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Abstract

Recently, the weak-value amplification (WVA) has been extensively investigated as a

promising quantum technique for improving an accuracy of a precision measurement. The

basic idea of WVA comes from the weak measurement introduced by Aharonov, Albert,

and Vaidman in 1988. The weak measurement is the indirect quantum measurement

with the weak interaction and postselection of the final state of the measured system.

The attention point is that we can measure the quantity called the weak value, which

appears in the shift of the measuring probe given by the weak measurement. Because the

weak value can be outside the range of the eigenvalues, the shift of the measuring probe

obtained by the weak measurement becomes larger than the one given by the conventional

measurement. This shift amplification effect by the weak value is the WVA, which has

been studied for precisely measuring the small coupling constant.

In this thesis, we propose the two possible applications of the WVA. First, we analyt-

ically obtain the optimal probe wave function for a given weak value by the variational

method. It is shown that the amplification factor obtained by the optimal probe has no-

upper bound while the one in the Gaussian probe already reported by some researchers

has the upper bound. Furthermore, the variance of the optimal probe after the measure-

ment can be zero. We can derive the optimal probe by the Lagrange multiplier method

for maximizing the shift of the probe position or minimizing the variance of the final

distribution.

Second we have developed the way which has a technical advantage of the WVA from

the viewpoint of statistics. It is often argued that the WVA is not helpfull for the

parameter estimation. Therefore we consider the statistical inferences that the WVA will

be advantageous. We propose a method to determine whether the interaction is present or

not and evaluate the capability of the WVA for this interaction detection problem by using

the hypothesis testing in statistics. As the main result, it is shown that the merit of the

WVA is the reduction of the possibility to miss the presence of the interaction more than

the conventional measurement while keeping the probability of a misdetection, when the

absolute value of the weak value is outside the range of the eigenvalues. In this discussion,

we assume that the number of the obtained data is infinitely large and we neglect the

data loss by the failure of the postseleciton.
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Chapter 1

Introduction

1.1 Background

It is undoubted that a progress of a measurement technique substantially contributes

to developing physics. As a recent topic, for example, the alternative uncertain princi-

ples [1–3] instead of Heisenberg’s one [4] were theoretically proposed and some researchers

experimentally demonstrated by the neutron spin [5] and the optical experiments [6]. In

other instances, gravitational wave detectors, which are large Michelson interferometers,

have been developed for an ultra-high-precision measurement [7, 8]. If the detectors ob-

serve a gravitational wave, we can make a definite progress in the researches of general

relativity, cosmology, and astronomy. Furthermore, because the quantum uncertainty

principle limits the sensitivity of the detector [9, 10], we need to study quantum measure-

ment, quantum optics, and optomechanics [11–13], which will also contribute to a further

measurement technique.

Meanwhile, in recent years, the weak-value amplification (WVA) has been intensively

developed as a promising quantum measurment technique for improving an accuracy of

a precision measurement [14–16]. The basic idea of the WVA emerged from the weak

measurement introduced by Aharonov, Albert, and Vaidman in 1988 [17]. The weak

measurement is described as an indirect quantum measurement with postselection of the

final state of the measured system and has been studied by many quantum physicists in

recent years [18]. For example, the experiment in Ref. [6] used the weak measurement.

Usually, we assume that the interaction Hamiltonian is of the von Neumann type which

gives rise to a translation of the probe position distribution. The interesting point is that

1



2 Chapter 1

we can measure the quantity called the weak value by the weak measurement. The weak

value is defined as

⟨Â⟩w :=
⟨f |Â|i⟩
⟨f |i⟩

,

where |i⟩ and |f⟩ are the pre- and postselected states and Â is an observable in the

measured system, respectively. The weak value appears in the shift of an expectation

value of the measuring probe induced by the interaction between the measured system

and the probe. When the coupling is very weak, the shift is proportional to the weak

value and the coupling constant [17]. The term of weak in the weak measurement comes

from the weak coupling in the original proposal. On the other hand, the shift given by the

conventional indirect measurement is the eigenvalues of the measured system observable

and the coupling constant. We focus on the property of the weak value, that the weak

value can be outside the range of the eigenvalues. Hence the shift of the measuring probe

obtained by the weak measurement can be larger than the one given by the conventional

measurement [19]. We call this shift amplification effect by the weak measurement as the

weak-value amplification and some researchers have extensively studied the WVA for the

purpose of measuring the small coupling constant [18].

Actually, the amplification effect has been demonstrated in various experiments [20–30].

Especially, an experiment for measuring a beam displacement shows a significant ampli-

fication effect. Setting a single birefringent cystal between the two poralizers, Ritchie

et al. monitored the large beam split by a crystal with tuned poralizers [20]. We see

this experiment in greater detail in Chap. 6. Hosten and Kwiat succeeded in the first

observation of the spin Hall effect of light by the WVA [21]. The WVA in the Sagnac

interferometer was done by Dixon et al. [22]. They measured the beam deflection caused

by the tilted mirror with postselection, and they accomplished about 80 times ampli-

fication of the shift of the beam axis by the mirror. The WVA was also used for the

velocity measurement by Viza et al. with the Michelson interferometer and measured the

velocity of the longitudinal moving mirror from the photons at the output port. They

have achieved the measurement of 400 fm/s [28].

We have some theoretical discussions on the properties of the WVA. Although the orig-

inal proposal by AAV [17] used the weak coupling approximation, Wu and Li considered

the higher-order terms in the coupling constant and showed the bound of the amplifica-

tion factor [31]. The amplification limit is analytically given by full-order caluculation

on the assumption that the measured system is a two-state system [32–34]. We note
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that people often assume that the initial probe wave function has a Gaussian profile.

Actually, Ref. [35] claimed that the amplification limits essentially depends on the initial

probe state and the number of the distinct eigenvalues of the measured system.

Some researchers have theoretically studied a technical utility of the WVA. In Ref. [36],

Nishizawa et al. have compared the amplified shift and the shot noise in an optical inter-

ferometer. Also the same resercher has studied the WVA in the Michelson interferometer

which has two kinds of the fundamental quantum noise, the shot noise and the radiation-

pressure noise [37]. Jordan et al. have analyzed the several types of the technical noise to

conclude that the WVA has practical advantage for a precision measurement [38]. Lee

and Tsutsui have evaluated the three principal noises, which show up in a standard mea-

surement model [39]. They have shown that the WVA has advantage for the observation

of interaction.

There is the trade-off that the larger the amplification factor is, the smaller the number

of available measurement data becomes due to the postselected state almost orthogonal to

the preselected state. Some researchers worry that this trade-off might be considered as a

disadvantage of the WVA for a precision measurement usually requiring a large number of

data [40–44]. They had discussed this issue by the estimation theory, which is one of the

statistical inferences. The purpose of this discussion is the estimation of the value of the

coupling constant which indicates the interaction strength between the measured system

and the measuring probe. They have evaluated the estimation accuracy of the coupling

constant with the weak measurement and also with the conventional measurement. It

is well known that the inverse of the Fisher information multiplied by the number of

obtained data gives the lower bound of the mean squared error of the estimator, i.e., the

Cramér-Rao inequality [45]. Applying this bound to both the weak measurement and

the conventional one, they concluded that the weak one is inferior to the conventional

one for the parameter estimation due to the data loss by the failure of the postselection.

Some researchers mention that the data loss by the postselection dose not need to be

considered in practical cases [32]. Also the researchers theoretically proposed ways to

circumvent this weak point of the postselection by recycling photons Refs. [46, 47] or by

entanglement [48, 49]. Actually, there remain controversies over this discussion whether

the WVA is usefull or not [30, 38, 50–52].
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1.2 Aim of this thesis

As we will see in the subsequent sections the original idea of the WVA by AAV may not

have an advantage over the conventional measurement. One might contemplate various

ways of its modifications to make the WVA advantageous; choose the probe wave function

other than the standard Gaussian function or even change the task of measurement itself

and probably more.

In this thesis, we concentrate on the two applications of the WVA from the different

viewpoints, a probe engineering to give a large amplification and a task of the statistical

hypothesis testing for the interaction detection problem rather than the coupling param-

eter estimation. At the moment other possibilities cannot be excluded but we believe the

present two are most promising, especially the second one.

First, as we have introduced in the previous section, Ref. [35] has shown that the

amplification limit depends on the initial probe state. They have also calculated the

amplification limit by using a variational method. Especially, they have exemplified the

Stern-Gerlach experiment, the measured system of which is the two-state system, and

suggested that we can enlarge the maximal shift of the position expectation value by

broadening the initial probe wave function. We note that they have used the assumption

that the interaction strength is very weak, i.e., g ≪ 1 for the von Neumann Hamiltonian.

Meanwhile, according to Refs. [32–34], we can calculate the expectation value of the probe

position and momentum without any approximation when the measured system is the

two-state system. Accordingly, we will evaluate the maximal shift of the probe position

by the full-order calculation for the two-state system. The Gaussian probe case has the

upper bound of the maximal shift. Here, the question is raised whether any initial probe

wave function has the upper bound or not. In this thesis, we analytically derive the

optimal probe wave function, which maximizes the shift of the probe, by the Lagrange

multiplier method. It is shown that the amplification factor given by the optimal probe

has no upper bound, while the amplification factor in the Gaussian probe already reported

by some researchers has the upper bound for any weak values [32–34]. We also show that

the optimal probe wave function is derived by the variational method for minimizing the

variance of the final distribution. The optimal probe wave function is the unique solution

of the two variational problems. For a specific weak value, the final distribution can be

described as the Kronecker delta, the variance of which is zero. To produce this probe,

we need to know the weak value, which can be calculated from an experimental setup,

and the value of the coupling constant, which is an unknown parameter that we want
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to measure. It is a practical strategy that we use the reasonably guessed value of the

coupling constant and repeatedly update the value from the measurement results. Our

result suggests that varying the initial probe will give benefit for developing the WVA or

a precise measurement.

Next, we have developed a way which has a technical advantage of the WVA from the

viewpoint of statistics. As we have noted above, some researchers worry that the failure of

the postselection makes the number of available measurement data small, which might be

a disadvantage of the WVA for a precisely estimating parameter usually requiring a large

number of data. Actually, we see it with the typical example in Sec. 2.4 that the weak

measurement is worse for the parameter estimation than the conventional measurement

due to the failure of the postselection. Additionally, as stated in Sec. 2.4, we find that the

Fisher information with postselection orthogonal to preselection is smaller than one with

postselection parallel to preselection regardless of whether the data loss is considered or

not. When postselecion is orthogonal to preselection, the weak measurement gives large a

weak value and large amplification. Basically, the amplification by the weak measurement

is not helpful for estimating regardless of the failure of the postselection. Thereupon we

consider a statistical inference problem with the exception of the estimation method, in

which the amplification effect would be beneficial even only the case that the number of

the obtained date is infinitely large.

Here we study the detection problem that we determine whether the interaction is

present or not between the measured system and the measuring probe. In this problem,

we evaluate the distinguishing capability of the weak measurement and the conventional

measurement and compare them. To see such a problem, the hypothesis testing method is

usually used [53–55]. The similar detection problem has been treated also in Refs. [39, 42].

The authors of Ref. [39] did not used the hypothesis testing method. They supposed

that the interaction is present if the expectation value of the final probe is non-zero for

a zero-mean initial probe. They compared the expectation value with the noises (the

systematical noise , the statistical noise, and the approximation error) to obviously judge

whether the expectation value is non-zero or not. Further they find a region of the

weak value that the weak measurement has the merit to find the non-zero expectation

value. Here we remark that the region depends on the coupling constant that we want to

measure. Therefore we need to know the coupling constant to configure an experiential

setup. Additionally , in this method, we will miss the case that the interaction is present

while the expectation value is zero. The authors of Ref. [42] evaluated the detection

capability of the weak measurement with the likelihood-ratio test method, which is widely
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used in the hypothesis testing for a practical reason. As mentioned later, the likelihood-

ratio test is not always appropriate. We have another proper method to consider the

detection problem. Therefore, we reconsider this problem properly using the standard

hypothesis testing method to obtain a definite result.

In the hypothesis test, we set up the two contradictory hypotheses, a null hypothesis

and an alternative hypothesis, and determine which one is more likely on the basis of

the experimental results. We apply the hypothesis testing for the weak measurement and

propose the appropriate test function for a particular testing problem that we determine

whether or not the interaction is present. Namely, for the coupling constant g, we set the

null hypothesis that the interaction is absent, i.e., g = 0, and the alternative hypothesis

represents that the interaction is present, i.e., g ̸= 0. Such a testing problem is classified

as the two-sided test in the hypothesis testing theory. We have to choose an appropriate

test function, which is the criterion of determination, prior to testing. In the two-sided

test, a test function giving the uniformly most powerful unbiased (UMPU) test is most

appropriate, the detection power of which is grater than one given by any other test

functions and the probability of the misdection is a significance level. We remark that, in

one-sided test, the uniformly most powerful (UMP) test is most appropriate, a detection

power of which is grater than one given by any other test functions and the probability

of the misdection is lower than a significance level. Often, the likelihood-ratio test is

used for the testing problem such that the both hypotheses are simple, in which the

test is UMP. In the likelihood-ratio test, comparing the two likelihood functions, i.e.,

probability distributions obtained by the measurement, one given in the null hypothesis

and the other given in the alternative hypothesis, we determine which hypothesis is more

likely. Noting that, in problem of the two-sided test, the UMP test does not exist.

Although the likelihood-ratio test is usually used for practical reasons, e.g. Ref. [42], the

likelihood-ratio test is not appropriate for our testing problem described as the two-sided

test. Thus we should consider a test function giving the UMPU test for the two-sided

test.

As the main result, it is shown that the merit of the WVA is the reduction of the

possibility to miss the presence of the interaction more than the conventional measurement

while keeping the probability of a misdetection, when the absolute value of the weak value

is outside the range of the eigenvalues. In this discussion, we assume that the number

of the obtained data is infinitely large and we neglect the data loss by the failure of the

postseleciton. Additionally, we show that our proposed test function can be a UMPU

test or a UMP test, which gives a statistically good test. It is also shown that our result



Introduction 7

remains valid under an additive white Gaussian noise typically occurred in an electric

circuit or device.

Furthermore, we apply our proposed testing method to the famous weak measurement

experiment demonstrated by Ritchie et al. [20] to get the physical intuition of the proposed

testing method. This experiment uses the two polarizers and the single birefringent

crystal, which is originally designed for measurement of a weak value. In this framework,

we consider the testing problem to determine whether a crystal used is birefringent or

not. We show that the case of the almost orthogonal angles of the two polarizers, which

does not satisfy the weak coupling approximation, make the WVA notable powerful in

terms of the testing power. This result will enhance the physical understanding of the

WVA and of the proposed testing method.

1.3 Organization

In Chap. 2, we review the concept of the weak measurement and the WVA following

the original proposal by Aharonov, Albert, and Vaidman [17]. Also we see the weak-

value amplification in a full-order calculation with the assumption that the measured

system is two-quantum state system described as the Bloch sphere. We see the issue

from the viewpoint of the estimation theory that the failure of the postselection causes

the disadvantage of the WVA. By calculating the classical Fisher information, we can

evaluate the estimation capability of the weak measurement.

In Chap. 3, we explicitly derive the optimal probe wave function in the momentum

space by the Lagrange multiplier method in two ways: maximizing the shift of the probe

position and minimizing the position variance of the final probe distribution. This chapter

is based on Refs. [58, 59].

In Chap. 4, we recapitulate the standard concept of the statistical hypothesis testing

for the subsequent chapter. The purpose of the hypothesis testing method is to determine

the right hypothesis. We explain two types of errors that disturb the determination and

quantitatively define the testing power. We introduce the test function, which gives

a criterion of the determination. In the hypothesis testing, we have prescriptions for

preparing the appropriate test function in response to a testing problem.

In Chap. 5, we consider the testing problem that we determine whether the interaction

is present or not, which is treated as the two-sided test. We propose the test function in
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which the interaction is supposed to be present when the variance of the measurement

data deviates from the initial probe fluctuation. With this test function, we evaluate

the testing powers of the weak measurement and the conventional measurement. This

chapter is based on Ref. [60].

In Chap. 6, we see the physical intuition of the hypothesis testing method proposed

in the previous chapter through the famous optical experiment for measuring the weak

value demonstrated by Ritchie et al. [20]. We review the experiment which uses the two

polarizers and a single birefringent crystal. In this thesis, we regard that this experiment

is used for distinguishing whether the crystal used is birefringent or not. We find that

case that postselected state completely orthogonal to the preselected one gives the striking

amplification effect and the notable testing power, where the weak coupling approximation

breaks down. This chapter is based on Ref. [61].

We give the concluding remarks of this thesis in Chap. 7. Especially, we summarize

the discussion with the focus on the hypothesis testing with the weak measurement.

Subsequently, we note some technical matters in the Appendices. In Appendix A, we

show an example of the position expectation value of the final probe in the full-order

calculation. Here we do not restrict our attention to the case that the initial probe is

Gaussian.

In Appendix B, we derive the Cramér-Rao Inequality and calculate the classical Fisher

information for the weak measurement and the conventional measurement. We use them

in Sec. 2.4.

In Appendix C, we review the optical shot noise in the weak measurement, which is one

of the fundamental noises in an optical experiment, referring to Ref. [36]. We see that

the shot noise is always larger than the variance of the final probe.

In Appendix D, we consider two other situations of the testing problem. In Appendix

D.2, we consider the testing problem with a small interval null hypothesis such as |g| ≤ ε

for small ε. This discussion is motivated by Refs. [56, 57], the author of which mentions

that one might care a point null hypothesis such as g = 0. Also, in Appendix D.3,

we secondarily discuss the testing including the risk of the data loss by failure of the

postselection. For this discussion, we alternatively propose the makeshift test function

which has a few defects in its physical interpretation. This section is based on Appendix

C in Ref. [60].



Chapter 2

Basic Concept of Weak-Value

Amplification

2.1 Preface

In this chapter, we introduce the basic concept of the weak-value amplification (WVA).

The WVA is derived from the weak measurement proposed by Aharonov, Albert and

Vaidman (AAV) [17]. At the stage of their proposal, they assumed that the coupling

constant is small. We can find that the strange quantity called the weak value in the shift

of probe position or momentum, which brings an amplification effect. Recently, some

researchers have analyzed the weak measurement without any approximation under the

particular assumption [32–34]. They have shown that the amplification factor has an

upper bound and we can see that the factor depends on the initial measuring probe state.

Also there is a discussion from the viewpoint of the estimation theory which is one of the

statistical inferences [41].

2.2 Weak Measurement in AAV Formalism

We recapitulate the weak measurement and the conventional measurement. These mea-

surements are described as indirect quantum measurements, which need the measured

system and the measuring probe. Initially, we prepare the preselected state |i⟩ of the

measured system and the initial state |ψ⟩ of the measuring probe.

9
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First, we take the Gaussian profile which has the width σ for the initial state of the

measuring probe, the wave function of which in the position x space is

ψ(x) := ⟨x|ψ⟩ =
(

1

2πσ2

) 1
4

e−
x2

4σ2 . (2.1)

With the Fourier transform, we can derive the initial probe wave function in the momen-

tum space p as

ψ̃(p) := ⟨p|ψ⟩ = 1√
2π

∫
dx e−ipx⟨x|ψ⟩ =

(
2σ2

π

) 1
4

e−σ2p2 . (2.2)

We note that the expectation values of the position ⟨x̂⟩ and the momentum ⟨p̂⟩ given by

the probe state |ψ⟩ are both 0. We have an interaction between the measured system

and the measuring probe. Usually, we assume that the interaction Hamiltonian is von

Neumann type described as

Ĥint = gδ(t)Â⊗ p̂, (2.3)

where g is a coupling constant, Â is an observable in the measured system and p̂ is the

momentum operator of the measuring probe which is conjugate to the position operator

x̂. For simplicity, we assume that the probe and system momentarily interact at t =

0. Therefore the unitary operator is given by Û = exp(−igÂ ⊗ p̂) which represents

time-evolution. This interaction gives the position displacement to the measuring probe

wave function. For example, we assume that the measured system is a two-state system

consisting of the states |+⟩ and |−⟩ and the observable operator Â is given as

Â = λ+|+⟩⟨+|+ λ−|−⟩⟨−|, (2.4)

where λ± ∈ R are the eigenvalues of the states |±⟩, respectively. After the interaction,

the probe probability distribution in the position space becomes

fc(x|g) = |⟨x|ψc⟩|2 = |⟨x|Û |ψ⟩|i⟩|2

=
1√
2πσ2

(
|⟨+|i⟩|2e−

(x−λ+g)2

2σ2 + |⟨−|i⟩|2e−
(x−λ−g)2

2σ2

)
. (2.5)

We can see that the probability distribution of the probe position is shifted to two split

Gaussian distributions, the peak positions of which are (the interaction strength g) × (the

eigenvalues λ±). Here we focus on the coefficients |⟨+|i⟩|2 and |⟨−|i⟩|2 of the two Gaussian

distributions. If the initial state is |i⟩ = |+⟩, for example, the final probe distribution
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measuring probe mesaured system

interaction 

(a)  conventinonal measurement process

0

information of the intial state

correlated state

measuring probe mesaured system

interaction 

(b)  weak measurement process

postselection

0

information of the weak value

correlated state

Figure 2.1: Schematic diagrams of (a) the conventional measurement process and (b)
the weak-measurement process.

becomes a single Gaussian, the peak position of which is gλ+ and so on. Thus we can

get information of the initial state |i⟩ from the final probe distribution fc(x|g). This is

the standard process of the conventional measurement [Fig. 2.1(a)].

On the other hand, the weak measurement is originally proposed as the method to

extract the weak value of the measured system [Fig. 2.1(b)]. In the weak measurement

processes, we select the final state |f⟩ of the measured system. Performing the postse-

lection is a key distinct from the conventional measurement. By the postselection, the

final probe distribution is significantly changed from the one given by the conventional

measurement in general. AAV [17] evaluated the final probe state in the weak coupling

approximation g ≪ 1 as

|ψw⟩ = ⟨f |e−igÂ⊗p̂|i⟩|ψ⟩ ≈ ⟨f |(1− igÂ⊗ p̂)|i⟩|ψ⟩ = ⟨f |i⟩
[
1− ig⟨Â⟩wp̂

]
|ψ⟩, (2.6)

where the weak value is defined as

⟨Â⟩w :=
⟨f |Â|i⟩
⟨f |i⟩

∈ C. (2.7)
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The final probe wave function in the position space is given by

⟨x|ψw⟩ ≈⟨f |i⟩
[
1− ig⟨Â⟩w

(
−i ∂
∂x

)]
⟨x|ψ⟩

=⟨f |i⟩
[
1− g⟨Â⟩w

(
− x

2σ2

)]( 1

2πσ2

) 1
4

e−
x2

4σ2

≈⟨f |i⟩eg⟨Â⟩w x
2σ2

(
1

2πσ2

) 1
4

e−
x2

4σ2

=⟨f |i⟩
(

1

2πσ2

) 1
4

e−
1

4σ2 (x−gRe⟨Â⟩w)
2

e
g2Re⟨Â⟩2w

4σ2 +igIm⟨Â⟩w x
2σ2 . (2.8)

In this calculation, we have used the approximation g|⟨Â⟩w| ≪ 1 which is sometimes

called “AAV approximation”. The probe position distribution is evaluated as

fw(x|g) =
|⟨x|ψw⟩|2∫
dx|⟨x|ψw⟩|2

≈
(

1

2πσ2

) 1
2

e−
1

2σ2 (x−gRe⟨Â⟩w)
2

. (2.9)

Thus we can obtain the real part of the weak value from the expectation value of the

probe position as

⟨x̂⟩w :=
⟨ψw|x̂|ψw⟩
⟨ψw|ψw⟩

≈ gRe⟨Â⟩w. (2.10)

Hence we can experimeantly get the weak value for a given interaction strength.

We remark that with those approximations, we can also obtain the imaginary part of

the weak value by measuring the final probe wave function in the momentum space given

as

⟨p|ψw⟩ ≈ ⟨f |i⟩(1− ig⟨Â⟩wp)⟨p|ψ⟩ ≈ ⟨f |i⟩e−ig⟨Â⟩wp⟨p|ψ⟩

= ⟨f |i⟩
(
2σ2

π

) 1
4

e−σ2(p− g

2σ2 Im⟨Â⟩w)
2
+ g2

4σ2 Im⟨Â⟩2w−igRe⟨Â⟩wp (2.11)

which leads to the expectation value of the final probe momentum

⟨p̂⟩w :=
⟨ψw|p̂|ψw⟩
⟨ψw|ψw⟩

≈ g

2σ2
Im⟨Â⟩w. (2.12)
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Figure 2.2: Plots of Left: Re⟨Â⟩w and Right: Im⟨Â⟩w with the axes θf and ϕ(= ϕf−ϕi).
In each plots we fix θi = π/2.

Let us see the weak value when the measured system, for example, is two-state system.

