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Abstract

Supersymmetric field theories in various spacetime dimensions have been studied
a great deal. Thanks to supersymmetry, which is an extension of the Poincaré
symmetry consisting of the translational and Lorentz symmetry, it is easier to an-
alyze them perturbatively and non-perturbatively than without the supersymme-
try. In particular, the computation of the partition function for supersymmetric
field theories on curved manifolds can be performed exactly due to the existence
of the supersymmetry. The exact results can be used for checks of dualities, some
of which are originated from superstring and M-theory.

In order to perform such calculation, we should construct a supersymmetric
field theory on a curved manifold. If the manifold is characterized by some
deformation parameters, the partition function is a function of these parameters,
which gives us detailed information of the theory. However, a general curved
manifold does not admit supersymmetry. It is important to derive conditions for
the existence of supersymmetry and to clarify which deformation parameters the
partition function depends on.

A systematic method for constructing supersymmetric field theories on curved
manifolds by using supergravities was presented by Festuccia and Seiberg. In a
supergravity, there are the metric and its superpartners. In this method, we treat
them as background fields compatible with a supersymmetric transformation. By
using this method, we can obtain general constraints for the background fields
by imposing the condition that at least one supercharge is preserved. We can
also discuss whether the partition function depends on each deformation of the
background fields.

In this doctoral thesis, after reviewing the 4-dimensional and 3-dimensional
manifolds, we study 5-dimensional curved manifolds which admit at least one su-
percharge by using a 5-dimensional supergravity. We also discuss the background
(in)dependence of the partition function, and realize some simple backgrounds as
examples.
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Chapter 1

Introduction

The goals of this thesis are to obtain general configurations for background fields
in the Weyl and vector multiplets such that some of supercharges are preserved,
and to clarify the background dependence of partition functions. These analy-
ses are performed by using the framework of supergravity. In this chapter, we
overview superstring theory, M-theory and supersymmetric field theories, and
explain importance of supersymmetric field theories on curved manifolds.

1.1 Particle physics and superstring theory

There is no doubt that the Standard Model and General Relativity describe
dynamics of certain sectors of our world. The Standard Model is a quantum
field theory which describes the quarks, leptons and the Higgs particles with the
electromagnetic, weak and strong interactions. General Relativity is a classical
field theory which describes the gravitational interaction. These theories have
been tested through a lot of experiments and confirmed to be highly reliable.

One might try to combine these theories and to obtain a theory which de-
scribes all four interactions. However, that challenge has not been succeeded. The
gravitational interaction is non-renormalizable in the sense of the power-counting,
at least.

A strong candidate of a unified theory is superstring theory. We introduce
some basic facts about superstring theory below. For more details, see standard
textbooks on superstring theory, for example [1, 2, 3]. Superstring theory is a
theory of strings as fundamental objects with supersymmetry. There are two
kinds of strings: open strings and closed strings. By the quantization of oscil-
lations of strings, both massless and massive modes arise. From open strings,
gauge fields, matter fields and their superpartners arise as the massless modes.
Gravitons, various antisymmetric tensor fields and their superpartners arise as
the massless modes of closed strings. Therefore, we can see that both the Stan-
dard Model fields and the gravitational field are included. This theory has only

7



8 CHAPTER 1. INTRODUCTION

Xµ(τ, σ)Xµ

τ

σ

Figure 1.1: String worldsheet in a spacetime. The spacetime coordinates are
written by Xµ (µ = 0, . . . , 9). The string worldsheet is represented by embedding
a 2d space parameterized by (τ, σ) in the spacetime.

one parameter: the slope parameter α′, which is related to the string scale ℓs
by ℓs =

√
α′. α′ is an inverse of the string tension. Furthermore, consistency of

the theory determines its spacetime dimension to 10. The string coupling is also
determined by the scalar field Φ originated from the massless modes of the closed
string as gs = e−Φ. These facts look nice as a unified theory.

The string worldsheet is a 2d subspace of the 10d spacetime. Thus it is
represented as a function Xµ(τ, σ) (µ = 0, . . . , 9) which maps the 2d space of to
10d, as shown in Figure 1.1. By using the string coordinates Xµ(τ, σ) and their

superpartners ψµ(τ, σ) and ψ̃µ(τ, σ), the string action can be written as

S =
1

4π

∫
d2z

(
2

α′∂X
µ∂Xµ + ψµ∂ψµ + ψ̃µ∂ψ̃µ

)
, (1.1)

where ∂ = ∂/∂z and ∂ = ∂/∂z with z = τ + iσ and z = τ − iσ.
In field theories, divergences of interactions come from their short-range (ul-

traviolet) effects. They arise due to interactions at points. These quantum effects
appear in both the Standard Model and General Relativity. In the Standard
Model, one can obtain finite quantities by renormalization, while one cannot in
General Relativity. In superstring theory, as shown in Figure 1.2, a point-like
interaction is resolved and thus one can obtain finite quantities.

In the low energy and weak coupling limit, massive excitations and quantum
corrections are suppressed. The resulting theory is a 10d classical gravitational
theory with supersymmetry, called 10d supergravity. The field content of the 10d
supergravity is

• The metric gµν ,

• A scalar Φ called dilaton,

• An antisymmetric tensor Bµν called NS-NS 2-form,
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Figure 1.2: Interactions of point particles and strings. In the point particle
interaction an infinity can appear from the interacting point , while it cannot in
the string interaction.

• Antisymmetric tensors Aµ1···µp+1 , and

• A fermion Ψµ called gravitino.

Surprisingly, several kinds of extended objects in superstring theory had been
discovered. We generally refer to objects extended along p spatial directions as
p-branes. One of them found by Polchinski [4] is called D-brane or Dp-brane. A
Dp-brane is defined as an object on which endpoints of open strings are bounded.
Open strings bounded on a Dp-brane are represented by the Neumann and Dirich-
let boundary condition as

∂Xµ(τ, σ)

∂σ

∣∣∣∣
σ=0

=
∂Xµ(τ, σ)

∂σ

∣∣∣∣
σ=π

= 0, µ = 0, . . . , p, (1.2)

Xµ(τ, σ)|σ=0 = Xµ(τ, σ)|σ=π = xµ, µ = p+ 1, . . . , 9, (1.3)

where xµ is a constant vector and the parameter region of σ is 0 ≤ σ ≤ π. The
endpoints of the open strings can move only along p spatial directions. By the
quantization of open strings on Dp-branes, a gauge field and its superpartners
arise as the massless modes.

On Dp-branes, a (p+1)-dimensional supersymmetric gauge theory arises as an
effective theory. The world-volume action for a Dp-brane is the Dirac-Born-Infeld
action

SDp = −µp

∫
dp+1ξe−Φ

√
−det (Gab +Bab + 2πα′Fab), (1.4)

where µp is the Dp-brane tension, ξa (a = 0, . . . p) is the coordinates on the Dp-
brane, Gab is the induced metric on the Dp-brane. Bab is a pull-back of the NS-NS
2-form, and Fab is a field strength of the gauge field arising from the open string
on the Dp-brane. When the energy scale we consider is sufficiently lower than
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the one of the string fluctuation, by expanding (1.4) we can obtain the Maxwell
action for Fab. The gauge coupling g is expressed in terms of α′ and gs as

g2 ∼ gsα
′ p−3

2 . (1.5)

Massless modes of closed strings include antisymmetric tensor fields. Since
they are generalizations of gauge fields, there can be charged objects. This is
similar to the fact that a 1-form potential Aµ is coupled with particles. For
instance, in 4d electrodynamics, the electric charge e and the magnetic charge m
are defined by the Gauss law as

e =

∫
∗F, m =

∫
F, (1.6)

where the integrations are performed over a closed surface surrounding the par-
ticle and

F =
1

2
Fµνdx

µ ∧ dxν , ∗F =
1

4
ϵ ρσ
µν Fρσdx

µ ∧ dxν . (1.7)

We can generalize this argument for a (p + 1)-form potential Aµ1···µp+1 in space-
time dimension D. In general, p-branes are coupled with (p + 1)-form potential
electrically or (D − p− 3)-form potential magnetically. In superstring theory,

• Dp-branes are coupled with the (p + 1)-form potential eletrically or the
(7− p)-form potential magnetically.

• A string is a 1-brane. It is coupled with the NS-NS 2-form electrically. The
magnetically coupled 5-brane is called the NS5-brane.

Although we have tried to obtain a unified theory, there are five types of
superstring theory due to its consistency. In four types of superstring theory we
treat the left- and right-moving modes of the string oscillation independently,
while we identify them in the other one. The former theories are called oriented
string theories and the latter is called unoriented string theory. By taking the
low energy limit, we can obtain the corresponding 10d supergravity. We list the
five types below:

• Type IIA superstring: Oriented string theory with 10d N = 2 supersymme-
try1. Two supercharges have the opposite chiralities. Dp-branes are stable
if p is even.

• Type IIB superstring: Oriented string theory with 10d N = 2 supersym-
metry. Two supercharges have the same chirality. Dp-branes are stable if
p is odd.

1The number of supersymmetry N is explained in Section 1.3.
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Type IIA

Type IIB

Hetero
E8 × E8

Hetero
SO(32)

Type I

T-dual On S1/Z2 and T-dual

Orientifold projection

S-dual

T-dual

S-dual

Figure 1.3: Five types of superstring theory and dualities.

• Type I superstring: Unoriented string theory with 10d N = 1 supersym-
metry and SO(32) gauge symmetry. Dp-branes are stable if p = 1, 5, 9.

• Heterotic superstring with SO(32) gauge symmetry: The left- and right-
moving modes are bosonic and supersymmetric, respectively, and

• Heterotic superstring with E8 × E8 gauge symmetry: The left- and right-
moving modes are bosonic and supersymmetric, respectively.

They look apparently different. However, they are related by physical equiva-
lence, called “duality.” In Figure 1.3 we show how duality transforms one to
another. Branes in each theory are also transformed by duality transformations.
S-duality relates a weakly coupled theory to a strongly coupled theory. Below,
we introduce T-duality as an example of duality.

Let us consider compactification of one spacetime direction to a circle with
radius R. A closed string wrapping the circle can be characterized by the wrap-
ping number m ∈ Z. Moreover, by quantum mechanics, a momentum along the
circle is quantized as

p =
n

R
, n ∈ Z. (1.8)

By quantizing the oscillation of a closed string, the squared mass for the closed
string characterized by (m,n) is

M2 =
n2

R2
+
m2R2

α′2 +
2

α′mn. (1.9)

Therefore, the the following two strings give the same squared mass:
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• A closed string wrapping a circle with radius R with the wrapping number
m and the quantized momentum p = n/R, and

• A closed string wrapping a circle with radius R′ = α′/R with the wrapping
number n and the quantized momentum p = m/R′.

T-duality is the physical equivalence of two compactifications with radius R and
R′ = α′/R. The T-duality transformation changes the radius and swaps the
momentum and the wrapping. Indeed, for a type of superstring theory, its T-
dual leads another type of superstring theory.

1.2 M-theory

In 1995, Witten [5] suggested the existence of a theory which includes all the types
of superstring theory. This theory is called M-theory. Conversely, each type of
superstring theory can be obtained from a certain limit of M-theory. M-theory
is believed to have the following properties:

• 11d theory.

• S1 compactification of M-theory yields the type IIA superstring theory, and

• Its low-energy limit is 11d supergravity.

Since there is a three-form potential in the 11d supergravity, M-theory includes

• M2-brane, which is electrically coupled with the three-form potential, and

• M5-brane, which is magnetically coupled with the three-form potential.

In the case of superstring theory, an effective theory on D-branes is a supersym-
metric gauge theory. By studying supersymmetric gauge theories, we can reveal
properties of the D-branes and superstring theory. Now we would like to know
field theories realized on a stack of M-branes. However, since we have not been
succeeded to quantize M-branes, dynamics of M-branes is highly mysterious.

Nevertheless, effective field theories on a stack of M2-branes were proposed in
[6, 7, 8, 9]. They are equipped with the properties which an effective theory on
M2-branes must have. We only know the 6d field theory realized on a single M5-
brane [10, 11]. An effective field theory on M5-branes is called the 6d N = (2, 0)
theory due to its supersymmetry. There is no known Lagrangian description of
“non-Abelian” 6d N = (2, 0) theory realized on a stack of M5-branes.
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1.3 Supersymmetric field theories and exact com-

putation

1.3.1 Supersymmetric field theories

Supersymmetric field theories have been studied in phenomenological and the-
oretical motivations. Theoretically, supersymmetric field theories are easier to
analyze due to symmetries and related with properties of superstring and M-
theory. In this thesis, we focus on the theoretical motivations.

Supersymmetry is an extension of a spacetime symmetry. The symmetry of
a flat spacetime is the Poincaré symmetry, realized by the Poincaré algebra

[Mµν ,Mρσ] = −gµρMνσ + gνρMµσ + gµσMνρ − gνσMµρ, (1.10)

[Mµν , Pρ] = −gµρPν + gνρPµ. (1.11)

In addition, the supersymmetry introduces fermionic generators Q:

{Qα, Qβ} = 2 (γµ)αβ Pµ, (1.12)

[Mµν , Qα] = −1

2
(γµνQ)α , (1.13)

where we show the 4d minimal (N = 1) supersymmetry as an example. In the
language of field theories, the supersymmetry relates bosons and fermions. Then
an action is invariant under the supersymmetric transformation, schematically
written as

δQ(boson) = ξ × (fermion), (1.14)

δQ(fermion) = ξ × (boson), (1.15)

where ξ is a spinor parameter. A set of fields related by (1.14) and (1.15) is called
a supermultiplet. The number of supersymmetry N is represented as the number
of irreducible spinors in each dimension.

A benefit of considering supersymmetry is that theories are easier to analyze,
while non-supersymmetric field theories are difficult to analyze, in particular for
non-Abelian gauge theories. Supersymmetry sometimes enables us to analyze
the theory exactly, including nonperturbative effects. One of the most important
works were performed by Seiberg and Witten [12, 13]. In [12] the 4d N = 2
supersymmetric SU(2) pure Yang-Mills theory is considered. The theory includes
a vector multiplet, which consists of a gauge field Aµ, two fermions ψ and λ, and
a scalar field ϕ. All of them are in the adjoint representation of the SU(2) gauge
group. In the low energy, the SU(2) gauge group is spontaneously broken to U(1)
by the vacuum expectation value of ϕ. Then the massive degrees of freedom can
be integrated out. The low-energy effective action is written by a single function
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F(A), called the prepotential, as

Leff =
1

4π
Im

[∫
d4θ

∂F(A)

∂A
A+

∫
d2θ

1

2

∂2F(A)

∂A2
W 2

]
, (1.16)

where A is a massless N = 1 chiral multiplet, W is a field strength chiral su-
perfield constructed from the N = 1 U(1) vector multiplet and θ represents the
fermionic components of the 4d N = 1 superspace. In [12] the prepotential F is
determined exactly, including nonperturbative effects. [13] extends the result to
the case with matter fields.

1.3.2 Supersymmetric localization

In this derivation, some physical assumptions are made. By a direct compu-
tation without any assumptions, Nekrasov [14] derived the partition function
for 4d N = 2 supersymmetric gauge theories on a deformed R4, called the Ω-
background. By taking the undeformed limit, it can be found that the result is
consistent with the Seiberg-Witten’s result. The method of the direct computa-
tion is called “supersymmetric localization.” Let us explain what the supersym-
metric localization is.

For example, we would like to compute the partition function

Z =

∫
DΦexp(−S[Φ]), (1.17)

where S[Φ] is the off-shell Euclidean action and Φ represents all dynamical fields
in a theory. Let us introduce a one-parameter deformation of the partition func-
tion

Z(t) =

∫
DΦexp(−S[Φ]− tδV [Φ]), (1.18)

where V [Φ] is a functional of Φ and δ is a transformation. δ and V [Φ] can be
either bosonic or fermionic, while δV [Φ] must be bosonic. We assume that they
satisfy

δS = δ2V = 0, δV |bos ≥ 0, (1.19)

where δV |bos is a part of δV consisting of only bosonic fields. The t-derivative of
Z(t) vanishes:

dZ(t)

dt
= −

∫
DΦδV exp(−S − tδV ) (1.20)

= −
∫

DΦδ(V exp(−S − tδV )) = 0, (1.21)
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where we assumed that the measure DΦ is invariant under δ. Therefore the
one-parameter deformation Z(t) of the partition function is equal to the original
partition function. Of course we can take t→ ∞ limit:

Z = Z(t) = Z(t→ ∞). (1.22)

Because δV |bos ≥ 0, field configuration Φ0 satisfying δV [Φ0] = 0 becomes dom-
inant in the path integral. Let Φ′ be the fluctuation from Φ0 and decompose Φ
as

Φ = Φ0 +
1√
t
Φ′. (1.23)

We formally expand tδV [Φ] around Φ0:

tδV [Φ] =
1

2

d2(δV )

dΦ2

∣∣∣∣
Φ=Φ0

Φ′2 +O(t−1/2), (1.24)

because δV [Φ0] =
d(δV )
dΦ

∣∣∣
Φ=Φ0

= 0. O(t−1/2) includes interaction terms, thus the

t→ ∞ limit is a weak-coupling limit in some sense and the path integral over Φ′

can be calculated explicitly.
Therefore, the partition function is written as

Z =

∫
DΦ0 exp(−S[Φ0])Z1-loop[Φ0], (1.25)

Z1-loop[Φ0] =

∫
DΦ′ exp(−S ′[Φ′]), (1.26)

S ′[Φ′] =
1

2

d2(δV )

dΦ2

∣∣∣∣
Φ=Φ0

Φ′2. (1.27)

By choosing V and δ appropriately, the integral over Φ0 becomes a finite-dimensional
integral and/or some summations. Furthermore, this procedure does not depend
on coupling constants and available even if the original theory is strongly-coupled.

1.3.3 Dualities

Once partition functions are computed, we can use them as tools for checking
dualities since physical quantities for dual theories must be the same. Moreover,
some kinds of dualities are thought to be originated in superstring or M-theory.
As examples, we list some dualities related with 4d supersymmetric field theories
below:

• AdS/CFT correspondence.

The configuration in the original works [15, 16, 17] is interpreted in terms
of a stack of N D3-branes in type IIB superstring theory. AdS/CFT says
that the following two theories are related:
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– 4d N = 4 supersymmetric Yang-Mills theory on S4 with SU(N) gauge
group and a coupling constant gYM, and

– Type IIB superstring theory in AdS5 × S5 with the string coupling gs
and AdS radius R = (4πNgs)

1/4 ℓs.

On the gauge theory side, we can obtain the partition function ZN=4
S4 exactly

by the supersymmetric localization [18]. The string coupling is related with
the Yang-Mills coupling as g2YM = 2πgs.

If we take a limit in which the latter becomes the classical supergravity,
which is easy to analyze, the partition function becomes Zgrav = exp (−Icl)
where Icl is the on-shell action of the supergravity. This limit is realized by
R ≫ ℓs and N ≫ 1. The first condition suppresses massive modes of strings
and the second condition suppresses loop corrections of closed strings.

We can compute ZN=4
S4 in the corresponding parameter region λ = Ng2YM ≫

1 and N ≫ 1, then obtain [19]

− logZN=4
S4 = −N

2

2
log λ, (1.28)

which coincides with Icl from the supergravity [20].2

• Seiberg duality [22], which relates the following in the low-energy region:

– 4d N = 1 SU(N) gauge theory with chiral multiplets Qa and Q̃a (a =
1, . . . , Nf ) in the fundamental and anti-fundamental representations,
and

– 4d N = 1 SU (Nf −N) gauge theory with chiral multiplets qa and
q̃a (a = 1, . . . , Nf ) in the fundamental and anti-fundamental represen-
tations and singlet chiral superfields Ma

b (a, b = 1, . . . , Nf ) with the
superpotential W = qMq̃.

We can find that one of them is strongly coupled, hence we need non-
perturbative analyses. As one of these analyses, correspondence of some
of gauge invariant operators between these theories has been studied [22].
The supersymmetric localization is another tool for counting gauge invari-
ant operators more generally.

The partition function on S3 × S1, or superconformal index, is computed
in [23, 24]. In addition to the definition in terms of path integral, the

2Since AdS5 has an infinite volume, the on-shell action diverges. In order to regularize the
on-shell action, we have to introduce a counterterm action [20]. In the regularization, we should
carefully relate the cutoff in the field theory to the one in the supergravity [19, 21].
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superconformal index can be defined as a trace of a certain operator on
S3 × S1:

I (t, x, hi) = tr

[
(−1)F qD− 3

2
R−2JLtR+2JLx2JR

∏
i

hFi
i

]
, (1.29)

where F is the fermion number, D is the dilatation, R is the U(1)R symme-
try, JL and JR are the Cartan generators3 of the SO(4) ∼ SU(2)L×SU(2)R
subgroup of the superconformal algebra, and Fi is the i-th Cartan genera-
tor of flavor symmetries. Expanding the superconformal index, we obtain
a polynomial of the variables. Each exponent of a variable means a sym-
metry charge of the corresponding state. Therefore we can count states
with charges of global symmetries by calculating the partition function on
S3 × S1. Indeed, one can show the coincidence between the partition func-
tions for dual theories.

4d N = 1 gauge theories have realizations by brane configurations in the
superstring theory [25]. Hence this duality relates two distinct brane con-
figurations.

• Alday-Gaiotto-Tachikawa (AGT) correspondence [26].

[26] shows that the instanton partition function for an N = 2 gauge theory
coincides with a conformal block of a certain 2d conformal field theory
(CFT) on a Riemann surface Σ. Including the perturbative part, the S4

partition function coincides with a four-point correlation function of the 2d
CFT on Σ. This relation is interpreted in terms of M5-branes wrapping
S4 × Σ [27], as shown in Figure 1.4.

These dualities have been extended to various cases: other gauge groups, matter
contents, manifolds, etc. We expect that studying various dualities may reveal
more detailed properties of superstring and M-theory.

What we need for the localization computation is the off-shell action of a su-
persymmetric field theory on a compact manifold. In a flat space, the partition
function diverges due to infrared (IR) and ultraviolet (UV) divergences. Com-
putation on a compact (typically curved) space suppresses IR divergences and
gives us finite results, while UV divergences are suppressed by supersymmetry.
Since a square of supersymmetry transformations generates bosonic symmetries,
we often use a supersymmetry transformation as δ satisfying δ2V = 0 in the
localization computation with an appropriate choice of a functional V [Φ].

3Cartan generators of a symmetry group are defined as Hermite generators Hi of the group
satisfying [Hi, Hj ] = 0. SU(2) has one Cartan generator.
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M5-branes wrapping
S4 × Σ

4d N = 2 theory
on S4

2d CFT
on Σ

Figure 1.4: The 6d interpretation of the AGT correspondence.

1.3.4 Supersymmetric field theories on curved spaces

In order to compute the partition function, first of all we should construct a
supersymmetric field theory on the curved manifold. We can adopt an intuitive
method to construct a supersymmetric Lagrangian as follows. Let us consider
construction of a supersymmetric field theory on a sphere with radius r from one
on a flat space, for example. In the Lagrangian and supersymmetry transforma-
tion laws on the flat space, the Lorentz indices are contracted by the flat space
metric ηµν . To construct the theory on the sphere, we firstly replace ηµν into
the sphere metric gµν . Supersymmetry is not preserved if we only do that. To
restore sypersymmetry, we add O (r−n) (n = 1, 2, . . .) corrections order by order
and realize the supersymmetric field theory on the sphere.

Now we would like to introduce deformations for the manifold. Since super-
symmetry is an extension of the spacetime symmetry, introducing deformations
may break supersymmetry. However, if a part of supersymmetry is left we can
perform the localization computation. Then we expect to obtain the partition
function depending on the deformation parameters, which is a more detailed in-
formation of the theory. However, it is hard to construct a supersymmetric field
theory on such manifold. Also, it is not clear whether a supersymmetric field
theory on a complicated manifold can be constructed or not. Moreover, there are
some cases in which a deformation of the manifold does not change the partition
function [28, 29, 30]. In particular, for supersymmetric field theories on a mani-
fold with the S3 topology, it is shown in [31] that the partition function depends
on background manifolds only through a single parameter.

Now we have two questions:

1. What kind of manifold we can construct supersymmetric field theories on?
If possible, how is the action given?
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2. Which parameters do partition functions depend on?

1.4 Importance of backgrounds

In this thesis, we often use the terminology “background” or “background fields.”
These mean “something non-dynamical which affects dynamics.” Note that back-
grounds are not affected by dynamics. In the following we mainly study non-
dynamical fields such as the metric characterizing manifolds and gauge fields
associated with global symmetries.

A typical example of backgrounds is the external electromagnetic field. In
classical mechanics, motions of particles depend on their electric charges in the
presence of the electromagnetic field. For a charged particle beam in the elec-
tromagnetic field with known velocity, for example, we can derive the ratio of
its charge to mass by tracking its trajectory. Also, in quantum mechanics, the
degenerating states of an atom become splitted by turning on a magnetic field
(Zeeman effect). This reveals the spin structure of the atom. Thus we can know
properties of each particle in detail by turning on background fields.

We mentioned above that backgrounds are not affected by dynamics. In the
example above, the electromagnetic field may be affected by the motion of the
charged particle in the framework of electromagnetism. In order to reduce the
electromagnetic field into the external field, we should take an appropriate limit
of parameters such as the dielectric constant.

Background fields play important roles in quantum field theory, too. As an ex-
ample, let us consider computing an n-point correlation function ⟨O1 (x1) · · · On (xn)⟩
of operators Oi (xi) (i = 1, . . . , n). In order to compute this, we add the source
terms to the original Lagrangian and define the generating functional

Z[J ] =

∫
DΦexp

[
i

∫
dx (L+ Ji (xi)Oi (xi))

]
, (1.30)

where Ji (xi) is an i-th source as a background and Φ represents all dynamical
fields in the theory. The n-point correlation function can be written as

⟨O1 (x1) · · · On (xn)⟩ =
1

Z[0]

δnZ[J ]

δJ1 (x1) · · · δJn (xn)

∣∣∣∣
J=0

. (1.31)

The background fields Ji (xi) behave as the sources generating Oi (xi).
Next example is a conformal field theory. Conformal field theories arise in

fixed points of the renormalization group flow. A conformal symmetry is gener-
ated by

• Translation xµ → xµ + aµ,

• Lorentz transformation xµ →Mµ
νx

ν ,
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• Dilatation xµ → αxµ, and

• Special conformal transformation xµ → xµ − (x · x)bµ

1− 2(b · x) + (b · b)(x · x)
.

These transformations leave an angle between two arbitrary vectors invariant.
Like supersymmetry, the conformal symmetry restricts theories and makes them
easier to analyze. In conformal field theory, the trace of the energy-momentum
tensor classically vanishes: T µ

µ = 0. By quantum corrections, the conformal

symmetry can be broken. The quantity
⟨
T µ
µ

⟩
, characterizing the breaking of the

conformal symmetry is called the Weyl anomaly. The source corresponding to
the operator T µν is gµν , hence the Weyl anomaly is defined as the variation of
the action under the infinitesimal Weyl transformation given by

δgµν(x) = 2Λ(x)gµν(x) (1.32)

for small Λ(x). In 4d, the contribution of the curved metric to the Weyl anomaly⟨
T µ
µ

⟩
curved

consists of two components with coefficients a and c as [32]⟨
T µ
µ

⟩
curved

= cF − aG, (1.33)

F = RµνρσR
µνρσ − 2RµνR

µν +
1

3
R2, (1.34)

G = RµνρσR
µνρσ − 4RµνR

µν +R2, (1.35)

where the theory is coupled with the external gravity with the Riemann tensor
Rµνρσ, the Ricci tensor Rµν and the scalar curvature R. Even if the conformal
symmetry is quantum mechanically preserved, a and c are important quantities
characterizing the theory. In particular, a monotonically decreases along the
renormalization group flow and can be seen as an effective degrees of freedom of
the theory [33, 34].

