matrix as such states:

|σz = 1〉 ≡ |↑〉, |σz = −1〉 ≡ |↓〉. (2.15)

The important difference between a qubit and a bit is that a qubit can take a quantum
superposition state:

|ψ〉 = α|↑〉+ β|↓〉, (2.16)

where α and β are complex numbers.
Quantum computations are executed with a number of qubits. We now define some

notations. Let N be the number of spins. A quantum state of the whole system is
denoted by the tensor product of each spin state:

|Ψ〉 =

N⊗
i=1

|ψi〉 ≡ |ψ1, . . . , ψN 〉. (2.17)

Similarly, the fundamental basis states of the whole system are given by

|{σzi }〉 =
N⊗
i=1

|σzi 〉 ≡ |σz1 , . . . , σzN 〉, (2.18)

where {σzi } denotes a spin configuration (σz1 , . . . , σ
z
N ), and |σzi 〉 the eigenstate of σ̂zi with

the eigenvalue σzi . Each basis is called a computational basis or the z basis. Using the
computational basis, a state of the whole system is rewritten as

|Ψ〉 =
∑
{σzi }

c{σzi }|{σ
z
i }〉, (2.19)

where
∑
{σzi }

denotes the summation over all possible spin configurations, and c{σzi } a
complex number.

We next introduce fundamental units of quantum circuits. Quantum computations are
defined as unitary transformations of a quantum state of the whole system, |Ψ〉 → Û |Ψ〉.
It is known that any unitary operator can be approximated with an arbitrary precision
by three fundamental unitary operators called gates [27]; namely the Hadamard gate Ĥ 2,
the π/8 gate T̂ , and the controlled NOT (CNOT) gate Ĉ. In order to define these gates,
it is sufficient to define each action on the computational basis. First, the Hadamard gate
acts on a qubit as follows:

Ĥ|↑〉 =
1√
2

(|↑〉+ |↓〉), Ĥ|↓〉 =
1√
2

(|↑〉 − |↓〉). (2.20)

Second, the π/8 gate also acts on a qubit as

T̂ |↑〉 = |↑〉, T̂ |↓〉 = eiπ/4|↓〉. (2.21)

2The symbol Ĥ denotes the Hadamard gate only in this section 2.4.1.
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Finally, the CNOT gate acts on two qubits (the control qubit σzi and the target qubit σzj ):

Ĉij |σzi , σzj 〉 = |σzi , σzi σzj 〉. (2.22)

In other words, the CNOT gate flips the target qubit if and only if the control qubit is
|↓〉. Quantum circuits are a sequence of the fundamental gates.

It is convenient to show a quantum circuit as Fig. 2.2. The transverse lines represent
qubits, and the open boxes are single-spin operators. When an open box is on a line, it
means that the qubit is submitted to the operator represented by the box. The connected
circles mean the CNOT gate. The filled and open circle represent the control qubit and
the target qubit, respectively.

Figure 2.2.: An example of quantum circuits. The transverse lines represents qubits, and
the open boxes single-spin operators. The two circles connected by a line
represent a CNOT gate; the qubit on the open circle is the target, and the
other is the control qubit.

The above explanation does not mean that any unitary operator can be translated to
the fundamental unitary operators efficiently. The term efficiently means that the number
of required fundamental gates is upper bounded by a polynomial in N . It is known that
unitary operators which act on a single qubit can be approximated by the fundamental
gates efficiently [27]. However, in general, unitary operators act on many qubits. Therefore
it is necessary to check that a unitary operator can be surely approximated in an efficient
way.

Fortunately, the following two operators can be approximated efficiently:

Û zi1,...,il ≡ exp(ασ̂zi1 · · · σ̂
z
il

), Ûxl1,...,il ≡ exp(ασ̂xi1 · · · σ̂
x
il

), (2.23)

where α is a pure imaginary number, and i1, . . . , il are site indices. The above operators
are important because quantum annealing procedures are represented by the operators as
we will see in Sec. 2.4.2. In the following, we show quantum circuits of the operators.

We describe the quantum circuit of Û zi1,...,il . For example, a quantum circuit of Û z1,2 is

expressed as Fig. 2.3. Generalization is easy. The circuit of Û zi1,...,il consists of N qubits
included in the total Hamiltonian and one auxiliary qubit initialized as |↑〉. Note that
the operator Û zi1,...,il causes a phase shift e+α or e−α determined by the parity σzi1 · · ·σ

z
il

,
although it does not cause state transitions:

Û zi1,...,il |σ
z
i , . . . , σ

z
N 〉 = exp(ασzi1 · · ·σ

z
il

)|σzi , . . . , σzN 〉. (2.24)
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Chapter 2. Quantum annealing

First, l CNOT gates register the parity in the auxiliary qubit. Next, a single-qubit gate,
exp(ασ̂zN+1), causes the phase shift. Finally, l CNOT gates initialize the auxiliary qubit

again. As described above, the unitary operator Û zi1,...,il can be expressed by quantum
circuit efficiently.

Figure 2.3.: A quantum circuit of Û z1,2. The circuit consists of N qubits and one auxiliary
qubit. First, the two CNOT gates register the parity σz1σ

z
2 to the auxiliary

qubit, |σzN+1 = +1〉 → |σzN+1 = σz1σ
z
2〉. Next, the single-spin gate causes a

phase shift eασ
z
1σ
z
2 . Finally, the two CNOT gates initialize the auxiliary qubit.

We can find that the effect of the circuit on the computational basis is the
same as that of the operator Û z1,2.

We next present the quantum circuit of Ûxi1,...,il . This quantum circuit is readily derived

from the result of Û zi1,...,il using the fact that

Ĥiσ̂
z
i Ĥi = σ̂xi , and Ĥ2

i = 1̂i, (2.25)

for any i (= 1, . . . , N). Here, Ĥi denotes the Hadamard gate which acts on the ith spin.
From these equations, the unitary operator Ûxi1,...,il is rewritten as

Ûxi1,...,il = Ĥi1 · · · ĤilÛ
z
i1,...,il

Ĥil · · · Ĥi1

=

( N⊗
i=1

Ĥi

)
Û zi1,...,il

( N⊗
i=1

Ĥi

)
. (2.26)

Figure 2.4 shows the quantum circuit of Ûx1,2.

2.4.2. Equivalence between quantum circuit model and quantum annealing

Quantum annealing procedures are equivalent to quantum computations described above.
First, the direction from quantum circuit model to QA has been proved by Aharonov
et al. [28]. To prove it, they have used a target Hamiltonian whose ground state has a
positive overlap with the output of a quantum circuit. In addition, they have shown that
the minimum gap of the converted quantum annealing procedure is polynomially small
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2.4. Physics implementation of QA

Figure 2.4.: A quantum circuit of Ûx1,2. The difference for the operator Û z1,2 is that the

Hadamard gates act on the N qubits.

in the number of gates of the quantum circuit; that is, problems solved efficiently with
quantum circuits are easy also for QA.

The reverse direction has been discussed closely by Dam et al. [29]. They have approx-
imated a quantum annealing procedure by a quantum circuit. The approximation has
been established in two steps as follows.

The first step is a discretization of continuous time evolution. Since quantum circuits
consist of a finite number of quantum gates, quantum circuits cannot represent quantum
annealing procedures precisely. To resolve this, we discretize the continuous change of
the total Hamiltonian from V̂ to Ĥ0 by a finite sequence of Hamiltonians Ĥ ′1, Ĥ

′
2, . . . , Ĥ

′
r,

where Ĥ ′j ≡ (j/r)Ĥ0 + (1 − j/r)V̂ . Hence, the approximated time evolution operator is
given by

Û ′ = e−i(τ/r)Ĥ
′
r · · · e−i(τ/r)Ĥ′

1 . (2.27)

The next step is to approximate Û ′j defined by

Û ′j ≡ e
−i(τ/r)Ĥ′

j = e−i(τ/r)(j/r)Ĥ0−i(τ/r)(1−j/r)V̂ (2.28)

so that the resulting unitary operator can be implemented by quantum gates efficiently.
Here, we naively divide it into two parts as follows:

Û ′′j ≡ e−i(τ/r)(j/r)Ĥ0e−i(τ/r)(1−j/r)V̂ . (2.29)

Since Ĥ0 consists only of the z components of Pauli matrices, and V̂ consists of the x
components, the exponential operators can be readily expressed by quantum gates as
shown in Sec. 2.4.1.

The key issue is the error resulting from the approximations. Here, the error of the
approximate operator is measured by the operator norm defined by

‖Â‖ ≡ max
〈Ψ|Ψ〉=1

‖Â|Ψ〉‖. (2.30)
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Chapter 2. Quantum annealing

Dam et al. have shown that if r = O(τ2N2), then the order of the error is unity; that is∥∥∥Û − r∏
j=1

Û ′′j

∥∥∥ = O(τ2N2/r), (2.31)

where Û denotes the time evolution operator before the approximations. Quantum com-
puter therefore can perform quantum annealing procedures efficiently unless the annealing
time is exponentially long in N .
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Chapter 3.

Quantum annealing with antiferromagnetic
transverse interactions for the Ferromagnetic
p-spin model

As described in the previous chapter, the conventional QA using transverse field cannot
solve the simple problem, the ferromagnetic p-spin model. Nevertheless, this result does
not necessarily suggest a complete failure of QA for this problem. The reason is that only
the transverse field is used as the driver Hamiltonian. Another driver Hamiltonian may
lead to improved performance. This type of degree of freedom is an advantage of QA.
In this chapter, we introduce a new approach of QA, and discuss the efficiency of the
approach for the ferromagnetic p-spin model whose Hamiltonian is given by Eq. (2.8). We
show that the approach enables us to avoid the difficulty of the conventional QA [30].

First, Sec. 3.1 describes QA with antiferromagnetic transverse interactions. In this sec-
tion, we discuss annealing paths that are convenient to understand the concept of the
new approach. Second, Sec. 3.2 is devoted to analytical computations. We will cal-
culate the partition function of the system, and derive self-consistent equations in the
low-temperature limit. Section 3.3 shows numerical results for the phase diagram and the
minimum energy gap as a function of N . Next, Sec. 3.4 analyzes the phase diagram in
the large p limit in . Finally, we conclude and make discussions in Sec. 3.5.

3.1. Quantum annealing with antiferromagnetic transverse
interactions

The unique point different from the conventional QA is an introduction of the following
antiferromagnetic interaction

V̂AF = +N
( 1

N

N∑
i=1

σ̂xi

)2
(3.1)

in addition to the conventional transverse-field term V̂TF. Here σ̂xi denotes the x-component
of the Pauli matrix at site i. The total Hamiltonian is therefore

Ĥ(s, λ) = s{λĤ0 + (1− λ)V̂AF}+ (1− s)V̂TF, (3.2)

where the control parameters s and λ should be changed appropriately as functions of time.
The initial Hamiltonian has s = 0 and any λ, and the final Hamiltonian has s = λ = 1.
Intermediate values of (s, λ) should be chosen according to the prescription given in the
subsequent sections.
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Chapter 3. Application for the Ferromagnetic p-spin model

It is convenient to consider the quantum annealing procedure on the s-λ plane. A
line {(s(t), λ(t)) | 0 ≤ t ≤ τ} is called an annealing path. For example, the line λ =
1 corresponds to the conventional QA since the antiferromagnetic term V̂AF completely
vanishes. On this annealing path, the ferromagnetic p-spin model undergoes a first-order
phase transition. The problem we are concerned with is whether or not we can avoid the
first order phase transition by taking another annealing path.

We must not take the line λ = 0 as an annealing path. The total Hamiltonian is
diagonalized in the x basis on this line:

Ĥ(s) = sV̂AF + (1− s)V̂TF = sN
( 1

N

N∑
i=1

σ̂xi

)2
− (1− s)

N∑
i=1

σ̂xi . (3.3)

Thus, quantum fluctuations completely disappear, and quantum state transitions do not
occur. This means that the system does not perform quantum annealing processes.

3.2. Analytical computation

3.2.1. Partition function

We first calculate the partition function of the system at finite temperature. The partition
function is expressed as

Z = Tr e−βĤ(s,λ), (3.4)

where β is the inverse temperature, and the total Hamiltonian is given by

Ĥ(s, λ) = s{λĤ0 + (1− λ)V̂AFF}+ (1− s)V̂TF

= −sλN
( 1

N

N∑
i=1

σ̂zi

)p
+ s(1− λ)N

( 1

N

N∑
i=1

σ̂xi

)2
− (1− s)

N∑
i=1

σ̂xi . (3.5)

For such a quantum system, the Suzuki-Trotter formula [31] is used in order to calculate
the partition function. The first step of the formula is to divide the exponential operator
into two parts using the Trotter decomposition:

eÂ+B̂ = lim
M→∞

(eÂ/MeB̂/M )M , (3.6)

where Â and B̂ are quantum operators which do not commute with each other generally,
and M is an integer called the Trotter number. The validity of the decomposition is easily
checked by expanding the exponential operators into the Taylor series, and then neglecting
the higher order O(1/M2), which does not contribute to the result in M →∞ limit. Using
the decomposition, we have

Z = lim
M→∞

ZM

≡ lim
M→∞

Tr
(
e−

β
M
sλĤ0e−

β
M
{s(1−λ)V̂AFF+(1−s)V̂TF}

)M
= lim

M→∞

∑
{σzi }

〈{σzi }|
(

exp
[βsλN

M

( 1

N

N∑
i=1

σ̂zi

)p]

× exp
[
−βs(1− λ)N

M

( 1

N

N∑
i=1

σ̂xi

)2
+
β(1− s)
M

N∑
i=1

σ̂xi

])M
|{σzi }〉. (3.7)
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Here |{σzi }〉 denotes an orthonormal basis that diagonalizes the z-component of the Pauli
matrices, and the summation is taken over all the possible basis.

Next, we introduce the following M closure relations:

1̂(α) ≡
∑
{σzi (α)}

|{σzi (α)}〉〈{σzi (α)}|

×
∑
{σxi (α)}

|{σxi (α)}〉〈{σxi (α)}|, (3.8)

where α = 1, . . . ,M , and the summation
∑
{σxi (α)} and |{σxi (α)}〉 are defined similarly

to the z basis. Inserting 1̂(α) just before the αth exponential operator involving σ̂xi in
Eq. (3.7), we have

ZM =
∑
{σzi (α)}

∑
{σxi (α)}

M∏
α=1

exp
[βsλN

M

( 1

N

N∑
i=1

σzi (α)
)p

− βs(1− λ)N

M

( 1

N

N∑
i=1

σxi (α)
)2

+
β(1− s)
M

N∑
i=1

σxi (α)
]

×
N∏
i=1

〈σzi (α)|σxi (α)〉〈σxi (α)|σzi (α+ 1)〉 (3.9)

with periodic boundary conditions such that σzi (1) = σzi (M + 1) for i = 1, . . . , N .