The initial and final states are given as

|i⟩ = cos
θi
2
|+⟩+ sin

θi
2
eiϕi|−⟩, (2.13)

|f⟩ = cos
θf
2
|+⟩+ sin

θf
2
eiϕf |−⟩, (2.14)

where 0 ≤ θi, f < π and 0 ≤ ϕi, f ≤ 2π, and the observable is Â = |+⟩⟨+| − |−⟩⟨−|. The

weak value (2.7) is calculated as

⟨Â⟩w =
cos θi + cos θf + i sin θi sin θf sin(ϕf − ϕi)

1 + cos θi cos θf + sin θi sin θf cos(ϕf − ϕi)
. (2.15)

As shown in Fig. 2.2, the weak value can be arbitrarily large by tuning the postselected

state almost orthogonal to the preselected state, i.e., θi + θf ≈ π, ϕf − ϕi ≈ π.

We have reviewed the conventional and the weak measurements, the targets of which

are the initial state |i⟩ of the measured system and the weak value, respectively. On the

other hand, the aim of the WVA is the extraction of the coupling constant g between the

measured system and the measuring probe. Under the given weak value, we can obtain

the coupling constant from the final probe expectation values (2.10) and (2.12). While

the conventional measurement can also provide the interaction strength under the given

initial state |i⟩, the “intuitive” merit of the WVA method is that the weak value can make

the shift of the expectation value outside the eigenvalues ranges [19]. Therefore we will

extract the information of the coupling constant even if it is very small. Measurments of

the weak values and the WVA have been done in several experiments [18]. In Chap. 6,

we exemplify the experiment using a single birefringent crystal demonstrated by Ritchie

et al. [20] for the weak measurement and the WVA.

We remark that, as seen in the definition (2.7), the weak value becomes arbitrarily
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large for the almost orthogonal pair of the initial and final states. However, the expecta-

tion value does not become infinitely large for the arbitrarily large weak value like Eqs.

(2.10) and (2.12), because the AAV approximation breaks down. Some researchers have

evaluated the expectation values with the full-order caluculation under the particular

assumption [32–34]. We see it in the next section.

2.3 Amplified shift in full-Order Calculation

We see the exact case of the weak measurement for an arbitrary interaction strength g

and the weak value ⟨Â⟩w. To calculate the expectation values of the probe position and

momentum without any approximation, here we assume that the observable Â satisfies

the property Â2 = 1, i.e., Â = |+⟩⟨+|− |−⟩⟨−|, and the initial probe retains the Gaussian

profile (2.1). The final probe state after the postselecion is calculated as

|ψw⟩ = ⟨f |e−igÂ⊗p̂|i⟩|ψ⟩

= ⟨f |[cos(gÂ⊗ p̂)− i sin(gÂ⊗ p̂)]|i⟩|ψ⟩

= ⟨f |(cos gp̂− iÂ sin gp̂)|i⟩|ψ⟩

= ⟨f |i⟩(cos gp̂− i⟨Â⟩w sin gp̂)|ψ⟩. (2.16)

For later convenience, we introduce B(p̂) := cos gp̂− i⟨Â⟩w sin gp̂. First, we consider the

probability distribution of the final probe momentum f̃w(p|g), which is calculated as

f̃w(p|g) =
|⟨p|⟨f |Û |i⟩|ψ⟩|2

|⟨f |Û |i⟩|ψ⟩|2
=

|⟨p|B(p̂)|ψ⟩|2

|B(p̂)|ψ⟩|2
=

|B(p)ψ̃(p)|2∫
dp|B(p)ψ̃(p)|2

(2.17)

and

|B(p)|2 = 1

2
(1 + |⟨Â⟩w|2) +

1

2
(1− |⟨Â⟩w|2) cos 2gp+ Im⟨Â⟩w sin 2gp. (2.18)

Here we provide the calculation formula for general real values a and b(> 0) as∫
dp cos ap e−bp2 =

∫
dp eiape−bp2 =

∫
dp e−b(p+i a

2b
)2−a2

4b =
(π
b

) 1
2
e−

a2

4b . (2.19)
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Thus the denominator is calculated as∫
dp|B(p)ψ̃(p)|2 = 1

2
(1 + |⟨Â⟩w|2) +

1

2
(1− |⟨Â⟩w|2)

(
2σ2

π

) 1
2
∫
dp cos 2gp e−2σ2p2

=
1

2
(1 + |⟨Â⟩w|2) +

1

2
(1− |⟨Â⟩w|2)e−

g2

2σ2 :=
Z
2
. (2.20)

Thus the probability distribution is

f̃w(p|g) =
2|B(p)ψ̃(p)|2

Z
. (2.21)

The expectation value of the final probe momentum is calculated as

⟨p̂⟩w =

∫
dp pf̃w(p|g) =

2
∫
dp p|B(p)ψ̃(p)|2

Z
. (2.22)

Because the numerator is∫
dp p|B(p)ψ̃(p)|2 = Im⟨Â⟩w

(
2σ2

π

) 1
2
∫
dp p sin 2gp e−2σ2p2

= Im⟨Â⟩w
(
2σ2

π

) 1
2

Im

[∫
dp pe2igp e−2σ2p2

]
= Im⟨Â⟩w

(
2σ2

π

) 1
2

Im

[∫
dp pe−2σ2(p−i g

2σ2 )
2− g2

2σ2

]
=

g

2σ2
Im⟨Â⟩we−

g2

2σ2 , (2.23)

the expectation value of the final probe momentum becomes

⟨p̂⟩w = 2
g

2σ2

Im⟨Â⟩we−
g2

2σ2

Z
=

g

σ2

Im⟨Â⟩we−
g2

2σ2

(1 + |⟨Â⟩w|2) + (1− |⟨Â⟩w|2)e−
g2

2σ2

. (2.24)

Next we evaluate the position distribution fw(x|g), which can be calculated by the

inverse Fourier transform as

fw(x|g) =
2

Z

∣∣∣∣ 1√
2π

∫
dpB(p)ψ̃(p)eipx

∣∣∣∣2 . (2.25)
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The integration becomes∫
dpB(p)ψ̃(p)eipx

=

(
2σ2

π

) 1
4
∫
dp(cos gp− i⟨Â⟩w sin gp)e−σ2p2eipx

=

(
2σ2

π

) 1
4
∫
dp(cos gp− i⟨Â⟩w sin gp)e−σ2(p−i x

2σ2 )
2
− x2

4σ2

=

(
2σ2

π

) 1
4

e−
x2

4σ2

∫
dp
[
cos
(
gp+ i

gx

2σ2

)
− i⟨Â⟩w sin

(
gp+ i

gx

2σ2

)]
e−σ2p2

=

(
2σ2

π

) 1
4

e−
x2

4σ2

[
cos i

gx

2σ2
− i⟨Â⟩w sin i

gx

2σ2

] ∫
dp cos gp e−σ2p2

=

(
2σ2

π

) 1
4

e−
x2

4σ2

[
cosh

gx

2σ2
+ ⟨Â⟩w sinh

gx

2σ2

] ( π
σ2

) 1
2
e−

g2

4σ2

=
1

2

(
2π

σ2

) 1
4

[(1 + ⟨Â⟩w)e−
(x−g)2

4σ2 + (1− ⟨Â⟩w)e−
(x+g)2

4σ2 ]. (2.26)

Thus, the position distribution fw(x|g) is

fw(x|g) =
2√

2πσ2Z
∣∣(1 + ⟨Â⟩w)e−

(x−g)2

4σ2 + (1− ⟨Â⟩w)e−
(x+g)2

4σ2
∣∣2

=
2√

2πσ2Z

[
(1 + |⟨Â⟩w|2 + 2Re⟨Â⟩w)e−

(x−g)2

2σ2

+(1 + |⟨Â⟩w|2 − 2Re⟨Â⟩w)e−
(x+g)2

2σ2 + 2(1− |⟨Â⟩w|2)e−
x2+g2

2σ2

]
. (2.27)

Hence, the expectation value of the final probe position is

⟨x̂⟩w =

∫
dx xfw(x|g) = g

2Re⟨Â⟩w
Z

= g
2Re⟨Â⟩w

(1 + |⟨Â⟩w|2) + (1− |⟨Â⟩w|2)e−
g2

2σ2

. (2.28)

We can extract the weak value from the expectations values (2.24) and (2.28). However,

we can easily see that the expectations values cannot be infinitely large even if the weak

value can be arbitrarily large, because the denominators of Eqs. (2.24) and (2.28) have the

second order term of the weak value. This term comes from the higher-order terms of the

coupling constant, which is understood as a back action of the measurement. Actually,
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we can show the weak value which gives the maximal expectation value as shown below;

∂⟨p̂⟩
∂Re⟨Â⟩w

= −gσ2e−
g2

2σ2
2(1− e−

g2

2σ2 )Re⟨Â⟩wIm⟨Â⟩w
[(1 + |⟨Â⟩w|2) + (1− |⟨Â⟩w|2)e−

g2

2σ2 ]2
, (2.29)

∂⟨p̂⟩
∂Im⟨Â⟩w

= 2g
1 + e−

g2

2σ2 + (1− e−
g2

2σ2 )(Re⟨Â⟩2w − Im⟨Â⟩2w)

[(1 + |⟨Â⟩w|2) + (1− |⟨Â⟩w|2)e−
g2

2σ2 ]2
, (2.30)

∂⟨x̂⟩w
∂Re⟨Â⟩w

= 2g
1 + e−

g2

2σ2 − (1− e−
g2

2σ2 )(Re⟨Â⟩2w − Im⟨Â⟩2w)

[(1 + |⟨Â⟩w|2) + (1− |⟨Â⟩w|2)e−
g2

2σ2 ]2
, (2.31)

∂⟨x̂⟩w
∂Im⟨Â⟩w

=
−4g(1− e−

g2

2σ2 )Re⟨Â⟩wIm⟨Â⟩w
[(1 + |⟨Â⟩w|2) + (1− |⟨Â⟩w|2)e−

g2

2σ2 ]2
. (2.32)

We can obtain each maximal shift as

Max⟨p̂⟩w =
g

2σ2

e−
g2

2σ2√
1− e−

g2

σ2

for Re⟨Â⟩w = 0, Im⟨Â⟩w =

√√√√1 + e−
g2

2σ2

1− e−
g2

2σ2

, (2.33)

Max⟨x̂⟩w =
g√

1− e−
g2

σ2

for Re⟨Â⟩w =

√√√√1 + e−
g2

2σ2

1− e−
g2

2σ2

, Im⟨Â⟩w = 0. (2.34)

For an appropriate weak value, Max⟨x̂⟩w can be arbitrarily large with the large σ, while

Max⟨p̂⟩w has a local maximal value at σ satisfying
√
1− e−g2/σ2 = g2/2σ2.

We note that the shift of the expectation value depends on the initial probe wave

function. Here we present one of examples of the position expectation value as

⟨x̂⟩w = g
2Re⟨Â⟩w

(1 + |⟨Â⟩w|2) + (1− |⟨Â⟩w|2)
∫
dp cos 2gp|ψ̃(p)|2

, (2.35)

which is derived in the case that the initial probe wave function ψ̃(p) is an even real

function and converges to 0 at x → ±∞ including the Gaussian probe case. We show

the derivation in Appendix A.

Let us see the figures of the position and momentum distribution and its expectation

values given by the weak measurement. For an illustration, we consider the case that

the measured system is the two-state (|±⟩) system, the observable of which is Â =

|+⟩⟨+| − |−⟩⟨−|. The initial and final states of the measured system and the weak value

are given as Eqs. (2.13), (2.13), and (2.15). From Eqs. (2.21), (2.24), (2.27), and (2.28)
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Figure 2.3: The plots of the final probe distribution in the momentum space (2.37) and
its expectation values (2.38) in the three cases. The values of ϕ(:= ϕf − ϕi) and g are
different in each cases. ϕmax(≈ 2.94) in (a) means ϕ which maximizes the expectation
value. We fix the other parameters as θi = θf = π/2, and σ = 0.5.

and using

Z = 2
1 + cos θi cos θf + sin θi sin θf cos(ϕf − ϕi)e

− g2

2σ2

1 + cos θi cos θf + sin θi sin θf cos(ϕf − ϕi)
, (2.36)

we obtain the distributions and the expectation values in another form as

ZN := 1 + cos θi cos θf + sin θi sin θf cos(ϕf − ϕi)e
− g2

2σ2 ,

f̃w(p|g) =
(
2σ2

π

) 1
2 e−2σ2p2

ZN

[1 + cos θi cos θf + sin θi sin θf cos(2gp− ϕf + ϕi)], (2.37)

⟨p̂⟩w =
g

2σ2ZN

[sin θi sin θf sin(ϕf − ϕi)e
− g2

2σ2 ], (2.38)

fw(x|g) = fw1(x|g) + fw2(x|g) + fw3(x|g), (2.39)

fw1(x|g) :=
1√

2πσ2ZN

(2 cos2
θi
2
cos2

θf
2
e−

(x−g)2

2σ2 ),

fw2(x|g) :=
1√

2πσ2ZN

(2 sin2 θi
2
sin2 θf

2
e−

(x+g)2

2σ2 ),

fw3(x|g) :=
1√

2πσ2ZN

[sin θi sin θf cos(ϕf − ϕi)e
−x2+g2

2σ2 ],

⟨x̂⟩w =
g

ZN

(cos θi + cos θf ), (2.40)

respectively.

In Fig. 2.3, we plot the final probe distribution in the momentum space (2.37) and its

expectation values (2.38) in the three cases. (a) shows the case that the expectation value

is maximally shifted in the specific condition for setting the phase ϕf−ϕi which meets Eq.

(2.33). Because the expectation value becomes ⟨p̂⟩w ∼ 0.99, we can see that the coupling

strength g = 0.1 is amplified. The weak value in (a) is computed as ⟨Â⟩w ∼ 10i. On the
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Figure 2.4: The plots of the final probe position distribution (2.39) and the expectation
value of which (2.40). We depict the four curves, fw(x|g) in black, fw1(x|g) in blue,
fw2(x|g) in red, and fw3(x|g) in green. The dashed vertical lines indicate the expectation
value. The parameters of θf , ϕ, and g are tuned in each cases. θmax(≈ 1.08) in (a)
means θf maximizing the expectation value. We have set θi = π/2, σ = 1 in all cases.

other hand, in (b), we set the phase which gives the two-equal-height-peak distribution

and the indeterminate weak value. In this case, the peak momentums are p ∼ ±1.5 larger

than the expectation value in (a), while one in (b) is zero. We set the strong interaction

in (c), which shows the multimodal function. There are also the peaks, the momentums

of which are large, but it is somewhat difficult to observe due to their probabilities smaller

than the one nearby zero-momentum.

Figure 2.4 displays the final probe position distributions (2.39) and the expectation

values of which (2.40) in the four cases. The case (a) gives the weak value ⟨Â⟩w ≈ 4

and the maximal shift to the expectation value of position, the value of which is about

1.06 while the interaction strength is 0.5. Hence, we can see the amplification effect. On

the other hand, in the case (b), the distribution fw(x|g) has two peaks at x ≈ ±2 with

the zero expectation value. The weak value becomes infinity for the postselected state

completely orthogonal to the preselected state, which breaks the AAV approximation
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g|⟨Â⟩w| ≪ 1. The authors of Ref. [19] said that breaking the AAV approximation brings

the notable amplification effect. The third term of the distribution fw3(x|g) contributes to
the amplification by its negative canceling the overlapped region of fw1(x|g) and fw2(x|g).
The same holds in the case (a). Actually, the distribution fw(x|g) in (c) does not exhibit

the amplification effect due to the positive fw3(x|g). We can find that fw3(x|g) contributes
to the amplification. (d) represents the strong coupling constant case, which brings

fw3(x|g) = 0 regardless of the weak value. So, the strong coupling constant cancel the

amplification effect.

In this section, we see that the amplification by the weak measurement has an upper

bound due to the higher-order terms in the coupling constant. In other words, the back

action of the measurement is significant, while we can amplify the output larger than the

one obtained by the conventional measurement. In next section, we see the WVA from

the viewpoint of the parameter estimation.

2.4 Parameter Estimation

The purpose of the WVA in a broad sense is an extraction of the information about the

interaction strength by the amplification. In the statistical inference, there is a prescrip-

tion for estimating the parameter provided by the estimation theory. Some researchers

applied the estimation theory to evaluate the capability of the WVA for estimating the

parameter in each different situation [40–44]. Meanwhile, there is a criticism to the WVA

that the large amplification makes a number of obtained data small. The survival rate of

the data is calculated as the transition probability:

P = |⟨f |e−igÂ⊗p̂|i⟩|ψ⟩|2 = Z
2
|⟨f |i⟩|2 (2.41)

which is sometimes called as the success probability of the postselection. By the postsele-

tion for a large amplification, the probability becomes small. Some researchers argue that

this point is the disadvantage of the WVA in respect to estimating the coupling constant.

Especially, the authors of Ref. [41] showed the essence by evaluating the quantum Fisher

information that the postselection cannot increase the information due to the small suc-

cess probability of the postselection. The Fisher information gives the lower bound of

the mean square error of an estimator. Namely, the WVA is worse for estimating the

parameter than the conventional measurement.
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In this section, we see the Cramér-Rao inequality which gives the relation between

the mean square error and the Fisher information. We compare the Fisher information

of the probability distributions obtained by that of the conventional measurement and

the weak measurement. Here we consider the classical Fisher information instead of the

quantum one. When we evaluate the quantum Fisher information, we assume that we

take the measurement which maximizes the Fisher information. However, to see the

essence, it is enough to calculate the classical Fisher information, which is calculated

from the obtained probability distribution f(x). As stated in Ref. [41], we need to get

the classical Fisher information for a practical comparison of the estimation capabilities

of the weak measurement and the conventional measurement.

Firstly, we introduce an unbiased estimator θ̃(x) satisfying

⟨θ̃(x)⟩ = θ for all θ, (2.42)

where θ is a true value of the parameter that we want to measure. When the estimator

takes a close value of the true value on average, we can say that the estimation works

well. We employ the mean square error ⟨(θ̃(x) − θ)2⟩ as an indicator of the estimation.

The Cramér-Rao inequality tells us the lower bound of the mean square error as

⟨(θ̃(x)− θ)2⟩ ≥ 1

nI(θ)
, (2.43)

where I(θ) is the classical Fisher information defined as

I(θ) =

∫
dx [∂θ log f(x|θ)]2f(x|θ) (2.44)

and n is the number of the data, which are obtained from independent identical distribu-

tions. We give the proof of the Cramér-Rao inequality in Appendix B.1. Therefore, the

Fisher information can be an indicator of the estimation capability of the measurement,

although it is not always equal to the mean square error.

Here we give the Fisher information for each measurement in the case that we can

analytically calculate. Like the previous sections, we take the two-state (|±⟩) as the

measured system, the observable Â = |+⟩⟨+| − |−⟩⟨−|, and the Gaussian probe (2.1).

We set the estimation problem that we estimate the value of the coupling constant from

the position distribution obtained by measurements. For the conventional measurement,

we assume that the initial state of the measured system is |i⟩ = |+⟩. The final probe
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distribution (2.5) becomes

f c(x|g) = 1√
2πσ2

e−
(x−g)2

2σ2 , (2.45)

which gives the Fisher information

Ic(g) =
1

σ2
. (2.46)

Next, we look at the weak measurement. We assume that θi = θf = π/2 and cos(ϕf−ϕi) =

ϵ. Moreover, we consider only the case ϵ = ±1 for an analytical calculation, where ϵ = 1

and ϵ = −1 correspond with (c) and (b) in Fig. (2.4), respectively. From Eq. (2.39) with

these assumptions, the final probe distribution becomes

fw
ϵ (x|g) =

1

2
√
2πσ2

e−
(x−g)2

2σ2 + e−
(x+g)2

2σ2 + 2ϵe−
x2+g2

2σ2

1 + ϵe−
g2

2σ2

, (2.47)

which gives the Fisher information1

Iwϵ (g) =
1

σ2

1 + ϵ g
2

σ2 e
− g2

2σ2 − e−
g2

σ2

(1 + ϵe−
g2

2σ2 )2
. (2.48)

We describe these calculations in Appendix B.2.

Here we pay attention to the right-hand side of the Cramér-Rao inequality (2.43) which

has the number of obtained date n. In some case, we should consider the success probabil-

ity of the postselection (2.41), which would make the number of the detected data small.

If the number in the conventional measurement is n, the one in the weak measurement

becomes nP , where

P =
1 + ϵe−

g2

2σ2

2
. (2.49)

Figure 2.5 shows the plots of the Fisher information Ic and Iwϵ . (a) shows that the

Fisher information given in the weak measurement with ϵ = 1 can exceed the one in

the conventional measurement (1/σ2). However, in (b) which includes the factor of the

success probability of the postselection, we can find the inequality with respect to the

1Although the authors of Ref. [41] forget the factor of ϵ in the denominator of Eq. (2.48), their
conclusion remains true.
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Figure 2.5: Plots of the Fisher information of the conventional measurement (black
line) and the weak measurement (blue curve for ϵ = 1 and red curve for ϵ = −1). The
vertical axis is normalized by 1/σ2 and the horizontal axis indicates g2/σ2. (a) shows a
simple comparison of the Fisher information, and (b) includes the factor of the success
probability of the postselection.

Fisher information as

Ic > PIwϵ , (2.50)

regardless of the value of ϵ. We remark again that the Fisher information only represents

the lower bound of the mean square error of the estimator. Here we put the Cramér-Rao

inequalities in the conventional measurement and the weak measurement as

⟨(g̃c(x)− g)2⟩c ≥
1

nIc(g)
, (2.51)

⟨(g̃w(x)− g)2⟩w ≥ 1

PnIwϵ (g)
, (2.52)

where g̃c(x) and g̃w(x) are the estimators for each measurement. If we want to compare the

mean square errors, we need to show that the Cramér-Rao inequality (2.43) has equality.

When the probability distribution is Gaussian and we want to estimate the mean value of

the distribution, we have the uniformly minimum variance unbiased (UMVU) estimator,

which gives the equality of the Cramér-Rao inequality. In the Gaussian distribution, the

variance of the sample average X̄ is equal to the population variance σ divided by sample
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number n2. Namely,

⟨(X̄ − g)2⟩c =
σ2

n
=

1

nIc(θ)
, (2.53)

which imply that the sample average X̄ is the UMVU estimator. Hence the Cramér-Rao

inequality (2.43) has equality in the conventional measurement case, when g̃c(x) = X̄.

From this fact and Eqs. (2.50), (2.51), and (2.52), the inequality

⟨(g̃c(x)− g)2⟩c < ⟨(g̃w(x)− g)2⟩w (2.54)

holds for g̃c(x) = X̄, which indicates that the weak measurement is worse for estimating

the coupling constant than the conventional measurement when the number of trials in an

experiment are same in the two measurement. Although we have shown Eq. (2.54) for the

Gaussian probe, it is not guaranteed that Eq. (2.54) holds for other probe cases, because

an unbiased estimator such as minimizing the mean square error is not always present3.

We remark that the derived inequality (2.54) holds even for the finite n4. Note that

we also evaluate the Fisher information with the probe distribution in the momentum

space. We give the result in Appendix B.2. In Ref. [43], they compared the Fisher

information of the final probe distribution in the position space given by the conventional

measurement with one of the final probe distribution in the momentum space given by

the weak measurement. They concluded that the former is better than the latter.

Here we focus on the Fishier information given by the weak measurement. We show the

two cases, the case of ϵ = 1 which gives no amplification as seen in Fig. 2.4 (c) and the

2⟨(X̄ − g)2⟩ = Var(X̄) = Var

(∑n
i Xn

n

)
=

1

n2
Var

(
n∑
i

Xn

)
=

1

n2

n∑
i

Var(Xn) =
1

n2
nσ2 =

σ2

n
,

where Xn is a sample value.
3 When there is not a UMVU estimator, the maximum likelihood estimator (MLE) is usually used

for the practical reason. According to the asymptotic theory, roughly speaking, by using the MLE
with the infinitely large number of data, the mean square error approaches to the inverse of the Fisher
information as stochastic convergence. This property is referred as the asymptotic efficiency of the
maximum likelihood estimator. Hence, if we have the infinitely large number of data, the comparison
of the Fisher information is meaningful for as evaluating the estimation capability, even if a UMVU
estimator does not exst. On the other hand, this conclusion will be meaningless as the comparison of
the estimation capabilities when the number of data is finite, although the inequality (2.50) holds.

4 The authors of Ref. [43] shows the inequality (2.50) for a probe spatial wave function which is real
valued under the assumption that the weak coupling constant (g ≪ 1) and the AAV approximation
(g|⟨Â⟩w| ≪ 1), and the asymptotic efficiency (n → ∞). In addition, they give the inequality (2.50) for
the Gaussian probe without any approximation, while using the asymptotic efficiency. The authors of
Ref. [42] have shown it in Supplemental Material that the quantum Fisher information given by the weak
measurement is smaller than one given by the conventional measurement not only in the asymptotic case
but also the finite data case based on the Chernoff bound. There is no mention of the equality of the
Cramér-Rao inequality.
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case ϵ = −1 which provides a large amplification as seen in Fig. 2.4 (b). As seen in Fig.

2.5, the Fishier information in ϵ = −1 cannot overcome the one in ϵ = 1 whether or not we

mind the success probability of the postselection. Although we have to care the equality

of the Cramér-Rao inequality to discuss the estimation capability as stated in above, we

can regard that the amplification effect primarily has a disadvantage for estimating the

coupling constant regardless of the success probability of the postselection.