As shown above, introducing background fields can reveal properties of theo-
ries or particles in detail. In this reason, we would like to study supersymmetric
field theories on curved spaces to obtain their properties and reveal dualities in
detail.

1.5 Rigid supersymmetry from supergravity

1.5.1 Rigid supersymmetry from supergravity

Festuccia and Seiberg [35] proposed a systematic construction of supersymmetric
field theories on curved manifolds by using off-shell supergravity. Since we use
an off-shell formalism of field theory for the path integral, we begin with off-shell
supergravity in this method.
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Supergravity is a theory in which the gravity has the superpartner called
gravitino. The supermultiplet including them is called the Weyl multiplet. Other
supermultiplets including gauge fields and matter fields are also present.

In the Einstein-Hilbert action, a kinetic term of the gravity is

m2
Pl

2

∫
dx

√
gR, (1.36)

where mPl is the Planck mass. In order to treat the gravity as a non-dynamical
field without backreactions, we take the “rigid limit”mPl → ∞. Then the gravity
decouples and we can fix the component fields of the Weyl multiplet as back-
ground fields. In particular, we choose the metric so that it realizes a manifold
which we would like to construct. Now supersymmetry transformation acts only
on dynamical fields, while the background Weyl multiplet is kept intact. There-
fore, for the Lagrangian to be supersymmetric, original supersymmetry trans-
formations of all components of the Weyl multiplet should vanish. Since we set
the fermionic components of the Weyl multiplet to be zero, the supersymme-
try transformations for the bosonic components are always zero. The condition
that the supersymmetry transformation of the fermionic components in the Weyl
multiplet should be zero is nontrivial because the bosonic components are gen-
erally nonzero. Therefore, supercharges corresponding to the spinor parameter ξ
satisfying

δQ(fermions in the Weyl multiplet) = ξ × (bosons in the Weyl multiplet) = 0
(1.37)

are only preserved. We use the terminology the “rigid” supersymmetry for the
supersymmetry with the gravity fixed. For this formulation, see Figure 1.5.

Using this systematic method, we can study general backgrounds preserving
supersymmetry. By requiring the existence of the solutions of (1.37), we can
derive restriction for bosonic background fields in the Weyl multiplet. In [36, 37],
the condition that a 4d Riemannian manifoldM4 can realize rigid supersymmetry
is studied by considering 4d N = 1 supergravity with a U(1)R symmetry, called
“the new minimal supergravity.” One conserved supercharge restricts M4 to
Hermitian. For more preserved supercharges, the condition is more restrictive.

Using the new minimal supergravity, rigid supersymmetry on S4 cannot be
realized because S4 is not Hermitian. In [38], it was shown that a rigid supersym-
metry can be realized on round and squashed S4 by starting with a supergravity
without the U(1)R symmetry, called “the old minimal supergravity.” This fact
shows that different results may be obtained by starting with different supergrav-
ities even if they are reduced into the same on-shell theory. This is because we
do not impose equations of motion on auxiliary fields in the Weyl multiplet.

In [39], a similar condition for 3d Riemannian manifold M3 is solved by
starting with a 3d N = 2 supergravity with a U(1)R symmetry. By imposing
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Weyl multiplet
Bosons: gravity, R-symmetry gauge field,...
Fermions: gravitino,...

δQ(boson) = ξ × (fermion)

δQ(fermion) = ξ × (boson)

Matter multiplets
Gauge fields, matters,...

δQ(boson) = ξ × (fermion)

δQ(fermion) = ξ × (boson)

Supergravity

Weyl multiplet (background)
Bosons: gravity, R-symmetry gauge field,...: fixed
Fermions: gravitino,... = 0

δQ(boson) = ξ ×�����
(fermion) = 0

δQ�����
(fermion) = ξ × (boson)

!
= 0

Matter multiplets
Gauge fields, matters,...

δQ(boson) = ξ × (fermion)

δQ(fermion) = ξ × (boson)

Supersymmetric field theory on curved background

Figure 1.5: Supergravity to rigid supersymmetry. Imposing that the supersym-
metry transformation of the fermions in the Weyl multiplet vanishes, we can
obtain a rigid supersymmetry.
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the condition that one supercharge is preserved, we can find that M3 admits a
certain mathematical structure called transversely holomorphic foliation with a
transversely Hermitian metric. Similarly to 4d, the condition is more restrictive
for more preserved supercharges.

1.5.2 Parameter independence of partition function

In 4d and 3d, the resulting backgrounds are characterized by functional degrees
of freedom. However, [40] show that only a small part of them contributes to
the partition function. Let us consider a deformation of a background manifold.
Then the Lagrangian also changes due to the deformation. If the variation of the
Lagrangian can be written as ∆L = δQ(· · · ), such deformation does not affect
the partition function. We call such deformation as a Q-exact deformation.

1.5.3 Analysis in 5d

Now we would like to analyze 5d supersymmetric field theories on curved mani-
folds by the same techniques. Some of 5d supersymmetric field theories are worth
studying, in spite of their non-renormalizability. They have nontrivial dynamics
in both UV and IR regime [41]. In particular, a global symmetry is enhanced
to an exceptional group in a certain situation for some theories. Moreover, a
certain 5d supersymmetric field theory is thought to be related with a mysterious
6d N = (2, 0) theory, realized on a stack of M5-branes [42, 43]. The analysis of
the condition for 5d supersymmetric backgrounds was studied partially in [44].
One of the goals of this thesis is to perform the complete analysis for 5d rigid
supersymmetry [45]. The other one is to derive the background independence of
the partition function, as in [40].

1.6 Organization of the thesis

In Chapter 2, we review the analyses for 4d supersymmetric backgrounds [37, 40].
We introduce the 4d N = 1 new minimal supergravity, solve the conditions for
the existence of a preserved supercharge and obtain the result that M4 should
be Hermitian. Then we analyze the background dependence of the 4d partition
function.

In Chapter 3, we perform a similar analysis for the 3d N = 2 supergravity
as a review of [39, 40]. We obtain the result that M3 should admit a certain
mathematical structure. After that, we analyze the background dependence of
the 3d partition function.

In preparation for 5d, we introduce 5d supersymmetric field theory in Chapter
4. We also show its several properties, some of which can be tested by partition
functions.
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Chapter 5 is the main part of this thesis and the original work of the author.
This chapter is based on the reference [45]. We obtain the restriction for back-
ground fields and background (in)dependence of the partition function. After
that, we construct several simple manifolds by using our formulation.

Useful formulas and basic facts are summarized in Appendices A, B and C.
In Appendix D, we show the analysis of 4d N = 1 supersymmetric backgrounds
by using the 4d N = 1 old minimal supergravity.



Chapter 2

4d N = 1 supersymmetric
backgrounds

4d N = 1 supersymmetric field theories are studied vigorously based on various
phenomenological and theoretical motivations. The Seiberg duality [22] relates
different 4d N = 1 gauge theories. The exact computation of S3 × S1 partition
function, called the superconformal index, is performed [23, 24] and the equiva-
lence of dual theories is checked in [46]. The computation of the S3×S1 partition
function by using another Q-exact term, called the Higgs branch localization, is
performed in [47]. S1 ×M3 partition function is computed in [48], where M3 is a
circle bundle over a Riemann surface. T 2 × S2 partition function is computed in
[49, 50].

A number of analyses for 4d N = 2 gauge theories have been also performed.
In [18], S4 partition function is computed. For deformations of S4, partition
functions are computed in [51, 52]. These can be used for checks of the AGT
correspondence [26]. This correspondence is thought to be related with some
dynamics of 6d N = (2, 0) theories.

In this chapter, we review the analysis for 4d supersymmetric backgrounds
[37, 40] by using the 4d N = 1 new minimal supergravity. We introduce a super-
gravity with four supercharges, solve the condition that at least one supercharge
is preserved, and consider the Q-exact deformations. In the following, we consider
Euclidean spaces for the purpose of the computation of the partition function.

2.1 4d spinor

The notation of spinors in 4d is based on [53], except for difference between the
Minkowski and Euclidean signature. 4d Euclidean space has the local Lorentz
symmetry SO(4) ∼ SU(2)+ × SU(2)−. A spinor in 4d can be decomposed to a

left-handed spinor ξα and a right-handed spinor ξ
α̇
. The former is an SU(2)+

doublet and the latter is an SU(2)− doublet. ξ and ξ are related by the complex

25
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conjugation in the Minkowski signature. In the Euclidean signature, ξ and ξ are
not related by the complex conjugation and we treat them independently.

The Hermite conjugate of spinors are complex cojugate of spinors as(
ξ†
)α

= (ξα)
∗ ,

(
ξ
†
)
α̇
=
(
ξ
α̇
)∗
. (2.1)

4d sigma matrices are defined by

σµ̂
αα̇ = (σ,−i), σµ̂α̇α = (−σ,−i), (2.2)

where σ = (σ1, σ2, σ3) are the Pauli matrices. µ̂ = 1̂, . . . , 4̂ is the local Lorentz
index. σµ̂ and σµ̂ satisfy

σ{µ̂σν̂} = −δµ̂ν̂ , σ{µ̂σν̂} = −δµ̂ν̂ . (2.3)

Some of products of the Pauli matrices are written as

σµ̂ν̂ =
1

2
σ[µ̂σν̂], σµ̂ν̂ =

1

2
σ[µ̂σν̂]. (2.4)

They are (anti-)self-dual:

1

2
ϵµ̂ν̂ρ̂λ̂σ

ρ̂λ̂ = σµ̂ν̂ ,
1

2
ϵµ̂ν̂ρ̂λ̂σ

ρ̂λ̂ = −σµ̂ν̂ , (2.5)

where the antisymmetric tensor is defined by ϵ1̂2̂3̂4̂ = 1.

2.2 4d N = 1 new minimal supergravity

4d N = 1 supersymmetry algebra consists of the following symmetries:

• The translational symmetry,

• The Lorentz symmetry SO(4) ∼ SU(2)+ × SU(2)−,

• The supersymmetry, and

• U(1)R R-symmetry.

The 4d N = 1 supersymmetry algebra in the flat space is written as{
Qα, Qβ̇

}
= 2 (σµ)αβ̇ Pµ. (2.6)

In 4d N = 1 supersymmetry, the supersymmetric transformation parameters ξ
and ξ have R-charge +1 and −1, respectively. We can expect that 4d N = 1
supergravity is the theory in which these symmetries are gauged.
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There are several versions of 4d N = 1 supergravity [54, 55, 56, 57, 58, 59,
60, 61, 62]1. One of them is constructed in [59, 61] and called the new minimal
supergravity. For constructing this, we consider the Noether current associated
with the supersymmetry transformation. These supersymmetry currents Sαµ and

S
α̇

µ belong to a supermultiplet. In the simplest case, other components of this

supermultiplet are the energy-momentum tensor Tµν and the U(1)R current j
(R)
µ .

However, these currents give a superconformally invariant theory. One way to
break the conformal symmetry is introducing a closed 2-form field Fµν in the
supermultiplet. The transformation law of this supermultiplet is

δQj
(R)
µ = −iξSµ + iξSµ, (2.7)

δQSµα = 2i
(
σνξ
)
α
T µν , (2.8)

δQS
α̇

µ = 2i (σνξ)α̇ Tµν , (2.9)

δQTµν =
1

2
ξσµρ∂

ρSν +
1

2
ξσµρ∂

ρSν + (µ↔ ν), (2.10)

δQFµν = − i

2
ξσµσρ∂νS

ρ +
i

2
ξσµσρ∂νS

ρ − (µ↔ ν), (2.11)

where Tµν and T µν are non-symmetric tensors defined by

Tµν = Tµν +
i

4
ϵµνρλFρλ − i

4
ϵµνρλ∂

ρj(R)λ − i

2
∂νj

(R)
µ , (2.12)

T µν = Tµν +
i

4
ϵµνρλFρλ − i

4
ϵµνρλ∂

ρj(R)λ +
i

2
∂νj

(R)
µ . (2.13)

The supermultiplet which consists of the current fields

j(R)
µ , Sµα, S

α̇

µ, Tµν , Fµν (2.14)

is called the R-multiplet. The fields coupled with components in the R-multiplet
are given by

Aµ, ψµα, ψ
α̇

µ, ∆eµ̂ν , Bµν , (2.15)

where Aµ is the R-symmetry gauge field, ψµα and ψ
α̇

µ are gravitinos, ∆e ν̂
µ is the

variation of the vielbein from the flat one and Bµν is a two-form gauge field. The
set of these fields is called the Weyl multiplet. Around the flat background, the
linearized supergravity Lagrangian can be written as

∆L = −∆eµ̂νT
ν + ψµαSµα + ψ

µ

α̇S
α̇

µ +

(
Aµ − 3

2
V µ

)
j(R)
µ +

i

4
ϵµνρλFµνBρλ,

(2.16)

1In [63], it is shown that various versions of supergravity, including the new and old minimal
supergravity, can be derived by so called superconformal tensor calculus and appropriate gauge
fixing.



28 CHAPTER 2. 4D N = 1 SUPERSYMMETRIC BACKGROUNDS

where V µ is the dual of the three-form field strength of Bµν :

V µ =
1

2
ϵµνρλ∂νBρλ. (2.17)

This is conserved as

∇µV
µ = 0, (2.18)

where ∇µ is the Lorentz covariant derivative, called the Levi-Civita connection.
For spinors ξ and ξ the covariant derivative is defined by

∇µξ = ∂µξ +
1

2
ωµν̂ρ̂σ

ν̂ρ̂ξ, ∇µξ = ∂µξ +
1

2
ωµν̂ρ̂σ

ν̂ρ̂ξ. (2.19)

ωµν̂ρ̂ is the spin connection defined by

ωµν̂ρ̂ =
1

2

(
e λ
ν̂ ∂µeρ̂λ − e λ

ν̂ ∂λeρ̂µ − e λ
ρ̂ ∂µeν̂λ + e λ

ρ̂ ∂λeν̂µ

−eσ̂µe λ
ν̂ e

κ
ρ̂ ∂λeσ̂κ + eσ̂µe

λ
ν̂ e

κ
ρ̂ ∂κeσ̂λ

)
. (2.20)

The linearized version of the supersymmetric transformation for the Weyl mul-
tiplet is given by requiring the supersymmetric invariance of ∆L. The nonlinear
completion of this supergravity is constructed in [59, 61], called 4d N = 1 new
minimal supergravity.

In particular, the supersymmetric transformations for the gravitinos are writ-
ten as follows:

δQψµ = −2 (∇µ − iAµ) ξ − 2iVµξ − 2iV νσµνξ, (2.21)

δQψµ = −2 (∇µ + iAµ) ξ + 2iVµξ + 2iV νσµνξ, (2.22)

In these equations, we already set ψµ = ψµ = 0. As explained in Section 1.5,
in order to obtain the condition for existing supercharges in the rigid limit, we
impose the existence of the solutions ξ and/or ξ for the equations δQψµ = 0
and/or δQψµ = 0. In the Minkowski signature the vector fields Aµ and Vµ are
real, but they may be generally complex as the background fields in the Euclidean
signature. Only for the metric, we assume them to be real.

2.3 4d N = 1 supersymmetric backgrounds

Let us consider the case in which at least one left-handed supercharge is preserved
in the rigid limit for a 4d Riemannian manifoldM4. It means that there is at least
one solution ξ for the spinor equation δQψµ = 0. For the case of at least one right-
handed supercharge, we can obtain the solution by swapping SU(2)+ ↔ SU(2)−
and the flip of the sign of the R-charge.
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From δQψµ = 0, ξ satisfies

∇µξ = iAµξ − iVµξ − iV νσµνξ. (2.23)

By taking the Hermite conjugate, ξ† satisfies

∇µξ
† = −iA∗

µξ
† + iV ∗

µ ξ
† − iV ∗νξ†σµν . (2.24)

Because δQψµ = 0 is the first-order differential equation for ξ, the nontrivial
solution ξ is nowhere vanishing. By using ξ, we define the bilinears

|ξ|2 = ξ†ξ, (2.25)

Jµν =
2i

|ξ|2
ξ†σµνξ, (2.26)

Pµν = ξσµνξ. (2.27)

|ξ|2 is a real scalar with R-charge zero. Jµν is a real, self-dual two-form with
R-charge zero. The following equation holds by the Fierz identity:

Jµ
νJ

ν
ρ = −δµρ. (2.28)

The computation of this equation is shown in Appendix B.2. Therefore, Jµ
ν is

the almost complex structure. On every point on 4d space, we can decompose the
complexified tangent space into the holomorphic and anti-holomorphic subspaces.
For the almost complex structure and holomorphicity of vectors and one-forms,
see Appendix C.2. A vector field Xµ is holomorphic if and only if

Xµσ
µξ = 0, (2.29)

because

Jµ
νX

ν = iXµ ⇐⇒
(
ξ†σµσνξ

)
Xν = 0. (2.30)

Pµν is a self-dual two-form with R-charge two. The following equation holds:

J ρ
µ Pρν = iPµν . (2.31)

This means that Pµν is anti-holomorphic with respect to the almost complex
structure Jµ

ν .
By using δQψµ = 0, we can show that Jµ

ν is integrable. The definition of
“integrable” is that for arbitrary holomorphic vector fields Xµ and Y µ the Lie
commutator

[X, Y ]µ = Xν∇νY
µ − Y ν∇νX

µ (2.32)
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is also holomorphic. By using holomorphic vectors Xµ and Y µ,

0 = Xν∇ν (Y
µσµξ)− Y ν∇ν (X

µσµξ)

= [X, Y ]µσµξ − 2X [µY ν]σµ∇νξ. (2.33)

Therefore, [X, Y ] is holomorphic if and only if

X [µY ν]σµ∇νξ = 0. (2.34)

By using δQψµ = 0, the left hand side of (2.34) is

X [µY ν]σµ∇νξ = X [µY ν]σµ (iAνξ − iVνξ − iV ρσνρξ) . (2.35)

By using the assumption that Xµ and Y µ are both holomorphic, the first two
terms of the right hand side vanish. The last term also vanishes because

σµσνρ = σνρσµ + gµρσν − gµνσρ. (2.36)

Therefore [X, Y ] is holomorphic and thus Jµ
ν is integrable.

As another proof, we can show that the Nijenhuis tensor of Jµ
ν

Nµ
νρ = Jλ

ν∇λJ
µ
ρ − Jλ

ρ∇λJ
µ
ν − Jµ

λ∇νJ
λ
ρ + Jµ

λ∇ρJ
λ
ν (2.37)

vanishes by using δQψµ = 0.
As a mathematical fact, for an almost complex manifold, the following state-

ments are equivalent:

• The manifold is complex.

• There is an integrable almost complex structure.

• The Nijenhuis tensor vanishes.

Therefore, the 4d manifold M4 is complex. By using the almost complex struc-
ture Jµ

ν , we can introduce local holomorphic coordinates zi (i = 1, 2). We use i, j

as holomorphic indices and i, j as anti-holomorphic indices. In these coordinates,
the almost complex structure is represented as

J i
j = iδij, J i

j
= −iδi

j
. (2.38)

A Hermitian metric can be defined on every complex manifold. Lowering the
upper indices in (2.38) by the Hermitian metric, we obtain the relation

gij = iJij, gij = −iJij. (2.39)

Hence Jµν is the Kähler form of the Hermitian metric gµν .
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In order to obtain the condition for Vµ, let us differentiate Jµ
ν . By using

δQψµ = 0 straightforwardly,

∇µJ
µ
ν = − (Vν + V ∗

ν ) + i
(
Vµ − V ∗

µ

)
Jµ

ν . (2.40)

Multiplying Jν
ρ, we obtain(

∇µJ
µ
ν

)
Jν

ρ = − (Vν + V ∗
ν ) J

ν
ρ − i

(
Vρ − V ∗

ρ

)
. (2.41)

From these two equations, we can eliminate V ∗
µ as

∇µJ
µ
ρ − i

(
∇µJ

µ
ν

)
Jν

ρ = −2Vρ + 2iVµJ
µ
ρ = −4V +

ρ , (2.42)

where V +
ρ represents the holomorphic part of Vρ. Focusing on a holomorphic part

of ∇µJ
µ
ρ, the left hand side becomes 2∇µJ

µ
ρ. As a result, (2.40) restricts the

holomorphic part of Vµ as

Vµ = −1

2
∇νJ

ν
µ + Uµ, (2.43)

where Uµ is an undetermined anti-holomorphic vector; J ν
µ Uν = iUµ. Due to

(2.18), Uµ is conserved:

∇µUµ = 0. (2.44)

A Hermitian manifold is Kähler if and only if the almost complex structure
satisfies ∇µJνρ = 0. As seen in (2.40), it is not the case. Hence, it is desirable
to introduce another connection ∇c

µ satisfying ∇c
µgνρ = 0 and ∇c

µJνρ = 0. Such
connection is called the Chern connection and defined by replacing the ordinary
spin connection to

ωc
µνρ = ωµνρ −

1

2
J λ
µ (∇λJνρ +∇νJρλ +∇ρJλν) . (2.45)

By using this Chern connection, we can rewrite δQψµ = 0 as(
∇c

µ − iAc
µ

)
ξ = 0, (2.46)

where

Ac
µ = Aµ +

1

4

(
δ ν
µ − iJ ν

µ

)
∇ρJ

ρ
ν −

3

2
Uµ. (2.47)

In the case in which the 4d manifold is Kähler, Vµ vanishes and the refined spin
connection (2.45) and the refined gauge field (2.47) reduce to the ordinary ones:

Vµ = 0, ∇c
µ = ∇µ, ωc

µνρ = ωµνρ, Ac
µ = Aµ, (2.48)
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if Uµ = 0.
Let us derive a restriction due to Pµν . As mentioned above, Pµν is an anti-

holomorphic self-dual two-form. In the local holomorphic coordinates zi, its
nonzero component is only

p = P12. (2.49)

If we would like to construct a scalar from p, we can see that |p|2/√g is a pos-
itive scalar on M4, where g = detgµν . Therefore, we can consider the nowhere
vanishing scalar

s = pg−1/4 (2.50)

with the R-charge two.
By using (2.46), p satisfies (

∇c
µ − 2iAc

µ

)
p = 0. (2.51)

The action of the Chern connection to the anti-holomorphic two-form p is as
follows:

∇c
ip = ∂ip, ∇c

i
p = ∂ip−

p

2
∂i log p. (2.52)

Therefore, by using (2.50), (2.51) and (2.52), we obtain Ac
µ and thus Aµ as

Aµ = Ac
µ −

1

4

(
δ ν
µ − iJ ν

µ

)
∇ρJ

ρ
ν +

3

2
Uµ, (2.53)

Ac
i = − i

8
∂i log g −

i

2
∂i log s, (2.54)

Ac
i
=
i

8
∂i log g −

i

2
∂i log s. (2.55)

To summarize, the existence of the solution of δQψµ = 0 yields the existence
of an integrable complex structure. Hence 4d manifold M4 is Hermitian. The
holomorphic part of Vµ is defined by (2.43) and the R-symmetry gauge field is
written by (2.53), (2.54) and (2.55). Note that S4 is not complex manifold and
does not admit the almost complex structure. Therefore we cannot construct
supersymmetric field theories on S4 by using this formulation.

So far we have shown that

∃ solution of δQψµ = 0 =⇒ M4 is Hermitian manifold.

Conversely, we can show that there is at least one solution of δQψµ = 0 for a
general Hermitian manifold with a metric gµν and complex structure Jµ

ν . We
introduce a nowhere vanishing real scalar s and an anti-holomorphic conserved
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vector Uµ and set the background fields Vµ and Aµ as in (2.43), (2.53), (2.54) and
(2.55). In a local frame, we take the vielbein as

ds2 = e1̂e1̂ + e2̂e2̂, (2.56)

1√
2
e1̂ =

√
g11dz

1 +
g21√
g11

dz2,
1√
2
e2̂ =

g1/4
√
g11

dz2. (2.57)

In such configuration, we can find that

ξα =

√
s

2

(
0
1

)
(2.58)

is always a solution of δQψµ = 0.
By imposing the condition that two and more number of supercharges are

preserved, we can obtain more restrictive conditions. We list such result below:

• The presence of one supercharge ξ implies that M4 is Hermitian.

• The presence of two supercharges ξ and ξ with opposite U(1)R charge gives
a complex Killing vector Kµ = ξσµξ. Hence M4 can be described as a torus
fibration over an arbitrary Riemann surface.

• The presence of two supercharges with equal U(1)R charge implies that M4

is either of them:

– A torus T 4 with flat metric,

– A K3 surface with Ricci-flat Kähler metric, and

– A discrete quotient of S3 × S1 with the standard metric ds2 = dτ 2 +
r2dΩ3,

if M4 is compact.

• The presence of four supercharges implies that M4 is locally isometric to
either of them:

– S3 × R,
– Flat R4, and

– H3 × R, where H3 is a 3d hyperbolic space.

There is another version of 4d N = 1 off-shell supergravity, called the old
minimal supergravity [56, 57]. We can work out a similar analysis by using this
[38]. From that analysis, we can show that Hermitian manifolds and warped
products S3 ×R are allowed. This shows that S4 is also allowed, while S4 is not
allowed by the new minimal supergravity. The analysis by using the old minimal
supergravity is shown in Appendix D.
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2.4 Background vector multiplet

If there are continuous flavor symmetries, we can obtain the flavor symmetry
current jµ by the Noether procedure. This current jµ is included in a real linear

multiplet J . The real linear multiplet also includes fermions jα and j
α̇
and a

scalar J . Their supersymmetry transformation laws are written as follows:

δQJ = iξj − iξj, (2.59)

δQjα = −i
(
σµξ
)
α
J µ, (2.60)

δQj
α̇
= −i (σµξ)α̇ Jµ, (2.61)

δQjµ = −2ξσµν∂
νj − 2ξσµν∂

νj, (2.62)

where

Jµ = jµ − i∂µJ, J µ = jµ + i∂µJ. (2.63)

We can couple them to a vector multiplet, which consists of a gauge field Aµ,

gauginos λα and λ
α̇
and a scalar D. In order to introduce a background vector

multiplet, both gauginos and their supersymmetry transformations should vanish.
The supersymmetry transformation for the gaugino λα is written as

δQλ = iξD + σµνξFµν(A), (2.64)

where Fµν(A) is the fields strength of Aµ.
Similar to the analysis above, we can obtain the restriction for the background

vector multiplet. By multiplying ξ and ξ† to (2.64), we obtain the conditions for
D and Fµν(A) as

Fij(A) = 0, D =
1

2
JµνFµν(A). (2.65)

2.5 Q-exact deformations

As in Section 1.3 and 1.5, Q-exact deformations of an action S → S + δQV do
not change the partition function. Therefore, when we consider a deformation of
the theory, the partition function does not change if the variation of the action
is Q-exact. In the above analysis, we have obtained the formulation in which
parameters characterizing a theory can be treated as background fields in the
supergravity. This makes the discussion whether a deformation of the theory
gives a Q-exact deformation easier. By a small deformation for the background
fields of the Weyl multiplet, the shift of the Lagrangian can be written by a linear
coupling between the Weyl multiplet and the supercurrent multiplet. Therefore,
we will discuss Q-exact deformations by using properties of the supercurrent
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multiplet. In the analysis [40] and here, we focus on the formulation by the new
minimal supergravity, which is coupled with the R-multiplet.

