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Abstract

This work is divided in two parts. In the first one, we will examine several types of ill
behavior in conic linear programming such as weak infeasibility, nonattainment of optimal
values and duality gaps. We will then discuss how to analyze and to, some extent, correct
those issues with techniques based on facial reduction. Among our contributions we have
an analysis of weak infeasibility and a description of a theoretical procedure that is able to
“completely solve” an arbitrary conic linear program by means of other problems that are
ensured to be well-behaved. We also show FRA-Poly, a facial reduction algorithm that
exploits the presence of polyhedral faces in the underlying cone in order to finish in less
reduction steps than the classical algorithm.

In the second part of this thesis, we take a look at nonlinear semidefinite programs
(NSDPs). We take a look at the possibility of transforming an NSDP into a conventional
nonlinear program, by using squared slack variables to remove the positive semidefiteness
constraint. We then do a thorough comparison between optimality conditions for both
the original problem and its reformulated version. In particular, we show that by using
squared slack variables we can obtain a pair of “no-gap” second order conditions for NSDPs
through elementary means. This work is an extension of an earlier work by Fukuda and
Fukushima on nonlinear second order cone programs.
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Chapter 1

Introduction

This thesis is focused on two kinds of conic programming. The first is Conic Linear
Programming (CLP) and the second is nonlinear semidefinite programming (NSDP). In
the former part, we will focus on different types of ill behavior in CLP. In the latter part, we
will discuss a reformulation of NSDP using squared slack variables and the correspondence
between Karush-Kuhn-Tucker (KKT) points, optimality and regularity conditions between
the original problem and the reformulated version. This reformulation transforms an
NSDP into a classical nonlinear program (NLP).

The motivation for the first part comes from the fact that the algorithmic development
for conic linear programming was done under regularity assumptions that can fail to hold
for certain problems and this make solvers misbehave. Since these are still problems we
wish to solve and analyze, we need better alternatives than just giving up. For the latter
part, we have both theoretical and practical motivations. The theoretical one is to find an
elementary theory of optimality conditions for nonlinear semidefinite programming. From
a practical perspective, since nonlinear SDP solvers are still scarce, it makes sense to check
the feasibility of NSDPs via NLP solvers.

We now give some historical context behind the line of research advanced in this thesis.

The birth of conic programming most definitely happened with the original develop-
ment of linear programming by Dantzig, Kantorovich and several others in the ’30s, ’40s
and ’50. See the historical notes in section 2.3 of [18]. Linear programming consists of min-
imizing a linear function subject to inequality/equality constraints and its importance was
soon recognized as an efficient tool for solving a range of problems in economy, planning,
industry and so on. A classical LP looks like this:

inf
x
〈c, x〉 (LP)

subject to Ax = b

x ≥ 0,

where c ∈ Rn, A is a linear map from Rn to Rm, b ∈ Rm. The condition “x ≥ 0” means
that it is required that all components of x be nonnegative. For LPs, the algorithm of
choice was the simplex method, although LPs with special structures sometimes have their
own specialized algorithms, such as the Ford-Fulkerson algorithm for max flow problems
[35].

There was also a push towards “general nonlinear programming” which consisted of
minimizing a general function subject to different equality and inequality functional con-
straints. Usually there were some assumptions of continuity or differentiability on the
objective function and the constraints. Classical textbooks on the subject include the one
by Fiacco and Mccormick [23], and a few by Luenberger [52, 51]. A classical nonlinear
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CHAPTER 1. INTRODUCTION

program looks like this:

inf
x

f(x) (NLP)

subject to gi(x) ≤ 0, i = 1, . . . ,m1

hj(x) = 0, j = 1, . . . ,m2,

where f and all the gi and the hj are real differentiable functions. Higher degrees of
differentiability are assumed accordingly to the need. The textbooks mentioned above
contain a range of different methods for NLPs.

As it often happens, researchers were eager to generalize and further extend lin-
ear/nonlinear programming to new and possibly interesting directions. In the ’60s and
’70s, with the advent of convex analysis, conic programming presented itself as a natural
generalization in both cases. For instance, the constraint “x ≥ 0” is the same thing as the
constraint “x ∈ Rn+”, where Rn+ = {x ∈ Rn | x ≥ 0}. One the other hand, the constraints
in (NLP) can be written as “(−g(x), h(x)) ∈ Rm1

+ × {0}”, where g(x) is the function that
maps x to (g1(x), . . . , gm1(x)) ∈ Rm1 and h(x) maps x to (h1(x), . . . , hm2(x)) ∈ Rm2 .

Conic programming arises precisely when we consider other choices of (possibly non-
polyhedral) cones instead of Rn+. Here, we make the distinction between conic linear
programming and just plain conic programming. In the former, the objective function is
still linear and we only have linear constraints apart from the conic constraints. In the
latter, we have general differentiable functions subject to general conic constraints.

There was a lot of theoretical activity on conic programming in the ’70s and the ’80s in
fundamental aspects such as optimality conditions, existence of KKT multipliers, sensitiv-
ity, appropriate constraint qualifications and so on. This research is still carried to this day.
However, back then, not all of research was translated into algorithmic achievements. At
least not at the same degree that happened for LP and NLP. In fact, only recently we have
seen solvers capable of handling nonlinear conic constraints, such as PENNON/PENLAB
[41, 24] and the Numerical Optimizer, which was formely known as NuOPT [93].

This panorama changed drastically in the ’80s and ’90s with the introduction of
interior-point methods (IPMs), first for linear programming then for conic linear program-
ming over the so-called symmetric cones [22] which include: the nonnegative orthant, the
positive semidefinite matrices, the Lorentz cones and direct products of all these cones.
IPMs helped to solve a thorny issue in Linear Programming and Computational Complex-
ity. Namely, it could solve LPs in polynomial time and also had performance comparable
to the Simplex method. In comparison, the earlier Ellipsoid method also solves LPs in
polynomial time, but in practice it is slow, see sections 7 and 9 of [8].

IPMs for the other symmetric cones are also efficient, although, for a technical reason,
we can not claim that they solve, for instance, SDPs in polynomial time in the same sense
that it is said that LP is solvable in polynomial time. Roughly speaking, the polynomiality
of IPMs in semidefinite programmings refers to the fact that given a nicely behaved (i.e.
satisfying regularity conditions) semidefinite program, we can obtain approximate solu-
tions in time proportional to a polynomial of the problem size and the desired accuracy.
Nevertheless, once it was understood that these types of problems admitted relatively
efficient algorithms, researchers found a number of different applications for them, which
can be seen in surveys such as [45, 3, 87, 83].

Today, conic linear programming (CLP) is an important tool in optimization, not
only from a theoretical point of view, but from a practical one as well. However, there
still are a few neglected aspects of CLP. For instance, the fact that the algorithms might
breakdown when certain regularity conditions are not satisfied. Note that in the case of
linear programming, at least in theory, if one uses the Simplex method it is possible to
detect all the corner cases such as infeasibility, unboundedness and so on. However, this is
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1.1. CONIC LINEAR PROGRAMMING CHAPTER 1. INTRODUCTION

not true for, say, infeasible methods and approaches based on the homogeneous self-dual
embeddings for semidefinite programming. Worse yet, these methods might fail without
giving a clear indication to the user that something is amiss, see for instance, the article
by Waki, Nakata and Muramatsu [90] and also section 2.4.

Therefore, an important point is that solvers today do not perform well when faced
with problems with ill behavior. In those cases, they may, for instance, output the wrong
optimal value. As CLP becomes more widespread, it is important to have robust solvers
that can at least identify that something is wrong. Moreover, we would like, at least
in principle, to be able to detect and analyze badly behaved problems. In this sense,
our line of research belongs to the bigger theme of trying to regularize a “bad” problem
in a way that makes it more amenable to known algorithms and methods. It is not
obvious, however, that this is indeed possible in general. Notwithstanding, one of our
main contributions is showing that by applying a technique known as Facial Reduction
(FR) [13, 12] twice, any conic linear program can be regularized into another one that
satisfy the regularity conditions that common solvers usually require, see Chapter 5. Facial
Reduction Algorithms (FRA) will be a central topic in this work and we will show how
to use it to analyze the feasibility properties of a given CLP. In Section 1.1, we discuss
in more detail the issues connected to CLP and our contributions to the literature. We
should mention, however, that at this stage, the results are still very theoretical, but we
hope that this will change in the not so distant future.

As for more general conic programming, the difficulties are compounded, since usually
there is no assumption of convexity. And, indeed, there are currently few solvers that are
capable of handling general conic constraints, even for the symmetric cones. So, for those
problems, there are still lots of work to be done on the development of efficient algorithms.
However, symmetric cones are also cones of squares [22], so it is possible to remove the
conic constraints by using squared slack variables. This is an investigation that started
with the work by Fukuda and Fukushima [29] for nonlinear second order cone programs
and in this thesis, we investigate the nonlinear semidefinite programming case. At this
point in time, with general conic program solvers still in their infancy, it seems reasonable
to check the feasibility of this approach, since it allows us to use well-established NLPs
solvers.

1.1 Conic Linear programming

Conic linear programming contains many classes of useful problems, however as we move
away from linear programming the chance of encountering ill behaviour increases dra-
matically. In this thesis, we take a look at handful of them, such as weak infeasibility,
nonattainment of optimal values and duality gaps. We will also take a deep look at a
regularization technique known as Facial Reduction. Let us first give some context.

We will be mainly concerned with problems in the following format:

inf
x
〈c, x〉 (P)

subject to Ax = b

x ∈ K∗

sup
y
〈b, y〉 (D)

subject to c−A>y ∈ K,

where E is a finite dimensional real vector space, K ⊆ E is a closed convex cone and K∗
is the dual cone {s ∈ E | 〈s, x〉 ≥ 0,∀x ∈ K}. We have that A : E → Rm is a linear map,

12



CHAPTER 1. INTRODUCTION 1.1. CONIC LINEAR PROGRAMMING

b ∈ Rm, c ∈ E and A> denotes the adjoint map. We also have A>y =
∑m

i=1Aiyi, for
certain elements Ai ∈ E . The inner product for the corresponding spaces is denoted by
〈., .〉. We will denote by θP and θD, the primal and dual optimal values, respectively. It is
understood that θP = +∞ if (P) is infeasible and θD = −∞ if (D) is infeasible. We now
mention three classes of problems that fit the framework above.

1. If E = Rn and K is the nonnegative orthant Rn+, then the pair composed by (P) and
(D) is a Linear Program (LP).

2. If E = Rn and K is the direct product of Lorentz cones Qni = {x ∈ Rni | x1 ≥
0, x2

1 ≥ x2
2 + . . .+ x2

ni}, then we have a Second Order Cone Program (SOCP).

3. Let E = Sn be the space of n × n symmetric matrices, K = Sn+ the cone of n ×
n positive semidefinite matrices and 〈x, y〉 = trace (xy). In this case, we have a
Semidefinite Program (SDP).

One of the standard ways of solving the problems above is to use interior point methods
(IPMs) [59, 74]. However, using IPMs require that the problem at hand satisfies certain
regularity conditions in order to work correctly. Typically, it is required that both (P) and
(D) have relative interior feasible solutions and if this fails we may have nonzero duality
gaps and nonattainment, see examples in [55, 56, 86]. A problem has zero duality gap if
θD = θP . Primal nonattainment occurs when θP is finite but there is no primal feasible
solution that achieves θP . Dual nonattainment is defined similarly.

Also, attached to an optimization problem we have the feasibility problem. Let L be
a subspace of E and c ∈ E . In the feasibility problem, we seek a point in the intersection
of (L + c) ∩ K or some certificate that attests that no such point exists. In Linear Pro-
gramming, we have the Farkas’ Lemma which states that either (L+ c)∩Rn+ 6= ∅ or there
is some s ∈ L⊥ ∩ Rn+ such that 〈s, c〉 < 0, where L⊥ denotes the orthogonal complement
to L. In this way, the infeasibility of a system of linear inequalities is equivalent to the
feasibility of another system of linear inequalities. However, for nonpolyhedral cones, the
situation is significantly more complicated and this is partly due to the presence of a phe-
nomenon called weak infeasibility. A feasibility problem is said to be weakly infeasible if
(L + c) ∩ K = ∅ but there are points in L + c arbitrarily close to K. Weak infeasibility
cannot happen in linear programming, but it can happen for general linear conic programs
and it complicates significantly the search for infeasibility certificates.

In order to ameliorate some of these issues, regularization procedures have been devel-
oped such as the Facial Reduction scheme by Borwein and Wolkowicz [13, 12]. However,
the application of Facial Reduction to conic linear programs is more recent and there are
still many outstanding issues to be solved and discussed. In this thesis we will take a look
at a few of them.

1.1.1 Summary of the main results

The initial motivating question behind this thesis was the study of weakly infeasible prob-
lems. A conic linear feasibility problem is the problem of seeking for some x ∈ (L+ c)∩K,
where L+ c is an affine subspace and K is an arbitrary closed convex cone. The problem
is said to be weakly infeasible if (L+ c)∩K = ∅ but the Euclidean distance between L+ c
and K is zero. We were concerned about the structure of weakly infeasible problems and
with understanding precisely how they arise and how to explicitly construct points in L+c
that are arbitrary close to K. Our first contribution to the literature was as follows:

• structural analysis of weakly infeasible problems. In 2013, we proved that if K = Sn+,
then there is an affine subspace V contained in L+ c with dimension at most n− 1
such that dist(V,Sn+) = 0 [47]. The meaning behind it is that starting from a
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1.1. CONIC LINEAR PROGRAMMING CHAPTER 1. INTRODUCTION

special point s, we can approach Sn+ by using at most n − 1 directions. Moreover,
we showed that there is a “hierarchical” relaxation between those directions. Once
those directions are found, we can explicitly construct points close to Sn+ without
solving extra SDPs.

Later on, a similar result was proved for the case of feasibility problems over a direct
product of Lorentz cones K = Qn1 × . . . × Qnr , where r is the number of Lorentz
cones. Similarly, we showed the existence of an affine subspace of dimension at most
r such that dist(V,K) = 0 [49]. Although SOCP is a particular case of SDP, this
bound does not follow directly from the SDP case, so it merited a tailored analysis.

In 2015, Liu and Pataki [44] gave a generalization of sorts of our results for arbitrary
closed convex cones. However, their more general result provided a slightly worse
bound for the dimension of the space for the cases K = Sn+ and K = Qn1× . . .×Qnr .
In order to match our bound, they gave an alternative argument for the case K = Sn+
but no special argument was given for the case K = Qn1 × . . .×Qnr . In this thesis,
we give an overarching result that includes our previous bounds as special cases and
improves on Liu and Pataki’s result, see also [48]. It is connected to two quantities
we introduced named distance to strong duality and distance to polyhedrality, see
sections 3.3.2 and 3.3.3.

One of the reasons for studying weakly infeasible problems is because they are inti-
mately connected with optimization problems with unattained optima. Namely, if θP =
inf{〈c, x〉 | Ax = b, x ∈ K} is finite but not attained then the problem of finding a point
satisfying Ax = b, x ∈ K and 〈c, x〉 = θP is weakly infeasible. So an approach to construct
points arbitrarily close to a cone naturally produces an approach for constructing feasible
solutions that are almost optimal.

When we did the analysis for weakly infeasible SDPs, one of the things that were in
our minds was that in order to find the directions that compose the affine space V we
need to solve auxiliary SDPs. We would like, at least in principle, to actually compute
those directions if we are given an SDP instance. This poses the question of deciding what
would be reasonable assumptions concerning our capability of solving SDPs.

A similar issue appears in the facial reduction literature and, although it was not clear
to us in our initial analysis of weak infeasibility, it turned out that our approach had
indeed a very strong connection to FR [13, 12]. FR aims to restore strict feasibility by
finding a sequence of so-called reducing directions. And after it is finished, the final aim
is to actually solve the optimization problem. It seemed to us that the situation was a bit
awkward. After all, it is necessary to solve some auxiliary CLP, so some solving capability
was assumed implicitly in the literature. However, if we assume that we can solve CLPs,
what is really the point of doing facial reduction? We could use whatever oracle we have
at hand to solve those auxiliary problems and directly attack the original problem instead.

An answer to that came from thinking about the nature of the most common meth-
ods for solving conic linear problems: Interior Point Methods (IPM). IPMs require that
(P) and (D) have both relative interior feasible points, which means that they are both
strictly feasible. By using infeasible methods [60] or self-dual embeddings [71, 19, 56], it
is possible to relax this requirement somewhat. Still, if either (P) or (D) fails to satisfy
strict feasibility, both approaches can misbehave. Moreover, even if an IPM is not used,
it is still common to require primal and dual strict feasibility since this is a time-honored
assumption that ensures simultaneously zero duality gap together with primal and dual
attainment.

