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Abstract

Supersymmetric field theories in various spacetime dimensions have been studied
a great deal. Thanks to supersymmetry, which is an extension of the Poincaré
symmetry consisting of the translational and Lorentz symmetry, it is easier to an-
alyze them perturbatively and non-perturbatively than without the supersymme-
try. In particular, the computation of the partition function for supersymmetric
field theories on curved manifolds can be performed exactly due to the existence
of the supersymmetry. The exact results can be used for checks of dualities, some
of which are originated from superstring and M-theory.

In order to perform such calculation, we should construct a supersymmetric
field theory on a curved manifold. If the manifold is characterized by some
deformation parameters, the partition function is a function of these parameters,
which gives us detailed information of the theory. However, a general curved
manifold does not admit supersymmetry. It is important to derive conditions for
the existence of supersymmetry and to clarify which deformation parameters the
partition function depends on.

A systematic method for constructing supersymmetric field theories on curved
manifolds by using supergravities was presented by Festuccia and Seiberg. In a
supergravity, there are the metric and its superpartners. In this method, we treat
them as background fields compatible with a supersymmetric transformation. By
using this method, we can obtain general constraints for the background fields
by imposing the condition that at least one supercharge is preserved. We can
also discuss whether the partition function depends on each deformation of the
background fields.

In this doctoral thesis, after reviewing the 4-dimensional and 3-dimensional
manifolds, we study 5-dimensional curved manifolds which admit at least one su-
percharge by using a 5-dimensional supergravity. We also discuss the background
(in)dependence of the partition function, and realize some simple backgrounds as
examples.
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Chapter 1

Introduction

The goals of this thesis are to obtain general configurations for background fields
in the Weyl and vector multiplets such that some of supercharges are preserved,
and to clarify the background dependence of partition functions. These analy-
ses are performed by using the framework of supergravity. In this chapter, we
overview superstring theory, M-theory and supersymmetric field theories, and
explain importance of supersymmetric field theories on curved manifolds.

1.1 Particle physics and superstring theory

There is no doubt that the Standard Model and General Relativity describe
dynamics of certain sectors of our world. The Standard Model is a quantum
field theory which describes the quarks, leptons and the Higgs particles with the
electromagnetic, weak and strong interactions. General Relativity is a classical
field theory which describes the gravitational interaction. These theories have
been tested through a lot of experiments and confirmed to be highly reliable.

One might try to combine these theories and to obtain a theory which de-
scribes all four interactions. However, that challenge has not been succeeded. The
gravitational interaction is non-renormalizable in the sense of the power-counting,
at least.

A strong candidate of a unified theory is superstring theory. We introduce
some basic facts about superstring theory below. For more details, see standard
textbooks on superstring theory, for example [I, 2, [3]. Superstring theory is a
theory of strings as fundamental objects with supersymmetry. There are two
kinds of strings: open strings and closed strings. By the quantization of oscil-
lations of strings, both massless and massive modes arise. From open strings,
gauge fields, matter fields and their superpartners arise as the massless modes.
Gravitons, various antisymmetric tensor fields and their superpartners arise as
the massless modes of closed strings. Therefore, we can see that both the Stan-
dard Model fields and the gravitational field are included. This theory has only

7
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XH XH(1,0)

Figure 1.1: String worldsheet in a spacetime. The spacetime coordinates are
written by X# (u=0,...,9). The string worldsheet is represented by embedding
a 2d space parameterized by (7,0) in the spacetime.

one parameter: the slope parameter o/, which is related to the string scale /
by £, = V/a'. o' is an inverse of the string tension. Furthermore, consistency of
the theory determines its spacetime dimension to 10. The string coupling is also
determined by the scalar field ® originated from the massless modes of the closed
string as ¢gs = e~®. These facts look nice as a unified theory.

The string worldsheet is a 2d subspace of the 10d spacetime. Thus it is
represented as a function X#(7,0) (u =0,...,9) which maps the 2d space of to
10d, as shown in Figure [I.1. By using the string coordinates X*(7, o) and their
superpartners ¥*(7, o) and 1;“(7', o), the string action can be written as

1
47

S d*z (%aX@Xu + PO, + w“al/}#) : (1.1)
where 0 = 9/0z and 0 = 0/0% with z = 7 +ic and Z = 7 — i0.

In field theories, divergences of interactions come from their short-range (ul-
traviolet) effects. They arise due to interactions at points. These quantum effects
appear in both the Standard Model and General Relativity. In the Standard
Model, one can obtain finite quantities by renormalization, while one cannot in
General Relativity. In superstring theory, as shown in Figure 1.2, a point-like
interaction is resolved and thus one can obtain finite quantities.

In the low energy and weak coupling limit, massive excitations and quantum
corrections are suppressed. The resulting theory is a 10d classical gravitational
theory with supersymmetry, called 10d supergravity. The field content of the 10d
supergravity is

e The metric g,

e A scalar ® called dilaton,

e An antisymmetric tensor B, called NS-NS 2-form,
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Figure 1.2: Interactions of point particles and strings. In the point particle
interaction an infinity can appear from the interacting point , while it cannot in
the string interaction.

e Antisymmetric tensors A and

M1 fhp10

e A fermion V¥, called gravitino.

Surprisingly, several kinds of extended objects in superstring theory had been
discovered. We generally refer to objects extended along p spatial directions as
p-branes. One of them found by Polchinski [4] is called D-brane or Dp-brane. A
Dp-brane is defined as an object on which endpoints of open strings are bounded.
Open strings bounded on a Dp-brane are represented by the Neumann and Dirich-
let boundary condition as

oXH oXH

OX(ro)|  _9XMmo)l o oy (12)
do o=0 do o=m
XM1,0)| o0 = XH(1,0)|,_, =", p=p+1,...,9, (1.3)

where z# is a constant vector and the parameter region of o is 0 < o < 7. The
endpoints of the open strings can move only along p spatial directions. By the
quantization of open strings on Dp-branes, a gauge field and its superpartners
arise as the massless modes.

On Dp-branes, a (p+1)-dimensional supersymmetric gauge theory arises as an
effective theory. The world-volume action for a Dp-brane is the Dirac-Born-Infeld
action

Sbp = — iy / A" ee™®\/—det (Gup + Bay + 210’ Fyp), (1.4)

where p, is the Dp-brane tension, £* (a = 0,...p) is the coordinates on the Dp-
brane, GG, is the induced metric on the Dp-brane. By, is a pull-back of the NS-NS
2-form, and F}; is a field strength of the gauge field arising from the open string
on the Dp-brane. When the energy scale we consider is sufficiently lower than
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the one of the string fluctuation, by expanding (1.4) we can obtain the Maxwell
action for Fy;,. The gauge coupling ¢ is expressed in terms of o/ and g, as

p—3

g* ~ gsa 7. (1.5)

Massless modes of closed strings include antisymmetric tensor fields. Since
they are generalizations of gauge fields, there can be charged objects. This is
similar to the fact that a 1-form potential A, is coupled with particles. For
instance, in 4d electrodynamics, the electric charge e and the magnetic charge m
are defined by the Gauss law as

e:/*F, m:/F, (1.6)

where the integrations are performed over a closed surface surrounding the par-
ticle and

1 1
F = §Fm,d:c“ Ndz”, *F = Zeuyngpgdx“ A dz”. (1.7)
We can generalize this argument for a (p + 1)-form potential A, ..,,,,, in space-
time dimension D. In general, p-branes are coupled with (p + 1)-form potential
electrically or (D — p — 3)-form potential magnetically. In superstring theory,

e Dp-branes are coupled with the (p + 1)-form potential eletrically or the
(7 — p)-form potential magnetically.

e A string is a 1-brane. It is coupled with the NS-NS 2-form electrically. The
magnetically coupled 5-brane is called the NS5-brane.

Although we have tried to obtain a unified theory, there are five types of
superstring theory due to its consistency. In four types of superstring theory we
treat the left- and right-moving modes of the string oscillation independently,
while we identify them in the other one. The former theories are called oriented
string theories and the latter is called unoriented string theory. By taking the
low energy limit, we can obtain the corresponding 10d supergravity. We list the
five types below:

e Type ITA superstring: Oriented string theory with 10d N' = 2 supersymme-
tryt. Two supercharges have the opposite chiralities. Dp-branes are stable
if p is even.

e Type IIB superstring: Oriented string theory with 10d ' = 2 supersym-
metry. Two supercharges have the same chirality. Dp-branes are stable if
p is odd.

'The number of supersymmetry N is explained in Section [1.3.
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S-dual Type 1IA
T-dual On S'/Zy and T-dual

Type IIB J Type I
P Orientifold projection { P

—

S-dual

Hetero T-dual Hetero
Eg X Eg SO (32)

Figure 1.3: Five types of superstring theory and dualities.

e Type I superstring: Unoriented string theory with 10d A/ = 1 supersym-
metry and SO(32) gauge symmetry. Dp-branes are stable if p = 1,5,9.

e Heterotic superstring with SO(32) gauge symmetry: The left- and right-
moving modes are bosonic and supersymmetric, respectively, and

e Heterotic superstring with Fg x Eg gauge symmetry: The left- and right-
moving modes are bosonic and supersymmetric, respectively.

They look apparently different. However, they are related by physical equiva-
lence, called “duality.” In Figure 1.3 we show how duality transforms one to
another. Branes in each theory are also transformed by duality transformations.
S-duality relates a weakly coupled theory to a strongly coupled theory. Below,
we introduce T-duality as an example of duality.

Let us consider compactification of one spacetime direction to a circle with
radius R. A closed string wrapping the circle can be characterized by the wrap-
ping number m € Z. Moreover, by quantum mechanics, a momentum along the
circle is quantized as

p=—, nez. (1.8)

By quantizing the oscillation of a closed string, the squared mass for the closed
string characterized by (m,n) is

n®> m2R? 2
= ﬁ + 7 + Jmn (1.9)

Therefore, the the following two strings give the same squared mass:

MQ
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e A closed string wrapping a circle with radius R with the wrapping number
m and the quantized momentum p = n/R, and

e A closed string wrapping a circle with radius R’ = o//R with the wrapping
number n and the quantized momentum p = m/R’.

T-duality is the physical equivalence of two compactifications with radius R and
R = o'/R. The T-duality transformation changes the radius and swaps the
momentum and the wrapping. Indeed, for a type of superstring theory, its T-
dual leads another type of superstring theory.

1.2 M-theory

In 1995, Witten [5] suggested the existence of a theory which includes all the types
of superstring theory. This theory is called M-theory. Conversely, each type of
superstring theory can be obtained from a certain limit of M-theory. M-theory
is believed to have the following properties:

e 11d theory.
e S! compactification of M-theory yields the type ITA superstring theory, and
o [ts low-energy limit is 11d supergravity.

Since there is a three-form potential in the 11d supergravity, M-theory includes
e M2-brane, which is electrically coupled with the three-form potential, and
e Mb-brane, which is magnetically coupled with the three-form potential.

In the case of superstring theory, an effective theory on D-branes is a supersym-
metric gauge theory. By studying supersymmetric gauge theories, we can reveal
properties of the D-branes and superstring theory. Now we would like to know
field theories realized on a stack of M-branes. However, since we have not been
succeeded to quantize M-branes, dynamics of M-branes is highly mysterious.
Nevertheless, effective field theories on a stack of M2-branes were proposed in
[6, [7, 8, 9]. They are equipped with the properties which an effective theory on
M2-branes must have. We only know the 6d field theory realized on a single M5-
brane [10, 11]. An effective field theory on M5-branes is called the 6d N = (2,0)
theory due to its supersymmetry. There is no known Lagrangian description of
“non-Abelian” 6d N = (2,0) theory realized on a stack of M5-branes.
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1.3 Supersymmetric field theories and exact com-
putation

1.3.1 Supersymmetric field theories

Supersymmetric field theories have been studied in phenomenological and the-
oretical motivations. Theoretically, supersymmetric field theories are easier to
analyze due to symmetries and related with properties of superstring and M-
theory. In this thesis, we focus on the theoretical motivations.

Supersymmetry is an extension of a spacetime symmetry. The symmetry of
a flat spacetime is the Poincaré symmetry, realized by the Poincaré algebra

[M/,wa Mpa] - _g,u,pMz/o + gz/pM,uo + g,u,oMup - gVUM,upu (11())
[leapp] = _guppu+guppu' (1.11)

In addition, the supersymmetry introduces fermionic generators Q:

{Qa, Qs} =2(v") s Brus (1.12)
[Muw Qa] = _% (rY/wQ)a ) (1.13)

where we show the 4d minimal (N = 1) supersymmetry as an example. In the
language of field theories, the supersymmetry relates bosons and fermions. Then
an action is invariant under the supersymmetric transformation, schematically
written as

dg(boson) = ¢ x (fermion), (1.14)
dg(fermion) = & x (boson), (1.15)

where ¢ is a spinor parameter. A set of fields related by (1.14) and (1.15) is called
a supermultiplet. The number of supersymmetry A is represented as the number
of irreducible spinors in each dimension.

A benefit of considering supersymmetry is that theories are easier to analyze,
while non-supersymmetric field theories are difficult to analyze, in particular for
non-Abelian gauge theories. Supersymmetry sometimes enables us to analyze
the theory exactly, including nonperturbative effects. One of the most important
works were performed by Seiberg and Witten [12, 13]. In [12] the 4d N' = 2
supersymmetric SU(2) pure Yang-Mills theory is considered. The theory includes
a vector multiplet, which consists of a gauge field A,,, two fermions ¢ and A, and
a scalar field ¢. All of them are in the adjoint representation of the SU(2) gauge
group. In the low energy, the SU(2) gauge group is spontaneously broken to U(1)
by the vacuum expectation value of ¢. Then the massive degrees of freedom can
be integrated out. The low-energy effective action is written by a single function
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F(A), called the prepotential, as

1 1, OF (A)— 0 1O?F(A)
,Ceff = Elm |:/d Qa—AA—{—/d 9§WW s (116)

where A is a massless N' = 1 chiral multiplet, W is a field strength chiral su-
perfield constructed from the A" =1 U(1) vector multiplet and 6 represents the
fermionic components of the 4d A" = 1 superspace. In [I2] the prepotential F is
determined exactly, including nonperturbative effects. [I3] extends the result to
the case with matter fields.

1.3.2 Supersymmetric localization

In this derivation, some physical assumptions are made. By a direct compu-
tation without any assumptions, Nekrasov [14] derived the partition function
for 4d N' = 2 supersymmetric gauge theories on a deformed R*, called the Q-
background. By taking the undeformed limit, it can be found that the result is
consistent with the Seiberg-Witten’s result. The method of the direct computa-
tion is called “supersymmetric localization.” Let us explain what the supersym-
metric localization is.
For example, we would like to compute the partition function

7z - /DCI)exp(—S[CI)]), (1.17)

where S[®] is the off-shell Euclidean action and & represents all dynamical fields
in a theory. Let us introduce a one-parameter deformation of the partition func-
tion

Z() = / D exp(—S[d] — t5V[]), (L18)

where V[®] is a functional of ® and § is a transformation. ¢ and V[®] can be
either bosonic or fermionic, while 6V [®] must be bosonic. We assume that they
satisfy

6S =0V =0, 0V|pes >0, (1.19)

where §V |05 is a part of 6V consisting of only bosonic fields. The t-derivative of
Z(t) vanishes:

%f) = —/DCI)(SV exp(—S — t§V) (1.20)

= —/D(I)(S(V exp(—S — tV)) = 0, (1.21)
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where we assumed that the measure D® is invariant under 6. Therefore the
one-parameter deformation Z(t) of the partition function is equal to the original
partition function. Of course we can take ¢ — oo limit:

Z=Z(t) = Z(t — ). (1.22)

Because dV|pos > 0, field configuration @, satisfying dV[®y] = 0 becomes dom-
inant in the path integral. Let ®" be the fluctuation from ®q3 and decompose ®
as

1
=P, + —D'. 1.23
0 ﬁ ( )

We formally expand t5V[®] around ®y:

1 d*(6V)
toV[®] = = 2+ O(t71?), (1.24)
2 A2 |y,
because 0V [P®y] = %‘ = 0. O(t~'/?) includes interaction terms, thus the
D=0

t — oo limit is a weak-coupling limit in some sense and the path integral over @’
can be calculated explicitly.
Therefore, the partition function is written as

7= / Do exp(—S[Bo]) Zi100s[ 0, (1.25)
Zrroon|@0] = / DY exp(—S[@)), (1.26)
S'[®] = % d;g) e (1.27)

By choosing V' and § appropriately, the integral over & becomes a finite-dimensional
integral and/or some summations. Furthermore, this procedure does not depend
on coupling constants and available even if the original theory is strongly-coupled.

1.3.3 Dualities

Once partition functions are computed, we can use them as tools for checking
dualities since physical quantities for dual theories must be the same. Moreover,
some kinds of dualities are thought to be originated in superstring or M-theory.
As examples, we list some dualities related with 4d supersymmetric field theories
below:

e AdS/CFT correspondence.

The configuration in the original works [15] [I6] [I7] is interpreted in terms
of a stack of N D3-branes in type IIB superstring theory. AdS/CFT says
that the following two theories are related:
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— 4d N = 4 supersymmetric Yang-Mills theory on S* with SU(N) gauge
group and a coupling constant gyy, and

— Type 1IB superstring theory in AdSs x S° with the string coupling g,
and AdS radius R = (47Ng,)"/* ¢,.

On the gauge theory side, we can obtain the partition function ZJS\QZA‘ exactly
by the supersymmetric localization [I8]. The string coupling is related with
the Yang-Mills coupling as g2,; = 27g,.

If we take a limit in which the latter becomes the classical supergravity,
which is easy to analyze, the partition function becomes Zgay = exp (—Ia)
where [ is the on-shell action of the supergravity. This limit is realized by
R > l;and N > 1. The first condition suppresses massive modes of strings
and the second condition suppresses loop corrections of closed strings.

We can compute Zé\ﬁ:‘l in the corresponding parameter region A = Ng2,; >
1 and N > 1, then obtain [19]

N2
—log ZN~t = —— log A, (1.28)

which coincides with I from the supergravity [20].2
e Seiberg duality [22], which relates the following in the low-energy region:

— 4d N =1 SU(N) gauge theory with chiral multiplets Q% and Q, (a =

1,...,Ny) in the fundamental and anti-fundamental representations,
and

— 4d N =1 SU (Ny — N) gauge theory with chiral multiplets ¢, and
¢* (a=1,...,Ny) in the fundamental and anti-fundamental represen-

tations and singlet chiral superfields M (a,b = 1,..., Ny) with the
superpotential W = gMg.

We can find that one of them is strongly coupled, hence we need non-
perturbative analyses. As one of these analyses, correspondence of some
of gauge invariant operators between these theories has been studied [22].
The supersymmetric localization is another tool for counting gauge invari-
ant operators more generally.

The partition function on S® x S!, or superconformal index, is computed
in [23, 24]. In addition to the definition in terms of path integral, the

2Since AdSs has an infinite volume, the on-shell action diverges. In order to regularize the
on-shell action, we have to introduce a counterterm action [20]. In the regularization, we should
carefully relate the cutoff in the field theory to the one in the supergravity [19, 21].
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superconformal index can be defined as a trace of a certain operator on
S3 x St

I (t, z, hz) — tr (_I)FqD—%R—ZJLtR+2JLx2JR H hfl ’ (129)

)

where [ is the fermion number, D is the dilatation, R is the U(1)g symme-
try, J;, and Jg are the Cartan generators® of the SO(4) ~ SU(2), x SU(2)r
subgroup of the superconformal algebra, and F; is the i-th Cartan genera-
tor of flavor symmetries. Expanding the superconformal index, we obtain
a polynomial of the variables. Each exponent of a variable means a sym-
metry charge of the corresponding state. Therefore we can count states
with charges of global symmetries by calculating the partition function on
53 x St. Indeed, one can show the coincidence between the partition func-
tions for dual theories.

4d N = 1 gauge theories have realizations by brane configurations in the
superstring theory [25]. Hence this duality relates two distinct brane con-
figurations.

e Alday-Gaiotto-Tachikawa (AGT) correspondence [26].

[26] shows that the instanton partition function for an A” = 2 gauge theory
coincides with a conformal block of a certain 2d conformal field theory
(CFT) on a Riemann surface . Including the perturbative part, the S*
partition function coincides with a four-point correlation function of the 2d
CFT on Y. This relation is interpreted in terms of Mb5-branes wrapping
S x 3 [27], as shown in Figure 1.4l

These dualities have been extended to various cases: other gauge groups, matter
contents, manifolds, etc. We expect that studying various dualities may reveal
more detailed properties of superstring and M-theory.

What we need for the localization computation is the off-shell action of a su-
persymmetric field theory on a compact manifold. In a flat space, the partition
function diverges due to infrared (IR) and ultraviolet (UV) divergences. Com-
putation on a compact (typically curved) space suppresses IR divergences and
gives us finite results, while UV divergences are suppressed by supersymmetry.
Since a square of supersymmetry transformations generates bosonic symmetries,
we often use a supersymmetry transformation as ¢ satisfying 62V = 0 in the
localization computation with an appropriate choice of a functional V' [®].

3Cartan generators of a symmetry group are defined as Hermite generators H; of the group
satisfying [H;, H;] = 0. SU(2) has one Cartan generator.
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Mb5-branes wrapping
St x ¥

4d N = 2 theory 2d CFT
on S* on X

Figure 1.4: The 6d interpretation of the AGT correspondence.

1.3.4 Supersymmetric field theories on curved spaces

In order to compute the partition function, first of all we should construct a
supersymmetric field theory on the curved manifold. We can adopt an intuitive
method to construct a supersymmetric Lagrangian as follows. Let us consider
construction of a supersymmetric field theory on a sphere with radius r from one
on a flat space, for example. In the Lagrangian and supersymmetry transforma-
tion laws on the flat space, the Lorentz indices are contracted by the flat space
metric 7,,. To construct the theory on the sphere, we firstly replace 7,, into
the sphere metric g,,. Supersymmetry is not preserved if we only do that. To
restore sypersymmetry, we add O (r~") (n = 1,2,...) corrections order by order
and realize the supersymmetric field theory on the sphere.

Now we would like to introduce deformations for the manifold. Since super-
symmetry is an extension of the spacetime symmetry, introducing deformations
may break supersymmetry. However, if a part of supersymmetry is left we can
perform the localization computation. Then we expect to obtain the partition
function depending on the deformation parameters, which is a more detailed in-
formation of the theory. However, it is hard to construct a supersymmetric field
theory on such manifold. Also, it is not clear whether a supersymmetric field
theory on a complicated manifold can be constructed or not. Moreover, there are
some cases in which a deformation of the manifold does not change the partition
function [28, 29, B0]. In particular, for supersymmetric field theories on a mani-
fold with the S® topology, it is shown in [31] that the partition function depends
on background manifolds only through a single parameter.

Now we have two questions:

1. What kind of manifold we can construct supersymmetric field theories on?
If possible, how is the action given?
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2. Which parameters do partition functions depend on?

1.4 Importance of backgrounds

In this thesis, we often use the terminology “background” or “background fields.”
These mean “something non-dynamical which affects dynamics.” Note that back-
grounds are not affected by dynamics. In the following we mainly study non-
dynamical fields such as the metric characterizing manifolds and gauge fields
associated with global symmetries.