To simplify the spin product terms [
∑N

i=1 σ
z
i (α)/N ]p and [

∑N
i=1 σ

x
i (α)/N ]2, we introduce

the following integral representation of the delta function:

δ
(
Nm−

N∑
i=1

σi

)
=

∫
dm̃ exp

[
−m̃

(
Nm−

N∑
i=1

σi

)]
, (3.10)

where m denotes the magnetization (order parameter), and m̃ is the conjugate variable.
Using Eq. (3.10), we can rewrite ZM as

ZM =
∑
{σzi (α)}

∑
{σxi (α)}

M∏
α=1

∫
· · ·
∫
dmz(α) dm̃z(α) dmx(α) dm̃x(α)

× exp
[
N
(
sλ

β

M

(
mz(α)

)p − m̃z(α)mz(α)
)]

× exp
[
N
(
−s(1− λ)

β

M

(
mx(α)

)2
+ (1− s) β

M
mx(α)− m̃x(α)mx(α)

)]
×

N∏
i=1

exp[m̃z(α)σzi (α) + m̃x(α)σxi (α)]〈σzi (α)|σxi (α)〉〈σxi (α)|σzi (α+ 1)〉. (3.11)

Here, we have neglected a few irrelevant constants. Since the spin product terms have
disappeared, we can perform the summation over all spin configurations independently at

19



Chapter 3. Application for the Ferromagnetic p-spin model

each site. Then, we obtain

ZM =

∫
· · ·
∫ M∏

α=1

dmz(α) dm̃z(α) dmx(α) dm̃x(α)

× exp
[
N

M∑
α=1

(
sλ

β

M

(
mz(α)

)p − m̃z(α)mz(α)
)]

× exp
[
N

M∑
α=1

(
−s(1− λ)

β

M

(
mx(α)

)2
+ (1− s) β

M
mx(α)− m̃x(α)mx(α)

)]
× exp

[
N ln Tr

M∏
α=1

exp[m̃z(α)σz(α) + m̃x(α)σx(α)]

× 〈σz(α)|σx(α)〉〈σx(α)|σz(α+ 1)〉
]
, (3.12)

where the trace means the summation over the spin variables, σz(α) and σx(α) (α =
1, . . . ,M).

Note that the exponent in Eq. (3.12) is proportional to N . Thus, the integrals over the
variables are evaluated by the saddle-point method, which is to take the maximum value
of the integrand as the result of integral (see, e.g., Appendix A.1 of [32]). The saddle-point
conditions for mz(α) and mx(α) lead to

m̃z(α) =
β

M
psλ
(
mz(α)

)p−1
, (3.13)

m̃x(α) =
β

M
{(1− s)− 2s(1− λ)mx(α)}. (3.14)

We now use the static approximation, which removes all the α dependence of the pa-
rameters. We will check the validity of the approximation in Sec. 3.3.2. After this ap-
proximation, we can easily take trace in Eq. (3.12) by the inverse operation of the Trotter
decomposition. Then, using Eqs. (3.13) and (3.14), we finally obtain

Z =

∫∫
dmz dmx exp[−Nβf(β, s, λ;mz,mx)], (3.15)

where f(β, s, λ;mz,mx) is the pseudo free energy defined as follows:

f(β, s, λ;mz,mx) = (p− 1)sλ(mz)p − s(1− λ)(mx)2

− 1

β
ln 2 coshβ

√{
psλ(mz)p−1

}2
+
{

1− s− 2s(1− λ)mx
}2
. (3.16)

The saddle-point equations are thus

mz =
psλ(mz)p−1√{

psλ(mz)p−1
}2

+
{

1− s− 2s(1− λ)mx
}2

× tanhβ

√{
psλ(mz)p−1

}2
+
{

1− s− 2s(1− λ)mx
}2
, (3.17)

mx =
1− s− 2s(1− λ)mx√{

psλ(mz)p−1
}2

+
{

1− s− 2s(1− λ)mx
}2

× tanhβ

√{
psλ(mz)p−1

}2
+
{

1− s− 2s(1− λ)mx
}2
. (3.18)
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3.2.2. Low-temperature limit

We next derive self-consistent equations in the low temperature limit to examine quantum
phase transitions. Since the start of the QA process belongs to the paramagnetic phase
and the goal is the ferromagnetic phase, a quantum phase transition inevitably occurs in
the course of time evolution.

It is useful to consider two possibilities separately depending on whether the argument
of the square root in Eqs. (3.17) and (3.18) vanishes or not. We start our discussion from
the latter case.

When the square root in Eqs. (3.17) and (3.18) assumes a finite value, the hyperbolic
tangent tends to unity in the β →∞ limit. Then, we have

mz =
psλ(mz)p−1√{

psλ(mz)p−1
}2

+
{

1− s− 2s(1− λ)mx
}2
, (3.19)

mx =
1− s− 2s(1− λ)mx√{

psλ(mz)p−1
}2

+
{

1− s− 2s(1− λ)mx
}2
. (3.20)

The pseudo free energy (3.16) becomes

f(s, λ;mz,mx) = (p− 1)sλ(mz)p − s(1− λ)(mx)2

−
√{

psλ(mz)p−1
}2

+
{

1− s− 2s(1− λ)mx
}2
. (3.21)

Equations (3.19) and (3.20) have a ferromagnetic (F) solution with mz > 0 and a
quantum paramagnetic (QP) solution satisfying mz = 0 and mx 6= 0. Substitution of
mz = 0 into Eq. (3.20) yields

mx =
1− s− 2s(1− λ)mx

|1− s− 2s(1− λ)mx|
, (3.22)

i.e., mx can be ±1. However, mx = −1 is not a proper solution since, with mx = −1,
1 − s − 2s(1 − λ)mx = 1 − s + 2s(1 − λ) ≥ 0 for 0 ≤ s ≤ 1, 0 ≤ λ ≤ 1, which leads to
mx = 1 according to Eq. (3.22). The other possibility mx = 1 satisfies Eq. (3.22) when
s < 1/(3 − 2λ). Therefore the QP phase can exist in the region 0 ≤ s < 1/(3 − 2λ), and
its free energy is

fQP(s, λ) = −sλ+ 2s− 1, (3.23)

which is independent of p.
The free energy of the F phase cannot be obtained analytically for general p. However,

we can evaluate it in the p → ∞ limit as follows: In this limit, Eq. (3.19) reads mz = 0
or mz = 1. The latter solution corresponds to the F phase. The magnetization in the
x direction is zero since Eqs. (3.19) and (3.20) satisfy (mz)2 + (mx)2 = 1. Substituting
the values of magnetization into Eq. (3.21) and taking the limit p→∞, we find

fF(s, λ)|p→∞ =− sλ. (3.24)

Let us next consider the case where the argument of the square root in Eqs. (3.17) and
(3.18) vanishes. We then assume that mz and mx tend to the following values as β →∞:

mz → 0, mx → 1− s
2s(1− λ)

(3.25)
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such that the argument of hyperbolic tangent approaches a finite constant:

β

√{
psλ(mz)p−1

}2
+
{

1− s− 2s(1− λ)mx
}2 → c. (3.26)

In order to find a non-trivial solution, it is also necessary to assume the following relation:

psλ(mz)p−1

1− s− 2s(1− λ)mx
→ 0. (3.27)

Under these assumptions, Eqs. (3.17) and (3.18) read mz = 0 and mx = tanh c. These
equations satisfy the condition (3.25) if we choose c such that tanh c = (1− s)/2s(1− λ).

Unless s = 1, the magnetizations (3.25) satisfy the condition of QP solution. We then
call this phase QP2 in order to distinguish it from the QP phase described before. The
free energy of the QP2 phase is obtained in the limit (3.25) and β → ∞ under the
assumption (3.26):

fQP2(s, λ) = − (1− s)2

4s(1− λ)
. (3.28)

The domain of applicability of the free energy (3.28) is restricted by 1/(3 − 2λ) ≤ s < 1
since |(1− s)/2s(1− λ)| = |tanh c| ≤ 1 and s 6= 1. This region of s will be called the QP2
domain hereafter.

3.3. Numerical results

3.3.1. Phase diagram

Let us next analyze numerically the phase diagram on the s-λ plane for finite values of p.
We construct the phase diagram as follows. We first solve numerically the self-consistent
equations (3.19) and (3.20) for a given value of p and at a point (s, λ) in the phase diagram
and then evaluate the corresponding free energy. By comparing all possible solutions and
their free energies including fQP2, we identify the stable solution having the smallest value
of the free energy.

It is useful to show the dependence of the free energy on s for some values of p and
λ as in Fig. 3.1. We have confirmed numerically that the free energy lies below fQP2 in
the QP2 domain, and the QP2 phase is completely suppressed by the other phases. This
system thus undergoes a quantum phase transition from the QP phase for small s to the
F phase for large s.

To determine whether the transition is first order or second order, we show the behavior
of the magnetization mx in Fig. 3.2. The parameters of the figure correspond to those in
Fig. 3.1. When λ = 0.1, the magnetization mx for p = 3 has a small jump at s = 0.3544(1),
and mx for p ≥ 5 decreases continuously from unity to our numerical precision. This means
that mz for p ≥ 5 increases continuously from zero to a finite value. Therefore a second-
order transition occurs for p ≥ 5 at λ = 0.1. The same is true for λ = 0.3 in the sense
that there exists a second-order transition at the boundary of the QP2 phase for p ≥ 5.

A remarkable fact is that the magnetization for some parameters (e.g., λ = 0.3, p = 11)
in Fig. 3.2 jumps within the F phase. This discontinuity results in an exponential decrease
of the energy gap as N increases. There exists a first-order transition within the F phase.
However, this unusual behavior disappears for smaller values of λ for any finite p, excluding
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Figure 3.1.: Free energy vs. s for some values of p. The parameter λ is 0.1 (top), and 0.3
(bottom). The dash-dotted line in light green represents the free energy of the
QP phase, Eq. (3.23), the thin solid line in blue is for the F phase, Eq. (3.24),
and the thick solid line in red for the QP2 phase, Eq. (3.28). The vertical
dashed line denotes the lower limit of the QP2 domain (s = 1/(3 − 2λ)).
Although it is difficult to discern in the present scale, all the data for finite p
we studied have lower values than that of fQP2 in the QP2 domain.
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Figure 3.2.: Magnetization mx corresponding to Fig. 3.1. The solid line represents the
x component of magnetization of the QP2 phase (3.25), and the vertical
dashed lines are the same as those in Fig. 3.1. For λ = 0.1 (top panel) and
p ≥ 5, a second-order transition occurs at the boundary of the QP2 domain;
The magnetization decreases continuously from unity to zero. In contrast, the
magnetization for λ = 0.3 (bottom panel) has a jump.
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p = 3, that we checked. Thus for smaller λ, only a second-order transition takes place as
we increase s from zero to a value close to unity.

The resulting phase diagrams are shown in Fig. 3.3 for p = 3, 5, and 11. We see that
a boundary of second-order transition exists for small λ and p ≥ 5. It is observed that
one can reach the F phase from the QP phase by choosing a path that avoids a first-order
transition as long as the first-order F-F boundary does not reach the λ = 0 axis, which
happens probably only in the limit p→∞ as we shall discuss below.
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Figure 3.3.: Phase diagrams on the s-λ plane for p = 3 (left), p = 5 (middle), and p = 11
(right). The dash-dotted line represents the boundary of the QP2 domain
(s = 1/(3−2λ)), where a transition takes place between the QP and F phases.
For large λ, the QP and F phases are separated by the horizontal phase
boundary (QP-F boundary). The thick solid line in red represents the first-
order transition, and the thin solid line in light green is for the second-order
transition. For p = 5 and 11, the magnetization jumps on the dashed line in
blue (F-F boundary) within the F phase.

3.3.2. Energy gap

We next study the behavior of the energy gap across the phase transitions found in the
previous section.

To calculate the energy gap for large N , we adopt the method used in [18]. The Hamil-
tonian under consideration is expressed by the components of total spin operator Ŝx,z,
thus commuting with the total spin Ŝ. Since the total angular momentum is conserved
during the time evolution, we have to pay attention only to the subspace that has the
maximum angular momentum S = N/2. The dimension of this subspace is N + 1, which
greatly enhances the possible system size to N ∼ 100. Still the size is restricted by com-
puter resources. However, there is an alternative approach to calculate the energy gap in
the thermodynamic limit. We will introduce the approach in Appendix A.

It is useful to first verify the validity of the static approximation. Figure 3.4 shows a
representative energy gap with a second-order phase transition: As one sees in the enlarged
view shown in the bottom panel, the gap shows wiggly behavior for a finite range. The
wiggly behavior starts at s ' 0.4184 for λ = 0.3, which corresponds to the left end of
the QP2 domain and also to the second-order transition point between the QP and F
phases. The same behavior terminates at s ' 0.4676 for λ = 0.3, corresponding to the
first-order F-F boundary. These two transition points evaluated analytically using the
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static approximation, Eqs. (3.19) and (3.20), are shown in dashed vertical lines in Fig. 3.4
and agree fairly satisfactorily with the numerical results, as N increases, for the interval
where the gap is very small.

 0

 0.5

 1

 0.36  0.39  0.42  0.45  0.48

E
ne

rg
y 

ga
p

s

N=20
N=80

N=140

 0

 0.02

 0.04

 0.43  0.44  0.45  0.46  0.47

Figure 3.4.: Top panel: Energy gap vs. s for p = 11 and λ = 0.3. The vertical dashed
lines represent the boundary of the QP2 domain at s ' 0.4167 and the F-F
boundary at s ' 0.4701. The bottom panel is the enlarged view of the top
panel for N = 140.

The rightmost local minimum of the energy gap in Fig. 3.4 behaves differently from
other local minima and decays exponentially as N increases as shown in Fig. 3.5. This is
expected from the jump in the magnetization shown in Fig. 3.2 because a jump implies
a first-order transition though the system is ferromagnetic in both sides of the transition
point. Although this is not the global minimum, it will affect the efficiency of QA for
much larger systems where the rightmost one will become the global minimum since the
other local minima decay only polynomially as shown below.