One of our contribution was to show that the problem of finding reducing directions in
Facial Reduction can be cast as a pair of (PK) and (DK) of problems that always satisfy
strict feasibility, even if (P) and (D) do not. In this sense, (PK) and (DK) are always

14



CHAPTER 1. INTRODUCTION 1.1. CONIC LINEAR PROGRAMMING

nicely behaved. Therefore, in order to do facial reduction, we do not need to assume that
we can solve arbitrary CLPs but, merely that there is an interior point oracle Oint that
gives primal and dual solutions to problems that are both primal and dual strictly feasible.

It then dawned to us that we could use this kind of idea to prove a few theoreti-
cal results about the relationship between optimization and feasibility problems in conic
programming. So our next two contributions were

• completely solving CLPs with an interior point oracle. Assuming that we have Oint

at hand, we can “completely solve” any CLP in the following sense. We say that a
scheme/method/algorithm “completely solves” (D) if is able to detect whether the
problem is infeasible or feasible. If feasible, it should tell us if (D) is unbounded.
If it is bounded, it must return the optimal value θD and an optimal solution if it
exists. If no optimal solution exists, given any ε > 0 it returns an ε-optimal feasible
solution. When (D) is infeasible, the scheme must be able to provide a certificate
of infeasibility and distinguish between strong and weak infeasibility. Finally, for
weakly infeasible problems, given any ε > 0, it returns a point in c− rangeA> whose
distance to K is at most ε.

Initially, we proved this result for SDPs [49], but in this thesis we will present
a generalization for arbitrary closed convex cones. Surprisingly, we did not find
much literature on how to comprehensively solve an arbitrary CLPs, except for a
chapter written by de Klerk, Terlaky and Roos, see section 5.10 of [19]. However,
their assumptions are more restrictive, since they assume not only the capability
of solving problems that are primal and dual strictly feasible but they also assume
that maximal complementary solutions are obtainable. Moreover, their analysis is
for SDPs only and uses Ramana’s extended dual, which is a tool that is very specific
to SDP theory.

• equivalence of optimization and feasibility for general CLPs. We will show that conic
optimization problem and the conic feasibility problem are polynomially equivalent.
Namely, if there is a method to solve the feasibility problem, with polynomially many
calls to that method, we may solve the optimization problem and vice-versa. Again,
surprisingly, we could not find much literature on the general conic case. For Linear
Programming, the result is trivial. The SDP case, on the other hand, is surprisingly
involved and is a consequence of Ramana’s work [72] on extended duality. In Chapter
5, we will explain some of the subtler details associated to this question.

In order to prove the two results above, we had to take a closer look at facial reduction
and we end up proving a few theoretical properties of facial reduction algorithms. In
addition, we developed a new algorithm that, in many cases, has a better worst case
complexity. So the last two contributions in this part of this thesis are:

• theoretical properties of FRAs. When applying FR to (D), the dual feasible region
stays the same but the primal feasible region might expand. We proved that this
expansion can only affect the feasibility properties of (P) in a very limited way. We
then use this result to show that applying Facial Reduction twice is enough to obtain
a pair of problems that are always strictly feasible.

• FRA-Poly, a facial reduction algorithm that takes polyhedrality into account. [48]
Facial reduction algorithms work by successively identifying what is called “reducing
directions” {d1, . . . , d`}. Starting with F1 = K, these directions define faces of K by
the relation Fi+1 = Fi ∩ {di}⊥. Of course, these directions are not arbitrary and
for feasible problems, di must be such that Fi+1 is a face of K containing the dual
feasible slacks FSD . We then obtain a sequence F1 ⊇ . . . ⊇ F` of faces of K such that
Fi ⊇ FSD for every i. Usually, a FRA proceeds until FDmin is found.
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A key observation is that as soon as we reach a polyhedral face Fi, we can jump
to the minimal face FDmin in a single facial reduction step. In addition, when K is a
direct product K = K1×. . .×Kr, each Fi is also a direct product F1

i ×. . .×Fri . In this

case an even weaker condition is sufficient to jump to FDmin, namely, if every block F ji
satisfy one of the two conditions: a) F ji is polyhedral b) every s ∈ F∗i ∩ kerA∩{c}⊥

is such that sj ∈ (F ji )⊥. When the problem is feasible, the condition b) is equivalent

to the statement that the j-th block of FDmin is equal to F ji . In summary, we can
jump to the minimal face if either a block is polyhedral or it is already a piece of
the minimal face.

Our proposed algorithm FRA-Poly works in two phases. In Phase 1, it proceeds
until a face Fi satisfying the condition above is reached. To do that, we model
the search for reducing directions as a pair of primal and dual problems satisfying
a generalized Slater’s condition that takes into account polyhedrality. In Phase 2,
FDmin is obtained with single facial reduction step. One interesting point is that even
if Fi is different the minimal face, it is possible to show that if we reformulate (D)
as a problem over Fi, then strong duality will hold.

In order to analyze the number of facial reduction steps in the worst case, we intro-
duce a measure called distance to polyhedrality `poly(K). This is the length minus
one of the longest strictly ascending chain of non-empty faces F1 ( . . . ( F` for
which F1 is polyhedral and Fi is not polyhedral for all i > 1. If K is a direct
product of arbitrary cones K1 × . . .×Kr, we prove that FRA-Poly stops in at most
1+
∑r

i=1 `poly(Ki) steps. This quantity is no worse than the bound given by classical
FRAs and, under mild conditions, it is strictly smaller.

1.2 Nonlinear SDP

In the second part of this thesis we will be concerned about problems of the following
type.

minimize
x

f(x)

subject to G(x) ∈ Sm+ ,
(P1)

where f : Rn → R and G : Rn → Sm are twice continuously differentiable functions, Sm is
the linear space of all real symmetric matrices of dimension m×m, and Sm+ is the cone of
all positive semidefinite matrices in Sm.

We investigate the possibility of removing the conic constraints and transforming (P1)
into a conventional nonlinear program using slack variables. We denote by ◦ the Jordan
product [22], which is the bilinear operator satisfying

W ◦ Z .
=
WZ + ZW

2
,

for every W,Z ∈ Sm. Because Sm+ = {Y ◦ Y | Y ∈ Sm}, we reformulate (P1) as

minimize
x,Y

f(x)

subject to G(x)− Y ◦ Y = 0.
(P2)

Note that problem (P2) no longer has conic constraints and they are, instead, replaced by
n(n+1)

2 equality constraints. We now give a few reasons why one might want to do that.
The first reason is merely for theoretical curiosity. The optimality theory for (P1) is vastly
different from the somewhat classical theory for (P2). It might be fair to say that second-
order conditions for (P1) is a relatively “deep” subject and includes a discussion of topics
such as metric regularity and second-order tangent sets, which are topics that only reached
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maturity in the mid-’80s and ’90s together with the development of variational analysis.
So it is, perhaps, a theoretically interesting question how the second order conditions,
KKT points and regularity conditions of (P1) and (P2) are related.

One of the motivation for this study is to derive optimality conditions for (P1) through
elementary means. It might be fair to say that deriving SOCs for (P1) is a more intricate
affair than carrying out the same task for classical nonlinear programs. That is one of the
reasons why there is some interest in alternative ways of deriving optimality conditions for
(P1), see [25, 34]. In this sense, it is surprising that, under strict complementarity, second
order conditions for (P1) and (P2) are essentially the same [46]. More specifically, we will
show that second order conditions for (P2) generate “no-gap” conditions for (P1) that
are equivalent to the more technical conditions developed by Shapiro [77]. Our approach,
therefore, provides an elementary path to optimality conditions for nonlinear semidefinite
programs (NSDPs).

There is also a practical side for this kind of inquiry. Conventional wisdom would say
that using squared slack variables is a bad idea, but, in reality, even for linear SDPs there
are good reasons to (sometimes) use such variables. See the work by Burer and Monteiro
[14, 15].

Moreover, while there are a number of solvers for linear SDPs, as we move to general
nonlinear programs, the situation changes drastically. In fact, as far as we known, PEN-
LAB is the only open-source general NLP solver that can handle nonlinear semidefinite
constraints. So, it seems that it makes sense to check the feasibility of solving (P1) via
(P2), as it enables one to use different well-tested and high-quality solvers.

Our main contribution in this part is showing the correspondence between second order
conditions, KKT points and regularity conditions of (P1) and (P2), see also [46]. We also
have a few computational experiments where nonlinear SDPs are solved with both an
augmented Lagrangian algorithm for NSDPs and via slack variables. Their performance
are then compared. Somewhat surprisingly, the slack variables approach was competitive
for many problem instances.
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Chapter 2

Preliminary notions

In this chapter, we set up the notation and collect some well-known results that will be
needed in the next chapters. Recall that we are interested in the following pair of problems:

inf
x
〈c, x〉 (P)

subject to Ax = b

x ∈ K∗

sup
y
〈b, y〉 (D)

subject to c−A>y ∈ K,

where E is a finite dimensional real vector space, K ⊆ E is a closed convex cone and K∗
is the dual cone {s ∈ E | 〈s, x〉 ≥ 0,∀x ∈ K}. We have that A : E → Rm is a linear
map, b ∈ Rm, c ∈ E and A> denotes the adjoint map. We also have A>y =

∑m
i=1Aiyi,

for certain elements Ai ∈ E . The inner product is denoted by 〈·, ·〉. The norm induced
by 〈·, ·〉 will be noted by ‖·‖. We will denote by θP and θD, the primal and dual optimal
values, respectively. It is understood that θP = +∞ if (P) is infeasible and θD = −∞ if
(D) is infeasible.

We denote the dual feasible region by FD = {y ∈ Rm | c − A>y ∈ K}. We also
write FSD for the “slack space” FSD = {c−A>y | y ∈ FD }. The primal feasible region is
FP = {x ∈ K∗ | Ax = b}.

2.1 Convex sets, faces and separation theorems

Let C be a closed convex set contained in E . Its interior, relative interior, closure and
relative boundary are denoted by intC, riC, clC and relbdC, respectively. We also write
spanC for the smallest subspace of E containing C and aff C for the smallest affine subset
of E containing C. Recall that the relative interior of C is the interior with respect the
topology induced by aff C. Additionally, if K is a closed convex cone, we denote by linK
the lineality space of K, which is the largest subspace contained in K.

For a given x ∈ C, we write dir (x,C) for the cone of feasible directions of C at x .
This is the set {z ∈ Rn | ∃t > 0, x + tz ∈ C}. The closure of dir (x,C) is the tangent
cone of C at x and is denoted by cl dir (x,C). The tangent space of C at x is the set
TxC = cl dir (x,C) ∩ −cl dir (x,C). A supporting hyperplane of C at x is a hyperplane H
for which x ∈ H and C is entirely contained in one of the half-spaces defined by H. If A
is an arbitrary set, we denote by A⊥ the subspace which contains the elements orthogonal
to it.
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A convex subset F of C is said to be a face if the condition αx + (1 − α)y ∈ F with
α ∈ (0, 1) and x, y ∈ C implies x, y ∈ F . If F is a face of K, we define the conjugated
face of F as F∆ = K∗ ∩ F⊥. If we select a point x in the relative interior of F , we have
F∆ = K∗ ∩ {x}⊥. Note that the elements of F∆ define the supporting hyperplanes of K
passing through x. Given z ∈ K, we will use the notation F(z,K) to denote the minimal
face of K which contains z.

Two convex sets are said to be properly separated if there is some hyperplane such
that the sets are contained in opposite closed half-spaces and at least one of them is not
entirely contained in the hyperplane. The following result characterizes proper separation.

Theorem 2.1. Let C1 and C2 be two non-empty convex sets. Then riC1 ∩ riC2 = ∅ if
and only if C1 and C2 can be properly separated.

Proof. See Theorem 11.3 in [75].

If one of the sets is polyhedral, we have the following separation result.

Theorem 2.2. Let C1 and C2 be two non-empty convex sets, with C1 a polyhedral set.
Then C1 ∩ riC2 = ∅ if and only if C1 and C2 can be properly separated with a hyperplane
that does not contain C2.

Proof. See Theorem 20.2 in [75].

We also have the notion of strong separation. Two convex sets C1 and C2 can be
strongly separated if there exists a separating hyperplane H and ε > 0 such that C1 + εB
and C2 +εB lie in opposite open half-spaces, where B is the unit ball. The following result
characterizes strong separation.

Theorem 2.3. Let C1 and C2 be two non-empty convex sets. Then C1 and C2 can
be strongly separated if and only if the Euclidean distance between C1 and C2 satisfies
dist (C1, C2) = inf{‖x− y‖ | x ∈ C1, y ∈ C2} > 0.

Proof. See Theorem 11.4 in [75].

Given a closed convex set C and D a convex subset contained in C, we denote by
F(D,C) the minimal face of C that contains D. The following well-known result charac-
terizes F(D,C).

Proposition 2.4. Let F be a non-empty face of C and D a convex subset contained in
F . Then the following are equivalent.

i. F(D,C) = F ;

ii. riD ∩ riF 6= ∅;

iii. riD ⊆ riF .

Proof. (i.⇒ ii.) If riD ∩ riF = ∅, then D and F can be properly separated. This means
that there is an hyperplane H such that D and F lie in opposite closed half-spaces but
at least one of them is not entirely contained in H. However, since D ⊆ F , it must be
the case that D is entirely contained in H. Therefore, F is not entirely contained in H.
Because F lies in one of the closed half-spaces defined by H, H must be a supporting
hyperplane of F . Gathering all these facts, we obtain that F ∩ H is a proper face of F
containing D. Since, a face of F is also a face of K, this contradicts the minimality of F .

(ii. ⇒ iii.) Let x ∈ riD ∩ riF and y ∈ riD. Then, due to theorem Theorem 6.4 of
[75] there exists α > 1 such that u = (1 − α)x + αy and u ∈ D(⊆ F). This means that

y = 1
αu+ (α−1)

α x. So y is a non-trivial convex combination of a relative interior point of F
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and some other arbitrary point also belonging to F . Therefore, it must be relative interior
point of F as well, see Theorem 6.1 in [75].

(iii. ⇒ i.) Suppose that F is not the minimal face and let F̂ be the minimal face.
Then, by what we proved so far, we have riD ⊆ ri F̂ . This means that ri F̂ ∩ riF 6= ∅,
which can only happen if F̂ = F .

We now gather a few facts that we will need later.

Lemma 2.5. Let K be a closed convex cone, e ∈ riK, x ∈ K and z ∈ K∗.

i. K∗∗ = K.

ii. linK = K∗⊥, where K∗⊥ is a short-hand for (K∗)⊥.

iii. K⊥ = lin (K∗)

iv. x+ e ∈ riK.

v. There exists α > 1 such that αe+ (1− α)x ∈ K.

vi. z ∈ K⊥ if and only if 〈e, z〉 = 0.

vii. (cl dir (x,K))∗ = F(x,K)∆

viii. TxK = F(x,K)∆⊥. That is, the tangent space of x at K is the intersection of the
supporting hyperplanes of x at K.

ix. If w ∈ cl dir (x,K) then limt→+∞ dist (tx+ w,K) = 0.

Proof. i. This is the famous bipolar theorem, see Theorem 14.1 of [75].

ii. If z ∈ linK, then 〈z, y〉 ≥ 0 and 〈−z, y〉 ≥ 0, for every y ∈ K∗. It follows that z ∈ K∗⊥.
Reciprocally, if z ∈ K∗⊥, then z ∈ K∗∗ = K, by the bipolar theorem. Since K∗⊥ is a
subspace, we have K∗⊥ ⊆ linK.

iii. It follows from applying ii. to K∗.

iv. Since e ∈ riK, for any z ∈ K we have that all points in the relative interior of the line
segment connecting z and e also belong to the relative interior of K, see Theorem 6.1
of [75]. Since x+ e = e1

2 + (2x+ e)1
2 , we have x+ e ∈ riK.

v. See Theorem 6.4 of [75].

vi. If z ∈ K⊥, it is clear that 〈e, z〉 is zero. Now, suppose that 〈e, z〉 is zero. By item iv,
there is α > 1 such that αe + (1 − α)x ∈ K. On one hand, since z ∈ K∗, we have
〈u, z〉 ≥ 0. On the other, 〈u, z〉 = (1− α)〈x, z〉 ≤ 0. So, we must have 〈x, z〉 = 0. As
x is an arbitrary element, it holds that z ∈ K⊥.

vii. First we show that F(x,K)∆ ⊆ (cl dir (x,K))∗. Since a set and its closure have the
same dual, we have dir (x,K)∗ = (cl dir (x,K))∗. If s ∈ F(x,K)∆ and z ∈ dir (x,K),
then we have 〈s, x + tz〉 ≥ 0, for some t > 0. Because 〈s, x〉 = 0, we must have
〈s, z〉 ≥ 0, which shows s ∈ dir (x,C)∗.