A typical example of backgrounds is the external electromagnetic field. In
classical mechanics, motions of particles depend on their electric charges in the
presence of the electromagnetic field. For a charged particle beam in the elec-
tromagnetic field with known velocity, for example, we can derive the ratio of
its charge to mass by tracking its trajectory. Also, in quantum mechanics, the
degenerating states of an atom become splitted by turning on a magnetic field
(Zeeman effect). This reveals the spin structure of the atom. Thus we can know
properties of each particle in detail by turning on background fields.

We mentioned above that backgrounds are not affected by dynamics. In the
example above, the electromagnetic field may be affected by the motion of the
charged particle in the framework of electromagnetism. In order to reduce the
electromagnetic field into the external field, we should take an appropriate limit
of parameters such as the dielectric constant.

Background fields play important roles in quantum field theory, too. As an ex-
ample, let us consider computing an n-point correlation function (O; (z1) - - - O, (z,))
of operators O; (z;) (i = 1,...,n). In order to compute this, we add the source
terms to the original Lagrangian and define the generating functional

200 = /Dcpexp [z/dx (L + J; (2) O, (:@)1 | (1.30)

where J; (x;) is an i-th source as a background and & represents all dynamical
fields in the theory. The n-point correlation function can be written as

1 o Z[J]
Z[0] 8J1 (z1) -0y (z)

J=0

The background fields J; (x;) behave as the sources generating O; (x;).

Next example is a conformal field theory. Conformal field theories arise in
fixed points of the renormalization group flow. A conformal symmetry is gener-
ated by

e Translation z#* — x* + a*,

e Lorentz transformation x* — MH" z",
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e Dilatation x* — ax*, and

x# — (z - x)bH

e Special conformal transformation = — 1—20b-2)+ (b-b)(z-2)

These transformations leave an angle between two arbitrary vectors invariant.
Like supersymmetry, the conformal symmetry restricts theories and makes them
easier to analyze. In conformal field theory, the trace of the energy-momentum
tensor classically vanishes: T,# = 0. By quantum corrections, the conformal
symmetry can be broken. The quantity <Tu#>> characterizing the breaking of the
conformal symmetry is called the Weyl anomaly. The source corresponding to
the operator T"" is g,,, hence the Weyl anomaly is defined as the variation of
the action under the infinitesimal Weyl transformation given by

50, (2) = 2A(2) gy () (1.32)

for small A(z). In 4d, the contribution of the curved metric to the Weyl anomaly
<TM”>Curvo 4 consists of two components with coefficients a and c as [32]

<TH“>Curved =cF — aG, (1.33)
1

F = Ry R"" — 2R, R" + §R2, (1.34)

G = R R"" — 4R, R" + R?, (1.35)

where the theory is coupled with the external gravity with the Riemann tensor
R0, the Ricci tensor R, and the scalar curvature R. Even if the conformal
symmetry is quantum mechanically preserved, a and ¢ are important quantities
characterizing the theory. In particular, ¢ monotonically decreases along the
renormalization group flow and can be seen as an effective degrees of freedom of
the theory [33] 134].

As shown above, introducing background fields can reveal properties of theo-
ries or particles in detail. In this reason, we would like to study supersymmetric
field theories on curved spaces to obtain their properties and reveal dualities in
detail.

1.5 Rigid supersymmetry from supergravity

1.5.1 Rigid supersymmetry from supergravity

Festuccia and Seiberg [35] proposed a systematic construction of supersymmetric
field theories on curved manifolds by using off-shell supergravity. Since we use
an off-shell formalism of field theory for the path integral, we begin with off-shell
supergravity in this method.
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Supergravity is a theory in which the gravity has the superpartner called
gravitino. The supermultiplet including them is called the Weyl multiplet. Other
supermultiplets including gauge fields and matter fields are also present.

In the Einstein-Hilbert action, a kinetic term of the gravity is

2
Mp;

> / dz/gR, (1.36)

where mp) is the Planck mass. In order to treat the gravity as a non-dynamical
field without backreactions, we take the “rigid limit” mp; — oo. Then the gravity
decouples and we can fix the component fields of the Weyl multiplet as back-
ground fields. In particular, we choose the metric so that it realizes a manifold
which we would like to construct. Now supersymmetry transformation acts only
on dynamical fields, while the background Weyl multiplet is kept intact. There-
fore, for the Lagrangian to be supersymmetric, original supersymmetry trans-
formations of all components of the Weyl multiplet should vanish. Since we set
the fermionic components of the Weyl multiplet to be zero, the supersymme-
try transformations for the bosonic components are always zero. The condition
that the supersymmetry transformation of the fermionic components in the Weyl
multiplet should be zero is nontrivial because the bosonic components are gen-
erally nonzero. Therefore, supercharges corresponding to the spinor parameter &
satisfying

d¢g(fermions in the Weyl multiplet) = £ x (bosons in the Weyl multiplet) = 0
(1.37)

are only preserved. We use the terminology the “rigid” supersymmetry for the
supersymmetry with the gravity fixed. For this formulation, see Figure [1.5.

Using this systematic method, we can study general backgrounds preserving
supersymmetry. By requiring the existence of the solutions of (1.37), we can
derive restriction for bosonic background fields in the Weyl multiplet. In [36} 37],
the condition that a 4d Riemannian manifold M, can realize rigid supersymmetry
is studied by considering 4d N = 1 supergravity with a U(1)g symmetry, called
“the new minimal supergravity.” One conserved supercharge restricts M, to
Hermitian. For more preserved supercharges, the condition is more restrictive.

Using the new minimal supergravity, rigid supersymmetry on S* cannot be
realized because S is not Hermitian. In [38], it was shown that a rigid supersym-
metry can be realized on round and squashed S* by starting with a supergravity
without the U(1)g symmetry, called “the old minimal supergravity.” This fact
shows that different results may be obtained by starting with different supergrav-
ities even if they are reduced into the same on-shell theory. This is because we
do not impose equations of motion on auxiliary fields in the Weyl multiplet.

In [39], a similar condition for 3d Riemannian manifold Mj is solved by
starting with a 3d A/ = 2 supergravity with a U(1)g symmetry. By imposing
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[Supergravity] N

Weyl multiplet
Bosons: gravity, R-symmetry gauge field,...
Fermions: gravitino,...

dg(boson) = £ x (fermion)
d¢g(fermion) = £ x (boson)

= J

( 7

Matter multiplets
Gauge fields, matters,...

dg(boson) = £ x (fermion)
d¢g(fermion) = £ x (boson)

l

[Supersymmetric field theory on curved background]ﬁ

~

(Weyl multiplet (background)
Bosons: gravity, R-symmetry gauge field,...: fixed
Fermions: gravitino,... =0

dg(boson) = & x (fermion) = 0
S (fermion) = & x (boson) = 0

& J

( 7

Matter multiplets
Gauge fields, matters,...

dg(boson) = £ x (fermion)
d¢g(fermion) = & x (boson)

(. J

Figure 1.5: Supergravity to rigid supersymmetry. Imposing that the supersym-
metry transformation of the fermions in the Weyl multiplet vanishes, we can
obtain a rigid supersymmetry.
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the condition that one supercharge is preserved, we can find that M3 admits a
certain mathematical structure called transversely holomorphic foliation with a
transversely Hermitian metric. Similarly to 4d, the condition is more restrictive
for more preserved supercharges.

1.5.2 Parameter independence of partition function

In 4d and 3d, the resulting backgrounds are characterized by functional degrees
of freedom. However, [40] show that only a small part of them contributes to
the partition function. Let us consider a deformation of a background manifold.
Then the Lagrangian also changes due to the deformation. If the variation of the
Lagrangian can be written as AL = Jg(---), such deformation does not affect
the partition function. We call such deformation as a )-exact deformation.

1.5.3 Analysis in 5d

Now we would like to analyze 5d supersymmetric field theories on curved mani-
folds by the same techniques. Some of 5d supersymmetric field theories are worth
studying, in spite of their non-renormalizability. They have nontrivial dynamics
in both UV and IR regime [41]. In particular, a global symmetry is enhanced
to an exceptional group in a certain situation for some theories. Moreover, a
certain 5d supersymmetric field theory is thought to be related with a mysterious
6d N = (2,0) theory, realized on a stack of M5-branes [42] 43]. The analysis of
the condition for 5d supersymmetric backgrounds was studied partially in [44].
One of the goals of this thesis is to perform the complete analysis for 5d rigid
supersymmetry [45]. The other one is to derive the background independence of
the partition function, as in [40].

1.6 Organization of the thesis

In Chapter 2, we review the analyses for 4d supersymmetric backgrounds [37, 40].
We introduce the 4d A/ = 1 new minimal supergravity, solve the conditions for
the existence of a preserved supercharge and obtain the result that M, should
be Hermitian. Then we analyze the background dependence of the 4d partition
function.

In Chapter 3, we perform a similar analysis for the 3d N' = 2 supergravity
as a review of [39] 40]. We obtain the result that Mj should admit a certain
mathematical structure. After that, we analyze the background dependence of
the 3d partition function.

In preparation for 5d, we introduce 5d supersymmetric field theory in Chapter
4. We also show its several properties, some of which can be tested by partition
functions.
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Chapter 5 is the main part of this thesis and the original work of the author.
This chapter is based on the reference [45]. We obtain the restriction for back-
ground fields and background (in)dependence of the partition function. After
that, we construct several simple manifolds by using our formulation.

Useful formulas and basic facts are summarized in Appendices A, B and [C.
In Appendix D, we show the analysis of 4d N' = 1 supersymmetric backgrounds
by using the 4d A/ = 1 old minimal supergravity.



Chapter 2

4d N = 1 supersymietric
backgrounds

4d N = 1 supersymmetric field theories are studied vigorously based on various
phenomenological and theoretical motivations. The Seiberg duality [22] relates
different 4d A/ = 1 gauge theories. The exact computation of S? x S! partition
function, called the superconformal index, is performed [23, 24] and the equiva-
lence of dual theories is checked in [46]. The computation of the S x S! partition
function by using another Q)-exact term, called the Higgs branch localization, is
performed in [47]. S x M3 partition function is computed in [48], where M3 is a
circle bundle over a Riemann surface. T2 x S? partition function is computed in
[49, B0).

A number of analyses for 4d N' = 2 gauge theories have been also performed.
In [I8], S* partition function is computed. For deformations of S*, partition
functions are computed in [51], 52]. These can be used for checks of the AGT
correspondence [26]. This correspondence is thought to be related with some
dynamics of 6d N = (2,0) theories.

In this chapter, we review the analysis for 4d supersymmetric backgrounds
[37, [40] by using the 4d A/ = 1 new minimal supergravity. We introduce a super-
gravity with four supercharges, solve the condition that at least one supercharge
is preserved, and consider the (Q-exact deformations. In the following, we consider
Euclidean spaces for the purpose of the computation of the partition function.

2.1 4d spinor

The notation of spinors in 4d is based on [53], except for difference between the
Minkowski and Euclidean signature. 4d Euclidean space has the local Lorentz
symmetry SO(4) ~ SU(2)4 x SU(2)_. A spinor in 4d can be decomposed to a

left-handed spinor &, and a right-handed spinor Ea_. The former is an SU(2).
doublet and the latter is an SU(2)_ doublet. £ and & are related by the complex

25
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conjugation in the Minkowski signature. In the Euclidean signature, & and & are
not related by the complex conjugation and we treat them independently.
The Hermite conjugate of spinors are complex cojugate of spinors as

(€)=, (&) = (&) 2.1)

4d sigma matrices are defined by

ohy = (0, =), T =(-0,—i), (2:2)
where o = (0!, 02, 03) are the Pauli matrices. i = 1,...,4 is the local Lorentz
index. o and o satisfy

009} = —Ow, T{a0p} = —Opp- (2.3)

Some of products of the Pauli matrices are written as

1

_ _ 1_
Opp = 5000, Op = 5000 (2.4)
They are (anti-)self-dual:
1 ) 1 5 -
2 = O S0 = O (2.5)
where the antisymmetric tensor is defined by 123 = 1.

2.2 4d N =1 new minimal supergravity

4d N = 1 supersymmetry algebra consists of the following symmetries:
e The translational symmetry,
e The Lorentz symmetry SO(4) ~ SU(2), x SU(2)_,

e The supersymmetry, and

U(1)r R-symmetry.

The 4d N = 1 supersymmetry algebra in the flat space is written as

{Qa’@ﬁ'} =2(0") 5 P (2.6)

In 4d N = 1 supersymmetry, the supersymmetric transformation parameters &
and & have R-charge +1 and —1, respectively. We can expect that 4d N = 1
supergravity is the theory in which these symmetries are gauged.
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There are several versions of 4d N' = 1 supergravity [54, 55, 56l 57, 58, 59,
60, [61, 62]*. One of them is constructed in [59, [61] and called the new minimal
supergravity. For constructing this, we consider the Noether current associated
with the supersymmetry transformation. These supersymmetry currents S, and
gz belong to a supermultiplet. In the simplest case, other components of this
supermultiplet are the energy-momentum tensor 7),, and the U(1)pg current j,SR).
However, these currents give a superconformally invariant theory. One way to
break the conformal symmetry is introducing a closed 2-form field F,, in the
supermultiplet. The transformation law of this supermultiplet is

dqj" = —igS, +i€S,, (2.7)
00Sua = 2i (6¥€) T v, (2.8)
55, = 21 (76)" Ty, 2.9)
0T = 560, S0+ 53,00+ (1 45 v), (2.10)

SoFum = —%gaﬂa,,a,,sp v %Eauapaj" (u o), (2.11)

where 7, and T, are non-symmetric tensors defined by

77“/ = T/“’ —|— iﬁuyp)\.rp)\ - ;le;u/p)\apj(R))\ - % legR)7 (212)
— i 1 _ (A
T =T+ Zeuum}—pA B ZEMVpAapJ(R)A + §aV];SR)' (2.13)

The supermultiplet which consists of the current fields

S T, Fu (2.14)

7

W s

i pos

is called the R-multiplet. The fields coupled with components in the R-multiplet
are given by

Ay, Vuar ¥, A€, By, (2.15)

where A, is the R-symmetry gauge field, v, and EZ are gravitinos, Aef is the
variation of the vielbein from the flat one and B, is a two-form gauge field. The
set of these fields is called the Weyl multiplet. Around the flat background, the
linearized supergravity Lagrangian can be written as

_ e 3 ‘
AL = A TV + S, + Y5, + (A“ — 5w) i+ ;lelwp)‘]:uprAa
(2.16)

n [63], it is shown that various versions of supergravity, including the new and old minimal
supergravity, can be derived by so called superconformal tensor calculus and appropriate gauge
fixing.
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where V*# is the dual of the three-form field strength of B,,,:

1
VM = §€Myp/\apr)\. (217)
This is conserved as
Vv, V#t =0, (2.18)

where V, is the Lorentz covariant derivative, called the Levi-Civita connection.
For spinors ¢ and ¢ the covariant derivative is defined by

1 5a — - 1
V,.§ =08+ 5&)#350”’){, V,.§ =08+ 5&)#3,35”’)&. (2.19)

wypp 1 the spin connection defined by

1
Wypp = 3 (eg Ouem — 5" Orepy €5 Opepn + €5 Orepy,

_eaﬂeg’\eﬁ”&\e% + 63#63)\65}{8,463)) . (2.20)

The linearized version of the supersymmetric transformation for the Weyl mul-
tiplet is given by requiring the supersymmetric invariance of AL. The nonlinear
completion of this supergravity is constructed in [59, [61], called 4d NV = 1 new
minimal supergravity.

In particular, the supersymmetric transformations for the gravitinos are writ-
ten as follows:

Sy = —2(V, —iA,) & = 2iV,§ — 2iV"0,,¢€, (2.21)

S, = =2(V, +i4,) € + 2iV,.E + 2iVVF,E, (2.22)
In these equations, we already set 1, = E# = 0. As explained in Section [1.5]
in order to obtain the condition for existing supercharges in the rigid limit, we
impose the existence of the solutions § and/or ¢ for the equations dg1, = 0
and /or 0¥, = 0. In the Minkowski signature the vector fields A, and V,, are
real, but they may be generally complex as the background fields in the Euclidean
signature. Only for the metric, we assume them to be real.

2.3 4d N =1 supersymmetric backgrounds

Let us consider the case in which at least one left-handed supercharge is preserved
in the rigid limit for a 4d Riemannian manifold M. It means that there is at least
one solution & for the spinor equation g1, = 0. For the case of at least one right-
handed supercharge, we can obtain the solution by swapping SU(2), <> SU(2)_
and the flip of the sign of the R-charge.
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From d¢gv,, = 0, & satisfies
V,.§ =1iA 8 =iV, —iVV 0, (2.23)
By taking the Hermite conjugate, &' satisfies
Vil = —idnet +iviet —ivdloy,. (2.24)

Because g1, = 0 is the first-order differential equation for £, the nontrivial
solution £ is nowhere vanishing. By using &, we define the bilinears

€* = €', (2.25)
J,ul/ = %{rguuga (226)
P,uu = é-o',uz/g' (227>

|€|* is a real scalar with R-charge zero. J,, is a real, self-dual two-form with
R-charge zero. The following equation holds by the Fierz identity:

Jh TV =~ (2.28)

o

The computation of this equation is shown in Appendix B.2. Therefore, J*, is
the almost complex structure. On every point on 4d space, we can decompose the
complexified tangent space into the holomorphic and anti-holomorphic subspaces.
For the almost complex structure and holomorphicity of vectors and one-forms,
see Appendix (C.2. A vector field X* is holomorphic if and only if

X, 0" =0, (2.29)
because
JLXY =iX" =  ({o"7,6) XY =0. (2.30)
P,, is a self-dual two-form with R-charge two. The following equation holds:
S Ppy = 1P (2.31)

This means that P, is anti-holomorphic with respect to the almost complex
structure J*,.

By using dgv, = 0, we can show that J*, is integrable. The definition of
“integrable” is that for arbitrary holomorphic vector fields X* and Y* the Lie
commutator

(X, Y] = X"V, Y - Y'V, X" (2.32)
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is also holomorphic. By using holomorphic vectors X* and Y*,
0=X"V, (Y*5,£) —Y"V, (X"7,8)
= [X,Y)'5,.£ - 2X"YF,V €. (2.33)
Therefore, [X,Y] is holomorphic if and only if
Xys,v,¢ = 0. (2.34)
By using g1, = 0, the left hand side of (2.34) is
Xy5,v,¢ = Xy, (1A€ —iV,€ —iVPa,,E). (2.35)

By using the assumption that X* and Y* are both holomorphic, the first two
terms of the right hand side vanish. The last term also vanishes because
Cu0up = 0up0p + GupOu — Guu0 p- (2.36)
Therefore [ X, Y] is holomorphic and thus J*, is integrable.
As another proof, we can show that the Nijenhuis tensor of J*,

Nt = T VaJ = TNV, — TN N + TNV, T, (2.37)

vanishes by using dg1, = 0.
As a mathematical fact, for an almost complex manifold, the following state-
ments are equivalent:

e The manifold is complex.
e There is an integrable almost complex structure.
e The Nijenhuis tensor vanishes.

Therefore, the 4d manifold My is complex. By using the almost complex struc-
ture J#,, we can introduce local holomorphic coordinates 2* (i = 1,2). We use 4, j
as holomorphic indices and 7, j as anti-holomorphic indices. In these coordinates,
the almost complex structure is represented as

A Hermitian metric can be defined on every complex manifold. Lowering the
upper indices in (2.38) by the Hermitian metric, we obtain the relation

Hence J,, is the Kahler form of the Hermitian metric g,,.
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In order to obtain the condition for V), let us differentiate J*,. By using
dqv, = 0 straightforwardly,

V', ==V, + V) +i (V, = Vi) Jn,. (2.40)
Multiplying J¥,, we obtain
(VuJ*) J ==V + V), —i(V, = V). (2.41)
From these two equations, we can eliminate V" as
V", =i (VJh) JY, = =2V, + 2V, J" = =4V} (2.42)

where V/jr represents the holomorphic part of V,,. Focusing on a holomorphic part
of V,J" , the left hand side becomes 2V, J" . As a result, (2.40) restricts the
holomorphic part of V, as

1
Vi= =5V + U, (2.43)

where U, is an undetermined anti-holomorphic vector; J,"U, = iU,. Due to
(2.18), U, is conserved:

VAU, = 0. (2.44)

A Hermitian manifold is Kéhler if and only if the almost complex structure
satisfies V,J,, = 0. As seen in (2.40), it is not the case. Hence, it is desirable
to introduce another connection Vi satistying V¥g,, = 0 and V7 J,, = 0. Such
connection is called the Chern connection and defined by replacing the ordinary
spin connection to

1
Wy = Wowp — 5JMA (Vadvy + Vudoy + V,da) - (2.45)

C
mvp

By using this Chern connection, we can rewrite dg1, = 0 as

(V5 —iAs) € =0, (2.46)
where
c 1 v . v P 3
AM:AN+Z (5M _ZJH )vp‘]y_§UM' (247)

In the case in which the 4d manifold is Kéhler, V,, vanishes and the refined spin
connection (2.45) and the refined gauge field (2.47) reduce to the ordinary ones:

V=0, V.=V, wi,=wuw, A,=A4, (2.48)
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if U, = 0.

Let us derive a restriction due to P,,. As mentioned above, P,, is an anti-
holomorphic self-dual two-form. In the local holomorphic coordinates 2%, its
nonzero component is only

p= Pp. (2.49)

If we would like to construct a scalar from p, we can see that [p|*/\/g is a pos-
itive scalar on My, where g = detg,,. Therefore, we can consider the nowhere
vanishing scalar

s =pg V4 (2.50)

with the R-charge two.
By using (2.46), p satisfies

(V5 — 2iA5) p=0. (2.51)

The action of the Chern connection to the anti-holomorphic two-form p is as
follows:

Vip=0ip, Vip=0p— g%logp. (2.52)

Therefore, by using (2.50), (2.51) and (2.52), we obtain Af, and thus A, as

& 1 12 . 12 3
Ap= AL =7 (8, = iJ,") Vodf, + 50U, (2.53)
A = —%& logg — %&- log s, (2.54)
AS = %@logg — %&ilog s. (2.55)

To summarize, the existence of the solution of g1, = 0 yields the existence
of an integrable complex structure. Hence 4d manifold My is Hermitian. The
holomorphic part of V,, is defined by (2.43) and the R-symmetry gauge field is
written by (2.53), (2.54) and (2.55). Note that S* is not complex manifold and
does not admit the almost complex structure. Therefore we cannot construct
supersymmetric field theories on S* by using this formulation.

So far we have shown that

3 solution of 6g¢p, =0 = My is Hermitian manifold.

Conversely, we can show that there is at least one solution of dg1, = 0 for a
general Hermitian manifold with a metric g,, and complex structure J*, We
introduce a nowhere vanishing real scalar s and an anti-holomorphic conserved
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vector U, and set the background fields V,, and A, as in (2.43), (2.53), (2.54) and
(2.55). In a local frame, we take the vielbein as

ol

ds? = elel + e , (2.56)
L 5 1, 921 ;.2 s g/t
—e = ./g;7dz + ——dz*, —e® =-—=dz". (2.57)
\/§ H V91T \/5 V911

In such configuration, we can find that

(e 5 (0) s

is always a solution of g1, = 0.
By imposing the condition that two and more number of supercharges are
preserved, we can obtain more restrictive conditions. We list such result below:

e The presence of one supercharge ¢ implies that M, is Hermitian.

e The presence of two supercharges { and € with opposite U(1)g charge gives
a complex Killing vector K, = {0,§. Hence M, can be described as a torus
fibration over an arbitrary Riemann surface.

e The presence of two supercharges with equal U(1)g charge implies that M,
is either of them:
— A torus T* with flat metric,
— A K3 surface with Ricci-flat Kahler metric, and
— A discrete quotient of S® x S with the standard metric ds? = dr? +
2
r ng,

if My is compact.

e The presence of four supercharges implies that M, is locally isometric to
either of them:

— 53 xR,
— Flat R*, and
— H3 x R, where H? is a 3d hyperbolic space.