Figure 3.6 shows the size dependence of local minima of the energy gap for p = 5 and
λ = 0.1. All minima shown here decay polynomially. In Fig. 3.7 the global minimum of
energy gap for selected p is depicted as a function of N at λ = 0.1. For any value of p,
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Figure 3.5.: The rightmost local minimum of the energy gap as a function of N for p = 11
and λ = 0.3 on a semi-log scale. The gap closes exponentially with N .

the gap closes polynomially at least up to the system size we studied, N = 160.
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Figure 3.6.: Energy gap vs. N at local minima for p = 5, λ = 0.1 on a log-log scale. We
number the minima from left to right. No gaps vanish exponentially up to the
size studied here.

The above results suggest that first-order transitions will be able to be avoided if we
choose a path around λ = 0.1 when we reach the F phase from the QP phase by increasing
s as long as p is not too small and not too large, 5 ≤ p ≤ 21. It is then interesting to see
what happens in the limit of large p.
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Figure 3.7.: Minimum gap vs. N for some values of p on a log-log scale for λ = 0.1. Each
data scales polynomially.

3.4. Phase diagram for large p

The ferromagnetic p-spin model reduces to the Grover problem in the p → ∞ limit [18].
In the limit p→∞, the target Hamiltonian reads

Ĥ0 = −N |↑ · · · ↑〉〈↑ · · · ↑|. (3.29)

In other words, only the all-up state |↑ · · · ↑〉 has the lowest energy −N , and the other
states have the same energy 0. The energy landscape of Eq. (3.29) is exactly that of the
Grover problem.

Farhi et al. have proposed a QA version of Grover’s algorithm [33], which adopts the
transverse field as a driver Hamiltonian. Unfortunately, the time complexity is the same as
that of classical algorithms. However, Roland and Cerf have improved the efficiency of QA
by adjusting the evolution rate s(t), then reproducing the quadratic speed-up, and they
have proved that their algorithm is optimal [34]. This result indicates that our approach
cannot avoid jumps of magnetization in the p → ∞ limit. It is therefore interesting to
study how this difficulty appears in our method.

To this end, it is instructive to study the behavior of the free energy and magnetization
for large but finite values of p. The free energy in Fig. 3.1 is seen to approach the asymp-
totic values in Eqs. (3.24) and (3.28) from below. Hence, the QP2 phase does not appear
for any finite p. From Fig. 3.2, we observe that the magnetization in the x direction is
close to the QP2 phase magnetization (3.25), shown in red solid lines, in the region where
the free energy approaches fQP2. The magnetization in the z direction is

mz =

√
1−

(
1− s

2s(1− λ)

)2

6≡ 0 (3.30)

since the QP2 phase does not appear.
We extrapolate these results to the case of p → ∞. That is, while the free energies

are described by Eqs. (3.23), (3.24), and (3.28), the magnetization in the QP2 phase is
given by Eq. (3.30). To be precise, this is not the QP2 phase since the magnetization in
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the z direction is nonzero. With a caution on the domain of QP and QP2 in mind, we
compare the values of the free energy of the three phases and obtain the phase diagram as
in Fig. 3.8. The F phase and the QP phase are separated by a horizontal phase boundary.
The boundary of second-order transition is given by s = 1/(3 − 2λ) (λ ≤ 1/2), and the
first-order F-QP transition boundary is s = 1/2 (λ > 1/2). Solving fF|p→∞ = fQP2, we
get the F-F boundary as

s =
1− 2

√
λ− λ2

(2λ− 1)2
. (3.31)

The figure shows that an abrupt change of magnetization, a first-order transition, is in-
evitable in the limit p→∞.

Figure 3.8.: Phase diagram in the limit p → ∞. Three lines represent the same phase
boundary as those in Fig. 3.3. The QP phase has the magnetization mz =
0. The F phase above the F-F boundary, shown dashed in blue, has the
magnetization mz = 1 and the phase below the F-F boundary has 0 < mz < 1.

3.5. Summary and discussion

In this section, we have introduced the transverse antiferromagnetic interactions in addi-
tion to the traditional transverse-field term to the QA process. Through the mean-field
analysis of the phase diagrams and the numerical analysis of the minimum energy gap,
we have found that the first-order phase transition can be avoided and the computational
time of QA can be reduced to a polynomial of the number of spins. What the result mean
is that QA holds a potential to accomplish exponential speed-up by taking advantage of
the degree of freedom in the way to introduce quantum fluctuations.

The question we have to ask here is what nature of the antiferromagnetic term does
improve QA. A characteristic feature of the antiferromagnetic term is its macroscopic de-
generacy of the ground states: Whereas the transverse-field term has the unique ground
state, almost all eigenstates of the antiferromagnetic term, whose number is close to 2N ,
are the ground states. One may infer that the macroscopic degeneracy is a key for the sig-
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nificant speed-up. Nevertheless, this inference turns out to be wrong through the analysis
of the Wajnflasz-Pick model in Chap. 5.

Another inference is that the large overlap between the desired ground state of the
target Hamiltonian and the ground state of the antiferromagnetic term shortens the com-
putational time significantly. In contrast to the exponentially small overlap in N between
the ground state of the transverse-field term and the final state, the overlap between
ground state of the antiferromagnetic term and the final state scales as N−1/4. This fea-
ture indicates that the antiferromagnetic term is effective only for limited cases such as a
problem of the ferromagnetic p-spin model. However, we will obtain results indicating the
effectiveness of the antiferromagnetic term for random spin systems in the next chapter.
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Chapter 4.

Quantum annealing with antiferromagnetic
transverse interactions for the Hopfield
model

The main purpose of this chapter is to reveal whether the antiferromagnetic transverse
interactions are able to make first-order quantum phase transitions to second-order for
random spin systems. We adopt the Hopfield model as a random spin system because the
model is expected to cover a wide range of randomness. First, the model is introduced in
Sec. 4.1. Next, we analyze the phase diagram for the model with many-body interactions
and a finite number of patterns embedded in Sec. 4.2, the model with two-body interactions
and many patterns embedded in Sec. 4.3, and the model with many-body interactions
and many patterns embedded in Sec. 4.4. Finally, Sec. 4.5 is devoted to summary and
discussion.

4.1. The model

The Hamiltonian of the Hopfield model with many-body interactions is given as

Ĥ0 = −
∑

i1<···<ik

Ji1,...,ik σ̂
z
i1 · · · σ̂

z
ik

(4.1)

with

Ji1,...,ik =
1

Nk−1

p∑
µ=1

ξµi1 · · · ξ
µ
ik
. (4.2)

Here, k is an integer denoting the degree of interactions, and ξµi takes ±1 at random. The
number of embedded patterns p is an integer denoting the number of embedded patterns.
The total Hamiltonian is given as

Ĥ(s, λ) = −sλN
p∑

µ=1

( 1

N

N∑
i=1

ξµi σ̂
z
i

)k
+ s(1− λ)N

( 1

N

N∑
i=1

σ̂xi

)2
− (1− s)

N∑
i=1

σ̂xi . (4.3)

The Hopfield model was proposed as a model for associative memory [35]. Memories
expressed by spin configurations are embedded in the quenched random couplings. The
Hopfield model exhibits different behaviors depending on the number of embedded mem-
ory patterns. If only a single pattern is embedded, the Hopfield model is equivalent to the
Mattis model, in which there is no frustration. This means that the Hopfield model has
the same statistical-mechanical properties as the fully connected ferromagnetic model. In
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the other extreme limit where the number of embedded patterns is very large, the cou-
pling constants tend to Gaussian variables with zero mean. This is very similar to the
Sherrington-Kirkpatrick (SK) model, although there are still correlations among coupling
constants. We expect that the case with finite patterns greater than one to be an inter-
polation between the Mattis model and the SK model. In this sense, the Hopfield model
covers a wide range of random spin systems. The statistical-mechanical property of the
Hopfield model with finite patterns has been investigated by Amit et al. [36]. The case of
many patterns has been studied in Ref. [37]. Nishimori and Nonomura have developed a
full statistical-mechanical analysis of the quantum Hopfield model, i.e., the Hopfield model
in a transverse field [22]. The statistical-mechanical property of the Hopfield model with
many-body interactions has been studied by Gardner [38]. Ma and Gong have shown the
phase diagram of the Hopfield model with many-body interactions in a transverse field in
the limit of infinite degree of interactions [39].

4.2. Hopfield model with finite patterns embedded

4.2.1. Analysis

We give self-consistent equations for the Hopfield model with finite patterns embedded.
It is known that the quantum Hopfield model that has two-body interactions exhibits a
second-order transition [22]. We deal with the case of k > 2 to check whether antiferro-
magnetic transverse interactions enable us to avoid a first-order transition.

The analysis is quite similar to that for the ferromagnetic p-spin model (see Appendix B
for detailed calculations). The order parameters of the Hopfield model are the overlaps
with embedded patterns mµ (µ = 1, . . . p). In the low-temperature limit β → ∞, the
pseudo free energy and the self-consistent equations are

f(s, λ; {mµ},mx) = (k − 1)sλ
∑
µ

(mµ)k − s(1− λ)(mx)2

−
[√
{ksλ

∑
µ
(mµ)k−1ξµ}2 + {1− s− 2s(1− λ)mx}2

]
, (4.4)

and

(mµ)k−1 =

 ksλ
(∑

µ(mµ)k−1ξµ
)
(mµ)k−2ξµ√

{ksλ
∑

µ(mµ)k−1ξµ}2 + {1− s− 2s(1− λ)mx}2

 , (4.5)

mx =

 1− s− 2s(1− λ)mx√
{ksλ

∑
µ(mµ)k−1ξµ}2 + {1− s− 2s(1− λ)mx}2

 . (4.6)

Here, mx denotes the magnetization along the x direction, and the brackets [. . .] are for
the average over the randomness of the embedded patterns.

The self-consistent equations (4.5) and (4.6) have the quantum paramagnetic (QP)
solution in the region 0 ≤ s ≤ 1/(3− 2λ). The order parameters in the QP phase satisfy
mµ = 0 for all µ and mx = 1. The free energy in the QP phase is

fQP(s, λ) = −sλ+ 2s− 1. (4.7)
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Let us consider the solutions for nonzero mµ’s. According to the experience in the
classical case [36], we expect that the overlaps that give the lowest value of the free energy
are symmetric, i.e., mµ = m for µ ≤ l with a given integer l, and the others are zero. The
pseudo free energy and self-consistent equations for such symmetric solutions are

fl(s, λ;m,mx) = (k − 1)sλlmk − s(1− λ)(mx)2

−
[√
{ksλmk−1zl}2 + {1− s− 2s(1− λ)mx}2

]
, (4.8)

and

m =

[
ksλmk−1(zl)

2/l√
{ksλmk−1zl}2 + {1− s− 2s(1− λ)mx}2

]
, (4.9)

mx =

[
1− s− 2s(1− λ)mx√

{ksλmk−1zl}2 + {1− s− 2s(1− λ)mx}2

]
, (4.10)

where we defined the random variable zl ≡
∑l

µ=1 ξ
µ. In particular, for l = 1, the pseudo

free energy f1 and the self-consistent equations are identical with those of the many-body
interacting ferromagnetic model in the ferromagnetic phase. This assures us that the phase
diagram of the Hopfield model with finite patterns is the same as that of the many-body
interacting ferromagnetic model if f1 has the lowest value in the symmetric solutions. The
phase for l = 1 is referred to as the retrieval (R) phase. The state in the R phase correlates
with one of the embedded patterns.

4.2.2. Numerical results

We compared the free energies for symmetric order parameters (4.8), finding that the free
energy for the R phase has the lowest value in the free energies among f1, f2, f3, and f4,
at least for 3 ≤ k ≤ 21 and odd k. We show an example for k = 5 in Fig. 4.1. From this
result, we conclude that the R phase is the most stable one among the phases having a
symmetric order parameter.

This result indicates that antiferromagnetic transverse interactions greatly improve the
process of QA for the generalized Hopfield model with finite patterns. Since the pseudo
free energy and the self-consistent equations for l = 1 are identical with those of the fer-
romagnetic model with many-body interactions, the phase diagrams for the generalized
Hopfield model with finite patterns are the same as those of the many-body interacting
ferromagnetic model shown in Sec. 3.3.1 except that the ferromagnetic phase is replaced
by the R phase. We have shown in Sec. 3.3.1 that, whereas the phase transition from the
QP phase to the ferromagnetic phase is of first order in the case of three-body interac-
tions, the first-order transition disappears in a range of low λ for 5 ≤ k ≤ 21 and odd
k. The conventional QA with a transverse field undergoes a first-order quantum phase
transition from the QP phase to the R phase. Antiferromagnetic transverse interactions
have thus shown to enable us to avoid the difficulty of QA coming from the first-order
phase transitions for 5 ≤ k ≤ 21 and odd k, even in the presence of randomness.
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Figure 4.1.: The free energies for symmetric order parameters with k = 5, f1, f2, f3, and
f4, for λ = 0.2 (top left), 0.5 (top right), 0.8 (bottom left), and 1 (bottom
right). The free energy f1 always has the lowest value among the free energies
compared.

4.3. Hopfield model with two-body interactions and with many
patterns embedded

Let us next consider the case of many patterns, i.e., the number of patterns increases as
N increases. Unlike the case of finite patterns, the quantum Hopfield model with k = 2
exhibits a first-order phase transition between the spin-glass (SG) phase and the R phase.
Hence, we also deal with the k = 2 case. First, we analyze the k = 2 case, and next the
case of k > 2.

4.3.1. Self-consistent equations

The target Hamiltonian is

Ĥ0 = −1

2

∑
ij

Jij σ̂
z
i σ̂

z
j , (4.11)

where Jij is given as

Jij =
1

N

p∑
µ=1

ξµi ξ
µ
j . (4.12)
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The number of patterns must be proportional to the number of spins p = αN so that the
free energy is extensive, as explained in Appendix C.

To obtain the self-consistent equations, we closely follow Chap. 10 of Ref. [40]. Detailed
calculations are described in Appendix C. We assume that the system has a non-vanishing
overlap with only one embedded pattern. Then we have the following self-consistent
equations in the low-temperature limit:

m =

∫
Dz

sλm+
√
αq̃z√

(sλm+
√
αq̃z)2 + (1− s− 2s(1− λ)mx)2

, (4.13)

mx =

∫
Dz

1− s− 2s(1− λ)mx√
(sλm+

√
αq̃z)2 + (1− s− 2s(1− λ)mx)2

, (4.14)

q =

∫
Dz

(sλm+
√
αq̃z)2

(sλm+
√
αq̃z)2 + (1− s− 2s(1− λ)mx)2

, (4.15)

where m denotes the overlap, mx the magnetization along the x direction, and q the spin-
glass order parameter. We defined the Gaussian measure as Dz ≡ dz exp(−z2/2)/

√
2π.