Now, suppose that s ∈ (cl dir (x,K))∗. Because K ⊆ cl dir (x,K), we have that s ∈ K∗.
In addition, since both x and −x belong to cl dir (x,K), we have 〈s, x〉 = 0.

viii. Follows from vii. and iii.
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ix. Since K is a closed convex cone, we have dist (a+b,K) ≤ dist (a,K)+dist (b,K), for all
a, b ∈ E . Now, for every ε > 0, there exists wε ∈ dir (x,K) such that dist (w,wε) < ε.
Moreover, there exists tε such that tεx+ wε ∈ K. It follows that

dist (tx+ w,K) ≤ dist (tx+ wε,K) + dist (w − wε,K)

≤ dist (tx+ wε,K) + ε,

where the last inequality follows from the fact that 0 ∈ K, so dist (w − wε,K) ≤
dist (w−wε, 0). However, since tεx+wε ∈ K, we must have limt→+∞ dist (tx+wε,K) =
0, since for t sufficiently large we have tx+wε ∈ K. It follows that limt→+∞ dist (tx+
w,K) ≤ ε. Since ε is arbitrary, we conclude that ix. must hold.

2.2 Feasibility statuses and Slater’s condition

We can separate (D) in four different feasibility classes:

1. strongly feasible: if there is y ∈ Rm such that c−A>y ∈ riK;

2. weakly feasible: if (D) is feasible but (c− rangeA>) ∩ riK = ∅;

3. weakly infeasible: if (c − rangeA>) ∩ K = ∅, but the Euclidean distance between
c− rangeA> and K satisfies dist (c− rangeA>,K) = 0;

4. strongly infeasible: if dist (c− rangeA>,K) > 0.

Note that (P) admits analogous definitions, with the affine space V = {x ∈ E | Ax = b} in
place of c− rangeA>. By convention, if V = ∅ then (P) is strongly infeasible. Sometimes
we will group 2. and 3. together and say that a problem is in weak status if it is either
weakly infeasible or weakly feasible.

Using separation theorems, we can characterize not strong feasibility as follows, see
also Lemma 3.2 in [89].

Proposition 2.6. i. (D) is not strongly feasible if and only if there is x ∈ kerA ∩ K∗
such that one of the following two conditions is true: i) x 6∈ K⊥ and 〈c, x〉 = 0; ii)
〈c, x〉 < 0.

ii. Suppose that there exists some x̂ (not necessarily feasible) such that Ax̂ = b. (P) is
not strongly feasible if and only if there exists y ∈ Rm with s = −A>y ∈ K such that
one of the two conditions is true: i) s 6∈ linK and 〈b, y〉 = 0; ii) 〈b, y〉 > 0.

Proof. i. If ii) holds, (D) must be infeasible, so in particular, it is not strongly feasible.
If i) holds and y is a dual feasible solution, then 〈x, c − A>y〉 = 〈x, c〉 = 0. Since
x 6∈ K⊥, we have that c−A>y 6∈ riK, by item vi. of Lemma 2.5.

Now, suppose that (D) is not strongly feasible, this means that riK∩FSD = ∅, which
holds if and only if the nonempty polyhedral set C = {x | Ax = b} and K can be
properly separated. Proper separation implies the existence of a nonzero x ∈ E and
γ ∈ R such that

〈x, c−A>y〉 ≤ γ ≤ 〈x, k〉, (2.1)

for every y ∈ Rm and k ∈ K. The only way (2.1) can hold is if x ∈ K∗ ∩ kerA and
γ ≤ 0. Moreover, the fact that C is polyhedral and Theorem 2.2 imply that we can
also assume that K is not contained in the hyperplane {z | 〈x, z〉 = γ}. We then have
two cases. If 〈x, c〉 = 0, then γ = 0, which implies that x 6∈ K⊥, in order for the
separation to be proper. This implies that i) holds. On the other hand, if 〈x, c〉 < 0,
then ii) holds.
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ii. The dual proof is analogous. The condition riK∗ ∩ FP = ∅ holds if and only if the
polyhedral set C = {x ∈ E | Ax = b} and K∗ can be properly separated. This implies
the existence of s such that s ∈ (kerA)⊥ and s ∈ K∗∗. This implies that s = −A>y
for some y ∈ Rm. Moreover, we must have either: i) s 6∈ K∗⊥ and 〈b, y〉 = 0; or ii)
〈b, y〉 > 0. We also recall that K∗∗ = K and K∗⊥ = linK,

We can also characterize strong infeasibility as follows, see also Lemma 5 in [55].

Proposition 2.7. i. The primal (P) is strongly infeasible if and only if there is no
solution to the linear system Ax = b or if there exists y such that

〈b, y〉 = 1 and −A>y ∈ K. (2.2)

ii. The dual (D) is strongly infeasible if and only if there exists x such that

〈c, x〉 = −1 and Ax = 0 and x ∈ K∗ (2.3)

Proof. i. (⇐) if there is no solution to the linear system Ax = b then, by definition,
(P) is strongly infeasible. On the other hand, if there exists y satisfying (2.2) and
x is a primal feasible solution then 1 = 〈b, y〉 = 〈Ax, y〉 = 〈x,A>y〉 < 0, which is
a contradiction. Therefore, (P) must be infeasible. Note also that any x satisfying
Ax = b also satisfies 〈x,A>y〉 = 1. Therefore, if (P) were not strongly infeasible,
there would be a sequence of {xk} satisfying Axk = b and a corresponding sequence
{zk} ⊆ K∗ such that limk→+∞ dist (xk, zk) = 0. However, continuity would imply
that 〈zk,A>y〉 > 0 for k large enough, which is impossible since −A>y ∈ K.

(⇒) Let V = {x ∈ E | Ax = b}. Strong infeasibility means that either V = ∅ or
dist (V,K∗) > 0 but V 6= ∅. If the former holds, we are done. Suppose that the latter
holds. Then, by Theorem 2.3, V and K can be strongly separated. So, there is an
s ∈ E and a hyperplane H = {x ∈ E | 〈x, s〉 = λ} such that V and K∗ belong to
opposite closed half-spaces and both of them lie at a positive distance from H. In
other words, there are λ1 and λ2 such that:

〈s, x〉 ≤ λ1 < λ2 ≤ 〈s, z〉,

for all x ∈ V and all z ∈ K∗. As in the proof of Proposition 2.6, in order for the
inequalities above to hold, we must have s ∈ K∗∗ = K, s ∈ (kerA)> and λ2 ≤ 0.
It follows that there exists y such that s = −A>y and 〈s, x〉 = −〈y, b〉 < λ1 < 0.
Therefore, we can multiply y by some constant in order to ensure that 〈y, b〉 = 1.

ii. The proof is analogous to the previous item.

We recall the following basic constraint qualification.

Proposition 2.8 (Slater). i. If there exists x ∈ riK∗∩FP , then θP = θD. In addition,
if θP > −∞ holds as well then the dual optimal value is attained.

ii. If there exists s ∈ FSD ∩ riK, then θP = θD. In addition, if θD < +∞ holds as well,
the primal optimal value is attained.

Suppose that x and y are optimal solutions for (P) and (D) and that there is no duality
gap. Let s be the corresponding optimal slack c−A>y. Then the equation 〈x, s〉 = 0 holds.
This implies that x ∈ F(s,K)∆ and s ∈ F(x,K∗)∆ We have then competing definitions
of strict complementarity. The next proposition shows the relation between them. Recall
that a face of a cone K is exposed if it arises as the intersection of a supporting hyperplane
of K and the cone itself. Then, a cone is said to be facially exposed if every face is exposed.
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Proposition 2.9. Let s ∈ K and x ∈ K∗. Consider the following statements:

i. (a) F(s,K)∆ = F(x,K∗);
(b) F(s,K) = F(x,K∗)∆.

(Pataki [63], see Remark 3.6 therein).

ii. (a) there exists a face F ⊆ K such that s ∈ riF and x ∈ riF∆;

(b) there exists face F̂ ⊆ K∗ such that x ∈ ri F̂ and s ∈ ri F̂∆.

(see Section 2 in Tunçel and Wolkowicz [86]);

iii. (a) x ∈ riF(s,K)∆;

(b) s ∈ riF(x,K∗)∆.

Items i.(a), ii.(a), iii.(a) are equivalent. Items i.(b), ii.(b), iii.(b) are also equivalent. If K
and K∗ are facially exposed, then iii.(a) and iii.(b) are also equivalent.

Proof. We will only prove one set of equivalences since the other has a similar proof.
(i.(a)⇒ ii.(a)) Suppose that F(s,K)∆ = F(x,K∗) holds. Take F = F(s,K) and recall

that the minimal face which contains a point x is characterized by the fact that x belongs
to the relative interior of that face. Then, we must have x ∈ riF(x,K∗), which implies
x ∈ riF∆.

(ii.(a)⇒ iii.(a)) We have F(s,K) = F , so that x ∈ riF(s,K)∆.
(iii.(a) ⇒ i.(a)) Suppose x ∈ riF(s,K)∆. Because F(s,K)∆ is a face of K∗, we have

F(s,K)∆ = F(x,K∗).
(iii.(a) ⇔ iii.(b), under facial exposedness) Suppose that both K and K∗ are facially

exposed. Then F(s,K)∆ = F(x,K∗) implies F(s,K)∆∆ = F(x,K∗)∆. Since K is facially
exposed, we have F(s,K) = F(s,K)∆∆. If the second alternative holds, we have that
facial exposedness of K∗ implies F(x,K∗)∆∆ = F(x,K∗) = F(s,K).

If items i.(a), ii.(a), iii.(a) hold, then the pair (x, s) is said to be primal strict com-
plementary. If i.(b), ii.(b), iii.(b) hold, then we have dual strict complementarity. This
distinction only matters when K or K∗ is not facially exposed. We remark that when
K = Rn+, the notion of strict complementarity above is equivalent to x + s > 0. When
K = Sn+, it is equivalent to x+s being positive definite. More generally, if K is a symmetric
cone, then strict complementarity is equivalent to x+ s ∈ riK.

2.3 Facial structure of the positive semidefinite cone and
the Lorentz cone

When E is the space of n × n symmetric matrices Sn and Sn+ ⊆ E is the cone of positive
semidefinite matrices Sn+, (D) is called a semidefinite program. A good thing about Sn+
is that its faces are very well understood. In particular, there is a correspondence be-
tween subspaces of Rn and faces of Sn+. Moreover, each face looks like a smaller positive
semidefinite cone.

Proposition 2.10. Let F be a nonempty face of Sn+. Then:

i. For all x ∈ riF and y ∈ F , we have kerx ⊆ ker y.

ii. There exists r ≤ n and an orthogonal n× n matrix q such that

q>Fq =

{(
a 0
0 0

)
| a ∈ Sr+

}
(2.4)
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Proof. i. Since x is a relative interior feasible point, by item v. of Lemma 2.5, there is
α > 1 such that z = αx+(1−α)y ∈ F . Let d ∈ kerx. Then, 〈zd, d〉 = (1−α)〈yd, d〉 ≤
0. However, z is positive semidefinite, so we must have 〈yd, d〉 = 0 which implies
d ∈ ker y.

ii. Let x ∈ riF and r = n− dim kerx. Let q be an orthogonal matrix such that the last
dim kerx columns span the kernel of x. Using the previous item and the fact that the
matrices in F are positive semidefinite, it is possible to conclude that Equation (2.4)
holds.

It follows that if F is a nonempty face, the rank of the elements in its relative interior
is constant and they share the same kernel. We will call this quantity the rank of F . Using
the fact that q is orthogonal, we have that the dual of F satisfies

q>F∗q = (q>Fq)∗ =

{(
a b
b d

)
∈ Sn | a ∈ Sr+

}
. (2.5)

We now turn our attention to the case where E = Rn and K = Qn. We need some extra
notation. For d ∈ Rn, we define the closed half-space Hn

d = {x ∈ Rn | d>x ≥ 0} and the
ray h n

d = {αd ∈ Rn | α ≥ 0}. We also write x = (x0, . . . , xn−1) for the components of x.
We use the notation x to denote the last (n−1) components of x, i.e., x = (x1, . . . , x(n−1)).
The Lorentz cone in Rn is denoted by Qn, i.e., Qn = {x ∈ Rn | x0 ≥ ‖x‖}, where ‖·‖ is
the usual Euclidean norm. We remark that Q1 = {x ∈ R | x ≥ 0}, so the non-negative
orthant in Rn can be written as a direct product of one-dimensional Lorentz cones. If
x ∈ Qn, we write x′ for the reflection of x with respect to Qn, i.e., x′ = (x0,−x).

If F is a face of Qn, then either F = {0}, F = Qn or F = h n
d , for d a nonzero point

in the boundary of Qn. This can be seen by observing that Qn is the cone generated by
the set 1× C, where C = {x1, . . . , xn−1 | ‖(x1, . . . , xn−1)‖ = 1}.

2.4 Examples of nasty problems

We will now give a few examples of nasty problems. More examples can be found in the
work by Luo, Sturm and Zhang [55]. Our first example is a weakly infeasible problem.

sup
t,s

0 (SOCP-WI)

subject to

tt
s

×
ss

1

 ∈ Q3 ×Q3.

This problem is clearly infeasible, however, it might not be immediately obvious that it
is weakly infeasible. To see that, first observe that as s → +∞ the difference between s
and
√
s2 + 1 decreases so the point (s, s, 1) approaches the Lorentz cone. More explicitly,

for any given ε > 0, if s ≥ 1
4ε then zε = (s+ ε, s− ε, 1) lies in the Lorentz cone. For such

an s, we have dist ((s, s, 1),Q3) ≤ ε
√

2. The same argument shows that if t is sufficiently
large, say t > s

4ε , then dist ((t, t, s),Q3) ≤ ε
√

2 as well. This shows that by appropriately
increasing s and t we can make (t, t, s) × (s, s, 1) as close as we want to Q3 × Q3. Note
that this does not generate an accumulation point, since the norm of the point goes to
infinity as it approaches the cone. In Section 4.4.1, we will revisit this example and prove
through other means that this problem is weakly infeasible.
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We also have an example of a weakly infeasible SDP.

sup
t,s

0 (SDP-WI)

subject to

t 1 s
1 s 1
s 1 0

 ∈ S3
+.

If we let s sufficiently large then the minimum eigenvalue of the lower 2× 2 matrix gets
very close to zero. This will make the (1, 3) and (3, 1) elements large. But we can let t
much larger than s. Then, the minimum eigenvalue of the submatrix ( t ss 0 ) is close to zero.
Intuitively, this neutralize the effect of big off-diagonal elements, and we obtain points
arbitrarily close to S3

+, by taking s to be large and t to be much larger than s. We will
also revisit this example in Section 4.3.3.

Closely related to weakly infeasible problems are problems with unattained finite op-
tima, as in the next example.

sup
t,s

− s (SDP-UN)

subject to

(
t 1
1 s

)
∈ S2

+.

Clearly, the optimal value is 0 but as s goes to 0, in order to keep the matrix positive
semidefinite we have to take t very large. So, in this example, the optimal value is not
attained. Note that this is problem is relatively well-behaved, since it has an interior
point. However, the corresponding primal problem is not strongly feasible and this is a
source of trouble.

The following problem has a nonzero duality gap.

sup
t,s

− s (GAP-D)

subject to

 t 1 s− 1
1 s 0

s− 1 0 0

 ∈ S3
+

inf
x

2x12 − 2x13 (GAP-P)

subject to x11 = 0

− x22 − 2x13 = −1

x ∈ S3
+.

In order for a matrix in the dual problem be feasible, we must impose s = 1. So θD = 1.
On the other hand, for a matrix in the primal problem be feasible, we must have x11 = 0
which implies that x12 = x13 = 0. Therefore, θP = 0. So there is a duality gap between
(GAP-D) and (GAP-P).

To end this section, we include a particularly nasty example. This is a problem that
has a duality gap and is not attained at both sides.
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sup
y∈R8

− y4 − 2y6 − 2y7 (NASTY-D)

subject to



y1 y3 − 1
y1 y5 − 1

y2 y3

y3 y4 − y5

0 y6 y7

y6 y4 −0.5y8 + 0.5
y7 −0.5y8 + 0.5 y8

y3 − 1 y5 − 1 0


∈ S8

+

inf
x

− 2x18 − 2x28 + x67 (NASTY-P)

subject to − x11 − x22 = 0

− x33 = 0

− 2x18 − 2x34 = 0

− x44 − x66 = −1

− 2x28 + x44 = 0

− 2x56 = −2

− 2x57 = −2

x67 − x77 = 0

x ∈ S8
+.

Note that the dual optimal value satisfies θD = −1. This is because the (8, 8) entry is 0,
which forces y3 = y5 = 1. Moreover, the (5, 5) entry is zero too, which forces y6 = y7 = 0.
Now, for feasible y, we have y4 − y5 = y4 − 1 ≥ 0, due to the fact that the (4, 4) entry
must be nonnegative. In addition, y8 ≥ 0, for a similar reason. It follows that θD ≤ −1.
However, for every ε > 0, yε = (0, 1/ε, 1, 1 + ε, 1, 0, 0, 0) is a feasible point that has value
equal to −1 − ε. This shows that θD = −1. However, θD is not attained because for
feasible y, we have y4 > 1.