There is another version of 4d N/ = 1 off-shell supergravity, called the old
minimal supergravity [56, 57]. We can work out a similar analysis by using this
[38]. From that analysis, we can show that Hermitian manifolds and warped
products S® x R are allowed. This shows that S* is also allowed, while S* is not
allowed by the new minimal supergravity. The analysis by using the old minimal
supergravity is shown in Appendix D.
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2.4 Background vector multiplet

If there are continuous flavor symmetries, we can obtain the flavor symmetry
current j, by the Noether procedure. This current j, is included in a real linear
multiplet 7. The real linear multiplet also includes fermions j, and j* and a
scalar J. Their supersymmetry transformation laws are written as follows:

O = i&j —i&j, (2.59)
6gja = =i (0"€) Ty, (2.60)
dgi" = =i (@€)" T, (2.61)
0in = —260,,0"j — 266,07, (2.62)
where
Tu=Ju =104, Ty = ju+10,J. (2.63)

We can couple them to a vector multiplet, which consists of a gauge field A,

gauginos A, and 3 and a scalar D. Tn order to introduce a background vector
multiplet, both gauginos and their supersymmetry transformations should vanish.
The supersymmetry transformation for the gaugino A, is written as

SoA = iED + 0" EF,, (A), (2.64)

where F),,(A) is the fields strength of A,,.

Similar to the analysis above, we can obtain the restriction for the background
vector multiplet. By multiplying € and £' to (2.64), we obtain the conditions for
D and F,,(A) as

1
Fy(A)=0, D= _J"F,(A). (2.65)

2.5 (-exact deformations

As in Section [1.3/ and [1.5, Q-exact deformations of an action S — S + gV do
not change the partition function. Therefore, when we consider a deformation of
the theory, the partition function does not change if the variation of the action
is (Q-exact. In the above analysis, we have obtained the formulation in which
parameters characterizing a theory can be treated as background fields in the
supergravity. This makes the discussion whether a deformation of the theory
gives a (J-exact deformation easier. By a small deformation for the background
fields of the Weyl multiplet, the shift of the Lagrangian can be written by a linear
coupling between the Weyl multiplet and the supercurrent multiplet. Therefore,
we will discuss @-exact deformations by using properties of the supercurrent
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multiplet. In the analysis [40] and here, we focus on the formulation by the new
minimal supergravity, which is coupled with the R-multiplet.

Moreover, in the following we only consider the case in which the 4d manifold
is given by the small deformation around the flat space. However, the conclusion
can be extended to general supersymmetric backgrounds. The supersymmetry @)
can be a scalar by appropriate twisting by background gauge fields. Thus, similar
to the topological field theory, the twisted energy-momentum tensor is ()-exact
and the partition function is independent of the metric. Therefore it is sufficient
to consider the small deformation around the flat space.

As shown in Section 2.3/ and 2.4, the existence of at least one preserved su-
percharge restricts the background fields in the Weyl multiplet and vector mul-
tiplets. Keeping one supercharge preserved, we can freely choose the following
background fields and parameters with a preserved supercharge:

e The integrable complex structure J*,,

A compatible Hermitian metric 9i»

The (1,2)-form W satisfying OW = 0,

Abelian background gauge fields satisfying (2.65), and

e Coupling constants.

In the above the (1,2)-form W is defined by W = xU. By using (2.43), H = dB
can be expressed as

1
H=—2d] +W. (2.66)

The conservation condition V#U, = 0 leads the condition for W as
oW =0, (2.67)

where 0 is the Dolbeault operator.

There are functional degrees of freedom. However, as we will see, only the
small number of the degrees of freedom affects the partition function.

Note that the notation in [40] is little bit different from the one in [37]. In
this thesis we use the notation in [37].

2.5.1 Deformation theory

Before seeing deformation of a supersymmetric theory, let us review the properties
of deformations of the complex structure, the Hermitian metric and gauge fields
[64], 65].
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Complex structures

Let us consider an infinitesimal deformation of the integrable complex structure
AJ*,. Because AJ*, is infinitesimal, we focus only on the linear order. We use
the holomorphic coordinate z* with respect to J~ .

J* + AJ*, should be an almost complex structure, satisfying

(J, 4+ AJR) (J¥, + AJY,) = =6t (2.68)
This implies the condition
AJL = AJL =0, (2.69)

J*, + AJ*, should be also integrable. This implies that the infinitesimal defor-
mation of the Nijenhuis tensor leaves zero as

AT, — AT = 0. (2.70)

Its complex conjugate also holds. (2.70) is antisymmetric with respect to j and
k. Hence we can introduce a (1,0)-form

O = AJ' d’ (2.71)
J

with coefficients in the anti-holomorphic tangent bundle 7°'M,. By using O,
(2.70) can be expressed as

90" = 0. (2.72)

Not all deformations AJ*, are meaningful deformations. There is a class of
deformations which can be identified as infinitesimal translation of J*,. For an
infinitesimal real vector €, the translation of J*, along €” is written as

AJS = (L)) = 2id€', (2.73)
Hence there is a trivial deformation of the complex structure written as
0" = 2id¢". (2.74)

Therefore, quotienting a space parameterized by the infinitesimal O by the iden-
tification ©! ~ ©% 4 2i0¢’, we can obtain a space parameterizing the deformations
of the complex structure. This is described by the Dolbeault cohomology with
coefficients in T%' M, as

O] € B (My, T M) (2.75)

HY (My, T My) is a complex vector space spanned by d-harmonic (1, 0)-forms.
Its dimension is finite if My is compact. Therefore, the deformation of the
complex structure can be parametrized by the finite number of parameters.
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Hermitian metrics

Next let us consider the deformation of the Hermitian metric. For a complex
manifold, we can always take a Hermitian metric compatible with the complex
structure as

Gurd", T 5 = Gpo- (2.76)

Consider the infinitesimal deformation of both the Hermitian metric and the
complex structure. Then g,, + Ag,, should be compatible with J*, + AJ# . In
the first order, the following equation holds:

G (ATH TV + THATY ) + Agu J*, T = Agpo. (2.77)
This equation implies the relation between Ag;;, Agy; and AJ¥, as

l

5 (925 +900%) . Agg =

while Ag;z = Ag;; is not constrained.

7

> (9T +9500%), (278)

Agyj = —

Abelian gauge fields

Let us consider the deformation of an Abelian gauge field A, satistying Fj;(A) =
0. Since F;j(A) = 0, the holomorphic part of A, can be locally expressed by
using a complex function A (z,%) as

A; = O (2.79)
The complex function A is defined only locally. If we allow a complexified U(1)
gauge transformation, we can take a gauge such that A; = 0. A transition
function ¢ (z,%) preserving such gauge choice satisfies

0ig =0, (2.80)

which determines an anti-holomorphic line bundle over My.

The structure of the anti-holomorphic line bundle depends only on A;. Let
us consider a deformation of A; by AA; which is a globally defined (1, 0)-form.
From Fj;(A) = 0, AA; satisfies

Similar to the discussion about the deformation of the complex structure, a class
of deformations can be absorbed by a gauge transformation. The gauge transfor-
mation yields the deformation of the gauge field as

where € (z,%) is a globally defined complex function on M. Therefore, meaning-
ful deformations of A; are parametrized by the Dolbeault cohomology:

[A4;] € HY (M,). (2.83)



38 CHAPTER 2. 4D N =1 SUPERSYMMETRIC BACKGROUNDS

2.5.2 Parameter dependence

We would like to consider a deformation of the background Weyl multiplet,
leaving one supercharge () preserved. By the infinitesimal deformation, the La-
grangian is shifted by the linear combination between the shift of the Weyl mul-
tiplet and the R-multiplet. Let us recall the properties of the R-multiplet in the
presence of the supercharge (), which generates a supersymmetry transformation
parameterized by &.

The R-multiplet is introduced in Section 2.2. The supersymmetry transfor-
mation law parameterized by & is obtained by setting £ = 0 in (2.7)-(2.11) as

Oi) = —i€S,, (2.84)

6050 =0, (2.85)

505 = 2i (37€)" T, (2.86)
1 1

00T = 560p0" Sy + 5€00,0° S, (2.87)

where 7, is defined in (2.12).

We can find the eight bosonic (Q-exact operators (5QS which are supersymme-
try transformations of the fermionic operators. Multlplymg €]7%¢T0, by (2.80),
we obtain

<‘€’25 0,5 ) = —2i (6, —iJ",) T (2.89)

Multiplying 6", — iJ", by 7T, leaves only the holomorphic part with respect to
v. Therefore, the eight bosonic ()-exact operators are 7,;. In the holomorphic
coordinates 2! = w and 2% = z, each component of 7,; can be written as

'%wzﬂw—sz——a<m+2@2 — Lo, (2.90)
2 4 4

T = Tyo — ;}"wz - —a B4 i&g“@ (2.91)

7:1)11) = Tww - %awj@(uR)a (292)

Tow = Tue o Fur = 20,1 20,5, (299)

and the remaining four components can be obtained from the above by w < z
and w < Z.

At the first order, the Lagrangian for the bosonic components of the Weyl
multiplet is given by the linear combination between the Weyl multiplet and the
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R-multiplet as

X .
AL = =SNG Ty, + ARG 4 2P B, Fyp, (2.94)
where
3
AR = A, - 5V (2.95)

We would like to consider the deformation of the Hermitian metric and the com-
plex structure restricted by (2.78)). Other bosonic components of the background
Weyl multiplet V# and AP* are restricted as shown in Section 2.3. They can be
written in terms of Ag,,, AJ*, and W as

o %a (AT — AT™) = 2 (0-Agos — Do) + 4T, (2.96)
T %a; (AT, — AJ7) — 2 (a Agos — 0.Agus) (2.97)
AR — %a ATV — —a AJ% + 8 AT, — 3i0:A g + 200509z — 1050 Guww,
(2.98)

ART — %%Ajww + iagAJZw - ;LagAJ“’z + 100w AGuw + 10 A gy, (2.99)

and the remaining four components can be obtained from the above by w < z
and W <> Z. The (1,2)-form W satisfies OW = 0, thus can be locally written by
(0, 2)-form B* as W = OB. By using (2.90)-(2.93), (2.96)-(2.99) and W = 0B
and dropping total derivatives, the Lagrangian (2.94) can be rewritten as

AL = —AgIT;; + iBuysFo: — ZAJ] i

2

2
1 3i, (R
]—“m——& 2058
: "+ e

+IAJTY, ( we +

+iAJ?, (Twz - %]-"m - —&jw + ?Z%jim) . (2.100)
We can find that the first line of the right hand side of (2.100)) is Q-exact, because
T and Fy, =i (T — Tw) are Q-exact. This fact implies that the first line does
not affect the partition function. Deformations arising on the remaining part of
(2.100) are only AJ%. and AJZ;. Therefore, we obtain the (in)dependence of the
partition function with respect to the deformation of the Hermitian metric and
the complex structure as:
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e For a fixed complex structure, a deformation of the Hermitian metric does
not affect the partition function.

e The partition function depends only on the part of the deformation of the
complex structure, AJ% and AJ’;. From the discussion about the defor-
mation of the complex structure (2.75), the partition function is a locally
anti-holomorphic function of the complex structure moduli.

Let us consider the (in)dependence of the partition function with respect to
W. We find that a globally defined (0, 2)-form B yields @-exact deformation and
does not change the partition function. Therefore,

e The partition function depends on W through its cohomology class H'? (My).

Let us discuss the deformation of the background Abelian vector multiplet.
The current multiplet associated with the vector multiplet is the real linear mul-
tiplet J, introduced in Section 2.4. In the presence of the preserved supercharge
(@, which generates a supersymmetry transformation parameterized by &, the real
linear multiplet is transformed as

8oJ = €], (2.101)
50ja =0, (2.102)
Sqi" = —i (7€) Ty, (2.103)
S0y = —260,,0"], (2.104)

where J,, is defined in (2.63). We can find two bosonic ()-exact operators (5Q3d.
Similar to the analysis above, by multiplying |£|72¢To, to (2.103), we obtain

5o (#g%ﬁ) =i (6", —iJ",) Ty (2.105)

Thus we find that the holomorphic part J; is (Q-exact. The bosonic linearized
coupling between a vector multiplet and corresponding real linear multiplet is
written as

AL = A"j, — DJ. (2.106)

In the presence of a supercharge corresponding to &, the background field D is
written as (2.65), which is rewritten as

D = 2i (Fuw(A) + F2(A)) (2.107)

in the holomorphic coordinates. Substituting it to (2.106) and dropping total
derivatives, we obtain

AL = 24570 + 2427, + 2A4 (o + i00) + 24, (j= + i0:7) . (2.108)

Because J; is Q-exact, the first two terms of the right hand side do not affect the
partition function. Therefore, we conclude that
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e The partition function depends only on the holomorphic part of the back-
ground Abelian gauge field. From the discussion above (2.83), the partition
function is a locally anti-holomorphic function of the corresponding anti-
holomorphic line bundle moduli.

If we allow the complexified gauge transformation, the partition function depends
on A; through the cohomology class H* (M,).

In [40], the following is commented. The R-multiplet can be embedded into
the Ferrara-Zumino multiplet except for the following cases:

e An action includes the Feyet-Iliopoulos terms [60], and
e The Kéhler form of the target space is not exact [67].

The Ferrara-Zumino multiplet is a supercurrent multiplet corresponding to the
Weyl multiplet in the 4d A/ = 1 old minimal supergravity. If we can embed the
R-multiplet into the Ferrara-Zumino multiplet, it can be shown that W does not
affect the partition function.






Chapter 3

3d N = 2 supersymimetric
backgrounds

3d supersymmetric field theories are also studied vigorously in theoretical motiva-
tions. Dualities for them play important roles to reveal properties of superstring
and M-theory. Similarly to 4d, there is the Seiberg-like duality [68] which relates
different 3d N/ = 2 gauge theories. A 3d effective theory on a stack of N M2-
branes is proposed, in terms of 3d N/ = 2 gauge theory [9]. This 3d theory is
called the ABJM theory. Moreover, there are relations between 3d N = 2 field
theories and 3d SL(2) Chern-Simons theories, called the 3d/3d correspondence
[69] [70]. It may be related with a 3d compactification of the 6d N' = (2,0) theory.

Dualities can be checked by using exactly computed partition functions. S3
partition function is computed in [71} 72, [73]. The relation between S* x S!
and S® partition functions is discussed in [74, [75] [76]. Partition functions for
several kinds of deformations of S* are computed in [28, 31|, 77, 78, 79, R0, R1].
5% x S! partition function is computed in [82]. In particular the free energy of
the ABJM theory F' = — log Zgs behaves as O (N*?) [83], that is consistent with
the behavior of a stack of N M2-branes through the AdS/CFT correspondence
[84].

We would like to perform a similar analysis in 3d A/ = 2 theory [39, 40] as in
the previous chapter. Let us begin with introducing the properties of 3d spinors.

3.1 3d spinor

The Lorentz symmetry in 3d Euclidean space is SO(3) ~ SU(2). Thus a spinor is
doublet, written as &,. Spinor indices are raised and lowered by the antisymmetric
tensor € and €ap- In this thesis, we take €2 = €19 = +1.

In the Minkowski signature, 3d spinors are real. Due to N = 2 supersym-
metry, a supersymmetry transformation is parametrized by a complex spinor &,
which consists of two real spinors. ¢ is the complex conjugation of £&. On the

43
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other hand, spinors are complex in the Euclidean signature. Thus we treat £ and
¢ as the independent spinors. The Hermitian conjugate of a spinor is related with
the complex conjugate of it as

(€N = (&) (3.1)
The gamma matrices are just the Pauli matrices:
(7’7)&’8 =o' (3.2)
They satisfy
AT = G 4 PP (3.3)

where the antisymmetric tensor is normalized by €'23 = +1.

3.2 3d N =2 new minimal supergravity

3d N = 2 supersymmetry algebra consists of the following symmetries:
e The translational symmetry,
e The Lorentz symmetry SO(3) ~ SU(2),
e The supersymmetry, and
e U(1)g R-symmetry.

The 3d N = 2 supersymmetry algebra is written as
{Qa,Qs} =2(1") o5 B + 2i€apZ, (3.4)

where Z is a central charge. The supercharges Q, and @, have the R-charge —1
and +1, respectively. The corresponding supersymmetric transformation param-
eters ¢ and & have the R-charge +1 and —1, respectively.

Similar to the 4d case, by the Noether procedure, we construct the R-multiplet
which includes the energy-momentum tensor, the supersymmetry currents and
the U(1)g current. Then we linearly couple the R-multiplet and the Weyl mul-
tiplet and we can obtain the linearized supergravity. The general nonlinear de-
scription is formulated in [85]".

The components of the R-multiplet are

i Suay Spar T, 5P, TP (3.5)

LAt the time of [39, 40], there was no fully nonlinear component formulation of the 3d
new minimal supergravity. In [39, 40] the discussions rely on the inputs from the linearized
supergravity and the dimensional reduction of the 4d A" = 1 new minimal supergravity.
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First four of them are the same notation as the 4d case. jLZ) is the current
associated with the central charge. J¥) is from the two-form conserved current
1€,p0” ] (4). The supersymmetry transformation of the R-multiplet is

Sqi\M = —i€S, +i&S,, (3.6)
00Sua = €0 (277 — i€4,0"§ %) + (v7€)  (—2iT 0 + 0,5 — €07 T 7))
(3.7)
(5Q§ua _ fa (QJISZ) + Z'Euypal/j(R)P> 4 (,YVf)a (2ZT,uz/ + aV]/SR) _ E,ulfpapJ(Z)) ,
(3.8)
5QT;W = ;lE,up)\gfypa)\Su - %Eupkgf}/pa)\gu + (:U’ A V)v (39>
' = 1 1 -
dqj?) = —%@”aysﬂ + %@”@SH = 505" = 5eW,Jga”S’), (3.10)
1 -
(5QJ(Z) = _§£7MSM - 56,}/#5”. (3-11)

The corresponding Weyl multiplet consists of the fields
AM? ,QZ),U,O!) @uav Aeua7 C;,m B;,u/o <312)

The supersymmetry transformations for the gravitinos v, and Eu are

Sy =2(V, —iA,) &+ Hy,& + 20V, + €,,,V"7E, (3.13)
Oy, = 2(Vyu +14,) € + Hu€ = 2iV,€ — €y V"'E, (3.14)
where
VH = —ieh9,C,, 9,V =0, (3.15)
H= %eﬂ”PauByp. (3.16)

3.3 3d N =2 supersymmetric backgrounds

We would like to obtain conditions for the bosonic background fields in the Weyl
multiplet by imposing the existence of at least one solution § for dg1, = 0. Be-
cause dg1, = 0 is the homogeneous first order differential equation, the nontrivial
solution £ is nowhere vanishing.

Similar to 4d, by using &, we can define the bilinears

€? = £'e, (3.17)
Ny = #5%@57 (318)

By =&k (3.19)
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First two of them are real, nowhere vanishing and have R-charge zero. By the
Fierz identity, ), satisfies

n*n, = 1. (3.20)
Let us define a tensor ®*, by using 7,,:
or, =€, 0. (3.21)
It satisfies

BHP — P T
@pq)y—epgew\nn

= —0", +nt'n,. (3.22)

This implies that the triple (T]H, s <I>”V) defines a mathematical structure on
the 3d manifold M3, which is called an almost contact metric structure. For
the definition of the almost contact metric structure, see Appendix [C.3.1. The
tensor ®*, can be interpreted as an almost complex structure on the 2d space
orthogonal to n*. When ®# X" = ¢ X* or ,®* =i}, for a vector X* or a one-
form Q,,, we refer to it as holomorphic. Note that arbitrary (anti-)holomorphic
vectors and one-forms are orthogonal to 7,. P, is a complex anti-holomorphic
one-form satisfying

P,®", = —iP,, (3.23)

which is obtained by using the Fierz identity.

Now let us obtain conditions for the bosonic background fields in the Weyl
multiplet, by imposing the existence of a solution & for dgv, = 0. The equation
dq¥, = 0 is written by

. 1 , 1 .
(Vy—1iA,) €= _§H7u§ —iV,£ — 56’“’”‘/ ~PE. (3.24)

The background fields A, V,, and H are not completely fixed because the equa-
tion (3.24) is invariant under the following shift in terms of the complex scalar
and the vector U* as

VHE—= VE+ U + knt,
H — H+ ik, (3.25)

3
AM_>AH+§(UM+K“T’M)a
where x and U" satisfy

or U =4U", V,(U*+knt) =0. (3.26)
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First, we can compute the differential of 7, by using (3.24) as
i i
2 2

1 1
Um (Vu - Vu*) + §(I)MV77P (Vp + V*p) + 577#(1)% (Vp + V*p) . (3'27>

1 * * *
Vil = 5 (H+H") (e — gu) + = (H—H") @ + = gum, (VP = V™)

i
2

We can find that the solution of (3.27) can be written as

?

Zeﬂ”pnﬂv,,np, (3.28)

1
VE = @, H = =5V +
up to the shift (3.25). By using (3.28), the symmetric part of (3.27) is

Vi + Von, = (H + H) (nuny — Gu) +iguum, (V2 = V™)
— i (Voy = Vi) + 00u@uy (VO + V)
= (gull - 77#7711) vpnp + 27]{anvpnl’}’ (3'29>

By using this, we can show an integrability condition
o*, L7, =0, (3.30)
where the Lie derivative along n* is given by
Lo, =0V, 0" — Ve’ +V, n ok (3.31)

An almost contact metric structure satisfying (3.30) defines a mathematical
structure called a transversely holomorphic foliation [40, 86]. The analysis for
(3.30) is shown in Appendix (C.3.2. From this, there exist the local coordinates
(1, 2,Z) with real 7 and complex z on M3 satisfying the following properties:

e On local coordinates (7, 2, Z),

— The vector n* is written as
0, = 0;. (3.32)
— A holomorphic one-form €2, is written as
Qdx" = w (1, 2,%) dz. (3.33)

— The metric is given with a complex function h (7, 2z, Z) and a real func-
tion ¢ (7, 2,%) as

d82 = (dT +h (7—7 2 E) dz + E (7_7 Zaz) d2)2 +c (T, 2,2)2 dzdz. (334)
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e For overlapping coordinates (7, z,%) and (7', 2/,Z’), they are related by
T=1+1t(2,2), Z=/[f(2), (3.35)
where ¢ (z,%Z) and f(z) are real and holomorphic, respectively.