2.5 Summary of this chapter

In this chapter, we have reviewed the concept of the weak measurement and the weak-

value amplification originally proposed by Aharonov, Albert and Vaidman [17]. In a

proposal in Ref. [17], the authors considered only the case that the coupling constant is

weak. As we have seen in Sec. 2.2, by the weak measurement, i.e., the indirect quantum

measurement with postselecting the final state of the measured system, the weak value

appears in the shift of the expectation value of the measuring probe. The weak value can

be complex and arbitrarily large by tuning pre- and postselected state of the measured

system. In the WVA, we apply this property for amplifying the output and measuring

the coupling constant between the measured system and the measuring probe [19]. Hence

some researchers are developing the WVA for a precise measurement technique [14–16].

Actually, some researchers demonstrated the WVA by several experiments [18]. Note

that calculating the probability distribution without a weak coupling approximation in a

certain situation, we can analytically show that the amplification has an upper bound for

the higher-order terms in the coupling constant [32–34]. Simultaneously, the output of

the weak measurement depends on the initial probe wave function. It means that we will

engineer the probe wave function providing a large amplification and a small variance for

a certain experiment. If we manufacture such a probe wave function, the application of

the WVA may be expanded. We discuss this topic in the next chapter.

Meanwhile, as we have mentioned, some researchers argue that the postselection makes

the number of detectable data small, which brings the disadvantage for the WVA. To

see this issue, in this thesis, we have exemplified the estimation capability of the weak

measurement evaluated by the classical Fisher information, which is also disclosed in

Ref. [41]. We have shown that the postselection reduces the classical Fisher information.

Furthermore, in the case of the parameter estimation, it seems that the amplified shift

is not utilized even if the success probability of the postselection is neglected. Thus
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we consider another statistical inference problem, in which we can intuitively find the

merit of the amplification. We pick up the statistical hypothesis testing method, which

is usually used for analyzing the signal detection in a physical experiment [53–55]. We

review the standard hypothesis testing in Chap. 4. Also we establish the testing method

in the weak measurement and compare the testing capability of the two measurements in

Chaps. 5 and 6.

In the subsequent chapters, we discuss these two topics, the probe engineering and the

hypothesis testing to develop the WVA technique for a precising measurement. Here we

remark that when we discuss practical accuracy of the measurement, we need to consider

a technical noise. Not mentioning about a technical noise in the main body, we introduce

the photon shot noise which is one of the fundamental noises in an optical interferometer

in Appendix C.



Chapter 3

Optimal Probe Wave Function in

Weak-Value Amplification

3.1 Preface

In this chapter, we analytically derive the optimal probe wave function for the fixed

experimental setup, i.e., the given coupling constant and tuned the pre- and postselected

states that we can calculate the weak value before the experiment. The wave function

gives not only the infinitely large expectation value but also the zero variance of the

final probe position in principle. We have the two ways to derive the optimal probe

wave function. One is that we derive the function which gives the maximum expectation

value of the final probe position. The other is that we derive the function which gives

the minimum variance of the final probe position. In both ways, we use the Lagrange

multiplier method. In this optimization, we assume that the observable Â satisfies Â2 = 1

and Re⟨Â⟩w ̸= 0. This chapter is based on the research [58, 59].

3.2 Property of optimal probe

In this section, we show the optimal probe wave function and consider its properties and

connotations preparatory for derivation. The optimal initial probe wave function in the

27
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momentum space1 is given as

ξ̃(p) = ⟨p|ξ⟩ =

√
g|Re⟨Â⟩w|

π

exp

[
−ig(|⟨Â⟩w|2+1)

2Re⟨Â⟩w
p

]
cos gp− i⟨Â⟩w sin gp

=

√
g|Re⟨Â⟩w|

π
B−1(p) exp [−i⟨x̂⟩ξp] ,

(3.1)

the support of which is −π/2g ≤ p ≤ π/2g. The function gives the position expectation

value of the initial probe ⟨x̂⟩ξ = 0 and the one of the final probe as

⟨x̂⟩ξw := g
|⟨Â⟩w|2 + 1

2Re⟨Â⟩w
, (3.2)

which can be arbitrarily large as the weak value becomes large. Since B−1(p) in the

optimal probe wave function cancel out the higher-order terms given by the unitary

operator, the shift of the expectation value ⟨x̂⟩ξw − ⟨x̂⟩ξ has no upper-bound in contrast

with the case of using the Gaussian probe. This is the characteristic feature of the optimal

probe form.

According to Eqs. (2.16) and (3.1), the probe wave function after the postselection is

ξ̃w(p) :=
⟨x|ξw⟩√
⟨ξw|ξw⟩

=

√
g

π
exp [−i⟨x̂⟩ξwp] , (3.3)

the support of which is also −π/2g ≤ p ≤ π/2g. Furthermore, we can obtain the final

probe wave function in the position space with the inverse Fourier transform as

ξw(x) =
2g

π

sin[ π
2g
(x− ⟨x̂⟩ξw)]

x− ⟨x̂⟩ξw
. (3.4)

1We can also derive the function in the position space with the inverse Fourier transform. When
⟨Â⟩w = −1, the function is given by

ξ(x) = ⟨x|ξ⟩ =

√
2g|Re⟨Â⟩w|

π2

sin
[

π
2g (x− ⟨x̂⟩ξw + g)

]
x− ⟨x̂⟩ξw + g

.

When ⟨Â⟩w ̸= −1, the function becomes

ξ(x) =

√
2|Re⟨Â⟩w|

π2g

sin
[

π
2g (x− ⟨x̂⟩ξw + g)

]
1 + ⟨Â⟩w

Ψ

[
1− ⟨Â⟩w
1 + ⟨Â⟩w

, 1,
x− ⟨x̂⟩ξw + g

2g

]
,

where Ψ [z, s, a] :=
∞∑

n=0

zn

(a+ n)s
called Hurwitz-Lerch zeta function. It is noted that the author partially

used Mathematica to derive this.
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Figure 3.1: The plots of the initial and final optimal probe wave function in the mo-
mentum space [ξ̃(p) and ξ̃w(p)] and the position space [ξ(x) and ξw(x)] are shown. The
parameters are fixed g = 0.1 and ⟨Â⟩w = 2 + 3

√
3i. It is noted that the probe wave

function in the position space is discrete as dots indicates.

We note that the position x takes discrete values x = 2gj (j ∈ N) for the finite boundary
condition −π/2g ≤ p ≤ π/2g of the probe wave function. Therefore, if the final expecta-

tion value takes ⟨x̂⟩ξw = 2gk (k ∈ N) by controlling the weak value, the final probe wave

function in the position space with the normalization becomes the Kronecker delta as

ξw(x = 2gj) =
2g

π

sin[ π
2g
(2gj − 2gk)]

2gj − 2gk
=

sin[(j − k)π]

(j − k)π
= δjk. (3.5)

Hence, the variance of the final probe can be zero.



30 Chapter 3

We remark that the expectation value ⟨x̂⟩ξ has the lower bound given as

|⟨x̂⟩ξ| =
|g|
2

(
|Re⟨Â⟩w|+

|Im⟨Â⟩w|2 + 1

|Re⟨Â⟩w|

)
≥ |g|

√
|Im⟨Â⟩w|2 + 1 ≥ |g|. (3.6)

The minimum |⟨x̂⟩ξ| = |g| is given when Re⟨Â⟩w = ±1 and Im⟨Â⟩w = 0, which means that

the postselected state identical to the one of the eigenstates of the observable Â. In this

certain case, we can almost regard the weak measurement as the projective measurement

of the system, and the unitary operator by the interaction becomes e∓igp̂ that gives the

shift operator by ∓g to the probe position. It indicates that the weak measurement with

the optimal probe wave function always amplifies the shift of the position expectation

value more than the projective measurement.

From the expectation value (3.2), we can obtain the convergence

⟨x̂⟩ξw |⟨f |i⟩| →
g

2
(3.7)

as the postselected state |f⟩ approaches the state orthogonal to the preselected state |i⟩.
From this relation, we can see that it is possible to obtain the coupling constant g by

extrapolation.

3.3 Derivation

We have two ways to derive the optimal probe wave function (3.1) by using the Lagrange

multiplier method. One is by maximizing the shift of the probe position expectation value,

and the other is by minimizing the position variance of the final probe distribution.

3.3.1 Maximization of the shift of the expectation value of the

probe position

Here, we consider the probe wave function ξ̃(p) which maximize the shift of the expec-

tation value of the probe position ⟨x̂⟩ξw − ⟨x̂⟩ξ. We set the following Lagrangian which

gives the extremal value of the expectation value of the final probe position ⟨x̂⟩ξw :

L[ξ̃(p), ξ̃∗(p), λL] := ⟨x̂⟩ξw − λL

(∫
dp|ξ̃(p)|2 − 1

)
, (3.8)
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where λL is the Lagrange multiplier and the constraint condition is the normalization

condition for ξ̃(p). Firstly, we obtain ξ̃(p) as the solution of the variational problem.

Subsequently, we show the expectation value of the initial probe position can be ⟨x̂⟩ξ = 0.

The final expectation value can be described by Eq. (2.28). Varying the Lagrangian L
with respect to λL, the constraint condition re-emerges as

0 =
∂L
∂λL

=

∫
dp|ξ̃(p)|2 − 1. (3.9)

Varying L in terms of ξ̃∗(p), we obtain

0 =
∂L
∂ξ̃∗

=
i[B∗(p)B′(p)ξ̃(p) + |B(p)|2ξ̃′(p)]− ⟨x̂⟩ξw |B(p)|2ξ̃(p)∫

dp|B(p)ξ̃(p)|2
− λLξ̃(p). (3.10)

This equation means

ξ̃′(p)

ξ̃(p)
= −B

′(p)

B(p)
− i

(
⟨x̂⟩ξw + λL|B(p)|−2

∫
dp|B(p)ξ̃(p)|2

)
. (3.11)

With this equation, the normalization condition (3.9), and the final expectation value

⟨x̂⟩ξw , we can find λL = 0 as

⟨x̂⟩ξw =
i
∫
dp|B(p)ξ̃(p)|2

(
B′(p)
B(p)

+ ξ̃′(p)

ξ̃(p)

)
∫
dp|B(p)ξ̃(p)|2

= ⟨x̂⟩ξw + λL

∫
dp|ξ̃(p)|2 = ⟨x̂⟩ξw + λL, ∴ λL = 0. (3.12)

Then, with the indefinite integration over p for Eq. (3.11), we obtain the form of the

optimal probe wave function as below:

Eq. (3.11) ⇔ (log ξ̃(p))′ = −(logB(p))′ − i⟨x̂⟩ξw

⇒
∫
dp(log ξ̃(p))′ = −

∫
dp(logB(p))′ − i

∫
dp⟨x̂⟩ξw

⇒ log ξ̃(p) = − logB(p)− i⟨x̂⟩ξwp+ logC

⇔ ξ̃(p) = CB−1 exp [−i⟨x̂⟩ξwp] , (3.13)

where C is the normalization factor calculated as

|C|2 =
(∫

dp|B(p)|−2

)−1

(3.14)
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from the normalization condition (3.9) and the integration constant is denoted by logC

for the sake of simplicity. We next evaluate the initial expectation value ⟨x̂⟩ξ to obtain

the shift of the expectation value ⟨x̂⟩ξw − ⟨x̂⟩ξ. Substituting Eq. (3.13) into ⟨x̂⟩ξ, we
obtain the following equation as

⟨x̂⟩ξ =
∫
dp⟨ξ|p⟩(i ∂

∂p
)⟨p|ξ⟩∫

dp⟨ξ|p⟩⟨p|ξ⟩
= i

∫
dpξ̃∗(p)ξ̃′(p)∫
dp|ξ̃(p)|2

= ⟨x̂⟩ξw − i|C|2
∫
dp
B∗(p)B′(p)

|B(p)|4

= ⟨x̂⟩ξw − gRe⟨Â⟩w|C|2
∫
dp|B(p)|−4 − i

2
|C|2

∫
dp[|B(p)|−2]′. (3.15)

Because the expectation value has to be real-valued and C ̸= 0, we can find the integration

region which meets ∫
dp[|B(p)|−2]′ = 0. (3.16)

Focusing on |B(p)|−2 in Eq. (2.18) the periodicity of which is π/2g, we can see that

−π/2g ≤ p ≤ π/2g would be one of the appropriate region.

With the integration region and Eq. (3.14), we can calculate the normalization factor

C as

|C|−2 =

∫ π/2g

−π/2g

dp|B(p)|−2 =

∫ π/2g

−π/2g

dp

cos2 gp

1

1 + 2Im⟨Â⟩w tan gp+ |⟨Â⟩w|2 tan2 gp

=

∫ ∞

−∞

dt

g

1

1 + 2Im⟨Â⟩wt+ |⟨Â⟩w|2t2
substituted t = tan gp

=
|⟨Â⟩w|2

g(Re⟨Â⟩w)2

∫ ∞

−∞
dt

1

1 + [(Im⟨Â⟩w + |⟨Â⟩w|2t)/Re⟨Â⟩w]2

=
|⟨Â⟩w|2

g(Re⟨Â⟩w)2
Re⟨Â⟩w
|⟨Â⟩w|2

[
arctan

(
Im⟨Â⟩w + |⟨Â⟩w|2t

Re⟨Â⟩w

)]∞
−∞

=
π

g|Re⟨Â⟩w|
. (3.17)

Furthermore, we can obtain the shift of the expectation value from Eq. (3.15) as

⟨x̂⟩ξw − ⟨x̂⟩ξ = gRe⟨Â⟩w|C|2 ·
|⟨Â⟩w|2 + 1

2(Re⟨Â⟩w)2
|C|−2 = g

|⟨Â⟩w|2 + 1

2Re⟨Â⟩w
. (3.18)
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Here we have calculated the integration:∫ π/2g

−π/2g

dp|B(p)|−4 =

∫ π/2g

−π/2g

dp

cos4 gp

1

(1 + 2Im⟨Â⟩w tan gp+ |⟨Â⟩w|2 tan2 gp)2

=
1

g

∫ ∞

−∞
dt

1 + t2

(1 + 2Im⟨Â⟩wt+ |⟨Â⟩w|2t2)2
substituted t = tan gp

=
|⟨Â⟩w|2 + 1

2(Re⟨Â⟩w)2

∫ ∞

−∞

dt

g

1

1 + 2Im⟨Â⟩wt+ |⟨Â⟩w|2t2

+
1

2g(Re⟨Â⟩w)|⟨Â⟩w|2

∫ ∞

−∞
dt

(
Im⟨Â⟩w(|⟨Â⟩w|2 + 1) + [|⟨Â⟩w|4 + |⟨Â⟩w|2 − 2(Re⟨Â⟩w)2]t

1 + 2Im⟨Â⟩wt+ |⟨Â⟩w|2t2

)′

=
|⟨Â⟩w|2 + 1

2(Re⟨Â⟩w)2
|C|−2, (3.19)

where we have used Eq. (3.17) to evaluate the last equal. Here we consider the initial

expectation value ⟨x̂⟩ξ. As sated in above, |B(p)|−2 has the periodicity such as |B(p)|−2 =

|B(p+ π/g)|−2 which implies

|ξ̃(p+ π/g)|2 = |ξ̃(p)|2 ⇒ ξ̃(p+ π/g) = e−iπk/g ξ̃(p) ⇒ ⟨x̂⟩ξw = k, (3.20)

where k is an arbitrary real constant and indicates the degree of freedom of the phase.

Then we can set ⟨x̂⟩ξ = 0 by choosing k = ⟨x̂⟩ξw − ⟨x̂⟩ξ.

Consequently, we obtain the optimal probe wave function (3.1) given by Eqs. (3.13),

(3.17), and (3.18).

We remark the case that the integration region is m-period, i.e., −mπ/2g < p ≤
mπ/2g (m ∈ N) which means

|B(mπ/2g)|2 = |B(−mπ/2g)|2 =

{
|⟨Â⟩w|2 (if m is odd.),

1 (if m is even.).
(3.21)

With this integration region, the normalization factor becomes

|Cm|2 =

(∫ mπ/2

−mπ/2g

dp|B(p)|−2

)−1

=
1

m

(∫ π/2

−π/2g

dp|B(p)|−2

)−1

=
g|Re⟨Â⟩w|

mπ
, (3.22)
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while the shift of the expectation value becomes

⟨x̂⟩ξw − ⟨x̂⟩ξ = gRe⟨Â⟩w|Cm|2
(∫ mπ/2

−mπ/2g

dp|B(p)|−4

)

= gRe⟨Â⟩w|Cm|2m
|⟨Â⟩w|2 + 1

2(Re⟨Â⟩w)2
π

g|Re⟨Â⟩w|
= g

|⟨Â⟩w|2 + 1

2Re⟨Â⟩w
. (3.23)

Then the shift of the probe position expectation value and the amplification factor does

not depend on the periodicity of the integration region.

3.3.2 Minimization of the position variance of the final probe

distribution

We can derive the optimal probe wave function by deriving the function which provides

the minimal variance of final probe wave function, which is given as

V [ξ̃(p), ξ̃∗(p)] := ⟨x̂2⟩ξw − ⟨x̂⟩2ξw

=

∫
dp[B(p)ξ̃(p)]∗

(
i ∂
∂p

)2
[B(p)ξ̃(p)]∫

dp|B(p)ξ̃(p)|2
−

∫ dp[B(p)ξ̃(p)]∗
(
i ∂
∂p

)
[B(p)ξ̃(p)]∫

dp|B(p)ξ̃(p)|2

2

=−
∫
dp[B∗(p)B′′(p)|ξ̃(p)|2 + 2B∗(p)B(p)′ξ̃∗(p)ξ̃′(p) + |B(p)|2ξ̃∗(p)ξ̃′′(p)]∫

dp|B(p)ξ̃(p)|2

−

(
i
∫
dp[B∗(p)B′(p)|ξ̃(p)|2 + |B(p)|2ξ̃∗(p)ξ̃′(p)]∫

dp|B(p)ξ̃(p)|2

)2

. (3.24)

Varying the variance with respect to ξ̃∗(p), we obtain the following equation as

0 =
∂V

∂ξ̃∗

=
−[B∗(p)B′′(p)ξ̃(p) + 2B∗(p)B(p)′ξ̃′(p) + |B(p)|2ξ̃′′(p)]− ⟨x̂2⟩ξw |B(p)|2ξ̃(p)∫

dp|B(p)ξ̃(p)|2

− 2⟨x̂⟩ξw

(
i[B∗(p)B′(p)ξ̃(p) + |B(p)|2ξ̃′(p)]− ⟨x̂⟩ξm|B(p)|2ξ̃(p)∫

dp|B(p)ξ(p)|2

)

=
−B(p)∗∫

dp|B(p)ξ̃(p)|2

[(
B(p)ξ̃(p)

)′′
+ 2i⟨x̂⟩ξw

(
B(p)ξ̃(p)

)′
+ (⟨x̂2⟩ξw − 2⟨x̂⟩2ξw)B(p)ξ̃(p)

]
.

(3.25)
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Therefore it generates the homogeneous linear differential equation of the second order

with constant coefficients as

0 = X ′′(p) + 2i⟨x̂⟩ξwX ′(p) + (⟨x̂2⟩ξm − 2⟨x̂⟩2ξm)X(p), (3.26)

where X(p) := B(P )ξ̃(p). We substitute X(p) = erp(r ∈ C) into the equation to solve,

which produces

0 = r2 + 2i⟨x̂⟩ξwr + ⟨x̂2⟩ξm − 2⟨x̂⟩2ξm . (3.27)

We can easily see the the solutions are r = −i⟨x̂⟩ξw ±i
√
V . Then we can note the solution

of the differential equation with arbitrary constants C1,2 as

X(p) = C1e
(−i⟨x̂⟩ξw+i

√
V )p + C2e

(−i⟨x̂⟩ξw−i
√
V )p

= [(C1 + C2) cos
√
V p+ i(C1 − C2) sin

√
V p]e−i⟨x̂⟩ξwp

= (a sin
√
V p+ b cos

√
V p)e−i⟨x̂⟩ξwp, (3.28)

where a(:= C1 + C2) and b(:= i(C1 − C2)) are the arbitrary complex values, which do

not take zero simultaneously. Hereafter we determine the parameters, a, b, V , and the

integration region p− < p ≤ p+ (tentatively we use the notation p± to describe the region)

for the normalization. We define Y (p) := a sin
√
V p + b cos

√
V p for convenience. Then

we evaluate the final expectation value as

⟨x̂⟩ξw =

∫
dpX∗(p)

(
i ∂
∂p

)
X(p)∫

dp|X(p)|2
=
i
∫
dp[e−i⟨x̂⟩ξwpY (p)]∗[e−i⟨x̂⟩ξwpY (p)]′∫

dp|Y (p)|2

=
i
∫
dp ei⟨x̂⟩ξwpY ∗(p)[−i⟨x̂⟩ξwe−i⟨x̂⟩ξwpY (p) + e−i⟨x̂⟩ξwpY (p)]∫

dp|Y (p)|2

= ⟨x̂⟩ξw +
i
∫
dpY ∗(p)Y ′(p)∫
dp|Y (p)|2

, (3.29)
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therefore we find the parameters satisfy the equation

0 =

∫ p+

p−

dpY ∗(p)Y ′(p)

=

∫ p+

p−

dp
s

2
[(|a|2 − |b|2) sin

√
V p+ (ab∗ + a∗b) cos 2

√
V + (ab∗ − a∗b)]

=

∫ p+

p−

dp

[
s|a2 + b2|

2
sin(2

√
V p+ γ) + i

√
V Imab∗

] (
γ := arctan

2Reab∗

|a|2 − |b|2

)
=

[
−|a2 + b2|

4
cos(2

√
V p+ γ) + i

√
V Imab∗p

]p+
p−

= −|a2 + b2|
4

[
cos(2

√
V p+ + γ)− cos(2

√
V p− + γ)

]
+ i

√
V Imab∗(p+ − p−). (3.30)

We can choose the parameters to satisfy this equation in three ways as follows;

Case 1. The variance is zero (V = 0). In this case b becomes the normalization factor.

Hence, the wave function becomes the optimal probe as derived in the previous

section.

Case 2. V ̸= 0, a = ib, and Imab∗ = 0. They give a = b = 0 which is not appropriate

for the current interest.

Case 3. V ̸= 0, cos(2
√
V p+ + γ) = cos(2

√
V p− + γ), and Imab∗ = 0. The second

condition provides

−2 sin(
√
V p+ +

√
V p− + γ) sin(

√
V p+ −

√
V p−) = 0,

∴
√
V p+ +

√
V p− + γ = nπ or

√
V p+ −

√
V p− = nπ.

Then we have found that the form of the optimal probe wave function can give the minimal

variance, i.e., the zero variance (Case 1). Subsequent calculations for the normalization

factor, the integration region, and the shift of the expectation value, are the same as the

previous section. Here we omit these calculations.

3.4 Summary of this chapter

In this chapter, we have derived the optimal probe wave function by the Lagrange mul-

tiplier method. Ref. [35] shows that the amplification limit in the weak interaction case
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and any number of the distinct eigenvalues of the measured system. Here we have cal-

culated the optimal probe and the amplified shift without any approximation, where the

measured system is the two-state system. The optimal wave function is described in

the momentum space as Eq. (3.1), the support of which is −π/2g ≤ p ≤ π/2g. This

support can be extended the region −nm/2g ≤ p ≤ nm/2g (m ∈ N), which leads to the

same conclusion. The weak measurement with the wave function gives the shift of the

expectation value of the probe position as Eq. (3.2), which has no upper bound as |⟨Â⟩w|
becomes large. Furthermore when we choose such a weak value that gives the final probe

position expectation value ⟨x̂⟩ξw = 2gk (k ∈ N), the final probe position distribution be-

comes the Kronecker delta ξw(x = 2gj) = δjk for j ∈ N, i.e., the variance of which can be

zero. Namely, we can extract the value of the coupling constant from the obtained data

without the statistical fluctuation in principle. Here we remark that when the coupling

constant is sufficiently small, the support of the function covers the whole momentum

space. Then, the final probe wave function in the position space behaves like a delta

function. To derive the wave function, we assume that the observable Â of the measured

system satisfies Â2 = 1 and the weak value Re⟨Â⟩w ̸= 0 which is for the normalization of

the statically.

Note that there is another wave function which can give an arbitrary amplification

factor, for example, the wave function proposed in Ref. [62] 2 . Anyhow, the essence of the

arbitrary amplification is that the denominator of the wave function (3.1) denoted by B(x)

cancels out the higher-order terms given by the unitary operator which brings the upper

bound of amplification. Among such wave functions, the optimal probe wave function is

the only solution that can decrease the variance of the final position distribution to zero.

We should pay attention to engineering the wave function that we need to use the

coupling constant g and the weak value ⟨Â⟩w. We can grasp the weak value from the

chosen pre- and postselected states in a given experimental setup. On the other hand the

value of the coupling constant g is unknown obtainable only by the experiment. Then,

initially, we need to choose the value by a reasonable guess for construction of a tentative

probe wave function. From the discrepancy of the coupling constant from the theoretical

prediction and the actual experimental data, the value of the coupling constant tends to

a more and more accurate value by iteration.