Moreover, in the following we only consider the case in which the 4d manifold
is given by the small deformation around the flat space. However, the conclusion
can be extended to general supersymmetric backgrounds. The supersymmetry Q
can be a scalar by appropriate twisting by background gauge fields. Thus, similar
to the topological field theory, the twisted energy-momentum tensor is Q-exact
and the partition function is independent of the metric. Therefore it is sufficient
to consider the small deformation around the flat space.

As shown in Section 2.3 and 2.4, the existence of at least one preserved su-
percharge restricts the background fields in the Weyl multiplet and vector mul-
tiplets. Keeping one supercharge preserved, we can freely choose the following
background fields and parameters with a preserved supercharge:

• The integrable complex structure Jµ
ν ,

• A compatible Hermitian metric gij,

• The (1, 2)-form W satisfying ∂W = 0,

• Abelian background gauge fields satisfying (2.65), and

• Coupling constants.

In the above the (1, 2)-form W is defined by W = ∗U . By using (2.43), H = dB
can be expressed as

H = −1

2
dJ +W. (2.66)

The conservation condition ∇µUµ = 0 leads the condition for W as

∂W = 0, (2.67)

where ∂ is the Dolbeault operator.
There are functional degrees of freedom. However, as we will see, only the

small number of the degrees of freedom affects the partition function.
Note that the notation in [40] is little bit different from the one in [37]. In

this thesis we use the notation in [37].

2.5.1 Deformation theory

Before seeing deformation of a supersymmetric theory, let us review the properties
of deformations of the complex structure, the Hermitian metric and gauge fields
[64, 65].
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Complex structures

Let us consider an infinitesimal deformation of the integrable complex structure
∆Jµ

ν . Because ∆Jµ
ν is infinitesimal, we focus only on the linear order. We use

the holomorphic coordinate zi with respect to Jµ
ν .

Jµ
ν +∆Jµ

ν should be an almost complex structure, satisfying(
Jµ

ν +∆Jµ
ν

) (
Jν

ρ +∆Jν
ρ

)
= −δµρ . (2.68)

This implies the condition

∆J i
j = ∆J i

j
= 0. (2.69)

Jµ
ν + ∆Jµ

ν should be also integrable. This implies that the infinitesimal defor-
mation of the Nijenhuis tensor leaves zero as

∂j∆J
i
k
− ∂k∆J

i
j
= 0. (2.70)

Its complex conjugate also holds. (2.70) is antisymmetric with respect to j and
k. Hence we can introduce a (1, 0)-form

Θi = ∆J i
j
dzj (2.71)

with coefficients in the anti-holomorphic tangent bundle T 0,1M4. By using Θi,
(2.70) can be expressed as

∂Θi = 0. (2.72)

Not all deformations ∆Jµ
ν are meaningful deformations. There is a class of

deformations which can be identified as infinitesimal translation of Jµ
ν . For an

infinitesimal real vector ϵµ, the translation of Jµ
ν along ϵµ is written as

∆J i
j
= (LϵJ)

i
j = 2i∂jϵ

i. (2.73)

Hence there is a trivial deformation of the complex structure written as

Θi = 2i∂ϵi. (2.74)

Therefore, quotienting a space parameterized by the infinitesimal Θi by the iden-
tification Θi ∼ Θi+2i∂ϵi, we can obtain a space parameterizing the deformations
of the complex structure. This is described by the Dolbeault cohomology with
coefficients in T 0,1M4 as [

Θi
]
∈ H1,0

(
M4, T

0,1M4

)
. (2.75)

H1,0 (M4, T
0,1M4) is a complex vector space spanned by ∂-harmonic (1, 0)-forms.

Its dimension is finite if M4 is compact. Therefore, the deformation of the
complex structure can be parametrized by the finite number of parameters.
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Hermitian metrics

Next let us consider the deformation of the Hermitian metric. For a complex
manifold, we can always take a Hermitian metric compatible with the complex
structure as

gµνJ
µ
ρJ

ν
σ = gρσ. (2.76)

Consider the infinitesimal deformation of both the Hermitian metric and the
complex structure. Then gµν +∆gµν should be compatible with Jµ

ν +∆Jµ
ν . In

the first order, the following equation holds:

gµν
(
∆Jµ

ρJ
ν
σ + Jµ

ρ∆J
ν
σ

)
+∆gµνJ

µ
ρJ

ν
σ = ∆gρσ. (2.77)

This equation implies the relation between ∆gij, ∆gij and ∆Jµ
ν as

∆gij = − i

2

(
gik∆J

k
j
+ gjk∆J

k
i

)
, ∆gij =

i

2

(
gki∆J

k
j
+ gkj∆J

k
i

)
, (2.78)

while ∆gij = ∆gji is not constrained.

Abelian gauge fields

Let us consider the deformation of an Abelian gauge field Aµ satisfying Fij(A) =
0. Since Fij(A) = 0, the holomorphic part of Aµ can be locally expressed by
using a complex function λ (z, z) as

Ai = ∂iλ. (2.79)

The complex function λ is defined only locally. If we allow a complexified U(1)
gauge transformation, we can take a gauge such that Ai = 0. A transition
function g (z, z) preserving such gauge choice satisfies

∂ig = 0, (2.80)

which determines an anti-holomorphic line bundle over M4.
The structure of the anti-holomorphic line bundle depends only on Ai. Let

us consider a deformation of Ai by ∆Ai which is a globally defined (1, 0)-form.
From Fij(A) = 0, ∆Ai satisfies

∂i∆Aj − ∂j∆Ai = 0. (2.81)

Similar to the discussion about the deformation of the complex structure, a class
of deformations can be absorbed by a gauge transformation. The gauge transfor-
mation yields the deformation of the gauge field as

∆Ai = ∂iϵ, (2.82)

where ϵ (z, z) is a globally defined complex function on M4. Therefore, meaning-
ful deformations of Ai are parametrized by the Dolbeault cohomology:

[∆Ai] ∈ H1,0 (M4) . (2.83)
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2.5.2 Parameter dependence

We would like to consider a deformation of the background Weyl multiplet,
leaving one supercharge Q preserved. By the infinitesimal deformation, the La-
grangian is shifted by the linear combination between the shift of the Weyl mul-
tiplet and the R-multiplet. Let us recall the properties of the R-multiplet in the
presence of the supercharge Q, which generates a supersymmetry transformation
parameterized by ξ.

The R-multiplet is introduced in Section 2.2. The supersymmetry transfor-
mation law parameterized by ξ is obtained by setting ξ = 0 in (2.7)-(2.11) as

δQj
(R)
µ = −iξSµ, (2.84)

δQSµα = 0, (2.85)

δQS
α̇

µ = 2i (σνξ)α̇ Tµν , (2.86)

δQTµν =
1

2
ξσµρ∂

ρSν +
1

2
ξσνρ∂

ρSµ, (2.87)

δQFµν = − i

2
ξσµσρ∂νS

ρ +
i

2
ξσνσρ∂µS

ρ, (2.88)

where Tµν is defined in (2.12).

We can find the eight bosonicQ-exact operators δQS
α̇

µ, which are supersymme-
try transformations of the fermionic operators. Multiplying |ξ|−2ξ†σρ by (2.86),
we obtain

δQ

(
1

|ξ|2
ξ†σρSµ

)
= −2i

(
δνρ − iJν

ρ

)
Tµν . (2.89)

Multiplying δνρ − iJν
ρ by Tµν leaves only the holomorphic part with respect to

ν. Therefore, the eight bosonic Q-exact operators are Tµi. In the holomorphic
coordinates z1 = w and z2 = z, each component of Tµi can be written as

Tww = Tww − i

2
Fzz −

i

2
∂wj

(R)
w +

i

4
∂zj

(R)
z − i

4
∂zj

(R)
z , (2.90)

Twz = Twz −
i

2
Fwz −

3i

4
∂zj

(R)
w +

i

4
∂wj

(R)
z , (2.91)

Tww = Tww − i

2
∂wj

(R)
w , (2.92)

Twz = Twz +
i

2
Fwz −

i

4
∂wj

(R)
z − i

4
∂zj

(R)
w , (2.93)

and the remaining four components can be obtained from the above by w ↔ z
and w ↔ z.

At the first order, the Lagrangian for the bosonic components of the Weyl
multiplet is given by the linear combination between the Weyl multiplet and the
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R-multiplet as

∆L = −1

2
∆gµνTµν + A(R)µj(R)

µ +
i

4
ϵµνρλBµνFρλ, (2.94)

where

A(R)
µ = Aµ −

3

2
Vµ. (2.95)

We would like to consider the deformation of the Hermitian metric and the com-
plex structure restricted by (2.78). Other bosonic components of the background
Weyl multiplet V µ and A(R)µ are restricted as shown in Section 2.3. They can be
written in terms of ∆gµν , ∆J

µ
ν and W as

V w =
1

2
∂z (∆J

z
w −∆Jw

z)− 2i (∂z∆gzw − ∂w∆gzz) + 4iWzwz, (2.96)

V w =
1

2
∂z
(
∆Jz

w −∆Jw
z

)
− 2i (∂w∆gzz − ∂z∆gwz) , (2.97)

A(R)w =
1

2
∂w∆J

w
w − 1

4
∂z∆J

z
w +

3

4
∂z∆J

w
z − 3i∂z∆gzw + 2i∂w∆gzz − i∂w∆gww,

(2.98)

A(R)w =
1

2
∂w∆J

w
w +

1

4
∂z∆J

z
w +

1

4
∂z∆J

w
z + i∂w∆gww + i∂z∆gwz, (2.99)

and the remaining four components can be obtained from the above by w ↔ z
and w ↔ z. The (1, 2)-form W satisfies ∂W = 0, thus can be locally written by

(0, 2)-form B̃ij as W = ∂B̃. By using (2.90)-(2.93), (2.96)-(2.99) and W = ∂B̃
and dropping total derivatives, the Lagrangian (2.94) can be rewritten as

∆L = −∆gijTij + iB̃wzFwz − i
∑
j=j

∆J i
j
Tji

+ i∆Jw
w

(
Tww +

i

2
∂wj

(R)
w

)
+ i∆Jz

z

(
Tzz +

i

2
∂zj

(R)
z

)
+ i∆Jw

z

(
Twz +

i

2
Fwz −

i

4
∂wj

(R)
z +

3i

4
∂zj

(R)
w

)
+ i∆Jz

w

(
Twz −

i

2
Fwz −

i

4
∂zj

(R)
w +

3i

4
∂wj

(R)
z

)
. (2.100)

We can find that the first line of the right hand side of (2.100) is Q-exact, because
Tµi and Fwz = i (Tzw − Twz) are Q-exact. This fact implies that the first line does
not affect the partition function. Deformations arising on the remaining part of
(2.100) are only ∆J i

j
and ∆J i

j
. Therefore, we obtain the (in)dependence of the

partition function with respect to the deformation of the Hermitian metric and
the complex structure as:
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• For a fixed complex structure, a deformation of the Hermitian metric does
not affect the partition function.

• The partition function depends only on the part of the deformation of the
complex structure, ∆J i

j
and ∆J i

j
. From the discussion about the defor-

mation of the complex structure (2.75), the partition function is a locally
anti-holomorphic function of the complex structure moduli.

Let us consider the (in)dependence of the partition function with respect to

W . We find that a globally defined (0, 2)-form B̃ yields Q-exact deformation and
does not change the partition function. Therefore,

• The partition function depends onW through its cohomology classH1,2 (M4).

Let us discuss the deformation of the background Abelian vector multiplet.
The current multiplet associated with the vector multiplet is the real linear mul-
tiplet J , introduced in Section 2.4. In the presence of the preserved supercharge
Q, which generates a supersymmetry transformation parameterized by ξ, the real
linear multiplet is transformed as

δQJ = iξj, (2.101)

δQjα = 0, (2.102)

δQj
α̇
= −i (σµξ)α̇ Jµ, (2.103)

δQjµ = −2ξσµν∂
νj, (2.104)

where Jµ is defined in (2.63). We can find two bosonic Q-exact operators δQj
α̇
.

Similar to the analysis above, by multiplying |ξ|−2ξ†σν to (2.103), we obtain

δQ

(
1

|ξ|2
ξ†σνj

)
= i
(
δµν − iJµ

ν

)
Jµ. (2.105)

Thus we find that the holomorphic part Ji is Q-exact. The bosonic linearized
coupling between a vector multiplet and corresponding real linear multiplet is
written as

∆L = Aµjµ −DJ. (2.106)

In the presence of a supercharge corresponding to ξ, the background field D is
written as (2.65), which is rewritten as

D = 2i (Fww(A) + Fzz(A)) , (2.107)

in the holomorphic coordinates. Substituting it to (2.106) and dropping total
derivatives, we obtain

∆L = 2AwJw + 2AzJz + 2Aw (jw + i∂wJ) + 2Az (jz + i∂zJ) . (2.108)

Because Ji is Q-exact, the first two terms of the right hand side do not affect the
partition function. Therefore, we conclude that
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• The partition function depends only on the holomorphic part of the back-
ground Abelian gauge field. From the discussion above (2.83), the partition
function is a locally anti-holomorphic function of the corresponding anti-
holomorphic line bundle moduli.

If we allow the complexified gauge transformation, the partition function depends
on Ai through the cohomology class H1,0 (M4).

In [40], the following is commented. The R-multiplet can be embedded into
the Ferrara-Zumino multiplet except for the following cases:

• An action includes the Feyet-Iliopoulos terms [66], and

• The Kähler form of the target space is not exact [67].

The Ferrara-Zumino multiplet is a supercurrent multiplet corresponding to the
Weyl multiplet in the 4d N = 1 old minimal supergravity. If we can embed the
R-multiplet into the Ferrara-Zumino multiplet, it can be shown that W does not
affect the partition function.





Chapter 3

3d N = 2 supersymmetric
backgrounds

3d supersymmetric field theories are also studied vigorously in theoretical motiva-
tions. Dualities for them play important roles to reveal properties of superstring
and M-theory. Similarly to 4d, there is the Seiberg-like duality [68] which relates
different 3d N = 2 gauge theories. A 3d effective theory on a stack of N M2-
branes is proposed, in terms of 3d N = 2 gauge theory [9]. This 3d theory is
called the ABJM theory. Moreover, there are relations between 3d N = 2 field
theories and 3d SL(2) Chern-Simons theories, called the 3d/3d correspondence
[69, 70]. It may be related with a 3d compactification of the 6d N = (2, 0) theory.

Dualities can be checked by using exactly computed partition functions. S3

partition function is computed in [71, 72, 73]. The relation between S3 × S1

and S3 partition functions is discussed in [74, 75, 76]. Partition functions for
several kinds of deformations of S3 are computed in [28, 31, 77, 78, 79, 80, 81].
S2 × S1 partition function is computed in [82]. In particular the free energy of
the ABJM theory F = − logZS3 behaves as O

(
N3/2

)
[83], that is consistent with

the behavior of a stack of N M2-branes through the AdS/CFT correspondence
[84].

We would like to perform a similar analysis in 3d N = 2 theory [39, 40] as in
the previous chapter. Let us begin with introducing the properties of 3d spinors.

3.1 3d spinor

The Lorentz symmetry in 3d Euclidean space is SO(3) ∼ SU(2). Thus a spinor is
doublet, written as ξα. Spinor indices are raised and lowered by the antisymmetric
tensor ϵαβ and ϵαβ. In this thesis, we take ϵ12 = ϵ12 = +1.

In the Minkowski signature, 3d spinors are real. Due to N = 2 supersym-
metry, a supersymmetry transformation is parametrized by a complex spinor ξ,
which consists of two real spinors. ξ is the complex conjugation of ξ. On the

43
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other hand, spinors are complex in the Euclidean signature. Thus we treat ξ and
ξ as the independent spinors. The Hermitian conjugate of a spinor is related with
the complex conjugate of it as (

ξ†
)α

= (ξα)
∗ . (3.1)

The gamma matrices are just the Pauli matrices:(
γµ̂
) β

α
= σµ. (3.2)

They satisfy

γµ̂γ ν̂ = δµ̂ν̂ + iϵµ̂ν̂ρ̂γρ̂, (3.3)

where the antisymmetric tensor is normalized by ϵ1̂2̂3̂ = +1.

3.2 3d N = 2 new minimal supergravity

3d N = 2 supersymmetry algebra consists of the following symmetries:

• The translational symmetry,

• The Lorentz symmetry SO(3) ∼ SU(2),

• The supersymmetry, and

• U(1)R R-symmetry.

The 3d N = 2 supersymmetry algebra is written as{
Qα, Qβ

}
= 2 (γµ)αβ Pµ + 2iϵαβZ, (3.4)

where Z is a central charge. The supercharges Qα and Qα have the R-charge −1
and +1, respectively. The corresponding supersymmetric transformation param-
eters ξ and ξ have the R-charge +1 and −1, respectively.

Similar to the 4d case, by the Noether procedure, we construct theR-multiplet
which includes the energy-momentum tensor, the supersymmetry currents and
the U(1)R current. Then we linearly couple the R-multiplet and the Weyl mul-
tiplet and we can obtain the linearized supergravity. The general nonlinear de-
scription is formulated in [85]1.

The components of the R-multiplet are

j(R)
µ , Sµα, Sµα, Tµν , j(Z)

µ , J (Z). (3.5)

1At the time of [39, 40], there was no fully nonlinear component formulation of the 3d
new minimal supergravity. In [39, 40] the discussions rely on the inputs from the linearized
supergravity and the dimensional reduction of the 4d N = 1 new minimal supergravity.
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First four of them are the same notation as the 4d case. j
(Z)
µ is the current

associated with the central charge. J (Z) is from the two-form conserved current
iϵµνρ∂

ρJ (Z). The supersymmetry transformation of the R-multiplet is

δQj
(R)
µ = −iξSµ + iξSµ, (3.6)

δQSµα = ξα
(
2j(Z)

µ − iϵµνρ∂
νj(R)ρ

)
+
(
γνξ
)
α

(
−2iTµν + ∂νj

(R)
µ − ϵµνρ∂

ρJ (Z)
)
,

(3.7)

δQSµα = ξα
(
2j(Z)

µ + iϵµνρ∂
νj(R)ρ

)
+ (γνξ)α

(
2iTµν + ∂νj

(R)
µ − ϵµνρ∂

ρJ (Z)
)
,

(3.8)

δQTµν =
i

4
ϵµρλξγ

ρ∂λSν −
i

4
ϵµρλξγ

ρ∂λSν + (µ↔ ν), (3.9)

δQj
(Z)
µ = − i

2
ξγν∂νSµ +

i

2
ξγν∂νSµ −

1

2
ϵµνρξ∂

νSρ − 1

2
ϵµνρξ∂

νS
ρ
, (3.10)

δQJ
(Z) = −1

2
ξγµSµ −

1

2
ξγµSµ. (3.11)

The corresponding Weyl multiplet consists of the fields

Aµ, ψµα, ψµα, ∆e ν̂
µ , Cµ, Bµν . (3.12)

The supersymmetry transformations for the gravitinos ψµ and ψµ are

δQψµ = 2 (∇µ − iAµ) ξ +Hγµξ + 2iVµξ + ϵµνρV
νγρξ, (3.13)

δQψµ = 2 (∇µ + iAµ) ξ +Hγµξ − 2iVµξ − ϵµνρV
νγρξ, (3.14)

where

V µ = −iϵµνρ∂νCρ, ∂µV
µ = 0, (3.15)

H =
i

2
ϵµνρ∂µBνρ. (3.16)

3.3 3d N = 2 supersymmetric backgrounds

We would like to obtain conditions for the bosonic background fields in the Weyl
multiplet by imposing the existence of at least one solution ξ for δQψµ = 0. Be-
cause δQψµ = 0 is the homogeneous first order differential equation, the nontrivial
solution ξ is nowhere vanishing.

Similar to 4d, by using ξ, we can define the bilinears

|ξ|2 = ξ†ξ, (3.17)

ηµ =
1

|ξ|2
ξ†γµξ, (3.18)

Pµ = ξγµξ. (3.19)
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First two of them are real, nowhere vanishing and have R-charge zero. By the
Fierz identity, ηµ satisfies

ηµηµ = 1. (3.20)

Let us define a tensor Φµ
ν by using ηµ:

Φµ
ν = ϵµνρη

ρ. (3.21)

It satisfies

Φµ
ρΦ

ρ
ν = ϵµρσϵ

ρ
νλη

σηλ

= −δµν + ηµην . (3.22)

This implies that the triple
(
ηµ, gµν ,Φ

µ
ν

)
defines a mathematical structure on

the 3d manifold M3, which is called an almost contact metric structure. For
the definition of the almost contact metric structure, see Appendix C.3.1. The
tensor Φµ

ν can be interpreted as an almost complex structure on the 2d space
orthogonal to ηµ. When Φµ

νX
ν = iXµ or ΩµΦ

µ
ν = iΩν for a vector Xµ or a one-

form Ωµ, we refer to it as holomorphic. Note that arbitrary (anti-)holomorphic
vectors and one-forms are orthogonal to ηµ. Pµ is a complex anti-holomorphic
one-form satisfying

PµΦ
µ
ν = −iPν , (3.23)

which is obtained by using the Fierz identity.
Now let us obtain conditions for the bosonic background fields in the Weyl

multiplet, by imposing the existence of a solution ξ for δQψµ = 0. The equation
δQψµ = 0 is written by

(∇µ − iAµ) ξ = −1

2
Hγµξ − iVµξ −

1

2
ϵµνρV

νγρξ. (3.24)

The background fields Aµ, Vµ and H are not completely fixed because the equa-
tion (3.24) is invariant under the following shift in terms of the complex scalar κ
and the vector Uµ as

V µ → V µ + Uµ + κηµ,

H → H + iκ, (3.25)

Aµ → Aµ +
3

2
(Uµ + κηµ) ,

where κ and Uµ satisfy

Φµ
νU

ν = iUµ, ∇µ (U
µ + κηµ) = 0. (3.26)
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First, we can compute the differential of ηµ by using (3.24) as

∇µην =
1

2
(H +H∗) (ηµην − gµν) +

i

2
(H −H∗) Φµν +

i

2
gµνηρ (V

ρ − V ∗ρ)

− i

2
ηµ (Vν − V ∗

ν ) +
1

2
Φµνηρ (V

ρ + V ∗ρ) +
1

2
ηµΦνρ (V

ρ + V ∗ρ) . (3.27)

We can find that the solution of (3.27) can be written as

V µ = ϵµνρ∇νηρ, H = −1

2
∇µη

µ +
i

2
ϵµνρηµ∇νηρ, (3.28)

up to the shift (3.25). By using (3.28), the symmetric part of (3.27) is

∇µην +∇νηµ = (H +H∗) (ηµην − gµν) + igµνηρ (V
ρ − V ∗ρ)

− iη{µ
(
Vν} − V ∗

ν}
)
+ η{µΦν}ρ (V

ρ + V ∗ρ)

= (gµν − ηµην)∇ρη
ρ + 2η{µη

ρ∇ρην}. (3.29)

By using this, we can show an integrability condition

Φµ
νLηΦ

ν
ρ = 0, (3.30)

where the Lie derivative along ηµ is given by

LηΦ
µ
ν = ηρ∇ρΦ

µ
ν −∇ρη

µΦρ
ν +∇νη

ρΦµ
ρ. (3.31)

An almost contact metric structure satisfying (3.30) defines a mathematical
structure called a transversely holomorphic foliation [40, 86]. The analysis for
(3.30) is shown in Appendix C.3.2. From this, there exist the local coordinates
(τ, z, z) with real τ and complex z on M3 satisfying the following properties:

• On local coordinates (τ, z, z),

– The vector ηµ is written as

ηµ∂µ = ∂τ . (3.32)

– A holomorphic one-form Ωµ is written as

Ωµdx
µ = ω (τ, z, z) dz. (3.33)

– The metric is given with a complex function h (τ, z, z) and a real func-
tion c (τ, z, z) as

ds2 =
(
dτ + h (τ, z, z) dz + h (τ, z, z) dz

)2
+ c (τ, z, z)2 dzdz. (3.34)
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• For overlapping coordinates (τ, z, z) and (τ ′, z′, z′), they are related by

τ ′ = τ + t (z, z) , z′ = f(z), (3.35)

where t (z, z) and f(z) are real and holomorphic, respectively.

In the metric (3.34), ηµ and Φµ
ν are given by

η = dτ + hdz + hdz, Φµ
ν =

0 −ih ih
0 i 0
0 0 −i

 . (3.36)

Finally, let us obtain the expression for Aµ. For this, it is convenient to

introduce a connection ∇̂µ satisfying ∇̂µgνρ = 0 and ∇̂µην = 0. This can be
realized by replacing the usual spin connection ωµνρ with

ω̂µνρ = ωµνρ + ηρ∇µην − ην∇µηρ + 2WµΦνρ, Wµ = −1

4
ηµϵ

νρλην∇ρηλ. (3.37)

By using the connection ∇̂µ, the condition (3.24) is written as(
∇̂µ − iÂµ

)
ξ = 0, (3.38)

where

Âµ = Aµ −
1

2

(
2δ ν

µ − iΦ ν
µ

)
Vν +

i

2
ηµH −Wµ. (3.39)

To determine Âµ or Aµ, let us consider the remaining bilinear Pµ. As shown
above, this is anti-holomorphic and its non-zero component is only p = Pz in the
coordinates (τ, z, z). From (3.38), p satisfies(

∇̂µ − 2iÂµ

)
p = 0, (3.40)

and thus we obtain

Âµ = − i

2
∇̂µ log p. (3.41)

Similar to the 4d case, let us define a scalar

s =
1√
2
pg−1/4. (3.42)

By using the metric (3.34), ∇̂µs is given by

∇̂τs = ∂τs, (3.43)

∇̂zs = ∂zs+
s

4
(∂z − ηz∂τ ) log g, (3.44)

∇̂zs = ∂zs−
s

4
(∂z − ηz∂τ ) log g. (3.45)
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By (3.41)-(3.45), we therefore find that Âµ is given by

Âµ =
1

8
Φ ν

µ ∂ν log g −
i

2
∂µ log s. (3.46)

Conversely, we can solve (3.24) in the situation such that the metric and
background fields take the forms as obtained above. Let us take the vielbein as

e1̂ = η, e2̂ − ie3̂ = c (τ, z, z) dz, e2̂ + ie3̂ = c (τ, z, z) dz. (3.47)

In this frame, we can find that

ξα =
√
s (τ, z, z)

(
1
0

)
(3.48)

is a solution.

By imposing the condition that two or more supercharges are preserved, we
can obtain more restrictive conditions. We list the results below:

• The presence of one supercharge ξ implies that M3 admits a transversely
holomorphic foliation with a transversely Hermitian metric.

• In the presence of two supercharges ξ and ξ with opposite U(1)R charge,
we can define a vector field Kµ = ξγµξ. We can find that it is a Killing
vector. If Kµ is real, M3 is an S1 fibration over a Riemann surface, called
a Seifert manifold. If Kµ is complex, it gives two independent isometries
and yields a more restrictive result.

• The presence of four supercharges implies that M3 is locally isometric to
either of them:

– S3, T 3, H3,

– R× S2, R× T 2, R×H2, and

– A certain fibration over S2, T 2, H2.