In the metric (3.34), 7, and ®#, are given by

B 0 —ih ih
n=dr +hdz+hdz, ® =0 i 0 |. (3.36)
0 0 —

Finally, let us obtain the expresswn for A,. For this, it is convenient to

introduce a connection Vu satisfying Vugyp = 0 and V,my = (0. This can be
realized by replacing the usual spin connection w,,, with

1 1%
B = Wywp + 1Vl = MVt + 2Wy Ly, Wy = =2, Vs (3.37)
By using the connection @u, the condition (3.24)) is written as
(Vu—id,) e =0, (3.38)

where

1

A= A= 5 (28,7 —i®,) V, + L H — W, (3.39)

2

To determine A\“ or A,, let us consider the remaining bilinear P,. As shown
above, this is anti-holomorphic and its non-zero component is only p = P; in the
coordinates (7, z,%). From (3.38)), p satisfies

(V. —2id, ) p =0, (3.40)
and thus we obtain

A\# = —%@u log p. (3.41)
Similar to the 4d case, let us define a scalar

Ly
= . 3.42

By using the metric (3.34), %MS is given by
Vs = 0,s, (3.43)
@Zs = 0,8+ Z (0, — n,0.)log g, (3.44)

~

Vs = Oz — £ (0= = 1:0;) log g. (3.45)
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By (3.41)-(3.45), we therefore find that ﬁ“ is given by
-1 i
A, = gCI)M 0, log g — §8M log s. (3.46)

Conversely, we can solve (3.24) in the situation such that the metric and
background fields take the forms as obtained above. Let us take the vielbein as

el = n, 2 il =¢ (1,2,2)dz, 2 +ied =c (1,2,%2)dz. (3.47)

In this frame, we can find that

§o =/5(7,2,%) ((1]) (3.48)

is a solution.
By imposing the condition that two or more supercharges are preserved, we
can obtain more restrictive conditions. We list the results below:

e The presence of one supercharge ¢ implies that M3 admits a transversely
holomorphic foliation with a transversely Hermitian metric.

e In the presence of two supercharges ¢ and & with opposite U(1) charge,
we can define a vector field K* = &y*€. We can find that it is a Killing
vector. If K* is real, M3 is an S* fibration over a Riemann surface, called
a Seifert manifold. If K* is complex, it gives two independent isometries
and yields a more restrictive result.

e The presence of four supercharges implies that Ms is locally isometric to
either of them:

733 T3 HS
~RxS? RxT? R x H? and

— A certain fibration over S%, T2, H2.

3.4 Background vector multiplet

As in the 4d case, we can turn on background vector multiplets. Let us consider
a condition in which at least one supercharge preserves in the presence of back-
ground U(1) vector multiplets. A real linear multiplet 7 in 3d consists of the
flavor symmetry current j,, the fermions j, and j, and two scalars J and K.
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Their supersymmetry transformations are written as

SoJ = i&j —i&j, (3.49)

0ja =1 (7€), (Ju +10,J) + &, K, (3.50)
0Qja = =1 (7€) 4 (u — 10,J) + & K, (3.51)
80T = 1€upEYP0" j — i€,,,E7P0" 7, (3.52)
SoK = —i&y" 0,5 +i&v"0,]. (3.53)

The coupled vector multiplet consists of the gauge field A, the gauginos A,
and A, and two scalars D and o. The supersymmetric transformations of A and
A are given by

SoA = i€(D + oH) = 57,6 F,p(A) = "€ (9,0 +iV,0) (3.54)
o\ = —i&(D + o H) + %%Eewmw + iy (D0 — iV,0) . (3.55)

We would like to obtain constraints for the bosonic background fields by imposing
the existence of a solution £ for §oA = 0. By multiplying & or £ to dg\ = 0,

0= &6\ = —%G“VPP#FVP(A) —iP" (0 +iV,0), (3.56)
0 = |€]2€100)\ = i(D + o H) — %@“”FW(A) — it (00 +iV,o).  (3.57)

By using the coordinates (7, z,%Z) and substituting the solution of V,, and H, we
obtain the conditions

1 1 ]
F..(A)=0, D= §®“VFN,,(A) +ntdo+ o (§Vu77“ — %e’“’pm&,np> , (3.58)

where A, is the shifted gauge field
A, = A, +ion,. (3.59)

Note that the shift of the background fields in the Weyl multiplet (3.25) does not
affect the solution of the background vector multiplets.

3.5 (-exact deformations

3.5.1 Deformation theory
5—c0h0mology

As in the 4d case, some cohomology plays an important role in the discussion of
the parameter dependence of the partition function. For this, let us firstly define



3.5. Q-EXACT DEFORMATIONS 51

a complex projection operator

(3.60)

0

1
" = 5 (5uy +id" — C“ny) 7 HMVHVP = II*

This projection operator leaves an anti-holomorphic parts of vector fields and
one-forms, with respect to ®,. We refer to a vector field X# or a one-form w))!
as anti-holomorphic with respect to II*, if

X" = X" wh'l, = wi'. (3.61)

In this section, we use “(anti-)holomorphic” in the meaning of “(anti-)holomorphic
with respect to I1*,.” In the coordinates (7, z,Z), they can be written as

X =X7(0:—ho,), W™ =wlldz (3.62)

The remaining part of one-forms is called holomorphic. A holomorphic one-form
w'? satisfies w°TI*, = 0. In the coordinates (T, 2, %),

w0 = W10 (dq— + Edz) + wldz. (3.63)

The (1, 0)-forms w!? span a 2d subspace of the cotangent bundle on M3, while the
(0,1)-forms w®! span a 1d subspace of it. Note that (1,0)-forms and (0, 1)-forms
are not related with the simple complex conjugation. We can split differential
forms as

I-forms — (1,0)-forms and (0, 1)-forms,

2-forms — (1,1)-forms and (2,0)-forms,

3-forms — (2, 1)-forms.

Each differential form is written as

wht = whldr A dz +wldz A dz, (3.64)
w?? = w?0(dr + hdz) A dz, (3.65)
WP =wldr Adz A dz. (3.66)

As differential forms on complex manifolds, we can define an operator 0 as

9 APT —y APFLO P = | (3.67)

where APY is a set which has (p, ¢)-forms wP? as elements. The operator d is the
3d analogue of the Doubeault operator 0 in even dimensions. For (p,q)-forms
wh (3.62)-(3.606), the operator 0 acts as

9w = 9.0 (dr + hdZ) + 0,w*0dz, (3.68)
0 = (Dl — 0.0 (dr + Tod2) A dz, (8.69)
Ot = Qrwdtdr A dz + 0,2 dz A dz, (3.70)
duwt = (9wl — 0.l dr A dz A dz, (3.71)

(3.72)

0w = P! = 0.
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Because d? = 0, O satisfies 92 = 0. Therefore we can define its cohomology as

{wra e araldurs o0}
HPT(M3) = SAr-1a . (3.73)

As in the 4d case, it is finite dimensional if M3 is compact.

Deformations of transversely holomorphic foliation

Let us consider infinitesimal deformations of the almost contact structure (), (, ),
satisfying

(I)MV(I)V/) = _5,up + Cunpa 77,u<u = 17 (374)

by An,, AC* and A®*,. By using the fact that (n+ An,( + A(, ® + Ad) is also
an almost contact structure, at the first order, we obtain

Anr = =1, A0, (3.75)
AD® = —iA(, (3.76)
A®* = —ihA(?, (3.77)
ADT, = —iAn, — ihALT — ih* A7 + hAD™ — hAD7, (3.78)

where we used the coordinates (7, z,Z), on which ®#, is represented as in (3.30).
The expressions for A®* | APZ. and AP". are obtained from (3.76)-(3.78) by
the complex conjugation. Furthermore, by requiring that the deformed almost
contact structure satisfies the integrability condition (3.30), we obtain

(APT. — ihAC* +iZAC) 9:h =0, (3.79)
O (A®*, — ihAC?) + 2i0:A(* = 0. (3.80)

(3.79) determines A®"_. To understand (3.80), let us introduce a (1, 0)-form 6%
with coefficients in the anti-holomorphic tangent bundle T%! M3 as

O7 = 2iA(7 (dr + hdz) + (AD?, + ihAC) dz. (3.81)
The condition (3.80) can be simply written in terms of ©% as
967 = 0. (3.82)

Hence ©7 is the 3d analogue of (2.71)) satisfying (2.72). There is a trivial defor-
mation

07 = 2ide”. (3.83)

Therefore, nontrivial deformations of the transversely holomorphic foliation are
parametrized by the d-cohomology with coefficients in T%' M3 as

[07] € HY (M5, T M3) . (3.84)
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Deformations of metric

There is a compatible metric g,, with the almost contact structure (n,¢, ®),
satisfying

G @, 0% = Gpo — NN (3.85)

n, and ¢ is related by 1, = g,,¢”. By imposing the condition that the deforma-
tion of the almost contact metric structure keeps (3.85), we obtain the following:

G AD* 7+ g, B B+ Ag,, " B = Ngpy — Anpiy — 1,205, (3.86)

In the undeformed coordinates (7, z, Z), this constrains Ag,,, except for Ag.z, as

Ag‘l“r = _277/1A€#7 (387)
2

Ag.. = An. — hn, ACH — %Agf, (3.88)
- 2 B h 2 B

Ag.. = %Acbzz - TCACZ + 2hA,, (3.89)

while Ag,z and Ags; are obtained by the complex conjugation.

Abelian gauge fields

In Section 3.4, we have obtained the constraint for Abelian background vector
multiplets. A background gauge field in the vector multiplet is restricted by
Fr.(A) = 0 with A, = A, + ion,. This means that the holomorphic part A}°
satisfies A0 = 0. Therefore, we can characterize a deformation of A"? by AAM°
in terms of the 0-cohomology as

[AAYY] € HY (M3). (3.90)

3.5.2 Parameter dependence

We would like to consider a deformation of the background Weyl multiplet,
leaving one supercharge () preserved. By the infinitesimal deformation, the La-
grangian is shifted by a linear combination between the shift of the Weyl multiplet
and the R-multiplet. Let us recall properties of the R-multiplet in the presence
of the supercharge @), which generates a supersymmetry transformation param-
eterized by &.
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The R-multiplet is introduced in Section 3.2, Its supersymmetry transforma-
tions parameterized by £ are obtained by setting £ = 0 in (3.6)-(3.11) as

0qif) = —igS,, (3.91)

00Sa = 0, (3.92)

000 = & (217 + i€up0” i) + (v7€), (20T + 0,5 — €.,,0°TP)

(3.93)

50T = }lemwaASV + ieupxgvpa*sm (3.94)
) 1

50i? = —%waysu — w0 5", (3.95)
1

6o J %) = —Q&MSM. (3.96)

We can find the six bosonic (Q-exact operators 5Q§ua7 which are supersymmetry
transformations of the fermionic operators. By calculating £6oS, and £760S,,,
we can find that they are linear combinations of

Tor = Trp = i§9) + 200257, (3.97)
Too = Tro = 20,4 — 0.9, (3.98)
Toe = Tre — i) — 2040 — 20272, (3.99)
To=To— 5047, (3.100)
Too = Tos — %@jﬁm + ;laﬂﬂz), (3.101)

jz(Z) — j(Z) + aTjZER) _ 8zj(R) + i@ZJ(Z). (3.102)

At the first order, the Lagrangian for the bosonic components of the Weyl
multiplet is written by the linear combination between the Weyl multiplet and
the R-multiplet as

1
AL = —5 g™ T, + AP 4 O 4 HIP, (3.103)
where
3
AP = A, - 5V (3.104)

We would like to consider the deformation of the transversely holomorphic folia-
tion and the compatible metric, around the flat space. Other bosonic components
of the background Weyl multiplet A* C* and H are deteremined in Section
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3.3 as
AR — —%@Agz +i0,Anz — i0:An, + %@Agzz, (3.105)
ARz — %azmbzz — i0:Ag.z — 2i0:A(7 — 210, Ans, (3.106)
APZ — 9. Ag.z + %@Acbzz, (3.107)

C" = —iA(+C7, C*=2iAn+C? C7=2iAn, +C7, (3.108)
1 1 _
H = —i0:Agz = 50007 = S0:0C + 0.0 — 01 + i, (3.109)

where QL is given by
—ie"?d,C, = U" + k. (3.110)

U* and k are the ambiguities of the solution of supersymmetric backgrounds.
They satisfies

o1 UV = iU*, (3.111)
V. (U" + k') =0. (3.112)

Instead of considering U* and k separately, let us introduce a two-form
1
W, = o v (UP + k). (3.113)

(3.112) means that W, is closed: dW = 0. From (3.111), U* has only a z-
component, and hence W,, = 0. Thus W is a (1,1)-form. The holomorphic
components of dW also vanishes:

OW = 0. (3.114)

It seems that the partition function depends on W through the 5—cohomology.
This will be shown later.

By substituting (3.105)-(3.109) into (3.103), we obtain the variation of the
Lagrangian

AL = —4Ag.zT.z — 2An, (TTE - ijz) — 2An:T-,
+ AT, + AC T — A, T + O D) + ik J P

) .
+ A¢? (Tm + éaZﬂZ)) +iAD <Tzz + %azng)) : (3.115)

This Lagrangian is supersymmetric if the integrability conditions (3.79) and
(3.80) hold with h = 0, because we are considering the deformation around
the flat space. Since the several terms in (3.115) is written by the Q-exact oper-
ators, we obtain the (in)dependence of the partition function with respect to the
transversely holomorphic foliation and the compatible metric:
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e For a fixed transversely holomorphic foliation, deformations of the compat-
ible metric do not affect the partition function.

e The partition function does not depend on A(™, A(* and APZ,.

A(? and A®* are not independent due to (3.80). The deformations by them are
characterized by the (0, 1)-form ©* with coefficients in the holomorphic tangent
bundle T2 M3. Therefore, we conclude the A¢* and A®*, dependence of the
partition function as

e The partition function depends on the transversely holomorphic foliation
only through the cohomology class of ©% in H%! (M3, T Ms3).

In order to show that the partition function depends on C* and K through
the d-cohomology class of the (1,1)-form W, let us assume that W = 9! for a
globally defined (1,0)-form Y. Substituting this, we obtain

5"]’,&2) + ik J?) = 4ig0i’ojz(z) + (total derivative). (3.116)
Therefore, we find that

e The partition function depends on W only through its cohomology class in

Hl’l (M3)

Let us discuss the deformation of a background Abelian vector multiplet. The
current multiplet associated with the vector multiplet is the real linear multiplet
J, introduced in Section 3.4. In the presence of the preserved supercharge @,
which generates a supersymmetry transformation parameterized by &, the super-
symmetry transformation of the real linear multiplet is represented by

o] = €], (3.117)
0QJa = 0, (3.118)
0Qja = =1 (7€), (Ju — 10, J) + & K, (3.119)
0QJu = 1€upéY 0" ], (3.120)
0K = —1§7"0j. (3.121)

We can find two bosonic Q-exact operators dqj,. By calculating £6g7 and £7d¢7,
they are given by

o
P

1 _
K= @gm@j = K —ij, — 0,J. (3.123)

T £dq) = J. — 10.J, (3.122)
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The bosonic linearized couplings between a vector multiplet and corresponding
real linear multiplet is written as

AL = A", + oK + D.J. (3.124)

In the presence of a supercharge corresponding to &, the background field D is
written as (3.58), which is rewritten as

D = 0,0 — 2i (0,As + 3:A,) (3.125)

in the coordinates (7, z,%). Substituting it to (3.124) and dropping total deriva-
tives, we obtain

Since J, and K are (Q-exact, As and o do not affect the partition function.
Background vector multiplets affect the partition function only through A, and
A, or holomorphic part of A. Therefore, similar to the above,

e The partition function depends on background Abelian vector multiplets
only through their d-cohomology classes in H? (M3).






Chapter 4

5d supersymmetric field theories

Before the analysis for 5d supersymmetric backgrounds, we introduce interesting
properties of 5d supersymmetric field theories in this chapter. These properties
indicate that bd theories are worth studying. Some of them are obtained from
superstring/M-theory and can be checked by using exact computations.

4.1 5d N =1 supersymmetry

In order to consider 5d supersymmetry, let us introduce spinors in 5d.

5d Dirac matrices are 4 x 4 matrices, similarly to the 4d case. It is sufficient
to identify the chirality matrix +° in 4d as one of the 5d Dirac matrices. We
can impose neither the Weyl nor the Majorana condition for spinors. Instead,
we introduce Sp(1)g ~ SU(2)g symmetry and impose the symplectic Majorana
condition

(€ra)" =€ = M0y (4.1)

in the Euclidean signature, where C' is the charge conjugation matrix in 5d. The
indices take a, 3 = 1,2,3,4 and I, J = 1,2. Therefore, 5d N’ = 1 supersymmetry
has eight supercharges. In this sense, 5d N = 1 supersymmetry is similar to 4d
N = 2 supersymmetry and 3d N = 4 supersymmetry. This is also similar to 6d
N = (1,0) supersymmetry.

5d N' = 1 supersymmetry algebra consists of the following generators of
transformations:

e Translational transformation Py,
e Lorentz transformation Mg,
e Sp(1)g transformation R,, and

e Supersymmetry transformation Q.

29
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Table 4.1: 5d N = 1 vector multiplet.

fields dof Sp(1)g
bosons gauge field 4 1 W,
scalar 1 1 M
auxiliary field 3 3 Y,
fermions gaugino 8 2 Qra
Table 4.2: 5d N/ = 1 hypermultiplet.
fields dof Sp(l)p Sp(l)r
bosons scalar 4 2 2 q
auxiliary field 4 2 2 FA
fermion symplectic Majorana 8 1 2 &4

The first three of them are bosonic symmetries, while the last one is fermionic.
Massless representations of this algebra are the vector multiplet and the hyper-
mutiplet.

A vector multiplet consists of the gauge field, the real scalar field, the auxiliary
field and the gaugino, as shown in Table 4.1.

A hypermultiplet consists of the fields shown in Table4.2. An off-shell action
for hypermultiplets is usually not written. The action can be written by adding
a U(1)z symmetry, which is introduced in Chapter 5. A = 1,2 is the index of
the doublet of Sp(1)r symmetry in the flavor symmetry.

The Yang-Mills action in the 5d flat spacetime is written as

. — / P E,, (W)™ (W), (4.2)
Iym

where F,,(W) is the field strength for the gauge field W,. The mass dimension
of the Yang-Mills coupling gyn is —1/2. Thus the theory is non-renormalizable
and weakly coupled in the IR region. One might think that the 5d theory is not
worth researching. However, Seiberg [41] pointed out that there is a nontrivial
dynamics in the IR region and conjectured the presence of interesting properties
in the UV region. We will see these properties in the next section and later.

4.2 Low energy effective action

Given a supersymmetric gauge theory, we often consider the structure of vacua.
The space of vacua, called moduli space, has some characteristic subspaces. One
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of them is called the Coulomb branch, in which scalar fields in vector multi-
plets take values. The other is called the Higgs branch, in which scalar fields in
hypermultiplets take values.

For the structures of the Coulomb and Higgs branches of 5d A/ = 1 supersym-
metric gauge theories, we can use the arguments for 4d N’ = 2 supersymmetric
gauge theories. The Higgs branch is hyper-Kéahler manifold and not corrected
by quantum effects due to the supersymmetry. On the Coulomb branch of a 4d
N = 2 supersymmetric gauge theory, the low energy effective action is written
by a holomorphic function F(¢) of the scalar fields in the vector multiplets. The
function F(¢) is called the prepotential. For simplicity, we consider the case in
which there is one vector multiplet with a gauge group GG. Then ¢ takes value in
the Cartan subalgebra of G. Using the prepotential, the Kahler potential for 4d
supersymmetric field theory can be written as!

OF (D)~ 0*F _
Re / d*e agp )<I> ) Re( 5 d)(;b)) 9, 0" . (4.3)

® on the left hand side of (4.3) is the 4d chiral superfield including ¢.

The general form of the 5d Lagrangian on the Coulomb branch is restricted by
the form of the 4d Lagrangian on the Coulomb branch. 4d A/ = 2 supersymmetric
gauge theory can be obtained from 5d A/ = 1 supersymmetric gauge theory by
the dimensional reduction. In this procedure, the complex scalar field ¢ in 4d
can be identified by the real scalar field M and the fifth components of the gauge
field W5 in 5d as

¢ =M +iWs. (4.4)

Assuming that the action (4.3) can be obtained by the dimensional reduction
from 5d, let us impose the condition that the action is invariant under the shift

W5 — W5 + (const.), (4.5)

which can be realized by the 5d gauge transformation. Then the 5d prepotential
is at most cubic:

F(M) = co+ ;M + e M'M? + ey M M7 M*, (4.6)

where i, j, k are the indices of the gauge group. Since the constants ¢y and c¢;
cannot affect the Lagrangian, we set them zero. If there is only one vector
multiplet, we usually write the prepotential as

|
M2+ S0, (4.7)

M pr—
]:( ) 29\2[1\/1 6

!The definition of the prepotential is different from the original one shown in (1.16) by the
factor i.
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q
—
W,
p+4q
—
W, )
—
W,

Figure 4.1: One-loop diagram generating 5d Chern-Simons term.

The first term in (4.7) gives the kinetic terms for the vector multiplet:

L = ———Tr (}lFW(W)FW(W) + %D”MD“M £ 2V, Y, + 2i0RQ — 20[M, Q]) |

(4.8)

9vym

The second term in (4.7) yields

1 1 1
Los = ¢Tr <ﬁe*’“’”"WAFW(W)FM(W) — Z—lMFW(W)F“"(W) — 5 MD,MD"M

—2MY,Y, + 2iMQRQ + QK (W)Q +2QYQ — Q [M?, Q]) : (4.9)

This action is a 5d supersymmetric version of a Chern-Simons action. The con-
stant ¢ is often written as
_k
c=13
where k is called the Chern-Simons level. For gauge invariance, k should be
an integer. (4.8) and (4.9) are invariant under the following supersymmetric
transformation

(4.10)

SoW,, = 27,0, (4.11)
SoM = 260, (4.12)
g = SE(W)0 — L(RM)E ~ Y€ (1.13)
dgYa = i1, N — 7, [ M, Q). (4.14)

Even if ¢ = 0 in the original Lagrangian, ¢ becomes nonzero by the loop
corrections [87]. In order to show that, let us consider the one-loop WWW
amplitude generated by the fermion loop. We assign the momenta p+ ¢, p and ¢
and the polarizations u, v and p for the gauge particles, as shown in Figure [4.1.

The contribution of a fermion with mass m to the amplitude is written by
tr/d5k (w hth—im _, k—im _, k-y—im >

(k+p)?+m?—ie’ kE2+m?—ie’ (k—q)?>+m?—ie
(4.15)

(27)°
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Figure 4.2: Another one-loop diagram we should consider.

The term relevant to the Chern-Simons term e“l’p"’\W#&,WanW)\ is

U por / &Ik L 416
85 Potn (k2 4+ m? — z'e)?" (4.16)

By the Wick rotation ky — iky, we can compute the integral and obtain the
amplitude

1 m VPO, O
_167'('2 ‘771_|€u P )\p q)\. (417)

By considering another diagram shown in Figure [4.2, which yields the same con-
tribution, the Chern-Simons term generated by these diagrams is

51gn(m) 5 vpo
T /d P W,0,W,0,Wy, (4.18)
where
. m
sign(m) = Tl (4.19)

The combinatorial factor 1/3! is taken into account in the denominator in (4.18).
Therefore, the Chern-Simons level is effectively shifted by

Ak = —%sign(m) (4.20)

due to a fermion loop. As simple examples, let us consider the following two
cases:

1. U(1) gauge theory with N; hypermultiplets with charge one.

2. SU(2) gauge theory with Ny hypermultiplets in the fundamental represen-
tation.

Let m; (i = 1,..., N¢) be the mass of i-th hypermultiplet. In the U(1) theory,
the Coulomb branch is parametrized by the scalar field M in the vector multiplet.
Hence the Coulomb branch of this theory is R. On a general point of the Coulomb
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Figure 4.3: Effective Yang-Mills coupling g in the U(1) theory.

branch, the scalar field M contributes to the masses of the hypermultiplets. Thus
the effective Chern-Simons level is

Ny
1 .
ket = -3 Z sign (m; + M) . (4.21)

=1

Because ceg = ke /472 is the derivative of F”(M) ~ g, we obtain the effective
Yang-Mills coupling g.g by integrating (4.21) over M as

Ny

11 1
== — S i+ M| 4.22
il 87r2;| | (4.22)

It turns out that for any gyy and m; the right hand side becomes negative for
sufficiently large M, as shown in Figure 4.3l This fact implies that this theory is
non-renormalizable and a UV completion is needed.