2 The proposed wave function is ξ̃i(p) = e−αG(p)/B(p), the support of which is −nπ ≤ gp ≤ n for
n ∈ N. Here α is an arbitrary real number and G(p) is a primitive of |B(p)|−2. This wave function gives
the initial and final position expectation value as ⟨x̂⟩i = g(α − Re⟨Â⟩w)(1 + |⟨Â⟩w|2)/2(Re⟨Â⟩w)2 and
⟨x̂⟩f = −gα/|Re⟨Â⟩w|. Then the shit of the expectation value is ∆⟨x̂⟩/g = (1 + |⟨Â⟩w|2)/2Re⟨Â⟩w +

α[(1− |Re⟨Â⟩w|)2 + (Im⟨Â⟩w)2]/2(Re⟨Â⟩w)2.





Chapter 4

Review of Statistical Hypothesis

Testing

4.1 Preface

In this chapter, we recaptulate the concept of the standard hypothesis testing established

by Jerzy Neyman and Egon Sharpe Pearson [63]. The hypothesis testing is one of the

statistical inference methods, which is widely used not only in physical experiments but

also in other research fields [53–55]. The hypothesis testing method provides the math-

ematical decision for the testing problem to judge which hypothesis is more plausible in

two contradictory hypotheses. For the good decision-making, we have to produce the

appropriate testing method corresponding to a problem. Here we consider the uniformly

most powerful (UMP) test, and the uniformly most powerful unbiased (UMPU) test. To

write this chapter, the author have refered to Ref. [45].

4.2 Definitions of technical terms and notations

Here we introduce some technical terminologies and notations. In the hypothesis testing,

we attempt to determine which hypothesis is more proper in two contradictory hypothe-

ses, i.e., a null hypothesis and an alternative hypothesis.

39
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Table 4.1: The relation between our decision and the actual hypothesis.

actual hypothesis
null alternative

ou
r
d
ec
is
io
n

null correct the type-2 error

alternative the type-1 error correct

Here we consider what the value of the unknown real parameter θ is1. We define the

two parameter sets, Θ0 and Θ1 such that Θ0 ∩Θ1 = {ϕ}. We call the null hypothesis H0

if the parameter θ is included in Θ0, i.e., H0 : θ ∈ Θ0. Similarly the alternative one is

H1 : θ ∈ Θ1. Hereafter, we simply describe the testing problem as

H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1. (4.1)

If the set Θ is a single point set such as Θ = {θ0}, the hypothesis is called the simple

hypothesis. Meanwhile, the hypothesis that is not simple is classified as the composite

hypothesis. In this chapter, we consider the three testing problems below.

1. the both hypotheses are simple, i.e., H0 : θ = θ0 vs. H1 : θ = θ1,

2. the one-sided test, i.e., H0 : θ ≤ θ0 vs. H1 : θ > θ0,

3. the two-sided test, i.e., H0 : θ = θ0 vs. H1 : θ ̸= θ0.

Sometimes the testing problems such as H0 : θ = θ0 vs. H1 : θ > θ0 and H0 : θ = θ0 vs.

H1 : θ < θ0 are classified as the one-sided test. We state “we accept the null (alternative)

hypothesis,” when we determine that the null (alternative) hypothesis is correct. On the

other hand, we state “we reject the null (alternative) hypothesis,” when we determine

that the null (alternative) hypothesis is incorrect.

Next we consider a cost or risk that we have to pay in the process which we want

to evaluate. In the standard hypothesis testing theory, we regard the error, i.e., the

misjudging which hypothesis is true as the cost. We have two types of errors as

type-1 error: we wrongly reject the null hypothesis, whereas the null one is correct,

1In this thesis, we assume that θ is an one dimensional parameter, i.e., θ ∈ R.
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type-2 error: we wrongly accept the null hypothesis, whereas the alternative one is

correct.

Obviously, a good testing is the one that the probabilities of these two errors are small,

which are calculated from a distribution function. Our objective in the hypothesis testing

is to find such a decision-making procedure with small errors. However, generally, it is

very difficult to make the two errors simultaneously small. Hence, we are content to

take the standard strategy that we make the probability of the type-2 error small, while

we control the probability of the type-1 error to be smaller than a certain value called

a significance level α(0 ≤ α ≤ 1) [54]. This strategy is called as the Neyman-Pearson

Criterion.

To calculate these probabilities, we choose a test function2 d(x) which depends on the

obtained data x by an experiment. The test function d(x) takes the binary values of 0

or 1. The 0 indicates that we accept the null hypothesis, and the 1 represents that we

accept the alternative one. We can describe the test function as

d(x) =


0 for T (x) < c,

r for T (x) = c,

1 for T (x) > c,

(4.2)

where T (x) is a test statistics which indicates the decision criteria with the obtained data

x, and c is a critical point which gives the significance level. Theoretically, we can take an

arbitrarily real value as c. The region of x satisfying T (x) > c is a rejection region (or a

critical region), which indicates the region of rejecting the null hypothesis. Similarly the

region of x such as T (x) < c is an acceptance region. When T (x) = c, we randomly accept

the null hypothesis with the probability r(0 ≤ r ≤ 1). For the distribution function of

continuous variable, the probability for the continuous random variable x coincides just

with the case T (x) = c is zero. An appropriate test statistics T (x) depends on a testing

problem.

With the decision function d(x), we can define a power of a statistical test as

βd(θ) :=

∫
d(x)f(x|θ)dx, (4.3)

where f(x|θ) is the probability distribution x with the parameter θ. The test function for

all θ ∈ Θ1 represents the probability that the accepted alternative hypothesis is correct,
2This corresponds to the decision function in the statistical interference. In the hypothesis testing

function, we usually use the term “test function” instead of “decision function.”
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while the test function for all θ ∈ Θ0 is the probability of the type-1 error. Here the

probability is calculated by the integration of the distribution function f(x|θ) for θ ∈ Θ0

over the rejection region. We can evaluate the probability of the type-1 error Pr[E1] as

Pr[E1] ≡ βd(θ) for θ ∈ Θ0. (4.4)

Also the probability of the type-2 error Pr[E2] is calculated by the integration of the

distribution function f(x|θ) for θ ∈ Θ1 over the acceptance region, which is given as

Pr[E2] ≡ 1− βd(θ) for θ ∈ Θ1. (4.5)

Therefore, we can obtain the probabilities of the type-1 and -2 errors. As we stated

in the above, the smaller the probabilities of errors are, the better the decision-making

becomes. It is important to appropriately choose the test function because it gives the

probabilities of errors. In the next section, we propose a proper test function for one

testing problem.

4.3 Uniformly most powerful (UMP) test

As we noted in the previous section, we customarily take the strategy such that we

reduce the probability of the type-2 error, while we keep the probability of the type-1

error smaller than a certain significance point. In this strategy, we can say that the best

test method is a uniformly most powerful (UMP) test.

Definition 4.3.1. (Uniformly most powerful test)

We assume that the testing problem is H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1 and d(x) is an

arbitrary test function (0 ≤ d(x) ≤ 1) which gives the test at a significance level α for the

testing problem, namely βd(θ) ≤ α is satisfied for all θ ∈ Θ0. If the test function d∗(x),

which gives the test at the significance level α, satisfies the inequality

βd∗(θ) ≥ βd(θ),
∀θ ∈ Θ1, (4.6)

the test is UMP.

Namely, the test gives the maximum power for all alternative hypotheses (∀θ ∈ Θ1).

When the alternative hypothesis is simple, a test satisfying the inequality (4.6) is simply
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called most powerful (MP) test. We remark that we cannot always find a UMP test or a

MP test in every testing problem. Precisely, there is a testing problem such that a UMP

test or an MP test is not present.

Here we exemplify a MP test for the testing problem such that the both hypotheses

are simple, which is addressed by Neyman-Pearson’s lemma [63]. This lemma claims that

the test named likelihood-ratio test is MP only when the both hypotheses are simple.

Lemma 4.3.1. (Neyman-Pearson’s lemma)

We assume that the testing problem is H0 : θ = θ0 vs. H1 : θ = θ1, and that f(x|θ0) and
f(x|θ1) are the probability distributions in the null hypothesis and the alternative one,

respectively. We consider the following test function

d∗(x) =


0 for f(x|θ1)/f(x|θ0) < c,

r for f(x|θ1)/f(x|θ0) = c,

1 for f(x|θ1)/f(x|θ0) > c,

(4.7)

in which the probability of the type-1 error is α, i.e., βd∗(θ0) = α. This test function gives

the MP test at the significance level α for the hypothesis testing problem.

The f(x|θ1)/f(x|θ0) is called the likelihood-ratio. Here we give the proof of the lemma.

Proof. We set that d(x) is an arbitrary test function at a significance level α, namely

βd(θ0) ≤ α and 0 ≤ d(x) ≤ 1. First of all, we show the inequality∫
[d∗(x)− d(x)][f(x|θ1)− cf(x|θ0)]dx ≥ 0. (4.8)

From Eq. (4.7) and 0 ≤ d(x) ≤ 1, we can see

d∗(x)− d(x) ≥ 0 for f(x|θ1)− cf(x|θ0) > 0, (4.9)

d∗(x)− d(x) ≤ 0 for f(x|θ1)− cf(x|θ0) < 0. (4.10)

Additionally, the left-hand side of the inequality (4.8) is zero when f(x|θ1)−cf(x|θ0) = 0.

Thus the inequality (4.8) holds, because the integrand is non-negative for all x. Therefore



44 Chapter 4

we can show

βd∗ (θ1)− βd(θ1) =

∫
d∗(x)f(x|θ1)dx−

∫
d(x)f(x|θ1)dx

=

∫
[d∗(x)− d(x)]f(x|θ1)dx

≥ c

∫
[d∗(x)− d(x)]f(x|θ0)dx

= c

[∫
d∗(x)f(x|θ0)dx−

∫
d(x)f(x|θ0)dx

]
= c [α− βd(θ0)] ≥ 0 (4.11)

Thus we have shown that the likelihood-ratio test is the MP test.

We have to pay attention to the fact that this lemma holds only when the both hy-

potheses are simple. Subsequently, we can find a UMP test also in the one-sided test.

Prior to showing it, we define the monotone likelihood-ratio.

Definition 4.3.2. (Monotone likelihood ratio)

Let us consider the likelihood-ratio f(x|θ2)/f(x|θ1) for arbitrarily fixed θ1 and θ2 (θ1 < θ2).

We assume that the likelihood-ratio can be described as

f(x|θ2)
f(x|θ1)

= g(T (x), θ1, θ2). (4.12)

When g(T (x), θ1, θ2) is a monotonically increasing function of T (x) for θ1 < θ2, we state

that the distribution function f(x|θ) has a monotone likelihood ratio in T (x).

We see the theorem to find a UMP test in the one-sided test.

Theorem 4.3.1. (Uniformly most powerful test in the one-sided test)

Here we consider the testing problem H0 : θ ≤ θ0 vs. H1 : θ > θ0. When the distribution

function f(x|θ) has a monotone likelihood-ratio in the statistics T (x), the test function

d∗(x) =


0 for T (x) < c,

r for T (x) = c,

1 for T (x) > c,

(4.13)

becomes a UMP test based on the critical point c and the random probability r for an

arbitrary significance level α (0 ≤ α ≤ 1).
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This theorem is even valid for the testing problem H0 : θ = θ0 vs. H1 : θ > θ0. The

proof is the following.

Proof. Firstly, we consider the particular testing problem H0 : θ = θ0 vs. H1 : θ = θ1

with arbitrary fixed θ0 and θ1 (θ1 > θ0). As shown in Neyman-Pearson’s lemma, the

likelihood-ratio test becomes MP test, which can be described as the form of Eq. (4.13).

The critical point c and the random probability r are independent of the parameter θ1.

The test function (4.13) gives the UMP test for the testing problem H0 : θ = θ0 vs.

H1 : θ > θ0.

Next we expand the null hypothesis H0 : θ = θ0 into θ ≤ θ0. In preparation, we show

the following inequality∫
g(T (x))f(x)dx

∫
h(T (x))f(x)dx ≤

∫
g(T (x))h(T (x))f(x)dx, (4.14)

where g(T (x)) and h(T (x)) are the monotonically increasing functions of T (x). Setting

m =
∫
g(T (x))f(x)dx, we can obtain the equation

0 =

∫
[g(T (x))−m]f(x)dx (4.15)

due to the probability distribution f(x). Since g(T (x))−m is the monotonically increasing

function of T (x), there is a finite value t such as g(T (x)) − m ≤ 0 for T (x) ≤ t and

g(T (x)) −m > 0 for T (x) > t to satisfy Eq. (4.15). h(T (x)) is also the monotonically

increasing function of T (x), we can obtain the inequalities, h(T (x))−h(t) ≤ 0 for T (x) ≤ t

and h(T (x))− h(t) > 0 for T (x) > t. Therefore, the inequality

[g(T (x))−m][h(T (x))− h(t)] ≤ 0 (4.16)

holds for all x, which indicates

0 ≤
∫
[g(T (x))−m][h(T (x))− h(t)]f(x)dx

=

∫
[g(T (x))−m]h(T (x))f(x)dx− h(t)

∫
[g(T (x))−m]f(x)dx

=

∫
g(T (x))h(T (x))f(x)dx−m

∫
h(T (x))f(x)dx (∵ Eq.(4.15))

=

∫
g(T (x))h(T (x))f(x)dx−

∫
g(T (x))f(x)dx

∫
h(T (x))f(x)dx. (4.17)
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Hence we have shown Eq. (4.14). Here we assume θ ≤ θ0 to evaluate the the proba-

bility of the type-1 error and . In Eq. (4.14), substituting f(x) = f(x|θ), g(T (x)) =

f(x|θ0)/f(x|θ), and h(T (x)) = d∗(x), we obtain∫
f(x|θ0)
f(x|θ)

f(x|θ)dx
∫
d∗(x)f(x|θ)dx ≤

∫
f(x|θ0)
f(x|θ)

d∗(x)f(x|θ)dx

⇔
∫
d∗(x)f(x|θ)dx ≤

∫
f(x|θ0)d∗(x)dx

⇔ βd∗(θ) ≤ βd∗(θ0) = α (4.18)

For θ ≤ θ0, the probability of the type-1 error is smaller than the significance level α.

Therefore the test function d∗(x) gives a UMP test for the one-sided test H0 : θ ≤ θ0 vs.

H1 : θ > θ0 and H0 : θ = θ0 vs. H1 : θ > θ0.

In this section, we see a likelihood-ratio test and a UMP test for the specific testing

problems, the case that the both hypotheses are simple and the one-sided test, respec-

tively. In the next section, we consider a better test function in a two-sided test.

4.4 Uniformly most powerful unbiased (UMPU) test

We have introduced the UMP test for a one-sided test in the previous section. However,

a UMP test does not exist in a two-sided test. We note this issue in Sec. 4.5. Here we

find the better test function in a two-sided test. Firstly, we introduce the unbiased test

to find one.

Definition 4.4.1. (Unbiased test)

In the testing problem H0 : θ ∈ Θ vs. H1 : θ ∈ Θ, if the test function d(x) at the

significance level α satisfies

βd(θ) ≥ α, ∀θ ∈ Θ1. (4.19)

we state that the test is unbiased.

Next we define the class of a better testing in the unbiased test. Similar to the UMP

test, the unbiased test which gives the maximum power for all alternative hypotheses is

preferable.
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Definition 4.4.2. (Uniformly most powerful unbiased test)

We assume that the testing problem is H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1 and d(x) is an

arbitrary unbiased test function at a significance level α, namely βd(θ) ≤ α for all θ ∈ Θ0

and 0 ≤ d(x) ≤ 1. If the unbiased test function d∗(x), which gives a test at the significance

level α, satisfies the inequality

βd∗(θ) ≥ βd(θ),
∀θ ∈ Θ1, (4.20)

we state that the test function d∗(x) gives uniformly most powerful unbiased (UMPU)

test.

Hereafter we consider the unbiased test at the significance level α, i.e., βd(θ0) ≤ α for

the two-sided test H0 : θ = θ0 vs. H1 : θ ̸= θ0. We assume that the power function βd(x)

is differentiable with respect to θ and satisfies

∂

∂θ
βd(θ) =

∫
d(x)

∂

∂θ
f(x|θ)dx. (4.21)

This assumption implies that βd(θ) is the continuous function of θ. By the unbiasedness

of the test, βd(θ) ≥ α for all θ ∈ Θ1, and the continuity of the power function βd(θ) at

θ = θ0, we can deduce that the probability of the type-1 error is fixed α, i.e., βd(θ0) = α.

Furthermore, it is clear that the power function βd(θ) takes minimum value at θ = θ0,

which implies β′
d(θ0) = 0. The prime indicates the differential with respect to θ. For the

unbiased test with these properties, we have the following lemma to obtain a test function

giving a UMPU test in the two-sided testing problem.

Lemma 4.4.1. (Uniformly most powerful unbiased test)

We consider the two-sided testing problem H0 : θ = θ0 vs. H1 : θ ̸= θ0. We assume that

the test function d∗(x) satisfies

∂

∂θ
βd∗(θ) =

∫
d∗(x)

∂

∂θ
f(x|θ)dx, (4.22)

βd∗(θ0) = α, (4.23)

β′
d∗(θ0) = 0. (4.24)
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For an arbitrary fixed θ1(̸= θ0), when the test function can be described as

d∗(x) =


0 for F(x) < 0,

r for F(x) = 0,

1 for F(x) > 0,

(4.25)

where

F(x) = f(x|θ1)− c1f(x|θ0)− c2
∂

∂θ
f(x|θ0), (4.26)

for specific c1 and c2, the test function d∗(x) gives a unbiased test, which maximizes the

power at θ = θ1. Furthermore, for the arbitrary θ1( ̸= θ0), if we can appropriately choose

c1 = c1(θ1) and c2 = c2(θ1), the test function d∗(x) gives a UMPU test.

Proof. The proof is similar to the one of the Nyeman-Pearson Lemma. We set an arbi-

trarily unbiased test function d(x) (0 ≤ d(x) ≤ 1) at the significant α, which meets

βd(θ0) ≤ α and βd(θ1) ≥ α, ∀θ1 ̸= θ0. (4.27)

Also we assume that the power function βd(θ) of the the test function d(x) satisfies Eq.

(4.21), which implies that

βd(θ0) = α and
∂

∂θ
βd(θ0) =

∫
d(x)

∂

∂θ
f(x|θ0)dx = 0. (4.28)

First we show the inequality ∫
[d∗(x)− d(x)]F(x)dx ≥ 0. (4.29)

From Eqs. (4.25), (4.26) and 0 ≤ d(x) ≤ 1, we can see

d∗(x)− d(x) ≥ 0 for F(x) > 0, (4.30)

d∗(x)− d(x) ≤ 0 for F(x) < 0. (4.31)

Additionally, when F(x) = 0, the integrand of Eq. (4.29) is zero regardless of the sing of

d∗(x) − d(x). Therefore the inequality (4.29) holds for all x. Next, we see the left-hand
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side of the inequality (4.29), which is evaluated as∫
[d∗(x)− d(x)]F(x)

=

∫
d∗(x)f(x|θ1)dx−

∫
d(x)f(x|θ1)dx

− c1

(∫
d∗(x)f(x|θ0)dx−

∫
d(x)f(x|θ0)dx

)
− c2

(∫
d∗(x)

∂

∂θ
f(x|θ0)dx−

∫
d(x)

∂

∂θ
f(x|θ0)dx

)
= βd∗(θ1)− βd(θ1)− c1(βd∗(θ0)− βd(θ0))− c2

(
∂

∂θ
βd∗(θ0)−

∂

∂θ
βd(θ0)

)
= βd∗(θ1)− βd(θ1)− c1(α− α)− c2(0− 0)

= βd∗(θ1)− βd(θ1). (4.32)

To show this equation, we have used Eqs. (4.22), (4.23), (4.24), and (4.28). From Eqs.

(4.27), (4.29), and (4.32), we can obtain the inequality

βd∗(θ) ≥ βd(θ) ≥ α, ∀θ ∈ Θ1, (4.33)

because θ1 is the arbitrary value except for θ0.

Hence d∗(x) gives the UMPU test for the two-sided test H0 : θ = θ0 vs. H1 : θ ̸= θ0.

4.5 Examples of the UMP test and UMPU test

In this section, we see the UMP test and UMPU test by exemplifying the testing problem

about a mean value θ of Gaussian distribution given as f(x|θ) = e−(x−θ)2/(2σ2)/
√
2πσ2.

Here we set the two testing problems: the one-sided test H0 : θ = 0 vs. H1 : θ > 0

(and also H0 : θ ≤ 0 vs. H1 : θ > 0) to consider the UMP test and the two-sided test

H0 : θ = 0 vs. H1 : θ ̸= 0 to consider the UMPU test.

Here we see the one-sided test. To obtain the UMP test, we calculate the likelihood-ratio

as

f(x|θ)
f(x|0)

=
e−

(x−θ)2

2σ2

e−
x2

2σ2

= e−
θ2

2σ2 exp

[
xθ

σ2

]
. (4.34)
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the acceptance region

the rejection region

(1) the UMP test

(2) the UMPU test

Figure 4.1: The illustration of the rejection region and the acceptance region for (1)
the UMP test and (2) the UMPU test.

Setting the test statistics T (x) = x, we can find that the likelihood-ratio is the monoton-

ically increasing function of T (x). Hence we propose the test function for the one-sided

test [Fig. 4.1(1)] as

d1(x) =


0 for x < c,

r for x = c,

1 for x > c,

(4.35)

which gives the power calculated as

βd1(θ) =
1√
2πσ2

∫ ∞

c

e−
(x−θ)2

2σ2 =
1

2
− 1√

π

∫ c−θ√
2σ2

0

e−x2

dx =
1

2

(
1− erf

[
c− θ√
2σ2

])
, (4.36)

where

erf [x] :=
2√
π

∫ x

0

dte−t2 (4.37)

is the error function3. Now we consider the two-sided test, in which the appropriately

test function is given by the Lemma 4.4.1. To find the UMPU test, we firstly look at the

candidate of the UMPU test and check that the candidate meets the Lemma. Here we

3The error function satisfies erf [−x] = −erf [x] and d
dxerf [x] =

2√
π
e−x2

.
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propose the test function [Fig. 4.1(2)] as

d2(x) =


0 for |x| < c,

r for |x| = c,

1 for |x| > c,

(4.38)

which gives the power

βd2(θ) =
1√
2πσ2

∫ −c

−∞
e−

(x−θ)2

2σ2 dx+
1√
2πσ2

∫ −∞

−c

e−
(x−θ)2

2σ2 dx

=
1√
π

(∫ ∞

c+θ√
2σ2

e−x2

dx+

∫ ∞

c−θ√
2σ2

e−x2

dx

)

= 1− 1

2

(
erf

[
c− θ√
2σ2

]
+ erf

[
c+ θ√
2σ2

])
. (4.39)

We can confirm that Eqs. (4.22), (4.23) and (4.24) are satisfied as

∂

∂θ
βd2(θ) =

1√
2πσ2

(e
− (c−θ)2√

2σ2 − e
− (c+θ)2√

2σ2 ), (4.40)∫
d2(x)

∂

∂θ
f(x|θ)dx =

∫
d2(x)

(x− θ)

σ2
f(x|θ)dx

=
1

σ2

1√
2πσ2

(∫ −c

−∞
(x− θ)e−

(x−θ)2

2σ2 dx+

∫ ∞

c

(x− θ)e−
(x−θ)2

2σ2 dx

)
=

2√
2πσ2

(
−
∫ ∞

c+θ√
2σ2

xe−x2

dx+

∫ ∞

c−θ√
2σ2

xe−x2

dx

)

=
2√
2πσ2

−
[
−1

2
e−x2

]∞
c+θ√
2σ2

+

[
−1

2
e−x2

]∞
c−θ√
2σ2


=

1√
2πσ2

(e
− (c−θ)2√

2σ2 − e
− (c+θ)2√

2σ2 ), (4.41)

βd2(0) = 1− erf

[
c√
2σ2

]
, (4.42)

and β′
d2
(0) = 0 is obvious by Eq. (4.40). In Eq.(4.42), by choosing a proper c, we have

βd2(0) = α.

Next we choose the adequate parameters c1 and c2. We evaluate Eq. (4.26) as

F(x)

f(x|0)
= e

xθ−θ2

2σ2 − c1 − c2
x

σ2
. (4.43)
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Figure 4.2: Plots of the powers of βd1(θ) given by the UMP test and βd2(θ) by the
UMPU test. The significance level is fixed as α = 0.05 and the critical points c are
tuned for which, respectively. The variance of the Gaussian probe is fixed as σ = 2.

We can find c1 and c2 which gives x = ±c as the solutions of F(x)/f(x|0) = 0 below,

c1 =
ecθ−θ2 + e−cθ−θ2

2
= e−θ2 cosh cσ, (4.44)

c2 =
ecθ−θ2 − e−cθ−θ2

2c/σ2
=
σe−θ2

c
sinh cσ. (4.45)

Due to the convexity of the function exθ−θ2 , the test function gives UMPU test because

d(x) =


0 for F(x) < 0 ⇔ |x| < c,

r for F(x) = 0 ⇔ |x| = c,

1 for F(x) > 0 ⇔ |x| > c.

(4.46)

Hence we have found the UMP and the UMPU tests for the one-sided test and the

two-sided test, respectively. Here we see the difference of the powers between βd1(x) and

βd2(x).