The primal optimal value is zero. This is because the first and the second constraints,
force x11 = x22 = x33 = 0, which implies that x18 = x28 = 0. Then, the fifth constraint
implies that x44 = 0. Therefore, x66 = 1 by the fourth constraint. The last constraint
forces x67 = x77, which implies that θP ≥ 0. Note that because x57 = 1, we can never
assign zero to x77. However, if x77 is small but positive, we can construct feasible points
by taking x55 very large, x67 = x77, x56 = x57 = x66 = 1 and all the other entries equal to
zero. This shows that θP = 0 but is not attained.

We tried to solve the pair (NASTY-D) and (NASTY-P) with SeDuMi [78], SDPA
[28], SDPT3 [84] and PENLAB [24]. Note that we have no hope that these solvers will
be able to handle correctly the problem, since it does not satisfy any of the regularity
assumptions that are usually required. Nevertheless, we were curious to see how good
were the indicators that something could be wrong. First of all, we tried PENLAB, but
it exceeds the maximum number of outer iterations, which by default is 100.

SeDuMi took 30 iterations before stopping and declaring that the duality gap was
6.28E-17. Moreover, the flag info.numerr was set to 0, which indicates that SeDuMi
believes the solutions obtained were accurate. No particular error message is given, but
there are a few signs that something could be amiss. The indicador info.feasratio was
close to zero, which suggests that there could be some kind of ill-behavior. The final ob-
jective values obtained were -7.8962602692e-01 and -7.0148515512e-01 for the primal
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and dual problems, respectively. This somewhat contradicts the duality gap indicators.
So, although SeDuMi did not explicitly give an error, the user might figure that something
is strange by taking a look at these anormalities.

SDPT3 took 70 iterations before stopping and declaring that the duality gap was
2.31e-08. The termination code was zero, which is successful termination. The primal
objective value was -1.00000005e00+ and the dual objective value was -9.99999946e-01.
So the latter was very close to the correct answer, while the former was completely wrong.
The output of SDPT3 was consistent with what one would expect under normal circum-
stances and the only information that helps the user to identify that something could be
wrong is the fact that the solutions have large norm and the relatively high number of
iterations.

When formulating the problem for SDPA, we used a slightly different formulation where
(NASTY-D) is maximization problem and (NASTY-P) is a minimization problem. In this
case, we should have θD = 1 and θP = 0. However, the output of SDPA indicated that the
problem has a gap of -5.7955238234042028e-06. The primal and dual objective values
were 9.9998558253126402e-01 and 9.9999137805508742e-01, respectively. SDPA stops
with status pdfINF which is an abnormal stopping code. Looking at the manual [28] for
the meaning of pdfINF, we found out that this means that at least one of (NASTY-D)
and (NASTY-P) is expected to be infeasible, which is not the case here. However, at page
18, they also give the precise meaning of pdfINF which seems to suggest that the more
accurate interpretation of pdfINF is that “optimal solutions affording zero duality gap
must have large norms”, which is a technically accurate statement for this case, although
it does not pinpoint the fact that the problem actually has a duality gap.

It would be very surprising if the solvers were able to detect the presence of duality
gap so, of course, there was no such expectation. However, it is worrisome that the solvers
are failing in opaque ways, without a clear indication that something is wrong. So it seems
that the construction of robust SDP solvers is still an open issue.
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Chapter 3

Facial Reduction

Facial reduction was originally developed by Borwein and Wolkowicz [12, 13] as a technique
to regularize convex programs. The original setting in their approach was fairly general
since they dealt with minimizing an arbitrary convex function subject to convex-cone
constraints.

Interest in the technique seems to have increased after the ‘90s, and it followed the
surge in popularity of conic programming. A key work of that period was the article “An
Exact duality Theory for Semidefinite Programming and its Complexity Implications” by
Ramana [72]. As the name indicates, Ramana proposed a new dual for SDPs which was the
different from the usual Lagrangian dual and corrected many of its flaws. In our notation,
Ramana’s dual is a substitute for the problem (P) and has the following features: i. it
always affords zero duality gap without assuming any constraint qualifications; ii. if θD is
finite then Ramana’s dual is attained; iii. it can be written as an SDP with polynomially
many constraints and it could be written down explicitly in terms of the original problem
data.

Later, a paper by Ramana, Tunçel and Wolkowickz [73] clarified that there was a
strong connection between Ramana’s dual and Facial Reduction. Ramana’s dual seems to
express implicitly the equations and constraints associated to performing facial reduction
and due to a few clever tricks, they are casted as semidefinite constraints.

Pataki wrote a technical report [64] where he gave a simplified description of facial
reduction for a class of cones known as nice cones. Moreover, he also showed how to
construct extended duals for nice cones that share similar properties with Ramana’s dual.
One caveat is that Pataki’s approach for extended duality might produce an extended
dual that might leave the problem class in question. For instance, if we apply Pataki’s
approach to a second order cone program, it is not currently known whether the resulting
dual problem can be expressed via second order constraints. Later on, Pataki updated his
report [66].

Waki and Muramatsu [89] also gave a description of a facial reduction procedure and
removed the niceness assumption. Moreover, their approach can also detect infeasibility.
They also showed a few applications for the SDP case. Cheung, Schurr and Wolkowicz
discuss a facial reduction algorithm for SDPs in [16] and they developed an algorithm that
is backward stable.

There is also the Conic Expansion Approach (CEA), due to Luo, Sturm and Zhang
[55], which can be seen as a dual version of the facial reduction algorithm. Waki and
Muramatsu discuss in detail the connection between conic expansion and facial reduction
in section 4 of [89].

In this chapter, we will first review the basic facial reduction technique and then we
will discuss some of our contributions. First of all, we show how facial reduction can be
carried out by solving problems that are ensured to be both primal and dual strongly
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feasible, see problems (PK) and (DK) below. This is important because Facial Reduction
requires solutions to certain auxiliary problems. If those problems were also ill behaved,
it would be harder to justify applying the technique, since we would be substituting a
bad problem for a sequence of, perhaps, equally bad problems. We remark that this issue
seldom appears in literature. One of the exceptions is [16], but their approach is only for
SDPs.

Afterwards, we discuss versions of classical theorems for the case where there is partial
polyhedrality. In particular, we prove partial polyhedral versions of the Gordan-Stiemke
theorem, a proper separation theorem and a closedness result.

These results are then used to develop FRA-poly, which is a facial reduction algorithm
divided in two phases that takes into account the presence of polyhedrality in the lattice
of faces of K. We will show that, under mild conditions, FRA-poly requires less iterations
than the classical FRA. Key to the analysis of FRA and surrounding theoretical points
are the notions of distance to polyhedrality (Definition 3.20) and distance to strong duality
(Definition 3.26), which are also novel concepts. We will also discuss an example of a
mixed second order cone program/semidefinite program that achieves the worst possible
case for facial reduction. Finally, we will show how FRA-poly can be used to show that
the singularity degree of problems over the doubly nonnegative cone is at most n.

3.1 The basic technique

Here, we will suppose that our main interest is in the dual problem (D). The idea is that
if (D) is feasible but not strongly feasible, then substituting K by the minimal face FDmin

of K containing FSD is enough to restore strong feasibility, due to Proposition 2.4. In that
case, we reformulate the problem over FDmin and K∗ is also changed to (FDmin)∗. Therefore,
the primal feasible region might get larger. The meaning of that is that we are closing the
duality gap by making the primal optimal value reach the dual optimal value.

To algorithmically find FDmin, we proceed as follows. Whenever (D) lacks a relative
interior solution, we may reformulate (D) over a lower dimensional face of K. The basis for
this idea is contained in Proposition 2.6: the absence of a dual relative interior solution is
equivalent to the existence of an x satisfying 〈c, x〉 ≤ 0 and x ∈ kerA ∩ K∗. There are then
two possibilities. The first is 〈c, x〉 = 0 and x 6∈ K⊥, in which case FSD ⊆ K ∩ {x}⊥ ( K,
because 〈c, x〉 = 〈c − A>y, x〉 = 0, for all y ∈ FD . Note that F2 = K ∩ {x}⊥ is a proper
face of K, since x 6∈ K⊥. The second alternative is 〈c, x〉 < 0, in which case (D) is infeasible
and we can stop.

If the first alternative holds, we can then reformulate (D) as a problem over F2, i.e.,
we consider the problem sup{〈b, y〉 | c − A>y ∈ F2}. It is clear that as long as (riF2) ∩
(FSD ) = ∅, we can repeat this process and either descend to a smaller face of K or declare
infeasibility. After a few iterations, we will end with either some face F` such that (riF`)∩
FSD 6= ∅ or we will eventually find out that the problem is infeasible, in this case F` = ∅.
Note that F` must be the smallest face of K which contains FSD , which we will denote by
FDmin. This process is called facial reduction and it aims at finding FDmin. We write below
a generic facial reduction algorithm similar to the one described in [89].

[Generic Facial Reduction]
Input: (D)
Output: A set of reducing directions {d1, . . . , d`} and FDmin.

1) F1 ← K, i← 1

2) Let di be an element in F∗i ∩ kerA such that either: i)di 6∈ F⊥i and 〈c, di〉 = 0; or
ii)〈c, di〉 < 0. If no such di exists, let FDmin ← Fi and stop.

3) If 〈c, di〉 < 0, let FDmin ← ∅ and stop.
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4) If 〈c, di〉 = 0, let Fi+1 ← Fi ∩ {di}⊥, i← i+ 1 and return to 2).

Facial reduction is a very powerful procedure and it can be used to solve feasibility
problems over arbitrary closed convex cones. The main difficulty is, of course, finding
the di. Henceforth, we will call the points {d1, . . . , d`} reducing directions. There is some
degree of freedom on the choice of di. However, as we need to solve a conic feasibility
problem in order to obtain the reducing directions, it seems that searching for the di could
be, in principle, as hard as solving the original problem itself.

However, one important difference is that we can always search for the di by using
a pair of well-behaved problems that are always strongly feasible, so they are ensured
to not suffer from the same problems that (D) might have. We remark that in [16],
Cheung, Schurr and Wolkowicz also discuss an auxiliary problem that is primal and dual
strongly feasible, see the problem (AP ) therein. However, their approach is for SDPs
and (AP ) uses an additional second order cone constraint. Because of that, (AP ) is not
readily generalizable to other families of cones that are not able to express those kinds of
constraints.

Consider the following pair of problems, which first appeared in [49].

minimize
x,t,w

t (PK)

subject to − 〈c, x− te∗〉+ t− w = 0 (3.1)

〈e, x〉+ w = 1 (3.2)

Ax− tAe∗ = 0

(x, t, w) ∈ K∗ × R+ × R+

maximize
y1,y2,y3

y2 (DK)

subject to cy1 − ey2 −A>y3 ∈ K (3.3)

1− y1(1 + 〈c, e∗〉) + 〈e∗,A>y3〉 ≥ 0 (3.4)

y1 − y2 ≥ 0 (3.5)

The pair (PK) and (DK) are parametrized by A, c, K and by fixed elements e ∈ K and
e∗ ∈ K∗. We have the following lemma, which suggests a good choice of parameters e and
e∗.

Lemma 3.1. Consider the pair (PK) and (DK) with e and e∗ such that e ∈ riK and
e∗ ∈ riK∗. The following properties hold.

i. Both (PK) and (DK) have relative interior feasible points.

ii. Let (x∗, t∗, w∗) be a primal optimal solution. The optimal value is zero if and only
if FDmin ( K. Moreover, if the optimal value is zero, we have 〈c, x∗〉 < 0 and FSD =
FDmin = ∅, or 〈c, x∗〉 = 0 and FSD ⊆ K ∩ {x∗}⊥ ( K.

iii. Let (y∗1, y
∗
2, y
∗
3) be a dual optimal solution. If the common optimal value is nonzero,

then FDmin = K and s = c−A>y
∗
3
y∗1

is a dual optimal solution satisfying s ∈ (riFSD )∩riK.

Proof. i. Let t = 1
〈e,e∗〉+1 , w = 1

〈e,e∗〉+1 and x = e∗

〈e,e∗〉+1 . Then (x, t, w) is an interior

solution to (PK). To show that (DK) has a relative interior solution, we use just
observe that (0,−1, 0) is a dual feasible solution which corresponds to relative interior
slack.
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ii. Now, let (x∗, t∗, w∗) be a primal optimal solution. If t∗ = 0, then x∗ ∈ kerA ∩ F∗
and Equation (3.1) implies that 〈c, x∗〉 ≤ 0. If y is a dual feasible solution for (D),
we have c−A>y ∈ F , so that 〈c−A>y, x∗〉 = 〈c, x∗〉 ≤ 0. If 〈c, x∗〉 < 0, then it must
be the case that FSD = ∅. If 〈c, x∗〉 = 0, then c−A>y ∈ {x∗}⊥. Moreover, Equation
(3.1) implies that w∗ = 0 as well. Using Equation (3.2), we obtain 〈e, x∗〉 = 1. In
view of the fact that e ∈ F , it must be the case that F ∩ {x∗}⊥ ( F . In either case
we have FDmin ( F .

Reciprocally, if FDmin ( F , item i. of Proposition 2.6 shows that there exists some
x ∈ F∗ ∩ kerA such that either: i) 〈c, x〉 = 0 and x 6∈ F⊥ or ii) 〈c, x〉 < 0. Suppose
first that i) holds, then the condition x 6∈ F⊥ readily implies that 〈e, x〉 > 0, by item
vi. of Lemma 2.5. So let α = 1

〈e,x〉 . Then (xα, 0, 0) is an optimal solution for (PK),

which shows that the optimal value is zero. Now suppose that ii) holds. We take
α = 1

〈e,x〉−〈c,x〉 and this is well-defined because −〈c, x〉 > 0. Then (xα, 0,−α〈c, x〉) is

an optimal solution for (PK), which also shows that the optimal value is zero

iii. If the common optimal value is nonzero, we must have y∗2 > 0 and ey∗2 ∈ riF .
This fact, together with Equation (3.3) and item iv. of Lemma 2.5, implies that
cy∗1−A>y∗3 ∈ riF as well. Finally, y∗1 ≥ y∗2 > 0, by Equation (3.5). Using Proposition

2.4, we can then conclude that c−A>y
∗
3
y∗1
∈ riFSD as claimed.

Lemma 3.1 shows how to implement one step of facial reduction. In case the optimal
value of (PK) is zero, we have two scenarios. In the first, we have 〈c, x∗〉 < 0, we can
then stop the procedure and declare that (D) is infeasible. In the second, the dual feasible
region is contained in the face F̂ = F ∩ {x∗}⊥ and we have F̂ ( F .

We may then reformulate (D) as a problem in a lower-dimensional space and apply
Lemma 3.1 again. We will then stop either at the minimal face FDmin or find out that FSD
is actually empty. When facial reduction finally stops, we have one more pleasant surprise:
item iii. of Lemma 3.1 shows that we can extract a relative interior solution from the dual
problem (DK).

We write below a FRA variant, which was first described in [49] for SDPs.
[Facial Reduction]

Input: (D)
Output: FDmin and s ∈ riFSD (if FDmin 6= ∅), or a certificate of infeasibility (if FDmin = ∅)

1) F1 ← K, i← 1

2) Solve (PK) and (DK) with Fi in place of Ki to obtain primal dual pairs of optimal
solutions (x∗, t∗, w∗) and (y∗1, y

∗
2, y
∗
3).

3) If t∗ = 0 and 〈c, x∗〉 < 0, let FDmin ← ∅ and stop. (D) is infeasible.

4) If t∗ = 0 and 〈c, x∗〉 = 0, let di ← x∗,Fi+1 ← Fi ∩ {di}⊥, i← i+ 1 and return to 2).

5) If t∗ > 0, let FDmin ← Fi, s← c−A>y
∗
3
y∗1

and stop.

In order to describe the number of iterations needed in the worst case, we need the
following definition. In what follows, if we have a chain of faces F1 ( . . . ( F`, the length
of the chain is defined to be `.

Definition 3.2 (Longest chain of faces). Let K be a closed convex cone, we will denote
by `K the length of the longest chain of strictly ascending nonempty faces of K.

We then have the following complexity results.
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Proposition 3.3. i. If (D) is feasible, the Generic Facial Reduction algorithm stops at
finding at most min{`K − 1,dim (kerA ∩ {c}⊥)} reducing directions.

ii. If (D) is infeasible, the Generic Facial Reduction algorithm stops at finding at most
min{`K − 1,dim (kerA ∩ {c}⊥)}+ 1 reducing directions.

Proof. i. If the problem is feasible, the algorithm will always hit the condition di ∈
Fi \ F⊥i , which implies that the chain of faces obtained K ⊇ F2 . . . ⊆ F` is such that
every inclusion is strict. As the longest chain of faces has length `K, we cannot obtain
more than `K − 1 directions.

In this case, it can be shown that all the directions are linearly independent. This is
because if di is in the span of the the first i − 1 directions, then K ∩ {d1}⊥ ∩ . . . ∩
{di−1}⊥ = K ∩ {d1}⊥ ∩ . . . ∩ {di−1}⊥ ∩ {di}⊥, which would contradict the fact that
the chain of faces is strict.