3.4 Background vector multiplet

As in the 4d case, we can turn on background vector multiplets. Let us consider
a condition in which at least one supercharge preserves in the presence of back-
ground U(1) vector multiplets. A real linear multiplet J in 3d consists of the
flavor symmetry current jµ, the fermions jα and jα and two scalars J and K.
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Their supersymmetry transformations are written as

δQJ = iξj − iξj, (3.49)

δjα = i
(
γµξ
)
α
(jµ + i∂µJ) + ξαK, (3.50)

δQjα = −i (γµξ)α (jµ − i∂µJ) + ξαK, (3.51)

δQjµ = iϵµνρξγ
ρ∂νj − iϵµνρξγ

ρ∂νj, (3.52)

δQK = −iξγµ∂µj + iξγµ∂µj. (3.53)

The coupled vector multiplet consists of the gauge field Aµ, the gauginos λα
and λα and two scalars D and σ. The supersymmetric transformations of λ and
λ are given by

δQλ = iξ(D + σH)− i

2
γµξϵ

µνρFνρ(A)− iγµξ (∂µσ + iVµσ) , (3.54)

δQλ = −iξ(D + σH) +
i

2
γµξϵ

µνρFνρ(A) + iγµξ (∂µσ − iVµσ) . (3.55)

We would like to obtain constraints for the bosonic background fields by imposing
the existence of a solution ξ for δQλ = 0. By multiplying ξ or ξ† to δQλ = 0,

0 = ξδQλ = − i

2
ϵµνρPµFνρ(A)− iP µ (∂µσ + iVµσ) , (3.56)

0 = |ξ|−2ξ†δQλ = i(D + σH)− i

2
ΦµνFµν(A)− iηµ (∂µσ + iVµσ) . (3.57)

By using the coordinates (τ, z, z) and substituting the solution of Vµ and H, we
obtain the conditions

Fτz(A) = 0, D =
1

2
ΦµνFµν(A) + ηµ∂µσ + σ

(
1

2
∇µη

µ − i

2
ϵµνρηµ∂νηρ

)
, (3.58)

where Aµ is the shifted gauge field

Aµ = Aµ + iσηµ. (3.59)

Note that the shift of the background fields in the Weyl multiplet (3.25) does not
affect the solution of the background vector multiplets.

3.5 Q-exact deformations

3.5.1 Deformation theory

∂̃-cohomology

As in the 4d case, some cohomology plays an important role in the discussion of
the parameter dependence of the partition function. For this, let us firstly define
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a complex projection operator

Πµ
ν =

1

2

(
δµν + iΦµ

ν − ζµην
)
, Πµ

νΠ
ν
ρ = Πµ

ρ. (3.60)

This projection operator leaves an anti-holomorphic parts of vector fields and
one-forms, with respect to Φµ

ν . We refer to a vector field Xµ or a one-form ω0,1
µ

as anti-holomorphic with respect to Πµ
ν if

Πµ
νX

ν = Xµ, ω0,1
µ Πµ

ν = ω0,1
ν . (3.61)

In this section, we use “(anti-)holomorphic” in the meaning of “(anti-)holomorphic
with respect to Πµ

ν .” In the coordinates (τ, z, z), they can be written as

X = Xz
(
∂z − h∂τ

)
, ω0,1 = ω0,1

z dz. (3.62)

The remaining part of one-forms is called holomorphic. A holomorphic one-form
ω1,0 satisfies ω1,0

µ Πµ
ν = 0. In the coordinates (τ, z, z),

ω1,0 = ω1,0
τ

(
dτ + hdz

)
+ ω1,0

z dz. (3.63)

The (1, 0)-forms ω1,0 span a 2d subspace of the cotangent bundle onM3, while the
(0, 1)-forms ω0,1 span a 1d subspace of it. Note that (1, 0)-forms and (0, 1)-forms
are not related with the simple complex conjugation. We can split differential
forms as

1-forms → (1, 0)-forms and (0, 1)-forms,
2-forms → (1, 1)-forms and (2, 0)-forms,
3-forms → (2, 1)-forms.

Each differential form is written as

ω1,1 = ω1,1
τz dτ ∧ dz + ω1,1

zz dz ∧ dz, (3.64)

ω2,0 = ω2,0
τz (dτ + hdz) ∧ dz, (3.65)

ω2,1 = ω2,1
τzzdτ ∧ dz ∧ dz. (3.66)

As differential forms on complex manifolds, we can define an operator ∂̃ as

∂̃ : Λp,q → Λp+1,q, ∂̃ωp,q = dωp,q|Λp+1,q , (3.67)

where Λp,q is a set which has (p, q)-forms ωp,q as elements. The operator ∂̃ is the
3d analogue of the Doubeault operator ∂ in even dimensions. For (p, q)-forms

ωp,q (3.62)-(3.66), the operator ∂̃ acts as

∂̃ω0,0 = ∂τω
0,0(dτ + hdz) + ∂zω

0,0dz, (3.68)

∂̃ω1,0 =
(
∂τω

1,0
z − ∂zω

0,1
τ

) (
dτ + hdz

)
∧ dz, (3.69)

∂̃ω0,1 = ∂τω
0,1
z dτ ∧ dz + ∂zω

0,1
z dz ∧ dz, (3.70)

∂̃ω1,1 =
(
∂τω

1,1
zz − ∂zω

1,1
τz

)
dτ ∧ dz ∧ dz, (3.71)

∂̃ω2,0 = ∂̃ω2,1 = 0. (3.72)
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Because d2 = 0, ∂̃ satisfies ∂̃2 = 0. Therefore we can define its cohomology as

Hp,q (M3) =

{
ωp,q ∈ Λp,q

∣∣∣∂̃ωp,q = 0
}

∂̃Λp−1,q
. (3.73)

As in the 4d case, it is finite dimensional if M3 is compact.

Deformations of transversely holomorphic foliation

Let us consider infinitesimal deformations of the almost contact structure (η, ζ,Φ),
satisfying

Φµ
νΦ

ν
ρ = −δµρ + ζµηρ, ηµζ

µ = 1, (3.74)

by ∆ηµ, ∆ζ
µ and ∆Φµ

ν . By using the fact that (η+∆η, ζ +∆ζ,Φ+∆Φ) is also
an almost contact structure, at the first order, we obtain

∆ητ = −ηµ∆ζµ, (3.75)

∆Φz
τ = −i∆ζz, (3.76)

∆Φz
z = −ih∆ζz, (3.77)

∆Φτ
z = −i∆ηz − ih∆ζτ − ih2∆ζz + h∆Φτ

τ − h∆Φz
z, (3.78)

where we used the coordinates (τ, z, z), on which Φµ
ν is represented as in (3.36).

The expressions for ∆Φz
τ , ∆Φz

z and ∆Φτ
z are obtained from (3.76)-(3.78) by

the complex conjugation. Furthermore, by requiring that the deformed almost
contact structure satisfies the integrability condition (3.30), we obtain(

∆Φτ
τ − ih∆ζz + iz∆ζz

)
∂τh = 0, (3.79)

∂τ
(
∆Φz

z − ih∆ζz
)
+ 2i∂z∆ζ

z = 0. (3.80)

(3.79) determines ∆Φτ
τ . To understand (3.80), let us introduce a (1, 0)-form Θz

with coefficients in the anti-holomorphic tangent bundle T 0,1M3 as

Θz = 2i∆ζz
(
dτ + hdz

)
+
(
∆Φz

z + ih∆ζz
)
dz. (3.81)

The condition (3.80) can be simply written in terms of Θz as

∂̃Θz = 0. (3.82)

Hence Θz is the 3d analogue of (2.71) satisfying (2.72). There is a trivial defor-
mation

Θz = 2i∂̃ϵz. (3.83)

Therefore, nontrivial deformations of the transversely holomorphic foliation are
parametrized by the ∂̃-cohomology with coefficients in T 0,1M3 as[

Θz
]
∈ H1,0

(
M3, T

0,1M3

)
. (3.84)
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Deformations of metric

There is a compatible metric gµν with the almost contact structure (η, ζ,Φ),
satisfying

gµνΦ
µ
ρΦ

ν
σ = gρσ − ηρησ. (3.85)

ηµ and ζµ is related by ηµ = gµνζ
ν . By imposing the condition that the deforma-

tion of the almost contact metric structure keeps (3.85), we obtain the following:

gµν∆Φµ
ρΦ

ν
σ + gµνΦ

µ
ρΦ

ν
σ +∆gµνΦ

µ
ρΦ

ν
σ = ∆gρσ −∆ηρησ − ηρ∆ησ. (3.86)

In the undeformed coordinates (τ, z, z), this constrains ∆gµν , except for ∆gzz, as

∆gττ = −2ηµ∆ζ
µ, (3.87)

∆gτz = ∆ηz − hηµ∆ζ
µ − c2

2
∆ζz, (3.88)

∆gzz =
ic2

2
∆Φz

z −
hc2

2
∆ζz + 2h∆ηz, (3.89)

while ∆gτz and ∆gzz are obtained by the complex conjugation.

Abelian gauge fields

In Section 3.4, we have obtained the constraint for Abelian background vector
multiplets. A background gauge field in the vector multiplet is restricted by
Fτz(A) = 0 with Aµ = Aµ + iσηµ. This means that the holomorphic part A1,0

µ

satisfies ∂̃A1,0 = 0. Therefore, we can characterize a deformation of A1,0 by ∆A1,0

in terms of the ∂̃-cohomology as[
∆A1,0

]
∈ H1,0 (M3) . (3.90)

3.5.2 Parameter dependence

We would like to consider a deformation of the background Weyl multiplet,
leaving one supercharge Q preserved. By the infinitesimal deformation, the La-
grangian is shifted by a linear combination between the shift of the Weyl multiplet
and the R-multiplet. Let us recall properties of the R-multiplet in the presence
of the supercharge Q, which generates a supersymmetry transformation param-
eterized by ξ.
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The R-multiplet is introduced in Section 3.2. Its supersymmetry transforma-
tions parameterized by ξ are obtained by setting ξ = 0 in (3.6)-(3.11) as

δQj
(R)
µ = −iξSµ, (3.91)

δQSµα = 0, (3.92)

δQSµα = ξα
(
2j(Z)

µ + iϵµνρ∂
νj(R)ρ

)
+ (γνξ)α

(
2iTµν + ∂νj

(R)
µ − ϵµνρ∂

ρJ (Z)
)
,

(3.93)

δQTµν =
i

4
ϵµρλξγ

ρ∂λSν +
i

4
ϵνρλξγ

ρ∂λSµ, (3.94)

δQj
(Z)
µ = − i

2
ξγν∂νSµ −

1

2
ϵµνρξ∂

νSρ, (3.95)

δQJ
(Z) = −1

2
ξγµSµ. (3.96)

We can find the six bosonic Q-exact operators δQSµα, which are supersymmetry
transformations of the fermionic operators. By calculating ξδQSµ and ξ†δQSµ,
we can find that they are linear combinations of

Tττ = Tττ − ij(Z)
τ + 2i∂zj

(R)
z , (3.97)

Tτz = Tτz −
i

2
∂zj

(R)
τ − 1

2
∂zJ

(Z), (3.98)

Tτz = Tτz − ij
(Z)
z − i

2
∂zj

(R)
τ − 1

2
∂zJ

(Z), (3.99)

Tzz = Tzz −
i

2
∂zj

(R)
z , (3.100)

Tzz = Tzz −
i

2
∂zj

(R)
z +

1

4
∂τJ

(Z), (3.101)

J (Z)
z = j(Z)

z + ∂τj
(R)
z − ∂zj

(R)
τ + i∂zJ

(Z). (3.102)

At the first order, the Lagrangian for the bosonic components of the Weyl
multiplet is written by the linear combination between the Weyl multiplet and
the R-multiplet as

∆L = −1

2
∆gµνTµν + A(R)µj(R)

µ + Cµj(Z)
µ +HJ (Z), (3.103)

where

A(R)
µ = Aµ −

3

2
Vµ. (3.104)

We would like to consider the deformation of the transversely holomorphic folia-
tion and the compatible metric, around the flat space. Other bosonic components
of the background Weyl multiplet A(R)µ, Cµ and H are deteremined in Section
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3.3 as

A(R)τ = − i

2
∂z∆ζ

z + i∂z∆ηz − i∂z∆ηz +
i

2
∂τ∆gzz, (3.105)

A(R)z =
1

2
∂z∆Φz

z − i∂z∆gzz − 2i∂z∆ζ
τ − 2i∂τ∆ηz, (3.106)

A(R)z = i∂z∆gzz +
1

2
∂z∆Φz

z, (3.107)

Cτ = −i∆ζτ + C̃τ , Cz = 2i∆ηz + C̃z, Cz = 2i∆ηz + C̃z, (3.108)

H = −i∂τ∆gzz −
1

2
∂z∆ζ

z − 1

2
∂z∆ζ

z + ∂z∆ηz − ∂z∆ηz + iκ, (3.109)

where C̃µ is given by

−iϵµνρ∂νC̃ρ = Uµ + κηµ. (3.110)

Uµ and κ are the ambiguities of the solution of supersymmetric backgrounds.
They satisfies

Φµ
νU

ν = iUµ, (3.111)

∇µ (U
µ + κηµ) = 0. (3.112)

Instead of considering Uµ and κ separately, let us introduce a two-form

Wµν =
1

2
ϵµνρ (U

ρ + κηρ) . (3.113)

(3.112) means that Wµν is closed: dW = 0. From (3.111), Uµ has only a z-
component, and hence Wτz = 0. Thus W is a (1, 1)-form. The holomorphic
components of dW also vanishes:

∂̃W = 0. (3.114)

It seems that the partition function depends on W through the ∂̃-cohomology.
This will be shown later.

By substituting (3.105)-(3.109) into (3.103), we obtain the variation of the
Lagrangian

∆L = −4∆gzzTzz − 2∆ηz (Tτz − iJz)− 2∆ηzTτz

+∆ζτTττ +∆ζzTτz − i∆Φz
zTzz + C̃µj(Z)

µ + iκJ (Z)

+∆ζz
(
Tτz +

1

2
∂zJ

(Z)

)
+ i∆Φz

z

(
Tzz +

i

2
∂zj

(R)
z

)
. (3.115)

This Lagrangian is supersymmetric if the integrability conditions (3.79) and
(3.80) hold with h = 0, because we are considering the deformation around
the flat space. Since the several terms in (3.115) is written by the Q-exact oper-
ators, we obtain the (in)dependence of the partition function with respect to the
transversely holomorphic foliation and the compatible metric:
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• For a fixed transversely holomorphic foliation, deformations of the compat-
ible metric do not affect the partition function.

• The partition function does not depend on ∆ζτ , ∆ζz and ∆Φz
z.

∆ζz and ∆Φz
z are not independent due to (3.80). The deformations by them are

characterized by the (0, 1)-form Θz with coefficients in the holomorphic tangent
bundle T 1,0M3. Therefore, we conclude the ∆ζz and ∆Φz

z dependence of the
partition function as

• The partition function depends on the transversely holomorphic foliation
only through the cohomology class of Θz in H0,1 (M3, T

1,0M3).

In order to show that the partition function depends on C̃µ and κ through
the ∂̃-cohomology class of the (1, 1)-form W , let us assume that W = ∂̃φ1,0 for a
globally defined (1, 0)-form φ1,0. Substituting this, we obtain

C̃µj(Z)
µ + iκJ (Z) = 4iφ1,0

z J (Z)
z + (total derivative). (3.116)

Therefore, we find that

• The partition function depends on W only through its cohomology class in
H1,1 (M3).

Let us discuss the deformation of a background Abelian vector multiplet. The
current multiplet associated with the vector multiplet is the real linear multiplet
J , introduced in Section 3.4. In the presence of the preserved supercharge Q,
which generates a supersymmetry transformation parameterized by ξ, the super-
symmetry transformation of the real linear multiplet is represented by

δQJ = iξj, (3.117)

δQjα = 0, (3.118)

δQjα = −i (γµξ)α (jµ − i∂µJ) + ξαK, (3.119)

δQjµ = iϵµνρξγ
ρ∂νj, (3.120)

δQK = −iξγµ∂µj. (3.121)

We can find two bosonic Q-exact operators δQjα. By calculating ξδQj and ξ
†δQj,

they are given by

Jz =
i

|P µ|
ξδQj = jz − i∂zJ, (3.122)

K =
1

|ξ|2
ξ†δQj = K − ijτ − ∂τJ. (3.123)
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The bosonic linearized couplings between a vector multiplet and corresponding
real linear multiplet is written as

∆L = Aµjµ + σK +DJ. (3.124)

In the presence of a supercharge corresponding to ξ, the background field D is
written as (3.58), which is rewritten as

D = ∂τσ − 2i (∂zAz + ∂zAz) , (3.125)

in the coordinates (τ, z, z). Substituting it to (3.124) and dropping total deriva-
tives, we obtain

∆L = Aτjτ + 2AzJz + 2Az (jz + i∂zJ) + σK. (3.126)

Since Jz and K are Q-exact, Az and σ do not affect the partition function.
Background vector multiplets affect the partition function only through Aτ and
Az, or holomorphic part of A. Therefore, similar to the above,

• The partition function depends on background Abelian vector multiplets
only through their ∂̃-cohomology classes in H1,0 (M3).





Chapter 4

5d supersymmetric field theories

Before the analysis for 5d supersymmetric backgrounds, we introduce interesting
properties of 5d supersymmetric field theories in this chapter. These properties
indicate that 5d theories are worth studying. Some of them are obtained from
superstring/M-theory and can be checked by using exact computations.

4.1 5d N = 1 supersymmetry

In order to consider 5d supersymmetry, let us introduce spinors in 5d.
5d Dirac matrices are 4× 4 matrices, similarly to the 4d case. It is sufficient

to identify the chirality matrix γ5 in 4d as one of the 5d Dirac matrices. We
can impose neither the Weyl nor the Majorana condition for spinors. Instead,
we introduce Sp(1)R ∼ SU(2)R symmetry and impose the symplectic Majorana
condition

(ξIα)
∗ = ξIα = ϵIJCαβξJβ (4.1)

in the Euclidean signature, where C is the charge conjugation matrix in 5d. The
indices take α, β = 1, 2, 3, 4 and I, J = 1, 2. Therefore, 5d N = 1 supersymmetry
has eight supercharges. In this sense, 5d N = 1 supersymmetry is similar to 4d
N = 2 supersymmetry and 3d N = 4 supersymmetry. This is also similar to 6d
N = (1, 0) supersymmetry.

5d N = 1 supersymmetry algebra consists of the following generators of
transformations:

• Translational transformation Pµ̂,

• Lorentz transformation Mµ̂ν̂ ,

• Sp(1)R transformation Ra, and

• Supersymmetry transformation QIα.

59
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Table 4.1: 5d N = 1 vector multiplet.

fields dof Sp(1)R
bosons gauge field 4 1 Wµ

scalar 1 1 M
auxiliary field 3 3 Ya

fermions gaugino 8 2 ΩIα

Table 4.2: 5d N = 1 hypermultiplet.

fields dof Sp(1)R Sp(1)F
bosons scalar 4 2 2 qAI

auxiliary field 4 2 2 FA
I

fermion symplectic Majorana 8 1 2 ζAα

The first three of them are bosonic symmetries, while the last one is fermionic.
Massless representations of this algebra are the vector multiplet and the hyper-
mutiplet.

A vector multiplet consists of the gauge field, the real scalar field, the auxiliary
field and the gaugino, as shown in Table 4.1.

A hypermultiplet consists of the fields shown in Table 4.2. An off-shell action
for hypermultiplets is usually not written. The action can be written by adding
a U(1)Z symmetry, which is introduced in Chapter 5. A = 1, 2 is the index of
the doublet of Sp(1)F symmetry in the flavor symmetry.

The Yang-Mills action in the 5d flat spacetime is written as

− 1

4g2YM

Tr

∫
d5xFµν(W )F µν(W ), (4.2)

where Fµν(W ) is the field strength for the gauge field Wµ. The mass dimension
of the Yang-Mills coupling gYM is −1/2. Thus the theory is non-renormalizable
and weakly coupled in the IR region. One might think that the 5d theory is not
worth researching. However, Seiberg [41] pointed out that there is a nontrivial
dynamics in the IR region and conjectured the presence of interesting properties
in the UV region. We will see these properties in the next section and later.

4.2 Low energy effective action

Given a supersymmetric gauge theory, we often consider the structure of vacua.
The space of vacua, called moduli space, has some characteristic subspaces. One
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of them is called the Coulomb branch, in which scalar fields in vector multi-
plets take values. The other is called the Higgs branch, in which scalar fields in
hypermultiplets take values.

For the structures of the Coulomb and Higgs branches of 5d N = 1 supersym-
metric gauge theories, we can use the arguments for 4d N = 2 supersymmetric
gauge theories. The Higgs branch is hyper-Kähler manifold and not corrected
by quantum effects due to the supersymmetry. On the Coulomb branch of a 4d
N = 2 supersymmetric gauge theory, the low energy effective action is written
by a holomorphic function F(ϕ) of the scalar fields in the vector multiplets. The
function F(ϕ) is called the prepotential. For simplicity, we consider the case in
which there is one vector multiplet with a gauge group G. Then ϕ takes value in
the Cartan subalgebra of G. Using the prepotential, the Kähler potential for 4d
supersymmetric field theory can be written as1

Re

∫
d4θ

∂F(Φ)

∂Φ
Φ ⊃ Re

(
∂2F(ϕ)

∂ϕ2

)
∂µϕ∂

µϕ. (4.3)

Φ on the left hand side of (4.3) is the 4d chiral superfield including ϕ.
The general form of the 5d Lagrangian on the Coulomb branch is restricted by

the form of the 4d Lagrangian on the Coulomb branch. 4dN = 2 supersymmetric
gauge theory can be obtained from 5d N = 1 supersymmetric gauge theory by
the dimensional reduction. In this procedure, the complex scalar field ϕ in 4d
can be identified by the real scalar field M and the fifth components of the gauge
field W5 in 5d as

ϕ =M + iW5. (4.4)

Assuming that the action (4.3) can be obtained by the dimensional reduction
from 5d, let us impose the condition that the action is invariant under the shift

W5 → W5 + (const.), (4.5)

which can be realized by the 5d gauge transformation. Then the 5d prepotential
is at most cubic:

F(M) = c0 + ciM
i + cijM

iM j + cijkM
iM jMk, (4.6)

where i, j, k are the indices of the gauge group. Since the constants c0 and ci
cannot affect the Lagrangian, we set them zero. If there is only one vector
multiplet, we usually write the prepotential as

F(M) =
1

2g2YM

M2 +
c

6
M3. (4.7)

1The definition of the prepotential is different from the original one shown in (1.16) by the
factor i.
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Wµ

Wν

Wρp+ q

p

q

Figure 4.1: One-loop diagram generating 5d Chern-Simons term.

The first term in (4.7) gives the kinetic terms for the vector multiplet:

Lkin = − 1

g2YM

Tr

(
1

4
Fµν(W )F µν(W ) +

1

2
DµMDµM + 2YaYa + 2iΩD\Ω− 2Ω[M,Ω]

)
.

(4.8)

The second term in (4.7) yields

LCS = cTr

(
1

24
ϵλµνρσWλFµν(W )Fρσ(W )− 1

4
MFµν(W )F µν(W )− 1

2
MDµMDµM

− 2MYaYa + 2iMΩD\Ω + ΩF\ (W )Ω + 2ΩY Ω− Ω
[
M2,Ω

])
. (4.9)

This action is a 5d supersymmetric version of a Chern-Simons action. The con-
stant c is often written as

c =
k

4π2
, (4.10)

where k is called the Chern-Simons level. For gauge invariance, k should be
an integer. (4.8) and (4.9) are invariant under the following supersymmetric
transformation

δQWµ = 2iξγµΩ, (4.11)

δQM = 2ξΩ, (4.12)

δQΩ =
1

2
F\ (W )Ω− i

2
(D\M)ξ − Y ξ, (4.13)

δQYa = iξτaD\Ω− ξτa[M,Ω]. (4.14)

Even if c = 0 in the original Lagrangian, c becomes nonzero by the loop
corrections [87]. In order to show that, let us consider the one-loop WWW
amplitude generated by the fermion loop. We assign the momenta p+ q, p and q
and the polarizations µ, ν and ρ for the gauge particles, as shown in Figure 4.1.

The contribution of a fermion with mass m to the amplitude is written by

1

(2π)5
tr

∫
d5k

(
γµ

k\ + p\ − im

(k + p)2 +m2 − iϵ
γν

k\ − im

k2 +m2 − iϵ
γρ

k\ − q\ − im

(k − q)2 +m2 − iϵ

)
.

(4.15)
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Figure 4.2: Another one-loop diagram we should consider.

The term relevant to the Chern-Simons term ϵµνρσλWµ∂νWρ∂σWλ is

im

8π5
ϵµνρσλpσqλ

∫
d5k

1

(k2 +m2 − iϵ)3
. (4.16)

By the Wick rotation k0 → ik0, we can compute the integral and obtain the
amplitude

− 1

16π2

m

|m|
ϵµνρσλpσqλ. (4.17)

By considering another diagram shown in Figure 4.2, which yields the same con-
tribution, the Chern-Simons term generated by these diagrams is

−sign(m)

48π2

∫
d5xϵµνρσλWµ∂νWρ∂σWλ, (4.18)

where

sign(m) =
m

|m|
. (4.19)

The combinatorial factor 1/3! is taken into account in the denominator in (4.18).
Therefore, the Chern-Simons level is effectively shifted by

∆k = −1

2
sign(m) (4.20)

due to a fermion loop. As simple examples, let us consider the following two
cases:

1. U(1) gauge theory with Nf hypermultiplets with charge one.

2. SU(2) gauge theory with Nf hypermultiplets in the fundamental represen-
tation.

Let mi (i = 1, . . . , Nf ) be the mass of i-th hypermultiplet. In the U(1) theory,
the Coulomb branch is parametrized by the scalar fieldM in the vector multiplet.
Hence the Coulomb branch of this theory is R. On a general point of the Coulomb
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M

1

g2eff

m1m2 m3 m4m5

Figure 4.3: Effective Yang-Mills coupling g−2
eff in the U(1) theory.

branch, the scalar fieldM contributes to the masses of the hypermultiplets. Thus
the effective Chern-Simons level is

keff = −1

2

Nf∑
i=1

sign (mi +M) . (4.21)

Because ceff = keff/4π
2 is the derivative of F ′′(M) ∼ g−2

eff , we obtain the effective
Yang-Mills coupling geff by integrating (4.21) over M as

1

g2eff
=

1

g2YM

− 1

8π2

Nf∑
i=1

|mi +M | . (4.22)

It turns out that for any gYM and mi the right hand side becomes negative for
sufficiently large M , as shown in Figure 4.3. This fact implies that this theory is
non-renormalizable and a UV completion is needed.

In the SU(2) case, the Coulomb branch can be parametrized by the scalar
field in the vector multiplet

M =

(
M 0
0 −M

)
. (4.23)

Because of SU(2), the point of the Coulomb branch represented by −M is iden-
tified with M by an SU(2) gauge transformation. Thus the Coulomb branch of
the SU(2) theory is R/Z2 = R≥0 and it is sufficient to consider the case M ≥ 0.
In the fermion loop, the adjoint fermion in the vector multiplet can also arise.
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M

1

g2eff

m1 m2 m3 m4 m5

Figure 4.4: Effective Yang-Mills coupling g−2
eff in the SU(2) theory for Nf = 5.

The effective Chern-Simons level is

keff = 8− 1

2

Nf∑
i=1

sign (mi +M)− 1

2

Nf∑
i=1

sign (mi −M) . (4.24)

Integrating (4.24), the effective coupling can be written as

1

g2eff
=

1

g2YM

+
2

π2
M − 1

8π2

Nf∑
i=1

|mi +M | − 1

8π2

Nf∑
i=1

|mi −M | . (4.25)

It turns out that for an appropriate choice of gYM and Nf ≤ 8 we can take g−2
eff ≥ 0

in the whole Coulomb branch, as shown in Figures 4.4 and 4.5. In such cases,
therefore, there is a nontrivial dynamics in the IR region. For Nf > 8, the theory
is non-renormalizable and a UV completion is needed.