Figure 4.2 displays the plots of the powers βd1(θ) and βd2(θ), which show that the UMP

test for the one-sided test gives the power such as βd1(θ ≤ 0) ≤ α, while the UMPU test

for the two-sided test gives the power βd2(θ = 0) ≤ α and βd2(θ ̸= 0) ≥ α as stated in

the previous sections. In each test, the powers are lower than the significance level α at

the respective null hypotheses. Furthermore, we can see βd1(θ) > βd2(θ) in the region of
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θ > 04.

We remark the reason why a UMP test does not exist in the two-sided test by exem-

plifying the testing problem considered in this section. As we shown in Eq. (4.35).

the rejection region of the UMP test is x > c, when the alternative hypothesis is

H1 : θ = θ1 (θ1 > 0). On the other hand, x < −c is the rejection region of the UMP test

for the alternative hypothesis H1 : θ = θ1 (θ1 < 0). We want to find the test function for

the two-sided test H0 : θ = 0 vs. H1 : θ ̸= 0, which gives a UMP test for the alternative

hypotheses, θ1 > 0 and θ1 < 0. simultaneously. However, the test functions of the UMP

test are difference between these two case, θ1 > 0 and θ1 < 0. Therefore the UMP test

does not exist in the two-sided test.

Consequently, the UMP test is an appropriate test for the one-sided test H0 : θ = 0 vs.

H1 : θ > 0 (and also H0 : θ ≤ 0 vs. H1 : θ > 0), and the UMPU test is appropriate test

for the two-sided test H0 : θ = 0 vs. H1 : θ ̸= 0 to consider the UMPU test. In other

words, we should consider the UMPU test for the two-sided test rather than the UMP

test or the likelihood-ratio test.

4.6 Summary of this chapter

In this chapter, we have seen the standard theory and process of the hypothesis testing

method. In the hypothesis testing, we determine which hypothesis is true and obtain the

information about a research objective. To proceed a good testing, we should prepare

the appropriate test function corresponding to the testing problem, which enables us to

reduce the probabilities of the two-type error, i.e., the misjudging. We consider the three

types of testing problems and introduce the test function for each testing problem.

In the next chapter, we evaluate the hypothesis testing in the weak measurement for

the testing problem to distinguish whether the interaction between a measured system

and a measuring probe is presence or not.

4At θ → ∞, the powers converge 1.





Chapter 5

Weak-Value Amplification for

Detection Problem

5.1 Preface

In this chapter, we consider the application of the hypothesis testing reviewed in the

previous chapter to the interaction detection problem in the weak-value amplification.

Here, we compare detection capabilities of the weak measurement and the conventional

measurement. As stated below, the interaction detection problem should be treated as

the two-sided test. For a fair comparison, we propose the test function which gives the

UMPU test in each measurement case. By evaluating the probabilities of the type-1

and -2 errors and the statistical power, we can find that the weak measurement has

an advantage to reduce the probability to miss the presence of the interaction when the

weak value is outside the range of the eigenvalues. Additionally, we consider the proposed

testing method under a typical noise. This chapter is based on Ref. [60].

5.2 Hypotheses and Test function for interaction de-

tection

At first, we assume that the interaction Hamiltonian is given as the von Neumann type

Ĥ = gδ(t)Â⊗p̂, the observable of the measured system is Â = |+⟩⟨+|−|−⟩⟨−| for the two-
state system, and the initial distribution of the measuring probe is given as the Gaussian

55
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profile ψ(x) = (2πσ2)−1/4 exp[−x2/(4σ2)] with the variance σ2. Following the previous

chapter, we assume that an obtained data is enough for statistical processing with the

hypothesis testing method. More precisely, we consider the case that the number of the

obtained data is infinitely large and the data loss by the failure of the post-selection is

neglected.

To carry out the hypothesis testing method, we fix the two contradictory hypotheses,

the null hypothesis and the alternative one. For the interaction detection, the following

hypotheses are reasonable;

the null hypothesis H0: the interaction is absent, i.e., g = 0,

the alternative hypothesis H1: the interaction is present, i.e., g ̸= 0.

Therefore we regard the interaction detection problem is the two-sided test. Here the

type-1 and -2 errors mean as below1; the type-1 error represents that the interaction

is really absent but we incorrectly guess the interaction exists, and the type-2 error

shows that the interaction actually exists but we wrongly suppose there is no interaction,

namely, we miss the presence of the interaction. The statistical power indicates the

probability that we correctly judge the presence of the interaction when the interaction

really exists. To calculate the probabilities of the errors and the power, we need the

position distributions of the final probes after each measurement and the test function to

determine from now on. Here we recapitulate the position distributions of the final probe

given by the conventional measurement as

fc(x|g) =
1√
2πσ2

(
|⟨+|i⟩|2e−

(x−g)2

2σ2 + |⟨−|i⟩|2e−
(x+g)2

2σ2

)
, (5.1)

and the one observed in the weak measurement as

fw(x|g) =
Z−1

2
√
2πσ2

[
(1 + |⟨Â⟩w|2 + 2Re⟨Â⟩w)e−

(x−g)2

2σ2

+(1 + |⟨Â⟩w|2 − 2Re⟨Â⟩w)e−
(x+g)2

2σ2 + 2(1− |⟨Â⟩w|2)e−
x2+g2

2σ2

]
, (5.2)

Z =1 + |⟨Â⟩w|2 + (1− |⟨Â⟩w|2)e−
g2

2σ2 . (5.3)

Next, on the basis of the Lemma 4.4.1 introduced in the previous chapter, we consider

the test function d(x) which gives the UMPU test for each measurement. Firstly, we need

1The type-1 and -2 errors equal to the false alarm and the false negative, respectively.
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to prepare the appropriate test function as the candidate of the UMPU test, which does

not contain the unknown coupling constant g. Here we aim to propose the test function

from the physical intuition on the basis that the initial measuring probe distribution is

the Gaussian, the variance of which is σ2. If there is no interaction, i.e., the null hypoth-

esis is true, we will obtain the measurement result x such that inside the initial probe

fluctuation |x| < σ rather than the outside |x| > σ. On the other hand, if the interaction

is present, i.e., the alternative hypothesis is correct, we will observe the position data x

such as outside the initial fluctuation |x| > σ and the probability of |x| < σ becomes com-

paratively small. This picture holds in both the measurements, the weak measurement

and the conventional measurement. Therefore, we propose the following test function as

the candidate of the UMPU test:

d(x) =


0 if |x|/σ < c,

r if |x|/σ = c,

1 if |x|/σ > c,

(5.4)

where c is a critical point. We confirm that this test function gives the UMPU test or

the UMP test in Sec. 5.4.

5.3 Comparison of the probabilities of the errors and

the powers

Here, we calculate and compare the probabilities of the type-1 and -2 errors and the

statistical power. First, we consider the probability of the type-1 error when the coupling

constant is g = 0 and the measurement result is |x| > cσ [Fig. 5.1(a)]. When the inter-

action is absent, the two distributions (5.1) and (5.2) correspond to the initial Gaussian

distribution

fc(x|g = 0) = fw(x|g = 0) =
1√
2πσ2

e−
x2

2σ2 . (5.5)

Therefore, the probability of the type-1 error of the each measurement are the same as

Pr[E1] = β(0) = 1− erf

[
c√
2

]
, (5.6)
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(a) (b)

the rejection region the acceptance region

Figure 5.1: The schematic diagram of (a) the initial position distribution and (b) the
final ones given by the conventional measurement and the weak measurement with the
critical point. Also shown are (a) the rejection region and (b) the acceptance region to
see the probabilities of the type-1 and -2 errors.

which is calculated by integrating the function (5.5) over the rejection region. Since

Pr[E1] can be at any significance level by choosing c which is an arbitrary value, the test

accommodates the standard strategy of the hypothesis testing.

Next, we see the probability of the type-2 error when the coupling constant is g ̸= 0

and the measurement result is |x| < cσ [Fig. 5.1(b)]. Since the interaction is present,

the distributions (5.1) and (5.2) become different from each other. By integrating the

function (5.1) over the acceptance region, the probability of the type-2 error given by the

conventional measurement is calculated as

Pr[E2,c] = 1− βc(g)

= 1−
(∫ −cσ

−∞
fc(x|g)dx+

∫ ∞

cσ

fc(x|g)dx
)

=
1

2

(
erf

[
cσ − g√

2σ2

]
+ erf

[
cσ + g√

2σ2

])
. (5.7)
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Similarly the one in the case of the weak measurement is calculated as

Pr[E2,w]

= 1− βw(g)

= 1−
(∫ −cσ

−∞
fw(x|g)dx+

∫ ∞

cσ

fw(x|g)dx
)

=
1

2Z

[
(1 + |⟨Â⟩w|2)

(
erf

[
cσ − g√

2σ2

]
+ erf

[
cσ + g√

2σ2

])
+ 2(1− |⟨Â⟩w|2)e−

g2

2σ2 erf

[
c√
2

]]
.

(5.8)

Because the probability of the type-1 error is the same in both measurements, we compare

the probabilities of the type-2 error to find which measurement is more advantageous.

We can obtain and arrange the error-probability ratio Pr[E2,w]/Pr[E2,c] as

Pr[E2,w]
Pr[E2,c]

− 1 =
1

Z

(1 + |⟨Â⟩w|2) + (1− |⟨Â⟩w|2)e−
g2

2σ2

 2erf
[

c√
2

]
erf
[
cσ−g√
2σ2

]
+ erf

[
cσ+g√
2σ2

]
−Z


= Z−1(1− |⟨Â⟩w|2)e−

g2

2σ2

 2erf
[

c√
2

]
erf
[
cσ−g√
2σ2

]
+ erf

[
cσ+g√
2σ2

] − 1

 . (5.9)

Here we prove that the inequality

2erf
[

c√
2

]
erf
[
cσ−g√
2σ2

]
+ erf

[
cσ+g√
2σ2

] > 1 (5.10)

always holds.

Proof. we can assume g > 0 without the loss of generality because the left-hand side of

the inequality (5.10) is symmetric under the exchange g ↔ −g. In the case of 0 < g ≤ cσ,

e−(t−g
√
2σ2)2 > e−t2 holds when t ≤ c/

√
2. Therefore, we obtain the inequality

∫ cσ+g√
2σ2

c√
2

e
−(t− g√

2σ2 )
2

dt >

∫ cσ+g√
2σ2

c√
2

e−t2dt, (5.11)

which becomes∫ c√
2

cσ−g√
2σ2

e−t2dt >

∫ cσ+g√
2σ2

c√
2

e−t2dt⇔ erf

[
c√
2

]
− erf

[
cσ − g√

2σ2

]
> erf

[
cσ + g√

2σ2

]
− erf

[
c√
2

]
.

(5.12)
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Thus, we have shown the inequality (5.10) for 0 < g ≤ cσ.

Next, we consider the case g > cσ. The inequality e−(t−c/
√
2)2 > e−t2 is given by

t ≥ c/
√
2, which provides

∫ √
2c

c√
2

e
−(t− c√

2
)2
dt >

∫ √
2c

c√
2

e−t2dt⇔
∫ c√

2

0

e−t2dt >

∫ √
2c

c√
2

e−t2dt

⇔ erf

[
c√
2

]
> erf

[√
2c
]
− erf

[
c√
2

]
. (5.13)

In addition, from e−(t−
√
2c)2 > e−t2 for t ≥

√
2c, we obtain

∫ cσ+g√
2σ2

√
2c

e−(t−
√
2c)

2

dt >

∫ cσ+g√
2σ2

√
2c

e−t2dt⇔
∫ − cσ−g√

2σ2

0

e−t2dt >

∫ cσ+g√
2σ2

√
2c

e−t2dt

⇔ −erf

[
cσ − g√

2σ2

]
> erf

[
cσ + g√

2σ2

]
− erf

[√
2c
]
.

(5.14)

Combining these inequalities, we acquire

erf

[
c√
2

]
− erf

[
cσ − g√

2σ2

]
> erf

[
cσ + g√

2σ2

]
− erf

[
c√
2

]
(5.15)

for g > cσ. To summarize, we have proved the inequality (5.10).

From Eq. (5.9) with the inequity (5.10), we can find that the inequality

Pr[E2,w] ≤ Pr[E2,c] (5.16)

⇔βw(g) ≥ βc(g) (5.17)

holds for the weak value satisfying

|⟨Â⟩w| ≥ 1, (5.18)

where “1” in the right-hand side is derived from the eigenvalue of the observable Â. Hence,

the probability of the type-2 error can be reduced by the appropriate postselection. We

note that the ratio Pr[E2,w]/Pr[E2,c] is a monotonically decreasing function with respect
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to |⟨Â⟩w|2 because its derivative is negative,

∂Pr[E2,w]/Pr[E2,c]
∂|⟨Â⟩w|2

= −2Z2

 2erf
[

c√
2

]
erf
[
cσ−g√
2σ2

]
+ erf

[
cσ+g√
2σ2

] − 1

 e−
g2

2σ2 ≤ 0. (5.19)

Also the ratio of the powers βw/βc is a monotonically increasing function with regard to

|⟨Â⟩w|2.

We remark that the merit of the WVA is originally supposed to that amplifying the shift

of the expectation value by weak value larger than the eigenvalue. Here we additionally

give the implication of the WVA that reduces the possibility of missing the presence of

the interaction, which is mathematically well-grounded. We suppose that this is the one

of the essences of the WVA.
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Figure 5.2: The contour plots of (a), (b) the ratios of the two probabilities of the
type-2 error Pr[E2,w]/Pr[E2,c] and (c), (d) the ratio of the two powers βw(g)/βc(g). The
horizontal axis of these plots shows the absolute value of the weak value |⟨Â⟩w|. The
vertical axis indicate the interaction strength divided by the initial fluctuation g/σ in
(a) and (c), and the critical point c in (b) and (d). The darker blue (red) indicates the
small (large) values.
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Figure 5.3: The transition of the position distributions given by the conventional mea-
surement fc(x|g) (the orange solid curve) and the weak measurement fw(x|g) (the red
dashed curve) to the interaction strength. In (c), the two plots are almost overlapped.
The parameters are fixed as Re⟨Â⟩w = 0, |⟨Â⟩w| = 5, |⟨+|i⟩|2 = |⟨−|i⟩|2 = 1/2, and
σ = 1.

We plot the probability ratio Pr[E2,w]/Pr[E2,c] and the power ratio βw(g)/βc(g) for the

parameters |⟨Â⟩w|, g/σ and c in Fig. 5.2, which indicate that the inequalities (5.16)

and (5.17) hold for |⟨Â⟩w| ≥ 1. We can see that the WVA works well when g/σ and

c are relatively small, but are not zero. On the other hand, if the g/σ is large, the

weak measurement is as helpful as the conventional measurement for the detection of the

interaction. This property comes from the difference of the distribution functions fc(x|g)
and fw(x|g), which can be explained in Fig. 5.3 that shows the transition of the position

distributions fc(x|g) and fw(x|g) to the interaction strength.

There is a big difference between fc(x|g) and fw(x|g) in the small |x| region for the

small g as shown in Fig. 5.3 (a). Meanwhile fc(x|g) and fw(x|g) are almost same for

a large g as we can see from Fig. 5.3 (b) and (c). As we know that the probability of

the type-2 error is given by the integration over the acceptance region, i.e., the interval

[−cσ, cσ]. Since fw(x|g) is smaller than fc(x|g) in the central region of x for a fixed small

g, the ratio Pr[E2,w]/Pr[E2,c] becomes small, if we properly choose the critical point c. In

contrast, the ratio of powers βw(g)/βc(g) becomes large.

5.4 Confirmation that the test is UMPU or UMP

5.4.1 Proof of the UMPU test

We prove that the test function (5.4) provides the UMPU test for the each measurement

according to the Lemma 4.4.1. Firstly we see Eqs. (4.22), (4.23), and (4.24). Here we
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check Eq. (4.22). In the weak measurement, we can obtain the equations

∂gβw(g) = ∂g(1− Pr[E2,w])

=
Z−1

√
2πσ2

(1 + |⟨Â⟩w|2)
(
e−

(cσ−g)2

2σ2 − e−
(cσ+g)2

2σ2
)

+
Z−1g

σ2
(1− |⟨Â⟩w|2)e−

g2

2σ2

(
erf

[
c√
2

]
− Pr[E2,ps]

)
, (5.20)

and ∫
d(x)

∂

∂g
fw(x|g)dx =

Z−1

2
√
2πσ2

∫
d(x)

∂

∂x

(
−(1 + |⟨Â⟩w|2 + 2Re⟨Â⟩w)e−

(x−g)2

2σ2

+(1 + |⟨Â⟩w|2 − Re⟨Â⟩w)e−
(x+g)2

2σ2

)
dx

− Z−1g

2σ2
(1− |⟨Â⟩w|2)e−

g2

2σ2

∫
d(x)

∂

∂x
erf

[
x√
2σ

]
dx

−Z−1∂Z

∂g

∫
d(x)fw(x|g)dx

=
Z−1

√
2πσ2

(1 + |⟨Â⟩w|2)
(
e−

(cσ−g)2

2σ2 − e−
(cσ+g)2

2σ2
)

+
Z−1g

σ2
(1− |⟨Â⟩w|2)e−

g2

2σ2

(
erf

[
c√
2

]
− Pr[E2,ps]

)
, (5.21)

which satisfy Eq. (4.22). Similarly, in the conventional measurement, we obtain the

equations

∂gβc(g) = ∂g(1− Pr[E2,c]) =
1√
2πσ2

(
e−

(cσ−g)2

2σ2 − e−
(cσ+g)2

2σ2
)

(5.22)

and∫
d(x)

∂

∂g
fc(x|g)dx =

1√
2πσ2

∫
d(x)

∂

∂x

(
−|⟨+|i⟩|2e−

(x−g)2

2σ2 + |⟨−|i⟩|2e−
(x+g)2

2σ2

)
dx

=
1√
2πσ2

(
e−

(cσ−g)2

2σ2 − e−
(cσ+g)2

2σ2
)
, (5.23)

which also satisfy Eq. (4.22). According to Eq. (5.6), the probability of the type-1 error

can be the significance level α by choosing a proper value for the critical point c, which

means that Eq. (4.23) is satisfied in the each measurement. We can also see that the test

function d(x) satisfies Eq. (4.24) in the each measurement from Eqs. (5.20) and (5.20).
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Next, we consider Eq. (4.26). In the case of the weak measurement which gives the

distribution fw(x|g), the equation becomes

Fw(x)

fw(x|0)
= Gw(x)− c1,w − c2,w

Re⟨Â⟩w
σ2

x, (5.24)

Gw(x) :=
e−

g2

2σ2

2Z

[
(1 + |⟨Â⟩w|2 + 2Re⟨Â⟩w)e−

xg

σ2

+(1 + |⟨Â⟩w|2 − 2Re⟨Â⟩w)e−
xg
σ + 2(1− |⟨Â⟩w|2)

]
. (5.25)

When c1,w and c2,w are

c1,w =
Gw(cσ) + Gw(−cσ)

2
=
e−

g2

2σ2

Z

[
2(1 + |⟨Â⟩w|2) cosh

[cg
σ

]
+ (1− |⟨Â⟩w|2)

]
, (5.26)

c2,w = σ
Gw(cσ)− Gw(−cσ)

2Re⟨Â⟩wc
=

2σe−
g2

2σ2 sinh
[
cg
σ2

]
cZ

, (5.27)

x = ±cσ become the solutions of Fw(x)/fw(x|0) = 0 for Re⟨Â⟩w ̸= 0. Since Gw(x) is a

convex function, the following relation holds;

d(x) =


0 if Fw(x) < 0 ⇔ |x|/σ < c,

r if Fw(x) = 0 ⇔ |x|/σ = c,

1 if Fw(x) > 0 ⇔ |x|/σ > c.

(5.28)

We can see that the test function (5.4) gives the UMPU test for the weak measurement.

Even if Re⟨Â⟩w = 0, the argument remains valid.

Next, we consider the case of the conventional measurement. With the distribution

fc(x|g), the equation becomes

Fc(x)

fc(x|0)
= Gc(x)− c1,c − c2,c

|⟨+|i⟩|2 − |⟨−|i⟩|2

σ2
x, (5.29)

Gc(x) := e−
g2

2σ2
(
|⟨+|i⟩|2e

xg

σ2 + |⟨−|i⟩|2e−
xg

σ2
)
. (5.30)

When c1,c and c2,c are

c1,c =
Gc(cσ) + Gc(−cσ)

2
= e−

g2

2σ2 cosh
[cg
σ

]
, (5.31)

c2,c =
Gc(cσ)− Gc(−cσ)

2(|⟨+|i⟩|2 − |⟨−|i⟩|2)c
=
σe−

g2

2σ2

c
sinh

[cg
σ

]
, (5.32)
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x = ±cσ become the solutions of Fc(x)/fc(x|0) = 0. Here, we have assumed |⟨+|i⟩|2 ̸=
⟨−|i⟩|2. Even if |⟨+|i⟩|2 = ⟨−|i⟩|2, the discussion works. Because Gc(x) is a convex

function, we obtain the following relation;

d(x) =


0 if Fc(x) < 0 ⇔ |x|/σ < c,

r if Fc(x) = 0 ⇔ |x|/σ = c,

1 if Fc(x) > 0 ⇔ |x|/σ > c.

(5.33)

We have shown that the test function (5.4) provides the UMPU test in both measure-

ments.

5.4.2 The case of the UMP test

We can show that the our test function (5.4) gives the UMP test in the case of Re⟨Â⟩w = 0

for the weak measurement and in the case of |⟨+|i⟩|2 = |⟨−|i⟩|2 for the conventional

measurement with the Theorem 4.3.1 presented in Sec. 4.3. With these conditions, the

final distributions (5.1) and (5.2) become even function of g. We cannot read out the sign

of g from the final position distributions. Thus, it is practically allowed to assume the

sign of g is positive without loss of generality. Because of it, we can interpret that the

hypotheses becomes H0 : g = 0 and H1 : g > 0 which is the one-sided test. Therefore,

the Theorem can be applied to the derivation of the UMP test for the current interaction

detection problem with the particular conditions.

From Eqs. (5.1) and (5.2), the likelihood-ratio in each measurement case is given as

fw(x|g)
fw(x|g = 0)

=
1− (Im⟨Â⟩w)2 +

[
1 + (Im⟨Â⟩w)2

]
cosh

[
xg
σ2

]
1− (Im⟨Â⟩w)2 +

[
1 + (Im⟨Â⟩w)2

]
e

g2

2σ2

, (5.34)

fc(x|g)
fc(x|g = 0)

= e−
g2

2σ2 cosh
[xg
σ2

]
, (5.35)

respectively. Here we have used Re⟨Â⟩w = 0 and |⟨+|i⟩|2 = |⟨−|i⟩|2. Because cosh is an

even convex function, the following holds;

cosh
[gx
σ2

]
= cosh

[
g

σ

|x|
σ

]
. (5.36)

Since the interaction strength g to be measured is the unknown parameter, the statistics

T (x) does not have to contain the parameter. It is valid that the statistics is fixed as

T (x) = |x|/σ. Because the statistics T (x) is a monotonically increasing function, we find
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that T (x) = |x|/σ gives the UMP test for the weak measurement with Re⟨Â⟩w = 0 and

for the conventional measurement with |⟨+|i⟩|2 = |⟨−|i⟩|2.

5.5 Testing under additive white Gaussian noise

In this section, we discuss the testing method considered under the noise. We derive the

distributions of the measurement result x as (5.1) and (5.2) which can be obtained in

ideal experiments. Practically, the noise influence is inevitable and we should take it into

account. Here, we suppose the noise y which is added to x by passing through the device

circuit. The noise y takes the Gaussian probability N(y) := e−y2/2s2/
√
2πs2, where s is

an arbitrary fluctuation. This noise model is known as an additive white Gaussian noise.

The noise occurs by the thermal noise or the shot noise in an electric device.

To discuss the noise influence, we derive the distribution z(:= x+ y) from the moment-

generating function of x and y. The moment-generating function of the Gaussian function

N(y) is given as

E[ety] =

∫
etyN(y)dy = e

s2

2
t2 , (5.37)

where the E[·] represents the expectation value with the Gaussian function N(y). Also

we use the notation Ew(c)[·] represents the expectation value with the distribution func-

tion fw(c)(x|g). The moment-generating function of the x distribution given in the weak

measurement is

Ew[e
tx] =

∫
etxfw(x|g)dx

=
e

σ2

2
t2

2sZ

[
(1 + |⟨Â⟩w|2 + 2Re⟨Â⟩w)egt

+(1 + |⟨Â⟩w|2 − 2Re⟨Â⟩w)e−gt + 2(1− |⟨Â⟩w|2)e−
g2

2σ2

]
. (5.38)
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Because the random variable x and y are independent, the moment-generating function

of z = x+ y fulfills

Ew[e
tz] =Ew[e

tx]E[ety]

=
e

σ2+s2

2
t2

2Z

[
(1 + |⟨Â⟩w|2 + 2Re⟨Â⟩w)egt

+(1 + |⟨Â⟩w|2 − 2Re⟨Â⟩w)e−gt + 2(1− |⟨Â⟩w|2)e−
g2

2σ2

]
. (5.39)

Because of the linearity of the expectation value, the distribution of z becomes

fw(z|g)

=
Z−1

2
√
2π(σ2 + s2)

[
(1 + |⟨Â⟩w|2 + 2Re⟨Â⟩w)e

− (x−g)2

2(σ2+s2)

+(1 + |⟨Â⟩w|2 − 2Re⟨Â⟩w)e
− (x+g)2

2(σ2+s2) + 2(1− |⟨Â⟩w|2)e−
g2

2σ2 e
− x2

2(σ2+s2)

]
.