The variable q̃ satisfies

q̃ =
(sλ)2q

(1− sλC)2
(4.16)

with

C =

∫
Dz

{1− s− 2s(1− λ)mx}2

{(sλm+
√
αq̃z)2 + (1− s− 2s(1− λ)mx)2}3/2

. (4.17)

The pseudo free energy is written as

f =
1

2
sλm2 − s(1− λ)(mx)2 − α

2
sλ+

α

2
q̃C

−
∫
Dz

√
(sλm+

√
αq̃)2 + (1− s− 2s(1− λ)mx)2. (4.18)

4.3.2. Phase diagram

We compared the free energies for three phases: The first is the R phase, m > 0, the
second is the SG phase, m = 0 and q > 0, and the last is the QP phase, m = q = 0.
The phase diagram for the case of p = 0.04N is given in Fig. 4.2. Although the phase
transition from the QP phase to the SG phase is of second order, the phase transition from
the SG phase to the R phase is always of first order. Therefore, even the method using
antiferromagnetic transverse interactions requires an exponentially long time to find the
ground state.

The second-order boundary can be obtained analytically. Expanding Eq. (4.15) in
powers of q, we have

q = α
( sλ

1− s(3− λ)

)2
q + O(q2). (4.19)

Hence, the phase boundary is

s =
1

3− λ(1−
√
α)

(4.20)
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Figure 4.2.: The phase diagram of the Hopfield model with k = 2 and with many patterns
p = 0.04N . The red solid line represents the first-order phase boundary,
and the blue dashed line the second-order boundary. The first-order phase
transition is inevitable for the QA process.

or

s =
1

3− λ(1 +
√
α)
. (4.21)

Since the boundary (4.20) lies below the other (4.21), Eq. (4.20) gives the true thermody-
namic phase boundary between the QP phase and the SG phase.

4.4. Hopfield model with many-body interactions and with
many patterns embedded

4.4.1. Self-consistent equations

Let us next consider the case of k > 2. The Hamiltonian is given by Eqs. (4.1) and
(4.2). The number of patterns must be p = αNk−1 so that the free energy is extensive.
We consider the case where the system has a non-zero overlap with a single pattern
only. We closely follow the calculation in Ref. [38] to derive the self-consistent equations
(see Appendix D for detailed calculations). The self-consistent equations in the low-
temperature limit are

m =

∫
Dz

sλ(kmk−1 +
√
αkqk−1z)√

(sλ[kmk−1 +
√
αkqk−1z])2 + (1− s− 2s(1− λ)mx)2

, (4.22)

mx =

∫
Dz

1− s− 2s(1− λ)mx√
(sλ[kmk−1 +

√
αkqk−1z])2 + (1− s− 2s(1− λ)mx)2

, (4.23)

q =

∫
Dz

(sλ[kmk−1 +
√
αkqk−1z])2

(sλ[kmk−1 +
√
αkqk−1z])2 + (1− s− 2s(1− λ)mx)2

. (4.24)
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Figure 4.3.: The phase diagram of the generalized Hopfield model with many patterns
p = 0.04Nk−1 for k = 3 (left), k = 4 (center), k = 5 (right). The red solid
line represents the first-order phase boundary, and the blue dashed line the
second-order boundary. In contrast to the previous case of k = 2, the SG
phase does not appear. Whereas the first-order transition is inevitable for
k = 3, we can avoid the first-order transition for k = 4 and 5.

The pseudo free energy is

f = sλ(k − 1)mk − s(1− λ)(mx)2 +
α

2
k(k − 1)(sλ)2Cqk−1

−
∫
Dz

√
(sλ[kmk−1 +

√
αkqk−1z])2 + (1− s− 2s(1− λ)mx)2, (4.25)

where

C =

∫
Dz

{1− s− 2s(1− λ)mx}2

{(sλ[kmk−1 +
√
αkqk−1z])2 + (1− s− 2s(1− λ)mx)2}3/2

. (4.26)

4.4.2. Phase diagram

We now describe the phase diagram of the generalized Hopfield model with k = 3, 4, and
5 and many patterns p = 0.04Nk−1. In the same way as in Sec. 4.3.2, the free energies for
the three phases were compared. Figure 4.3 shows the resulting phase diagram. The SG
phase does not appear, since the free energy for the SG phase has a higher value than the
other free energies for the R phase and the QP phase. The first-order boundary vanishes
for k = 4 and 5, and there exist annealing paths to avoid the first-order transition.

4.5. Summary and discussion

In this chapter, we have investigated the statistical-mechanical property of the Hopfield
model with the antiferromagnetic transverse interactions subjected to a transverse field.
The model shows different behaviors depending on the number of patterns embedded.

First, we have considered the generalized Hopfield model with k-body interactions and
a finite number of patterns embedded. The Suzuki-Trotter decomposition and the mean-
field analysis have given the self-consistent equations and the pseudo free energy. We have
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Chapter 4. Application for the Hopfield model

concluded that the phase diagram is the same as the many-body interacting ferromagnetic
model at least for 3 ≤ k ≤ 21 and odd k. Considering the result in Sec. 3.3.1 (see also
[41]), the present result indicates that antiferromagnetic transverse interactions greatly
improve the QA process for the model except for the case of k = 3. We conclude that
antiferromagnetic transverse interactions are effective also for the random spin system.

Second, the Hopfield model with two-body interactions and extensively many patterns
has been analyzed. The difference from the previous case is that the SG phase appears
owing to the many unretrieved patterns. The spins in the SG phase tend to align in
the ±z direction, but do not correlate with any embedded patterns. We have used the
Suzuki-Trotter decomposition, the mean-field analysis, the replica trick, and the static
ansatz to study the phase diagram. The analysis within the RS solution has derived the
phase diagram including three phases: the QP phase, the SG phase, and the R phase.
Although the phase boundary between the QP phase and the SG phase is of second order,
the boundary between the SG phase and the R phase stays always of first order. This
result indicates difficulties for QA with antiferromagnetic transverse interactions. Once
the system is trapped in a basin in the SG phase, it is hard to escape there to reach the
true ground state.

Finally, we have investigated the generalized Hopfield model with many-body interac-
tions and extensively many patterns. The resulting phase diagram consists of the QP and
R phases. Although the SG solution exists, it has a higher free energy than the other
states. We have confirmed that the first-order phase boundary vanishes at certain values
of λ for k = 4 and k = 5. Hence, it is possible to avoid the difficulty of exponentially long
running time of QA that results from a first-order phase transition.
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Chapter 5.

Quantum annealing in the Wajnflasz-Pick
model

The subjects of this chapter are twofold: One is to check the effect of macroscopic degen-
eracy against the efficiency of QA. As mentioned in Sec. 3.5, the antiferromagnetic term
has the feature that the ground states are exponentially degenerate, which is not the case
with the transverse-field term. The other subject is to find an alternative way to control
the order of quantum phase transitions other than the method using the antiferromag-
netic term. First, the model is defined in Sec. 5.1. Sec. 5.2 then investigates the effect of
the macroscopic degeneracy. Next, in Sec. 5.3, the alternative way is explored. Finally,
Sec. 5.4 is devoted to summary and discussion.

5.1. The model

5.1.1. Classical Wajnflasz-Pick model

Before moving onto the explanation for the quantum Wajnflasz-Pick model, let us intro-
duce the classical counterpart. The Wajnflasz-Pick model [42] is considered as a general-
ization of the Ising model: The model is composed of two level variables like an Ising spin,
but each level can be degenerate. The Hamiltonian is defined as

H = − 1

N

∑
ij

τiτj − h
∑
i

τi, (5.1)

where N represents the number of sites and h a longitudinal field. The summation
∑

ij

is taken over all possible pairs of sites. The variable τ takes ±1. The state of τ = +1
is referred to as an upper state, and the state τ = −1 as a lower state. The order of
degeneracy of the upper states is denoted by gp, and that of lower sates is denoted by gm.

Let us consider phase transitions of the model (5.1) for a fixed h. The model can be
reduced to the following Ising spin system [43]:

H ′ = − 1

N

∑
ij

σiσj −
(
h+

T

2
ln
gp

gm

)∑
i

σi, (5.2)

where σ denotes an Ising spin. This Hamiltonian yields the same partition function as
that of the system (5.1) at temperature T . Hence, the phase diagram is obtained through
the knowledge of the usual Ising model. The difference from the usual Ising model is that
the effective longitudinal field

h′ ≡ h+
T

2
ln
gp

gm
(5.3)
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can vary with temperature. Let Tc be the critical temperature of the usual Ising model.
Since the system (5.2) is completely equivalent to the usual Ising spin model if gp = gm,
the system (5.1) undergoes the second-order phase transition as temperature decreases
when h is fixed at zero, and there is no phase transition for a finite h fixed. In the
imbalanced case gp 6= gm, We can find that the first-order phase transition occurs when
gp/gm > exp(2h/Tc) ≡ g∗, the second-order phase transition occurs when gp/gm = g∗, and
no phase transition when gp/gm < g∗. Thus, the order of phase transition of the classical
Wajnflasz-Pick model is controllable by adjusting the ratio of the orders of degeneracy.

5.1.2. Quantum Wajnflasz-Pick model

We generalize the classical Wajnflasz-Pick model to a quantum model in a similar way
as Refs. [44, 45]. The Hamiltonian of the quantum Wajnflasz-Pick model with a term
corresponding to the transverse field is defined as

Ĥ(s) = s

− 1

N

N∑
i,j=1

τ̂ zi τ̂
z
j − h

N∑
i=1

τ̂ zi

− (1− s)
N∑
i=1

τ̂xi , (5.4)

where s ∈ [0, 1] denotes the dimensionless time, and h a longitudinal field. The operator
τ̂ z represents a degenerate two-level system:

τ̂ z ≡ diag(+1, . . . ,+1︸ ︷︷ ︸
gp

,−1, . . . ,−1︸ ︷︷ ︸
gm

). (5.5)

The last term in Eq. (5.4) is a driver part that induces quantum fluctuations into the
system. We define the operator τ̂x as follows:

τ̂x ≡
(

A(gp) 1(gp, gm)
1(gm, gp) A(gm)

)
, (5.6)

where the matrix A(l) is a square matrix of order l whose diagonal elements are zero, and
upper (lower) triangular elements are ω (ω):

A(l) ≡


0 ω · · · ω

ω 0
. . .

...
...

. . .
. . . ω

ω · · · ω 0

 . (5.7)

Here, ω is a complex variable, and its complex conjugate is ω. The other matrix 1(l,m)
is an l ×m matrix with ones. The off-diagonal block matrix 1 represents spin flips, and
A the transition between degenerate states. This is a simple way to introduce quantum
fluctuations into the system.

5.2. Effect of macroscopic degeneracy for QA

This section investigates how macroscopic degeneracy affects the efficiency of QA. As a
result, we will find that the existence of exponentially degenerate ground states of the
antiferromagnetic term is not sufficient to achieve the exponential speed-up of QA.
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5.2.1. How to induce quantum fluctuations

We consider the quantum Wajnflasz-Pick model with gp = 2 and gm = 1, and with two
types of operators that induce quantum fluctuations:

τ̂x,1 ≡

0 1 1
1 0 1
1 1 0

 , τ̂x,2 ≡

0 0 1
0 0 1
1 1 0

 . (5.8)

The former operator causes state transitions between the generate states, whereas the
latter does not cause such transitions. Let us calculate the degeneracy of the ground state
of the term +

(∑
i τ̂

x,2
i

)2
. Since the eigenvalues of the operator are −1, 0, and +1, the

number of the ground state is evaluated as

N/2∑
n=0

(
N

2n

)(
N − 2n

N/2− n

)
>

(
N

N/3

)(
2N/3

N/3

)
' Poly(1/N) 3N , (5.9)

leading to the degeneracy comparable to the number of all configurations. The factor
Poly(1/N) denotes a polynomial of 1/N . Here, we have assumed that N is a multiple of
six for simplicity.

The remaining issue is which term should be used for a transverse field. In order to
check the effect of the macroscopic degeneracy, we have to select a model that undergoes
first-order phase transitions when quantum fluctuations are induced only by a transverse
field. As mentioned later, the Wajnflasz-Pick model with a transverse-field term consisting
of τx,2 does not undergoes a first-order quantum phase transition. In contrast, the model
with τx,1 occurs a first-order phase transition. Therefore the total Hamiltonian to be
studied is

Ĥ(s, λ) = −sλN
(

1

N

∑
i

τ̂ zi

)2

+ s(1− λ)N

(
1

N

∑
i

τ̂x,2i

)2

− (1− s)
∑
i

τ̂x,1i . (5.10)

5.2.2. Partition function and self-consistent equation

The analysis is similar to that of the ferromagnetic p-spin model except that we have to
use three types of closures in order to convert the model to a classical model. After some
calculations (see Appendix E), we have the following pseudo free energy:

f = sλ
(
mz
)2 − s(1− λ)

(
mx
)2 − 1

β
ln Tr expβ

(
m̃zσ̂z + m̃xτ̂x,2 + (1− s)τ̂x,1

)
, (5.11)

where

m̃z ≡ sλ(2mz + h), (5.12)

m̃x ≡ −2s(1− λ)mx. (5.13)

Let us consider the low-temperature limit to study quantum phase transitions. In this
limit, the maximum eigenvalue of the operator in Eq. (5.11) contributes to the free energy.
The eigenvalues are

λ1 ≡ m̃x − 1 + s,

λ2 ≡
1− s

2
−
√

(m̃z + (1− s)/2)2 + 2(m̃x + (1− s))2,

λ3 ≡
1− s

2
+
√

(m̃z + (1− s)/2)2 + 2(m̃x + (1− s))2.
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We can easily check that λ3 is the maximum eigenvalue. Hence, the pseudo free energy in
the low-temperature limit is written as

f = sλ
(
mz
)2 − s(1− λ)

(
mx
)2 − 1− s

2
−
√

(m̃z + (1− s)/2)2 + 2(m̃x + (1− s))2.