Because all directions are contained in kerA ∩ {c}⊥, we cannot obtain more than
dim (kerA ∩ {c}⊥) as well.

ii. If (D) is infeasible, then at some iteration ` the algorithm will hit Step 3 and stop.
However, at all iterations up to ` − 1 it holds true that di 6∈ F⊥i and 〈c, di〉 = 0.
Therefore the first `− 1 directions define a strictly descending chain of faces of K, so
`− 1 ≤ `K − 1. Moreover, as in item i., they must linearly independent and must be
contained in kerA ∩ {c}⊥. So we also have the bound `− 1 ≤ dim (kerA ∩ {c}⊥).

As the facial reduction algorithm described in this section is a particular case of the
generic version using the auxiliary problems (PK) and (DK), it is also subject to the same
bounds. Of course, not all problems will require the maximum amount of steps.

We define the singularity degree d(D) of (D) as the minimum number of facial reduction
steps needed to find FDmin. No matter the facial reduction strategy used, one must identify
at least d(D) directions before FDmin is reachable.

Definition 3.4 (Singularity degree). Consider the set of possible outputs {d1, . . . , d`} of
the Generic Facial Reduction. The singularity degree of (D) is the minimum ` among
all the possible outputs and is denoted by d(D). Similarly, we will denote the singularity
degree of (P) by d(P ).

As far as we know, the expression “singularity degree” in this context is due to Sturm in
[79], where he showed the connection between the singularity degree of a positive semidef-
inite program and a Hölderian error bound. In the recent work by Liu and Pataki [44],
there is also a definition of singularity degree for general linear conic problems, see Defini-
tion 6 therein. One difference, however, is that Liu and Pataki only define the singularity
degree for feasible problems and, indeed, when (D) is feasible, their definition matches
with Definition 3.4.

3.2 Partial Polyhedrality Theorems

In Rockafellar’s classic book [75], among its many notable chapters there is one on “Ap-
plications of Polyhedral Convexity”. Many classical results are proved under weaker con-
ditions if some of the objects involved are polyhedral. Borwein and Lewis also includes a
discussion of the mixed Fenchel Duality Theorem in Section 5.1 of [11]. As far as we could
dig in the literature, there does not seem to be many papers that deal with this subject
apart from the ones by Klee such as [39], which is referenced in Rockafellar’s book.
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The results in this section have a similar flavour. They will be used in Section 3.3 in
our discussion of FRA-Poly. Before we proceed, we need the following special version of
Slater’s condition which takes into account partial polyhedrality. As we could not find a
precise reference for it, we will prove it. It can also be proved by invoking in an appropriate
manner a version of Fenchel’s duality theorem that takes into account polyhedrality, such
as Theorem 31.1 in [75] or Corollary 5.1.9 in [11]. First, we need the following definition.

Definition 3.5 (Partial Polyhedral Slater’s condition). Let K = K1 × K2, where K1 ⊆
Rn1 ,K2 ⊆ Rn2 are closed convex cones such that K2 is polyhedral. We say that (D) satisfies
the Partial Polyhedral Slater’s (PPS) condition if there is a slack (s1, s2) = c−A>y, such
that s1 ∈ riK1 and s2 ∈ K2. Similarly, we say that (P) satisfies the PPS condition, if
there is a primal feasible point x = (x1, x2) for which x1 ∈ ri (K1)∗.

Let f : Rn → R ∪ {−∞,+∞} be a convex function. We denote the domain of f by
dom f = {x ∈ Rn | f(x) < ∞}. If dom f is not empty and f is never −∞, then f is said
to be proper. Its conjugate will be denoted by f∗ and it satisfies f∗(s) = supx〈s, x〉−f(x).
If the epigraph of f is a polyhedral set, then f is said to be a polyhedral function. We
need to recall the following theorem on infimal convolution.

Theorem 3.6 (Rockafellar). Let f1, . . . fm be proper convex functions and let fk+1, . . . , fm
be polyhedral functions. Suppose also that

ri (dom f1) ∩ . . . ∩ ri (dom fk) ∩ dom fk+1 ∩ . . . ∩ dom fm 6= ∅.

Then the following holds:

(f1 + . . . fm)∗(s) = inf{f∗1 (s1) + . . .+ f∗m(sm) | s1 + . . .+ sm = s},

where for each s the infimum is attained whenever it is finite. In other words, under the
assumptions of the theorem, the conjugate of the sum is equal to the infimal convolution
of the conjugates.

Proof. See Theorem 20.1 of Rockafellar [75].

Proposition 3.7. Let K = K1 ×K2, where K1 ⊆ Rn1 ,K2 ⊆ Rn2 are closed convex cones
such that K2 is polyhedral.

i) If θP is finite and (P) satisfies the PPS condition, then θP = θD and the dual optimal
value is attained.

ii) If θD is finite and (D) satisfies the PPS condition, then θP = θD and the primal
optimal value is attained.

Proof. We will prove i) first. Let f1 be such that f1(x) = 〈c, x〉 if Ax = b and +∞
otherwise. Let f2 be the indicator function of Rn1×(K2)∗ and f3 be the indicator function
of (K1)∗×Rn2 . Since there is a primal feasible solution x = (x1, x2) such that x1 ∈ ri (K1)∗,
we have that dom f1 ∩ dom f2 ∩ ri (dom f3) is non-empty. In addition, f1 and f2 are
polyhedral functions. Let us now observe that:

f∗1 (s) =

{
〈b, y〉 if there is y with s− c = A>y
+∞ otherwise

Note that, due to feasibility, for fixed s, 〈b, y〉 does not depend on the choice of y, as long
as c+A>y = s. This is because if Ax = b, then 〈b, y〉 = 〈x, s− c〉. The conjugate f∗2 is the
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indicator function of −{0} × K2 and f∗3 is the indicator function of −K1 × {0}. Applying
Theorem 3.6 with s = 0, we have:

(f1 + f2 + f3)∗(0) = inf
{
〈b, y〉 | c+A>y = s1, s1 − (0, s2)− (s3, 0) = 0, s2 ∈ K2, s3 ∈ K1

}
= inf

{
〈b, y〉 | c+A>y = s1, s1 ∈ K1 ×K2

}
= − sup

{
〈b, y〉 | c−A>y = s1, s1 ∈ K1 ×K2

}
,

where the sup in the last equation is attained. So, there is some dual feasible y such that
(f1 + f2 + f3)∗(0) = 〈b, y〉. However, using the definition of conjugate, we also have:

(f1 + f2 + f3)∗(0) = − inf{〈c, x〉 | Ax = b, x ∈ K1 ×K2} = −θP .

It follows that θP = θD and the dual is attained at y. To prove ii), let g1 = f∗1 , and let
g2 and g3 be the indicator functions of Rn1 ×K2 and K1 × Rn2 , respectively. Again, it is
enough to compute (g1 + g2 + g3)∗(0) using both the definition of conjugate function and
using Theorem 3.6.

We now prove a version of the Gordan-Stiemke’s Theorem that takes into account
partial polyhedrality. To the best of our knowledge, it is a new result.

Theorem 3.8 (Partial Polyhedral Gordan-Stiemke’s Theorem). Let L be a subspace and
K = K1 ×K2 be a closed convex cone, such that K2 is polyhedral. Then we have:

L ∩ K ⊆ (linK1)×K2 ⇔ L⊥ ∩
(

(riK1∗)× (K2)∗
)
6= ∅.

Proof. The “⇐” implication is straightforward as follows. If s = (s1, s2) belongs to L⊥ ∩(
(riK1∗)× (K2)∗

)
and x = (x1, x2) to L∩K, then we must have 〈x1, s1〉 = 0, which forces

x1 ∈ linK1, since s1 is a relative interior point.
Next, we prove the “⇒” implication. Select a linear map A such that L = kerA. Let

e∗ ∈ (ri (K1∗)) × {0} and e ∈ riK. Now consider the following pair of primal and dual
problems:

minimize
x,t

t (PGS)

subject to 〈e∗, x〉+ t = 1

Ax− tAe = 0

(x, t) ∈ K × R+

maximize
y1,y2

y1 (DGS)

subject to − e∗y1 −A>y2 ∈ K∗

1− y1 + 〈e,A>y2〉 ≥ 0

Taking ( e
〈e∗,e〉+1 ,

1
〈e∗,e〉+1), we see that the primal problem (PGS) has a relative interior

feasible solution. The dual problem (DGS) satisfies the PPS condition and to see that, it
is enough to take y1 = −1 and y2 = 0. This means that both (PGS) and (DGS) attain
the optimal value and duality gap is zero. Let (x∗, t∗) be an optimal solution for (PGS).
If t∗ = 0, then Ax∗ = 0, x∗ ∈ K and 〈e∗, x∗〉 = 1. However, due to our hypothesis,
x∗ ∈ (linK1)×K2, which implies that 〈e∗, x∗〉 = 0, due to items iii. and vi. of Lemma 2.5.
This is a contradiction, so we must have t∗ > 0 instead. Since (DGS) is attained as well,
we have an optimal solution (y∗1, y

∗
2), with y∗1 > 0. Because −e∗y1 −A>y2 ∈ K∗, it readily

follows that −A>y2 ∈ (riK1∗)×K2∗.
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For comparison, we state the classical Gordan-Stiemke’s theorem. Its proof follows
from Theorem 3.8. See also Corollary 2 in Luo, Sturm and Zhang [55].

Theorem 3.9 (Gordan-Stiemke’s Theorem). Let L be a subspace and K be a closed convex
cone. Then we have:

L ∩ K ⊆ linK ⇔ L⊥ ∩ (riK∗) 6= ∅.

We now prove a theorem that dualizes the criteria in Proposition 3.7. But first, we
need a lemma.

Lemma 3.10. Let K = K1 × K2 be a closed convex cone, such that K2 is polyhedral.
Consider the pair (PK) and (DK) with e ∈ (riK1) × {0} and e∗ ∈ riK∗ The following
properties hold.

i. (PK) has a relative interior feasible solution and (DK) satisfies the PPS condition. In
particular, the duality gap is zero and both (DK) and (PK) attain the optimal value.

ii. Let (y1, y2, y3) be a dual feasible solution satisfying y2 > 0. Then, s = c − A>y3y1
satisfies s1 ∈ riK1.

iii. If the optimal value is zero, we have either: a) 〈c, x∗〉 < 0 and FSD = FDmin = ∅, or
b) 〈c, x∗〉 = 0 and FSD ⊆ K ∩ {x∗}⊥ ( K. In the latter case, we have x∗1 6∈ (K1)⊥ =
lin ((K1)∗).

iv. Let (x∗, t∗, w∗) be a primal optimal solution. The optimal value is zero if and only if
the PPS condition is not satisfied for (D).

Proof. i. Let t = 1
〈e,e∗〉+1 , w = 1

〈e,e∗〉+1 and x = e∗

〈e,e∗〉+1 . Then (x, t, w) is a relative

interior solution to (PK). Due to the choice of e, (0,−1, 0) is a dual feasible solution
such that the associated slack ((e, 0), 1, 1) belongs to (riK1)×{0}× riR+× riR+. We
can then invoke Proposition 3.7, which ensures that the duality gap is zero and both
problems are attained.

ii. Recall that for any closed convex cone K we have K + riK = riK. Hence,(
c− y1e+A>y3

y1

)
+ y1e = c−A>y3

y1
∈ (riK1)×K2

due to the choice of e and the fact that y1 > 0.

iii. Suppose that the optimal value is zero and let (x∗, 0, w∗) be a primal optimal solution.
We must have Ax∗ = 0, −〈c, x∗〉 = w∗ ≥ 0 and x∗ ∈ K∗. If 〈c, x∗〉 < 0, then we are
done since this is alternative a). Note that this implies the infeasibility of (D), hence
FDmin = FSD = ∅.
On the other hand, if −〈c, x∗〉 = 0, then equation (3.1) implies w∗ = 0. By equa-
tion (3.2), we have 〈e, x∗〉 = 1, which implies that x∗ = (x∗1, x

∗
2) is such that x∗1 6∈

lin ((K1)∗) = (K1)⊥, see item vi of Lemma 2.5. Therefore, there is at least one ele-
ment v in K for which 〈v, x∗〉 > 0. Hence, K∩ {x∗}⊥ ( K and the inclusion is indeed
strict. Furthermore, since Ax∗ = 0 and 〈c, x∗〉 = 0, we also have FSD ⊆ K ∩ {x∗}⊥.
This is alternative b).

iv. Suppose that the PPS condition is not satisfied. If t∗ > 0, then y∗2 = t∗ > 0 for some
dual optimal solution (y∗1, y

∗
2, y
∗
3), because the duality gap is zero. It follows from item

ii. that the PPS condition is satisfied, which is impossible.

Conversely, if t∗ = 0 and (x∗, 0, w∗) is an optimal solution for (PK), then either a) or
b) of item iii. is satisfied. If a) is satisfied, then (D) is infeasible and we are done. If
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b) is satisfied, then 〈c, x∗〉 = 0, Ax∗ = 0 and x∗1 6∈ (K1)⊥. If (s1, s2) is a feasible slack
for (D), we have 〈s1, x1〉 + 〈s2, x2〉 = 0. As x∗1 6∈ (K1)⊥, we have that s1 6∈ riK1, so
(D) cannot possibly satisfy the PPS condition.

Theorem 3.11. Let c ∈ Rn, L ⊆ Rn be a subspace and K = K1 × K2 be a closed convex
cone, such that K2 is polyhedral. Then (L + c) ∩ ((riK1) × K2) = ∅ if and only if one of
the conditions below holds:

a) there exists x ∈ K∗ ∩ L⊥ such that 〈c, x〉 < 0;

b) there exists x = (x1, x2) ∈ K∗ ∩ L⊥ ∩ {c}⊥ such that x1 6∈ (K1)⊥.

Proof. Select a linear map A such that L = rangeA> and consider the pair of problems
(P) and (D) with this choice of A, b = 0 and c, K as given by the current theorem. Note
that (L+ c) ∩ ((riK1)×K2) = ∅ if and only if the PPS condition is not satisfied for (D).

Consider the pair of problems (PK) and (DK) with e ∈ (riK1) × {0} and e∗ ∈ riK∗.
We are then under the setting of Lemma 3.10. Item iv. ensures that (D) does not satisfy
the PPS condition if and only if the optimal value is zero. And, indeed, if the optimal
value is zero, item iii. implies the existence of x∗ as required by the theorem. The only
thing missing is to show that if there is an x satisfying either a) or b), then the optimal
value of (PK) is zero.

Suppose first that a) holds. We take α = 1
〈e,x〉−〈c,x〉 and this is well-defined because

−〈c, x〉 > 0. Then (xα, 0,−α〈c, x〉) is an optimal solution for (PK), which shows that the
optimal value is zero. Now suppose that b) holds, then the condition x1 6∈ (K1)⊥ implies
that 〈e, x〉 = 〈e1, x1〉 > 0. So let α = 1

〈e,x〉 . Then (xα, 0, 0) is an optimal solution for (PK),
which shows that the optimal value is zero.

We remark that the proof of Theorem 3.11 shows that by invoking (PK) and (DK)
with an appropriate choice of e and e∗, we can either prove (strong) infeasibility or obtain
a point that satisfies alternative b). We note that due to item i. of Lemma 3.10, the pair
(PK), (DK) can be solved by infeasible interior-point methods in the case of semidefinite
and second order cone programming, even though they might fail to be strongly feasible.
This is because the convergence theory relies on the existence of optimal solutions affording
zero duality gap, rather than strong feasibility. See, for instance, item 2. of Theorem 11
in the work by Nesterov, Todd and Ye [60].

Ideally, we would like the condition x1 6∈ (K1)⊥ to hold even if alternative a) holds.
However, if L = Rn ×L2 and c = (0, c2) is such that (L2 + c2)∩K2 = ∅, then any x ∈ L⊥
must have x1 = 0, which implies x1 ∈ (K1)⊥. For comparison, we also state the alternative
theorem for the condition “(L + c) ∩ riK 6= ∅”, which is a consequence of Theorem 3.11.
See also Lemma 3.2 in [89].

Theorem 3.12. Let c ∈ Rn, L be a subspace and K be a closed convex cone. Then
(L+ c) ∩ riK = ∅ if and only if one of the conditions below holds:

a) there exists x ∈ K∗ ∩ L⊥ such that 〈c, x〉 < 0;

b) there exists x ∈ K∗ ∩ L⊥ ∩ {c}⊥ such that x 6∈ lin (K∗).

We remark that the proof of Theorem 3.11 shows that by invoking (PK) and (DK)
with an appropriate choice of e and e∗, we can either prove (strong) infeasibility or obtain
a point that satisfies alternative b).

For completeness we also include here another partial polyhedrality result we obtained
in [50].
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Theorem 3.13. Let C1 and C2 be non-empty convex sets in Rn such that C1 is polyhedral,
C2 is closed. Suppose that

recC1 ∩ −recC2 ⊆ linC2,

where recC = {x ∈ Rn | x+C ⊆ C} is the recession cone of a closed convex set C. Then
C1 + C2 is closed.