4.3 Instanton in 5d

In 5d gauge theories, there is a global U(1)I symmetry, whose current is written
as

jµ = ϵµνρσλTrF
νρ(W )F σλ(W ). (4.26)

We can consider a background vector multiplet associated with the U(1)I sym-
metry and turn on a nonzero value m0 for the background scalar field. We can
identify the scalar field as the Yang-Mills coupling m0 ∼ g−2

YM. Charged objects
for the U(1)I are particles, called instantons with the codimension four. Their
BPS masses are related with m0 by the BPS formula.
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M

1

g2eff

m1 m2 m3 m4 m5 m6 m7 m8

Figure 4.5: Effective Yang-Mills coupling g−2
eff in the SU(2) theory for Nf = 8.

For M > m8, geff becomes constant.

In particular, we consider a particle charged only with U(1)I . Its mass minst

can be computed from the central charge Zinst by using the BPS formula as [41]

minst =
√
2Zinst =

√
2m0, (4.27)

in the case of the U(1)I charge one2. Since the loop effect shifts the Yang-Mills
coupling, the quantum correction affects as

minst =
√
2 (m0 + cM) . (4.28)

In M ̸= 0, the gauge symmetry breaks to U(1) from SU(2). In such case the
instanton with a finite size cannot exist and shrinks. Its behavior depends on a
UV completion.

4.4 5d N = 2 supersymmetry

There is another class of supersymmetry, called 5d N = 2 supersymmetry. This
supersymmetry has sixteen preserved supercharges, or twice of 5d N = 1 super-
symmetry. The supersymmetry transformation parameter can be written as ξIα,
for α = 1, . . . , 4 and I = 1, . . . , 4. I is an index of the spinor representation of
the Sp(2)R ∼ SO(5)R R-symmetry, while α is a usual spinor index. Similar to 5d
N = 1 supersymmetry, spinors ξIα can be restricted by the symplectic-Majorana
condition. This condition is expressed as in (4.1), by replacing ϵIJ to the Sp(2)R

2For the computation for 5d N = 2 theory, see [88].
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charge conjugation matrix. Because of sixteen supercharges, 5d N = 2 super-
symmetry is similar to 4d N = 4 supersymmetry and 3d N = 8 supersymmetry.
This is also similar to 6d N = (2, 0) supersymmetry.

The only supermultiplet with spin lower than two is a vector multiplet, which
consists of the N = 1 vector multiplet and the N = 1 hypermultiplet in the ad-
joint representation. For vector multiplets, only an on-shell formalism is known.
This can be obtained by the dimensional reduction from the on-shell action of
10d N = 1 supersymmetric Yang-Mills theory.

4.5 Global symmetry enhancement

One can see that a class of brane configurations in superstring theory realizes
5d N = 1 supersymmetric field theories. Let us consider the SU(2) theory
with Nf < 8 fundamental hypermultiplets mentioned above. Then there is a
corresponding brane configuration. There are SO (2Nf ) flavor symmetry and
U(1)I symmetry as the obvious symmetries. If the masses of all hypermultiplets
are zero and taking the strong coupling limit gYM → ∞ we can show, by string
dualities, that the global symmetry of the SU(2) gauge theory enhances to ENf+1

symmetry [41, 89], where E5 = Spin(10),3 E4 = SU(5), E3 = SU(3) × SU(2),
E2 = SU(2)× U(1) and E1 = SU(2). The obvious SO (2Nf )× U(1)I symmetry
is included in ENf+1 as a subgroup.

We can check this by computing a superconformal index by using the localiza-
tion technique [89]. For the definition of the superconformal index, we choose a
certain supercharge Q. Then the superconformal index I essentially counts BPS
states invariant under the supersymmetry transformation Q. The superconformal
index is defined by

I (x, y,mi, q) = tr
[
(−1)F e−β{Q,Q†}x2(j1+R)y2j2e−i

∑
i Himiqk

]
, (4.29)

where F is the fermion number operator, j1 and j2 are the Cartan generators
of Sp(2)L ∼ SO(5)L Lorentz symmetry, R is the Cartan generator of Sp(1)R ∼
SU(2)R, Hi are the Cartan generators of the flavor symmetry, and k is the in-
stanton number. They commute with the supercharge Q. For these symmetries,
we introduce the chemical potentials e−β, x = e−γ1 , y = e−γ2 , e−imi and q,
respectively. The trace is taken over the Hilbert space on S4 after the radial
quantization.

By the Wick rotation x0 = −iτ , this superconformal index can be written in
terms of a path integral as

I (x, y,mi, q) =

∫
DΦexp (−SE[Φ]) , (4.30)

3TheD-dimensional spin group Spin(D) is the rotational group for spinors inD-dimensional
space. Thus Spin(D) is a double cover of SO(D).
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where SE is the Euclidean action on S1 × S4 with the S1 radius β and unit S4

radius. The chemical potentials induce a nontrivial twisted boundary condition.
By the localization computation for superconformal gauge theories on S4×S1,

the superconformal index can be obtained as the following form:

I (x, y,mi, q) =

∫
[dα]Isouth (α, x, y,mi, q) Inorth

(
α, x, y,mi, q

−1
)
. (4.31)

α is the holonomy along S1, which take values in the Cartan subalgebra of the
gauge group. [dα] is the Haar measure, defined by the gauge group. The localized
configurations are such that instantons are on the south pole of S4 and anti-
instantons are on the north pole of S4. Isouth and Inorth are decomposed as

Isouth (α, x, y,mi, q) = I1-loopsouth I
inst
south, (4.32)

Inorth
(
α, x, y,mi, q

−1
)
= I1-loopnorth I

inst
north. (4.33)

The one-loop perturbative part is determined by the matter content of the theory.
A vector multiplet contributes to the one-loop part as

I1-loopvec = I1-loopvec,southI
1-loop
vec,north

= exp

[
∞∑
n=1

1

n
fvec (x

n, yn, nα)

]
, (4.34)

fvec(x, y, α) = − x (y + y−1)

(1− xy) (1− xy−1)

∑
R

e−iR·α, (4.35)

where R is the roots of the gauge group. A hypermultiplet in a representation
W of the gauge group contributes to the one-loop part as

I1-loophyp = I1-loophyp,southI
1-loop
hyp,north

= exp

[
∞∑
n=1

1

n
fhyp (x

n, yn, nα, nm)

]
, (4.36)

fhyp(x, y, α,m) =
x

(1− xy) (1− xy−1)

∑
w∈W

(
e−iw·α−imi + eiw·α+imi

)
, (4.37)

where w runs over all components of the representation W . The instanton
contribution can be expanded in terms of q as

I instsouth (γ1, γ2, α,mi, q) =
∞∑
k=0

qkIk (γ1, γ2, α,mi) , (4.38)

I instnorth (γ1, γ2, α,mi, q) =
∞∑
k=0

q−kIk (γ1, γ2,−α,−mi) , (4.39)
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where Ik is called the instanton index, defined by the gauge group and I0 = 1.

Let us compute the superconformal index (4.31) for Sp(1) = SU(2) gauge
theory with Nf fundamental hypermultiplets. In this case, the superconformal
index can be written as

I
Nf

Sp(1) (x, y,mi, q) =

∫
[dα] exp

[
∞∑
n=1

1

n

(
fvec

(
xn, yn, einα

)
+ fhyp

(
xn, yn, einα, einm

))]
×
∣∣Iinst (x, y, eiα, eim, q)∣∣2 , (4.40)

[dα] =
1

π
dα sin2 α, (4.41)

fvec = − x (y + y−1)

(1− xy) (1− xy−1)

(
e2iα + e−2iα + 1

)
, (4.42)

fhyp =
x

(1− xy) (1− xy−1)

Nf∑
i=1

(
eiα+imi + e−iα+imi + eiα−imi + e−iα−imi

)
.

(4.43)

The instanton contribution is

Iinst =
∞∑
k=0

qkIk, Ik =
1

2

(
I+k + I−k

)
. (4.44)
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We define k = 2n+ χ (χ = 0 or 1). Then I+k and I−k are given by

I+k = (2i)k(Nf−4)−nin+2χ

∮
[dϕ]+

[ ∏Nf

i=1 sin
mi

2

sinh γ1±γ2
2

sin iγ1±α
2

n∏
I=1

sin ϕI±2iγ1
2

sin ϕI±iγ1±iγ2
2

]χ

×
n∏

I=1

[
sinh γ1

sinh γ1±γ2
2

sin 2ϕI±iγ1±iγ2
2

∏Nf

i=1 sin
mi±ϕI

2

sin ϕI±α±iγ1
2

]
n∏

I<J

[
sin ϕI±ϕJ±2iγ1

2

sin ϕI±ϕJ±iγ1±γ2
2

]
,

(4.45)

I−k:odd =
(2i)k(Nf−4)−n

iNf−n−4

∮
[dϕ]−

[ ∏Nf

i=1 cos
mi

2

sinh γ1±γ2
2

cos iγ1±α
2

n∏
I=1

cos ϕI±2iγ1
2

cos ϕI±iγ1±iγ2
2

]

×
n∏

I=1

[
sinh γ1

sinh γ1±γ2
2

sin 2ϕI±iγ1±iγ2
2

∏Nf

i=1 sin
mi±ϕI

2

sin ϕI±α±iγ1
2

]
n∏

I<J

[
sin ϕI±ϕJ±2iγ1

2

sin ϕI±ϕJ±iγ1±iγ2
2

]
,

(4.46)

I−k:even = (2i)(k−1)(Nf−2)− 5
2
kin+4

∮
[dϕ]−

[
cosh γ1

cosh γ1±γ2
2

sinh2 γ1±γ2
2

∏Nf

i=1 sinmi

sin (iγ1 ± α)

]

×
n−1∏
I=1

[
sinh γ1 sin (ϕI ± 2iγ1)

sinh γ1±γ2
2

sinh 2ϕI±iγ1±iγ2
2

sin (ϕI ± iγ1 ± iγ2)

∏Nf

i=1 sin
mi+ϕI

2

sin ϕI±α±iγ1
2

]

×
n−1∏
I<J

[
sin ϕI±ϕJ±2iγ1

2

sin ϕI±ϕJ±iγ1±iγ2
2

]
. (4.47)

The notation “±” is understood by taking product as

sin
ϕI ± 2iγ1

2
= sin

ϕI + 2iγ1
2

sin
ϕI − 2iγ1

2
, (4.48)

sin
ϕI ± iγ1 ± iγ2

2
= sin

ϕI + iγ1 + iγ2
2

sin
ϕI + iγ1 − iγ2

2

× sin
ϕI − iγ1 + iγ2

2
sin

ϕI − iγ1 − iγ2
2

, (4.49)
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and so on. The Haar measure [dϕ]+ and [dϕ]− are defined by

[dϕ]+ =


1

2n−1n!

[
n∏

I=1

dϕI

2π

]
n∏

I<J

(
2 sin

ϕI − ϕJ

2

)2(
2 sin

ϕI + ϕJ

2

)2

(χ = 0)

2n

n!

[
n∏

I=1

dϕI

2π
sin2 ϕI

2

]
n∏

I<J

(
2 sin

ϕI − ϕJ

2

)2(
2 sin

ϕI + ϕJ

2

)2

(χ = 1)

,

(4.50)

[dϕ]− =


2n−1

(n− 1)!

[
n−1∏
I=1

dϕI

2π
sin2 ϕI

]
n−1∏
I<J

(
2 sin

ϕI − ϕJ

2

)2(
2 sin

ϕI + ϕJ

2

)2

(χ = 0)

2n

n!

[
n∏

I=1

dϕI

2π
cos2

ϕI

2

]
n∏

I<J

(
2 sin

ϕI − ϕJ

2

)2(
2 sin

ϕI + ϕJ

2

)2

(χ = 1)

.

(4.51)

For the contour integration, we define zI = eiϕI and take a unit circle as the
integration contour on the zI-plane. By picking up residues, we can compute the
superconformal index.

Up to k = 1, there is no integration over ϕI . Expanding in terms of x, we
can perform the integration over α from 0 to 2π. If Nf = 3, for example, the

superconformal index can be written in terms of SO(6) characters χ
SO(6)
r of r

representations as

I
Nf=3

Sp(1) = 1 +
[
1 +

(
e−im1−im2 + · · ·+ eim2+im3

)
+
(
q + q−1

) (
e−im1/2−im2/2−im3/2 + · · ·+ eim1/2+im2/2+im3/2

)]
x2 +O

(
x3
)

(4.52)

= 1 +
[
χ
SO(6)
1 + χ

SO(6)
15 + qχ

SO(6)
4 + q−1χ

SO(6)

4

]
x2 +O

(
x3
)
. (4.53)

From the definition of the superconformal index (4.29), the exponents of q are
U(1)I charges of corresponding states. Therefore, q can be seen as one of the
fugacities of the Cartan generators of E4 = SU(5) ⊃ SO(6)×U(1)I . Indeed, the
24 representation of E4 = SU(5) is decomposed as

SU(5) ⊃ SO(6)× U(1)I (4.54)

24 = 10 + 150 + 41 + 4−1, (4.55)

and the superconformal index can be written by the E4 = SU(5) character as

I
Nf=3

Sp(1) = 1 + χE4
24x

2 +O
(
x3
)
. (4.56)

We can perform the similar analyses for other Nf and higher x and observe that
the superconformal index can be written by ENf+1 characters. This suggests that
the global symmetry enhances to ENf+1, by the nonperturbative corrections.
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4.6 Relation to 6d N = (2, 0) theory

Another interesting property of 5d supersymmetric field theory is that it seems
to be related with a mysterious 6d N = (2, 0) theory realized on a stack of
M5-branes [42, 43], which has no known Lagrangian description. 5d N = 2
supersymmetric field theory can be realized on a stack of D4-branes, which can
be lifted to M5-branes in M-theory. [42, 43] proposed that Kaluza-Klein modes
of the 6d N = (2, 0) theory compactified on S1 are realized as instantons in the
5d theory.

Although a 6d effective theory on multiple M5-branes is mysterious, an ef-
fective theory on a single M5-brane is known. It is a theory of a tensor multi-
plet, which includes a two-form gauge field Bµν satisfying a self-dual condition
∗H = H, where H = dB is the three-form field strength of the two-form gauge
field. Therefore, fundamental degrees of freedom in this theory can be thought as
strings coupled with the self-dual two-form gauge field. It is natural to interpret
them as M2-branes which end on the M5-brane.

By compactifying x6 direction to S1 with radius R6, we can obtain a 5d
theory. The strings wrapping the S1 lead to particle-like states, while the strings
unwrapping the S1 leads to string-like states.

In addition, there is the Kaluza-Klein momentum along S1. From the 6d and
5d supersymmetry algebras, we can identify the momentum along x6 with the
central charge in 5d. Moreover, we can identify the radius R6 and the Yang-Mills
coupling in 5d as

g2YM = 8π2R6. (4.57)

Under this identification, it can be shown that the Kaluza-Klein spectrum for
self-dual strings can be identified with instantons [43].

We can explain a duality in 4d N = 4 theory by assuming (4.57). Let us
additionally compactify the x5 direction to S1 with radius R5. From 5d N = 2
theory with the coupling constant (4.57), we can obtain a 4d N = 4 theory with
the coupling constant

g24d =
4πR6

R5

. (4.58)

For 4d N = 4 theories, there is the Montonen-Olive duality [90], which says that
τ → τ + 1 and τ → −1/τ are the duality transformations, where

τ =
θ

2π
+

4πi

g24d
(4.59)

with so called the theta angle θ, which we now take θ = 0. By taking τ → −1/τ ,
the new 4d coupling is g24d = 4πR5/R6. This can be understood straightforwardly
as interchanging of radii R5 ↔ R6.
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The analyses [42, 43] suggest that 5d N = 2 theory includes all degrees
of freedom of Kaluza-Klein modes of 6d N = (2, 0) theory on S1, and thus is
equivalent to the 6d N = (2, 0) theory on S1 with the identification (4.57). If it
was true, since the 6d N = (2, 0) theory is finite, the 5d N = 2 theory was also
finite theory. However, it was shown in [91] that the 5d N = 2 theory diverges at
six loops. Hence they are not equal. The alternative conjecture can be proposed:
the UV completion of the 5d N = 2 theory is the 6d N = (2, 0) theory on a
circle.

One of the main results for checking this conjecture is the N3 behavior of
the free energy of 5d N = 2 theory. The partition function for 5d N = 2
supersymmetric U(N) gauge theory on S5 with radius r was computed in [92] for
the perturbative sector as4

Z =

∫
[dϕ]e

− 8π3r

g2
YM

Trϕ2∏
R

[
(sin(iπR · ϕ) cos(iπR · ϕ))

1
4

×e
1
2
f(iR·ϕ)− 1

4
f( 1

2
−iR·ϕ)− 1

4
f( 1

2
+R·ϕ)

]
+O

(
e
− 16π3r

g2
YM

)
, (4.60)

where O
(
e
− 16π3r

g2
YM

)
includes nonperturbative contributions. The function f(x) is

defined by

f(x) =
iπx3

3
+ x2 log

(
1− e−2πix

)
+
ix

π
Li2
(
e−2πix

)
+

1

2π2
Li3
(
e−2πix

)
− ζ(3)

2π2
,

(4.61)

with the polylogarithm Lis(x) and the zeta function ζ(x). f(x) satisfies

df(x)

dx
= πx2cot(πx). (4.62)

For U(N) case, [dϕ] = dϕ1 · · · dϕN and ϕi corresponds to the i-th Cartan generator
of U(N).

We would like to compare (4.60) with the gravity dual of the 6d N = (2, 0)
theory on S5×S1. Let us compute the largeN behavior of Z [93]. Due to the large

N limit, the nonperturbative corrections O
(
e
− 16π3r

g2
YM

)
becomes subdominant, by

keeping the ’t Hooft coupling constant

λ =
g2YMN

r
(4.63)

4In the following, we use the notation of the parameters of [93], which may be different with
the above by overall factors.
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fixed. The partition function is written as

Z ∼
∫ N∏

i=1

dϕi exp

(
−8π3r

g2YM

N∑
i=1

ϕ2
i +

∑
i̸=j

[
log sinh (πϕij) +

1

4
log cosh (πϕij)

+
1

2
f (iϕij)−

1

4
f

(
1

2
+ iϕij

)
− 1

4
f

(
1

2
− iϕij

)])
, (4.64)

where ϕij = ϕi−ϕj. Configurations of ϕi which become dominant in the integral
are the saddle points, where the ϕi-derivatives of the exponent vanish:

16π3N

λ
ϕi = π

∑
j ̸=i

[(
2− ϕ2

ij

)
coth (πϕij) +

(
1

4
+ ϕ2

ij

)
tanh (πϕij)

]
(4.65)

In the strong coupling limit λ→ ∞, |ϕij| become large. Then we approximate

coth (πϕij) ∼ tanh (πϕij) ∼ sign (ϕij) (4.66)

and obtain

16π2N

λ
ϕi =

9

4

∑
j ̸=i

sign (ϕij) . (4.67)

Assuming ϕ1 < ϕ2 < · · · < ϕN , we obtain the solution

ϕi =
9λ

64π2N
(2i−N). (4.68)

By using this solution, we can evaluate the leading term of the free energy as

F = − logZ

≈ 8π2N

λ

N∑
i=1

ϕ2
i −

9π

8

∑
i̸=j

|ϕij| ∝
g2YM

r
N3, (4.69)

whose behavior coincides with the on-shell action of supergravity on AdS7 × S4,
as required for the M5-branes [84].

The nonperturbative correction for the partition function was computed in
[94]. For the U(1) gauge theory, the partition function on S5 coincides with the
6d superconformal index, which can be computed only in the Abelian case [95].
This is another check of the relation between the 5dN = 2 supersymmetric gauge
theory and the 6d N = (2, 0) theory.

Moreover, the partition function for 5d N = 2 supersymmetric gauge theories
on CP2 × S1 is computed in [96, 97]. Since S5 is the S1 fibration over CP2,
CP2 × S1 is another S1 reduction of S5 × S1. As expected, this 5d partition
function for U(1) gauge theory also coincides with the 6d superconformal index.
Therefore, we can expect that the S5 partition function and the CP2×S1 partition
function are equal even if the gauge group is non-Abelian, as shown in Figure
4.6. However, the check of this is technically difficult because the coupling and
the radius in 5d are exchanged from one to another.
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6d N = (2, 0) theory
on S5 × S1

5d N = 2
on S5

5d N = 2
on CP2 × S1

S1 radius = 5d coupling S5 radius = 5d coupling

Figure 4.6: Relation between 6dN = (2, 0) theory and 5dN = 2 supersymmetric
gauge theories. For the Abelian case, where the 6d superconformal index can be
computed, their partition functions coincide.





Chapter 5

5d N = 1 supersymmetric
backgrounds

This chapter is the most central part of the thesis. This chapter is based on [45].
The goals of this chapter are

1. Construction of general supersymmetric backgrounds by solving certain
spinor equations obtained from a 5d N = 1 supergravity,

2. Showing whether each deformation of a supersymmetric background gives
a Q-exact deformation or not, and

3. Construction of supersymmetric field theories on some simple manifolds as
examples.

For these purposes, we firstly introduce the 5d N = 1 Poincaré supergravity.
Next, we would like to attack these problems.

We solve the condition that the background Weyl and vector multiplets pre-
serve at least one supercharge. The solution has functional degrees of freedom.
However, we find that every small deformation in a single local coordinate patch
does not affect the partition function. We show that known supersymmetric field
theories on S5 or S3 × Σ, where Σ is a Riemann surface, can be realized from
the solution. By using the solution, we cannot construct the supersymmetric
field theories on S4 × R which can be obtained from the flat space by the Weyl
transformation.

5.1 5d N = 1 Poincaré supergravity

A 5d off-shell N = 1 Poincaré supergravity was constructed in [98, 99, 100, 101].
In particular, in [100, 101], the authors started with a 6d N = (1, 0) conformal
supergravity [102] and obtained the 5d Poincaré supergravity by the dimensional
reduction and gauge fixing.

77
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Table 5.1: The component fields of 5d N = 1 Weyl multiplet.

fields dof Sp(1)R
bosons vielbein 10 1 e ν̂

µ

U(1)Z gauge field 4 1 Aµ

antisym. tensor 10 1 vµν

Sp(1)R triplet scalars 3 3 ta
Sp(1)R gauge field 12 3 V a

µ

scalar 1 1 C
fermions gravitino 32 2 ψIµα

fermion 8 2 χIα

The bosonic symmetries included in it are the following:

• Sp(2)L ∼ SO(5)L local Lorentz symmetry,

• Sp(1)R ∼ SU(2)R local R-symmetry, and

• U(1)Z gauge symmetry which associated with the central charge.

From the 6d point of view, this U(1)Z symmetry can be identified with the
translational symmetry along the reduced sixth dimension. In addition to these
symmetries, the formulation in [100, 101] has the local dilatation symmetry. The
corresponding gauge field is pure-gauge bµ = α−1∂µα, thus we fix the gauge by
the condition bµ = 0 in this thesis. α is a scalar field in [100, 101]. We rescale
Aµ → α−1Aµ so that α disappears.

The Weyl multiplet consists of the fields shown in Table 5.1. There are two
fermions in the Weyl multiplet. For two Grassmann-even spinors ξ1 and ξ2, the
supersymmetry algebra is

{δQ (ξ1) , δQ (ξ2)} = 2i
(
ξ1γ

µ̂ξ2
)
Dµ̂ + δZ (2ξ1ξ2)

+ δM
(
−2 (ξ1ξ2)Fµ̂ν̂(A) + 2 (ξ1γµ̂ν̂ρ̂σ̂ξ2) v

ρ̂σ̂ + 4 (ξ1γµ̂ν̂τaξ2) ta
)

+ δU

(
−6 (ξ1ξ2) ta − 2 (ξ1γµ̂ν̂τaξ2)

(
vµ̂ν̂ +

1

4
F µ̂ν̂(A)

))
+ (terms with η or ψµ) . (5.1)

Fµν(A) is the field strength for the U(1)Z gauge field Aµ:

Fµν(A) = ∂µAν − ∂νAµ. (5.2)

Dµ is the covariant derivative defined by

Dµ = ∂µ + δM (ωµρ̂σ̂) + δU
(
V a
µ

)
+ δZ (Aµ) + δG (Wµ) , (5.3)
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where δM , δU , δZ and δG denote the Lorentz, Sp(1)R, U(1)Z and gauge transfor-
mations, respectively. For example,

Dµξ = ∂µξ +
1

4
ωµρ̂σ̂γ

ρ̂σ̂ξ + Vµξ. (5.4)

The supersymmetry transformation for the fermions in the Weyl multiplet is
written as

δQψµ = Dµξ +
i

2
Fµν̂(A)γ

ν̂ξ +
i

2
γµρ̂σ̂v

ρ̂σ̂ξ + iγµtξ, (5.5)

δQχ = − i

2
γν̂ξDµ̂v

µ̂ν̂ +
1

2
ξC − i

2
(D\ t)ξ − 2

(
v\+ 1

4
F\ (A)

)
tξ

− 1

32
γµ̂ν̂ρ̂σ̂ξFµ̂ν̂(A)Fρ̂σ̂(A), (5.6)

For notations of indices, see Appendix A.1.

5.2 5d supersymmetric backgrounds

5.2.1 Spinor bilinears and orthonormal frame

We would like to derive the condition for bosonic background fields so that there
is at least one supersymmetry transformation parameter ξ satisfying

δQψµ = δQχ = 0. (5.7)

We restrict ourselves to the case in which ξ satisfies the symplectic Majorana
condition (4.1). That condition is necessary for the reality of an action in the
Minkowski signature, but it is not necessary in the Euclidean signature. Hence,
this condition is just for simplicity of the analysis.

By using ξ, we can define the bilinears

S = ξξ, (5.8)

Rµ = ξγµξ, (5.9)

Ja
µν =

1

S
(ξγµντ

aξ) . (5.10)

By the Fierz identity,

γµξR
µ = ξS. (5.11)

The following equations are easily derived from this:

RµR
µ = S2, (5.12)

Ja
µνR

ν = 0, (5.13)

−1

2
ϵ ρσλ
µν RρJ

a
σλ = SJa

µν . (5.14)
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Because ξ is a solution to the homogeneous first order differential equation δQψµ =
0, it is nowhere vanishing and so are the bilinears. From the symplectic Majorana
condition, S > 0 everywhere. We assume the vielbein e ν̂

µ is real, and then Rµ

is also real. Note that the other background fields can be complex in general.
The existence of the non-vanishing real vector field Rµ enables us to treat the
background manifold M5 as a fibration over a base manifold B at least locally.
Here, we will not discuss global issues and focus only on a single coordinate patch.
Let us define the fifth coordinate x5 by

Rµ∂µ = ∂5 (5.15)

and use a local frame with

em̂ = e m̂
n dxn, e5̂ = S

(
dx5 + Umdx

m
)
. (5.16)

With this frame Rµ has the local components

Rm̂ = 0, (5.17)

R5̂ = S. (5.18)

Then (5.13) and (5.14) can be written as

Ja
m̂5̂

= 0, (5.19)

−1

2
ϵ
(4)

m̂n̂k̂l̂
Ja
k̂l̂
= Ja

m̂n̂, (5.20)

where

ϵ
(4)

m̂n̂k̂l̂
= ϵm̂n̂k̂l̂5̂. (5.21)

The equation (5.11) means that ξ has positive chirality with respect to γ5̂ =
S−1Rµγµ

γ5̂ξ = +ξ. (5.22)

A symplectic Majorana spinor χ belongs to the (4,2) representation of Sp(2)L×
Sp(1)R. Because Sp(k) = U(k,H),1 we can treat χ as a vector with two quater-
nionic components. If we use the matrix representation of quaternions, we can

1H denotes the set of quaternions defined as follows. Let (1, i, j,k) be the basis of quater-
nions, satisfying

i · j = −j · i = −k, j · k = −k · j = −i, k · i = −i · k = −j, i2 = j2 = k2 = −1. (5.23)

Then H can be defined by

H = {a+ ib+ jc+ kd | a, b, c, d ∈ R}. (5.24)

i, j and k can be represented in terms of the Pauli matrices as i = iτ1, j = iτ2 and k = iτ3.
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represent χ as a 4× 2 matrix in the form

χ I
α =

(
U
D

)
, U = U012 + iUaτa, D = D012 + iDaτa, Ua, Da ∈ R. (5.25)

The vector Rµ̂ breaks the local Lorentz symmetry Sp(2)L to its subgroup Sp(1)l×
Sp(1)r ∼ SO(4), where Sp(1)l and Sp(1)r act on the upper and lower blocks of
the matrix (5.25), respectively.