In the SU(2) case, the Coulomb branch can be parametrized by the scalar

field in the vector multiplet
M 0
M = (O —M) ) (4.23)

Because of SU(2), the point of the Coulomb branch represented by —M is iden-
tified with M by an SU(2) gauge transformation. Thus the Coulomb branch of
the SU(2) theory is R/Zs = Rx( and it is sufficient to consider the case M > 0.
In the fermion loop, the adjoint fermion in the vector multiplet can also arise.
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Figure 4.4: Effective Yang-Mills coupling g in the SU(2) theory for N; = 5.

The effective Chern-Simons level is

Integrating (4.24), the effective coupling can be written as

1 1 2 1 1 &
M- S i+ M| — — S = M) (4.25)
9% 9w 7w 8n? ; 8 ;

It turns out that for an appropriate choice of gyn and Ny < 8 we can take ge_f? >0
in the whole Coulomb branch, as shown in Figures 4.4 and 4.5. In such cases,
therefore, there is a nontrivial dynamics in the IR region. For Ny > 8, the theory
is non-renormalizable and a UV completion is needed.

4.3 Instanton in 5d

In 5d gauge theories, there is a global U(1); symmetry, whose current is written
as

i = €uupor TLEYP (W) FNW). (4.26)

We can consider a background vector multiplet associated with the U(1); sym-
metry and turn on a nonzero value mq for the background scalar field. We can
identify the scalar field as the Yang-Mills coupling mg ~ gyz;. Charged objects
for the U(1); are particles, called instantons with the codimension four. Their
BPS masses are related with mg by the BPS formula.
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Figure 4.5: Effective Yang-Mills coupling g ¢ in the SU(2) theory for Ny = 8.
For M > mg, g becomes constant.

In particular, we consider a particle charged only with U(1);. Its mass mjus
can be computed from the central charge Z, by using the BPS formula as [41]

Minst = \/§Zinst = \/§m07 (427)

in the case of the U(1); charge one?. Since the loop effect shifts the Yang-Mills
coupling, the quantum correction affects as

Minst = V2 (Mg + ¢M) . (4.28)

In M # 0, the gauge symmetry breaks to U(1) from SU(2). In such case the
instanton with a finite size cannot exist and shrinks. Its behavior depends on a
UV completion.

4.4 5d N =2 supersymmetry

There is another class of supersymmetry, called 5d N' = 2 supersymmetry. This
supersymmetry has sixteen preserved supercharges, or twice of 5d N’ = 1 super-
symmetry. The supersymmetry transformation parameter can be written as &;,,
fora=1,...,4and I = 1,...,4. [ is an index of the spinor representation of
the Sp(2)r ~ SO(5)r R-symmetry, while « is a usual spinor index. Similar to 5d
N = 1 supersymmetry, spinors £, can be restricted by the symplectic-Majorana
condition. This condition is expressed as in (4.1), by replacing €/’ to the Sp(2)r

2For the computation for 5d A = 2 theory, see [88].
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charge conjugation matrix. Because of sixteen supercharges, 5d N' = 2 super-
symmetry is similar to 4d A/ = 4 supersymmetry and 3d N’ = 8 supersymmetry.
This is also similar to 6d N' = (2,0) supersymmetry.

The only supermultiplet with spin lower than two is a vector multiplet, which
consists of the N' = 1 vector multiplet and the A" = 1 hypermultiplet in the ad-
joint representation. For vector multiplets, only an on-shell formalism is known.
This can be obtained by the dimensional reduction from the on-shell action of
10d NV = 1 supersymmetric Yang-Mills theory.

4.5 Global symmetry enhancement

One can see that a class of brane configurations in superstring theory realizes
5d N = 1 supersymmetric field theories. Let us consider the SU(2) theory
with Ny < 8 fundamental hypermultiplets mentioned above. Then there is a
corresponding brane configuration. There are SO (2N;) flavor symmetry and
U(1); symmetry as the obvious symmetries. If the masses of all hypermultiplets
are zero and taking the strong coupling limit gyy — oo we can show, by string
dualities, that the global symmetry of the SU(2) gauge theory enhances to En, 1
symmetry [41), 89], where E5 = Spin(10),* Ey = SU(5), E3 = SU(3) x SU(2),
E, =S5U(2) xU(1) and Ey = SU(2). The obvious SO (2Ny) x U(1); symmetry
is included in Ey, ;1 as a subgroup.

We can check this by computing a superconformal index by using the localiza-
tion technique [89]. For the definition of the superconformal index, we choose a
certain supercharge (). Then the superconformal index I essentially counts BPS
states invariant under the supersymmetry transformation (). The superconformal
index is defined by

I(z,y,m;,q) =tr [(—1)F675{Q’QT}xQ(j1+R)y2j26_iZi H"miqk] ) (4.29)

where F' is the fermion number operator, j; and js are the Cartan generators
of Sp(2), ~ SO(5), Lorentz symmetry, R is the Cartan generator of Sp(1)g ~
SU(2)g, H; are the Cartan generators of the flavor symmetry, and k is the in-
stanton number. They commute with the supercharge (). For these symmetries,
we introduce the chemical potentials e™®, © = e™, y = e™2, e and ¢,
respectively. The trace is taken over the Hilbert space on S* after the radial
quantization.

By the Wick rotation 2° = —ir, this superconformal index can be written in
terms of a path integral as

I (e y.mi.q) = / Db exp (—Sp[a]) (4.30)

3The D-dimensional spin group Spin(D) is the rotational group for spinors in D-dimensional
space. Thus Spin(D) is a double cover of SO(D).
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where Sg is the Euclidean action on S* x S$* with the S! radius 8 and unit S*
radius. The chemical potentials induce a nontrivial twisted boundary condition.

By the localization computation for superconformal gauge theories on S4 x S*,
the superconformal index can be obtained as the following form:

I(z,y,mi,q) = /[da]]south (o, z,y,mi, Q) Tnortn (oz,a:, Y, m;, q_l) i (4.31)

« is the holonomy along S*, which take values in the Cartan subalgebra of the
gauge group. [da] is the Haar measure, defined by the gauge group. The localized
configurations are such that instantons are on the south pole of S* and anti-
instantons are on the north pole of S*. Ioun and Lo, are decomposed as

[south (Oé, T, Y, mi, Q) = [slc;zl(‘)c’flpjsigittm (432>
Inorth (Oé’ T, Y, myq, q_l) = Iigll"()t(flp]rilr(l)srih' (433)

The one-loop perturbative part is determined by the matter content of the theory.
A vector multiplet contributes to the one-loop part as

1-loop __ jl-loop 1-loop
Ivec - ]vec,southlvec,north

= exp [f: %fvec (", y", noz)] : (4.34)
n=1

- _ z(y+y ') iR
Fueols0) = —r— ER: , (4.35)

where R is the roots of the gauge group. A hypermultiplet in a representation
W of the gauge group contributes to the one-loop part as

]1—loop o [1—loop 1-loop

hyp ~ “hyp,south™ hyp,north
- 1 n ,n
= exp [; thyp (", y ,na,nm)] , (4.36)
Foyp (T, Y, ,m) = eiwaimi | ghwatimi) (4 37
YP( ) (1 o xy) (1 _ xy*l) Z ( ) )

wew

where w runs over all components of the representation W. The instanton
contribution can be expanded in terms of g as

inst

south (’717 Y2, O, My, Q> = Z kuk (717 Y2, ¢, mz) R (438)
k=0

[inst

north (’717 V2, O, TNy, Q) = Z qik[k (717 V2, —Q, _m’L> ) (439>
k=0
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where [} is called the instanton index, defined by the gauge group and I, = 1.

Let us compute the superconformal index (4.31) for Sp(1) = SU(2) gauge
theory with Ny fundamental hypermultiplets. In this case, the superconformal
index can be written as

N - 1 n ,n _inx n . n _inoa _inm
Ity (x,y,mi,q) Z/[da]eXp [25 (free (2", €™) + fuyp (27, 3", €7, ™M)
o Am 2
X {Iinst (%y,e , € )Q)} ) (440)
1
[da)] = —dasin? a, (4.41)
™
z(y+y) Sia | 2
feee = — e +e "4+ 1), 4.42
A=) (a7 | ) 442)
Ny
fh — eza+zm¢ _|_ efzaJrzmi + ezafzmi _|_ efzafzmi .
T —ay) (- ayY) ZZI( )
(4.43)
The instanton contribution is
> 1
L = Y ¢, L= 3 (IF+1). (4.44)
k=0



70 CHAPTER 4. 5D SUPERSYMMETRIC FIELD THEORIES

We define k =2n + x (x =0 or 1). Then [,/ and I, are given by

2

I =2 k(N 4)—n-n+2x]§d + Hz  Sin 5
(20) ! [de] sinh Liw sin —”1;0‘ H

7.0 sin 5
: m;tdr n i PrEsE2iyg
" H [ sinh vy, HZ | sin #HE2L H sin S0
: Y1EY2 o3y 2¢1Eiy1Eive orrativ i GrEdgtividys |7
pale) sinh 52 sin 5 sin 5 1oy | sin SR

(4.45)

3 (Zi)k(Nf*‘l)*" B Hl | cos Bt " cos —‘f”i;"““
Tcoaa = iNp—n—4 ?{[d(b] sinh 71i72 m;:a H brEin Tivy
2

COS T—1 COS

y ﬁ [ sinh v, HZ 1 sin mif‘”] ﬁ [ sin —‘z”i‘z’gﬂm ]
T

] sinh 71?72 sin 2¢1ﬁ:l;1:tl’y2 sin ¢I:|:O2C|:Z’Yl oy sin ¢Ii¢J:;'L'Yli'L'YZ
(4.46)
_ N _9)_5g. _ cosh v H sinm;
I — (9))=D(N;-2) §k2n+47{d i=1
feven = (20) [d¢] cosh —71?2 sinh? —71?2 sin (171 £ «)
y ﬁ [ sinh 7y sin (¢ & 2ivq) vazfl sin %d”
~ | sinh N0 ginh 2EMED2 gin (¢r + iy i) sin LELEL
GrEdsE2im
sin #L=2/=200
2
<11 sin mdcmimlim] ' (4:47)
1<J L 2
The notation “+” is understood by taking product as
+ 2i 21 —2i
sin b1 : M b1 +2 Mg b1 . o (4.48)
Qrtimtiy o drtintie o drtin — i
sin —————— =sin 5 sin 5
wsip Pt e b —in - 2. (4.49)

2 2
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and so on. The Haar measure [d¢|T and [d¢|~ are defined by

(

1 “dor | o dr—¢ 2 o+ o 9
It (N S N
= n n n ) , 7
1)) RN (CRIEEL W RSy
L=l I<J
(4.50)
( - n—1 9 )
(nz— ; [H 1 gin qSI] 11 (2 sin &1 ; d)‘]) (2 sin &1 JQF ¢J) (x =
[d¢]_ = I<J ) 2
n! [H C;frl s %] 11 (2 sin @) (2 sin &1 J; ng) (x =
Ny =1 1<J

(4.51)

For the contour integration, we define z; = €™’ and take a unit circle as the
integration contour on the z;-plane. By picking up residues, we can compute the
superconformal index.

Up to k = 1, there is no integration over ¢;. Expanding in terms of x, we
can perform the integration over a from 0 to 27. If Ny = 3, for example, the

superconformal index can be written in terms of SO(6) characters Xfo(ﬁ) of r
representations as

]g;f(l)?) _ 1 + |:1 4 (e—iml—imz N eimg—‘rim;g)
+(g+qY) (e—iml/Q—img/Q—img/Q Lo 6im1/2+im2/2+im3/2)] 2+ O (%)
(4.52)
=14 32 i+ %0+ N0 a2+ 0 (2. (4.53)

From the definition of the superconformal index (4.29), the exponents of ¢ are
U(1); charges of corresponding states. Therefore, ¢ can be seen as one of the
fugacities of the Cartan generators of £y = SU(5) D SO(6) x U(1);. Indeed, the
24 representation of Ey; = SU(5) is decomposed as

SU(5) D S0(6) x U(1); (4.54)
24 = ]_0 + 150 + 41 + Z,l, (455)

and the superconformal index can be written by the Ey = SU(5) character as

Ny=3 Ey 2
Iy = 14 xz42® + O (2). (4.56)
We can perform the similar analyses for other Ny and higher x and observe that
the superconformal index can be written by Ey, 1 characters. This suggests that
the global symmetry enhances to Ey, 11, by the nonperturbative corrections.
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4.6 Relation to 6d N = (2,0) theory

Another interesting property of 5d supersymmetric field theory is that it seems
to be related with a mysterious 6d N/ = (2,0) theory realized on a stack of
Mb5-branes [42), [43], which has no known Lagrangian description. 5d N = 2
supersymmetric field theory can be realized on a stack of D4-branes, which can
be lifted to M5-branes in M-theory. [42, [43] proposed that Kaluza-Klein modes
of the 6d N = (2,0) theory compactified on S* are realized as instantons in the
5d theory.

Although a 6d effective theory on multiple M5-branes is mysterious, an ef-
fective theory on a single M5-brane is known. It is a theory of a tensor multi-
plet, which includes a two-form gauge field B, satisfying a self-dual condition
xH = H, where H = dB is the three-form field strength of the two-form gauge
field. Therefore, fundamental degrees of freedom in this theory can be thought as
strings coupled with the self-dual two-form gauge field. It is natural to interpret
them as M2-branes which end on the Mb5-brane.

By compactifying 2% direction to S! with radius Rg, we can obtain a 5d
theory. The strings wrapping the S* lead to particle-like states, while the strings
unwrapping the S! leads to string-like states.

In addition, there is the Kaluza-Klein momentum along S!. From the 6d and
5d supersymmetry algebras, we can identify the momentum along 2% with the
central charge in 5d. Moreover, we can identify the radius Rg and the Yang-Mills
coupling in 5d as

Gon = 872 Rg. (4.57)

Under this identification, it can be shown that the Kaluza-Klein spectrum for
self-dual strings can be identified with instantons [43].

We can explain a duality in 4d N' = 4 theory by assuming (4.57). Let us
additionally compactify the z° direction to S! with radius Rs. From 5d N = 2
theory with the coupling constant (4.57), we can obtain a 4d A/ = 4 theory with
the coupling constant

92 _ 47TR6
4d R5 .

(4.58)

For 4d N = 4 theories, there is the Montonen-Olive duality [90], which says that
T — 7+ 1 and 7 — —1/7 are the duality transformations, where

b | dm (4.59)

T=—
27 gid

with so called the theta angle §, which we now take § = 0. By taking 7 — —1/7,
the new 4d coupling is g2, = 47 R5/Rg. This can be understood straightforwardly
as interchanging of radii R5 <> Rg.
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The analyses [42, [43] suggest that 5d AN/ = 2 theory includes all degrees
of freedom of Kaluza-Klein modes of 6d N' = (2,0) theory on S!, and thus is
equivalent to the 6d A" = (2,0) theory on S' with the identification (4.57). If it
was true, since the 6d N = (2,0) theory is finite, the 5d N' = 2 theory was also
finite theory. However, it was shown in [91] that the 5d N' = 2 theory diverges at
six loops. Hence they are not equal. The alternative conjecture can be proposed:
the UV completion of the 5d A/ = 2 theory is the 6d N/ = (2,0) theory on a
circle.

One of the main results for checking this conjecture is the N3 behavior of
the free energy of 5d A/ = 2 theory. The partition function for 5d N = 2
supersymmetric U(N) gauge theory on S with radius r was computed in [92] for
the perturbative sector as*

2= [l T [imtonRe -6y st )

R

N

16757

Xe%f(iwa)—if(%—iR-¢)—if(%+R'¢)} +0 <6_m) : (4.60)

_1671'37‘
where O (e %wm ) includes nonperturbative contributions. The function f(z) is

defined by

Z'THLB —2mix i : —2mix 1 : —2miz C(?))
flz) = 3 +z%log (1 —e? )—i-?ng (e7? )—l—ﬁng(e 2 )_ﬁ’
(4.61)
with the polylogarithm Lis(z) and the zeta function ((z). f(x) satisfies
d
J;(;) = ma’cot(mx). (4.62)

For U(N) case, [d¢| = d¢; - - - dén and ¢; corresponds to the i-th Cartan generator
of U(N).

We would like to compare (4.60) with the gravity dual of the 6d N' = (2,0)
theory on S°x S1. Let us compute the large N behavior of Z [93]. Due to the large

_ 167r3'r

N limit, the nonperturbative corrections O (e 9m ) becomes subdominant, by
keeping the 't Hooft coupling constant

\ = 982(MN
’

(4.63)

4In the following, we use the notation of the parameters of [93], which may be different with
the above by overall factors.
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fixed. The partition function is written as
Z o7 + Z {log sinh (7¢;;) + log cosh (7¢;;)

N
7 ~ / [ d¢:exp (
i=1 z;éj

bgf (i)~ 3/ (% " z'@j) 4 (5 - ¢)D , (4.64)

where ¢;; = ¢; — ¢;. Configurations of ¢; which become dominant in the integral
are the saddle points, where the ¢;-derivatives of the exponent vanish:

167;3]\[ > { (2 — 62 coth (w¢i;) + G +¢?j) tanh (mﬁu)} (4.65)

JFi
In the strong coupling limit A — oo, |¢;;| become large. Then we approximate
coth (m¢;;) ~ tanh (7¢;;) ~ sign (¢;;) (4.66)
and obtain
16 2N
7T Zs&gn bij) - (4.67)
J#z
Assuming ¢ < ¢o < --- < ¢y, We obtain the solution
9\
i = ——=—(20 — N). 4.68
By using this solution, we can evaluate the leading term of the free energy as
F=—logZ
812N g3
~ o Z |hij] oc XM N3 (4.69)
i=1 1#£]

whose behavior coincides with the on-shell action of supergravity on AdS; x S,
as required for the Mb5-branes [84].

The nonperturbative correction for the partition function was computed in
[94]. For the U(1) gauge theory, the partition function on S® coincides with the
6d superconformal index, which can be computed only in the Abelian case [95].
This is another check of the relation between the 5d N/ = 2 supersymmetric gauge
theory and the 6d N' = (2,0) theory.

Moreover, the partition function for 5d N = 2 supersymmetric gauge theories
on CP? x S is computed in [96, 97]. Since S° is the S! fibration over CP?
CP? x S! is another S! reduction of S® x S'. As expected, this 5d partition
function for U(1) gauge theory also coincides with the 6d superconformal index.
Therefore, we can expect that the S° partition function and the CP? x S* partition
function are equal even if the gauge group is non-Abelian, as shown in Figure
4.6. However, the check of this is technically difficult because the coupling and
the radius in 5d are exchanged from one to another.
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6d A = (2,0) theory

on S° x St
St radius = 5d couplin S5 radius = 5d coupling
5AN = 2 5dN = 2
on S° on CP? x S*

Figure 4.6: Relation between 6d N' = (2,0) theory and 5d ' = 2 supersymmetric
gauge theories. For the Abelian case, where the 6d superconformal index can be
computed, their partition functions coincide.






Chapter 5

5d N = 1 supersymmetric
backgrounds

This chapter is the most central part of the thesis. This chapter is based on [45].
The goals of this chapter are

1. Construction of general supersymmetric backgrounds by solving certain
spinor equations obtained from a 5d A/ = 1 supergravity,

2. Showing whether each deformation of a supersymmetric background gives
a (Q-exact deformation or not, and

3. Construction of supersymmetric field theories on some simple manifolds as
examples.

For these purposes, we firstly introduce the 5d N = 1 Poincaré supergravity.
Next, we would like to attack these problems.

We solve the condition that the background Weyl and vector multiplets pre-
serve at least one supercharge. The solution has functional degrees of freedom.
However, we find that every small deformation in a single local coordinate patch
does not affect the partition function. We show that known supersymmetric field
theories on S® or S3 x ¥, where Y is a Riemann surface, can be realized from
the solution. By using the solution, we cannot construct the supersymmetric
field theories on S* x R which can be obtained from the flat space by the Weyl
transformation.

5.1 5d N =1 Poincaré supergravity

A 5d off-shell NV = 1 Poincaré supergravity was constructed in [98, 99} 100} [T0T].
In particular, in [100, [101], the authors started with a 6d N' = (1,0) conformal
supergravity [I02] and obtained the 5d Poincaré supergravity by the dimensional
reduction and gauge fixing.

7
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Table 5.1: The component fields of 5d N' = 1 Weyl multiplet.

fields dof Sp(1)g
bosons  vielbein 10 1 e,/
U(1)z gauge field 4 1 A,
antisym. tensor 10 1 v
Sp(1)g triplet scalars 3 3 tq
Sp(1) g gauge field 12 3 Vi
scalar 1 1 C
fermions gravitino 32 2 Yiua
fermion 8 2 XTa

The bosonic symmetries included in it are the following:

e Sp(2)r ~ SO(5)L, local Lorentz symmetry,

e Sp(1)g ~ SU(2)g local R-symmetry, and

e U(1); gauge symmetry which associated with the central charge.

From the 6d point of view, this U(1); symmetry can be identified with the
translational symmetry along the reduced sixth dimension. In addition to these
symmetries, the formulation in [I00] [I0T] has the local dilatation symmetry. The
corresponding gauge field is pure-gauge b, = a~'9,q, thus we fix the gauge by
the condition b, = 0 in this thesis. « is a scalar field in [I00} T0I]. We rescale
A, — a A, so that « disappears.

The Weyl multiplet consists of the fields shown in Table 5.1, There are two
fermions in the Weyl multiplet. For two Grassmann-even spinors &; and &5, the
supersymmetry algebra is

{0 (&1),00 (&)} = 2i (477'&) Da + 62 (26&)
+ 6ar (=2 (&1&2) Fan(A) + 2 (E17a05562) 077 + 4 (E17207aba) ta)
+ oy (—6 (§1&2) ta — 2 (E17a0Tab2) (Uﬁﬁ + iFW(A)))
+ (terms with 5 or 1,) . (5.1)
F,,(A) is the field strength for the U(1), gauge field A,
Fo(A) = 9,4, — 0,A,. (5.2)

D, is the covariant derivative defined by

Dy = 0, + 6u (wygs) + v (Vi) + 02 (Au) + 0 (W) (5.3)
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where 07, 0y, d7 and dg denote the Lorentz, Sp(1)g, U(1)z and gauge transfor-
mations, respectively. For example,

1 —
D=0+ Z—quﬁgy”af + V£ (5.4)

The supersymmetry transformation for the fermions in the Weyl multiplet is
written as

0Q¥u = Dyu€ + %Fuﬁ(A)’Yaf + %’Yﬂﬁﬁvﬁaf + 1yt (5.5)
) ~ 1 } 1
dox = ~5 €D + 360~ 2(B0E -2 -+ 1K) ) 16

N %Vﬁﬁﬁngﬁa(A)Fﬁ&(A)a (5.6)

For notations of indices, see Appendix A.1l

5.2 5d supersymmetric backgrounds

5.2.1 Spinor bilinears and orthonormal frame

We would like to derive the condition for bosonic background fields so that there
is at least one supersymmetry transformation parameter ¢ satisfying

Sty = dox = 0. (5.7)

We restrict ourselves to the case in which £ satisfies the symplectic Majorana
condition (4.1). That condition is necessary for the reality of an action in the
Minkowski signature, but it is not necessary in the Euclidean signature. Hence,
this condition is just for simplicity of the analysis.