(5.40)

Likewise, we can obtain the moment-generating function of the x distribution given in

the conventional measurement as

Ec[e
tx] = e

σ2

2
t2(|⟨+|i⟩|2egt + |⟨−|i⟩|2e−gt), (5.41)

and the distribution function of z as

fc(z|g) =
1√

2π(σ2 + s2)
(|⟨+|i⟩|2e−

(z−g)2

2(σ2+s2) + |⟨−|i⟩|2e−
(z+g)2

2(σ2+s2) ), (5.42)

We have derived the distribution functions with the Gaussian noise (5.40) and (5.42),

from which we calculate the probabilities of the two errors.

The probability of the type-1 error given in the absence of the interaction are the same

in the two measurements as

Pr[E1,c] = Pr[E1,w] = 1− erf

[
cσ√

2(σ2 + s2)

]
. (5.43)
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The probability of the type-2 error given in the presence of the interaction is calculated

as

Pr[E2,w] =
1

2Z

[
(1 + |⟨Â⟩w|2)

(
erf

[
cσ − g√
2(σ2 + s2)

]
+ erf

[
cσ + g√
2(σ2 + s2)

])

+(1− |⟨Â⟩w|2)e−
g2

2σ2 erf

[
cσ√

2(σ2 + s2)

]]
(5.44)

for the weak measurement, while the one for the conventional measurement is

Pr[E2,c] =
1

2

(
erf

[
cσ + g√
2(σ2 + s2)

]
+ erf

[
cσ − g√
2(σ2 + s2)

])
. (5.45)

These probabilities with noise is almost the same as the ones considered in the previous

chapter. We can obtain the same inequality as Eq. (5.16) which holds for |⟨Â⟩w|2 ≥ 1 by

comparing Eqs. (5.45) and (5.45). Therefore, our conclusion is valid even if there is the

additive white Gaussian noise.

5.6 Summary of this chapter

We have studied the capability of the WVA to detect whether the interaction is present or

not in an indirect quantum measurement scheme with the statistical hypothesis testing.

As we introduced in Sec. 2.4, the amplification effect of the weak measurement cannot

enhance the estimation capability even if we have the infinitely large number of data. In

this chapter, we find the specific case that the amplification effect becomes significant for

the infinitely large number of data, which is the interaction detection. We have proposed

the test function, which represents the determination criteria, where we suppose that the

interaction is absent when the obtained data is inside the initial fluctuation of the probe

and the interaction is present when the obtained data is outside the initial fluctuation of

the probe. Consequently, if
∣∣⟨Â⟩w∣∣ ≥ 1, the WVA has the advantage for the reduction

of the type 2 error while keeping the type 1 error fixed, regardless of the value of the

coupling constant g, the initial fluctuation σ and the critical point c. Namely, the weak

measurement can decrease the probability of missing the presence of the interaction more

than the conventional measurement when the weak value is outside the normal range of

the eigenvalues. Furthermore, in both measurements, the false alarm rate is the same.

We have also shown that our conclusion holds even if the additive white Gaussian noise is
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present. For our discussion, we assume that the measured system is the two-state system,

the initial wave function of the measuring probe is of the Gaussian probe, the number

of the obtained data is infinitely large, and further the data loss by the failure of the

postselection is neglected.

Our proposed test function gives the UMPU test for the interaction detection problem,

which should be treated as the two-sided test. In the specific case such that the detection

problem essentially behaves as a one-sided test, the proposed test can be regarded as a

UMP test. We remark that, generally speaking, a UMP test and a UMPU test do not

always provide an optimal solution and it is difficult to optimize the statistical hypothesis

testing.

Note that we give further discussion about the hypothesis testing for the weak mea-

surement in Appendix D. In Appendix D.2, we consider the case that the range of null

hypothesis is a small interval such as |g| ≤ ε for small ε. This discussion is motivated by

Refs. [56, 57], the author of which mentions that one might care a point null hypothesis

such as g = 0. That is to say, with such a point null hypothesis, we will judge that the

interaction is present although the interaction strength is very small such as g ≈ 10−10.

Because of that, we suppose that the point null hypothesis does not always provide a

reasonable determination. There we see the general tendency that the weak measure-

ment becomes advantageous when the error of missing the presence of the interaction

is more serious than the misdetection. Additionally, one may want to discuss the case

including the data loss by the failure of the postselection. In Appendix D.3, we alterna-

tively propose the makeshift decision function in order to discuss such a case, which has

a few defects in its physical interpretation. Using the Lagrange multiplier method, we

conclude that the measurement without the postselection gives the stationary solution to

the Lagrangian.

In next chapter, we apply the proposed testing method for the actual optical experi-

ment.





Chapter 6

Experimental description of the

testing method

6.1 Preface

In this chapter, we see the testing method with the weak-value amplification through the

experimental setup of the weak measurement. Among several experiments, we pick up

the classic experiment using a single birefringent crystal and two polarizers demonstrated

by Ritchie et al. [20]. This experiment was originally designed for measuring the weak

value. Here we regard it as the experimental setup for the testing problem to distinguish

whether the crystal used is birefringent or not. We conclude that the appropriate angle

of the polarizers gives the advantage of the weak measurement. This chapter is based on

the work [61].

6.2 Weak measurement experiment using a birefrin-

gent crystal

In this section, we see the experimental setup and its result demonstrated by Ritchie et

al. [20]. Figure 6.1 (a) displays the optical setup, and the polarization and the position

distribution of the probe in each stage.

In this weak measurement experiment, the position x of the laser beam is regarded as

the measuring probe, the initial distribution of which is of the Gaussian shape (2.1) as

71
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(c) Distribution
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Figure 6.1: (a) Sketch of the optical setup. The tilted birefringent crystal plates is
set between the two polarizers, the angles of which are tuned almost orthogonal. On
the screen, we observe the beam position y and we decide whether or not the crystal is
birefringent. (a’) shows the refraction by the crystal plate. Also shown are (b) the beam
polarization and (c) the probe position distribution, in each stage. For the illustration,
the angles of the polarizers are taken as θi = π/4 and θf = 3π/4.

shown in Fig. 6.1(c)(i). The beam waist used in the experiment is σ = 55µm. The

tuning of the two polarizers corresponds to the pre- and postselection of the initial and

final states of the measured system, which are described as

|i⟩ = cos θi|H⟩+ sin θi|V ⟩, (6.1)

|f⟩ = cos θf |H⟩+ sin θf |V ⟩, (6.2)

where |H⟩ and |V ⟩ are the horizontal and vertical polarization states, respectively, and

θi and θf are the angles of the first and second polarizers, respectively [Fig. 6.1(c)(i)

and (iii)]. A birefringent crystal is fixed between the two polarizers, which gives the two

different refraction factors depending on the polarization of the injected beam. Because of

the different refraction factors, the injected beam is spatially separated into the two beams

with the different polarization [Fig. 6.1(b)(ii)], one of which is called an ordinary ray and

the other is an extraordinary ray. The birefringent crystal induces the correlation between

the measuring probe and the measured system. The refraction, which is the translation of

injected beam, is given by the von Neumann type Hamiltonian (2.3). In this experiment,

due to the two different refraction factors, the observable Â of the measured system
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becomes

Â = λH |H⟩⟨H|+ λV |V ⟩⟨V |, (6.3)

where λH and λV are the eigenvalues of the polarization states |H⟩ and |V ⟩, respectively.
The birefringent crystal used in this experiment is a quartz plate, the refraction factors

of which are ne = 1.551 65 for the extraordinary ray and n0 = 1.542 61 for the ordinary

ray when the wavelength of the injected laser is 633 nm as quoted in Ref. [20]. Now the

weak value is given as

⟨Â⟩w =

(
λH − λV

2

)
cos(θi + θf )

cos(θi − θf )
+
λH + λV

2
. (6.4)

As we can see, the weak value can be arbitrarily large when the postselected state is

almost orthogonal to the preselection state.

After refraction by the birefringent crystal, the position distribution function of the

probe becomes

fc(x) = |⟨x|e−igÂ⊗p̂|ψ⟩|i⟩|2 = 1√
2πσ2

(
cos2 θie

− (x−gλH )

2σ2 + sin2 θie
− (x−gλV )

2σ2

)
, (6.5)

which is obtained as the output of the conventional measurement [Fig. 6.1(c)(ii)]. This

distribution has two Gaussian functions. Here we evaluate the refraction shifts gλH and

λV . Figure 6.1(a’) shows the refraction by the crystal plate. In this figure, λn is the

refraction angle for the refraction factor n, the length of DE is the refraction shift. Using

Snell’s law,we can obtain sin γ = n sin γn. According to Fig. 6.1(a’), the length of DE is

calculated as

DE = CD sin(π/2− γ) = [BD− BC] cos γ = AB[tan γ − tan γn] cos γ = d
sin(γ − γn)

cos γn
.

(6.6)

The thickness of the crystal plate is d = 331 nm and the injected angle is γ ≈ 30◦

according to Ref. [20]. The refraction shifts are

gλH = d
sin(γ − γe)

cos γe
≈ 67.92µm, (6.7)

gλV = d
sin(γ − γo)

cos γo
≈ 67.28µm, (6.8)
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Figure 6.2: Plots of the position distribution fw(x) obtained by the weak measurement
in three cases:(a) θi = π/4 and θf = π/4, (b) θi = π/4 and θf = 3π/4 + 2.2 × 10−2,
(c) θi = π/4 and θf = 3π/4. The other parameters are fixed as gλH ≈ 67.92µm,
gλV ≈ 67.28µm, and σ = 55µm.

where sin γe = sin γ/ne and sin γo = sin γ/no. Here we have assumed that the horizontal

and vertical polarized beams are the extraordinary and the ordinary rays, respectively.

The position distribution is altered from fc(x) by postselection of the second polarizer,

which is given as

fw(x) =
|⟨x|⟨f |e−igÂ⊗p̂|i⟩|ψ⟩|2

|⟨f |e−igÂ⊗p̂|i⟩|ψ⟩|2

=

cos2 θi cos
2 θfe

− (x−gλH )2

2σ2 + sin2 θi sin
2 θfe

− (x−gλV )2

2σ2

+ 1
2
sin 2θi sin 2θfe

− 1
2σ2

{
x−g

(
λH+λV

2

)2
}
− g2

2σ2

(
λH−λV

2

)2

√
2πσ2

(
cos2 θi cos2 θf + sin2 θi sin

2 θf +
1
2
sin 2θi sin 2θfe

− g2

2σ2

(
λH−λV

2

)2
) . (6.9)

This position probability distribution is obtained by the weak measurement. The third

term of the numerator is generated by postselection.

Figure 6.2 depicts fw(x) in the three cases which the experimental results shown in

Ref. [20]. In this experiment, Ritchie et al. tuned the angels θi and θf in the three cases:

(a) θi = π/4 and θf = π/4 which can be almost regarded as the case of the conventional

measurement1, (b) θi = π/4 and θf = 3π/4+2.2×10−2, i.e., the case of weak measurement,

(c) θi = π/4 and θf = 3π/4, i.e., the weak measurement with postselection which is

completely orthogonal to the preselected state. We can see that the peak of distribution

in (b) is shifted larger than the one in (a). In the case (b), because the angles of polarizers

meet the AAV approximation g|⟨Â⟩w| ≪ 1, the distribution is shifted while keeping the

1The second polarizer slightly changes only the polarization of the nonoverlapped region, but not the
one of the overlapped region.
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single Gaussian. On the other hand, in the case (c), the AAV approximation brakes

down so that the final distribution becomes the two-peak distribution. We remark, as

the actual experimental results shown in Ref. [20] that the intensities of the distributions

in (b) and (c) are smaller (∼ 10−5) than the one in (a).

6.3 Testing the birefringence of the crystal

In this section, we see the hypothesis testing by the WVA through the experiment by

Ritchie et al. [20]. We consider the testing problem to distinguish whether the crystal is

birefringent or not in the optical setup. We have mathematically described the birefrin-

gence by fixing the observable Â = λH |H⟩⟨H| + λV |V ⟩⟨V | with the eigenvalues such as

λH ̸= λV which means the refraction factors are different between the horizontal and the

vertical polarization. We can set the hypotheses as

the null hypothesis H0: the crystal is not birefringent, i.e., λH = λV ,

the alternative hypothesis H1: the crystal is birefringent, i.e., λH ̸= λV .

We note that, in both hypotheses, the interaction, i.e., the refraction itself is still present

(g ̸= 0), which is different point from the previous problem considered in Chap. 5. To

compare the detection capabilities of the conventional measurement and the weak mea-

surement, we calculate each testing power (4.3) from the distributions fc(x|λH , λV ) =

fc(x) for the conventional measurement and fw(x|λH , λV ) = fw(x) for the weak mea-

surement. In this experimental setup, the power is given as the probability to determine

exactly when the crystal is indeed birefringent.

Above all, we consider the test function. In the previous chapter, we have employed

d(x) =


0 if |x|/σ < c,

r if |x|/σ = c,

1 if |x|/σ > c.

(6.10)

as the test function for the testing problem to investigate whether the interaction is

present (g ̸= 0) or not (g = 0). However, we have to pay attention that this test function

is not suitable for the current test problem as it is because the beam position x can be

deviated from the range of the initial beam waist w0 by the refraction, although the null

hypothesis test is true. To apply this test function to the current testing problem, we
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need to adjust the final probe distribution by shifting gλ+ := g(λH + λV )/2. When the

null hypothesis is true, for example, gλ+ is the medium of a single Gaussian distribution

for the final probe state. On the other hand, when the alternative hypothesis is true, gλ+

coincides with the mean of the two peaks of the final probe distribution. We can obtain

the value of gλ+ by the preparatory experiment without postselection to just monitor the

refraction by the crystal. Thus, we can adjust the final probe distribution by a translation

such as y → y + gλ+ in practical cases.

This adjustment can be given as the unitary operator exp[igλ+Î ⊗ p̂], where Î is the

identity operator of the measured system. The total unitary operator combining the two

unitary operators given by the Hamiltonian (2.3) and by the adjustment becomes

Ût = exp[igλ+Î ⊗ p̂] exp[−igÂ⊗ p̂] = exp[−ig(Â− λ+Î)⊗ p̂] = exp[−igÂt ⊗ p̂], (6.11)

where Ât := λ− (|H⟩⟨H| − |V ⟩⟨V |) is the total observable and λ− := (λH − λV )/2 is its

eigenvalue. The total weak value becomes

⟨Ât⟩w =
⟨f |Ât|i⟩
⟨f |i⟩

= λ−
cos(θi + θf )

cos(θi − θf )
. (6.12)

Furthermore, we can rewrite our two hypotheses as

the null hypothesis H0: the crystal is not birefringent, i.e., λ− = 0,

the alternative hypothesis H1: the interaction would be present, i.e., λ− ̸= 0.

To calculate the testing powers of each measurement, we use the adjusted distributions:

f adj
c (y|λ−) = fnps(y + gλ+|λH , λV ) =

1√
2πw2

0

(
cos2 θi e

− (y−gλ−)2

2σ2 + sin2 θi e
− (y+gλ−)2

2σ2

)
,

(6.13)

for the conventional measurement and

f adj
w (y|λ−)

= fps(y + gλ+|λH , λV )

=
cos2 θi cos

2 θf e
− (y−gλ−)2

2σ2 + sin2 θi sin
2 θf e

− (y+gλ−)2

2σ2 + 1
2
sin 2θi sin 2θf e

−
y2+g2λ2−

2σ2

√
2πσ2

(
cos2 θi cos2 θf + sin2 θi sin

2 θf +
1
2
sin 2θi sin 2θf e

−
g2λ2−
2σ2

) .

(6.14)
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for the weak measurement.

In the previous chapter, we have proved that the test function (6.10) gives the UMPU

test for the previous testing problem of H0 : g = 0 and H1 : g ̸= 0. Because the

distribution functions (6.13) and (6.14) are functions of the product gλ−, the test function

(6.10) is also the UMPU test for the current testing problem H0 : λ− = 0 and H1 : λ− ̸= 0.

The testing power of the conventional measurement is calculated as

βc(λ−) = 1− 1

2

(
erf

[
cσ − gλ−√

2σ2

]
+ erf

[
cσ + gλ−√

2σ2

])
, (6.15)

and the one of the weak measurement is

βw(λ−) = 1−

(cos2 θi cos
2 θf + sin2 θi sin

2 θf )
(
erf
[
cσ−gλ−√

2σ2

]
+ erf

[
cσ+gλ−√

2σ2

])
+sin 2θi sin 2θf e

−
g2λ2−
2σ2 erf

[
c√
2

]
2(cos2 θi cos2 θf + sin2 θi sin

2 θf ) + sin 2θi sin 2θf e
−

g2λ2−
2σ2

.

(6.16)

From these powers, we can obtain the relation

1− βw(λ−)

1− βc(λ−)
− 1 =

sin 2θi sin 2θf e
−

g2λ2−
2σ2

(
2erf[c/

√
2]

erf[(cσ−gλ−)/
√
2σ2]+erf[(cσ+gλ−)/

√
2σ2]

− 1

)
2(cos2 θi cos2 θf + sin2 θi sin

2 θf ) + sin 2θi sin 2θf e
−

g2λ2−
2σ2

, (6.17)

which implies the inequality

βw(λ−) ≥ βc(λ−), (6.18)

under the condition that the pair of θi and θf satisfies that

C(θi, θf ) := sin 2θi sin 2θf ≤ 0. (6.19)

Here we have used the inequality

2erf
[
c/
√
2
]

erf
[
(cσ − gλ−)/

√
2σ2
]
+ erf

[
(cσ + gλ−)/

√
2σ2
] − 1 > 0, (6.20)

which holds for gλ− ̸= 0 and has been shown in Sec. 5.3. We note that the condition

(6.19) coincides with negativity of the third term in the numerator of Eq. (6.14) generated
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Table 6.1: Condition C(θi, θf ) and the weak value are displayed with the assigned values
of θi and θf used in the actual experiment [20]. In each case, θi = π/4.

θf C(θi, θf )
∣∣∣⟨Ât⟩w/λ−

∣∣∣2
(a) π/4 1 0
(b) 3π/4 + 2.2× 10−2 −0.999 2065
(c) 3π/4 −1 indeterminate

c

1.0

0.8

0.6

0.4
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Figure 6.3: Powers βw (solid line) and bc (dashed line) plotted with the critical points
c as the horizontal axis in the two cases: (b) θf = 3π/4+2.2× 10−2 and (c) θf = 3π/4.
The other parameters are fixed as θi = π/4, w0 = 55µm, and gλ− = 0.32, µm.

by postselection which induce the amplification effect. We also remark that condition

(6.19) is related to the inequality of a weak value (5.18) derived in the previous chapter

as |⟨Ât⟩w|2 ≥ |λ−|2 ⇔ C(θi, θf ) ≤ 0. Thus we have shown that the angles of the two

polarizers in this experimental setup are the important factor that determines the case

when the weak measurement is superior to the conventional measurement in terms of the

testing power.

Table 6.1 represents the value of the condition C(θi, θf ) and the total weak value

|⟨Ât⟩w/λ−|2 for the angles of the two polarizer θi and θf which were used in the actual

experiment [20]. In Fig. 6.2, we see two cases: (a) the roughly conventional measurement

and (c) the weak measurement with the postselected state completely orthogonal to the

preselected state. In case (a), the single Gaussian distribution is shown, so it is diffi-

cult to distinguish whether the crystal is birefringent or not. In contrast, the two-peak

distribution appears in case (c), which enables us to clearly recognize that the crystal

is birefringent. We compare (b) and (c), the both of which are the weak measurement
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cases and the inequality (6.18) holds for the condition (6.19). Since the case (b) meets

the AAV approximation g|⟨Â⟩w| ≪ 1, the final probe distribution is virtually a single

Gaussian distribution shifted from the initial state as considered in Ref. [17]. On the

other hand, the case (c) which does not satisfy the AAV approximation gives significant

amplification in the point of view of the peak-to-peak distance [19].

Figure 6.3 shows the plots of powers given by the conventional measurement and the

two weak measurement cases, (b) and (c). As shown in Fig. 6.3, the case (c) gives a

remarkable effect to detect the birefringence of a crystal, whereas the plots of bps and bnps

are almost overlapped in the case (b).

6.4 Summary of this chapter

In the current task, we have studied the classic experiment [20], regarding it as testing

the birefringence of the crystal. The experiment is a helpful example to consider the

hypothesis testing with the WVA [60] because it is investigated outside the validity of

approximation, especially the case of postselection completely orthogonal to preselection.

We have shown that the weak measurement can be more powerful than the conventional

measurement in the hypothesis testing to distinguish whether or not the crystal is bire-

fringent for the specific experimental set-up. When the total weak value given by the

angles of the two polarizers is larger than the eigenvalues of the total observable, the

WVA has the advantage for the present problem. In particular, the pair of angles, which

does not satisfy the AAV approximation g|⟨Â⟩w| ≪ 1, gives the really powerful testing.

According to the authors of Ref. [19], the amplification effect is rather striking when the

approximation breaks down. Our conclusion obtained through the statistical analysis

supports their view on the WVA.

In this chapter we have essentially treated the testing problem for the eigenvalue (H0 :

λ− = 0 and H1 : λ− ̸= 0), not the interaction strength (H0 : g = 0 and H1 : g ̸= 0) that

was treated in the previous chapter. In both cases, the testing function (6.10) gives the

UMPU test and works well.

We note that we observe no data with a completely orthogonal pair of angles when the

null hypothesis is really true. Practically, it is important to keep the two angles almost

orthogonal but not quite, while the AAV approximation is not valid.
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Concluding remarks

7.1 Summary of this thesis

Throughout this thesis, we have studied the weak measurement and the weak-value am-

plification (WVA) proposed by Aharonov, Albert, and Vaidman (AAV) [17]. Especially

the WVA is a promising technique for a precision measurement due to the amplification

of the output of the probe[14–16]. In the original proposal, by assuming a weak coupling

constant, they found that the weak value larger than eigenvalues of the measured system

leads to the amplification. By this amplification effect, we suppose that the WVA will

be usefull for extracting the information of the interaction between a measured system

and a measuring probe in the indirect quantum measurement model. Some researchers

have investigated a merit of the WVA in theoretical and experimental studies and have

suggested the validity of the WVA. In this thesis, we have proposed and examined the

two possibilities of merits for further developing the WVA.

First, we have derived the optimal probe wave function by the Lagrange multiplier

method. In conventional discussion [32–34], the shift of the expectation value by the

WVA with the Gaussian probe has an upper bound. We have shown that the optimal

probe can maximize the amplified shift, which can be arbitrarily large as the weak value

is, and gives the zero variance of final probe with a certain weak value, in principle.

Second, we have considered the WVA from the viewpoint of the statistical inference.

Some researchers have already pointed out that the weak measurement is worse for the

81
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parameter estimation that the conventional measurement due to the failure of the postse-

lection. [40–44]. Especially, in this thesis, we have focused on the fact that the amplifica-

tion effect dose not enlarge the Fisher information regardless of the success probability of

the postselection. Therefore, we turn to another problem, statistical inference problem.

Here we have considered the detection capability of the weak measurement through the

problem that we determine whether or not the interaction is present. To address this

question, we have used the hypothesis testing method [53–55]. The hypothesis testing is

completely different from the parameter estimation as a task, although we are motivated

by the dispute on the amplification effect in the parameter estimation problem. The stan-

dard strategy in the hypothesis testing is to make the probabilities of the type-1 and -2

errors small. The type-1 error represents the false alarm rate and the type-2 error is the

false negative. In Chap. 5, we have established the appropriate test function for the cur-

rent problem, which is classified as a UMPU test or a UMP test in a certain case. The test

function is produced from the physical intuition that the interaction will be present if the

output data is outside the initial probe fluctuation. Under the test function, without any

approximation, we find that the weak measurement can be superior to the conventional

measurement. It is shown that the merit of the WVA is the reduction of the possibility

to miss the presence of the interaction more than the conventional measurement while

keeping the probability of a misdetection, when the absolute value of the weak value is

outside the range of the eigenvalues. Throughout discussion, we have considered the case

that the number of the obtained data is infinitely large and we neglect the data loss by

the failure of the postseleciton.

7.2 Discussion

The key property of the optimal probe wave function is the denominator of the function

(3.1). Since the denominator cancel out the higher-order terms of the coupling constant

in the unitary operator, which is understood as a back action of the measurement, the

optimal probe wave function can give an arbitrarily large amplification. In practice, as

we can see in Eq. (3.1), we have to know the coupling constant and the weak value before

the experiment for realizing this optimal probe. To engineer the optimal probe, we use

the pre-guessed value of the coupling constant and the calculated weak value from the

experimental setup.

In the study of the weak measurement and the hypothesis testing, we have found that

the WVA reduces the possibility to miss the presence of the interaction with a fixed false
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alarm rate when the absolute value of the weak value is greater than the eigenvalues.

We emphasize that our result provides a different physical intuition of the WVA from a

conventional one that the weak value can be a figure of merit for the detection power.