Proof. See Theorem 20.3 in [75].

We will show that if C2 is the direct product of a closed convex set and a polyhedral
set, we may weaken the assumptions of the Theorem 3.13.

Proposition 3.14. Let C1 and C2×P be non-empty convex sets in Rn such that C1 and
P are polyhedral, and C2 is closed. Suppose that

recC1 ∩ −(recC2 × recP ) ⊆ linC2 ×−recP. (3.6)

Then C1 + (C2 × P ) is closed.

Proof. We have that C1 + C2 × P = (C1 + {0} × P ) + C2 × {0}. Since C1 and P are
polyhedral sets, (C1 + ({0} × P )) is also polyhedral. We would like to use Theorem 3.13
with (C1 + {0} × P ) and C2 × {0}. For that purpose, we are required to check that

(recC1 + ({0} × recP )) ∩ −(recC2 × {0}) ⊆ linC2 × {0}, (3.7)

because, due to polyhedrality, rec (C1 +({0}×P )) = recC1 +({0}×recP ). Let (x, y) be a
point that belongs to the set at the left-hand side of Equation (3.7), then x ∈ −recC2 and
y = a+p = 0, where p ∈ recP and (x, a) ∈ recC1. It follows that (x, a) ∈ −(recC2×recP ).
Since we are under the assumption that Equation (3.6) holds, x ∈ linC2. Hence, (x, y) ∈
linC2 × {0} and we are done.

The following proposition is a small modification of Corollary 20.3.1 of [75].

Proposition 3.15. Let C1 and C2×P be non-empty convex sets in Rn such that C1 and
P are polyhedral, and C2 is closed. Suppose that

recC1 ∩ (recC2 × recP ) ⊆ linC2 × recP. (3.8)

and that C1 ∩ (C2 × P ) = ∅. Then C1 and C2 × P can be strongly separated.

Proof. Since C1 ∩ (C2 × P ) = ∅, we have that 0 6∈ C1 − (C2 × P ). Applying Proposition
3.14 to C1 and −(C2 × P ) we find that C1 − (C2 × P ) is closed. Therefore, both sets can
be strongly separated.

3.2.1 Existence of strict complementary solutions for polyhedral prob-
lems

When K = Rn+ the Goldman-Tucker Theorem ensures the existence of strict complemen-
tary solutions. However, if K is merely an arbitrary polyhedral cone, it is not entirely
obvious that strict complementary solutions exist in the sense of Proposition 2.9. At this
point, we mention that extending results from Linear Programming to general polyhedral
settings is not always a trivial affair and we refer to Mclinden [57] and Akgül [2] for further
discussion of these issues.

Proposition 3.16. If K is polyhedral, θD < +∞ and θP > −∞, then (D) and (P) admits
strict complementary optimal solutions as in Proposition 2.9.
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Proof. Since K is a polyhedral cone, it can be written as K = {x ∈ E | Bx ≥ 0}, where
B : E → Rm is a linear map. Then we have K∗ = {B>y | y ≥ 0}. We can then write (P)
and (D) as

inf
z
〈Bc, z〉 (PB)

subject to AB>z = b

z ≥ 0

sup
w

〈b, w〉 (DB)

subject to Bc− BA>w ≥ 0.

(PB) and (DB) are linear programs and admit strict complementary optimal solutions
z∗ and ŝ∗ = Bc − BA>w∗ such that z∗ + ŝ∗ > 0, which implies z∗ ∈ ri (Rn+ ∩ {ŝ∗}⊥)
and ŝ∗ ∈ ri (Rn+ ∩ {z∗}⊥). If we let x∗ = B>z∗ and s∗ = c − A>w∗, then it is clear that
〈x∗, s∗〉 = 〈z∗, ŝ∗〉. This shows that x∗ is a primal optimal solution for (P) and w∗ is a
dual optimal solution for (D). We will prove that x∗ ∈ ri (K∗ ∩ {s∗}⊥).

For the sake of obtaining a contradiction, suppose that x∗ 6∈ ri (K∗ ∩ {s∗}⊥). Then,
there is a hyperplane that properly separates K∗ ∩ {s∗}⊥ and x∗. This means that there
is v ∈ Rn and θ ∈ R such that 〈x∗, v〉 ≤ θ ≤ 〈a, v〉, for all a ∈ K∗ ∩ {s∗}⊥. The fact
that x∗ ∈ K∗ ∩ {s∗}⊥ implies that θ = 0 and properness of the separation implies that
〈a, v〉 > 0 for at least one a ∈ K∗ ∩ {s∗}⊥. We have the following inequality:

〈z∗,Bv〉 ≤ θ ≤ 〈y,Bv〉,

for every y ∈ Rn+ ∩ {Bs∗}⊥ = Rn+ ∩ {ŝ∗}⊥. Therefore, the hyperplane induced by Bv
produces proper separation between Rn+ ∩{ŝ∗}⊥ and z∗, which contradicts the strict com-
plementarity between ŝ∗ and z∗. Therefore, x∗ ∈ ri (K∗ ∩ {s∗}⊥)

Since a polyhedral cone is always facially exposed, Proposition 2.9 implies that s∗ ∈
ri (K ∩ {x∗}⊥) as well.

The proof shows that strict complementary solutions to (P) and (D) can be extracted
from strict complementary solutions to (PB) and (DB). We can then use the technique
described in [26] to find them with a single linear program.

3.3 FRA-Poly and related notions

One of the goals of facial reduction is to close the duality gap. Here we will discuss FRA-
Poly, which a modification of the facial reduction algorithm that in many cases requires
fewer reduction steps than the usual FRA approach. The procedure will be divided in two
phases. The first detects infeasibility and restores strong duality, while the second finds
the minimal face.

The idea behind the classical FRA is that whenever strong feasibility fails, we can
obtain reducing directions until strong feasibility is satisfied again. Similarly, Phase 1 of
FRA-Poly is based on the fact that whenever the generalized condition in Proposition
3.7 (PPS) fails, we may also obtain reducing directions until the PPS is satisfied, thanks
to Theorem 3.11. In addition, those directions can be found by using (PK) and (DK)
in an appropriate manner, as indicated in Lemma 3.10. After that, a single extra facial
reduction step is enough to go to the minimal face. As the PPS condition is weaker than
full-on strong feasibility, FRA-poly has better worst case bounds in many cases.

We now present a disclaimer of sorts. The theoretical results presented in this section
stand whether FRA-poly is doable or not for a given K. If we wish to do facial reduction
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concretely (even if it is by hand!), we need to make a few assumptions on our computational
capabilities and on our knowledge of the lattice of faces of K. First of all, we must be able
to solve problems over faces of K such that both the primal and the dual satisfy the PPS
condition and we must also be able to do basic linear algebraic operations. Also, for each
face F of K we must know:

1. spanF ,

2. at least one point e ∈ riF ,

3. at least one point e∗ ∈ riF∗,

4. whether F is polyhedral or not.

We remark that apart from knowledge about the polyhedral faces, our assumptions are
not very different from what it is usually assumed implicitly in the FRA literature. For
symmetric cones, which include direct products of Sn+, Qn and Rn+, they are reasonable
since their lattice of faces is well-understood and every face is again a symmetric cone.
So, for instance, e can be taken as the identity element for the corresponding Jordan
algebra. On the other hand, if K is, say, the copositive cone Cn, we might have some
trouble fulfilling the requirements, inasmuch as our knowledge of the faces of Cn is still
lacking.

3.3.1 FRA-Poly

Henceforth, we will assume that K is the product of r cones and we will write K =
K1 × . . .×Kr. Consider the following FRA variant, which we call FRA-poly.
[Facial Reduction Poly - Phase 1]

Input: (D)
Output: A set of reducing directions {d1, . . . , d`}. If (D) is feasible, it outputs some

face F ⊆ K for which the PPS condition holds, together with a dual slack s′ for which
s′j ∈ riF j for every j such that F j is nonpolyhedral. If (D) is infeasible, the directions
form a certificate of infeasibility.

1) F1 ← K, i← 1

2) Let e be such that ej = 0 if F ji is polyhedral and ej ∈ riF ji otherwise. Let e∗ ∈ riF∗i .
Solve (PK) and (DK) with this choice of e, e∗ and with Fi in place of K to obtain primal
dual pairs of optimal solutions (x∗, t∗, w∗) and (y∗1, y

∗
2, y
∗
3).

3) If t∗ = 0 and 〈c, x∗〉 < 0, let FDmin ← ∅ and stop. (D) is infeasible.

4) If t∗ = 0 and 〈c, x∗〉 = 0, let di ← x∗,Fi+1 ← Fi ∩ {di}⊥, i← i+ 1 and return to 2).

5) If t∗ > 0, s′ ← c−A>y
∗
3
y∗1

, F ← Fi and stop.

Note that Phase 1 of FRA-poly might not end at the minimal face. Nevertheless,
Proposition 3.7 states that, in order to have zero duality gap and primal attainment, it
is enough to have a feasible point s such that si ∈ riKi for every i that correspond to a
nonpolyhedral cone. First, we will show that the output of FRA-Poly is correct.

Proposition 3.17. Phase 1 of FRA-Poly finishes after finding a finite number of direc-
tions and its output is correct.

i. if (D) is feasible, then the output face F contains the minimal face FDmin and is such
that the PPS condition is satisfied if K is substituted by F . Moreover, s′ is a dual
feasible slack such that s′j ∈ riF j for every j such that F j is nonpolyhedral.
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ii. (D) is infeasible if and only if Step 3. is reached.

Proof. The correctness of FRA-poly is guaranteed by Theorem 3.11 and Lemma 3.10. In
particular, due to Lemma 3.10, we will be able to find reducing directions by invoking
(PK) and (DK) with the choice of e and e∗ described in Step 2. And if the PPS condition
is indeed satisfied, we will know because the optimal value will be positive. In that case,
due to Equation (3.3), we have s′j ∈ riF ji for all j such that F ji is nonpolyhedral.

If the optimal value is zero, we can extract a reducing direction from (PK) that satisfy
alternatives a) or b) of Theorem 3.11. If it is the former, we will hit Step 3, which implies
infeasibility. If it is the latter, we will have Fi+1 ( Fi, since at least one component of x∗

does not belong to the lineality space of the nonpolyhedral part of F∗i . As x∗ is a bona
fide reducing direction, we have FDmin ⊆ Fi+1. Since K has no infinite descending chain
of faces, eventually either Step 5. will be reached or alternative a) of Theorem 3.11 will
hold, which implies that Step 3. will be reached.

As remarked before, Phase 1 of FRA-poly correctly detects infeasibility and if the
problem is feasible, we will end up with a face F such that if we reformulate (D) as
a problem over F , the duality gap will be zero and the primal will be attained if the
common optimal is finite. We will also obtain a solution s′ such that it is almost a relative
interior point, except for the polyhedral blocks. This means the output face F is such
that F j = (FDmin)j for every j such that F j is nonpolyhedral. The next step is showing
that we can jump directly to the minimal face in a single facial reduction step.

In Phase 2, we also perform a facial reduction step, but with an important difference.
This time, when considering the problems (PK) and (DK), instead of using F , we relax the
nonpolyhedral blocks of F to their span. By doing so, (PK) and (DK) become polyhedral
problems thus ensuring the existence of strict complementary optimal solutions which can
easily be found by solving a linear program. From (PK) we will extract a reducing direction
that will allows to find FDmin at once. And from (DK) we will extract a slack s̃ for (D) such
that it is a relative interior point of the polyhedral part, but may violate other nonlinear
constraints. Recall that s′ is a feasible slack for (D) that has the property of being a relative
interior for the nonpolyhedral part. We then take a strict convex combination of s̃ and s′

putting a larger weight to s′ to tilt s̃ towards the relative interior of the nonpolyhedral part
and, at the same time, restoring feasibility. As the convex combination will be strict, this
will also shift the point towards the relative interior of polyhedral part as well. Therefore
the resulting point will indeed be a point in riFDmin.

[Facial Reduction Poly - Phase 2]
Input: (D), the output of Phase 1: F and s′, with F 6= ∅.
Output: FDmin and dual feasible slack ŝ ∈ riFDmin. If F 6= FDmin then the procedure

outputs an extra reducing direction d.

1) Let K̂ = K̂1 × . . . × K̂r such that K̂j = F j if F j is polyhedral and K̂j = spanF j
otherwise. Let e ∈ ri K̂ and e∗ ∈ ri K̂∗. Build the systems (PK) and (DK).

2) Solve the linear programs (PK) and (DK) and obtain primal dual pairs of strictly
complementary optimal solutions (x∗, t∗, w∗) and (y∗1, y

∗
2, y
∗
3).

3) If t∗ = 0, let d ← x∗, FDmin ← F ∩ {x∗}⊥. Let s̃ be c − A>y
∗
3
y∗1

. Then, we let ŝ be a

convex combination of s̃ and s′ such that ŝ ∈ riFDmin and stop.

4) If t∗ > 0, FDmin ← F . Let s̃ be c−A>y
∗
3
y∗1

. Then, we let ŝ be a convex combination of s̃

and s′ such that ŝ ∈ riFDmin and stop.

We now prove that Phase 2 of FRA-Poly is correct. This is a consequence of the following
two results.
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Theorem 3.18. Consider the pair of problems (PK) and (DK), under the setting of
Lemma 3.1. If there is a pair of dual strict complementary solutions (x∗, t∗, w∗), (y∗1, y

∗
2, y
∗
3)

(see comments after Proposition 2.9) and the optimal value is 0, then (D) is either strongly

infeasible or FDmin = K ∩ {x∗}⊥. In the latter case, it also holds that c−A>y
∗
3
y∗1
∈ riFDmin.

Proof. If (D) is not strongly infeasible, then we must have t∗ = w∗ = 0. Then, dual strict
complementarity implies that the third inequality of (DK) must be strict, that is, y∗1 > 0.
Also due to strict complementarity we have that cy∗1−A>y∗3 ∈ ri (K∩{x∗}⊥). Since y∗1 > 0,

we have c−A>y
∗
3
y∗1
∈ ri (K ∩ {x∗}⊥), which shows that FDmin = K ∩ {x∗}⊥.

In particular, when K is polyhedral, both (DK) and (PK) are polyhedral problems. In
this case, strict complementary solutions are ensured to exist thanks to Proposition 3.16.
We also remark that a strict complementary solution of a polyhedral problem can be found
by solving a single linear program, see, for instance, the article by Freund, Roundy and
Todd [26] and the related work by Mehrotra and Ye [58].

Theorem 3.19. The output of Phase 2 of FRA-poly is correct.

Proof. Our assumption here is that the outputs of Phase 1 are such that F 6= ∅ and s′

satisfies s′j ∈ riF j for every j such that F j is nonpolyhedral.

First, consider the case where F is not the minimal face, i.e., (riF)∩(c+rangeA>) = ∅.
By Theorem 3.12, this happens if and only if F and c+rangeA> can be properly separated.
Therefore, there exists x ∈ F∗ such that Ax = 0 and either: i) 〈c, x〉 < 0, or ii) 〈c, x〉 = 0
and x 6∈ F⊥. As infeasibility is detected at Phase 1, alternative i) cannot occur and any x
inducing proper separation between F and c+ rangeA> must satisfy alternative ii). Note
that x is a reducing direction as well.

However, because F is the output of Phase 1 of FRA-Poly, we have that neither
alternative a) nor alternative b) of Theorem 3.11 can hold. So the possible reducing
directions x must be such that xj ∈ lin ((F j)∗) = (F j)⊥ = (spanF j)⊥ for every j such
that F j is not polyhedral, lest we run afoul of Theorem 3.11. We can then conclude that the
possible reducing directions are confined to the polyhedral cone K̂∗, where K̂ = K̂1×. . .×K̂r
is such that Kj = F̂ j if F j is polyhedral and K̂j = spanF j otherwise. This is precisely
the cone appearing in Phase 2 of FRA-poly.

If we build the systems (PK) and (DK) precisely as in Lemma 3.1 using K̂, we will
obtain a pair of linear programs. Therefore, they have a pair of strictly complementary
optimal solutions (x∗, t∗, w∗), (y∗1, y

∗
2, y
∗
3). Because F is not the minimal face, we have

t∗ = 0, so we are under the hypothesis of Theorem 3.18. Let s̃ = c−A>y
∗
3
y∗1

.

We will prove that FDmin = F ∩{x∗}⊥ and that some convex combination of s′ and s̃ is
a relative interior feasible solution of (D). Let zβ = βs′+(1−β)s̃. For all β ∈ (0, 1) and all
j such that F j is polyhedral, we have (zβ)j ∈ ri (F j ∩{x∗j}⊥), because s̃j ∈ ri (F j ∩{xj}⊥)

and s′ is feasible. If F j is not polyhedral, then F j ∩ {x∗j}⊥ = F j , since xj ∈ (F j)⊥.

Because s̃j ∈ spanF j and s′j ∈ riF j , for β sufficiently close to 1 we have (zβ)j ∈ riF j .
Therefore, it is possible to select β ∈ (0, 1) such that (zβ)j ∈ ri (F j ∩{xj}⊥) for all j. This
also shows that FDmin = F ∩ {x∗}⊥.