By using &, we can define the bilinears

S = &€,
RF = &1,
Sy = % (% TE) - (5.10)
By the Fierz identity,
TER! = &8S. (5.11)
The following equations are easily derived from this:
R,R' = 5%, (5.12)
Jn, R =0, (5.13)
L PAR, IS = SJTL,. (5.14)

2
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Because £ is a solution to the homogeneous first order differential equation dg1), =
0, it is nowhere vanishing and so are the bilinears. From the symplectic Majorana
condition, S > 0 everywhere. We assume the vielbein ef is real, and then RM
is also real. Note that the other background fields can be complex in general.
The existence of the non-vanishing real vector field R* enables us to treat the
background manifold M5 as a fibration over a base manifold B at least locally.
Here, we will not discuss global issues and focus only on a single coordinate patch.

Let us define the fifth coordinate 2 by
R'O, = 05 (5.15)

and use a local frame with

e =e Mdz", e =S8 (dz® + Uppda™) . (5.16)

With this frame R* has the local components

Then (5.13) and (5.14) can be written as

J%g — 0, (519)
1 (4) a __ 7a
_§€mﬁzz”‘]7c7_ Je (5.20)
where
4 _
€ = €oniTs- (5.21)

The equation (5.11) means that £ has positive chirality with respect to v =
S~1RH,

5 = +E. (5.22)

A symplectic Majorana spinor x belongs to the (4, 2) representation of Sp(2) x
Sp(1)g. Because Sp(k) = U(k,H)," we can treat y as a vector with two quater-
nionic components. If we use the matrix representation of quaternions, we can

'H denotes the set of quaternions defined as follows. Let (1,4, 7, k) be the basis of quater-
nions, satisfying

i j=—j-i=—-k j-k=-k-j=—i k-i=—i-k=—j, i’=j>=k*=—-1.(5.23)
Then H can be defined by
H={a+i+jc+kd]|abcdecR} (5.24)

2, J and k can be represented in terms of the Pauli matrices as ¢ = im, 3 = im2 and k = i73.
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represent x as a 4 X 2 matrix in the form

Xoc[ - (g) ’ U= U012 + anTaa D = D012 + Z‘l)a'raa Uav Da eR. (525)

The vector R¥ breaks the local Lorentz symmetry Sp(2)y, to its subgroup Sp(1); x
Sp(1), ~ SO(4), where Sp(1), and Sp(1), act on the upper and lower blocks of
the matrix (5.25), respectively.

The chirality condition (5.22) implies that only the upper components of
the spinor £ can be non-zero. Furthermore, by using an Sp(1); x Sp(1)g gauge
transformation, we can choose a gauge such that U o« 15. In this gauge, £ is

written as
S
&« =3 (%) (5.26)

where the normalization is fixed by £&£ = S. This gauge choice breaks Sp(1); x
Sp(1)g into its diagonal subgroup Sp(1l)p. Sp(1l), symmetry acting the lower
block of the matrix (5.25) also remains. It is obvious in this frame that the
following eight spinors form a basis of the space of symplectic spinors:

o )& & (), (5.27)

An arbitrary spinor can be expanded by this basis. For example, v#7£ is related
to &1, by

Yan€ = —ETad G (5.28)
1 _
&, = ZJ;%ﬁ mne (5.29)

(5.29) implies that the three matrices J* satisfy the same algebra with the Pauli
matrices:

Je T2 = SaOmm + 1€apeSon- (5.30)

Namely, J* enjoys the quaternion algebra.

5.2.2 o, =0

Let us solve the condition 01, = 0, which is investigated in [44] for the first
time. Using the basis (&, vs&, 7€) = (7€, 7.€) in (5.27), we decompose dg1p, = 0
into the following conditions:

1 0 0 o
0= (§y30¢5) = 5 Dafts + §SFﬁX(A) — 350" — iSta iy, (5.31)

0 = (§madtbg) = €7 Dgé + 5 (Era ) v + iRgta. (5.32)



82 CHAPTER 5. 5D N =1 SUPERSYMMETRIC BACKGROUNDS

The symmetric part of (5.31)), DipR;y = 0, means that R is a Killing vector.
We can take an Sp(1)p x Sp(1), gauge such that

dse, ™ = 058 = 05U, = 0, (5.33)

and then e, ™, S, and U, can be treated as fields on the base manifold B. The
(A, 1) = (5, m) components of (5.31)) give

Fo5(A) = i0,,5. (5.34)
From the integrability condition
OnFns(A) = O Frs(A) (5.35)
and the Bianchi identity for F),,(A), we obtain
Os Frn(A) = 0. (5.36)

This means that the U(1)z gauge field A, is essentially a gauge field on B. The
condition (5.34) can be solved, up to the U(1); gauge transformation, by

A= A,dx™ +iSdz®, 05A,, =0. (5.37)
For later use, we give the non-vanishing components of the spin connection.
Wims = wg%ﬁ, (5.38)

S 1
Wans = Wam = 5 Fmn(U) = 5 DaRa, (5.39)

2 S

1

Weggm = gams = —iF_:(A), (5.40)

where wg;r)m is the spin connection in the base manifold B defined with the vielbein

A
e
The anti-symmetric part of (5.31)) can be used to represent the horizontal part
of v in terms of other fields:

(&

1 1
Vsg = — =€ <SFmﬁ(U)—§Fm(A)+taJ%ﬁ). (5.41)

-9 pgmn
By using (5.4), we obtain
§1.D g = wﬂqu + V'S, (5.42)

Using this, we can solve (5.32) with respect to V! and obtain

1
Ve = 4wmqupq —iJg v’% (5.43)
a 1 a a
Ve = 4w5qu — éJpqv”q it (5.44)
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5.2.3 5QX =0

By using the spinor basis (5.27), we decompose dgx = 0 into the following equa-
tions.

) s 1 1
0= 57 (€80x) = —3 D" + 5C ~ tuJi (“m + —Fm(f”)

2 4
L i PG
~ gaSmaprt | (A)ET(A), (5.45)
. . i o
0=S5"(Evmdgx) = —%DAU,\WA1 - %J%ﬁD”ta — 2t J55 <vﬁ5 + Z—lF’%(A)>
1 PON =
- geg%qu(A)FT’(A), (5.46)
. N
0=5""(rabgy) = —%Dgta — i€aely Ton (vmn + ZF”"(A)) . (5.47)

(5.45) is the only condition including C, and can be used to determine C. The
conditions (5.46) and (5.47) are drastically simplified if we substitute the solution
of dg1p,, = 0;

&57%5’ (5.48)

0=s5"" (fTaéQX) == 8§ta- (549)
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Namely, vz and ¢, are 2°-independent. After all, we have obtained the following
solution:

S (1
r_ 2 (12
£, = 5 (0> , (5.50)
e,,” = (indep.), (5.51)
653 = S (indep.), (5.52)
Uy, = (indep.), (5.53)
A = (indep.), (5.54)
Ay = i, (5.55)
1 ' 1
Upg = —55%)@% (iSFmﬁ(U) - éFmﬁ(A) + tan%ﬁ) ; (5.56)
V™ = (indep.), (5.57)
t, = (indep.), (5.58)
1 R
Ve = —Z—lwﬁ@Jg@ — ijﬁvz%, (5.59)
Ve = %Jm (Fra(A) — iSFan(U)) + ity (5.60)
1
C = Z'Dr(fs)vﬁg — itaj%ﬁFmﬁ(A) — 8tyta
1 L . . .
+ e (F™(A) — iSF™(U)) (FPI(A) —iSFP(U)).  (5.61)

“(indep.)” means that the field is an independent field. We can freely choose
them. All the fields are x°-independent. This is in fact a direct consequence of
the algebra. From the commutation relation (5.1), we obtain

00(£)* = iR" Dy + dar (—SFan(A) + €opor RIV7 + 25 J5t,)
+07(S) + 0y <—38ta — SJe (Um - ;LF’%(A))>
+ (terms with 7 or v,). (5.62)
In the resulting background, the right hand side reduces to the x° derivative:
50(€)* = iR'D,, — iby (R wyan) — i07 (R*A,) — idy (R*VY) =i05.  (5.63)

Therefore, a dg(&)-invariant background is also invariant under the isometry 0Os.

5.3 (-exact deformation

As mentioned in Section [1.3, a ()-exact deformation of an action

S — S+dp(-) (5.64)
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does not affect the partition function. Therefore, if a deformation of the super-
symmetric background gives a @)-exact deformation, it does not change the par-
tition function. Let us see whether deformations of supersymmetric backgrounds
give ()-exact deformations or not.

A small deformation of the Weyl multiplet around a supersymmetric back-
ground induces the change of the action

Sy = / d°x\/g [5e,"TE + SVIRY + 01, 5" + 6 A, J"
+50" M, + 6C® + 630 + 0t X, (5.65)
where

R, S

T

T, JE MM, D, e, Xa (5.66)

form the supercurrent multiplet associated with the Weyl multiplet.
A Q-exact deformation that is regarded as a change of the bosonic background
fields in general has the form

5(€) [ o gli,s* + K, (5.67)

where H,, and K are vectorial-spinor and spinor coefficient functions. Both H,
and K are Grassmann-even. Because dg(£)?* = i05 for the action (5.67) to be
Q-invariant the functions H,, and K should be z’-independent.

0oS* and d¢gn are determined as follows. For an arbitrary deformation of
the Weyl multiplet that may not preserve rigid supersymmetry, S; is invariant
under the supersymmetry if we transform both the Weyl multiplet and matter
fields. The supersymmetry transformation of the bosonic components of the Weyl
multiplet are [T00, 101]

Sge,” = =206y, (5.68)
0 A = 26, (5.69)
SV = 207, 7aX — 167 TR (Q) — ER(A)Tathy — 4ENT1, — 6E,ta,  (5.70)
5ty = 267X, (5.71)
Soaw = 3605 B (Q) + 26730, (572)
0C = —2iENX — 261X + 6EYX — £/t Ry (Q), (5.73)

where R, (Q) and lA)HSZ are defined by

R (Q) = 2Dty + 1Yo uhu)0” — iV by p(A) — 2iytiy), (5.74)

~

DX = DuX = dq (Yu) X- (5.75)
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By requiring the dg-invariance we can determine the supersymmetry transforma-
tion of the supercurrent multiplet. For example, dg(&)n is written by

0Q(&)n = 217 Tl Rl + 27, EM™ — 2i"ED, & — 2iREP — 22tED + 6¥ED + 27,6 X,
= 207, TSR + 27, EMM — 2ivMED, — 2K (A)ED — 326D + 27,6 X,
(5.76)

where we neglected total derivatives in the action and used the Killing spinor
equation (5.5)

l

QVWUU’”{ — 1y,tE. (5.77)

Dug = _%FMV(A)'VVf

Let us consider the second term in the Q-exact action (5.67). It is convenient
to decompose the spinor function K by the spinor basis (5.27) as

1 a 1 m
K = k§ + 5=k"6Ta + 5k €. (5.78)

By using (5.76), the first term k¢ in (5.78) gives the action

5q / P\ /gk(En) = —2i / &P /gkOs®. (5.79)

This is a total derivative and does not give a nontrivial deformation of the theory.
The second term in (5.78) gives

1
5 1.0
bo [ gk (€
_ 1 _
_ / /g (z’kaRi RO MTT — KT F(A)D — 16K, + k“Xa> .
(5.80)

Comparing this to (5.65), we find that the addition of the Q-exact term (5.80) is
equivalent to the deformation of the background as

a -7.a a ja 1 a 7a mn a
6‘/’5 =1k 3 5’1}7’7‘1@ =k Jfﬁﬁ’ (50 = —51{5 T?LﬁF (A) — 16k ta,
dt, =k, d(others) = 0. (5.81)

These deformations are consistent to the solution of the supersymmetric back-
grounds (5.50)-(5.61). Therefore, the small shifting

ta = ta + K° (5.82)

does not change the partition function of the theory if we keep the supersymmetry
realized by the solution (5.50)-(5.61).
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Similarly, the third term in (5.78) gives the Q-exact deformation

1 -
5 _~ 1.m "
5Q/d /9 (2Sk (5%m)>
- / &z/g (@kangZ kMM (Df;%m) <I)> . (5.83)

This corresponds to the deformation of the background fields

SVE = —iJo k", 6™ = k™ 6C =iDYK™,  (others) =0.  (5.84)

These variations are again consistent to the solution (5.50)-(5.61), and generated
by the shift of the independent field v™ by

0™ s ™y (5.85)

The same procedure is available for the Q)-exact deformation originated from
S*. but it is rather complicated. Thus we introduce a simpler way. The change of
the action introduced by the small deformation of the background Weyl multiplet
can be symbolically written as

S, = ABJB 4 AFJF, (5.86)

where we neglected the integration over the space. AZ and Af are the deforma-
tion of the bosonic and fermionic components in the Weyl multiplet, respectively.
JB and JI" are the bosonic and fermionic components of the supercurrent mul-
tiplet. The supersymmetry transformation of the fermionic components in the
supercurrent multiplet can be defined by

0=0gAPJP — AFsqJ] . (5.87)

It is sufficient to consider linear terms with respect to fermions because we are
considering the small deformations. Thus the supersymmetry transformations
for the bosonic background fields can be written by using a matrix M;;:

SoAY = Al Mj;. (5.88)

Then the supersymmetry transformation for the fermionic components in the
supercurrent multiplet is

o = My J7. (5.89)
By using this formulation, the Q-exact deformation (5.67) is written as

0Q (fiJiF) = fiMiijB7 (5.90)
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where f; corresponds to H, and K in (5.67). It is found that the ()-exact defor-
mation (5.90) is equivalent to the deformation of the background fields as

A7 = [ M. (5.91)

It is nothing but the supersymmetric transformation (5.88)) of the bosonic back-
ground fields with parameters f; instead of the fermions AF. Therefore, Q-exact
deformations are realized by the substitution of parameters f; into the fermions
AF in the supersymmetry transformations for the bosonic background fields. In-
deed, the substitutions

0 (056876 ). WD) > (055K ) G92)

into (5.68)-(5.73) reproduce the @Q-exact deformations of the background fields
(5.81) and (5.84).

Now let us consider the -exact deformations originated from S*, by using
this method. The corresponding background deformation can be obtained from
the transformation laws (5.68)-(5.73) by the substitution

(V> X) = (Hy, 0). (5.93)

We expand the function H,, by the spinor basis as
A ymE. 5.94
55" Tt (5.94)
The deformation parameters hy,, hj, and hT are arbitrary functions on the base

manifold B.
The deformation from h,, yields the variation of the independent fields

1
S

7 1 7
H, = ﬁhuf + thTGE + —

0S = hs, OUm = =hm, O0A, =ih,, Ov.z=Ji-hate, OJe," = dt, =0.

(5.95)
The variation of the dependent fields are obtained from the solution (5.50)-(5.61).
We already know that the change of v,z does not affect the partition function.
Thus it is sufficient to focus on the change of S, Uz and A,,.

The deformation from hj; does not give any variations of the independent

fields:
Se, " = 35S = 6Us = 6 A, = 6v™ = §t, = 0. (5.96)

The deformation from hMm gives the variations of the independent fields:

Se, 7 = b7, Sups = —— el DWRT ok Py (5.97)

1 Cmpar

S = 0Us = 6 Ay = 5ty = 0. (5.98)
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Table 5.2: The component fields of 5d N' = 1 vector multiplet.

fields dof Sp(1)g
bosons gauge field 4 1 W,

scalar 1 1 M

auxiliary field 3 3 Y,
fermions gaugino 8 2 Qra

Because of the reason mentioned above, we are not interested in the variation of
V5. Let us focus on the change of e, ™. The variation caused by g™

3

Seg™ = hs™ (5.99)
breaks our gauge choice (5.16) for the vielbein. To recover e;™ = 0, we should
perform the compensating local Lorentz transformation

Iy 1 -
O (Aiw) = —hs™, Ags = —ghs™ Aaa =0, (5.100)

This transformation, in turn, changes the vector field Az by

l

v (Aaw) Am = 5

hs™. (5.101)
Therefore, together with (5.95) caused by h,, we can freely change S, Uz, A,
and e u’ﬂ.

After all, by using Q-exact deformations and gauge transformations, we find
that we can freely change all the independent background fields, at least locally.
Of course this does not mean that the partition function does not depend on
the background at all. To clarify the complete background dependence of the
partition function, careful analysis of the global structure of the background is
needed.

5.4 Background vector multiplets

We can also turn on background vector multiplets. By similar analysis as the
previous sections, let us derive the condition for background vector multiplets
with a preserved supercharge and their independence of the partition function,
in the presence of background vector multiplets.

A vector multiplet consists of fields listed in Table 5.2%. In [100], the super-

2For the auxiliary field Y,, we use the different convention from the one in [100]. By replacing
Y, — Y, — Mt,, we can recover the formulas in [100].
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symmetry transformation law is written as follows:

SoW,, = 2067, + 260, M, (5.102)
SoM = 269, (5.103)
3ot = SRV~ (RMNE~Ye— 01 (14 3R & (6.100)
SaY, = itr, RO — Er,[M, Q) + Er.4Q + £, Q. (5.105)

Let us make ¢, = X = 0 and solve 62 = 0 in a similar manner as the previous
analysis. For simplicity, we consider a U(1) vector multiplet. We decompose the
condition into the following two.

1 ' 1
0= (€900 = £ Fu(W)R* — 2 DM — S ME(AR" (5.106)
S a v S a 17
0= (£7,0002) = ZJWF“ (W) —-SY, — SMt, — ZJWMF“ (A). (5.107)
From (5.106), we obtain
DsM =0, Fyps(W) = iD,,(SM). (5.108)

(5.107) can be used to determine Y,. After all, the solution of 62 = 0 is written
as

M = (indep.), (5.109)
W, = (indep.), (5.110)
Ws = iSM, (5.111)

Y, = —Mt, + gJ%ﬁ (Fan(W) — MF5n(A)) . (5.112)

“(indep.)” again means that the field is an independent field. Similar to the result
for the Weyl multiplet, all the fields are z°-independent.

Next, let us consider the background (in)dependence of the partition func-
tion. As mentioned in the above section, we can obtain a (Q-exact deformation
by replacing fermions in the background multiplet into a spinor parameter in
the supersymmetric transformation law for the background bosonic fields. The
replacement

7
Q— ——f" A1
~ =5 i (5.113)
gives the variations of the independent fields
oW, = fo, 6M = —%f5. (5.114)
The replacement
Q= foraé (5.115)

does not give any nontrivial deformation. Therefore, we can freely change the
independent fields M and W,,, at least locally.
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5.5 Examples

In the previous sections, we construct the general form of the supersymmetric
background. In this section, we will check whether our solution includes known
backgrounds.

First of all, let us review the action of vector multiplets and hypermultiplets
in the 5d N' = 1 Poincaré supergravity [L00, 10I]. For our purpose, we set the
fermions in the Weyl multiplet to be zero.

An action for vector multiplets can be written by a gauge invariant cubic poly-
nomial of M*, called prepotential N'(M). We write its derivatives with respect
to M" as

ON - ON e ON
oM Y T gMigMIT TR T QMiIgMIgM*
1, 7, k label adjoint indices of the gauge group and also the central charge vector
multiplet

Ni= (5.116)

(W, M, Y., )= = (A, 1, —t,,0) . (5.117)

Using the prepotential V', we can write down the Lagrangian for vector multiplets
as

e 'Ly = NP+ N (FZ;,,(W) (W - %F“”(A)) — [, Q]i)

1 L, m 1 i j ivJ
— 5Ny (—ZFW(W)FW (W) = 5 DM D MY — 2Y]

+2iQ QY + 20 (@ — %E(A)) Qj)
1 . . o -1 iy
— Niji (ﬁgw(wmk + QYO + 61—2[03];%> : (5.118)
where
P = 2C 4 108ty — 2 (Ao + zFW(A)F“”(A). (5.119)

In the background (5.50)-(5.61), P is written by the independent fields as
1 2 s
P=-6 (ta + ZJ,%;;F@@F@@(A)) — gEmﬁmeﬁﬁ(U)Fﬁ’\(U)
3

+2iDW ™ % (0m5) v™ — 55 (0:.5)2 . (5.120)

[CS]Z* is the 5d Chern-Simons term defined by
[CS]FF = Mweryyio, Wia, Wk (5.121)
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Table 5.3: 5d hypermultiplet (A =1,...,2r).

fields dof Sp(1l)g
bosons scalar 4r 2 qar
auxiliary field  4r 2 FA
fermion fermion 8r 1 4

for Abelian gauge fields. For non-Abelian gauge groups we should add appropriate
terms W3dW and W?® to make it gauge invariant. If A" includes only dynamical
scalar fields, the Lagrangian becomes the supersymmetric version of the 5d Chern-
Simons action, which is conformal invariant. N including the scalar in the central
charge vector multiplet M° gives supersymmetric Yang-Mills action or Fayet-
[liopoulos term, which are not conformal invariant.

A hypermultiplet consists of the fields shown in Table5.3. A =1,...,2r is an
index of a flavor symmetry, which can be gauged and coupled with vector mul-
tiplets. The flavor indices are raised and lowered by an antisymmetric invariant
tensor pap or pAP

44 =q"ppa, ¢ =p""s. (5.122)
The bosonic fields satisfy the reality condition:
qar = (¢*)", Far=(FY)". (5.123)
The fermionic field satisfies
(Cra)" = ¢ =7 p?(sp. (5.124)

We often omit the flavor indices, similar to spinor indices and SU(2)r doublet
indices. For example,

99 = " qra. (5.125)
The action for hypermultiplets is
e Ly = D"qD,q — qM?q +2qYq
— (C — iR + éFW(A)F’“’(A) — V0" + 5tata> qq

— 2iCRC + 2CM ¢ — (K (A)C + 20x¢
+8¢0¢ — (1+ A*A,) FF. (5.126)
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This action is invariant under the following supersymmetry transformation:

0Qq = 2&¢, (5.127)
o = ~i(Ra)€ + FE — 3qt€ — M€+ SR(A)at + 24t (5.128)
SoF = —2¢ (ng n %E(A)( CNC = MC 2Qq> . (5.129)

The covariant derivative D,, includes the U(1), transformation ¢ (A,). Hyper-
multiplets transform non-trivially under the U(1)z transformation as

54(0)q = OF, (5.130)
32(0)C = ~6 (iR + FR(A) ~ ¢ ~ MC+20) (5131)

_ 1 1
oz(0)F =0 <— (D“Dﬁ +C + ZIR + gFW(A)F‘“’(A) — v, 4Lt ) g

FAQC +2Y g — ttqg — M2q + 2tq + 2MF> : (5.132)

Right hand sides of (5.131)) and (5.132) also include § in the covariant derivative.
Hence §z¢ and dzF is defined recursively.
For simplicity we consider only on-shell neutral hypermultiplets below.