Eventually, the merit of the WVA is the increase of the detection power, which agrees

with the previous intuition from the AAV [17]. Additionally we have shown that this

conclusion remains true even if the measurement data suffers the additive white Gaussian

noise. Also we have considered the situation that the null hypothesis has a small interval

in Appendix D.2. There we have shown that when the type-2 error is more serious than

the type-1 error, the weak measurement with a certain weak value has an advantage. In

this discussion, we have supposed that the measured system is the two-state system and

that the initial wave function of the measuring probe is Gaussian.

In Chap. 6, we have exemplified the optical experiment using a single birefringent

crystal demonstrated by Ritchie et al. [20], which can be regraded as the testing problem

for distinguishing whether or not the crystal has birefringence. Consequently, we have

shown that the weak measurement is advantageous for this testing problem as well as

the discussion in Chap. 5. Especially, we have found that when the AAV approximation

(g|⟨Â⟩w| ≪ 1) breaks down by the large weak value, the WVA can be more beneficial.

This fact supports the view of the authors of Ref. [19].

7.3 Outlook

Recently, researchers dispute about a technical utility of the WVA. Some of them criticize

the WVA for the demerit by the postselection. On the other hand, there are theoretical

supports for the WVA and several experiments have shown the WVA.

Through the discussion of the optimal probe wave function, we find that the preparing

initial probe other than Gaussian would be significant. To experimentally do it, the spatial

phase and amplitude modulation are needed, which has been studied [65]. It might be

possible to realize the optimal probe wave function in the future. Also some researchers

have researched the weak measurement with the Laguerre-Gaussian [66–68] and found

effectiveness. An alteration of initial probe is the one of the methods for developing

the weak measurement. The optimal probe wave function is a one of the proposal for

probe engineering in the WVA. In practice, it is one of the means to make appropriate

probe wave function corresponding to the experimental environment and the purpose in

reference to the optimal one.
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In Chap. 5,we have found that the WVA is advantageous for the interaction detection by

using the hypothesis testing. Throughout this thesis, we assume that the number of the

obtained data is infinitely large. In a real experiment, the number of the obtainable data

is finite. Then we should establish the formalism for the testing in the finite data with

the weak measurement to more practical study. Meanwhile, there are many methods of

the statistical inference other than the hypothesis testing. For instance, the Bayes factor

has been studied as the alternative method of the hypothesis testing [69, 70]. In the

hypothesis testing, we postulate that the tested parameter is completely unknown. In

the Bayes factor, we use a prior probability distribution, which expresses our preliminary

knowledge of the parameter that we want to test. In actual experiment, we have somewhat

knowledge of the parameter on ahead. The weak measurement with the Bayes factor will

be give a more powerful tool for a precise testing in a experiment.

While we have shown its validity thorough the optical experiment with a single bire-

fringent crystal in Chap. 6, this result suggests a possibility that the proposed hypothesis

testing method with the weak measurement can apply for other experiments, for example,

the observation of the spin Hall effect of light [21], the accurate sensing of the tilted mirror

in the Sagnac interferometer [22]. Here we note that to apply the proposed hypothesis

testing method, some assumptions are needed to be satisfied that the initial probe is of

the Gaussian profile, the measured system is two-state system, and an experiment is for

measuring probe position. We need to set up the proper testing method corresponding

to each experiment. In addition, the discussion about the data loss problem due to the

postselection remains, which is partially studied in Appendix D.3. Furthermore, we have

to care a case that we cannot obtain any data, which leads to the problem of the null

result. This problem remains an open problem. We know how to treat the null result in

the projective measurement [71, 72]. As for the null result in the weak measurement, the

measurement protocol named the null weak value is proposed in Refs [73–75] for improved

the signal-noise ratio, which will be of some help to address the problem.

The author hopes that the two theoretical proposals, the optimal probe wave func-

tion and the hypothesis method with the weak measurement, will contribute not only

to develop the WVA and the precise measurement but also to discover a new physical

phenomenon.
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Derivation of amplified shift

depending on initial probe

Here we derive Eq. (2.35), which shows that the expectation value depends on the initial

prove wave function. For simplicity, we assume that the initial probe wave function ψ̃(p)

is an even pure real function and converges to 0 at x→ ±∞. For the calculation, we use

the calculation formula as

B∗(p)B′(p) = −igReAw +
1

2

[
|B(p)|2

]′
, (A.1)

where the prime represents the differentiation of p, which is given by

[
|B(p)|2

]′
= B∗′(p)B(p) +B∗(p)B′(p)

=(−g sin gp+ ig⟨Â⟩∗w cos gp)(cos gp− i⟨Â⟩w sin gp) + B∗(p)B′(p)

=− g sin gp cos gp+ ig⟨Â⟩∗w(1− sin2 gp)

+ ig⟨Â⟩w(1− cos2 gp) + g|⟨Â⟩w|2 sin gp cos gp+B∗(p)B′(p)

=2igRe⟨Â⟩w + (cos gp+ i⟨Â⟩∗w sin gp)(−g sin gp− ig⟨Â⟩w cos gp) + B∗(p)B′(p)

=2igRe⟨Â⟩w + 2B∗(p)B′(p). (A.2)

We see the expectation value of the final probe position which is

⟨x̂⟩w =
⟨ψw|x̂|ψw⟩
⟨ψw|ψw⟩

=

∫
dp⟨ψw|p⟩

(
i ∂
∂p

)
⟨p|ψw⟩∫

dp⟨ψw|p⟩⟨p|ψw⟩
=
i
∫
dp
[
B(p)ψ̃(p)

]∗ [
B(p)ψ̃(p)

]′
∫
dp|B(p)ψ̃(p)|2

. (A.3)
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The denominator is∫
dp|B(p)ψ̃(p)|2 = 1

2
(1 + |⟨Â⟩w|2) +

1

2
(1− |⟨Â⟩w|2)

∫
dp cos 2gp|ψ̃(p)|2 (A.4)

The numerator of this equation becomes

i

∫
dp
[
B(p)ψ̃(p)

]∗ [
B(p)ψ̃(p)

]′
= i

∫
dp
[
B∗(p)B′(p)|ψ̃(p)|2 + |B(p)|2ψ∗(p)ψ′(p)

]
=i

∫
dp

[
−igRe⟨Â⟩w +

1

2

(
|B(p)|2

)′] |ψ̃(p)|2 + i

∫
dp|B(p)|2ψ̃∗(p)ψ̃′(p)

=gRe⟨Â⟩w
∫
dp|ψ̃(p)|2 + i

2

∫
dp
(
|B(p)|2

)′ |ψ̃(p)|2 + i

∫
dp|B(p)|2ψ̃∗(p)ψ̃′(p)

=gRe⟨Â⟩w +
i

2

∫
dp

[(
|B(p)|2|ψ̃(p)|2

)′
− |B(p)|2

(
|ψ̃(p)|2

)′]
+ i

∫
dp|B(p)|2ψ̃∗(p)ψ̃′(p)

=gRe⟨Â⟩w +

∫
dp|B(p)|2

[
i
ψ̃∗(p)ψ̃′(p)− ψ̃∗′(p)ψ̃(p)

2

]
+
i

2

∫
dp
[
|B(p)ψ̃(p)|2

]′
=gRe⟨Â⟩w +Re

[
i

∫
dp|B(p)|2ψ̃∗(p)ψ̃′(p)

]
+
i

2

∫
dp
[
|B(p)ψ̃(p)|2

]′
. (A.5)

Because the initial probe wave function ψ̃(p) is a pure real function and converges to 0

at x → ±∞, the numerator is gRe⟨Â⟩w. Thus the expectation value of the final probe

position is given as

⟨x̂⟩w = g
2Re⟨Â⟩w

(1 + |⟨Â⟩w|2) + (1− |⟨Â⟩w|2)
∫
dp cos 2gp|ψ̃(p)|2

. (A.6)
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Cramér-Rao Inequality and Fisher

Information

B.1 Derivation of Cramér-Rao inequality

Here we show the Cramér-Rao inequality

⟨(θ̃(x)− θ)2⟩ ≥ 1/In(θ), (B.1)

where I(θ) is the classical Fisher information defined as

In(θ) =

∫
dx [∂θ log f(x|θ)]2f(x|θ) (B.2)

and n means the number of the data. In the following, we use the notations l(x|θ) :=

log f(x|θ) and a prime as a differentiation by the θ.

We assume that the integration and differentiation are commutable, which means

∂θ

∫
dx f(x|θ) =

∫
dx ∂θf(x|θ) = 0. (B.3)

From this equation, we can see∫
dx θl′(x|θ)f(x|θ) = θ

∫
dx ∂θf(x|θ) = 0. (B.4)
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Here we use an unbiased estimator θ̃(x) that

θ = ⟨θ̃(x)⟩ =
∫
dx θ̃(x)f(x|θ), (B.5)

which gives

1 = ∂θ

∫
dx θ̃(x)f(x|θ) =

∫
dx θ̃(x)l′(x|θ)f(x|θ). (B.6)

From Eqs. (B.4) and (B.6), we obtain

1 =

∫
dx (θ̃(x)− θ)l′(x|θ)f(x|θ). (B.7)

By using the Cauchy-Schwarz inequality, we can show the Cramér-Rao inequality (B.1)

as

1 =

(∫
dx (θ̃(x)− θ)l′(x|θ)f(x|θ)

)2

≤
(∫

dx (θ̃(x)− θ)2f(x|θ)
)(∫

dx [l′(x|θ)]2f(x|θ)
)

= ⟨(θ̃(x)− θ)2⟩In(θ). (B.8)

Here we see l′′(x|θ) as

l′′(x|θ) = ∂θ

(
∂θf(x|θ)
f(x|θ)

)
=
∂2θf(x|θ)
f(x|θ)

− [l′(x|θ)]2. (B.9)

Again, we use the assumption that the integration and differentiation are commutable,

which gives

∂2θ

∫
dx f(x|θ) =

∫
dx ∂2θf(x|θ) = 0 (B.10)

for Eq. (B.3). From Eqs. (B.9) and (B.10), we get another form of the Fisher information

as ∫
dx l′′(x|θ)f(x|θ) =

∫
dx

∂2θf(x|θ)
f(x|θ)

f(x|θ)−
∫
dx [l′(x|θ)]2f(x|θ)

⇒ In(θ) = −
∫
dx l′′(x|θ)f(x|θ). (B.11)



Cramér-Rao Inequality and Fisher Information 89

Next we show In(θ) = nI1(θ) when the n samples x1, · · · , xn comes from the indepen-

dent identical distributions. We can see the joint probability distribution function

fn(x1, · · · , xn|θ) =
n∏

i=1

f1(xi|θ), (B.12)

which implies

l′′n(x1, · · · , xn|θ) =
n∑

i=1

l′′1(x1|θ). (B.13)

Because of Eq. (B.11), the Fisher information In(θ) for the joint probability distribution

function can be denoted as

In(θ) = −
∫

· · ·
∫
dx1 · · · dxn l′′n(x1, · · · , xn|θ)fn(x1, · · · , xn|θ)

= −
∫

· · ·
∫
dx1 · · · dxn

n∑
i=1

l′′1(x1|θ)
∞∏
i=1

f1(xi|θ)

= −
n∑

i=1

∫
dx1 l

′′
1(x1|θ)f1(xi|θ)

= nI1(θ). (B.14)

Combining Eq. (B.1) with Eq. (B.14), we can probe Eq. (2.43).

B.2 Calculation of Fisher information

B.2.1 Probe in position space

First we calculate the Fisher information for the conventional measurement providing the

final probe distribution (2.45):

f c(x|g) = 1√
2πσ2

e−
(x−g)2

2σ2 . (B.15)

Because the logarithmic of f c(x|g) is

log f c(x|g) = −1

2
log 2πσ2 − (x− g)2

2σ2
, (B.16)
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the derivative of which becomes

∂g log f
c(x|g) = x− g

σ2
. (B.17)

Thus the Fisher information for the conventional measurement is

Ic(g) =
1√
2πσ2

∫
dx

(
x− g

σ2

)2

e−
(x−g)2

2σ2 =
1

σ2
. (B.18)

Next we consider the Fisher information for the weak measurement giving the final

probe distribution (2.47):

fw
ϵ (x|g) =

1

2
√
2πσ2

e−
(x−g)2

2σ2 + e−
(x+g)2

2σ2 + 2ϵe−
x2+g2

2σ2

1 + ϵe−
g2

2σ2

, (B.19)

where ϵ = ±1. The logarithmic derivative of fw
ϵ (x|g) is calculated as

∂g log f
w
ϵ (x|g) =

x−g
σ2 e

− (x−g)2

2σ2 − x+g
σ2 e

− (x+g)2

2σ2 + 2ϵ(− g
σ2 )e

−x2+g2

2σ2

e−
(x−g)2

2σ2 + e−
(x+g)2

2σ2 + 2ϵe−
x2+g2

2σ2

+
ϵ g
σ2 e

− g2

2σ2

1 + ϵe−
g2

2σ2

=
1

σ2

 x(e−
(x−g)2

2σ2 − e−
(x+g)2

2σ2 )

e−
(x−g)2

2σ2 + e−
(x+g)2

2σ2 + 2ϵe−
x2+g2

2σ2

− g + g
ϵe−

g2

2σ2

1 + ϵe−
g2

2σ2


=

1

gσ2

[
x
gh(x|g)
fw
ϵ (x|g)

− a

]
, (B.20)

where

h(x|g) := 1

2
√
2πσ2

e−
(x−g)2

2σ2 − e−
(x+g)2

2σ2

1 + ϵe−
g2

2σ2

, (B.21)

a :=
g2

1 + ϵe−
g2

2σ2

. (B.22)

The squared one is

[∂g log f
w
ϵ (x|g)]2 =

1

g2σ4

[
x2

g2h2(x|g)
(fw

ϵ (x|g))2
− 2ax

gh(x|g)
fw
ϵ (x|g)

+ a2
]
. (B.23)

Therefore we obtain the equation

g2σ4Iwϵ (g) = g2
∫
dx x2

h2(x|g)
fw
ϵ (x|g)

− 2ag

∫
dx xh(x|g) + a2. (B.24)
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The integration of the second term is∫
dx xh(x|g) = a

2g2
√
2πσ2

∫
dx x(e−

(x−g)2

2σ2 − e−
(x+g)2

2σ2 ) =
a

2g2
[g − (−g)] = a

g
. (B.25)

Because of ϵ = ±1, the integration of the first term is calculated as

∫
dx x2

h2(x|g)
fw
ϵ (x|g)

=
a

2g2
√
2πσ2

∫
dx x2

(e−
(x−g)2

2σ2 − e−
(x+g)2

2σ2 )2

e−
(x−g)2

2σ2 + e−
(x+g)2

2σ2 + 2ϵe−
x2+g2

2σ2

=
a

2g2
√
2πσ2

∫
dx x2e−

x2+g2

2σ2
(e

xg

σ2 − e−
xg

σ2 )2

e
xg

σ2 + e−
xg

σ2 + 2ϵ

=
a

2g2
√
2πσ2

∫
dx x2e−

x2+g2

2σ2
(e

xg

2σ2 − e−
xg

2σ2 )2(e
xg

2σ2 + e−
xg

2σ2 )2

(e
xg

2σ2 + ϵe−
xg

2σ2 )2

=
a

2g2
√
2πσ2

∫
dx x2e−

x2+g2

2σ2 (e
xg

2σ2 − ϵe−
xg

2σ2 )2

=
a

2g2
√
2πσ2

∫
dx x2(e−

(x−g)2

2σ2 + e−
(x+g)2

2σ2 − 2ϵe−
x2+g2

2σ2 )

=
a

2g2
√
2πσ2

∫
dx [(x+ g)2 + (x− g2)− 2ϵe−

g2

2σ2 x2]e−
x2

2σ2

=
a

g2
√
2πσ2

∫
dx [(1− ϵe−

g2

2σ2 )x2 + g2]e−
x2

2σ2

=
a(1− ϵe−

g2

2σ2 )

g2
1√
2πσ2

∫
dx x2e−

x2

2σ2 + a

=
a(1− ϵe−

g2

2σ2 )

g2
σ2 + a. (B.26)

Hence the Fisher information for the weak measurement becomes

Iwϵ (g) =
1

g2σ4

g2
a(1− ϵe−

g2

2σ2 )

g2
σ2 + a

− 2ag
a

g
+ a2

 =
1

σ2

1 + ϵ g
2

σ2 e
− g2

2σ2 − e−
g2

σ2

(1 + ϵe−
g2

2σ2 )2
.

(B.27)

B.2.2 Probe in momentum space

When the interaction Hamiltonian is given as Ĥint = gδ(t)Â⊗ p̂, the probe distribution in

the momentum space does not change by interaction without postselection. We cannot

obtain the information of the coupling constant from the final probe distribution in the

momentum space given by the conventional measurement. Therefore we consider only the

case of the weak measurement. Here we fix θi = θf = π
2
and ϕ = ϕf − ϕi for analytically



92 Appendix B

calculation. The probe distribution in the momentum space after the postselection (2.21)

becomes

f(p|g) = 1 + cos(2gp− ϕ)

1 + cosϕ e−
g2

2σ2

(
2σ2

π

) 1
2

e−2σ2p2 , (B.28)

and the success probability of the postselection (2.41) is

P =
1 + cosϕ e−

g2

2σ2

2
. (B.29)

The logarithmic derivative of f(p|g) is calculated as

∂g log f(p|g) =
−2p sin(2gp− ϕ)

1 + cos(2gp− ϕ)
−

− g
σ2 cosϕ e

− g2

2σ2

1 + cosϕ e−
g2

2σ2

=

√
2

σ

−√
2σp sin(2gp− ϕ)

1 + cos(2gp− ϕ)
+

g√
2σ

cosϕ e−
g2

2σ2

1 + cosϕ e−
g2

2σ2


=

√
2

σ

[
−
√
2σp sin(2gp− ϕ)

1 + cos(2gp− ϕ)
+G

]
, (B.30)

where

G :=

g√
2σ

cosϕ e−
g2

2σ2

1 + cosϕ e−
g2

2σ2

. (B.31)

The Fisher information multiplied by the success probability of the postselection is

PI =

∫
dp

2

σ2

[
−
√
2σp sin(2gp− ϕ)

1 + cos(2gp− ϕ)
+G

]2
1 + cos(2gp− ϕ)

2

(
2σ2

π

) 1
2

e−2σ2p2

=

∫
dp̄√
2σ

2

σ2

[
−p̄ sin(2ḡp̄− ϕ)

1 + cos(2ḡp̄− ϕ)
+G

]2
1 + cos(2ḡp̄− ϕ)

2

√
2σ√
π
e−p̄2

=
1√
πσ2

∫
dp̄

[
p̄2 sin2(2ḡp̄− ϕ)

1 + cos(2ḡp̄− ϕ)
− 2Gp̄ sin(2ḡp̄− ϕ) +G2 (1 + cos(2ḡp̄− ϕ))

]
e−p̄2

(B.32)

Here we have defined p̄ =
√
2σp, ḡ = g/

√
2σ. The first term of the integrand becomes

sin2(2ḡp̄− ϕ)

1 + cos(2ḡp̄− ϕ)
=

1− cos2(2ḡp̄− ϕ)

1 + cos(2ḡp̄− ϕ)
= 1− cos(2ḡp̄− ϕ). (B.33)
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Thus Eq. (B.32) is arranged as

√
πσ2PI =

∫
dp̄ p̄2 (1− cos(2ḡp̄− ϕ)) e−p̄2

− 2G

∫
dp̄ p̄ sin(2ḡp̄− ϕ)e−p̄2 +G2

∫
dp̄ (1 + cos(2ḡp̄− ϕ)) e−p̄2

=

∫
dp̄ p̄2e−p̄2 − cosϕ

∫
dp̄ p̄2 cos(2ḡp̄)e−p̄2 − 2G cosϕ

∫
dp̄ p̄ sin(2ḡp̄)e−p̄2

+G2

[∫
dp̄ e−p̄2 + cosϕ

∫
dp̄ cos(2ḡp̄)e−p̄2

]
=

∫
dp̄ p̄2e−p̄2 − cosϕ e−ḡ2

∫
dp̄ p̄2e−(p̄−iḡ)2 − 2G cosϕ e−ḡ2Im

∫
dp̄ p̄e−(p̄−iḡ)2

+G2

[∫
dp̄ e−p̄2 + cosϕ e−ḡ2

∫
dp̄ e−(p̄−iḡ)2

]
. (B.34)

Since∫
dp̄ p̄2e−(p̄−iḡ)2 =

√
π

(
1

2
− ḡ2

)
,

∫
dp̄ p̄e−(p̄−iḡ)2 = iḡ

√
π,

∫
dp̄ e−(p̄−iḡ)2 =

√
π,

(B.35)

we can calculate the integration as

σ2PI =
1

2
− cosϕ e−ḡ2

(
1

2
− ḡ2

)
− 2G cosϕ e−ḡ2 ḡ +G2

(
1 + cosϕ e−ḡ2

)
=

1

2
− 1

2
cosϕ e−ḡ2 + ḡ2 cosϕ e−ḡ2 − 2

ḡ2 cos2 ϕ e−2ḡ2

1 + cosϕ e−ḡ2
+
ḡ2 cos2 ϕ e−2ḡ2

1 + cosϕ e−ḡ2

=
1

2
(1− cosϕ e−ḡ2) +

ḡ2 cosϕ e−ḡ2 + ḡ2 cos2 ϕ e−2ḡ2

1 + cosϕ e−ḡ2
− ḡ2 cos2 ϕ e−2ḡ2

1 + cosϕ e−ḡ2

=
1− cos2 ϕ e−2ḡ2 + 2ḡ2 cosϕ e−ḡ2

2(1 + cosϕ e−ḡ2)
. (B.36)

Fig. B.1 plots PI in three cases, ϕ = 0 for the postselection parallel to the preselection,

ϕ = 3 for the postslection almost orthogonal to the preselection, and ϕ = π for the

postslection completely orthogonal to the preselection. As we can see from the figure, to

measure the small coupling constant ḡ, we should tune the postslection almost orthogonal

to the preselection, not completely. This result includes the failure of the postselection.
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Figure B.1: Plots for the Fisher information multiplied by the success probability of
the postselection PI in the three cases, the blue curve for ϕ = 0, the red curve for
ϕ = 3, and the yellow curve for ϕ = π. The vertical axis is normalized by 1/σ2, and
the horizontal axis represents ḡ.
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Shot Noise in Optical Experiment

C.1 Preface

In the main part of this thesis, we focus on the utility of the WVA in the aspect of the

theoretical statistical inference. However, in practical experiment, various noises disturb

the measurement. For example, in optical phase measurement, there is a photon shot

noise derived from a photon number fluctuation. Here, we see that the shot noise is always

larger than the variance of the probe distribution. Because the weak measurements are

often demonstrated in optical experiment, we should take account of the shot noise when

we consider the measurement accuracy. This topic was discussed in Ref. [36] which also

showed a measurement limit of interaction in the WVA with the shot noise.

C.2 Example of experimental setup

Here we exemplify the optical phase measurement in the Mach-Zehnder interferometer

as shown in Fig. C.1. We attempt to measure the frequency shift of the probe caused by

slightly moved mirrors on corners, which is treated in momentum space as in the main

part. The injected laser is separated into two optical paths, upper one and lower one, by

the 50:50 beam splitter. We regard the which-path state as the measured system, then we

note |↑⟩ and |↓⟩ as the states that the photon goes the upper and lower paths, respectively.

We set a phase shifter on upper path, which induces the phase difference between the

two states. We can fix the preselected state as |i⟩ = (eiϕ/2|↑⟩ + e−iϕ/2|↓⟩)/
√
2, where

the phase shift ϕ is symmetrized for convenience. By tuning the phase shiftier, we can
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Laser

Beam splitter Phase shifter

Photo detector

Figure C.1: Mach-Zehnder interferometer with slightly displaced mirrors which give the
interaction

control the orthogonality between the pre- and postselected states. In both paths, we set

slightly displaced mirrors which gives the interaction between the paths and the phase of

beams. ℓ represents a small displacement of the mirrors . We can see that the interaction

Hamiltonian is given as Ĥ = gδ(t)Â ⊗ ω̂, where the interaction strength g =
√
2ℓ, the

observable Â = |↑⟩⟨↑| − |↓⟩⟨↓|, and ω̂ is a frequency operator. After the interaction and

second beam splitter which makes the postselected state as |f⟩ = (|↑⟩ − |↓⟩)/
√
2, we

observe the probe at a photo detector on an asymmetric output port. The port becomes

almost dark by tuning the phase ϕ ≈ 0. The weak value in this optical setup is ⟨Â⟩w =

−i cotϕ/2 and the frequency shift is given by the expectation value of the final probe

⟨ω⟩w calculated as well as Eq. (2.24). From the shift, we can obtain the displacement of

the mirrors ℓ. However, the final probe distribution has a variance ⟨ω2⟩w − ⟨ω⟩2w, which
can be regraded as the frequency noise. Also, in optical experiment, the photon shot noise

appears, which is the photon number fluctuation at the output port. Next, we evaluate

the photon shot noise.