(5.14)

From the saddle-point condition, the self-consistent equations are

mz =
m̃z + (1− s)/2√

(m̃z + (1− s)/2)2 + 2(m̃x + (1− s))2
, (5.15)

mx =
2(m̃x + (1− s))√

(m̃z + (1− s)/2)2 + 2(m̃x + (1− s))2
. (5.16)

5.2.3. Numerical results

Let us show the solutions of the self-consistent equations (5.15) and (5.16) for certain
fixed values of h. First, Fig. 5.1 shows mz as a function of s for λ = 0.2, 0.4, 0.6, 0.8, and
1.0. The magnetization has a nonzero value for the following reason. The ground state of
the transverse-field term is the equally weighted superposition of all possible eigenstates
in the z basis. Since the number of the upper states is larger than that of the lower
states, the system has a positive magnetization. The magnetization eventually equals −1
in consequence of the longitudinal field. We can find that all data except for h = −1.0
have jumps. The width of the jump reduces as the magnitude of h increases. It is natural
that the system has no phase transition for large h. Focusing on the dependency of λ, we
can find that the jump of the magnetization reduces as λ increases. The results indicate
that the antiferromagnetic term negatively affects the efficiency of QA.

Next, Fig. 5.2 shows mx as a function of s for the same values as those of Fig. 5.1. Unlike
the previous results, we cannot find jumps. Since the magnetization becomes smoother
as λ decreases, we can estimate that the antiferromagnetic term has an effect to suppress
rapid change of mx.

5.3. Control of order of quantum phase transition

This section explores an alternative way to control the order of quantum phase transitions.
We investigate that how the order of degeneracy, gp and gm, and the transition between
the degenerate states expressed by ω affect the nature of the quantum phase transition
of the quantum Wajnflasz-Pick model. To this end, we study the statistical-mechanical
propeties of the quantum Wajnflasz-Pick model by using the mean-field analysis. To reveal
the effect of the transitions, we analyze the dependency of an order parameter of the model
on a strength of quantum fluctuations under various transition rates ω.

5.3.1. Mean-Field Analysis

In what follows, we derive the pseudo free energy to investigate an order parameter of
the system. First, the partition function of the quantum system is transformed to a
corresponding classical system by using the Trotter decomposition. Next, we use the
mean-field analysis, and introduce an order parameter similar to magnetization. Applying
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Figure 5.1.: The magnetization mz as a function of s. The values of the longitudinal field
are h = −0.1 (upper left), −0.5 (upper right), −0.7 (lower left), and −1.0
(lower right).
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Figure 5.2.: The magnetization mx as a function of s. The values of the longitudinal field
are h = −0.1 (upper left), −0.5 (upper right), −0.7 (lower left), and −1.0
(lower right).
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the static ansatz, we can get the pseudo-free energy. Since focusing on the quantum phase
transitions in the model, we take the low-temperature limit.

Let us consider the Hamiltonian given by Eq. (5.4). We can reuse the results of the
analysis for the ferromagnetic p-spin model. Although the analysis was for spin-1/2 sys-
tems, Eqs. (3.12)-(3.14) hold for any discrete level system whose Hamiltonian is given in
a similar way as Eq. (3.5). Since the Hamiltonian of the quantum Wajnflasz-Pick model
consists of the target part and the transverse-field term, λ is equal to unity. Consequently,
we have the partition function

ZM =

∫
· · ·
∫ ∏

α

dm(α)dm̃(α) exp

{
βN

M

(
s{[m(α)]2 + hm(α)} − m̃(α)m(α)

)}

× exp

{
N ln

∑
{τz}

∑
{τx}

∏
α

exp

{
β

M
(m̃(α)τ z(α) + (1− s)τx(α))

}

× 〈τ z(α)|τx(α)〉〈τx(α)|τ z(α+ 1)〉

}
, (5.17)

and the conjugate variable at the saddle point

m̃(α) = s(2m(α) + h). (5.18)

Using the static ansatz and the inverse operation of the Trotter decomposition, we obtain
the pseudo free energy

f = sm2 − 1

β
ln Tr expβ(m̃τ̂ z + (1− s)τ̂x). (5.19)

Here m̃ = s(2m+ h).
If ω is a positive real value, the trace in Eq. (5.19) is evaluated as follows. The Perron-

Frobenius theorem ensures that the ground state of the operator m̃τ̂ z +(1−s)τ̂x is unique
and the elements of the eigenvector are positive. Taking the symmetry of the operator
with regards to basis transformation into account, the eigenvector can be expressed as

v = (vp, . . . , vp︸ ︷︷ ︸
gp

, vm, . . . , vm︸ ︷︷ ︸
gm

)T, (5.20)

where vp and vm are real and positive. Hence, the characteristic equation for the eigenvalue
is reduced to equations with two unknowns vp and vm. Solving the equations, we have the
maximum eigenvalue of the operator:

λmax =
1

2

{
(gp + gm − 2)(1− s)ω +

√
{(gp − gm)(1− s)ω + 2m̃}2 + 4gpgm(1− s)2

}
.

(5.21)

Consequently, the pseudo free energy in the low-temperature limit is given as

f = sm2 − λmax, (5.22)

and the self-consistent equation is

m =
2m̃+ (gp − gm)(1− s)ω√

{(gp − gm)(1− s)ω + 2m̃}2 + 4gpgm(1− s)2
. (5.23)

The Perron-Frobenius theorem is not applicable to the case of negative ω or complex ω.
In such cases, the stable solution is obtained by checking all eigenvalues of the operator.
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5.3.2. Results for positive ω

This section shows the following results:

1. If the order of degeneracy is the same gp = gm ≡ g, the model is equivalent to the
spin-1/2 system

2. If there is no transition between degenerate states ω = 0, the model is equivalent to
the spin-1/2 system

3. For nonzero ω fixed, the model tends to undergo a first-order quantum phase tran-
sition as the difference between gp and gm gets larger.

4. For fixed gp and gm (gp 6= gm), the model tends to undergo a first-order quantum
phase transition as ω gets larger.

First, let us show the result 1. The pseudo free energy is rewritten as

f = sm2 − (g − 1)(1− s)ω −
√
{s(2m+ h)}2 + {g(1− s)}2. (5.24)

On the other hand, the pseudo free energy of a spin-1/2 system whose Hamiltonian is
given by

Ĥ = s

{
− 1

N

(∑
ij

σ̂zi σ̂
z
j

)2

− h
∑
i

σ̂zi

}
− g(1− s)

∑
i

σ̂xi (5.25)

is

f = sm2 −
√
{s(2m+ h)}2 + {g(1− s)}2. (5.26)

The difference between the two pseudo free energies is the second term on the right-hand
side of Eq. (5.24). The term, however, just shift the pseudo free energy as a function of m.
Hence, the stable solution is the same for both models. Since the Wajnflasz-Pick model
is equivalent to the spin-1/2 system (5.25), the system undergoes the second-order phase
transition in the absent of a longitudinal field. The transition point is s? = 1/(1 + (2/g)),
and the magnetization is

m =


0 (s ≤ s?),

±

√
1 +

{
g(1− s)

2s

}2

(s? < s).
(5.27)

There is no phase transition in the present of the field.
Next, the result 2 is obtained as follows. The pseudo free energy is

f = sm2 −
√
s2(2m+ h)2 + gpgm(1− s)2. (5.28)

This pseudo free energy is the same as that of the spin-1/2 system whose Hamiltonian is

Ĥ = s

{
− 1

N

(∑
ij

σ̂zi σ̂
z
j

)2

− h
∑
i

σ̂zi

}
−√gpgm(1− s)

∑
i

σ̂xi . (5.29)
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Hence, we can find that, if h = 0, the transition point is s? = 1/(1 + 2/
√
gpgm), and the

magnetization is

m =


0 (s ≤ s?),

±

√
1 +

{√
gpgm(1− s)

2s

}2

(s? < s).
(5.30)

Let us show the third result. We solve the self-consistent equation (5.23) numerically,
then obtain the stable solution by comparing the values of free energies for the solutions.
Figure 5.3 shows the stable magnetization for the cases of (gp, gm) = (2, 1), (3, 1), and
(4, 1). We can find that the magnetization jumps for nonzero longitudinal field. We also
find the model tends to undergo the first-order phase transition as the difference between
the order of degeneracy become large. Figure 5.4 shows the phase diagram of the model.
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Figure 5.3.: The magnetization m as a function of s for ω = 1. The values of longitudinal
field are h = 0 (left), h = −0.5 (middle), and h = −1 (right). The blue dots
represent the magnetization for (gp, gm) = (2, 1), the red dots for (3, 1), and
the green for (4, 1).
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Figure 5.4.: The phase diagram for ω = 1 on s-h plane. The blue solid line represents the
first-order phase boundary for (gp, gm) = (2, 1), the red solid line for (3, 1),
and the green for (4, 1).

Finally, the result 4 is obtained in the same manner as the previous analysis. Fig. 5.5
shows the magnetization for (gp, gm) = (2, 1) for ω = 0.16, 0.47, and 1.0. It turns out that
the first-order phase transition tends to occur as ω increases. The phase diagram on s-h
plane is shown in Fig 5.6.
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Figure 5.5.: The magnetization m as a function of s for (gp, gm) = (2, 1). The values of
longitudinal field are h = 0 (left), h ' −0.3 (middle), and h ' −0.5 (right).
The blue dots represent the magnetization for ω = 0.16, the red dots for 0.47,
and the green for 1.
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Figure 5.6.: The phase diagram for (gp, gm) = (2, 1) on s-h plane. The blue solid line
represents the first-order phase boundary for ω ' 0.16, the red solid line for
0.47, and the green for 1.
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5.4. Summary and discussion

In this chapter, we have studied the statistical-mechanical property of the quantum
Wajnflasz-Pick model. First, the effect of macroscopic degeneracy of the ground states of
the antiferromagnetic term has been discussed. In contrast to the results in the previous
chapters, the antiferromagnetic term would rather cause the first-order phase transition.
Thus, we conclude that macroscopic degeneracy is not a sufficient condition to avoid first-
order phase transitions.

Next, we have checked whether the first-order quantum phase transition is avoidable by
adjusting the order of degeneracy of the upper state and the lower state. As a result, we
have found that the model does not undergo the first-order quantum phase transition if the
orders of degeneracy are the same, gp = gm, or there is no transition between degenerate
states, ω = 0. Furthermore, in those cases, the model turns out to be equivalent to the
usual spin-1/2 system. In contrast, if the transitions exist, ω 6= 0, in the model with
imbalanced degeneracies gp 6= gm, the model undergoes the first-order quantum phase
transition. The results indicate that we have to pay attention to the transition and the
order of degeneracy when QA is executed by using qudits.
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Conclusion

We have investigated the phase diagram of the mean-field models in order to explore the
way to avoid the problematic first-order quantum phase transition. We have analyzed
three mean-field models, namely the ferromagnetic p-spin model, the Hopfield model, and
the Wajnflasz-Pick model.

Chapter 3 has investigated the ferromagnetic p-spin model. The main proposition of
the chapter is that the antiferromagnetic transverse interactions improves the efficiency
of QA significantly. The Suzuki-Trotter decomposition has been used to calculate the
partition function of the model. In addition, we have used the static ansatz to reduce the
system to a single spin system, and the saddle-point method to derive the self-consistent
equations. The self-consistent equations have been solved numerically to obtain the phase
diagram. The resulting phase diagram has shown that the first-order quantum phase
transition for intermediate values of p can be avoidable thanks to the antiferromagnetic
term. Since the model conserves the total angular momentum during the Schrödinger
dynamics, the Hilbert space that is needed to calculate the energy gap reduces to the
subspace whose dimension is (N + 1)× (N + 1). We can thus diagonalize the Hamiltonian
for relatively large size systems, then calculate the minimum energy gap. As a result, the
diagonalization has revealed that the energy gap decreases polynomially in the vicinity
of the second-order quantum phase transition point. Hence, we have concluded that we
can achieve exponential speed-up by using the antiferromagnetic term. Another result
to notice is that the magnetization of the system jumps within the ferromagnetic phase.
Although the order parameter that characterizes the jump of the magnetization is unclear,
the energy gap at the point of the jump decays exponentially. Accordingly, the jump of
the magnetization also negatively affects the efficiency of QA. We have also analyze the
model in the infinite p limit. In this limit, the model is equivalent to the Grover problem,
which is a hard problem for both classical algorithms and quantum algorithms. The phase
diagram in this limit shows that the first-order phase transition is inevitable, which is
consistent with the fact that QA must require exponentially long time to solve the Grover
problem.

Chapter 4 has analyzed the phase diagram of the Hopfield model. Through the analysis
of the model, we have revealed the effect of the antiferromagnetic term for random spin
systems. The analysis is almost the same as that of the ferromagnetic p-spin model except
that we have used the replica method to take the configurational average. The model
displays different behavior according to the number of patterns embedded. When the
number of patterns are finite, the phase diagram is equivalent to the ferromagnetic p-spin
model. This result indicates that the antiferromagnetic term is effective not only for the
ferromagnetic model but also for the random spin system. However, if the number of
patterns is proportional to N , QA with the antiferromagnetic term requires exponentially
long time to follow the instantaneous ground state owing to the existence of the spin-
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glass phase. The spin-glass phase is considered to be a feature of difficulty of QA. We
have confirmed that even if many patterns are embedded, the first-order quantum phase
transition can be avoided unless the spin-glass phase appears.

In Chap. 5, we have studied the statistical-mechanical property of the Wajnflasz-Pick
model. First, the effect of the macroscopic degeneracy of the antiferromagnetic term has
been investigated. The result has shown that the efficiency of QA gets worse owing to
the antiferromagnetic term in the model. Hence, we have concluded that the macroscopic
degeneracy is not a sufficient condition for the exponential speed-up of QA. Next, we
have studied phase diagram of the model by adjusting the order of degeneracy of the
upper state and the lower state and the transitions between the degenerate states. The
results have shown that the second-order quantum phase transition can turn to the first-
order transition depending on the order of degeneracy and the transitions between the
degenerate states. The lessons we have learnt from the analysis is that we must be careful
about the order of degeneracy and the transitions between the degenerate states when
such a system (5.8) is used as a physics bit in QA.

We have shed light on the way to improve the efficiency of QA by taking advantage
of the degree of freedom in the type of quantum fluctuations through the statistical-
mechanical analysis of the mean-field models. However, we just have revealed the effect
of the antiferromagnetic term for some models. We need a guiding principle to derive a
driver Hamiltonian that improves the efficiency of QA for a given problem. In addition,
it is insufficient to avoid first-order quantum phase transitions to improve the efficiency
of QA. It has been reported that another difficulty related to the Anderson localization
phenomena appears in the spin-glass phase [46]. Further studies are needed to bring out
the potential of QA. It is my hope that the present study can contribute to the development
of QA.
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Appendix A.