5.5.1 Conformally flat backgrounds

Given a superconformal field theory on a flat space, we can obtain the theory on
a conformally flat background by a Weyl transformation. Then the superconfor-
mal transformation parameter £ on the conformally flat background satisfies the
Killing spinor equation

D€ =k (5.133)

where k is a spinor. By the Weyl transformation, the Lagrangian for vector
multiplets is covariantized with respect to the local symmetries Sp(2)., Sp(1)r
and U(1)z and also added the term

gN : (5.134)

where R is the Riemann curvature of the background. For hypermultiplets, the
Lagrangian is covariantized and added

3R
, 5.135
161 (5.135)
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We would like to reproduce the theory from the supergravity. In the 5d /' =1
supergravity, the Killing spinor equation corresponds to dgv, = 0, where dg1,
is defined in (5.5). For this condition to have only the covariant derivative and
terms proportional to 7,, we impose

VE=0, - %FW(A) 0, (5.136)
where the second condition arises because
(A1 + Yot = 1K (A) + Yppo (v’” - %F”"(A)) | (5.137)
Then the condition dg1, = 0 becomes the Killing spinor equation with
)= i <%E(A) + t) ¢ (5.138)

Due to (5.136), extra terms which do not arise in conformal theory vanish in
the action (5.118). Then what we need to show is that the combination of the
background fields P yields the Riemann curvature. This is easily shown by using
the condition dgx = 0. If (5.136) holds, we can rewrite dgx in (5.6) as

~ ]

SoX = ~ RUR(A) +20]€ — S, (K(A) + 207 (K(A) + 20)¢

1 5 1
SO+ 2ty — —F, (A (A)) € 5.139
+ (50 + Jtuta — T Fu P () ¢ (5.139)
Using the Killing spinor equation (5.133) with (5.138), this equation can be
rewritten further:

~ 1 1 5) 1
doX = =D, D'+ | =C + <toty, — —=F, (A)F*"(A) ) £ =0. (5.140)
2 2 2 16
Using this, we obtain
1., 5 1 ) R
Pg =4 (50 + Stata = T Fu(A)F™(4) ) € = 2D, D" = T (5.141)
The third equality is shown by using (5.133) as follows:

1 1
é Rg = - 1_6’7MV Ruypa/ypaf

1
= —5’}/HVD“.DV§

1 1
= —5RRE+ 5D, DV

) 1
= —§Ql€ + §D#D‘u§

5 1
= —5D,D"E+ 5D, D"

— —2D, D¥¢. (5.142)



5.5. EXAMPLES 95

We used the flatness of the Sp(1)g connection between the first and the second
lines. (5.141) shows that NP is precisely the same as the curvature coupling
NR/S,

For hypermultiplets, the coefficients of gg in the action of hypermultiplets
(5.126)) becomes

- (c - iR + éFW(A)F“”(A) — "+ 5tata>
R P 1 1 3R
= — — — —_ = w Y = —

which is consistent with the Weyl transformation for a 5d superconformal field
theory on a flat space.

55.2 S°

The supersymmetric gauge theory on a round five-sphere S° is constructed in
[T03] by using the 5d N' = 1 supergravity. Let us confirm that our solution
(5.50)-(5.61) includes it.

S5 has the rotational SO(6) symmetry. Let us impose the SO(6) symmetry
to the action (5.118). The action depends on the tensor field v,, and F),,(A)
through the combination

1
V), = Uy — §FW(A). (5.144)

Thus if N includes only dynamical scalar fields, we impose
v =0. (5.145)

If N includes the scalar field in the central charge vector multiplet, the action
also depends on F},,(A). Thus we impose

Uy = Flu(A) =0 (5.146)

in this case.

In order to solve these conditions, first of all let us give the coordinates on
S5, 5% is St fibration over CPP?. Thus we make the fifth direction as the S* fiber
direction and the metric as

ds? = dsigs + €°¢°,  dsip =M™, =71 (dz®+U), (5.147)

where 7 is the radius of S®. We take a local frame such that J? is the complex
structure of CP?, and then the following relations hold.

S=r, FU)==SJ3 (5.148)
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Due to the Kéhlerity, the holonomy of CP? is U(2) = Sp(1), x U(1); where
U(1); € Sp(1); is the stabilizer subgroup of the complex structure J2. The spin
connection of CP? commutes with J2, and take the form

a
W — EZUJ%ﬁ + (Sp(1), part). (5.149)

mn

Now we fixed the metric and the spin connection of the S°. Then let us
solve the conditions (5.145) or (5.146). If we impose the condition (5.145), the
background fields satisfy

2
Lo = Fan(A)J- 4+ 4t, = 6%, P=— 5.150
Ums 07 ( ) mn + r ) 27"27 ( )
31 31
4 — 50 o= 53, 151
Va = SUnSS, VE=-2 (5.151)
The Sp(1)r gauge field is the flat connection and can be gauged away:
3
Ve = §5a3dm5. (5.152)

Although the condition (5.145) does not completely fix all of the background
fields, the ambiguity does not affect the Lagrangians for vector and hypermulti-
plet.

If we impose the condition (5.146), or we consider a mass deformed theory,
the background fields satisfy

1
Fan(A) =0, t,=—0" (5.153)

in addition to (5.150) and (5.151). This agrees with the background fields given
in [103].

Although a superconformal theory on S° has sixteen supercharges, the super-
gravity formulation reproduces only a part of them. For the background specified
by (5.150), (5.151) and (5.153)), dgX = 0 automatically holds and dg1, = 0 gives

i
D¢ = —g’y;ﬂ'gg. (5.154)

This has eight supercharges belonging to the real representation of (4, 2) + (4, 2)
of SO(6) x Sp(1)g. The supersymmetry algebra can be obtained from (5.1) as

{5Q (51) aéQ (52)} =2 (fl’Yﬁ€2) Dﬁ + 0z (fl&)
+0um (% (fl’YﬁﬁTa&)) + ou < (5152)) (5.155)

for two Grassmann-even spinor parameters & and & satisfying (5.154).

If we choose another background satisfying (5.150) and (5.151) we obtain a
different Killing spinor equation. Although different backgrounds give the same
superconformal Lagrangians, the number of supercharges which are realized by
the supergravity in general depends on the choice of the background fields.

3
r
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5.5.3 S*xR

The metric of S* x R can be written as

ds® = dsi. + e’ dsg =M™, € =da’, (5.156)
where we identify the fifth direction as R direction. From this metric, we read
S=1, U=0. (5.157)

Similarly to the previous subsection, let us impose the rotational symmetry SO(5)
of S* to the action. In the case of the prepotential including only dynamical scalar
fields, the condition is v, = 0. Solving this, the background fields satisfy
a b a 1 (S4> a
Ffﬁﬁ(A) mn + 4ta — 0, (% — 0, P — 07 V — —Zwﬁa Jﬁ?j (5158)
In the case of the prepotential including the non-dynamical scalar field M?, by
solving v, = F),,(A) = 0, we obtain the conditions

Faa(A)=t,=0 (5.159)

in addition to (5.158). The latter background is given in [44].

These backgrounds are different from the one obtained by the Weyl trans-
formation. The Weyl-transformed theory should have P = R/4 = 3/r? and flat
V. Actually it is impossible to realize a flat Sp(1)g connection in our solution
because S* does not admit an almost complex structure. It is necessary to turn
on a nontrivial Sp(1)x flux for the existence of J.. This result does not change
even if we take a different direction as x°® direction. Because an arbitrary rota-
tion for S* has fixed points and R* is nowhere vanishing, we cannot take the a°
direction within S* and R* necessarily has the component along R. Thus if the
topology of B is S* and if there exists J%-, a nontrivial Sp(1)g flux is required.
Therefore, we cannot realize the Weyl-transformed theory on S* x R as a special
case of our solution.

The reason for this impossibility may be the symplectic Majorana condition
imposed on £&. We have imposed this condition only for simplicity of the analysis,
and it may be possible to realize S* x R background without the Sp(1)p flux
by relaxing this condition. In the 3d case, it is shown in [40] that S* x S?
backgrounds with and without U(1)g flux can be both realized in the framework
of the 3d new minimal supergravity [104]. The nontrivial U(1)g flux is realized
in the case where the Killing vector constructed by the Killing spinor has the
direction within the S*.

The other method for realizing the Weyl-transformed theory on S* x R is
using other supergravities. In [105], the solution of supersymmetric backgrounds
are constructed by using 5d A/ = 1 conformal supergravity [106, 107], while the
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symplectic Majorana condition for the Killing spinor is imposed. In this formal-
ism, the Yang-Mills action is realized by turning on a scalar field in a background
vector multiplet. In the case of S* x R, it is shown that the background scalar
field cannot be constant. Therefore the supersymmetric Yang-Mills action with
the constant coupling gyy on S* x R cannot be realized in this formalism.
Another supergravity is 5d N = 2 supergravity, which can be obtained from
6d N = (2,0) conformal supergravity by the dimensional reduction and gauge
fixing [T08]. By using this supergravity, the supersymmetric Yang-Mills theory on
S% x R is constructed in [109]. This gauge theory has eight supercharges. By the
dimensional reduction, this theory yields so called N’ = 2* supersymmetric Yang-
Mills theory on S* with a tuned mass parameter of an adjoint hypermultiplet.

5.5.4 Y xS3

The last example we consider is 3 x S3, the direct product of a Riemann surface 2
and a three-sphere S® with radius r. A supersymmetric theory on this background
is constructed in [110] for ¥ = R? and [I11] for a general 3. It can be reproduced
by our solution as shown below.

We treat S® as the Hopf fibration over S?, and identify the Hopf fiber direction
with 2°. The metric of ¥ x S3 is

ds? = ds?, + ds% + €7, (5.160)
ds? = elel + e2e?,  ds?, = 33 + bt b =1 (di +U), 5.161
D S
where U is a one-form on S?. The following equations hold.
2 2 5 3
S=r wj =20 FU)= ﬁef’) A et (5.162)

We can take a local frame so that J? is the complex structure of ¥ x S?, which
is the summation of the complex structure of 3 and S2.

Let us impose the condition that the Lagrangian is invariant under the SO(4)
isometry of S®. As in previous subsections, all components of vy, should vanish
except for vz; because of the SO(4) invariance. This requires that the independent
fields satisfy

VT = Fan(A)J%- + 4t, = 0, (5.163)
and then the non-vanishing component of v, is

’ ]

v = —5 (5.164)
The Sp(1)r connection is
a _ i (®) ca3 a _ i <S2) a3 a __ i a3
Vfr\z:/l\,/f = §wmﬁ5 s m=31 — —§wﬁm ) s ‘/:,; = ;5 . (5165)
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The S? part of the connection (5.165)
V(S3)a _ ‘/gaeg + ‘/Zaez + ‘/gaeg _ i5a3d$5 (5166)

is flat and can be gauged away. This guarantees the SO(4) invariance of the
Lagrangian. The Sp(1)z connection on ¥ is topologically twisted in such a way
that a covariantly constant spinor on X exists.

In the case of the prepotential including the background scalar field M?, the
SO(4) invariance further restricts F,,(A). Only non-vanishing components of
F,,(A) should be F55(A), which is related to t3 by

te = %Fﬁ(A)aa?’. (5.167)
If we take the prepotential N = M%r (M?) /g3y with M° = 1, the Lagrangian
(5.118) is given by
B 11 1 |
e LLy = ——tr |2 (W)F* + =D, MD*M — 2iQRQ + 20[M, Q)]
gym L4 2

i 2 ‘
— ;Fﬁ(A)MQ + (Fﬁ(A) — 7) MF5(W) — 2iFPs(A)MY;

(3 Fil) ) 10+ P00 - Fa(A)CSk| . (5.165)

where [CS]3 is the Chern-Simons term on S?
(CSs = €27 (W,8,W, + (W term)) . (5.169)

(5.168)) gives a family of the supersymmetric Yang-Mills Lagrangian parametrized
by Fi5(A), which is a function on ¥. For the gauge invariance of the Chern-Simons
term, the U(1), flux on ¥ should be quantized as

1 1
— | F(A) e —7Z. 5.170
9\2(1\/1 ) ( ) 4mr ( )

The supersymmetric Yang-Mills Lagrangian in [I11] is obtained by setting

Fs(A) = —2ity = % (5.171)






Chapter 6

Conclusions

Supersymmetric field theories on curved spaces play important roles in the exact
computations of physical quantities and tests of dualities. A systematic construc-
tion of the theories can be performed by using supergravities. Starting from each
supergravity, we can obtain conditions for background fields preserving some su-
percharges and study parameter (in)dependence of the partition function. By
these results,

e we can easily construct supersymmetric field theories on curved manifolds
only by using the solutions of supersymmetric backgrounds, and

e from the parameter (in)dependence of the partition function, we can find
which backgrounds give different exact results from known ones.

In this thesis, we reviewed the analysis for the 4d A/ = 1 and 3d N = 2 super-
symmetric backgrounds and studied the 5d N' = 1 supersymmetric backgrounds.

In Chapter 2 we reviewed the 4d N = 1 supersymmetric backgrounds. Start-
ing from the 4d new minimal supergravity, the requirement that at least one
supercharge is preserved in the rigid limit yields Hermitian M,. Background
fields can be determined, up to some functional degrees of freedom. Moreover,
we reviewed that only a small number of degrees of freedom contributes to the
partition function, by seeing whether the deformations of the backgrounds give
(-exact deformation of the action.

In Chapter 3 we reviewed similar analysis for the 3d N' = 2 supersymmetric
backgrounds. M3 must be equipped with a mathematical structure called the
transversely holomorphic foliation. Similarly to the 4d case, only a small number
of degrees of freedom contributes to the partition function.

In Chapter 4, we reviewed various properties of 5d supersymmetric field the-
ories from the viewpoints of quantum field theories and superstring/M-theory.
These properties can be checked by partition functions for 5d supersymmetric
field theories on curved space.

We studied 5d supersymmetric backgrounds in Chapter 5. We solved two
spinorial equations and obtained the condition for the background fields. As
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a result, we found that we can construct 5d supersymmetric field theories on
a curved manifold only if the manifold has at least one isometry. After that,
we showed that all local degrees of freedom of background fields do not affect
the partition function due to the ()-exactness and gauge invariance. Finally we
constructed 5d supersymmetric field theories on a few simple manifolds.

In the analysis of @-exact deformations in 5d, we focused only on the local
arguments. To obtain a full background dependence of the partition function, we
should carefully discuss global deformations, in which some classes of cohomology
may appear, similarly to 4d and 3d.

An important feature of the solution of 5d supersymmetric backgrounds is
the existence of the isometry. This suggests a close relation to 4d N' = 2 super-
symmetric backgrounds. It would be interesting to study such backgrounds from
the viewpoint of 4d N' = 2 supergravity [112] [T13].

The solution obtained in this thesis does not contain S* x R without the R-
symmetry flux. It may be possible to include such background by relaxing the
symplectic Majorana condition, which is imposed in this thesis for simplicity.

Another interesting direction is to study a relation between 6d N = (2,0)
theories and 5d A = 2 theories, as mentioned in Section 4.6. In [108], a method
to obtain 5d A = 2 theories on curved backgrounds from 6d A" = (2,0) conformal
supergravity [114] is given. This method consists of the following procedures:
considering an Abelian tensor multiplet on an S! fibration over a 5d manifold,
the dimensional reduction, non-Abelianization and an extension to an off-shell
formulation. When we consider a T2 fibration over a 4d manifold M,, we have
two S! direction to reduce to obtain 5d theories. If the conjectured relation
between the 6d N = (2,0) theory and the 5d NV = 2 theory is true, the partition
functions for two 5d theories should be same, as shown in Figure 6.1. It would
be interesting to compute and compare the 5d partition functions on such two
manifolds.



103

6d N = (2,0) theory

on M4 X T2
S* radius = 5d couplin S1 radius = 5d coupling
5dN = 2 5dN = 2
on My x St ? on My x St

Figure 6.1: Relation between 6d N' = (2,0) theory and 5d A/ = 2 supersymmetric

« 7

gauge theories. “x” can be a nontrivial fibrations. This is a generalization of
Figure 4.6.






Appendix A

Notations and conventions

A.1 Indices in 5d

Notation of indices is as follows:

o i, v,...=1,...,5: bd spacetime indices,
o [, U, ... ,T, e ,3; 5d local orthonormal indices,
e a,f,...=1,...,4: Sp(2) ~ SO(5), spinor indices
o [, J,...=1,2: Sp(1)g ~ SU(2)g doublet indices, and
e ab,...=1,23: Sp(l)gr ~ SU(2)g triplet indices.
The 5d antisymmetric tensor e##°* is defined by
AHPIN — HVPINTY (A.1)
a,B,...and I, J,... are raised or lowered by invariant antisymmetric tensors
Cop = C*® and e;; = €'/, respectively. They satisfy
CCpy = 03, e =65 (A.2)

We often omit the contractions for these indices. In the case, we adopt the
NW-SE convention. For example,

nx = 1" Xar = C%¢ g xar. (A.3)
For a rank n antisymmetric tensor A, ..., we define
1
A= aAﬂlmun'}/m . (A.4)
For Sp(1)g triplet fields we use the matrix notation
t =t, (TG)IJ, (A.5)

where 7, is the Pauli matrix.
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A.2 Our convention from Kugo-Ohashi conven-
tion

Kugo-Ohashi’s papers [100, 101] adopt the mostly-minus metric in Lorenzian
spacetime: 1z = diag(+ — — — —). For our purpose of the localization com-
putation, we have to obtain the formulation based on the Euclidean signature
n» = diag(4+ + + + +). For this, we should flip the overall sign of 73 and Wick
rotate. In this section, we show how to move [100, 10I] to our convention.

We do not change the definition of all fields except for the spin connection

Wupp =7 —Wuop- (AG)
For the Dirac matrices, satisfying {vz, 75} = 214, we change them as following:
=it o~ (A7)

In both conventions, an antisymmetric tensor ¢*/??* is defined by (A.1). In
order to maintain (A.1) after the flip of 7735, we should replace e"P7* — jelro,
However, by the Wick rotation, we also replace e*/?7* — —ietroX  After all, we
do not change e*ro?.

For each spinor product, we replace itby — ¢y. This is simply the change of
the notation.



Appendix B

Useful identities and spinor
computations

B.1 Fierz identities

Let 1 and ¢ be Grassmann-even spinors in each dimension. If both spinors are
Grassmann-odd, we flip the all signs in the right-hand sides.
4d Fierz identity: for the left-handed spinors ¥ and ¢,

Vad” = 5(60)3,” = 5 o) ("), (B.1)

3d Fierz identity:

1 1

et = S (610" + 5 (#71:0) (") (B2)

5d Fierz identity:

1 1 1
rad”® = 200070, + comapdr” (1), = onwndr” (7).

+ %@'%/’ (TQ)IJ 05" + %¢7a7u¢ (TG)IJ (VH)aﬁ - %‘ma%uﬂp (Ta>1J (Vuy)aﬁ :

(B.3)

B.2 Computation of (2.26)

Here we show the computation of (2.26), as an example of spinor computations
in 4d. By Fierz identity (B.1)),

P, = = (€10%,6) (€1,)
2
=1 [69) (€000 + (€073 (o] (Ba)
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By the computation of the sigma matrices, we obtain

1 1
OuwOpx = _Zl@wp/\ + 20[u[p00)\] — 55/4/)6”)\]7 (B.5)
UMVOVp = Z(Sup — Oups (B.6)
5 1 1 1
OuvOrxr0 5, = _Zeum')\ - Zgupo-rA - 59}1[7’9)\]/)‘ (B7)

In the second term of the right hand side in (B.5), the pairs (u, ) and (p, A) are
anti-symmetrized, respectively. By using these formulas,

i i, 1
§Jﬂp+_€ J - =

1€ o 86“pJTAJAT. (B.8)

3
T, = =50, -

The second and third terms cancel due to the self-duality of J,,. Substituting p
into p and summing over p1, we obtain J#,J", = —4. Therefore (2.26) holds.



Appendix C

Mathematical facts

C.1 Differential forms and de Rham cohomol-
ogy

A space spanned by differential one-forms is defined as the dual vector space of
a tangent space, spanned by tangent vectors X = X*9,. The tangent space on a
point p in a manifold M is denoted by 7, M, while the dual vector space, called
the cotangent space on p € M is denoted by Ty M. A one-form w! is represented
as

w' = w,dz". (C.1)

A (g, r)-tensor is defined as a map

T: M Me"T,M — R (C.2)
as
0 0
— TH1Hg - ... ool detr
=T, S B dx™ - - dx'™. (C.3)

An r-form is defined as a completely antisymmetric (0, r)-tensor. The outer
product of r one-forms is defined by

dz" N - Ndatr = Z sgn(P)dz"*® @ - -+ @ dxhP) (C.4)

PesS,

where S, is the r-th permutation group and

+1 (P :even)

Sgn(P):{—1 (P:odd)
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An r-form w” is represented as

1
wh = ﬁwm...md:vm Ao ANdahr. (C.6)

The Hodge dual * maps an r-form to a (D — r)-form as

1
T = e A N (C)
where D is the dimension of the manifold M.
The exterior derivative d maps an r-form to a (r + 1)-form as

.1 0 v 1
dw" = I (wwm...m) dz” Ndz"* A - Adztr. (C.8)

Because every differential form is an antisymmetric tensor, d? = 0.

If w" = dw"! with a globally-defined (r — 1)-form w" !, trivially dw” = 0.
However, if dw™ = 0 we cannot conclude w” = dw"! in general. In order to
measure this nontriviality, we define the r-th de Rham cohomology as

H' (M) ={w'dw" =0, w" ~w" +dw""}, (C.9)

where w” ~ w" + dw"~! means the identification between w” and w” + dw" L.

C.2 Almost complex structure

Almost complex manifold is defined as follows. If there exists a (1,1)-tensor J
satisfying J? = —1 on each p € M, M is an almost complex manifold. The
(1,1)-tensor J is called the almost complex structure.

A tangent space and a cotangent space can be decomposed into two subspaces
by eigenvalues of J, respectively. A vector field X or a one-form w! is holomorphic
if

JEXY =i XF, w,JY, =iw,, (C.10)

1is anti-holomorphic if

while X or w
JEXY = —i X!, w, I, = —iw,. (C.11)

Let X and Y be arbitrary holomorphic vector fields on an almost complex
manifold M. If the Lie commutator

(X, Y] = X"V, Y - Y'V, X" (C.12)

is also holomorphic, the almost complex structure J is called integrable.
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For an almost complex manifold, we define the Nijenhuis tensor
Nt = JA NN, = T\ VaJE, — AV, + TNV, (C.13)

The almost complex structure J is integrable if and only if the Nijenhuis tensor
vanishes.

If there exists a globally-defined (1, 1)-tensor J satisfying J?> = —1, M is a
complex manifold with an almost complex structure J. If an almost complex
manifold M with an integrable almost complex structure .J, M is a complex
manifold with an almost complex structure J.