The chirality condition (5.22) implies that only the upper components of
the spinor ξ can be non-zero. Furthermore, by using an Sp(1)l × Sp(1)R gauge
transformation, we can choose a gauge such that U ∝ 12. In this gauge, ξ is
written as

ξ I
α =

√
S

2

(
12

0

)
, (5.26)

where the normalization is fixed by ξξ = S. This gauge choice breaks Sp(1)l ×
Sp(1)R into its diagonal subgroup Sp(1)D. Sp(1)r symmetry acting the lower
block of the matrix (5.25) also remains. It is obvious in this frame that the
following eight spinors form a basis of the space of symplectic spinors:

ξ I
α , (γm̂)

β
α ξ I

β , ξ J
α (τa)

I
J . (5.27)

An arbitrary spinor can be expanded by this basis. For example, γm̂n̂ξ is related
to ξτa by

γm̂n̂ξ = −ξτaJa
m̂n̂, (5.28)

ξτa =
1

4
Ja
m̂n̂γ

m̂n̂ξ. (5.29)

(5.29) implies that the three matrices Ja satisfy the same algebra with the Pauli
matrices:

Ja
m̂k̂
J b
k̂n̂

= δabδm̂n̂ + iϵabcJ
c
m̂n̂. (5.30)

Namely, Ja enjoys the quaternion algebra.

5.2.2 δQψµ = 0

Let us solve the condition δQψµ = 0, which is investigated in [44] for the first
time. Using the basis (ξ, γm̂ξ, τaξ) = (γµ̂ξ, τaξ) in (5.27), we decompose δQψµ = 0
into the following conditions:

0 =
(
ξγλ̂δψµ̂

)
=

1

2
Dµ̂Rλ̂ +

i

2
SFµ̂λ̂(A)−

i

2
Sϵ5̂µ̂λ̂ρ̂σ̂v

ρ̂σ̂ − iStaJ
a
µ̂λ̂
, (5.31)

0 = (ξτaδψµ̂) = ξτaDµ̂ξ +
i

2
(ξτaγµ̂ρ̂σ̂ξ) v

ρ̂σ̂ + iRµ̂ta. (5.32)
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The symmetric part of (5.31), D{µ̂Rλ̂} = 0, means that Rµ is a Killing vector.

We can take an Sp(1)D × Sp(1)r gauge such that

∂5e
n̂

m = ∂5S = ∂5Um = 0, (5.33)

and then e m̂
n , S, and Um can be treated as fields on the base manifold B. The

(λ̂, µ̂) = (5̂, m̂) components of (5.31) give

Fm5(A) = i∂mS. (5.34)

From the integrability condition

∂nFm5(A) = ∂mFn5(A) (5.35)

and the Bianchi identity for Fµν(A), we obtain

∂5Fmn(A) = 0. (5.36)

This means that the U(1)Z gauge field Aµ is essentially a gauge field on B. The
condition (5.34) can be solved, up to the U(1)Z gauge transformation, by

A = Amdx
m + iSdx5, ∂5Am = 0. (5.37)

For later use, we give the non-vanishing components of the spin connection.

ωk̂m̂n̂ = ω
(4)

k̂m̂n̂
, (5.38)

ωm̂n̂5̂ = ω5̂n̂m̂ =
S

2
Fm̂n̂(U) =

1

S
Dm̂Rn̂, (5.39)

ω5̂5̂m̂ =
1

S
∂m̂S = −iFm̂5̂(A), (5.40)

where ω
(4)

k̂m̂n̂
is the spin connection in the base manifold B defined with the vielbein

e n̂
m .

The anti-symmetric part of (5.31) can be used to represent the horizontal part
of vµν in terms of other fields:

vp̂q̂ = −1

2
ϵ
(4)
p̂q̂m̂n̂

(
i

4
SFm̂n̂(U)−

1

2
Fm̂n̂(A) + taJ

a
m̂n̂

)
. (5.41)

By using (5.4), we obtain

ξτaDµξ =
S

4
ωµ̂p̂q̂J

a
p̂q̂ + V a

µ S. (5.42)

Using this, we can solve (5.32) with respect to V a
µ and obtain

V a
m̂ = −1

4
ωm̂p̂q̂J

a
p̂q̂ − iJa

m̂p̂v
p̂5̂, (5.43)

V a
5̂
= −1

4
ω5̂p̂q̂J

a
p̂q̂ −

i

2
Ja
p̂q̂v

p̂q̂ − ita. (5.44)
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5.2.3 δQχ = 0

By using the spinor basis (5.27), we decompose δQχ = 0 into the following equa-
tions.

0 = S−1 (ξδQχ) = − i

2
Dµv

µ5̂ +
1

2
C − taJ

a
m̂n̂

(
vm̂n̂ +

1

4
Fm̂n̂(A)

)
− 1

32
ϵ
(4)
m̂n̂p̂q̂F

m̂n̂(A)F p̂q̂(A), (5.45)

0 = S−1 (ξγm̂δQχ) = − i

2
Dλvλm̂ − i

2
Ja
m̂n̂D

n̂ta − 2taJ
a
m̂p̂

(
vp̂5̂ +

1

4
F p̂5̂(A)

)
− 1

8
ϵ
(4)
m̂p̂q̂r̂F

p̂q̂(A)F r̂5̂(A), (5.46)

0 = S−1 (ξτaδQχ) = − i

2
D5̂ta − iϵabctbJ

c
m̂n̂

(
vm̂n̂ +

1

4
F m̂n̂(A)

)
. (5.47)

(5.45) is the only condition including C, and can be used to determine C. The
conditions (5.46) and (5.47) are drastically simplified if we substitute the solution
of δQψµ = 0;

0 = S−1 (ξγm̂δQχ) =
i

2
∂5̂vm̂5̂, (5.48)

0 = S−1 (ξτaδQχ) = − i

2
∂5̂ta. (5.49)
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Namely, vm̂5̂ and ta are x
5-independent. After all, we have obtained the following

solution:

ξ I
α =

√
S

2

(
12

0

)
, (5.50)

e n̂
m = (indep.), (5.51)

e 5̂
5 = S (indep.), (5.52)

Um = (indep.), (5.53)

Am̂ = (indep.), (5.54)

A5 = iS, (5.55)

vp̂q̂ = −1

2
ϵ
(4)
p̂q̂m̂n̂

(
i

4
SFm̂n̂(U)−

1

2
Fm̂n̂(A) + taJ

a
m̂n̂

)
, (5.56)

vm̂5̂ = (indep.), (5.57)

ta = (indep.), (5.58)

V a
m̂ = −1

4
ωm̂p̂q̂J

a
p̂q̂ − iJa

m̂p̂v
p̂5̂, (5.59)

V a
5̂
=
i

4
Ja
m̂n̂ (Fm̂n̂(A)− iSFm̂n̂(U)) + ita, (5.60)

C = iD
(4)
m̂ vm̂5̂ −

1

2
taJ

a
m̂n̂Fm̂n̂(A)− 8tata

+
1

16
ϵ
(4)
m̂n̂p̂q̂

(
F m̂n̂(A)− iSF m̂n̂(U)

) (
F p̂q̂(A)− iSF p̂q̂(U)

)
. (5.61)

“(indep.)” means that the field is an independent field. We can freely choose
them. All the fields are x5-independent. This is in fact a direct consequence of
the algebra. From the commutation relation (5.1), we obtain

δQ(ξ)
2 = iRµDµ + δM

(
−SFµ̂ν̂(A) + ϵµ̂ν̂ρσλR

ρvσλ + 2SJa
µ̂ν̂ta

)
+ δZ(S) + δU

(
−3Sta − SJa

m̂n̂

(
vm̂n̂ +

1

4
F m̂n̂(A)

))
+ (terms with η or ψµ) . (5.62)

In the resulting background, the right hand side reduces to the x5 derivative:

δQ(ξ)
2 = iRµDµ − iδM

(
Rλωλµ̂ν̂

)
− iδZ (RµAµ)− iδU

(
RµV a

µ

)
= i∂5. (5.63)

Therefore, a δQ(ξ)-invariant background is also invariant under the isometry ∂5.

5.3 Q-exact deformation

As mentioned in Section 1.3, a Q-exact deformation of an action

S → S + δQ(· · · ) (5.64)



5.3. Q-EXACT DEFORMATION 85

does not affect the partition function. Therefore, if a deformation of the super-
symmetric background gives a Q-exact deformation, it does not change the par-
tition function. Let us see whether deformations of supersymmetric backgrounds
give Q-exact deformations or not.

A small deformation of the Weyl multiplet around a supersymmetric back-
ground induces the change of the action

S1 =

∫
d5x

√
g
[
δe ν̂

µ T
µ
ν̂ + δV a

µR
µ
a + δψµS

µ + δAµJ
µ

+δvµνMµν + δCΦ + δχ̃η + δtaXa] , (5.65)

where

Rµ
a , Sµ

Iα, T µν , Jµ, Mµν , Φ, ηIα, Xa (5.66)

form the supercurrent multiplet associated with the Weyl multiplet.
A Q-exact deformation that is regarded as a change of the bosonic background

fields in general has the form

δQ(ξ)

∫
d5x

√
g [HµS

µ +Kη] , (5.67)

where Hµ and K are vectorial-spinor and spinor coefficient functions. Both Hµ

and K are Grassmann-even. Because δQ(ξ)
2 = i∂5 for the action (5.67) to be

Q-invariant the functions Hµ and K should be x5-independent.
δQS

µ and δQη are determined as follows. For an arbitrary deformation of
the Weyl multiplet that may not preserve rigid supersymmetry, S1 is invariant
under the supersymmetry if we transform both the Weyl multiplet and matter
fields. The supersymmetry transformation of the bosonic components of the Weyl
multiplet are [100, 101]

δQe
ν̂

µ = −2iξγ ν̂ψµ, (5.68)

δQAµ = 2ξψµ, (5.69)

δV a
µ = 2iξγµτaχ̃− iξγ ν̂τaRν̂µ(Q)− ξF\ (A)τaψµ − 4ξv\τaψµ − 6ξψµta, (5.70)

δta = 2ξτaχ̃, (5.71)

δvµ̂ν̂ =
1

4
ξγµ̂ν̂ρ̂σ̂R

ρ̂σ̂(Q) + 2ξγµ̂ν̂χ̃, (5.72)

δC = −2iξD̂\ χ̃− 22ξtχ̃+ 6ξv\χ̃− ξγµ̂ν̂tRµ̂ν̂(Q), (5.73)

where Rµν(Q) and D̂µχ̃ are defined by

Rµν(Q) = 2D[µψν] + iγρσ[µψν]v
ρσ − iγρψ[µFν]ρ(A)− 2iγ[µtψν], (5.74)

D̂µχ̃ = Dµχ̃− δQ (ψµ) χ̃. (5.75)
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By requiring the δQ-invariance we can determine the supersymmetry transforma-
tion of the supercurrent multiplet. For example, δQ(ξ)η is written by

δQ(ξ)η = 2iγµτaξR
µ
a + 2γµνξM

µν − 2iγµξDµΦ− 2iD\ ξΦ− 22tξΦ + 6v\ξΦ + 2τaξXa

= 2iγµτaξR
µ
a + 2γµνξM

µν − 2iγµξDµΦ− 2F\ (A)ξΦ− 32tξΦ + 2τaξXa,
(5.76)

where we neglected total derivatives in the action and used the Killing spinor
equation (5.5)

Dµξ = − i

2
Fµν(A)γ

νξ − i

2
γµρσv

ρσξ − iγµtξ. (5.77)

Let us consider the second term in the Q-exact action (5.67). It is convenient
to decompose the spinor function K by the spinor basis (5.27) as

K = kξ +
1

2S
kaξτa +

1

2S
km̂ξγm̂. (5.78)

By using (5.76), the first term kξ in (5.78) gives the action

δQ

∫
d5x

√
gk(ξη) = −2i

∫
d5x

√
gk∂5Φ. (5.79)

This is a total derivative and does not give a nontrivial deformation of the theory.
The second term in (5.78) gives

δQ

∫
d5x

√
g
1

2S
ka (ξτaη)

=

∫
d5x

√
g

(
ikaR5̂

a + kaJa
m̂n̂M

m̂n̂ − 1

2
kaJa

m̂n̂F
m̂n̂(A)Φ− 16kataΦ + kaXa

)
.

(5.80)

Comparing this to (5.65), we find that the addition of the Q-exact term (5.80) is
equivalent to the deformation of the background as

δV a
5̂
= ika, δvm̂n̂ = kaJa

m̂n̂, δC = −1

2
kaJa

m̂n̂F
m̂n̂(A)− 16kata,

δta = ka, δ(others) = 0. (5.81)

These deformations are consistent to the solution of the supersymmetric back-
grounds (5.50)-(5.61). Therefore, the small shifting

ta → ta + ka (5.82)

does not change the partition function of the theory if we keep the supersymmetry
realized by the solution (5.50)-(5.61).



5.3. Q-EXACT DEFORMATION 87

Similarly, the third term in (5.78) gives the Q-exact deformation

δQ

∫
d5x

√
g

(
1

2S
km̂ (ξγm̂η)

)
=

∫
d5x

√
g
(
ikm̂Ja

m̂n̂R
n̂
a + 2km̂M m̂5̂ + i

(
D

(4)
m̂ km̂

)
Φ
)
. (5.83)

This corresponds to the deformation of the background fields

δV a
m̂ = −iJa

m̂n̂k
n̂, δvm̂5̂ = km̂, δC = iD

(4)
m̂ km̂, δ(others) = 0. (5.84)

These variations are again consistent to the solution (5.50)-(5.61), and generated

by the shift of the independent field vm̂5̂ by

vm̂5̂ → vm̂5̂ + km̂. (5.85)

The same procedure is available for the Q-exact deformation originated from
Sµ, but it is rather complicated. Thus we introduce a simpler way. The change of
the action introduced by the small deformation of the background Weyl multiplet
can be symbolically written as

S1 = AB
i J

B
i + AF

i J
F
i , (5.86)

where we neglected the integration over the space. AB
i and AF

i are the deforma-
tion of the bosonic and fermionic components in the Weyl multiplet, respectively.
JB
i and JF

i are the bosonic and fermionic components of the supercurrent mul-
tiplet. The supersymmetry transformation of the fermionic components in the
supercurrent multiplet can be defined by

0 = δQA
B
i J

B
i − AF

i δQJ
F
i . (5.87)

It is sufficient to consider linear terms with respect to fermions because we are
considering the small deformations. Thus the supersymmetry transformations
for the bosonic background fields can be written by using a matrix Mij:

δQA
B
i = AF

j Mji. (5.88)

Then the supersymmetry transformation for the fermionic components in the
supercurrent multiplet is

δQJ
F
i =MijJ

B
j . (5.89)

By using this formulation, the Q-exact deformation (5.67) is written as

δQ
(
fiJ

F
i

)
= fiMijJ

B
j , (5.90)



88 CHAPTER 5. 5D N = 1 SUPERSYMMETRIC BACKGROUNDS

where fi corresponds to Hµ and K in (5.67). It is found that the Q-exact defor-
mation (5.90) is equivalent to the deformation of the background fields as

AB
i = fjMji. (5.91)

It is nothing but the supersymmetric transformation (5.88) of the bosonic back-
ground fields with parameters fi instead of the fermions AF

i . Therefore, Q-exact
deformations are realized by the substitution of parameters fi into the fermions
AF

i in the supersymmetry transformations for the bosonic background fields. In-
deed, the substitutions

(ψµ, χ̃) →
(
0,

1

2S
kaτaξ

)
, (ψµ, χ̃) →

(
0,− 1

2S
km̂γm̂ξ

)
(5.92)

into (5.68)-(5.73) reproduce the Q-exact deformations of the background fields
(5.81) and (5.84).

Now let us consider the Q-exact deformations originated from Sµ, by using
this method. The corresponding background deformation can be obtained from
the transformation laws (5.68)-(5.73) by the substitution

(ψµ, χ̃) → (Hµ, 0) . (5.93)

We expand the function Hµ by the spinor basis as

Hµ =
i

2S
hµξ +

1

S
haµτaξ +

i

2S
hm̂µ γm̂ξ. (5.94)

The deformation parameters hµ, h
a
µ and hm̂µ are arbitrary functions on the base

manifold B.
The deformation from hµ yields the variation of the independent fields

δS = h5, δUm̂ =
1

S
hm̂, δAm = ihm, δvm̂5̂ = Ja

m̂n̂hn̂ta, δe n̂
m = δta = 0.

(5.95)

The variation of the dependent fields are obtained from the solution (5.50)-(5.61).
We already know that the change of vm̂5̂ does not affect the partition function.
Thus it is sufficient to focus on the change of S, Um̂ and Am.

The deformation from haµ does not give any variations of the independent
fields:

δe n̂
m = δS = δUm̂ = δAm = δvm̂5̂ = δta = 0. (5.96)

The deformation from h m̂
µ gives the variations of the independent fields:

δe m̂
µ = h m̂

µ , δvm̂5̂ = − i

4
ϵ
(4)
m̂p̂q̂r̂D

(4)
p̂ h r̂

q̂ − 2h
p̂

[p̂ vm̂]5̂, (5.97)

δS = δUm̂ = δAm = δta = 0. (5.98)
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Table 5.2: The component fields of 5d N = 1 vector multiplet.

fields dof Sp(1)R
bosons gauge field 4 1 Wµ

scalar 1 1 M
auxiliary field 3 3 Ya

fermions gaugino 8 2 ΩIα

Because of the reason mentioned above, we are not interested in the variation of
vm̂5̂. Let us focus on the change of e m̂

µ . The variation caused by h m̂
5

δe m̂
5 = h m̂

5 (5.99)

breaks our gauge choice (5.16) for the vielbein. To recover e m̂
5 = 0, we should

perform the compensating local Lorentz transformation

δM (λµ̂ν̂) = −h m̂
5 , λm̂5̂ = − 1

S
h m̂
5 , λm̂n̂ = 0. (5.100)

This transformation, in turn, changes the vector field Am̂ by

δM (λµ̂ν̂)Am̂ = − i

S
h m̂
5 . (5.101)

Therefore, together with (5.95) caused by hµ, we can freely change S, Um̂, Am

and e m̂
µ .

After all, by using Q-exact deformations and gauge transformations, we find
that we can freely change all the independent background fields, at least locally.
Of course this does not mean that the partition function does not depend on
the background at all. To clarify the complete background dependence of the
partition function, careful analysis of the global structure of the background is
needed.

5.4 Background vector multiplets

We can also turn on background vector multiplets. By similar analysis as the
previous sections, let us derive the condition for background vector multiplets
with a preserved supercharge and their independence of the partition function,
in the presence of background vector multiplets.

A vector multiplet consists of fields listed in Table 5.22. In [100], the super-

2For the auxiliary field Ya, we use the different convention from the one in [100]. By replacing
Ya → Ya −Mta, we can recover the formulas in [100].
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symmetry transformation law is written as follows:

δQWµ = 2iξγµΩ + 2ξψµM, (5.102)

δQM = 2ξΩ, (5.103)

δQΩ =
1

2
F\ (W )ξ − i

2
(D\M)ξ − Y ξ −M

(
t+

1

2
F\ (A)

)
ξ, (5.104)

δQYa = iξτaD̂\Ω− ξτa[M,Ω] + ξτav\Ω + ξtτaΩ. (5.105)

Let us make ψµ = χ̃ = 0 and solve δQΩ = 0 in a similar manner as the previous
analysis. For simplicity, we consider a U(1) vector multiplet. We decompose the
condition into the following two.

0 = (ξγµδQΩ) =
1

2
Fµν(W )Rν − iS

2
DµM − 1

2
MFµν(A)R

ν , (5.106)

0 = (ξτaδQΩ) =
S

4
Ja
µνF

µν(W )− SYa − SMta −
S

4
Ja
µνMF µν(A). (5.107)

From (5.106), we obtain

D5M = 0, Fm5(W ) = iDm(SM). (5.108)

(5.107) can be used to determine Ya. After all, the solution of δQΩ = 0 is written
as

M = (indep.), (5.109)

Wm = (indep.), (5.110)

W5 = iSM, (5.111)

Ya = −Mta +
S

4
Ja
m̂n̂ (Fm̂n̂(W )−MFm̂n̂(A)) . (5.112)

“(indep.)” again means that the field is an independent field. Similar to the result
for the Weyl multiplet, all the fields are x5-independent.

Next, let us consider the background (in)dependence of the partition func-
tion. As mentioned in the above section, we can obtain a Q-exact deformation
by replacing fermions in the background multiplet into a spinor parameter in
the supersymmetric transformation law for the background bosonic fields. The
replacement

Ω → − i

2S
fµγ

µξ (5.113)

gives the variations of the independent fields

δWµ = fµ, δM = − i

S
f5. (5.114)

The replacement

Ω → faτaξ (5.115)

does not give any nontrivial deformation. Therefore, we can freely change the
independent fields M and Wm, at least locally.
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5.5 Examples

In the previous sections, we construct the general form of the supersymmetric
background. In this section, we will check whether our solution includes known
backgrounds.

First of all, let us review the action of vector multiplets and hypermultiplets
in the 5d N = 1 Poincaré supergravity [100, 101]. For our purpose, we set the
fermions in the Weyl multiplet to be zero.

An action for vector multiplets can be written by a gauge invariant cubic poly-
nomial of M i, called prepotential N (M). We write its derivatives with respect
to M i as

Ni =
∂N
∂M i

, Nij =
∂2N

∂M i∂M j
, Nijk =

∂3N
∂M i∂M j∂Mk

. (5.116)

i, j, k label adjoint indices of the gauge group and also the central charge vector
multiplet

(Wµ,M, Ya,Ω)
i=0 = (Aµ, 1,−ta, 0) . (5.117)

Using the prepotentialN , we can write down the Lagrangian for vector multiplets
as

e−1LV = NP +Ni

(
F i
µν(W )

(
vµν − 1

2
F µν(A)

)
− [Ω,Ω]i

)
− 1

2
Nij

(
−1

4
F i
µν(W )F jµν(W )− 1

2
DµM

iDµM j − 2Y i
aY

j
b

+2iΩiD\Ωj + 2Ωi

(
v\ − 1

2
F\ (A)

)
Ωj

)
−Nijk

(
1

2
ΩiF\ (W )jΩk + ΩiY jΩk +

e−1

12
[CS]ijk5

)
, (5.118)

where

P = 2C + 10tata − 2Fµν(A)v
µν +

3

4
Fµν(A)F

µν(A). (5.119)

In the background (5.50)-(5.61), P is written by the independent fields as

P = −6

(
ta +

1

4
Ja
m̂n̂Fm̂n̂Fm̂n̂(A)

)2

− S2

8
ϵm̂n̂p̂q̂Fm̂n̂(U)Fp̂q̂(U)

+ 2iD
(4)
m̂ vm̂5̂ − 4i

S
(∂m̂S) v

m̂5̂ − 3

2S2
(∂m̂S)

2 . (5.120)

[CS]ijk5 is the 5d Chern-Simons term defined by

[CS]ijk5 = ϵλµνρσW i
λ∂µW

j
ν∂ρW

k
σ (5.121)
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Table 5.3: 5d hypermultiplet (A = 1, . . . , 2r).

fields dof Sp(1)R
bosons scalar 4r 2 qAI

auxiliary field 4r 2 FA
I

fermion fermion 8r 1 ζAα

for Abelian gauge fields. For non-Abelian gauge groups we should add appropriate
terms W 3dW and W 5 to make it gauge invariant. If N includes only dynamical
scalar fields, the Lagrangian becomes the supersymmetric version of the 5d Chern-
Simons action, which is conformal invariant. N including the scalar in the central
charge vector multiplet M0 gives supersymmetric Yang-Mills action or Fayet-
Iliopoulos term, which are not conformal invariant.

A hypermultiplet consists of the fields shown in Table 5.3. A = 1, . . . , 2r is an
index of a flavor symmetry, which can be gauged and coupled with vector mul-
tiplets. The flavor indices are raised and lowered by an antisymmetric invariant
tensor ρAB or ρAB

qA = qBρBA, qA = ρABqB. (5.122)

The bosonic fields satisfy the reality condition:

qAI =
(
qAI
)∗
, FAI =

(
FAI

)∗
. (5.123)

The fermionic field satisfies

(ζIA)
∗ = ζIA = ϵIJρABζJB. (5.124)

We often omit the flavor indices, similar to spinor indices and SU(2)R doublet
indices. For example,

qq = qIAqIA. (5.125)

The action for hypermultiplets is

e−1LH = DµqDµq − qM2q + 2qY q

−
(
C − 1

4
R +

1

8
Fµν(A)F

µν(A)− vµνv
µν + 5tata

)
qq

− 2iζD\ ζ + 2ζMζ − ζF\ (A)ζ + 2ζv\ζ
+ 8qΩζ − (1 + AµAµ)FF. (5.126)
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This action is invariant under the following supersymmetry transformation:

δQq = 2ξζ, (5.127)

δQζ = −i(D\ q)ξ + Fξ − 3qtξ −Mqξ +
1

2
F\ (A)qξ + 2v\qξ, (5.128)

δQF = −2ξ

(
iD\ ζ + 1

2
F\ (A)ζ − v\ζ −Mζ + 2Ωq

)
. (5.129)

The covariant derivative Dµ includes the U(1)Z transformation δZ (Aµ). Hyper-
multiplets transform non-trivially under the U(1)Z transformation as

δZ(θ)q = θF, (5.130)

δZ(θ)ζ = −θ
(
iD\ ζ + 1

2
F\ (A)ζ − v\ζ −Mζ + 2Ωq

)
, (5.131)

δZ(θ)F = θ

(
−
(
Dµ̂Dµ̂ + C +

1

4
R +

1

8
Fµν(A)F

µν(A)− vµνv
µν + 4tata

)
q

+ 4Ωζ + 2Y q − ttq −M2q + 2tq + 2MF

)
. (5.132)

Right hand sides of (5.131) and (5.132) also include δZ in the covariant derivative.
Hence δZζ and δZF is defined recursively.

For simplicity we consider only on-shell neutral hypermultiplets below.