Analysis with the Holstein-Primakoff
transformation

We introduce an approach to calculate the energy gap alternative to the one in Sec. 3.3.2.
The size of the Hamiltonian which we can analyze numerically is restricted by computer
resources. The approach introduced below, however, enables us to analyze the energy gap
in the thermodynamic limit by consideration of quantum fluctuations around a classical
ground state of the total Hamiltonian (3.5). Through the analysis, it has been found that
the wiggly behavior of the energy gap shown in Sec. 3.3.2 is a finite size effect.

This section is devoted to the explanation of the approach discussed in Ref. [41]. In
Sec. A.1, we first discuss a classical ground state of the Hamiltonian. In Sec. A.2, we
introduce an approach to calculate the energy gap in the thermodynamic limit.

A.1. Classical ground state

First, we show that the total Hamiltonian (3.5) is represented with classical variables in the
thermodynamic limit. As mentioned in Sec. 3.3.2, we can rewrite the total Hamiltonian
by using the total spin operator as follows:

Ĥ(s, λ) = −sλN
(
Ŝz

S

)2

+ s(1− λ)N

(
Ŝx

S

)2

− (1− s)N Ŝx

S
, (A.1)

where S = N/2 denotes the angular momentum. We define magnetization operators as
m̂α ≡ Ŝα/S with α = x, y, and z. The magnetization operators satisfy the following
commutation relation:

[m̂x, m̂y] = i
2

N
m̂z (A.2)

and its cyclic permutations. Considering that the expectation value of the magnetization
operators lies in the interval [−1, 1], we find that the operators commute with each other
in the thermodynamic limit. Hence, the system is regarded as the classical system whose
energy per spin is given as

e(s, λ;mz,mx) = −sλ(mz)p + s(1− λ)(mx)2 − (1− s)mx, (A.3)

where mx and mz denote the x and z components of the magnetization vector m, re-
spectively. Remember that, during the time evolution, the state always belongs to the
subspace which has the maximum angular momentum S = N/2. This means that
m is a unit vector. For further calculations, we express the magnetization vector as
m = (cos θ, sin θ sinϕ, sin θ cosϕ), where θ denotes the polar angle measured from the x
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direction, and ϕ the azimuthal angle from the z direction. Substituting the magnetization
vector m described with the angles θ, ϕ into Eq. (A.3), we have

e(s, λ; θ, ϕ) = −sλ(sin θ cosϕ)p + s(1− λ) cos2 θ − (1− s) cos θ. (A.4)

The direction of the magnetization vector m of the ground state is determined by the
minimum condition for the energy function (A.4). Since p is odd, the minimum lies on
the plane with ϕ = 0. The energy on the plane is

e(s, λ; θ) = −sλ sinp θ + s(1− λ) cos2 θ − (1− s) cos θ. (A.5)

The direction of magnetization vector depends only on the angle θ. The angle θ has to
satisfy

de(s, λ; θ)

dθ
= psλ sinp−1 θ cos θ − 2s(1− λ) sin θ cos θ + (1− s) sin θ = 0. (A.6)

Equation (A.6) has more than one solutions. Comparing energies for all possible solu-
tions, we get the ground state energy. In the following, we discuss the possible types of
solutions. First, Eq. (A.6) has trivial solutions, θ = 0 and θ = π. However, the solution
θ = π gives the local maximum. We thus consider only the other solution. The energy for
the solution θ = 0 is

e(s, λ) = −sλ+ 2s− 1. (A.7)

In addition, the magnetization vector for the solution is m = (1, 0, 0). Hence, the solution
θ = 0 corresponds to the QP solution. Other solutions corresponding to the F solutions,
θ > 0, satisfy

psλ sinp−2 θ cos θ + 2s(1− λ) cos θ − 1 + s = 0. (A.8)

Solving Eq. (A.8) numerically, we obtain the F solutions.

A.2. Energy gap

If we regard the system (A.1) as a completely classical system, the energy gap between
the ground state and the first excited state vanishes. The classical magnetization vector
can changes continuously. Hence, the energy of the system (A.4) takes continuous values.

However, small quantum fluctuations are crucial for the energy gap of the system (A.1).
Low-order terms are relevant for the energy gap as shown below.

We first express the Hamiltonian (A.1) by a boson annihilation operator. It is convenient
to rotate the system so that the magnetization vector of the classical ground state is in
the z direction. Thus, we define the total spin operator of the rotated system, Ŝα′ with
α′ = x′, y′, and z′, as ŜxŜy

Ŝz

 =

− sin θ0 0 cos θ0

0 1 0
cos θ0 0 sin θ0

Ŝx′Ŝy′

Ŝz′

 , (A.9)
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where θ0 denotes the polar angle of the classical ground state. The magnetization vector
slightly fluctuates around the z′ direction. To express the small fluctuations, we use the
Holstein-Primakoff transformation:

Ŝz′ =
N

2
− â†â, Ŝ′+ = (N − â†â)1/2â = (Ŝ′−)†, (A.10)

where â denotes a boson annihilation operator which satisfies [â, â†] = 1. Note that we
now consider sufficiently large systems. Thus, quantum fluctuations are small relative to
the classical state, N � 〈â†â〉. Thus we have

Ŝx′ ≈
√
N

2
(â+ â†). (A.11)

Using the transformations, we rewrite the Hamiltonian (A.1) as

Ĥ(s, λ) = −sλN
[
sin θ0 −

1√
N

cos θ0(â+ â†) +
2

N
sin θ0â

†â
]p

+ s(1− λ)N
[
cos θ0 −

1√
N

sin θ0(â+ â†)− 2

N
cos θ0â

†â
]2

− (1− s)
[
cos θ0 −

1√
N

sin θ0(â+ â†)− 2

N
cos θ0â

†â
]
. (A.12)

We next expand the Hamiltonian (A.12), and leave terms whose order is greater than
N0. Using the fact that the angle θ0 satisfies Eq. (A.6), we find that the term of the order
of
√
N vanishes. Eventually, we obtain

Ĥ(s, λ) = Ne(s, λ; θ0) + γ(s, λ; θ0) + γ(s, λ; θ0)[(â†)2 + (â)2] + δ(s, λ; θ0)â†â, (A.13)

where e(s, λ; θ0) is the energy of the classical ground state (A.5). The functions δ and γ
are defined as

δ ≡ −sλ[p(p− 1) sinp−2 θ0 cos2 θ0 − 2p sinp θ0]

+ s(1− λ)[2 sin2 θ0 − 4 cos2 θ0] + 2(1− s) cos θ0, (A.14)

and

γ ≡ −sλp(p− 1)

2
sinp−2 θ0 cos2 θ0 + s(1− λ) sin2 θ0. (A.15)

We can calculate the energy gap by using the Bogoliubov transformation:

â = cosh
Θ

2
b̂+ sinh

Θ

2
b̂†, â† = cosh

Θ

2
b̂† + sinh

Θ

2
b̂, (A.16)

where b̂ is another annihilation operator which satisfies [b̂, b̂†] = 1. Choosing the angle Θ
as

tanh Θ = −2γ

δ
≡ ε, (A.17)

we have

Ĥ = Ne+ γ +
δ

2

(√
1− ε2 − 1

)
+ ∆b̂†b̂ (A.18)

with

∆ = δ
√

1− ε2. (A.19)

Therefore the energy gap in the thermodynamic limit is given by ∆.
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Appendix B.

Self-consistent equations for the Hopfield
model with many-body interactions and
finite patterns embedded

We derive the self-consistent equations (4.5) and (4.6) by mean-field analyses. The Suzuki-
Trotter formula and the static ansatz enable us to obtain the partition function. Then,
using a saddle-point condition, we obtain the self-consistent equations.

Let us calculate the partition function. We first translate the quantum system into a
classical system using the Suzuki-Trotter formula [31]. The Hamiltonian is given as

Ĥ(s, λ) = s{λĤ0 + (1− λ)V̂AFF}+ (1− s)V̂TF

= −sλN
p∑

µ=1

( 1

N

N∑
i=1

ξµi σ̂
z
i

)k
+ s(1− λ)N

( 1

N

N∑
i=1

σ̂xi

)2
− (1− s)

N∑
i=1

σ̂xi , (B.1)

where k denotes an integer for the degree of interactions, and ξ’s the random variables.
The variable p is an integer independent of N . Using the Trotter decomposition, and
introducing M closure relations, we have the following expression of the partition function
for a finite Trotter number M ,

ZM = Tr
M∏
α=1

exp

{
βsλN

M

p∑
µ=1

( 1

N

N∑
i=1

ξµi σ
z
i (α)

)k
− βs(1− λ)N

M

( 1

N

N∑
i=1

σxi (α)
)2

+
β(1− s)
M

N∑
i=1

σxi (α)

} N∏
i=1

M∏
α=1

〈σzi (α)|σxi (α)〉〈σxi (α)|σzi (α+ 1)〉. (B.2)

Here, Tr denotes the summation over all possible spin configurations of {σzi } and {σxi }
satisfying periodic boundary conditions, σzi (1) = σzi (M + 1) for all i. We next linearize
the spin-product terms by using delta functions,

δ
(
Nmµ(α)−

∑
i

ξµi σ
z
i

)
=

∫
dm̃µ(α) exp

{
−m̃µ(α)

β

M

(
Nmµ(α)−

∑
i

ξµi σ
z
i (α)

)}
, (B.3)

and

δ
(
Nmx(α)−

∑
i

σxi

)
=

∫
dm̃x(α) exp

{
−m̃x(α)

β

M

(
Nmx(α)−

∑
i

σxi (α)
)}
. (B.4)
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Then, Eq. (B.2) reads

ZM =

∫ ∏
α,µ

dmµ(α) dm̃µ(α) dmx(α) dm̃x(α)

× exp

{
N
β

M

∑
α

(
sλ
∑
µ

(
mµ(α)

)k −∑
µ

m̃µ(α)mµ(α)

− s(1− λ)
(
mx(α)

)2
+ (1− s)mx(α)− m̃x(α)mx(α)

)}
× exp

{∑
i

ln

(
Tr exp

β

M

{∑
α,µ

m̃µ(α)ξµi σ
z
i (α) +

∑
α

m̃x(α)σxi (α)
}

×
∏
α

〈σzi (α)|σxi (α)〉〈σxi (α)|σzi (α+ 1)〉
)}

. (B.5)

In the thermodynamic limitN →∞, according to the law of large numbers, the summation
over the site index i becomes the average over the randomness of the embedded patterns.
We refer to this average as the configurational average. Furthermore, the integrals are
evaluated by the saddle-point method. The saddle-point conditions for mµ(α) and mx(α)
lead to

m̃µ(α) = sλk
(
mµ(α)

)k−1
(B.6)

and

m̃x(α) = 1− s− 2s(1− λ)mx(α), (B.7)

respectively. Using the static ansatz, i.e., neglecting the α-dependence of the order pa-
rameters, we can take the trace in Eq. (B.5) with the inverse operation of the Trotter
decomposition. We thus obtain the following partition function:

Z =

∫
· · ·
∫ ∏

µ

dmµ dm
x exp

{
−Nβ

(
(k − 1)sλ

∑
µ

(mµ)k − s(1− λ)(mx)2

− 1

β

[
ln 2 coshβ

√
{ksλ

∑
µ
(mµ)k−1ξµ}2 + {1− s− 2s(1− λ)mx}2

])}
, (B.8)

where the brackets [. . .] denote the configurational average. Therefore the pseudo free
energy is

f(β, s, λ; {mµ},mx)

= (k − 1)sλ
∑
µ

(mµ)k − s(1− λ)(mx)2

− 1

β

[
ln 2 coshβ

√
{ksλ

∑
µ
(mµ)k−1ξµ}2 + {1− s− 2s(1− λ)mx}2

]
, (B.9)

and the self-consistent equations are

(mµ)k−1 =

 ksλ
(∑

µ(mµ)k−1ξµ
)
(mµ)k−2ξµ√

{ksλ
∑

µ(mµ)k−1ξµ}2 + {1− s− 2s(1− λ)mx}2

× tanhβ

√
{ksλ

∑
µ
(mµ)k−1ξµ}2 + {1− s− 2s(1− λ)mx}2

 , (B.10)
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and

mx =

 1− s− 2s(1− λ)mx√
{ksλ

∑
µ(mµ)k−1ξµ}2 + {1− s− 2s(1− λ)mx}2

× tanhβ

√
{ksλ

∑
µ
(mµ)k−1ξµ}2 + {1− s− 2s(1− λ)mx}2

 . (B.11)

In the low-temperature limit β → ∞, the pseudo free energy and the self-consistent
equations become

f(s, λ; {mµ},mx) = (k − 1)sλ
∑
µ

(mµ)k − s(1− λ)(mx)2

−
[√
{ksλ

∑
µ
(mµ)k−1ξµ}2 + {1− s− 2s(1− λ)mx}2

]
(B.12)

and

(mµ)k−1 =

 ksλ
(∑

µ(mµ)k−1ξµ
)
(mµ)k−2ξµ√

{ksλ
∑

µ(mµ)k−1ξµ}2 + {1− s− 2s(1− λ)mx}2

 , (B.13)

mx =

 1− s− 2s(1− λ)mx√
{ksλ

∑
µ(mµ)k−1ξµ}2 + {1− s− 2s(1− λ)mx}2

 . (B.14)
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Self-consistent equations for the Hopfield
model with many patterns

We derive the self-consistent equations for the Hopfield model with an extensive number of
patterns embedded (4.13)–(4.17). We closely follow Chap. 10 of Ref. [40] in the calculation.
The calculation uses the replica trick for configurational average.

Let us calculate the partition function. In a similar way to the derivation of Eq. (B.5),
the replicated partition function for a Trotter number M is written as

[ZnM ] =

∫ ∏
α,µ,ρ

dmµρ(α) dmx
ρ(α) dm̃x

ρ(α)

× Tr exp− β

M

∑
α,ρ

m̃x
ρ(α)

{
Nmx

ρ(α)−
∑
i

σxiρ(α)
}

× exp−βsλN
2M

∑
α,µ,ρ

(
mµρ(α)

)2 × [exp
βsλ

M

∑
α,µ,ρ,i

mµρ(α)ξµi σ
z
iρ(α)

]
× exp

βN

M

∑
α,ρ

{
−s(1− λ)

(
mx
ρ(α)

)2
+ (1− s)mx

ρ(α)
}

×
∏
α,ρ,i

〈σziρ(α)|σxiρ(α)〉〈σxiρ(α)|σziρ(α+ 1)〉, (C.1)

where α (= 1, . . . ,M) represents the Trotter index, and ρ (= 1, . . . , n) the replica index.
We have used a Gaussian integral, instead of the delta function, to linearize the spin-
product term regarding σziρ(α).