For a complex manifold, we can locally take holomorphic coordinates (zi, E{>

such that
i1 0
J— ( h _1.1). (C.14)

An (r, s)-form is defined as an (r + s)-form which belongs to a direct product
of r holomorphic and s anti-holomorphic cotangent spaces. A (r, s)-form w™* is
represented as

1 . . - -
W' = Twil'“i 513 dz" A - ANd2Z" NdZPT N - N dZs. (C.15)
ris! s s

The exterior derivative dw™ includes both (r+1, s)-forms and (r, s+ 1)-forms.
Hence we can define new operators which act on w™® as

O™ = dw™* gwr,s _ dwr,s‘ d=0+ 5 (Cl6)

|(r+1,s) ) (r,s+1) »

These operators 9 and 9 are called the Dolbeault operators. Because d? = 0,
82 =8 = 0 holds. Therefore we can define

Hg,S(M) — {wr,s|awr,s — 07 wr,s ~ wr,s + awr—l,s} 7 (C17)
HZM (M) = {0 [0 = 0, W ~ w" + 0"} (C.18)

These are called the Dolbeault cohomology.

C.3 Almost contact metric structure

C.3.1 Basic definitions

Almost contact structure is defined on an oriented 3d manifold M as a triple
(n,¢, ®) with a nowhere vanishing one-form 7,, a vector field ¢# and a (1,1)-
tensor @, satisfying

MGt =1, @ P, = 5", + (M. (C.19)
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For a vector field X* satisfying ®# X" = 0, then X" is proportional to (*.
Similarly, a one-form €, satisfying €2, ®#, = 0 is proportional to 7.

Vector fields orthogonal to (* define a subspace D of the tangent space of M.
Because ®2|, = —1, ®|p defines an almost complex structure on D. Therefore @
is a 3d analogue of an almost complex structure. Similar to an almost complex
structure, we can define holomorphicity and anti-holomorphicity for vector fields
and one-forms. A vector field X or a one-form w! is holomorphic if

or XY =i X", w,P, =iw,, (C.20)
while X or w! is anti-holomorphic if
or XY = —i X', w, P, = —iw,. (C.21)

If a manifold M is equipped with a Riemann metric g,, and the following
equations hold, the almost contact structure (1, ¢, ®) is compatible with g,

CM = 77M, gp)\(I)pu(DAy = Guv — NMuMv- (022)

These define an almost contact metric structure on M. For an oriented manifold,
we can take an almost contact structure by taking ¢* = n* and @, = e n?.
Therefore we can always take an almost contact metric structure on an oriented 3d
Riemannian manifold. This is characterized by a metric g,,, a nowhere vanishing
one-form 7, and an orientation.

C.3.2 Integrability condition (3.30)
Here we analyze the integrability condition (3.30)
BH, LD, =0, (C.23)

Let us show that for a vector (* defining an almost contact structure and
a holomorphic one-form €,, there exists a local coordinates (7, z,%) such that
¢ = 0; and Q = Q.dz. Since ( is nowhere vanishing, we can take coordinates
zt =7, 2%, 2% such that ¢ = 9,. Because Q is holomorphic, (#§, = 0 and Q2 can
written by Q = Qadz? 4+ Q3da®. From the holomorphicity of Q and (C.23), £:Q,
is also holomorphic one-form:

(Lc8) @, = iLeQ,. (C.24)

Let us define p = Qy/€Q3. Since holomorphic one-forms span a 1d space, p is a
function depending only on a choice of ®#,. The holomorphicity of L€, shows
0.p = 0. Taking new coordinates (7, z,Z) with complex z which are related with
2?2 and 23 by 22 = f (2,Z) and 23 = g (2, %),

Q=Q3 (pda:2 + da:3)

_ af Oy of 99\ .
= Qg ((p& + &) dz + (,0% + g) dZ) . (025)
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Hence, in order to take 2 = €2,dz, we choose functions f and g satisfying

0L %9 _\(23),

af g
= — = 2
paz + ER + 0 (C.26)

Poz " oz
for a nonzero function A (z,%z). This differential equations (C.26) always have a

solution. Therefore we can take €2 = €).dz. The relation between two overlapping
local coordinates (7, z,Z) and (7/,2/,Z') is obtained from

(=08, =8, Q=0d:=Q.d (C.27)
as
T=1+1t(2,2), Z=/f(2), (C.28)

where ¢ (z,%) is a real function and f(z) is a holomorphic function.
A compatible metric with an almost contact metric structure can be written
by a complex function h (7, z,%Z) and a real function ¢ (7, z,%) as

ds® = (dT +h(1,2,2)dz + h(1,2,%) d2)2 + c (T, 2,2)2 dzdz. (C.29)






Appendix D

Supersymmetric backgrounds
from 4d N =1 old minimal
supergravity

There is another formulation of 4d N' = 1 off-shell supergravity, called the old
minimal supergravity [50, 57]. In this theory, a supercurrent multiplet coupled
with this supergravity is called the Ferrara-Zumino supercurrent multiplet [116],
which consists of

T,U,l/) Suou gu? j;m xz, Ta (D]‘)
where first three of them are similar notations as the R-multiplet in the new
minimal supergravity. j, is an axial vector current and x and T are complex
scalars. Note that there is no U(1)g symmetry current.

The corresponding supergravity multiplet consists of

Guv, ¢uo¢7 Eu? b,u’ M7 M) (DQ)
where b is a vector field and M and M are scalar fields. The supersymmetric
transformations for the gravitinos are

i 2 2%
5Q¢H == —ZV,L§ + §M0H§ + gbug -+ gb O'Myg, (DS)
- i 2% 2,
6Q¢N = —QVug + gMO'Mg — gbug — gb O'Myg. (D4)

From the algebra of the supergravity transformations, the following relations
hold:

o =2i0g, K"=¢Eo"E, [0k, 0] =0, (D.5)

where 0 = Lk is the Lie derivative along K.
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Similarly to Section 2.3, we would like to consider the condition such that there
is as least one nontrivial solution of dg1,, = (5QE“ = 0 [38]. Before that, we should
note a significant difference from the case of the new minimal supergravity. In the
supersymmetric transformation for the gravitinos (2.21) and (2.22) in the new
minimal supergravity, the left-handed and right-handed components of spinors
are completely separated. Thus a combination of supersymmetry transformation
parameters (5,5) is a solution of dg1), = (5QEM = 0 if and only if both (£,0) and
(O,E) are solutions. In the old minimal supergravity, on each right hand side of
(D.3) and (D.4)), there are both & and £. Therefore, it can be happen that (f,f) is
a solution even if (£, 0) and (0, Z) are not solutions. In order to obtain a condition
that there is at least one supersymmetry, we should consider the following two
cases:

1. Only a left(right)-handed supersymmetric transforamtion parameter £ (§)
has a nontrivial value while another parameter £ (£) vanishes, and

2. A nontrivial combination (S,E) is a solution of dgv, = 5QEM =0.

D.1 The case of vanishing E

If £ vanishes, 0QVy = 5QEM = 0 becomes

1 1
vuf = gbug + gbygul/£7 (DG)

0=M. (D.7)

Hence M can take an arbitrary value. Since (D.6) is a homogeneous first-order
differential equation, the solution ¢ is nowhere vanishing. Similar to the case of
the new minimal supergravity, we can define nowhere vanishing bilinears |£]2, J,,
and P,,. |£]* is a positive scalar, J#, is an almost complex structure and P, is
an anti-holomorphic two-form with respect to J*,.

Similar to the previous analysis, by using (D.6), we can show that J# is
integrable and the 4d manifold is Hermitian. We can introduce local holomor-
phic coordinates 2z and take the complex structure as (2.38). Differentiating the
complex structure and using (D.6),

1
V,Jt, = 3 (b, + ;) —

14

(b —B7) T~ (D.8)

W | .

From this equation, the holomorphic part of b, is determined as

b (20 + i) VoI + 0, 00, = b (D.9)

M:

DN —
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By using the Chern connection defined in Section 2.3, (D.6) can be rewritten as

(v; - %b;) £=0. (D.10)
From this, p = Pp satisfies

(Ve —ib)p=0. (D.11)
This defines b, as

b, = =iV}, logp. (D.12)

Because b}, is anti-holomorphic,

By using (2.52), b¢ is expressed as
bs = —i0;log (pg_l/z) : (D.14)

To summarize, the existence of the solution g1, = (5QEH = 0 with vanishing
¢ yields the existence of an integrable complex structure. The 4d manifold is
Hermitian. In this situation, M is arbitrary, M = 0 and b, takes the form as in
(D.9) and (D.14).

Conversely, we can show that there is at least one solution £ when the above
background fields are given. If we take the vielbein as (2.56) and (2.57), we can
find that (2.58) is a solution.

The global structure of the solution should also be considered [3§]. For exam-
ple, let us consider R? x S!, which can be constructed from the flat space C? by
the identification z ~ z + 277 for one of the holomorphic coordinates. If we take
p = 1, the spinor £ is constant and the periodic boundary condition is realized.
On the other hand, if we take p = €, £ changes its sign by z — z + 27 because
the solution (2.58) includes ,/p. Thus the anti-periodic boundary condition is
realized and b, has a nontrivial behavior.

If the 4d manifold is compact, the existence of the nowhere vanishing anti-
holomorphic two-form p gives restriction for the 4d manifold. In the Enriques-
Kodaira classification, only tori, K3 surfaces and primary Kodaira surfaces have
such property [115]. These do not include the Hopf surface S* x S!, while its
non-compact version S% x R is included.

D.2 Nontrivial ¢ and ¢

Let us consider the case that a nontrivial combination ({ ,f) is a solution of
QY = (5QEM = 0. Because these equations are first order differential equations,
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both ¢ and € cannot vanish at a point simultaneously. At first we introduce
spinor bilinears, in addition to the ones (2.25)-(2.27) only from . Bilinears
which consists of the only & are

" = ETE, (D.15)
T = %g*aﬂyz, (D.16)
P, = 5,¢. (D.17)

is anti-self-dual and another almost complex

v

=12 . . L
}§| is a non-negative scalar. J
structure, if ¢ is nowhere vanishing:

T ==t (D.18)

p p

A vector U* is holomorphic with respect to 7“1, if and only if U “aug = 0. FW is

anti-holomorphic two-form with respect to 7“1,:
J, P,,=1iP,,. (D.19)
We can also construct the complex vectors by using both & and ¢ as
K" = ¢0ME, X" = £otE. (D.20)
When J,,, and 7;w is well-defined, the following equations hold:

JLKY =" K" =iK", (D.21)
JhE XY = —J' XV =iX" (D.22)

v

Therefore K* is holomorphic with respect to both J# and J",, while X* is holo-

morphic with respect to J#, and anti-holomorphic with respect to J",. Nonzero
inner products of two of K*#, X* and their complex conjugates are only

K™K, = XX, = 2¢* €] (D.23)

Hence we can construct a complete basis from these vectors. The metric can also
be written as

_ 1
2/¢[2 €|’

G (KK, + KK + X, X; + X, X}) . (D.24)
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Multiplying J¥,, J’ » P, and P’ »» we find that these tensors are represented as

T = m (K. K — K K+ X, XE — X,X7) (D.25)

T = m (KK — KK — X, X} + X,X7) (D.26)

Po = —— (K, X, — K, X,.)., (D.27)
2[¢]

Py — _2é|2 (KX, — K,X,). (D.28)

Because J,, is self-dual and 7“1, is anti-self-dual, they can be written as

1 _ 1
Juw = Lo + §eu,,p>\1p)‘, Jw =T — §€W,,A1PA, (D.29)
Z. * *

Thus J,, and _7“1, can be defined if K, is nowhere vanishing.
0Q¥u = 0@, = 0 can be written as

1 - 1 1
Vi€ = Mo,E + 5b,6 + 50 0,6, (D.31)
R T
Vuﬁ == EMO'MS - gbuf - gb O'Iﬂ,f. (D32)

The almost complex structure J*, is integrable if and only if U [“V”]E#V,,f‘ =0
for arbitrary holomorphic vectors U* and V*. By using (D.31) and U*V,, = 0,
which is because both U* and V* are holomorphic, this condition is rewritten as

MU"V"0,5,£ = 0. (D.33)

It is sufficient to consider the case € # 0. Then there are two nonzero holomorphic
vectors K* and X* and we can use the set of these vectors as a basis. Thus we
can take U* = X* and V* = K*. We can show K“aug = 0 by the Fierz identity
and we conclude that J* is integrable. Similar analysis also shows that J, is
integrable, whenever it exists.

Using (D.31) and (D.27), P, and P,, are invariant along K*:

LiP,, =LgP,, =0, (D.34)
and we can show that K, is a Killing vector:

VK, +V,K, =0. (D.35)
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The complex conjugate K is also Killing because the metric is real. Their com-
mutator generates another real Killing vector L*:

(K, K*] = 4iL. (D.36)

By using (D.31) and (D.32), we found that
LF = AXHF 4 XX, (D.37)
&+ (b, -0 X). (D.38)

1 a7 2 *
)\_E<M|§| M

Thus we consider two cases: L =0 and L # 0.

D.3 Nontrivial ¢ and &: [K, K*] =0

Let us consider the case in which the commutator of K* and its complex conjugate
vanishes. In such case, we can show that £ is identically zero or nowhere vanishing,
while ¢ has the same property. For showing this, let us assume &(z) = 0 at a
point z on My.

We can firstly show that the covariant derivative is also zero V,{(z) = 0
at . &(z) = 0 yields X#(x) = 0 and &(x) # 0, for nontrivial solutions. We
can take a sufficient small neighborhood around z such that & # 0 holds. If &
vanishes identically in such neighborhood, we obtain V,£(x) = 0. If not, there
is a point in this neighborhood such that & # 0, € # 0, and thus X* # 0 hold.
Since we restrict ourselves to the case of L*# = 0, A\ = 0 holds on such point. We
are considering smooth backgrounds, thus A(z) = 0. From the expression of A
(D.38), we obtain M (x) = 0. Therefore, from (D.31), we obtain V ,£(z) = 0.

From {(z) = V,&(x) = 0, we can find K,(z) = V,K,(z) = 0. Because K* is
Killing, K* = 0 everywhere on M. Therefore we conclude ¢ identically vanishes.

We now focus on the case in which a nontrivial combination (f , E) is a solution
of 0, = 5@% = 0. By the above discussion, it is sufficient to consider that
both ¢ and € are nowhere vanishing. In the following we consider such situation.

By using the complex structure J*,, we can introduce the holomorphic coor-
dinates w and z. Because there is a Killing vector K, we take K = 0,, and then
the metric can be written as

ds® = Q(2,2) [(dw + h (2,%) dz) (d@ + h (2,Z) dZ) + c(2,2)° dzdz] . (D.39)

This metric represents a T2 fibration over a Riemann surface ¥, whose metric is
given by

ds? = Q(2,2) ¢ (2,2)° dzdz. (D.40)
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The coefficient of dwdw is defined by K, as
02 = 2K K, = 4|¢]* [¢[. (D.41)

Let us derive expressions for the background fields b,, M and M. By using
(D.31)), the differential of J#, gives

1 0
vV, J" ==(b,+0b)—=(b,—0b)J" M*X,+MX). D.42
14 v 3( + V) 3(# u) V+3|§|2( + l/) ( )
This restricts the anti-holomorphic part of b, as
3 1 — 2
by =V, J, — ——— (MWX T MIE X*) VB, J'B,=iB,.
H 92 M 2‘€|2 ‘£|2 H ’ ‘ M H H H
(D.43)

Substituting this into (D.31), we obtain the equation (D.10) with

(& 1 - v
b, = b, — 5 (29 + 1) V, 7. (D.44)
In the previous case bj, is holomorphic, but it is not the case now. p = Pg;
satisfies (D.11)), and thus bf, is represented by p as (D.12). Therefore, b, is

w

by, =0, b5 =—id.p, b =—id;log(pg '"?), (D.45)

where the first equation is because P, and K = 9, satisfy (D.34).
Let us determine the remaining background fields, M and M. To do this, we
differentiate P,, and P,, by using (D.31) and (D.32):
ViP,, = %MKV, ViP,, = %HKV. (D.46)

By multiplying K*", we obtain

2i — 2i
K*V*P,,, M=—
KK, g KK,

M=— K*NV"P,,. (D.47)

By using (D.27), (D.28) and [K, K*| = 0, the above equations can be rewritten
as

M = —iV* (é—r;) , M =iV+ (%’;) . (D.48)

Furthermore, using the expression of the metric (D.39) in terms of w and z,
2ip — 2i()> Oalen

M = 9462821052;1), M=—

(85 log + hoglog p) . (D.49)
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It turns out that M and M can be completely determined by the Hermitian
metric and p.

To summarize, we obtained the explicit form of the background fields b,
M and M, assuming the existence of a solution of 0y = 662@;1 =0 as a
nontrivial combination (E,Z) such that [K, K*] = 0. For the cases which do
not reduce to (&,0) or (O,g), it is sufficient to consider nowhere vanishing ¢ and
& The background fields can be expressed in terms of the Hermitian metric,
the complex structure and the nowhere vanishing anti-holomorphic two-form p,
which is invariant under the translation along K = 9,. Of course, we can use
J", and P, to obtain the above results, instead of J*, and P,,.

Conversely, we can show that there is a solution (§ , E) for a general Hermitian
manifold which admits a nowhere vanishing complex Killing vector K* satisfy-
ing K*K, = 0 and [K, K*] = 0. As shown in (D.29) and (D.30), the complex
structure J* and J" can be defined by using only K*. Given a nowhere vanish-
ing anti-holomorphic two-form p with respect to J*, satisfying Lxp = 0, we can
obtain the explicit solution of g1, = 5@% = (0. We choose the vielbein as

e! = Q(dw + hdz), e = Qcdz. (D.50)

and other background fields as obtained above. Then we can find that

bo = g (g) &= il (?) , s=pg (D.51)

is a solution.

Finally, let us comment about the existence of the Killing vectors and sym-
metries. As shown in (D.5), the square of the supersymmetry transformation
gives the translation L. Thus Lx is a symmetry of a theory, which leaves b, M
and M invariant. However, Lx- is not included in (D.5)), so this transformation
need not be a symmetry of a theory and may change the background fields, even
though K™ is a Killing vector.

If we would like to treat Lx« to be a symmetry, we must impose the condition
that Lg« leaves the background fields invariant. Lg+b* = 0 restricts the w
dependence of p as

p(w,z2,z)=e""p(2,z), acC. (D.52)
By using this, we obtain
LM =aM, LgM=—aM. (D.53)

Therefore there are two cases for LM = LM = 0: « # 0 and a = 0. If
a # 0, we obtain M = M = 0 from (D.53). This reduces to the previous case
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and thus there are at least two supercharges parametrized by (&, 0) and (0, Z) If
a = 0, the supersymmetry algebra is extended as

0y = 2idk, (D.54)
[0k, 0¢] = [0+, 0¢] =0, (D.55)
[0, 0x+] = 0. (D.56)

D.4 Nontrivial ¢ and &: [K, K*] #0

Next let us consider the case in which a nontrivial combination (5 ,E) satisfying
[K, K*] # 0 is a solution of (D.31) and (D.32). Then there is another real Killing
vector L as in (D.36). Thus there are three real Killing vectors

1 i

b= (K+K"), (=

5 g (K—K"), t=L (D.57)

We can show that these are orthogonal each other. Vanishing of the inner product
between first two vectors can be shown by using K#K, = 0. For the inner
products between L and other ones, we consider the action of Lg- to K*K, = 0:

0= Ly (K'K,) = —8iL'K,. (D.58)

Therefore we obtain LFK), = 0. Similarly, we can find L*K = 0.
By using these facts, we can show that there is SU(2) x SU(2) or SU(2) xU(1)
symmetry and the metric can be written as

ds® = dr? + r(7)%dQs, (D.59)

where d(5 is the metric of the round S? with unit radius. From the fact that ¢;, /5
and (3 are orthogonal each other, the commutators [(,, ;] is also orthogonal with
respect to ¢, and f,. If all [¢,, (] are parallel to eq.f. respectively, the algebra
is SU(2). Then the metric can be expressed in terms of the SU(2) invariant
one-form p® as

ds® = dr* + hay(T) 1. (D.60)

Since the Killing vectors ¢;, ¢ and (3 are orthogonal each other, we obtain
hap(T) = 7(7)%04. This metric gives the expression (D.59) and the symmetry
is enhanced to SU(2); x SU(2),. lq=123 generate either SU(2); or SU(2),.

If [¢,, 0y] additionally generates another vector 7', which is orthogonal to €gp.L..,
T is another real Killing vector. Therefore the isometry is SU(2) x U(1), where
U(1) is generated by the translation along T, that is 7 direction. Then the metric
is given as in (D.59) and 7 is independent of .

By using the metric (D.59) and the Killing vectors, let us determine the
backgroud fields b*, M and M. We assume that lo—123 generate SU(2); isometry
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of the unit S3. Their dual one-form ;% (a = 1,2,3) is SU(2), invariant one-form
and the metric can be represented as

N 2 AN\ 2 N\ 2
dQy = (;ﬂ) + (;ﬁ) + (/f’) : (D.61)

By using 1%, we can take the vielbein as
e =r(r)ut, e*=dr. (D.62)

In this frame, K**K, = 2r(7)?, thus [£]? ‘E|2 = r(7)2. We can introduce the
fourth real vector orthogonal to K, K* and L as

T = _K*ifq P L, K, K = (7). (D.63)

The vector X* is orthogonal to K* and K** and can be expressed in terms
of L¥ and T" as

XH =a(L*+ pT"). (D.64)
The fact that X* satisfies X*X,, = 0 and X**X,, = 2r(7)? constrains « and 3 as
la?=1, pB*=-1. (D.65)

We take 5 = 1 by choosing the sign of T* as in (D.63). For «, let us define the
complex scalar function s satisfying

B A G5 B T T
H_r(r) ik X |8|(L+T). (D.66)

By using (D.27), we can write P, as a function of s. As shown in (D.34), P, is
invariant along K, thus s is invariant under the translation along K as

K"9,s = 0. (D.67)

Similar to the previous analysis, we can determine the background fields in
terms of the geometric quantities and the function s. By differentiating P,,,
M and M are written as (D.47). Using (D.66) and V,K, = —V,K,, they are
written as follows:

S L+ iT#)) - % (D.68)

M = —iV* ( ! (L, — z’Tu)) + % (D.69)
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Let us determine b,. For this, we compute the commutator [X, X*]. By using
(D.31) and (D.32),

(XX =—3 (K*"b) K — 3 (X (by+0)) X — (c.c.)
2 s 2 . \ : N
=-3 (K*"b) K — 5 (KVb,) K™ —il” (by +05) L —iT" (b, + %) T
(D.70)

On the other hand, [X, X*] can be also computed by using (D.66)) as

X, X*] = —2 (L“@H log i) L—2 (T#a# log i) T. (D.71)

5] 5]

By comparing (D.70) and (D.71), we obtain

K", =0, L"(b,+1b),) =—2iL"9,log % T (b, +b%) = —2iT"9,, log ‘%
(D.72)

The differential of |s|* = |¢]? }E|2 can be computed by using (D.31), (D.32), (D.68)
and (D.69) as

. . 2
dulog|s|* =i (b — b)) + méu. (D.73)
Therefore, we can solve b, as
. (-
b, = —i0,log s + méu. (D.74)

From (D.67) and (D.74), the background fields are invariant under the translation
along K, but need not to be invariant along K* or L.

Conversely, when we take the metric, the function s and the background fields
as obtained, we can obtain the solution ({ ,E) In the frame (D.59), we can find

that
1 —d r(r) (=1
=V (o) € =" (3 (D.75)
is a solution.

If we take 7 < 7 < 7, satisfying r (1) = 0, we can construct S* and its some
deformations. In such case, the spinors £ and ¢ vanishes at some points, which
is consistent with the fact S* does not admit the almost complex structures.
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