5.5.1 Conformally flat backgrounds

Given a superconformal field theory on a flat space, we can obtain the theory on
a conformally flat background by a Weyl transformation. Then the superconfor-
mal transformation parameter ξ on the conformally flat background satisfies the
Killing spinor equation

Dµξ = γµκ (5.133)

where κ is a spinor. By the Weyl transformation, the Lagrangian for vector
multiplets is covariantized with respect to the local symmetries Sp(2)L, Sp(1)R
and U(1)Z and also added the term

R

8
N , (5.134)

where R is the Riemann curvature of the background. For hypermultiplets, the
Lagrangian is covariantized and added

3R

16
qq. (5.135)
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We would like to reproduce the theory from the supergravity. In the 5d N = 1
supergravity, the Killing spinor equation corresponds to δQψµ = 0, where δQψµ

is defined in (5.5). For this condition to have only the covariant derivative and
terms proportional to γµ, we impose

V a
µ = 0, vµν −

1

2
Fµν(A) = 0, (5.136)

where the second condition arises because

Fµν(A)γ
ν + γµρσv

ρσ = γµF\ (A) + γµρσ

(
vρσ − 1

2
F ρσ(A)

)
. (5.137)

Then the condition δQψµ = 0 becomes the Killing spinor equation with

κ = −i
(
1

2
F\ (A) + t

)
ξ. (5.138)

Due to (5.136), extra terms which do not arise in conformal theory vanish in
the action (5.118). Then what we need to show is that the combination of the
background fields P yields the Riemann curvature. This is easily shown by using
the condition δQχ̃ = 0. If (5.136) holds, we can rewrite δQχ̃ in (5.6) as

δQχ̃ = − i

4
[D\ (F\ (A) + 2t)]ξ − 1

8
γµ(F\ (A) + 2t)γµ(F\ (A) + 2t)ξ

+

(
1

2
C +

5

2
tata −

1

16
Fµν(A)F

µν(A)

)
ξ. (5.139)

Using the Killing spinor equation (5.133) with (5.138), this equation can be
rewritten further:

δQχ̃ =
1

2
DµD

µξ +

(
1

2
C +

5

2
tata −

1

16
Fµν(A)F

µν(A)

)
ξ = 0. (5.140)

Using this, we obtain

Pξ = 4

(
1

2
C +

5

2
tata −

1

16
Fµν(A)F

µν(A)

)
ξ = −2DµD

µξ =
R

8
ξ. (5.141)

The third equality is shown by using (5.133) as follows:

1

8
Rξ = − 1

16
γµνRµνρσγ

ρσξ

= −1

2
γµνDµDνξ

= −1

2
D\D\ ξ + 1

2
DµD

µξ

= −5

2
D\ κ+

1

2
DµD

µξ

= −5

2
DµD

µξ +
1

2
DµD

µξ

= −2DµD
µξ. (5.142)
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We used the flatness of the Sp(1)R connection between the first and the second
lines. (5.141) shows that NP is precisely the same as the curvature coupling
NR/8.

For hypermultiplets, the coefficients of qq in the action of hypermultiplets
(5.126) becomes

−
(
C − 1

4
R +

1

8
Fµν(A)F

µν(A)− vµνv
µν + 5tata

)
=
R

4
− P

2
+

(
vµν −

1

2
Fµν(A)

)(
vµν − 1

2
F µν(A)

)
=

3R

16
, (5.143)

which is consistent with the Weyl transformation for a 5d superconformal field
theory on a flat space.

5.5.2 S5

The supersymmetric gauge theory on a round five-sphere S5 is constructed in
[103] by using the 5d N = 1 supergravity. Let us confirm that our solution
(5.50)-(5.61) includes it.

S5 has the rotational SO(6) symmetry. Let us impose the SO(6) symmetry
to the action (5.118). The action depends on the tensor field vµν and Fµν(A)
through the combination

v′µν = vµν −
1

2
Fµν(A). (5.144)

Thus if N includes only dynamical scalar fields, we impose

v′µν = 0. (5.145)

If N includes the scalar field in the central charge vector multiplet, the action
also depends on Fµν(A). Thus we impose

vµν = Fµν(A) = 0 (5.146)

in this case.
In order to solve these conditions, first of all let us give the coordinates on

S5. S5 is S1 fibration over CP2. Thus we make the fifth direction as the S1 fiber
direction and the metric as

ds2 = ds2CP2 + e5̂e5̂, ds2CP2 = em̂em̂, e5̂ = r
(
dx5 + U

)
, (5.147)

where r is the radius of S5. We take a local frame such that J3 is the complex
structure of CP2, and then the following relations hold.

S = r, F (U) =
2i

r2
J3. (5.148)
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Due to the Kählerity, the holonomy of CP2 is U(2) = Sp(1)r × U(1)l where
U(1)l ⊂ Sp(1)l is the stabilizer subgroup of the complex structure J3. The spin
connection of CP2 commutes with J3, and take the form

ωCP2

m̂n̂ =
3i

2
UJ3

m̂n̂ + (Sp(1)r part) . (5.149)

Now we fixed the metric and the spin connection of the S5. Then let us
solve the conditions (5.145) or (5.146). If we impose the condition (5.145), the
background fields satisfy

vm̂5̂ = 0, Fm̂n̂(A)J
a
m̂n̂ + 4ta =

2

r
δa3, P =

5

2r2
, (5.150)

V a
m̂ =

3i

2
Um̂δ

a3, V a
5̂
= − 3i

2r
δa3. (5.151)

The Sp(1)R gauge field is the flat connection and can be gauged away:

V a =
3i

2
δa3dx5. (5.152)

Although the condition (5.145) does not completely fix all of the background
fields, the ambiguity does not affect the Lagrangians for vector and hypermulti-
plet.

If we impose the condition (5.146), or we consider a mass deformed theory,
the background fields satisfy

Fm̂n̂(A) = 0, ta =
1

2r
δa3 (5.153)

in addition to (5.150) and (5.151). This agrees with the background fields given
in [103].

Although a superconformal theory on S5 has sixteen supercharges, the super-
gravity formulation reproduces only a part of them. For the background specified
by (5.150), (5.151) and (5.153), δQχ̃ = 0 automatically holds and δQψµ = 0 gives

Dµξ = − i

2r
γµτ3ξ. (5.154)

This has eight supercharges belonging to the real representation of (4,2)+ (4,2)
of SO(6)× Sp(1)R. The supersymmetry algebra can be obtained from (5.1) as

{δQ (ξ1) , δQ (ξ2)} = 2i
(
ξ1γ

µ̂ξ2
)
Dµ̂ + δZ (ξ1ξ2)

+ δM

(
2

r
(ξ1γµ̂ν̂τaξ2)

)
+ δU

(
−3

r
(ξ1ξ2)

)
(5.155)

for two Grassmann-even spinor parameters ξ1 and ξ2 satisfying (5.154).
If we choose another background satisfying (5.150) and (5.151) we obtain a

different Killing spinor equation. Although different backgrounds give the same
superconformal Lagrangians, the number of supercharges which are realized by
the supergravity in general depends on the choice of the background fields.
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5.5.3 S4 × R
The metric of S4 × R can be written as

ds2 = ds2S4 + e5̂e5̂, dsS4 = em̂em̂, e5̂ = dx5, (5.156)

where we identify the fifth direction as R direction. From this metric, we read

S = 1, U = 0. (5.157)

Similarly to the previous subsection, let us impose the rotational symmetry SO(5)
of S4 to the action. In the case of the prepotential including only dynamical scalar
fields, the condition is v′µν = 0. Solving this, the background fields satisfy

Fm̂n̂(A)J
a
m̂n̂ + 4ta = 0, vm̂5̂ = 0, P = 0, V a = −1

4
ω
(S4)
p̂q̂ Ja

p̂q̂. (5.158)

In the case of the prepotential including the non-dynamical scalar field M0, by
solving vµν = Fµν(A) = 0, we obtain the conditions

Fm̂n̂(A) = ta = 0 (5.159)

in addition to (5.158). The latter background is given in [44].
These backgrounds are different from the one obtained by the Weyl trans-

formation. The Weyl-transformed theory should have P = R/4 = 3/r2 and flat
V a
µ . Actually it is impossible to realize a flat Sp(1)R connection in our solution

because S4 does not admit an almost complex structure. It is necessary to turn
on a nontrivial Sp(1)R flux for the existence of Ja

m̂n̂. This result does not change
even if we take a different direction as x5 direction. Because an arbitrary rota-
tion for S4 has fixed points and Rµ is nowhere vanishing, we cannot take the x5

direction within S4 and Rµ necessarily has the component along R. Thus if the
topology of B is S4 and if there exists Ja

m̂n̂, a nontrivial Sp(1)R flux is required.
Therefore, we cannot realize the Weyl-transformed theory on S4 ×R as a special
case of our solution.

The reason for this impossibility may be the symplectic Majorana condition
imposed on ξ. We have imposed this condition only for simplicity of the analysis,
and it may be possible to realize S4 × R background without the Sp(1)R flux
by relaxing this condition. In the 3d case, it is shown in [40] that S2 × S1

backgrounds with and without U(1)R flux can be both realized in the framework
of the 3d new minimal supergravity [104]. The nontrivial U(1)R flux is realized
in the case where the Killing vector constructed by the Killing spinor has the
direction within the S1.

The other method for realizing the Weyl-transformed theory on S4 × R is
using other supergravities. In [105], the solution of supersymmetric backgrounds
are constructed by using 5d N = 1 conformal supergravity [106, 107], while the
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symplectic Majorana condition for the Killing spinor is imposed. In this formal-
ism, the Yang-Mills action is realized by turning on a scalar field in a background
vector multiplet. In the case of S4 × R, it is shown that the background scalar
field cannot be constant. Therefore the supersymmetric Yang-Mills action with
the constant coupling gYM on S4 × R cannot be realized in this formalism.

Another supergravity is 5d N = 2 supergravity, which can be obtained from
6d N = (2, 0) conformal supergravity by the dimensional reduction and gauge
fixing [108]. By using this supergravity, the supersymmetric Yang-Mills theory on
S4×R is constructed in [109]. This gauge theory has eight supercharges. By the
dimensional reduction, this theory yields so called N = 2∗ supersymmetric Yang-
Mills theory on S4 with a tuned mass parameter of an adjoint hypermultiplet.

5.5.4 Σ× S3

The last example we consider is Σ×S3, the direct product of a Riemann surface Σ
and a three-sphere S3 with radius r. A supersymmetric theory on this background
is constructed in [110] for Σ = R2 and [111] for a general Σ. It can be reproduced
by our solution as shown below.

We treat S3 as the Hopf fibration over S2, and identify the Hopf fiber direction
with x5. The metric of Σ× S3 is

ds2 = ds2Σ + ds2S2 + e5̂e5̂, (5.160)

ds2Σ = e1̂e1̂ + e2̂e2̂, ds2S2 = e3̂e3̂ + e4̂e4̂, e5̂ = r
(
dx5 + U

)
, (5.161)

where U is a one-form on S2. The following equations hold.

S = r, ωS2

3̂4̂
= 2U, F (U) =

2

r2
e3̂ ∧ e4̂. (5.162)

We can take a local frame so that J3 is the complex structure of Σ × S2, which
is the summation of the complex structure of Σ and S2.

Let us impose the condition that the Lagrangian is invariant under the SO(4)
isometry of S3. As in previous subsections, all components of v′µν should vanish
except for v′

1̂2̂
because of the SO(4) invariance. This requires that the independent

fields satisfy

vm̂5̂ = Fm̂n̂(A)J
a
m̂n̂ + 4ta = 0, (5.163)

and then the non-vanishing component of v′µν is

v′
1̂2̂

= − i

2r
. (5.164)

The Sp(1)R connection is

V a
m̂=1̂,2̂

=
i

2
ω
(Σ)

m̂1̂2̂
δa3, V a

m̂=3̂,4̂
= − i

2
ω
(S2)
m̂3̂4̂

δa3, V a
5̂
=
i

r
δa3. (5.165)
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The S3 part of the connection (5.165)

V (S3)a = V a
3̂
e3̂ + V a

4̂
e4̂ + V a

5̂
e5̂ = iδa3dx5 (5.166)

is flat and can be gauged away. This guarantees the SO(4) invariance of the
Lagrangian. The Sp(1)R connection on Σ is topologically twisted in such a way
that a covariantly constant spinor on Σ exists.

In the case of the prepotential including the background scalar field M0, the
SO(4) invariance further restricts Fµν(A). Only non-vanishing components of
Fµν(A) should be F1̂2̂(A), which is related to t3 by

ta =
i

2
F1̂2̂(A)δ

a3. (5.167)

If we take the prepotential N = M0tr (M2) /g2YM with M0 = 1, the Lagrangian
(5.118) is given by

e−1LV =
1

g2YM

tr

[
1

4
Fµν(W )F µν +

1

2
DµMDµM − 2iΩD\Ω + 2Ω[M,Ω]

− i

r
F1̂2̂(A)M

2 +

(
F1̂2̂(A)−

2i

r

)
MF1̂2̂(W )− 2iF1̂2̂(A)MY3

+

(
i

r
− F1̂2̂(A)

)
Ωγ1̂2̂Ω + iF1̂2̂(A)Ωτ3Ω− F1̂2̂(A)[CS]3

]
, (5.168)

where [CS]3 is the Chern-Simons term on S3

[CS]3 = ϵ1̂2̂µνρ
(
Wµ∂νWρ +

(
W 3 term

))
. (5.169)

(5.168) gives a family of the supersymmetric Yang-Mills Lagrangian parametrized
by F1̂2̂(A), which is a function on Σ. For the gauge invariance of the Chern-Simons
term, the U(1)Z flux on Σ should be quantized as

1

g2YM

∫
Σ

F (A) ∈ i

4π
Z. (5.170)

The supersymmetric Yang-Mills Lagrangian in [111] is obtained by setting

F1̂2̂(A) = −2it3 =
i

r
. (5.171)





Chapter 6

Conclusions

Supersymmetric field theories on curved spaces play important roles in the exact
computations of physical quantities and tests of dualities. A systematic construc-
tion of the theories can be performed by using supergravities. Starting from each
supergravity, we can obtain conditions for background fields preserving some su-
percharges and study parameter (in)dependence of the partition function. By
these results,

• we can easily construct supersymmetric field theories on curved manifolds
only by using the solutions of supersymmetric backgrounds, and

• from the parameter (in)dependence of the partition function, we can find
which backgrounds give different exact results from known ones.

In this thesis, we reviewed the analysis for the 4d N = 1 and 3d N = 2 super-
symmetric backgrounds and studied the 5d N = 1 supersymmetric backgrounds.

In Chapter 2 we reviewed the 4d N = 1 supersymmetric backgrounds. Start-
ing from the 4d new minimal supergravity, the requirement that at least one
supercharge is preserved in the rigid limit yields Hermitian M4. Background
fields can be determined, up to some functional degrees of freedom. Moreover,
we reviewed that only a small number of degrees of freedom contributes to the
partition function, by seeing whether the deformations of the backgrounds give
Q-exact deformation of the action.

In Chapter 3 we reviewed similar analysis for the 3d N = 2 supersymmetric
backgrounds. M3 must be equipped with a mathematical structure called the
transversely holomorphic foliation. Similarly to the 4d case, only a small number
of degrees of freedom contributes to the partition function.

In Chapter 4, we reviewed various properties of 5d supersymmetric field the-
ories from the viewpoints of quantum field theories and superstring/M-theory.
These properties can be checked by partition functions for 5d supersymmetric
field theories on curved space.

We studied 5d supersymmetric backgrounds in Chapter 5. We solved two
spinorial equations and obtained the condition for the background fields. As

101
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a result, we found that we can construct 5d supersymmetric field theories on
a curved manifold only if the manifold has at least one isometry. After that,
we showed that all local degrees of freedom of background fields do not affect
the partition function due to the Q-exactness and gauge invariance. Finally we
constructed 5d supersymmetric field theories on a few simple manifolds.

In the analysis of Q-exact deformations in 5d, we focused only on the local
arguments. To obtain a full background dependence of the partition function, we
should carefully discuss global deformations, in which some classes of cohomology
may appear, similarly to 4d and 3d.

An important feature of the solution of 5d supersymmetric backgrounds is
the existence of the isometry. This suggests a close relation to 4d N = 2 super-
symmetric backgrounds. It would be interesting to study such backgrounds from
the viewpoint of 4d N = 2 supergravity [112, 113].

The solution obtained in this thesis does not contain S4 × R without the R-
symmetry flux. It may be possible to include such background by relaxing the
symplectic Majorana condition, which is imposed in this thesis for simplicity.

Another interesting direction is to study a relation between 6d N = (2, 0)
theories and 5d N = 2 theories, as mentioned in Section 4.6. In [108], a method
to obtain 5d N = 2 theories on curved backgrounds from 6d N = (2, 0) conformal
supergravity [114] is given. This method consists of the following procedures:
considering an Abelian tensor multiplet on an S1 fibration over a 5d manifold,
the dimensional reduction, non-Abelianization and an extension to an off-shell
formulation. When we consider a T 2 fibration over a 4d manifold M4, we have
two S1 direction to reduce to obtain 5d theories. If the conjectured relation
between the 6d N = (2, 0) theory and the 5d N = 2 theory is true, the partition
functions for two 5d theories should be same, as shown in Figure 6.1. It would
be interesting to compute and compare the 5d partition functions on such two
manifolds.
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6d N = (2, 0) theory
on M4 × T 2

5d N = 2
on M4 × S1

5d N = 2
on M4 × S̃1

S̃1 radius = 5d coupling S1 radius = 5d coupling

?

Figure 6.1: Relation between 6dN = (2, 0) theory and 5dN = 2 supersymmetric
gauge theories. “×” can be a nontrivial fibrations. This is a generalization of
Figure 4.6.





Appendix A

Notations and conventions

A.1 Indices in 5d

Notation of indices is as follows:

• µ, ν, . . . = 1, . . . , 5: 5d spacetime indices,

• µ̂, ν̂, . . . , 1̂, . . . , 5̂: 5d local orthonormal indices,

• α, β, . . . = 1, . . . , 4: Sp(2)L ∼ SO(5)L spinor indices

• I, J, . . . = 1, 2: Sp(1)R ∼ SU(2)R doublet indices, and

• a, b, . . . = 1, 2, 3: Sp(1)R ∼ SU(2)R triplet indices.

The 5d antisymmetric tensor ϵµνρσλ is defined by

γµνρσλ = ϵµνρσλ14. (A.1)

α, β, . . . and I, J, . . . are raised or lowered by invariant antisymmetric tensors
Cαβ = Cαβ and ϵIJ = ϵIJ , respectively. They satisfy

CαγCβγ = δαβ , ϵIKϵJK = δIJ . (A.2)

We often omit the contractions for these indices. In the case, we adopt the
NW-SE convention. For example,

ηχ ≡ ηαIχαI = CαβϵIJηβJχαI . (A.3)

For a rank n antisymmetric tensor Aµ1···µn , we define

A\ ≡ 1

n!
Aµ1···µnγ

µ1···µn . (A.4)

For Sp(1)R triplet fields we use the matrix notation

t J
I ≡ ta (τa)

J
I , (A.5)

where τa is the Pauli matrix.
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A.2 Our convention from Kugo-Ohashi conven-

tion

Kugo-Ohashi’s papers [100, 101] adopt the mostly-minus metric in Lorenzian
spacetime: ηµ̂ν̂ = diag(+ − − − −). For our purpose of the localization com-
putation, we have to obtain the formulation based on the Euclidean signature
ηµ̂ν̂ = diag(+++++). For this, we should flip the overall sign of ηµ̂ν̂ and Wick
rotate. In this section, we show how to move [100, 101] to our convention.

We do not change the definition of all fields except for the spin connection

ωµν̂ρ̂ → −ωµν̂ρ̂. (A.6)

For the Dirac matrices, satisfying {γµ̂, γν̂} = 2ηµ̂ν̂ , we change them as following:

γµ̂ → iγµ̂, γµ̂ → −iγµ̂. (A.7)

In both conventions, an antisymmetric tensor ϵµνρσλ is defined by (A.1). In
order to maintain (A.1) after the flip of ηµ̂ν̂ , we should replace ϵµνρσλ → iϵµνρσλ.
However, by the Wick rotation, we also replace ϵµνρσλ → −iϵµνρσλ. After all, we
do not change ϵµνρσλ.

For each spinor product, we replace iψχ→ ψχ. This is simply the change of
the notation.



Appendix B

Useful identities and spinor
computations

B.1 Fierz identities

Let ψ and ϕ be Grassmann-even spinors in each dimension. If both spinors are
Grassmann-odd, we flip the all signs in the right-hand sides.

4d Fierz identity: for the left-handed spinors ψ and ϕ,

ψαϕ
β =

1

2
(ϕψ)δ β

α − 1

2
(ϕσµνψ) (σ

µν) β
α . (B.1)

3d Fierz identity:

ψαϕ
β =

1

2
(ϕψ)δ β

α +
1

2
(ϕγµψ) (γ

µ) β
α . (B.2)

5d Fierz identity:

ψIαϕ
Jβ =

1

8
ϕψδ J

I δ β
α +

1

8
ϕγµψδ

J
I (γµ) β

α − 1

16
ϕγµνψδ

J
I (γµν) β

α

+
1

8
ϕτaψ (τa) J

I δ β
α +

1

8
ϕτaγµψ (τa) J

I (γµ) β
α − 1

16
ϕτaγµνψ (τa) J

I (γµν) β
α .

(B.3)

B.2 Computation of (2.26)

Here we show the computation of (2.26), as an example of spinor computations
in 4d. By Fierz identity (B.1),

Jµ
νJ

ν
ρ = − 4

|ξ|4
(
ξ†σµ

νξ
) (
ξ†σν

ρξ
)

= − 2

|ξ|4
[(
ξ†ξ
) (
ξ†σµ

νσ
ν
ρξ
)
+
(
ξ†στ

λξ
) (
ξ†σµ

νσ
λ
τσ

ν
ρξ
)]
. (B.4)
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By the computation of the sigma matrices, we obtain

σµνσρλ = −1

4
ϵµνρλ + 2δ[µ[ρσν]λ] −

1

2
δµ[ρδνλ], (B.5)

σµνσ
ν
ρ =

3

4
δµρ − σµρ, (B.6)

σµνσλτσ
ν
ρ = −1

4
ϵµρτλ −

1

4
gµρστλ −

1

2
gµ[τgλ]ρ. (B.7)

In the second term of the right hand side in (B.5), the pairs (µ, ν) and (ρ, λ) are
anti-symmetrized, respectively. By using these formulas,

Jµ
νJ

ν
ρ = −3

2
δµρ −

i

2
Jµ

ρ +
i

4
ϵµρτλJ

τλ − 1

8
δµρJ

τ
λJ

λ
τ . (B.8)

The second and third terms cancel due to the self-duality of Jµν . Substituting ρ
into µ and summing over µ, we obtain Jµ

νJ
ν
µ = −4. Therefore (2.26) holds.



Appendix C

Mathematical facts

C.1 Differential forms and de Rham cohomol-

ogy

A space spanned by differential one-forms is defined as the dual vector space of
a tangent space, spanned by tangent vectors X = Xµ∂µ. The tangent space on a
point p in a manifold M is denoted by TpM, while the dual vector space, called
the cotangent space on p ∈ M is denoted by T ∗

pM. A one-form ω1 is represented
as

ω1 = ωµdx
µ. (C.1)

A (q, r)-tensor is defined as a map

T : ⊗qT ∗
pM⊗r TpM → R (C.2)

as

T = T µ1···µq
ν1···νr

∂

∂xµ1
· · · ∂

∂xµq
dxν1 · · · dxνr . (C.3)

An r-form is defined as a completely antisymmetric (0, r)-tensor. The outer
product of r one-forms is defined by

dxµ1 ∧ · · · ∧ dxµr ≡
∑
P∈Sr

sgn(P )dxµP (1) ⊗ · · · ⊗ dxµP (r) , (C.4)

where Sr is the r-th permutation group and

sgn(P ) =

{
+1 (P : even)

−1 (P : odd)
. (C.5)
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An r-form ωr is represented as

ωr =
1

r!
ωµ1···µrdx

µ1 ∧ · · · ∧ dxµr . (C.6)

The Hodge dual ∗ maps an r-form to a (D − r)-form as

∗ωr =
1

r!(D − r)!
ωµ1···µrϵ

µ1···µr
νr+1···νDdx

νr+1 ∧ · · · ∧ dxνD , (C.7)

where D is the dimension of the manifold M.
The exterior derivative d maps an r-form to a (r + 1)-form as

dωr =
1

r!

(
∂

∂xν
ωµ1···µr

)
dxν ∧ dxµ1 ∧ · · · ∧ dxµr . (C.8)

Because every differential form is an antisymmetric tensor, d2 = 0.
If ωr = dωr−1 with a globally-defined (r − 1)-form ωr−1, trivially dωr = 0.

However, if dωr = 0 we cannot conclude ωr = dωr−1 in general. In order to
measure this nontriviality, we define the r-th de Rham cohomology as

Hr(M) =
{
ωr|dωr = 0, ωr ∼ ωr + dωr−1

}
, (C.9)

where ωr ∼ ωr + dωr−1 means the identification between ωr and ωr + dωr−1.

C.2 Almost complex structure

Almost complex manifold is defined as follows. If there exists a (1, 1)-tensor J
satisfying J2 = −1 on each p ∈ M, M is an almost complex manifold. The
(1, 1)-tensor J is called the almost complex structure.

A tangent space and a cotangent space can be decomposed into two subspaces
by eigenvalues of J , respectively. A vector fieldX or a one-form ω1 is holomorphic
if

Jµ
νX

ν = iXµ, ωµJ
µ
ν = iων , (C.10)

while X or ω1 is anti-holomorphic if

Jµ
νX

ν = −iXµ, ωµJ
µ
ν = −iων . (C.11)

Let X and Y be arbitrary holomorphic vector fields on an almost complex
manifold M. If the Lie commutator

[X, Y ]µ = Xν∇νY
µ − Y ν∇νX

µ (C.12)

is also holomorphic, the almost complex structure J is called integrable.
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For an almost complex manifold, we define the Nijenhuis tensor

Nµ
νρ = Jλ

ν∇λJ
µ
ρ − Jλ

ρ∇λJ
µ
ν − Jµ

λ∇νJ
λ
ρ + Jµ

λ∇ρJ
λ
ν . (C.13)

The almost complex structure J is integrable if and only if the Nijenhuis tensor
vanishes.

If there exists a globally-defined (1, 1)-tensor J satisfying J2 = −1, M is a
complex manifold with an almost complex structure J . If an almost complex
manifold M with an integrable almost complex structure J , M is a complex
manifold with an almost complex structure J .

For a complex manifold, we can locally take holomorphic coordinates
(
zi, zi

)
such that

J =

(
i1 0
0 −i1

)
. (C.14)

An (r, s)-form is defined as an (r+ s)-form which belongs to a direct product
of r holomorphic and s anti-holomorphic cotangent spaces. A (r, s)-form ωr,s is
represented as

ωr,s =
1

r!s!
ωi1···isj1···jsdz

i1 ∧ · · · ∧ dzir ∧ dzj1 ∧ · · · ∧ dzjs . (C.15)

The exterior derivative dωr,s includes both (r+1, s)-forms and (r, s+1)-forms.
Hence we can define new operators which act on ωr,s as

∂ωr,s = dωr,s|(r+1,s) , ∂ωr,s = dωr,s|(r,s+1) , d = ∂ + ∂. (C.16)

These operators ∂ and ∂ are called the Dolbeault operators. Because d2 = 0,

∂2 = ∂
2
= 0 holds. Therefore we can define

Hr,s
∂ (M) =

{
ωr,s|∂ωr,s = 0, ωr,s ∼ ωr,s + ∂ωr−1,s

}
, (C.17)

Hr,s

∂
(M) =

{
ωr,s|∂ωr,s = 0, ωr,s ∼ ωr,s + ∂ωr,s−1

}
. (C.18)

These are called the Dolbeault cohomology.