We consider the case where only a single pattern has a non-vanishing overlap with the
state of the system: m1ρ(α) ≡ mρ(α) = O(N0). The overlap with the other patterns
results from coincidental contributions, hence mµρ(α) = O(1/

√
N) for µ ≥ 2. Expanding

the configurational average for µ ≥ 2 in 1/
√
N , we have[

exp
βsλ

M

∑
α,ρ,i

mµρ(α)ξµi σ
z
iρ(α)

]
' exp

β2s2λ2

2M2

∑
i

∑
αρ,α′ρ′

mµρ(α)mµρ′(α)σziρ(α)σziρ′(α
′).

(C.2)

Consequently, the term involving mµρ(α) for µ ≥ 2 in Eq. (C.1) is expressed as a quadratic
form: ∏

µ≥2

exp−Nβsλ
2M

∑
αρ,α′ρ′

Λ̃αρ,α′ρ′mµρ(α)mµρ′(α
′), (C.3)
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Appendix C. Self-consistent equations for the Hopfield model with many patterns

with a matrix Λ̃ = (Λ̃αρ,α′ρ′),

Λ̃αρ,α′ρ′ ≡ δαρ,α′ρ′ −
βsλ

MN

∑
i

σziρ(α)σziρ′(α
′). (C.4)

The integral with regard to mµρ(α) for µ ≥ 2 yields

(det Λ̃)−(p−1)/2 ' (det Λ̃)−αN/2 = exp−αN
2

ln det Λ̃ = exp−αN
2

∑
λ∈σ(Λ̃)

lnλ, (C.5)

where we have defined the set of eigenvalues of Λ̃ as σ(Λ̃). To linearize the spin-product
term in Λ̃, we replace the matrix by

Λαρ,α′ρ′ ≡ δαρ,α′ρ′ −
βsλ

M
qρρ′(α, α

′)− δρρ′
βsλ

M
Rρ(α, α

′) (C.6)

with the constraint

qρρ′(α, α
′) =


1

N

∑
i

σziρ(α)σziρ′(α
′) (ρ 6= ρ′)

0 (ρ = ρ)

, (C.7)

Rρ(α, α
′) =

1

N

∑
i

σziρ(α)σziρ(α
′), (C.8)

introduced by delta functions:

δ
(
Nqρρ′(α, α

′)−
∑
i

σziρ(α)σziρ′(α
′)
)

=

∫
dq̃ρρ′(α, α

′) exp
{
− αβ

2

2M2
q̃ρρ′(α, α

′)
(
Nqρρ′(α, α

′)−
∑
i

σziρ(α)σziρ′(α
′)
)}
, (C.9)

δ
(
NRρ(α, α

′)−
∑
i

σziρ(α)σziρ(α
′)
)

=

∫
dR̃ρ(α, α

′) exp
{
− αβ

2

2M2
R̃ρ(α, α

′)
(
NRρ(α, α

′)−
∑
i

σziρ(α)σziρ(α
′)
)}
. (C.10)
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Thus, we can rewrite Eq. (C.1) as

[ZnM ]

=

∫ ∏
αρ

dmρ(α) dmx
ρ(α) dm̃x

ρ(α)
∏

(αρ,α′ρ′)

dqρρ′(α, α
′) dq̃ρρ′(α, α

′)
∏
αα′ρ

dRρ(α, α
′) dR̃ρ(α, α

′)

× exp

{
−Nβsλ

2M

∑
αρ

(
mρ(α)

)2 − αN

2

∑
λ∈σ(Λ)

lnλ

− Nβs(1− λ)

M

∑
αρ

(
mx
ρ(α)

)2
+
Nβ(1− s)

M

∑
αρ

mx
ρ(α)− Nβ

M

∑
αρ

m̃x
ρ(α)mx

ρ(α)

− Nαβ2

2M2

∑
(αρ,α′ρ′)

q̃ρρ′(α, α
′)qρρ′(α, α

′)− Nαβ2

2M2

∑
αα′ρ

R̃ρ(α, α
′)Rρ(α, α

′)

}

×
[
Tr exp

{
βsλ

M

∑
αρ

∑
i

mρ(α)ξiσ
z
iρ(α) +

β

M

∑
αρ

∑
i

m̃x
ρ(α)σxiρ(α)

+
αβ2

2M2

∑
(αρ,α′ρ′)

∑
i

q̃ρρ′(α, α
′)σziρ(α)σziρ′(α

′) +
αβ2

2M2

∑
αα′ρ

∑
i

R̃ρ(α, α
′)σziρ(α)σziρ(α

′)

}

×
∏
αρi

〈σziρ(α)|σxiρ(α)〉〈σxiρ(α)|σziρ(α+ 1)〉
]
. (C.11)

Here, ξi denotes ξ1
i , and (αρ, α′ρ′) all the possible combinations of α, α′, ρ, and ρ′ except

for the case of ρ = ρ′.

We can take the trace in (C.11) independent of i. As a result, Eq. (C.11) reads [ZnM ] =∫ ∏
dm . . . exp(−Nβf̃), where

f̃ =
sλ

2M

∑
αρ

(
mρ(α)

)2
+

α

2β

∑
λ∈σ(Λ)

lnλ

+
s(1− λ)

M

∑
αρ

(
mx
ρ(α)

)2 − 1− s
M

∑
αρ

mx
ρ(α) +

1

M

∑
αρ

m̃x
ρ(α)mx

ρ(α)

+
αβ

2M2

∑
(αρ,α′ρ′)

q̃ρρ′(α, α
′)qρρ′(α, α

′) +
αβ

2M2

∑
αα′ρ

R̃ρ(α, α
′)Rρ(α, α

′)

− 1

β

[
ln Tr exp

{βsλ
M

∑
αρ

mρ(α)σzρ(α)ξ +
β

M

∑
αρ

m̃x
ρ(α)σxρ (α)

+
αβ2

2M2

∑
(αρ,α′ρ′)

q̃ρρ′(α, α
′)σzρ(α)σzρ′(α

′) +
αβ2

2M2

∑
αα′ρ

R̃ρ(α, α
′)σzρ(α)σzρ(α

′)
}

×
∏
αρ

〈σzρ(α)|σxρ (α)〉〈σxρ (α)|σzρ(α+ 1)〉
]
. (C.12)

The saddle-point conditions for mρ(α), m̃x
ρ(α), q̃ρρ′(α, α

′), and R̃ρ(α, α
′) lead to the fol-
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Appendix C. Self-consistent equations for the Hopfield model with many patterns

lowing self-consistent equations:

mρ(α) = [ξ〈σzρ(α)〉], (C.13)

mx
ρ(α) = [〈σxρ (α)〉], (C.14)

qρρ′(α, α
′) = [〈σzρ(α)σzρ′(α

′)〉], (C.15)

Rρ(α, α
′) = [〈σzρ(α)σzρ(α

′)〉], (C.16)

where the brackets 〈. . .〉 mean the average with respect to the weight

exp
{βsλ
M

∑
αρ

mρ(α)σzρ(α)ξ +
β

M

∑
αρ

m̃x
ρ(α)σxρ (α)

+
αβ2

2M2

∑
(αρ,α′ρ′)

q̃ρρ′(α, α
′)σzρ(α)σzρ′(α

′) +
αβ2

2M2

∑
αα′ρ

R̃ρ(α, α
′)σzρ(α)σzρ(α

′)
}

×
∏
αρ

〈σzρ(α)|σxρ (α)〉〈σxρ (α)|σzρ(α+ 1)〉. (C.17)

We look for the replica symmetric (RS) solution of Eqs. (C.13)–(C.16). Furthermore,
we use the static ansatz, that is, we neglect the dependence of the order parameters on
the Trotter number:

mρ(α) = m, mx
ρ(α) = mx, m̃x

ρ(α) = m̃x,

qρρ′(α, α
′) = q, Rρ(α, α

′) =

{
R (α 6= α′)

1 (α = α)
,

q̃ρρ′(α, α
′) = q̃, R̃ρ(α, α

′) = R̃.

(C.18)

First, we evaluate the trace in Eq. (C.12). Linearizing the spin-product term by using
a Gaussian integral, we can rewrite the term including trace as

n

[∫
Dz ln Tr

∫
Dw

∏
α

exp
{ β
M

(
sλξm+

√
αq̃z +

√
α(R̃− q̃)w

)
σz(α)

}
× exp

{ β
M
m̃xσx(α)

}
〈σz(α)|σx(α)〉〈σx(α)|σz(α+ 1)〉

]
+ O(n2), (C.19)

where Dz denotes the Gaussian measure Dz ≡ dz exp(−z2/2)/
√

2π, and Dw is defined
similarly. Let us take the limit M → ∞. Using the inverse operation of the Trotter
decomposition, we have

n

[∫
Dz ln

∫
Dw 2 coshβ

√(
sλmξ +

√
αq̃z +

√
α(R̃− q̃)w

)2
+
(
m̃x
)2]

+ O(n2).

(C.20)

The values of the integral are the same for both cases ξ = 1 and ξ = −1, since the value
is invariant under the variable transformation z → −z and w → −w . Hence, Eq. (C.20)
reads

n

∫
Dz ln

∫
Dw 2 coshβ

√(
sλmξ +

√
αq̃z +

√
α(R̃− q̃)w

)2
+
(
m̃x
)2

+ O(n2). (C.21)
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Next, we study the eigenvalues of Λ. The matrix has three types of elements:

Λαρ,α′,ρ′ =


− βsλ

M
q if ρ 6= ρ′

− βsλ

M
R if ρ = ρ′ and α 6= α′

1− βsλ

M
if ρ = ρ′ and α = α′

. (C.22)

We can easily find that the matrix has the eigenvalues:

λ1 = 1− βsλ
( 1

M
+
M − 1

M
R+ (n− 1)q

)
(C.23)

with degeneracy 1, and

λ2 = 1− βsλ
( 1

M
+
M − 1

M
R− q

)
(C.24)

with degeneracy n− 1, and

λ3 = 1− βsλ

M
(1−R) (C.25)

with degeneracy n(M − 1). Hence, the eigenvalue sum in Eq. (C.12) reads

n

{
ln(1− βsλR+ βsλq)− βsλq

1− βsλR+ βsλq
− βsλ(1−R)

}
+ O(n2) (C.26)

The pseudo free energy is given by using the replica trick:

f = − 1

Nβ
[logZ] = − 1

Nβ
lim
n→0

[Zn]− 1

n
= lim

n→0

f̃

n
. (C.27)

From the above results, we obtain

f =
sλ

2
m2 + s(1− λ)(mx)2 − (1− s)mx + m̃xmx − αβ

2
q̃q +

αβ

2
R̃R

+
α

2β

{
ln(1− βsλR+ βsλq)− βsλq

1− βsλR+ βsλq
− βsλ(1−R)

}
− 1

β

∫
Dz ln

∫
Dw 2 coshβ

√(
sλm+

√
αq̃z +

√
α(R̃− q̃)w

)2
+
(
m̃x
)2
. (C.28)

In what follows, we will derive self-consistent equations in the low-temperature limit.
To simplify expressions shown later, we define the followings:

g ≡ sλm+
√
αq̃z +

√
α(R̃− q̃)w, (C.29)

u ≡
√
g2 + (m̃x)2, (C.30)

Y ≡
∫
Dw coshβu. (C.31)
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Appendix C. Self-consistent equations for the Hopfield model with many patterns

The saddle-point conditions for the pseudo free energy (C.28) leads to the self-consistent
equations

m =

∫
Dz Y −1

∫
Dw

g

u
sinhβu, (C.32)

mx =

∫
Dz Y −1

∫
Dw

m̃x

u
sinhβu, (C.33)

q =

∫
Dz
(
Y −1

∫
Dw

g

u
sinhβu

)2
, (C.34)

R =

∫
Dz Y −1

(∫
Dw

(g
u

)2
coshβu+

(m̃x)2

β

∫
Dw

1

u3
sinhβu

)2
, (C.35)

m̃x = 1− s− 2s(1− λ)mx, (C.36)

q̃ =
(sλ)2q

{1− βsλ(R− q)}2
, (C.37)

R̃ = q̃ +
(sλ)2(R− q)

1− βsλ(R− q)
. (C.38)

The order parameter R is greater than or equal to q, since

R ≥
∫
Dz Y −1

∫
Dw

(g
u

)2
coshβu

=

∫
Dz

Y −2

2π

∫
dw e−w

2/2 coshβu

∫
dw e−w

2/2
(g
u

)2
coshβu

≥
∫
Dz

Y −2

2π

{∫
dw(e−w

2/2 coshβu)1/2
(
e−w

2/2
(g
u

)2
coshβu

)1/2}2

=

∫
Dz
{
Y −1

∫
Dw

g

u
coshβu

}2

≥
∫
Dz
{
Y −1

∫
Dw

g

u
sinhβu

}2

= q. (C.39)

In particular, q is equal to R in the limit β →∞ as shown below. Assuming that R > q,
we have q̃ = R̃ = 0 from Eqs. (C.37) and (C.38). Then, Eqs. (C.34) and (C.35) read

q =
{g
u

tanhβu
}2
→
(g
u

)2
, (C.40)

R =
(g
u

)2
+

(m̃x)2 tanhβu

βu3
→
(g
u

)2
, (C.41)

which is in conflict with the assumption. Hence, the relation q = R holds in the low-
temperature limit. From Eq. (C.38), we have q̃ = R̃. It follows that the integrands in the
self-consistent equations are independent of w; the integrals with respect to w are taken
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easily. Consequently, the self-consistent equations in the low-temperature limit are

m =

∫
Dz

sλm+
√
αq̃z√

(sλm+
√
αq̃z)2 + (1− s− 2s(1− λ)mx)2

, (C.42)

mx =

∫
Dz

1− s− 2s(1− λ)mx√
(sλm+

√
αq̃z)2 + (1− s− 2s(1− λ)mx)2

, (C.43)

q =

∫
Dz

(sλm+
√
αq̃z)2

(sλm+
√
αq̃z)2 + (1− s− 2s(1− λ)mx)2

. (C.44)

Although q is equal to R, the factor β(R− q) converges to

lim
β→∞

β(R− q) =

∫
Dz

{1− s− 2s(1− λ)mx}2

{(sλm+
√
αq̃z)2 + (1− s− 2s(1− λ)mx)2}3/2

≡ C. (C.45)

For this reason, we obtain

q̃ =
(sλ)2q

(1− sλC)2
. (C.46)

The pseudo free energy is written as

f =
1

2
sλm2 − s(1− λ)(mx)2 − α

2
sλ+

α

2
q̃C

−
∫
Dz

√
(sλm+

√
αq̃)2 + (1− s− 2s(1− λ)mx)2. (C.47)
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Appendix D.