If F was already the minimal face to begin with, then t∗ > 0. We can then proceed in

a similar fashion. The only difference is that due to (3.3), we will have that s̃ = c−A>y
∗
3
y∗1

satisfies s̃j ∈ ri (F j) for every j such that F j is polyhedral. And as before, we can select
a convex combination of s′ and s̃ belonging to the relative interior of FDmin.

3.3.2 Distance to polyhedrality

In order to bound the number of directions obtained through FRA-poly, we introduce the
notion of distance to polyhedrality. In what follows, if we have a chain of faces F1 ( . . . (
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F`, the length of the chain is defined to be `.

Definition 3.20. Let K be a non-empty closed convex cone. The distance to polyhedrality
is the length minus one of the longest strictly ascending chain of non-empty faces F1 (
. . . ( F` which satisfies:

1. F1 is polyhedral;

2. Fj is not polyhedral for j > 1.

We will denote the distance to polyhedrality by `poly(K).

The distance to polyhedrality is a well-defined concept, because the lineality of K is
always an exposed polyhedral face of K, see item iii. of Lemma 2.5. Therefore it is always
possible to consider the chain lin (K). Moreover, `poly(K) counts the maximum number of
facial reduction steps that can be taken before we reach a polyhedral face. Therefore a
necessary and sufficient condition for a cone to be polyhedral is that `poly(K) = 0.

Example 3.21. See section 2.3 for more details on the facial structure of Sn+ and Qn.
For the positive semidefinite cone Sn+, we have `poly(Sn+) = n − 1. For a single Lorentz
cone Qn = {(x0, x) ∈ R × Rn−1 | x0 ≥ ‖x‖2}, we have `poly(Qn) = 1 if n > 2. This is
because the Lorentz cone only has three types of faces: {0}, Qn or the half-lines running
along the boundary. For comparison, the longest chain of nonempty faces of Sn+ has length
n+ 1 and the one for Qn has length 3.

Proposition 3.22. Let K = K1× . . .×Kr. If (D) is feasible, Phase 1 of FRA-Poly stops
after finding at most

∑r
i=1 `poly(Ki) directions.

If (D) is infeasible, Phase 1 stops after finding at most 1 +
∑r

i=1 `poly(Ki) directions.

Proof. Due to the choice made at Step 2 of Phase 1 of FRA-Poly and the analysis done
in Theorem 3.11, whenever 〈c, x∗〉 = 0, we have that x∗j 6∈ (F ji )⊥ for at least one nonpoly-

hedral cone F ji . This means that F ji+1 is a proper face of F ji . In other words, whenever
a new proper face is found, it is because we are making progress towards a polyhedral
face for at least one nonpolyhedral cone. Therefore, after finding ` =

∑r
i=1(`poly(Ki))

directions, F`+1 is polyhedral.
We now consider what happens if the algorithm has not stopped after all these direc-

tions were found. Note that system (DK) and (PK) now becomes entirely polyhedral and
e = 0. First, suppose that (D) is feasible and let y be such that c − A>y ∈ FSD . Then
(1, 1, y) satisfies (3.3) and (3.5), but might fail to satisfy (3.4). This poses no problem
since it is enough to multiply (1, 1, y) by a sufficiently small positive constant. It follows
that (DK) has at least one feasible solution for which y1 ≥ y2 > 0, thus showing that the
dual optimal value is greater than zero. This means that we will end up reaching Step 5.

Suppose that (D) is infeasible. In this case, the optimal value of (DK) will be zero.
Since e = 0, equation (3.2) implies that the optimal solution of (PK) will be a triple
(x∗, 0, 1), which implies that Step 3 will be reached and a single new direction will be
added.

This result has the following immediate corollary.

Corollary 3.23. Let K = K1×. . .×Kr. The minimum face FDmin that contains the feasible
region of (D) can be found in no more than 1 +

∑r
i=1 `poly(Ki) facial reduction steps.

Proof. If (D) is infeasible, then FDmin = ∅ and the result follows from Proposition 3.22. So
suppose now that (D) is feasible. Then FRA-Poly ends after finding at most

∑r
i=1 `poly(Ki).

Due to Theorem 3.19, at most one extra direction is needed to jump to the minimal
face.
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The number of directions found in FRA-poly can also be bounded by a quantity that
depends on L = rangeA> and c, since Proposition 3.3 still applies.

Note that if one uses the “classical” facial reduction approach, it takes no more than
`K−1 facial reduction steps to find the minimal face, when (D) is feasible, see Proposition
3.3. If (D) is infeasible, an extra direction might be needed, which is the one that will hit
Step 3 in the Generic Facial Reduction of Section 3.1. When K is a direct product of several
cones, we have `K = 1+

∑r
i=1(`Ki−1). We will end this subsection by showing that, under

the relatively weak hypothesis that Ki is not a subspace, we have `poly(Ki) < `Ki−1. This
means that the number of steps needed in FRA-Poly is no worse than the classical FRA
and if we have the direct product of at least two cones that are not subspaces, FRA-Poly
is ensured to have a better worst case complexity.

Lemma 3.24. Suppose that K is pointed, that is, lin (K) = {0} and that its dimension is
greater than zero, then `poly(K) < `K − 1.

We now substitute the hypothesis of pointedness by the weaker assumption that K is
not a subspace.

Theorem 3.25. If K is not a subspace then `poly(K) < `K − 1. In particular, if K is the
direct product of r closed convex cones that are not subspaces we have:

r + 1 +
r∑
i=1

`poly(Ki) ≤ 1 +
r∑
i=1

(`Ki − 1).

Proof. Let U = linK. Then we have K = (K ∩ U⊥) + U . If we let K̂ = K ∩ (U⊥), we
have that lin (K̂) = {0}. It can be shown that there is a bijection between the faces of
K and the set {F + U | F is a face of K̂}. There is also a correspondence between the
polyhedral faces of K and the set {F +U | F is a polyhedral face of K̂}. The assumption
that K is not a subspace implies that the dimension of both K and K̂ is greater than zero.
As `K = `K̂, the result follows from applying Lemma 3.24 to K̂.

Proof of Lemma 3.24. Let e∗ ∈ riK∗, then the set C = {x ∈ K | 〈x, e∗〉 = 1} is compact.
This is because the recession cone of C consists of the elements in K which are orthogonal
to e∗, but pointedness imply that 0 is the only element meeting these criteria. Now, the
Krein-Milman Theorem implies that a nonempty compact convex set has at least one
extreme point z. Then, one can verify that the half-line hz = {αz | α ≥ 0} is an one-
dimensional face1 of K. Let F be a face of K with dimension greater than zero. We can
apply the same argument to conclude that F has at least one extreme ray, i.e., a face of
dimension one.

So `K ≥ 2, since we have the chain {0} ( hz. If K is polyhedral, we are done, since
`poly(K) = 0. We now move on to the nonpolyhedral case.

Let F1 ( . . . ( F` be a strictly ascending chain of faces such that F1 is polyhedral, Fj
is not polyhedral for j > 1 and `−1 = `poly(K). Due to non-polyhedrality, ` ≥ 2. We now
consider two cases. If the dimension of F1 is greater or equal than one, we can augment the
chain by adding the face {0} at the beginning. In this case, we have `K−1 ≥ ` > `poly(K).

On the other hand, if F1 = {0}, we have for sure that F2 has dimension greater or equal
than two. This is because F2 is not polyhedral, so it cannot be an extreme ray. However,
due to the previous argument, F2 has at least one extreme ray hz, so we can augment the
chain by inserting hz between F1 and F2. This also shows that `K− 1 ≥ ` > `poly(K).

1To see that, first note that every nonzero element in K can be written as a product αx with x ∈ C
and α > 0. It is enough to consider the case where βα1x + (1 − β)α2y = γz with α1, α2, γ > 0, x, y ∈ C
and β ∈ (0, 1). Then βα1

γ
+ (1−β)α2

γ
= 1. Since z is an extreme point, we have x = y = z. Therefore,

α1x, α2y ∈ hz.
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3.3.3 Distance to strong duality

The singularity degree of (D) is a measure that depends on c,A and K. However, it is
possible to give uniform bounds for d(D) that do not depend on c,A. For example, the
classical facial reduction strategy gives the bounds d(D) ≤ `K − 1 when (D) is feasible
and d(D) ≤ `K when (D) is infeasible. Corollary 3.23 readily implies that d(D) ≤ 1 +∑r

i=1 `poly(Ki), no matter whether (D) is feasible or not. Due to Theorem 3.25, this bound
is likely to compare favorably to `K − 1 =

∑r
i=1(`Ki − 1).

As mentioned before, the singularity degree only depends on c,A and K. Finding the
minimal face FDmin ensures that no matter which b we select, as long as the problem is
bounded, there will be zero duality gap and primal attainment. This suggests the following
definition that also depends on b and, thus, produce a less conservative quantity.

Definition 3.26 (Distance to strong duality). The distance to strong duality dstr(D) is
the minimum number of facial reduction steps (at (D)) needed to ensure θP̂ = θD, where

(P̂ ) is the problem inf{〈c, x〉 | Ax = b, x ∈ F∗`+1} and F`+1 is a obtained after a sequence
of ` facial reduction steps. If −∞ < θD < +∞, we also require attainment of θP ′.

Similarly, we define dstr(P ) as the minimum number of facial reduction steps needed to
ensure that θP = θD̂ and that θD̂ is attained when −∞ < θP < +∞. It is understood that

(D̂) is the problem in dual standard form arising after some sequence of facial reduction
steps is done at (P).

Clearly, we have dstr(D) ≤ d(D). However, since Phase 1 of FRA-Poly restores
strong duality in the sense of Definition 3.26, we obtain the nontrivial bound dstr(D) ≤∑r

i=1 `poly(Ki). This will be useful to bound the length of infeasibility certificates and
the dimension of certain special subspaces that appear in weakly infeasible problems in
sections 4.1 and 4.2.

3.4 Worst case instance for direct products of SDPs and
SOCPs

Given a dual program (D), the singularity degree d(D) is defined as the minimum number
of facial reduction steps needed to find FDmin. As remarked before, when (D) is feasible,
previous analyses of facial reduction imply that d(D) ≤ `K − 1, where `K is the longest
chain of faces of K. First, let us consider another bound for d(D). We remark, however,
that it is not ensured that FRA-Poly will achieve these bounds, because they depend on
the algorithm being lucky enough to select certain good directions.

In what follows, we will use the following observation. Except when (D) is infeasible,
doing facial reduction at (D) is the same thing as doing facial reduction for the homog-
enized problem supy,y0{〈b, y〉 | cy0 − A>y ∈ K}, because in that case all the reducing
directions will satisfy 〈di, c〉 = 0.

Proposition 3.27. Suppose that (D) is feasible and FDmin = linK, then d(D) = 1. That
is, there is d ∈ K∗ ∩ kerA ∩ {c}⊥ such that linK = K ∩ {d}⊥

Proof. Let L be the space spanned by rangeA> and c. Then, feasibility implies that the
minimal face of K which contains L∩K is FDmin. We then have L∩K ⊆ linK. By Theorem

3.9, there exists d ∈ (riK∗) ∩ L⊥. Because d ∈ riK∗, we have linK = K ∩ {d}⊥. Finally,

d ∈ L⊥ implies d ∈ kerA ∩ {c}⊥.

We remark that a characterization of problems with singularity degree one was recently
given by Drusvyatskiy, Pataki and Wolkowicz in Theorem 4.1 of [20].
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Corollary 3.28. Suppose that every chain of faces F1 ( . . . ( F` of K satisfying ` =
`poly(K) + 1 is such that the dimension of F1 is less or equal than dim (linK) + 1. If (D)
is feasible, then the singularity degree of (D) satisfies d(D) ≤ max(`poly(K), 1).

Proof. Proposition 3.22 implies the bound `poly(K) for the termination of Phase 1 of FRA-

poly. Denote the chain of faces obtained in Phase 1 by K = F̂1 ( . . . ( F̂ˆ̀. This implies

that we have found ˆ̀− 1 directions through FRA-Poly. If ˆ̀− 1 < `poly(K), then Theorem
3.19 implies that one more facial reduction step is enough to find FDmin, so in this case we
have the bound `poly(K).

If ˆ̀ = `poly(K), then Fˆ̀ must have dimension less or equal to dim (linK) + 1. If
FDmin = Fˆ̀, we are done. Otherwise, it must be the case that FDmin = linK. However, in
that case Proposition 3.27 implies that a single facial reduction step is enough. Note that,
except if K is polyhedral, `poly(K) ≥ 1, so the bound is also true when FDmin = linK.

If K = Sn+, the bound in Corollary 3.28 implies that d(D) ≤ n, but this is not tight.
This is because K satisfies the conditions of Corollary 3.28, so we need at most n−1 steps.
And, in fact, there is an instance of an SDP due to Tunçel such that any facial algorithm
must take at least n− 1 steps, see Section 2.6 in [85] or the section “Worst case instance”
in [16].

Here, we will consider the case where K = Qt1× . . .Qtr1 ×Sn1
+ × . . .×S

nr2
+ is the direct

product of r1 second order (Lorentz) cones and r2 positive semidefinite cones. Note that
K is self-dual, so K∗ = K. We will make a few assumptions to discard trivial cases. First,
we will assume that we have r1 + r2 > 0. We will also assume that each Lorentz cone
has dimension three or more, since a dimension two Lorentz cone must be polyhedral. We
will assume that nj ≥ 3 for every j, since S2

+ is isomorphic to a single three dimensional
Lorentz cone. In this case, Corollary 3.23 implies that we have the bound

d(D) ≤ 1 + r1 +

r2∑
j=1

(nj − 1)

for the singularity degree of (D). This bound is almost tight for direct products of SDPs
and SOCPs and it matches what is achievable by running phases 1 and 2 of FRA-Poly.
However, with more effort and stronger assumptions, it is possible to show that the “+1”
can be removed for feasible mixed SDP-SOCPs. As far as we know, the only reference
for that is a chapter written by Luo and Sturm [54]. The caveat is that for a facial
reduction algorithm to achieve this bound, it must select at each step the “most interior”
reducing direction possible. For instance, in the first step, instead of searching for d ∈
{c}⊥ ∩ kerA ∩ (K∗ \ K⊥), one must, instead, obtain an element in ri ({c}⊥ ∩ kerA ∩K∗),
which is a problem that may itself require facial reduction. Nevertheless, Luo and Sturm’s
analysis shows that in theory we need no more than r1 +

∑r2
j=1(nj − 1) facial reduction

steps to find the minimal face for a feasible problem. In this subsection, we will show that
there is indeed an instance for which any facial reduction algorithm must take at least
r1 +

∑r2
j=1(nj − 1) steps to find FDmin. This tells us that the uniform bound given by Luo

and Sturm is tight.

We will use the following special notation. Given an element x, we will use xji,k to

denote the (i, k) entry of the j-th matrix block and xji to denote the i-entry of the j-th
vector block. For simplicity, we will also use the same notation to single out a few special
elements that have zero in almost all entries. For j ∈ [1, r2], aji,k is the element of K such

that all its blocks are zero except for the block corresponding to Snj+ . In that block aji,k
contains the nj × nj matrix that is zero everywhere except for the fact that the (i, k) and

(k, i) entries are equal to one. In a similar fashion, for j ∈ [1, r1], aji is the element of
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K such that all its blocks are zero except for the block corresponding to Qtj , where aji
corresponds to i-th unit vector.

The example will be constructed by considering the following special space.
[A basis for L⊥]
Let L⊥ be the space spanned by the following vectors:

1. a1
1 + a1

2,

2. {aj−1
3 + aj1 + aj2 | 1 < j ≤ r1},

3. ar13 + a1
1,1 and {a1

i,i + a1
i−1,i+1 | 1 < i < n1} (if r1 = 0, substitute ar13 + a1

1,1 by a1
1,1),

4. aj−1
nj ,nj−1 + aj1,1 and {aji,i + a1

j−1,j+1 | 1 < i < nj}, for 1 < j ≤ r2,

where items 1. and 2. are omitted if r1 = 0 and items 3. and 4. are ommited if r2 = 0.

Example 3.29. If r1 = r2 = 2, n1 = 3, n2 = 4 and t1 = t2 = 3, then following the
construction above, we obtain a subspace spanned by elements having the following format:

y1

y1

y2

×
y2

y2

y3

×
y3 0 y4

0 y4 y5

y4 y5 0

×

y5 0 y6 0
0 y6 0 y7

y6 0 y7 0
0 y7 0 0

 .

In the next proposition, it will be helpful to keep this instance in mind.

Proposition 3.30. Let c = 0 and A be such that L = rangeA>, where L⊥ is the subspace
constructed above.

It is necessary at least

r1 +

r2∑
j=1

(nj − 1)

facial reduction steps to find FDmin.