C.3 Evaluating shot noise

Here we use the notations |Ψ⟩ as the final normalized probe state and n(ω) as a number

of the photon at the output port for photon frequency ω. We assume that the output

state is coherent in each frequency mode. From these, the frequency shift for a single
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photon can be described as

⟨ω⟩w =

∫
dω ω|⟨ω|Ψw⟩|2. (C.1)

When we have N photons at output port in total, the averaged photon-number distribu-

tion for the frequency is given as

n(ω) = N |⟨ω|Ψw⟩|2. (C.2)

The expectation value of the frequency shift is

⟨ω⟩w =
1

N

∫
dω ωn(ω). (C.3)

Here we take the fluctuation of the photon number noted as ∆n(ω) into account, because

the photon number n(ω) observed in a experiment fluctuates around its average n(ω),

i.e., n(ω) = n(ω) + ∆n(ω). The measured frequency shift becomes

ωmeasured =
1

N

∫
dω ωn(ω) = ⟨ω⟩w +∆ω, (C.4)

where

∆ω =
1

N

∫
dω ω∆n(ω) (C.5)

is the shot noise derived from the fluctuation of the photon number. For the coherence of

the output probe, the photon number fluctuation ∆n(ω) conforms the Poisson distribu-

tion. Thus the expectation value of the frequency shift fluctuation is ⟨∆ω⟩p = 0, where

the subscript p represents the averaging over the Poisson distribution. The variance is

Var[∆ω] = ⟨(∆ω)2⟩p =
1

N2

∫
dω

∫
dω′ωω′⟨n(ω)n(ω′)⟩p

=
1

N2

∫
dω ω2 n(ω) =

1

N
⟨ω2⟩w. (C.6)

Here we use the equation

⟨n(ω)n(ω′)⟩p = n(ω)δ(ω − ω′). (C.7)
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Hence the signal-to-noise ratio is given as

SNR =
|⟨ω⟩w|√
∆ω

=
√
N

|⟨ω⟩w|√
⟨ω2⟩w

, (C.8)

which means that the shot-noise is always larger than the frequency noise.

This discussion can be applied for other optical setup, e.g. the Sagnac interferometer

and the Michelson interferometer. Consequently, when we discuss the improvement of

the signal-to-noise ratio or measurement accuracy of the weak measurement in an optical

experiment, we need to consider the fluctuation of the photon number rather than the

variance of the final probe distribution.



Appendix D

Further Study of Testing Method

with Weak-Value Amplification

D.1 Preface

In Chap 6, we see the basic situation of the testing method with the weak-value ampli-

fication for the interaction detection problem. Here, we further discuss some extended

situation. In Sec. D.2, we discuss the hypothesis testing in a small interval null hypoth-

esis with the same physical setup considered in Chap. 5. This discussion provides more

practical In Sec. D.3, we consider the proposed testing method with the data loss by

postselection which is sometimes argued as the disadvantage of the weak-value amplifi-

cation. Here we produce the makeshift model of the test function which include the risk

of the data loss and analysis with the Lagrange multiplier method. This section is based

on the Appendix C of Ref. [60].

D.2 Testing in small interval null hypothesis

In the previous chapter, we have set the null hypothesis (that the interaction is absent) as

g = 0. However, there is following criticism for such a hypotheses set-up of the two-sided

testing, i.e., H0 : g = 0 and H1 : g ̸= 0. J. O. Berger (1985) said in his text book [56] that

“Now it is unlikely that the null hypotheses is ever exactly true. Suppose, for

instance, that θ = 10−10, which nonzero is probably meaning less difference
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form zero in most practical contexts.” “What we are really interested in

determining is whether or not the null hypothesis is approximately true (see

Subsection 4.3.3). In Example 8, for instance, we might really be interested

in detecting a difference of at least 10−3 from zero, in which case a better null

hypothesis would be H0 : |θ| ≤ 10−3.”

In response to this claim, here we suppose the following hypotheses;

the null hypothesis H0: the interaction would be absent, i.e., |g| ≤ ε,

the alternative hypothesis H1: the interaction would be present, i.e., |g| > ε,

where ε is the real value depending on the experimental set-up, which will be small in

practical case. Because the null hypothesis contains g ̸= 0, the probabilities of the type-1

error are not same between the weak measurement and the conventional measurement.

So, we need to produce a different way for comparison from the previous discussion. Here

we propose the following cost function 1 as

rPr[E1] + (1− r)Pr[E2], (D.1)

where the real value r(0 ≤ r ≤ 1) represents the weighting of the two error. In this section,

we argue which measurement can more reduce the cost function under the testing function

d(x) =


0 if |x|/σ < c,

r if |x|/σ = c,

1 if |x|/σ > c,

(D.2)

which is same as one used in Chap. 5.

We see the probabilities of the two errors in each measurement. Here, we introduce the

interaction strengths g1 and g2 which satisfy 0 < |g1| ≤ ε < |g2|. The probability of the

type-2 error in the weak measurement calculated in the previous chapter is still valid in

the current testing problem. The probability of the type-2 error for the interaction g2

1A cost function represents the cost or risk that we have to pay in the process which we want to
evaluate. We can choose the cost function as we like.
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and the weak value ⟨Â⟩w is given by

E2(g2, |⟨Â⟩w|2) := Pr[E2]

=
1

2Z

[
(1 + |⟨Â⟩w|2)

(
erf

[
cσ − g2√

2σ2

]
+ erf

[
cσ + g2√

2σ2

])
+ 2(1− |⟨Â⟩w|2)e−

g22
2σ2 erf

[
c√
2

]]
,

(D.3)

which is derived by the integration of the distribution function (5.2) over the region

|x|/σ < c. We should newly evaluate the probability of the type-1 error because the

nonzero g case is included in contrast to the previous test in Chap. 5 We can calculate

the probability by integrating the distribution function (5.2) over the region |x|/σ > c.

Namely, the probability of the type-1 error in the weak measurement is given by

E1(g1, |⟨Â⟩w|2) := 1− E2(g1, |⟨Â⟩w|2). (D.4)

For the conventional measurement, we can substantially treat the probabilities of the type-

1 and type-2 errors by substituting |⟨Â⟩w|2 = 1 into Eqs. (D.4) and (D.3), respectively.

For convenience, we uses the notations

h(g) = erf

[
cσ − g√

2σ2

]
+ erf

[
cσ + g√

2σ2

]
(D.5)

s := 1 + |⟨Â⟩w|2, (D.6)

t := 1− |⟨Â⟩w|2. (D.7)

Hereafter, we attempt to calculate the condition for the weak value which satisfies the

inequality

rE1(g1, ⟨Â⟩w) + (1− r)E2(g2, ⟨Â⟩w) ≤ rE1(g1, 1) + (1− r)E2(g2, 1). (D.8)

To solve this problem, we consider the function

ζ[⟨Â⟩w] = rE1(g1, ⟨Â⟩w) + (1− r)E2(g2, ⟨Â⟩w)− [rE1(g1, 1) + (1− r)E2(g2, 1)]

= r[E1(g1, ⟨Â⟩w)− E1(g1, 1)] + (1− r)[E2(g2, ⟨Â⟩w)− E2(g2, 1)]

= −r[E2(g1, ⟨Â⟩w)− E2(g1, 1)] + (1− r)[E2(g2, ⟨Â⟩w)− E2(g2, 1)]. (D.9)

We find the weak value such as the solution of ζ(⟨Â⟩w) = 0. Because we can easily see

that t = 0 ⇔ |⟨Â⟩w|2 = 1 is the trivial solution, hereafter we assume t ̸= 0 to find another
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solution. 2ζ[⟨Â⟩w] = 0 becomes

− r

[
sh(g1) + te−g21/2σ

2
h(0)

s+ te−g21/2σ
2

− h(g1)

]
+ (1− r)

[
sh(g2) + te−g22/2σ

2
h(0)

s+ te−g22/2σ
2

− h(g2)

]
= 0

⇔ −r[sh(g1) + te−g21/2σ
2

](s+ te−g22/2σ
2

)

+ (1− r)[sh(g2) + te−g22/2σ
2

h(0)(s+ te−g21/2σ
2

)]

− [−rh(g1) + (1− r)h(g2)](s+ te−g21/2σ
2

)(s+ te−g22/2σ
2

) = 0

⇔ −s[−re−g21/2σ
2

η(g1) + (1− r)e−g22/2σ
2

η(g2)]

− te−(g21+g22)/2σ
2

[−rη(g1) + (1− r)η(g2)] = 0, (D.10)

where η(g) := h(g)−h(0)2. From the equation, we can find the weak value of the solution

candidate as

|⟨Â⟩w|2

=
[−re−g21/2σ

2
η(g1) + (1− r)e−g21/2σ

2
η(g2)] + e−(g21+g22)/2σ

2
[−rη(g1) + (1− r)η(g2)]

−[−re−g21/2σ
2
η(g1) + (1− r)e−g21/2σ

2
η(g2)] + e−(g21+g22)/2σ

2
[−rη(g1) + (1− r)η(g2)]

=
−rη(g1)(1 + eg

2
2/2σ

2
) + (1− r)η(g2)(1 + eg

2
1/2σ

2
)

−rη(g1)(1− eg
2
2/2σ

2
) + (1− r)η(g2)(1− eg

2
1/2σ

2
)
:= As. (D.11)

As can be a solution of ζ = 0, if it is a positive real value. Especially, the solution such

as |⟨Â⟩w| > 1 is expedient. The denominator of As can be not only positive but also

negative. At first, we consider the case of the positive denominator, which provides the

inequality

− rη(g1)(1− eg
2
2/2σ

2

) + (1− r)η(g2)(1− eg
2
1/2σ

2

) > 0

⇔ 0 ≤ r <
η(g2)(1− eg

2
1/2σ

2
)

η(g1)(1− eg
2
2/2σ

2
) + η(g2)(1− eg

2
1/2σ

2
)
=: r1. (D.12)

And the condition for r to obtain the solution such as |⟨Â⟩w| > 1 is given by

As > 1 ⇔ −rη(g1)(1 + eg
2
2/2σ

2

) + (1− r)η(g2)(1 + eg
2
1/2σ

2

)

> −rη(g1)(1− eg
2
2/2σ

2

) + (1− r)η(g2)(1− eg
2
1/2σ

2

)

⇔ r2 :=
η(g2)e

g21/2σ
2

η(g1)eg
2
2/2σ

2
+ η(g2)eg

2
1/2σ

2
< r ≤ 1. (D.13)

2η(g) satisfies η(0) = 0 and −1 ≤ η(g2) < η(g1) ≤ 0. η(g1) and η(g2) are zero simultaneously only
when c → ∞, which gives ζ = 0
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However the magnitude relation between r1 and r2 is r2 > r1. There is no r region such

that the denominator of As become positive and the solution of ζ = 0 which satisfies

|⟨Â⟩w| > 1 at the same time.

Next, we consider the case that the denominator of As is negative, which gives the

inequality

−rη(g1)(1− eg
2
2/2σ

2

) + (1− r)η(g2)(1− eg
2
1/2σ

2

) < 0 ⇔ r1 < r ≤ 1. (D.14)

And the condition for r to obtain the solution such as |⟨Â⟩w| > 1 is

As > 1 ⇔ −rη(g1)(1 + eg
2
2/2σ

2

) + (1− r)η(g2)(1 + eg
2
1/2σ

2

)

< −rη(g1)(1− eg
2
2/2σ

2

) + (1− r)η(g2)(1− eg
2
1/2σ

2

)

⇔ 0 ≤ r < r2. (D.15)

Thus we conclude that the region of r for giving the solution of ζ = 0 such as |⟨Â⟩w| > 1

is r1 < r < r2.

Here we evaluate the limiting value of ζ[⟨Â⟩w] at |⟨Â⟩w| → ∞. Using

lim
|⟨Â⟩w|→∞

t/s = lim
|⟨Â⟩w|→∞

(1− |⟨Â⟩w|)/(1 + |⟨Â⟩w|) = −1, (D.16)

the limiting value can be calculated as

lim
|⟨Â⟩w|→∞

ζ[⟨Â⟩w]

= lim
|⟨Â⟩w|→∞

−r
2

[
h(g1) + (t/s)e−g21/2σ

2
h(0)

1 + (t/s)e−g21/2σ
2

− h(g1)

]

+
1− r

2

[
h(g2) + (t/s)e−g22/2σ

2
h(0)

1 + (t/s)e−g22/2σ
2

− h(g2)

]

= −r
2

[
h(g1)− e−g21/2σ

2
h(0)

1− e−g21/2σ
2

− h(g1)

]
+

1− r

2

[
h(g2)− e−g22/2σ

2
h(0)

1− e−g22/2σ
2

− h(g2)

]

= r
η(g1)

2(1− eg
2
1/2σ

2
)
− (1− r)

η(g2)

2(1− eg
2
2/2σ

2
)
=

η(g2)

2(1− eg
2
2/2σ

2
)

(
r

r1
− 1

)
. (D.17)

Because η(g2)/(1− eg
2
2/2σ

2
) is always positive, we find that r such as r1 < r ≤ 1 gives the

positive limiting value of ζ.
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Totally, we conclude that the the weighting factor r and the absolute value of the weak

value |⟨Â⟩w|determine the case that the weak measurement is advantageous. We note the

consequence as following.

• When 0 ≤ r ≤ r1, the weak measurement with the weak value such as |⟨Â⟩w| > 1

is superior to the conventional one.

• When r1 < r < r2, the weak measurement is advantageous with the weak value

such as 1 < |⟨Â⟩w| <
√
As.

• When r2 ≤ r ≤ 1, the weak measurement has no advantage in any weak value.

Thus, we find that the weak measurement tends to be significant for the experiment such

that the type-2 error, i.e., missing the interaction is more serious than the type-1 error,

i.e., the false alarm. This conclusion is consistent with that given in the previous chapter,

where we have evaluated the probability of the type-2 error of the two measurements.

D.3 Hypothesis Testing including data loss by post-

selection

In Chap. 5, we assume that the data loss due to the failure of the postselection is neglected.

However, some researchers strongly argue that the data loss by the postselection can

cause the technical demerit of the WVA. Here, we discuss the data loss problem with the

makeshift test function and we derive the optimal case with the Lagrange multiplier.

To consider the no data case which results from the failure of the posetselection, we

propose the different test function from Eq. (5.4) as

d(x) =


0 if (f and |x|/σ < cf ) or (f̄ and |x|/σ < cf̄ ),

1 if (f and |x|/σ > cf ) or (f̄ and |x|/σ > cf̄ ),

r otherwise,

(D.18)

where f and f̄ represent success and failure of the postselection, respectively. With this

test function, we can include the result of the postselection and the measurement result

x. The critical cf and cf̄ are different in response to the results of the postselection.
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Next, we evaluate the probabilities of the two types of the error. The probability of the

type-1 error is

Pr[E1]

= Pr[d = 1|g = 0]

= Pr[f, |x|/σ > cf |g = 0] + Pr[f̄ , |x|/σ > cf̄ |g = 0]

= 1−
(
erf

[
cf√
2

]
|⟨f |i⟩|2 + erf

[
cf̄√
2

]
|⟨f̄ |i⟩|2

)
, (D.19)

and the probability of the type-2 error is given as

Pr[E2]

= Pr[d = 0|g ̸= 1]

= Pr[f, |x|/σ < cf |g ̸= 0] + Pr[f̄ , |x|/σ < cf̄ |g ̸= 0]

=
1

4
(|⟨f |i⟩|2 + |⟨f |Â|i⟩|2)

(
erf

[
cfσ − g√

2σ2

]
+ erf

[
cfσ + g√

2σ2

])
+

1

4
(|⟨f̄ |i⟩|2 + |⟨f̄ |Â|i⟩|2)

(
erf

[
cf̄σ − g
√
2σ2

]
+ erf

[
cf̄σ + g
√
2σ2

])
+

1

2
(|⟨f |i⟩|2 − |⟨f |Â|i⟩|2)e−

g2

2σ2 erf

[
cf√
2

]
+

1

2
(|⟨f̄ |i⟩|2 − |⟨f̄ |Â|i⟩|2)e−

g2

2σ2 erf

[
cf̄√
2

]
. (D.20)

Here we tentatively set cf = cf̄ (= c) and the probability of the type-1 error becomes

Pr[E1] = 1− erf

[
c√
2

]
, (D.21)

and the probability of the type-2 error becomes

Pr[E2] =
1

2

(
erf

[
cσ − g√

2σ2

]
+ erf

[
cσ + g√

2σ2

])
. (D.22)

Both the probabilities are independent on the postselection results |f⟩, |f̄⟩. Also, we find
that these probabilities are same as the ones given by the conventional measurement [Eqs.

(5.6) and (5.7)]. We can virtually treat the conventional measurement case by setting

cf = cf̄ with the revised decision function (D.18).

Next we examine the errors of the weak measurement in the decision function (D.18).

First, we consider the case of that we cannot obtain a measurement result due to post-

selection failure. In such a case, we cannot distinguish whether or not the interaction
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is presence. For the moment, we simply presume that the interaction will be absence.

Because we are interested in the detection of the interaction with obtained data in an

usual experiment, the decision with no data is worthless. Setting cf̄ = ∞, we can handle

this situation in our decision function for convenience. With cf̄ = ∞, the alternative

hypothesis is always rejected by the test (D.18) when the postselection fails. Hence, the

decision function (D.18) would cover the case with or without postselection including the

data loss by failure of the postselection.

Here we have to pay attention the following matters. There will be an experimental

problem that we want to detect vanishment of an interaction which usually exists. In

such experiment, the treatment of cf̄ as stated above is inconsequent. Also we note that

if the cf and cf̄ take the other value as presented above, we cannot give an obvious

interpretation what the experimental situation means. Thus, it is often difficult to find

out the physical meaning of the optimization of the cf and cf̄ . While such problems are

remaining, we try out this Lagrange multiplier method.

From here, we calculate the critical points and the initial and final states of the measured

system which optimize the test (D.18). To optimize the probability of the type-2 error

Pr[E2] while keeping the probability of the type-1 error Pr[E1] at the significance level α

which is an arbitrary constant, we fix the Lagrangian as

L(p1, p2, cf , cf̄ , λ)

= Pr[E2] + λ(Pr[E1]− α)

=
1

4

[
(p1 + p2)

(
erf

[
cfσ − g√

2σ2

]
+ erf

[
cfσ + g√

2σ2

])
+ (2− p1 − p2)

(
erf

[
cf̄σ − g
√
2σ2

]
+ erf

[
cf̄σ + g
√
2σ2

])
+2(p1 − p2)

(
erf

[
cf√
2

]
− erf

[
cf̄√
2

])
e−

g2

2σ2

]
+ λ

[
p1

(
1− erf

[
cf√
2

])
+ (1− p1)

(
1− erf

[
cf̄√
2

])
− α

]
, (D.23)

where λ is the Lagrange multiplier and the constraint condition comes from the standard

strategy of the hypothesis testing as stated in Sec. 4.2. Here we have denoted p1 := |⟨f |i⟩|2

and p2 := |⟨f |Â|i⟩|2 for convenience. We note that Â2 = 1 and 0 < p1, p2 < 1. Varying

the Lagrangian L with respect to λ, the constraint condition reappears as

0 =
∂L
∂λ

= p1

(
1− erf

[
cf√
2

])
+ (1− p1)

(
1− erf

[
cf̄√
2

])
− α. (D.24)
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Next, varying the Lagrangian L with respect to p1 and p2, we obtain the equations,

0 =
∂L
∂p1

=
1

4

[
erf

[
cfσ − g√

2σ2

]
+ erf

[
cfσ + g√

2σ2

]
− erf

[
cf̄σ − g
√
2σ2

]
− erf

[
cf̄σ + g
√
2σ2

]
+2

(
erf

[
cf√
2

]
− erf

[
cf̄√
2

])
e−

g2

2σ2

]
+ λ

(
−erf

[
cf√
2

]
+ erf

[
cf̄√
2

])
(D.25)

and

0 =
∂L
∂p2

=
1

4

[
erf

[
cfσ − g√

2σ2

]
+ erf

[
cfσ + g√

2σ2

]
− erf

[
cf̄σ − g
√
2σ2

]
− erf

[
cf̄σ + g
√
2σ2

]
−2

(
erf

[
cf√
2

]
− erf

[
cf̄√
2

])
e−

g2

2σ2

]
, (D.26)

which lead the relation

0 =
∂L
∂p1

− ∂L
∂p2

=

(
erf

[
cf√
2

]
− erf

[
cf̄√
2

])
(e−

g2

2σ2 − λ). (D.27)

So, we require either or both of λ = e−g2/2σ2
and cf = cf̄ for Eq. (D.27) . Varying L with

respect to cf and cf̄ , we obtain the equations

0 =
∂L
∂cf

=
1

4

√
2

π

[
(p1 + p2)(e

−
(cf σ−g)2

2σ2 + e−
(cf σ+g)2

2σ2 ) + 2(p1 − p2 − 2λp1e
g2

2σ2 )e−
c2fσ2+g2

2σ2

]
(D.28)

and

0 =
∂L
∂cf̄

=
1

4

√
2

π

[
(2− p1 − p2)

(
e−

(cf̄ σ−g)2

2σ2 + e−
(cf̄ σ+g)2

2σ2
)

+2
(
− p1 + p2 − 2λ(1− p1)e

g2

2σ2
)
e−

c2
f̄
σ2+g2

2σ2

]
. (D.29)
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Here, we consider the case cf = cf̄ (=: c), where Eqs. (D.25) and (D.26) are fulfilled.

The constraint constant (D.24) becomes

0 =

(
1− erf

[
c√
2

])
− α. (D.30)

Because the α is a constant, the c is fixed. Eqs. (D.28) and (D.29) give

0 =
e−

c2

2

4

√
2

π

[
p1

{
e−

g2

2σ2 (e
cg
2σ + e−

cg
2σ )2 − 4λ

}
+ p2e

− g2

2σ2 (e
cg
2σ − e−

cg
2σ )2

]
(D.31)

and

0 =
e−

c2

2

4

√
2

π

[
2
{
e−

g2

2σ2 (e
cg
σ + e−

cg
σ )− 2λ

}
−p1

{
e−

g2

2σ2 (e
cg
2σ + e−

cg
2σ )2 − 4λ

}
− p2e

− g2

2σ2 (e
cg
2σ − e−

cg
2σ )2

]
, (D.32)

respectively. The sum of Eqs. (D.31) and (D.32) is

0 =
1

2

√
2

π
e−

c2

2

{
e−

g2

2σ2 (e
cg
σ + e−

cg
σ )− 2λ

}
. (D.33)

Thus, we obtain

λ =
1

2
e−

g2

2σ2 (e
cg
σ + e−

cg
σ ). (D.34)

Substituting cf = cf̄ = c and Eq. (D.34) into Eqs. (D.28) and (D.29), we have

0 =
e−

c2σ2+g2

2σ2

4

√
2

π
(p1 − p2)

(
e

cg
2σ − e−

cg
2σ

)2
. (D.35)

Therefore we can find that cf = cf̄ = c = 0 or p1 = p2 is needed. If c = 0, we obtain

α = 1 and λ = e−g2/2σ2
from Eqs. (D.30) and (D.34). Because the significance level α is

not always 1, the c = 0 is not consistent. Thus cf = cf̄ ̸= 0 and p1 = p2 is a solution of

the Lagrange multiplier problem.

Next we discuss the case λ = e−g2/2σ2
which is derived from Eq. (D.27). Because we

have already seen the case that λ = e−g2/2σ2
and cf = cf̄ are satisfied simultaneously,

hereafter we assume cf ̸= cf̄ . Substituting λ = e−g2/2σ2
into Eqs. (D.28) and (D.29), we



Further Study of Testing Method with Weak-Value Amplification 109

obtain

0 =
1

4

√
2

π
(p1 + p2)

(
e

cf g

2σ − e−
cf g

2σ

)2
e−

c2f σ2+g2

2σ2 , (D.36)

and

0 =
1

4

√
2

π
(2− p1 − p2)

(
e

cf̄ g

2σ − e−
cf̄ g

2σ

)2
e−

c2
f̄
σ2+g2

2σ2 . (D.37)

From these equations, we can find that we need either condition as follows: the condition

such that cf = 0 and p1 = p2 = 1, or the condition such that cf̄ = 0 and p1 = p2 = 0. In

both cases, the constrain condition (D.24) becomes 0 = 1 − α. As stated in above, the

significance point α is not necessarily 1. So, the condition λ = e−g2/2σ2
is not proper.

Eventually, we conclude the solution is cf = cf̄ ̸= 0 and p1 = p2. From p1 = p2, we

derive

0 = |⟨f |i⟩|2 − |⟨f |Â|i⟩|2 = ⟨i|(|f⟩⟨f | − Â|f⟩⟨f |Â)|i⟩, ∴ ± |f⟩ = Â|f⟩ (D.38)

or

0 =
∣∣⟨f |i⟩∣∣2 − ∣∣⟨f |Â|i⟩∣∣2 = ⟨f |(|i⟩⟨i| − Â|i⟩⟨i|Â)|f⟩, ∴ ± |i⟩ = Â|i⟩. (D.39)

p1 = p2 implies that the preselected state |i⟩ or the postselected state |f⟩ equals to an

eigenstate of Â. The case cf = cf̄ corresponds to the conventional measurement which

does not have postselection, which intend the result of the postselection has nothing to do

with the test under the solution of the variational problem. The state of the postselection

|f⟩ is not essential. Consequently, the derived condition is that the preselected state is

an eigenstate of the measured observable Â and that we do not postselect.

Again we have to care that this concussion is deduced from a makeshift decision function

(D.18) as we noted the some defect in above. We also note that the Lagrange multiplier

method gives the stationary point to the utmost, and they might not be the minimum.
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