Self-consistent equations for the Hopfield
model with many-body interactions and with
many patterns

We derive Eqs. (4.22)–(4.24) in this Appendix. We closely follow the calculation in
Ref. [38]. The target Hamiltonian is given by Eq. (4.1) and (4.2). The number of patterns
must be p = αNk−1 so that the free energy is extensive. We consider the case where the
system has a single non-vanishing overlap again.

The replicated partition function for a Trotter number M is calculated in the same way
as in the case of k = 2 except that the spin-product term for σziρ(α) is linearized by using
the delta function:

[ZnM ] =

∫ ∏
α,µ,ρ

dmρ(α) dm̃ρ(α) dmx
ρ(α) dm̃x

ρ(α)

× Tr
[
exp− β

M

∑
α,ρ

m̃ρ(α)
(
Nmρ(α)−

∑
i

ξ1
i σ

z
iρ(α)

)]
× exp− β

M

∑
α,ρ

m̃x
ρ(α)

(
Nmx

ρ(α)−
∑
i

σxiρ(α)
)

× exp
βsλN

M

∑
α,ρ

(
mρ(α)

)k∏
µ≥2

[
exp

βsλ

MNk−1

∑
α,ρ

∑
i1<···<ik

ξµi1σ
z
i1ρ(α) · · · ξµikσ

z
ikρ

(α)
]

× exp
βN

M

∑
α,ρ

{
−s(1− λ)

(
mx
ρ(α)

)2
+ (1− s)mx

ρ(α)
}

×
∏
α,ρ,i

〈σziρ(α)|σxiρ(α)〉〈σxiρ(α)|σziρ(α+ 1)〉. (D.1)

Note that only the spin-product term for the pattern with non-vanishing overlap is lin-
earized. The other spin-product term is evaluated as follows. Expanding the exponential,
we find that the linear term in the series vanishes. The contribution from the second term
is

1

2

( βsλ

MNk−1

)2 ∑
α,ρ,α′,ρ′

∑
i1<···<ik

σzi1ρ(α)σzi1ρ′(α
′) · · ·σzikρ(α)σzikρ′(α

′)

=
1

2

( βsλ

MNk−1

)2 ∑
α,ρ,α′,ρ′

{(∑
i

σziρ(α)σziρ′(α
′)
)k

+ O(Nk−1)
}

=
1

2

(βsλ
M

)2 ∑
α,ρ,α′,ρ′

1

Nk−2

( 1

N

∑
i

σziρ(α)σziρ′(α
′)
)k

+ O
( 1

Nk−1

)
. (D.2)
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Since the contribution from the lth term is of the order of N l(1−k/2), the correction to
the O(N2−k) term in the series, εk, is the greater one of O(N1−k) and O(N3(1−k/2)): For
k = 3, ε3 = O(N−3/2), and for k > 3, εk = O(N1−k). Thus, the series reads

∏
µ≥2

{
1 +

1

2

(βsλ
M

)2 1

Nk−2

∑
α,ρ,α′,ρ′

( 1

N

∑
i

σziρ(α)σziρ′(α
′)
)k

+ εk

}
= exp

∑
µ≥2

{1

2

(βsλ
M

)2 1

Nk−2

∑
α,ρ,α′,ρ′

( 1

N

∑
i

σziρ(α)σziρ′(α
′)
)k

+ εk

}
= exp

{αN
2

(βsλ
M

)2 ∑
α,ρ,α′,ρ′

( 1

N

∑
i

σziρ(α)σziρ′(α
′)
)k

+ αNk−1εk

}
. (D.3)

Here, we have used p = αNk−1. The correction term is O(N1/2) for k = 3, and O(N0)
for k > 3; hence, this term is negligible in the thermodynamic limit. Linearizing the spin-
product term in Eq. (D.3) by using the delta functions (C.9) and (C.10), we can write the
integrand in [ZnM ] as exp(−Nβf̃) with

f̃ = −sλ
M

∑
αρ

(
mρ(α)

)k
+
s(1− λ)

M

∑
αρ

(
mx
ρ(α)

)2 − 1− s
M

∑
αρ

mx
ρ(α)

+
1

M

∑
αρ

m̃ρ(α)mρ(α) +
1

M

∑
αρ

m̃x
ρ(α)mx

ρ(α)

− αβ

2M2
(sλ)2

∑
(αρ,α′ρ′)

(
qρρ′(α, α

′)
)k − αβ

2M2
(sλ)2

∑
αα′ρ

(
Rρ(α, α

′)
)k

+
αβ

2M2

∑
(αρ,α′ρ′)

q̃ρρ′(α, α
′)qρρ′(α, α

′) +
αβ

2M2

∑
αα′ρ

R̃ρ(α, α
′)Rρ(α, α

′)

− 1

β

[
ln Tr exp

{ β
M

∑
αρ

ξm̃ρ(α)σzρ(α) +
β

M

∑
αρ

m̃x
ρ(α)σxρ (α)

+
αβ2

2M2

∑
(αρ,α′ρ′)

q̃ρρ′(α, α
′)σzρ(α)σzρ′(α

′) +
αβ2

2M2

∑
(αα′ρ)

R̃ρ(α, α
′)σzρ(α)σzρ(α

′)
}

×
∏
αρ

〈σzρ(α)|σxρ (α)〉〈σxρ (α)|σzρ(α+ 1)〉
]
. (D.4)

In a similar manner to the case of k = 2, we look for the RS solution, and use the static
ansatz. The spin-product term in Eq. (D.4) is linearized by using a Gaussian integral.
Expanding the configurational term in Eq. (D.4) in powers of n, we have,

n

[∫
Dz ln

∫
DwTr exp

{ β
M

∑
α

ξm̃σz(α) +
β

M

∑
α

m̃xσx(α)

+
√
αq̃

β

M

∑
α

σz(α)z +

√
α(R̃− q̃) β

M

∑
α

σx(α)w
}

×
∏
α

〈σz(α)|σx(α)〉〈σx(α)|σz(α+ 1)〉
]

+ O(n2). (D.5)
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The inverse operation of the Trotter decomposition leads to

n

∫
Dz ln

∫
Dw 2 coshβ

√(
m̃+

√
αq̃z +

√
α(R̃− q̃)w

)2
+ (m̃x)2 + O(n2). (D.6)

Using the replica trick, we finally obtain the following pseudo free energy:

f = −sλmk + s(1− λ)(mx)2 − (1− s)mx + m̃m+ m̃xmx

+
α

2
β(sλ)2qk − α

2
β(sλ)2Rk − α

2
βq̃q +

α

2
βR̃R

− 1

β

∫
Dz ln

∫
Dw 2 coshβ

√(
m̃+

√
αq̃z +

√
α(R̃− q̃)w

)2
+ (m̃x)2. (D.7)

The saddle-point conditions for the pseudo free energy (D.7) yield the self-consistent
equations. Let

g ≡ sλkmk−1 +
√
αq̃z +

√
α(R̃− q̃)w, (D.8)

and u in the same way as in Eq. (C.30), and Y as in Eq. (C.31). Then the self-consistent
equations are given by Eqs. (C.32)–(C.36) with Eq. (D.8) and

q̃ = (sλ)2kqk−1, (D.9)

R̃ = (sλ)2kRk−1. (D.10)

In the same way as the case of k = 2, we find R ≥ q. If R > q, the free energy diverges
in the limit β →∞. Accordingly, R must be equal to q. It follows that R̃ = q̃, so that the
integrands in the self-consistent equations are independent of w. Hence, the self-consistent
equations in the low-temperature limit are

m =

∫
Dz

sλ(kmk−1 +
√
αkqk−1z)√

(sλ[kmk−1 +
√
αkqk−1z])2 + (1− s− 2s(1− λ)mx)2

, (D.11)

mx =

∫
Dz

1− s− 2s(1− λ)mx√
(sλ[kmk−1 +

√
αkqk−1z])2 + (1− s− 2s(1− λ)mx)2

, (D.12)

q =

∫
Dz

(sλ[kmk−1 +
√
αkqk−1z])2

(sλ[kmk−1 +
√
αkqk−1z])2 + (1− s− 2s(1− λ)mx)2

. (D.13)

The factor β(R− q) converges to

C ≡ lim
β→∞

β(R− q) =

∫
Dz

{1− s− 2s(1− λ)mx}2

{(sλ[kmk−1 +
√
αkqk−1z])2 + (1− s− 2s(1− λ)mx)2}3/2

.

(D.14)

Since the factor β(Rk − qk) converges to Ckqk−1, the pseudo free energy in the low-
temperature limit is

f = sλ(k − 1)mk − s(1− λ)(mx)2 +
α

2
k(k − 1)(sλ)2Cqk−1

−
∫
Dz

√
(sλ[kmk−1 +

√
αkqk−1z])2 + (1− s− 2s(1− λ)mx)2. (D.15)
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Appendix E.

Pseudo free energy of the Wajnflasz-Pick
model with antiferromagnetic transverse
interactions and transverse field

We derive the pseudo free energy (5.11) by using the mean-field analysis. The calculation
is similar to that of the ferromagnetic p-spin model described in Chap. 3. The difference
is that we have to use three types of closures to convert the quantum Hamiltonian (5.10)
to a classical Hamiltonian.

The Hamiltonian is

Ĥ(s, λ) = −sλN
(

1

N

∑
i

τ̂ zi

)2

− sλh
∑
i

τ̂ zi + s(1− λ)N

(
1

N

∑
i

τ̂x,2i

)2

− (1− s)
∑
i

τ̂x,1i ,

(E.1)

where s and λ are control parameters, and N is the number of variables corresponding to
the spin variable of the usual spin-1/2 system. The operators τ z, τx,1, and τx,2 are defined
by Eqs. (5.5) and (5.8). The partition function for a Trotter number M is given as

ZM = Tr

(
exp

{
βsλN

M

[(
1

N

∑
i

τ̂ zi

)2

+ h
∑
i

τ̂ zi

]}
exp

{
−βs(1− λ)N

M

(
1

N

∑
i

τ̂x,2i

)2}

× exp

{
β(1− s)
M

∑
i

τ̂x,1i

})M
. (E.2)

Here, β denotes inverse temperature.

We use the following three types of closures:

1̂z(α) ≡
∑
{τzi (α)}

|{τ zi (α)}〉〈{τ zi (α)}|, (E.3)

1̂x,1(α) ≡
∑

{τx,1i (α)}

|{τx,1i (α)}〉〈{τx,1i (α)}|, (E.4)

1̂x,2(α) ≡
∑

{τx,2i (α)}

|{τx,2i (α)}〉〈{τx,2i (α)}|, (E.5)

in order to convert the system to a classical system. Here, α is an integer between unity
and M . The quantum state |{τ zi (α)}〉 denotes an orthogonal basis that diagonalizes the
operators τ̂ zi (α) for i = 1, . . . , N . The summation

∑
{τzi (α)} is taken over all orthogonal
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basis. In a similar way, we define |{τ̂x,1i (α)}〉 and |{τ̂x,2i (α)}〉, and summations with regards
to them. Introducing the closures (E.3)–(E.5) to Eq. (E.2), we have

ZM =
∏
α

∑
{τzi (α)}

∑
{τx,1i (α)}

∑
{τx,2i (α)}

exp

{
βsλN

M

[(
1

N

∑
i

τ zi (α)

)2

+ h
∑
i

τ zi (α)

]

− βs(1− λ)N

M

(
1

N

∑
i

τx,2i (α)

)2

+
β(1− s)
M

∑
i

τx,1i (α)

}
×
∏
i

〈τ zi (α)|τx,2i (α)〉〈τx,2i (α)|τx,1i (α)〉〈τx,1i (α)|τ zi (α+ 1)〉, (E.6)

with periodic boundary conditions τ zi (M + 1) = τ zi (1) for all i.
The spin-product terms in Eq. (E.6) can be linearized by using integral representation

of the delta functions:

δ

(
Nmz(α)−

∑
i

τ zi (α)

)
=

∫
dm̃z(α) exp

{
− β

M
m̃z(α)

(
Nmz(α)−

∑
i

τ zi (α)

)}
, (E.7)

δ

(
Nmx(α)−

∑
i

τx,2i (α)

)
=

∫
dm̃x(α) exp

{
− β

M
m̃x(α)

(
Nmx(α)−

∑
i

τx,2i (α)

)}
,

(E.8)

leading to the partition function for a single-particle system:

ZM =

∫
· · ·
∫ ∏

α

dmz(α) dm̃z(α) dmx(α) dm̃x(α)

× exp

{
βN

M

∑
α

(sλ{[mz(α)]2 + hmz(α)} − m̃z(α)mz(α)− s(1− λ)[mx(α)]2 − m̃x(α)mx(α))

}
× exp

{
N ln

∏
α

∑
{τz(α)}

∑
{τx,1(α)}

∑
{τx,2(α)}

× exp
β

M
[m̃z(α)τ z(α) + m̃x(α)τx,2(α) + (1− s)τx,1(α)]

× 〈τ z(α)|τx,2(α)〉〈τx,2(α)|τx,1(α)〉〈τx,1(α)|τ z(α+ 1)〉
}
. (E.9)

We evaluate the integral by using the saddle-point method. The saddle-point conditions
for mz(α) and mx(α) yields

m̃z(α) = sλ(2mz(α) + h), (E.10)

m̃x(α) = −2s(1− λ)mx(α). (E.11)

Using the static ansatz, we can take the summations in Eq. (E.9) by the inverse operation
of the Trotter decomposition. Then, we finally obtain the partition function

Z =

∫∫
dmz dmx exp{−Nβf}, (E.12)

where f is a pseudo free energy given by

f = sλ
(
mz
)2 − s(1− λ)

(
mx
)2 − 1

β
ln Tr expβ

(
m̃z τ̂ z + m̃xτ̂x,2 + (1− s)τ̂x,1

)
. (E.13)
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