C.3 Almost contact metric structure

C.3.1 Basic definitions

Almost contact structure is defined on an oriented 3d manifold M as a triple
(η, ζ,Φ) with a nowhere vanishing one-form ηµ, a vector field ζµ and a (1, 1)-
tensor Φµ

ν satisfying

ηµζ
µ = 1, Φµ

ρΦ
ρ
ν = −δµν + ζµην . (C.19)
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For a vector field Xµ satisfying Φµ
νX

ν = 0, then Xµ is proportional to ζµ.
Similarly, a one-form Ωµ satisfying ΩµΦ

µ
ν = 0 is proportional to ηµ.

Vector fields orthogonal to ζµ define a subspace D of the tangent space of M.
Because Φ2|D = −1, Φ|D defines an almost complex structure on D. Therefore Φ
is a 3d analogue of an almost complex structure. Similar to an almost complex
structure, we can define holomorphicity and anti-holomorphicity for vector fields
and one-forms. A vector field X or a one-form ω1 is holomorphic if

Φµ
νX

ν = iXµ, ωµΦ
µ
ν = iων , (C.20)

while X or ω1 is anti-holomorphic if

Φµ
νX

ν = −iXµ, ωµΦ
µ
ν = −iων . (C.21)

If a manifold M is equipped with a Riemann metric gµν and the following
equations hold, the almost contact structure (η, ζ,Φ) is compatible with gµν :

ζµ = ηµ, gρλΦ
ρ
µΦ

λ
ν = gµν − ηµην . (C.22)

These define an almost contact metric structure on M. For an oriented manifold,
we can take an almost contact structure by taking ζµ = ηµ and Φµ

ν = ϵµνρη
ρ.

Therefore we can always take an almost contact metric structure on an oriented 3d
Riemannian manifold. This is characterized by a metric gµν , a nowhere vanishing
one-form ηµ and an orientation.

C.3.2 Integrability condition (3.30)

Here we analyze the integrability condition (3.30)

Φµ
νLζΦ

ν
ρ = 0. (C.23)

Let us show that for a vector ζµ defining an almost contact structure and
a holomorphic one-form Ωµ, there exists a local coordinates (τ, z, z) such that
ζ = ∂τ and Ω = Ωzdz. Since ζ is nowhere vanishing, we can take coordinates
x1 = τ , x2, x3 such that ζ = ∂τ . Because Ω is holomorphic, ζµΩµ = 0 and Ω can
written by Ω = Ω2dx

2 +Ω3dx
3. From the holomorphicity of Ω and (C.23), LζΩµ

is also holomorphic one-form:

(LζΩµ) Φ
µ
ν = iLζΩν . (C.24)

Let us define ρ = Ω2/Ω3. Since holomorphic one-forms span a 1d space, ρ is a
function depending only on a choice of Φµ

ν . The holomorphicity of LζΩµ shows
∂τρ = 0. Taking new coordinates (τ, z, z) with complex z which are related with
x2 and x3 by x2 = f (z, z) and x3 = g (z, z),

Ω = Ω3

(
ρdx2 + dx3

)
= Ω3

((
ρ
∂f

∂z
+
∂g

∂z

)
dz +

(
ρ
∂f

∂z
+
∂g

∂z

)
dz

)
. (C.25)
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Hence, in order to take Ω = Ωzdz, we choose functions f and g satisfying

ρ
∂f

∂z
+
∂g

∂z
= λ (z, z) , ρ

∂f

∂z
+
∂g

∂z
= 0 (C.26)

for a nonzero function λ (z, z). This differential equations (C.26) always have a
solution. Therefore we can take Ω = Ωzdz. The relation between two overlapping
local coordinates (τ, z, z) and (τ ′, z′, z′) is obtained from

ζ = ∂τ = ∂τ ′ , Ω = Ωzdz = Ωz′dz
′ (C.27)

as

τ ′ = τ + t (z, z) , z′ = f(z), (C.28)

where t (z, z) is a real function and f(z) is a holomorphic function.
A compatible metric with an almost contact metric structure can be written

by a complex function h (τ, z, z) and a real function c (τ, z, z) as

ds2 =
(
dτ + h (τ, z, z) dz + h (τ, z, z) dz

)2
+ c (τ, z, z)2 dzdz. (C.29)





Appendix D

Supersymmetric backgrounds
from 4d N = 1 old minimal
supergravity

There is another formulation of 4d N = 1 off-shell supergravity, called the old
minimal supergravity [56, 57]. In this theory, a supercurrent multiplet coupled
with this supergravity is called the Ferrara-Zumino supercurrent multiplet [116],
which consists of

Tµν , Sµα, S
α̇

µ, jµ, x, x, (D.1)

where first three of them are similar notations as the R-multiplet in the new
minimal supergravity. jµ is an axial vector current and x and x are complex
scalars. Note that there is no U(1)R symmetry current.

The corresponding supergravity multiplet consists of

gµν , ψµα, ψ
α̇

µ, bµ, M, M, (D.2)

where bµ is a vector field and M and M are scalar fields. The supersymmetric
transformations for the gravitinos are

δQψµ = −2∇µξ +
i

3
Mσµξ +

2i

3
bµξ +

2i

3
bνσµνξ, (D.3)

δQψµ = −2∇µξ +
i

3
Mσµξ −

2i

3
bµξ −

2i

3
bνσµνξ. (D.4)

From the algebra of the supergravity transformations, the following relations
hold:

δ2Q = 2iδK , Kµ = ξσµξ, [δK , δQ] = 0, (D.5)

where δK = LK is the Lie derivative along Kµ.
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Similarly to Section 2.3, we would like to consider the condition such that there
is as least one nontrivial solution of δQψµ = δQψµ = 0 [38]. Before that, we should
note a significant difference from the case of the new minimal supergravity. In the
supersymmetric transformation for the gravitinos (2.21) and (2.22) in the new
minimal supergravity, the left-handed and right-handed components of spinors
are completely separated. Thus a combination of supersymmetry transformation
parameters

(
ξ, ξ
)
is a solution of δQψµ = δQψµ = 0 if and only if both (ξ, 0) and(

0, ξ
)
are solutions. In the old minimal supergravity, on each right hand side of

(D.3) and (D.4), there are both ξ and ξ. Therefore, it can be happen that
(
ξ, ξ
)
is

a solution even if (ξ, 0) and
(
0, ξ
)
are not solutions. In order to obtain a condition

that there is at least one supersymmetry, we should consider the following two
cases:

1. Only a left(right)-handed supersymmetric transforamtion parameter ξ (ξ)
has a nontrivial value while another parameter ξ (ξ) vanishes, and

2. A nontrivial combination
(
ξ, ξ
)
is a solution of δQψµ = δQψµ = 0.

D.1 The case of vanishing ξ

If ξ vanishes, δQψµ = δQψµ = 0 becomes

∇µξ =
i

3
bµξ +

i

3
bνσµνξ, (D.6)

0 =M. (D.7)

Hence M can take an arbitrary value. Since (D.6) is a homogeneous first-order
differential equation, the solution ξ is nowhere vanishing. Similar to the case of
the new minimal supergravity, we can define nowhere vanishing bilinears |ξ|2, Jµν
and Pµν . |ξ|2 is a positive scalar, Jµ

ν is an almost complex structure and Pµν is
an anti-holomorphic two-form with respect to Jµ

ν .
Similar to the previous analysis, by using (D.6), we can show that Jµ

ν is
integrable and the 4d manifold is Hermitian. We can introduce local holomor-
phic coordinates zi and take the complex structure as (2.38). Differentiating the
complex structure and using (D.6),

∇µJ
µ
ν =

1

3
(bν + b∗ν)−

i

3

(
bµ − b∗µ

)
Jµ

ν . (D.8)

From this equation, the holomorphic part of bµ is determined as

bµ =
1

2
(2gµν + iJµν)∇ρJ

ρν + bcµ, J ν
µ bcν = ibcµ. (D.9)
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By using the Chern connection defined in Section 2.3, (D.6) can be rewritten as(
∇c

µ −
i

2
bcµ

)
ξ = 0. (D.10)

From this, p = P12 satisfies (
∇c

µ − ibcµ
)
p = 0. (D.11)

This defines bcµ as

bcµ = −i∇c
µ log p. (D.12)

Because bcµ is anti-holomorphic,

∂ip = 0. (D.13)

By using (2.52), bc
i
is expressed as

bc
i
= −i∂i log

(
pg−1/2

)
. (D.14)

To summarize, the existence of the solution δQψµ = δQψµ = 0 with vanishing

ξ yields the existence of an integrable complex structure. The 4d manifold is
Hermitian. In this situation, M is arbitrary, M = 0 and bµ takes the form as in
(D.9) and (D.14).

Conversely, we can show that there is at least one solution ξ when the above
background fields are given. If we take the vielbein as (2.56) and (2.57), we can
find that (2.58) is a solution.

The global structure of the solution should also be considered [38]. For exam-
ple, let us consider R3 × S1, which can be constructed from the flat space C2 by
the identification z ∼ z + 2πi for one of the holomorphic coordinates. If we take
p = 1, the spinor ξ is constant and the periodic boundary condition is realized.
On the other hand, if we take p = ez, ξ changes its sign by z → z + 2πi because
the solution (2.58) includes

√
p. Thus the anti-periodic boundary condition is

realized and bµ has a nontrivial behavior.
If the 4d manifold is compact, the existence of the nowhere vanishing anti-

holomorphic two-form p gives restriction for the 4d manifold. In the Enriques-
Kodaira classification, only tori, K3 surfaces and primary Kodaira surfaces have
such property [115]. These do not include the Hopf surface S3 × S1, while its
non-compact version S3 × R is included.

D.2 Nontrivial ξ and ξ

Let us consider the case that a nontrivial combination
(
ξ, ξ
)
is a solution of

δQψµ = δQψµ = 0. Because these equations are first order differential equations,
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both ξ and ξ cannot vanish at a point simultaneously. At first we introduce
spinor bilinears, in addition to the ones (2.25)-(2.27) only from ξ. Bilinears
which consists of the only ξ are∣∣ξ∣∣2 = ξ

†
ξ, (D.15)

Jµν =
2i∣∣ξ∣∣2 ξ†σµνξ, (D.16)

P µν = ξσµνξ. (D.17)

∣∣ξ∣∣2 is a non-negative scalar. J
µ

ν is anti-self-dual and another almost complex

structure, if ξ is nowhere vanishing:

J
µ

νJ
ν

ρ = −δµρ. (D.18)

A vector Uµ is holomorphic with respect to J
µ

ν if and only if Uµσµξ = 0. P µν is

anti-holomorphic two-form with respect to J
µ

ν :

J
ν

µ P νρ = iP µρ. (D.19)

We can also construct the complex vectors by using both ξ and ξ as

Kµ = ξσµξ, Xµ = ξσµξ
†
. (D.20)

When Jµν and Jµν is well-defined, the following equations hold:

Jµ
νK

ν = J
µ

νK
ν = iKµ, (D.21)

Jµ
νX

ν = −Jµ

νX
ν = iXµ. (D.22)

Therefore Kµ is holomorphic with respect to both Jµ
ν and J

µ

ν , while X
µ is holo-

morphic with respect to Jµ
ν and anti-holomorphic with respect to J

µ

ν . Nonzero
inner products of two of Kµ, Xµ and their complex conjugates are only

K∗µKµ = X∗µXµ = 2|ξ|2
∣∣ξ∣∣2 . (D.23)

Hence we can construct a complete basis from these vectors. The metric can also
be written as

gµν =
1

2|ξ|2
∣∣ξ∣∣2 (KµK

∗
ν +KνK

∗
µ +XµX

∗
ν +XνX

∗
µ

)
. (D.24)
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Multiplying Jν
ρ, J

ν

ρ, P
ν
ρ and P

ν

ρ, we find that these tensors are represented as

Jµν =
i

2|ξ|2 |ξ|2
(
KµK

∗
ν −KνK

∗
µ +XµX

∗
ν −XνX

∗
µ

)
, (D.25)

Jµν =
i

2|ξ|2 |ξ|2
(
KµK

∗
ν −KνK

∗
µ −XµX

∗
ν +XνX

∗
µ

)
, (D.26)

Pµν =
1

2
∣∣ξ∣∣2 (KµXν −KνXµ) , (D.27)

P µν = − 1

2|ξ|2
(
KµXν −KνXµ

)
. (D.28)

Because Jµν is self-dual and Jµν is anti-self-dual, they can be written as

Jµν = Iµν +
1

2
ϵµνρλI

ρλ, Jµν = Iµν −
1

2
ϵµνρλI

ρλ, (D.29)

Iµν =
i

K∗λKλ

(
KµK

∗
ν −KνK

∗
µ

)
. (D.30)

Thus Jµν and Jµν can be defined if Kµ is nowhere vanishing.
δQψµ = δQψµ = 0 can be written as

∇µξ =
i

6
Mσµξ +

i

3
bµξ +

i

3
bνσµνξ, (D.31)

∇µξ =
i

6
Mσµξ −

i

3
bµξ −

i

3
bνσµνξ. (D.32)

The almost complex structure Jµ
ν is integrable if and only if U [µV ν]σµ∇νξ = 0

for arbitrary holomorphic vectors Uµ and V µ. By using (D.31) and UµVµ = 0,
which is because both Uµ and V µ are holomorphic, this condition is rewritten as

MUµV νσµσνξ = 0. (D.33)

It is sufficient to consider the case ξ ̸= 0. Then there are two nonzero holomorphic
vectors Kµ and Xµ and we can use the set of these vectors as a basis. Thus we
can take Uµ = Xµ and V µ = Kµ. We can show Kµσµξ = 0 by the Fierz identity
and we conclude that Jµ

ν is integrable. Similar analysis also shows that J
µ

ν is
integrable, whenever it exists.

Using (D.31) and (D.27), Pµν and P µν are invariant along Kµ:

LKPµν = LKP µν = 0, (D.34)

and we can show that Kµ is a Killing vector:

∇µKν +∇νKµ = 0. (D.35)
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The complex conjugate K∗
µ is also Killing because the metric is real. Their com-

mutator generates another real Killing vector Lµ:

[K,K∗] = 4iL. (D.36)

By using (D.31) and (D.32), we found that

Lµ = λXµ + λ∗X∗µ, (D.37)

λ =
1

12

(
M |ξ|2 −M∗ ∣∣ξ∣∣2 + (bν − b∗ν)X

∗ν
)
. (D.38)

Thus we consider two cases: L = 0 and L ̸= 0.

D.3 Nontrivial ξ and ξ: [K,K∗] = 0

Let us consider the case in which the commutator ofKµ and its complex conjugate
vanishes. In such case, we can show that ξ is identically zero or nowhere vanishing,
while ξ has the same property. For showing this, let us assume ξ(x) = 0 at a
point x on M4.

We can firstly show that the covariant derivative is also zero ∇µξ(x) = 0
at x. ξ(x) = 0 yields Xµ(x) = 0 and ξ(x) ̸= 0, for nontrivial solutions. We
can take a sufficient small neighborhood around x such that ξ ̸= 0 holds. If ξ
vanishes identically in such neighborhood, we obtain ∇µξ(x) = 0. If not, there
is a point in this neighborhood such that ξ ̸= 0, ξ ̸= 0, and thus Xµ ̸= 0 hold.
Since we restrict ourselves to the case of Lµ = 0, λ = 0 holds on such point. We
are considering smooth backgrounds, thus λ(x) = 0. From the expression of λ
(D.38), we obtain M(x) = 0. Therefore, from (D.31), we obtain ∇µξ(x) = 0.

From ξ(x) = ∇µξ(x) = 0, we can find Kµ(x) = ∇µKν(x) = 0. Because Kµ is
Killing, Kµ = 0 everywhere on M4. Therefore we conclude ξ identically vanishes.

We now focus on the case in which a nontrivial combination
(
ξ, ξ
)
is a solution

of δQψµ = δQψµ = 0. By the above discussion, it is sufficient to consider that

both ξ and ξ are nowhere vanishing. In the following we consider such situation.

By using the complex structure Jµ
ν , we can introduce the holomorphic coor-

dinates w and z. Because there is a Killing vector Kµ, we take K = ∂w and then
the metric can be written as

ds2 = Ω(z, z)2
[
(dw + h (z, z) dz)

(
dw + h (z, z) dz

)
+ c (z, z)2 dzdz

]
. (D.39)

This metric represents a T 2 fibration over a Riemann surface Σ, whose metric is
given by

ds2Σ = Ω(z, z)2 c (z, z)2 dzdz. (D.40)
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The coefficient of dwdw is defined by Kµ as

Ω2 = 2K∗µKµ = 4|ξ|2
∣∣ξ∣∣2 . (D.41)

Let us derive expressions for the background fields bµ, M and M . By using
(D.31), the differential of Jµ

ν gives

∇µJ
µ
ν =

1

3
(bν + b∗ν)−

i

3

(
bµ − b∗µ

)
Jµ

ν +
1

3|ξ|2
(M∗Xν +MX∗

ν ) . (D.42)

This restricts the anti-holomorphic part of bµ as

bµ =
3

2
∇νJ

ν
µ −

1

2|ξ|2
∣∣ξ∣∣2

(
M |ξ|2Xµ +M

∣∣ξ∣∣2X∗
µ

)
+Bµ, J ν

µ Bν = iBµ.

(D.43)

Substituting this into (D.31), we obtain the equation (D.10) with

bcµ = bµ −
1

2
(2gµν + iJµν)∇ρJ

ρν . (D.44)

In the previous case bcµ is holomorphic, but it is not the case now. p = Pwz

satisfies (D.11), and thus bcµ is represented by p as (D.12). Therefore, bcµ is

bcw = 0, bcz = −i∂zp, bc
i
= −i∂i log

(
pg−1/2

)
, (D.45)

where the first equation is because Pµν and K = ∂w satisfy (D.34).
Let us determine the remaining background fields, M and M . To do this, we

differentiate Pµν and P µν by using (D.31) and (D.32):

∇µPµν =
i

2
MKν , ∇µP µν =

i

2
MKν . (D.46)

By multiplying K∗ν , we obtain

M = − 2i

K∗ρKρ

K∗ν∇µPµν , M = − 2i

K∗ρKρ

K∗ν∇µP µν . (D.47)

By using (D.27), (D.28) and [K,K∗] = 0, the above equations can be rewritten
as

M = −i∇µ

(
X∗

µ

|ξ|2

)
, M = i∇µ

(
Xµ∣∣ξ∣∣2
)
. (D.48)

Furthermore, using the expression of the metric (D.39) in terms of w and z,

M =
2ip

Ω4c2
∂z log p, M = −2iΩ2

p

(
∂z log

Ω6c2

p
+ h∂w log p

)
. (D.49)
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It turns out that M and M can be completely determined by the Hermitian
metric and p.

To summarize, we obtained the explicit form of the background fields bµ,
M and M , assuming the existence of a solution of δQψµ = δQψµ = 0 as a

nontrivial combination
(
ξ, ξ
)
such that [K,K∗] = 0. For the cases which do

not reduce to (ξ, 0) or
(
0, ξ
)
, it is sufficient to consider nowhere vanishing ξ and

ξ. The background fields can be expressed in terms of the Hermitian metric,
the complex structure and the nowhere vanishing anti-holomorphic two-form p,
which is invariant under the translation along K = ∂w. Of course, we can use
J
µ

ν and P µν to obtain the above results, instead of Jµ
ν and Pµν .

Conversely, we can show that there is a solution
(
ξ, ξ
)
for a general Hermitian

manifold which admits a nowhere vanishing complex Killing vector Kµ satisfy-
ing KµKµ = 0 and [K,K∗] = 0. As shown in (D.29) and (D.30), the complex
structure Jµ

ν and J
µ

ν can be defined by using only Kµ. Given a nowhere vanish-
ing anti-holomorphic two-form p with respect to Jµ

ν satisfying LKp = 0, we can

obtain the explicit solution of δQψµ = δQψµ = 0. We choose the vielbein as

e1̂ = Ω(dw + hdz), e2̂ = Ωcdz. (D.50)

and other background fields as obtained above. Then we can find that

ξα =

√
s

2

(
0
1

)
, ξ

α̇
=

Ω√
s

(
0
1

)
, s = pg−1/4 (D.51)

is a solution.
Finally, let us comment about the existence of the Killing vectors and sym-

metries. As shown in (D.5), the square of the supersymmetry transformation
gives the translation LK . Thus LK is a symmetry of a theory, which leaves bµ, M
and M invariant. However, LK∗ is not included in (D.5), so this transformation
need not be a symmetry of a theory and may change the background fields, even
though K∗ is a Killing vector.

If we would like to treat LK∗ to be a symmetry, we must impose the condition
that LK∗ leaves the background fields invariant. LK∗bµ = 0 restricts the w
dependence of p as

p (w, z, z) = eαwp̂ (z, z) , α ∈ C. (D.52)

By using this, we obtain

LK∗M = αM, LK∗M = −αM. (D.53)

Therefore there are two cases for LK∗M = LK∗M = 0: α ̸= 0 and α = 0. If
α ̸= 0, we obtain M = M = 0 from (D.53). This reduces to the previous case
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and thus there are at least two supercharges parametrized by (ξ, 0) and
(
0, ξ
)
. If

α = 0, the supersymmetry algebra is extended as

δ2Q = 2iδK , (D.54)

[δK , δQ] = [δK∗ , δQ] = 0, (D.55)

[δK , δK∗ ] = 0. (D.56)

D.4 Nontrivial ξ and ξ: [K,K∗] ̸= 0

Next let us consider the case in which a nontrivial combination
(
ξ, ξ
)
satisfying

[K,K∗] ̸= 0 is a solution of (D.31) and (D.32). Then there is another real Killing
vector Lµ as in (D.36). Thus there are three real Killing vectors

ℓ1 =
1

2
(K +K∗) , ℓ2 = − i

2
(K −K∗) , ℓ3 = L. (D.57)

We can show that these are orthogonal each other. Vanishing of the inner product
between first two vectors can be shown by using KµKµ = 0. For the inner
products between L and other ones, we consider the action of LK∗ to KµKµ = 0:

0 = LK∗ (KµKµ) = −8iLµKµ. (D.58)

Therefore we obtain LµKµ = 0. Similarly, we can find LµK∗
µ = 0.

By using these facts, we can show that there is SU(2)×SU(2) or SU(2)×U(1)
symmetry and the metric can be written as

ds2 = dτ 2 + r(τ)2dΩ3, (D.59)

where dΩ3 is the metric of the round S3 with unit radius. From the fact that ℓ1, ℓ2
and ℓ3 are orthogonal each other, the commutators [ℓa, ℓb] is also orthogonal with
respect to ℓa and ℓb. If all [ℓa, ℓb] are parallel to ϵabcℓc respectively, the algebra
is SU(2). Then the metric can be expressed in terms of the SU(2) invariant
one-form µ̃a as

ds2 = dτ 2 + hab(τ)µ̃
aµ̃b. (D.60)

Since the Killing vectors ℓ1, ℓ2 and ℓ3 are orthogonal each other, we obtain
hab(τ) = r(τ)2δab. This metric gives the expression (D.59) and the symmetry
is enhanced to SU(2)l × SU(2)r. ℓa=1,2,3 generate either SU(2)l or SU(2)r.

If [ℓa, ℓb] additionally generates another vector T , which is orthogonal to ϵabcℓc,
T is another real Killing vector. Therefore the isometry is SU(2)× U(1), where
U(1) is generated by the translation along T , that is τ direction. Then the metric
is given as in (D.59) and r is independent of τ .

By using the metric (D.59) and the Killing vectors, let us determine the
backgroud fields bµ,M andM . We assume that ℓa=1,2,3 generate SU(2)l isometry
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of the unit S3. Their dual one-form µâ (a = 1, 2, 3) is SU(2)r invariant one-form
and the metric can be represented as

dΩ3 =
(
µ1̂
)2

+
(
µ2̂
)2

+
(
µ3̂
)2
. (D.61)

By using µâ, we can take the vielbein as

eâ = r(τ)µâ, e4̂ = dτ. (D.62)

In this frame, K∗µKµ = 2r(τ)2, thus |ξ|2
∣∣ξ∣∣2 = r(τ)2. We can introduce the

fourth real vector orthogonal to K, K∗ and L as

T µ = − i

K∗λKλ

ϵµνρσLνKρK
∗
σ = r(τ)δµτ . (D.63)

The vector Xµ is orthogonal to Kµ and K∗µ and can be expressed in terms
of Lµ and T µ as

Xµ = α (Lµ + βT µ) . (D.64)

The fact that Xµ satisfies XµXµ = 0 and X∗µXµ = 2r(τ)2 constrains α and β as

|α|2 = 1, β2 = −1. (D.65)

We take β = 1 by choosing the sign of T µ as in (D.63). For α, let us define the
complex scalar function s satisfying

|s| = |ξ|2

r(τ)
=
r(τ)∣∣ξ∣∣2 , Xµ =

s

|s|
(Lµ + iT µ) . (D.66)

By using (D.27), we can write Pµν as a function of s. As shown in (D.34), Pµν is
invariant along K, thus s is invariant under the translation along K as

Kµ∂µs = 0. (D.67)

Similar to the previous analysis, we can determine the background fields in
terms of the geometric quantities and the function s. By differentiating Pµν ,
M and M are written as (D.47). Using (D.66) and ∇µKν = −∇νKµ, they are
written as follows:

M = i∇µ

(
s

r(τ)
(Lµ + iTµ)

)
− 2s

r(τ)
, (D.68)

M = −i∇µ

(
1

sr(τ)
(Lµ − iTµ)

)
+

2

sr(τ)
. (D.69)
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Let us determine bµ. For this, we compute the commutator [X,X∗]. By using
(D.31) and (D.32),

[X,X∗] = −2i

3

(
K∗µb∗µ

)
K − i

2

(
X∗µ (bµ + b∗µ

))
X − (c.c.)

= −2i

3

(
K∗µb∗µ

)
K − 2i

3
(Kµbµ)K

∗ − iLµ
(
bµ + b∗µ

)
L− iT µ

(
bµ + b∗µ

)
T.

(D.70)

On the other hand, [X,X∗] can be also computed by using (D.66) as

[X,X∗] = −2

(
Lµ∂µ log

s

|s|

)
L− 2

(
T µ∂µ log

s

|s|

)
T. (D.71)

By comparing (D.70) and (D.71), we obtain

Kµbµ = 0, Lµ
(
bµ + b∗µ

)
= −2iLµ∂µ log

s

|s|
, T µ

(
bµ + b∗µ

)
= −2iT µ∂µ log

s

|s|
.

(D.72)

The differential of |s|2 = |ξ|2
∣∣ξ∣∣2 can be computed by using (D.31), (D.32), (D.68)

and (D.69) as

∂µ log |s|2 = i
(
bµ − b∗µ

)
+

2

r(τ)
δτµ. (D.73)

Therefore, we can solve bµ as

bµ = −i∂µ log s+
i

r(τ)
δτµ. (D.74)

From (D.67) and (D.74), the background fields are invariant under the translation
along K, but need not to be invariant along K∗ or L.

Conversely, when we take the metric, the function s and the background fields
as obtained, we can obtain the solution

(
ξ, ξ
)
. In the frame (D.59), we can find

that

ξα =
√
sr(τ)

(
1
0

)
, ξ

α̇
=

√
r(τ)

s

(
−1
0

)
(D.75)

is a solution.
If we take τ− ≤ τ ≤ τ+ satisfying r (τ±) = 0, we can construct S4 and its some

deformations. In such case, the spinors ξ and ξ vanishes at some points, which
is consistent with the fact S4 does not admit the almost complex structures.
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