Proof. First, suppose that r1 > 0. At the first step of facial reduction, we have to find
a nonzero direction in K ∩ L⊥. However, if x ∈ K and x is a linear combination of the
vectors constructed above, we have x1

1 = x1
2. Then, the Lorentz cone constraint implies

that x1
i = 0 for all i ≥ 3. Therefore, the coefficient of a1

3 + a2
1 + a2

2 appearing in x must be
zero as well. By induction, it follows that all blocks of x are zero, except for the first. We
have no choice but to select a positive multiple of a1

1 + a1
2 as the first reducing direction.

So let d1 = a1
1 +a1

2, we then have F2 = K∩{d1}⊥ = hd1× . . .Qtr1 ×S
n1
+ × . . .×S

nr2
+ , where

hd1 is contained in Qt1 and is the half-line along the direction defined by the nonzero
part a1

1 − a1
2. When it is time to perform the next step, we will find out that only the

nonnegative multiples of a1
3 +a2

1 +a2
2 belong to F∗2 ∩L⊥. This means that facial reduction

must proceed by successively selecting positive multiples of:

1. d1 = a1
1 + a1

2,

2. dj = aj−1
3 + aj1 + aj2, for 1 < j ≤ r1.

After r1 steps, all the Lorentz cone blocks will be transformed to half-lines and we will
have Fr1+1 = hd1 × . . . hdr1 × S

n1
+ × . . .× S

nr2
+ .

If there are no positive semidefinite cones, we are done. Otherwise, we will have
F∗r1+1 ∩ L⊥ = {t(ar13 + a1

1,1) | t ≥ 0}. Again, we have no choice but to proceed “one row

at the time” and select positive multiples of a1
i,i + a1

i−1,i+1 for 1 < i < n1 as the reducing
directions. In total, n1 − 1 directions must be found before we can move to the next SDP
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block. Induction shows that for each block nj − 1 directions will be found. In total we
obtain r1 +

∑r2
j=1(nj − 1). directions.

In the case where r1 = 0, the argument is similar. The only difference is that F∗1 ∩L⊥ =
{t(a1

1,1) | t ≥ 0}. We can then proceed as before.

3.5 Singularity degree of the intersection of cones

In this we section, we discuss the case where K = K1 ∩ K2. We can rewrite (D) as a
problem over K1 ×K2 by duplicating the entries.

sup
y
〈b, y〉 (Ddup)

subject to (c−A>y, c−A>y) ∈ K1 ×K2

inf
x
〈c, x1 + x2〉 (Pdup)

subject to A(x1 + x2) = b

(x1, x2) ∈ (K1)∗ × (K2)∗.

While (Ddup) is entirely equivalent to (D), the situation for (Pdup) is subtler. It is true
that θPdup

= θP and that if (Pdup) is attained, then (P) must be attained. However, the
converse is not true and (Pdup) might fail to be attained even if (P) is attained. This
situation can happen if (K1)∗ + (K2)∗ ( K∗.

Still, if we apply FRA-Poly to (Ddup), we will obtain a face F1 × F2 of K1 × K2.
Doing facial reduction using the formulation (Ddup) might be more convenient, since we
need to search for reducing directions in (K1)∗ × (K2)∗ instead of cl ((K1)∗ + (K2))∗ and
deciding membership in (K1)∗× (K2)∗ could be more straightforward than doing the same
for cl ((K1)∗ + (K2))∗. Before we proceed we need an auxiliary result.

If K = K1 ∩ K2, it is always true that the intersection of a face of K1 with a face of
K2 results in a face of K = K1 ∩ K2. However, it is not entirely obvious that every face
of K arises as an intersection of faces of K1 and K2, so we remark that as a proposition
although it is probably a well-known result.

Proposition 3.31. Let F be a face of K = K1 ∩K2. Let F1 and F2 be the minimal faces
of K1 and K2, respectively, containing F . Then F = F1 ∩ F2 and F∗ = (F1)∗ + (F2)∗.

Proof. We have F1∩F2 ⊇ F and we will prove that F1∩F2 = F . A first observation is that
by the choice of F1 and F2, we have ri (F) ⊆ ri (F1) and ri (F) ⊆ ri (F2). In particular,
this implies that ri (F1) ∩ ri (F2) 6= ∅. Therefore, ri (F1 ∩ F2) = ri (F1) ∩ ri (F2), see
Theorem 6.5 in [75]. We conclude that ri (F)∩ ri (F1∩F2) = ri (F)∩ ri (F1)∩ ri (F2) 6= ∅.
Since F1 ∩ F2 is a face of K, it follows that F = F1 ∩ F2.

Because ri (F1)∩ri (F2) 6= ∅, a classical closedness criteria implies that (F1)∗+(F2)∗ is
closed (see Corollary 16.4.2 in [75]), so that F∗ = cl ((F1)∗+ (F2)∗) = (F1)∗+ (F2)∗.

Theorem 3.32. Let K = K1 ∩ K2.

i. Let F̂ = F1 × F2 be the minimal face of K1 × K2 containing the feasible slacks of
(Ddup). Then, FDmin = F1 ∩ F2.

ii. The singularity degree of (D) satisfies d(D) ≤ d(Ddup) ≤ 1 + `poly(K1) + `poly(K2).

iii. The distance to strong duality satisfies dstr(D) ≤ dstr(Ddup) ≤ `poly(K1) + `poly(K2).
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Proof. i. Note that F1 must be the minimal face of K1 containing FSD = {c−A>y ∈ K}.
Because if some proper face F̃ of F1 is minimal, then F̃ × F2 contains the feasible
slacks of (Ddup), which contradicts the minimality of F̂ . The same must hold for F2.
Then Proposition 3.31 implies FDmin = F1 ∩ F2.

ii. In order to prove that the singularity degree of (D) is bounded by d(Ddup), we need
to check whether a sequence of reducing directions for (Ddup) translate into reducing
directions for (D). A sequence of reducing directions {d1, . . . , d`} and corresponding
faces for (Ddup) are such that:

(a) F̂1 = K1 ×K2.

(b) di = (d1
i , d

2
i ) ∈ F̂∗i , F̂i+1 = (F̂1

i ) ∩ {di}⊥ × (F̂2
i ) ∩ {di}⊥, for i ∈ {1, . . . , `},

and A(d1
i +d2

i ) = 0, 〈c, d1
i +d2

i 〉 ≤ 0 for all i. We will prove that {d1
1 +d2

1, . . . , d
1
` +d2

`}
form a valid sequence of reducing directions for (D), except that some of the directions
might fail to induce a proper face. The only thing missing is to prove that d1

i +d2
i ∈ F∗i

for every i, with Fi+1 = Fi ∩ {d1
i + d2

i }⊥ and F1 = K. And then, if d1
i + d2

i ∈ F⊥i , we
simply discard d1

i + d2
i .

We will prove by induction that Fi = F̂1
i ∩ F̂2

i for every i ∈ {1 . . . , `} and that
d1
i + d2

i ∈ F∗i for every i ∈ {1 . . . , `− 1}. First, note that F1 = F̂1
1 ∩ F̂2

1 = K. Because
K∗ = cl ((K1)∗ + (K2)∗), we also have d1

1 + d2
1 ∈ K∗. This takes care of the basis of

induction.

Now, suppose that the statement holds true for some i and let us show that it holds
for i+1. We have F̂1

i+1∩F̂2
i+1 = F̂1

i ∩F̂2
i ∩{d1

i }⊥∩{d2
i }⊥ = Fi∩{d1

i }⊥∩{d2
i }⊥, by the

induction hypothesis. It is clear that Fi ∩ {d1
i }⊥ ∩ {d2

i }⊥ ⊆ Fi ∩ {d1
i + d2

i }⊥ = Fi+1.
The opposite containment follows from the fact that if x ∈ Fi∩{d1

i +d2
i }⊥, then since

x ∈ F̂1
i ∩ F̂2

i and d1
i ∈ (F̂1

i )∗, d2
i ∈ (F̂2

i )∗, the only way that 〈x, d1
i + d2

i 〉 can be zero
is if x ∈ {d1

i }⊥ ∩ {d2
i }⊥. This shows that Fi ∩ {d1

i }⊥ ∩ {d2
i }⊥ = Fi ∩ {d1

i + d2
i }⊥ =

Fi+1 = F̂1
i+1 ∩ F̂2

i+1. As (F̂1
i+1)∗+ (F̂2

i+1)∗ ⊆ cl ((F̂1
i+1)∗+ (F̂2

i+1)∗) = F∗i+1, we readily
obtain that d1

i+1 + d2
i+1 ∈ F∗i+1, if i+ 1 < `.

We have proved that the chain of faces F1 ⊇ . . . ⊇ F` is such that F1 = K and
F` = FDmin. However, some containments might fail to be strict. This poses no
problem, since it is enough to remove the reducing directions that provide no decrease.
This shows that d(D) ≤ d(Ddup). If we apply both Phases of FRA-poly to (Ddup) we
obtain the bound d(Ddup) ≤ 1 + `poly(K1) + `poly(K2).

iii. In the proof of item ii., it was shown that we can obtain reducing directions for (D)
from reducing directions to (Ddup). Suppose that {d1, . . . , d`} restores strong duality
for (Ddup) in the sense of Definition 3.26. Then, it is straightforward to check that
{d1

1 + d2
1, . . . , d

1
` + d2

`} restores strong duality for (D). This shows that dstr(D) ≤
dstr(Ddup). Finally, the bound ≤ `poly(K1) + `poly(K2), follows from applying Phase
1 of FRA-Poly to (Ddup).

We now consider the particular case where K is the doubly nonnegative cone Dn =
Sn+∩N n, where N n is the cone of n×n symmetric matrices with nonnegative entries. This
cone is important because it can be used as a relatively tractable relaxation for the cone of
completely positive matrices, see [94, 38, 4]. The following corollary follows immediately
from Theorem 3.32.

Corollary 3.33. When K = Dn, we have d(D) ≤ n and dstr(D) ≤ n− 1.
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Proof. It follows from Theorem 3.32 by recalling that `poly(Sn+) = n− 1 and `poly(N n) =
0.

We will compare the bound in Corollary 3.33 with the one predicted by the classical
FRA. To do that, we need to compute `Dn .

Proposition 3.34. The longest chain of non-empty faces in Dn has length n(n+1)
2 + 1,

which is the maximum possible for a cone contained in Sn.

Proof. The assertion about the maximality follows from the fact that if we have two faces
such that F ( F̂ then we must have dim (F) < dim (F̂). Since Sn has dimension n(n+1)

2

we cannot have a strictly ascending chain containing more than n(n+1)
2 + 1 faces.

Let G be any set of tuples (i, j) with i, j ∈ {1, . . . , n} and let N n(G) be the face of
N n which corresponds to the matrices x such that the only entries xi,j that are allowed
to be nonzero are the ones for which either (i, j) ∈ G or (j, i) ∈ G. We will first define two
chains of faces of N n. First, let G0 = ∅ and define Gi = Gi−1 ∪ {(i, i)} for i ∈ {1, . . . , n}.
We now consider the following construction written in pseudocode.

k ← 1, H0 ← Gn

For i← 1, i ≤ n do

For j ← 1, j < i do

Hk ← Hk−1 ∪ {i, j}
k ← k + 1

j ← j + 1.

i← i+ 1.

The idea is to add one non-diagonal entry per iteration, so that N n(Hk) ( N n(Hk+1).
First (2, 1) will be added, then (3, 1), (3, 2) and so on. We have

Sn+ ∩N n(G0) ( . . . ( Sn+ ∩N n(Gn) ( Sn+ ∩N n(H1) ( . . . ( Sn+ ∩N n(Hn(n−1)
2

)

and all inclusions are indeed strict. The first n inclusions are strict because Sn+∩N n(Gi) =
N n(Gi) and it is clear that N n(Gi) ( N n(Gi+1). Now, let In denote the n × n identity
matrix. If k > 0 and x ∈ riN n(Hk) then xi,j > 0 for some (i, j) entry such that neither
(i, j) nor (j, i) belong toHk−1. For α > 0 sufficiently large, we have x+αIn ∈ Sn+∩N n(Hk)
and x + αIn 6∈ Sn+ ∩ N n(Hk−1). This shows the remainder of the containments and

concludes the proof, since the chain has length n(n+1)
2 + 1.

For feasible problems, the classical FRA analysis gives either the bound `Dn − 1 =
n(n+1)

2 or, using Theorem 3.32, the bound `Sn+ − 1 + `Nn − 1 = n+ n(n+1)
2 . Both bounds

are quadratic in n in opposition to the linear bound obtained in Corollary 3.33.
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Chapter 4

Applications of Facial Reduction

In this chapter, we will discuss how to use Facial Reduction to study weak infeasibility.
We will see that the reducing directions obtained by applying facial reduction to a given
problem can also be used to construct points arbitrary close to the underlying cone. Once
these directions are identified, there is no need to solve additional optimization problems.
We will also discuss infeasibility certificates and their length.

Before we proceed, we need a theoretical result on the preservation of feasibility status.
When applying Facial Reduction to (D), each di corresponds to a reducing direction in the
sense that we can use it to confine the problem to a smaller proper face and this does not
change the dual feasible region. However, if we reformulate (D) by substituting K by Fi+1

then K∗ gets substituted by F∗i+1 and the primal feasible region expands. This establishes
a correspondence between Facial Reduction and the Conic Expansion Approach [55], see
Section 4 of [89] for more details. One of the points of our previous discussions on SDPs
and SOCPs [47, 50], was that the di has a few interesting properties for (P) and that
feasibility properties are mostly preserved in spite of the cones getting larger. Initially,
we thought that a result similar to a Schur Complement would be needed to extend our
earlier results. It turns out we only need the following geometrical lemma.

Lemma 4.1. Let e be a relative interior point of K, d ∈ K and x a point in the tangent
space of K at d. Then, there is a t > 0 such that e+ x+ td ∈ riK.

The intuition is as follows. If td + x were a point in K, then it would be clear that
e+ td+x ∈ riK. Unfortunately, this does not happen in general. However, as t increases,
td+x gets closer and closer to K, so adding e will eventually drag everything to the relative
interior.

Proof. Let C = {e + x + td | t ≥ 0}. To prove the assertion, it is enough to show that
riC ∩ riK 6= ∅, that is, there is some t > 0 for which e+ x+ td ∈ riK . Suppose, for the
sake of obtaining a contradiction, that riC ∩ riK = ∅. This implies that both sets can be
properly separated, which means that there is some separating hyperplane that does not
contain both sets at the same time. Then, there exists z and θ such that

〈e, z〉+ 〈x, z〉+ 〈td, z〉 ≤ θ ≤ 〈w, z〉

holds for all t ≥ 0 and all w ∈ K. For the equation above to hold, we must have z ∈ K∗
and θ ≤ 0. Since d ∈ K and z ∈ K∗ we must have 〈d, z〉 = 0, since t can be taken to be any
non-negative number. Because x lies in the tangent space of K at d, it must be contained
in all supporting hyperplanes of K at d by item viii. of Lemma 2.5, therefore 〈x, z〉 = 0.
Because e is a relative interior point of K and θ ≤ 0 we have that 〈e, z〉 = 0. This implies
that z ∈ K⊥, which contradicts the fact that the separation is proper.

Therefore, riC ∩ riK 6= ∅ and e+ x+ td ∈ riK for t > 0 sufficiently large.
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The next theorem tracks down the possible changes of feasibility status to (P) when
applying facial reduction to (D). In particular, if (P) were already strongly feasible to
begin with, it will stay strongly feasible. We also recall that “weak status” means either
weak feasibility or weak infeasibility.

Theorem 4.2. Suppose that d ∈ K∗ ∩ L⊥ and F = K ∩ {d}⊥. Let (P’) be the problem
obtained by substituting K∗ by F∗ = cl (K∗+F⊥)1 in (P). We have the following relations:

i. (P) is strongly feasible if and only if (P’) is;

ii. (P) is strongly infeasible if and only if (P’) is;

iii. (P) is in weak status if and only if (P’) is.

Proof. i. (⇒) It is enough to note that ri (cl (K∗ +F⊥)) = F⊥ + riK∗ and that riK∗ ⊆
F⊥ + riK∗.
(⇐) Suppose that w is a relative interior feasible solution for (P’). This means that
Aw = b and that w can be written as e + x, with e ∈ riK∗ and x ∈ F⊥. Recall
that F⊥ = TdK by item viii. of Lemma 2.5. To conclude, we use Lemma 4.1, which
ensures the existence of t > 0 such that x+ e+ td ∈ riK∗.

ii. (⇒) This part is clear, since K∗ ⊆ F∗.
(⇐). If the linear system “Ax = b” does not have a solution, then it is clear that
(P’) must be strongly infeasible as well. So suppose that it indeed has a solution.
In this case, strong infeasibility of (P) is equivalent to the existence of y such that
−A>y ∈ K and 〈b, y〉 = 1. However, −A>y is orthogonal to d, so −A>y ∈ F . By the
same principle, y induces strong separation for (P’) as well.

iii. Follows by elimination.

4.1 Infeasibility certificates

In Linear Programming, a well-known tool for discussing feasibility/infeasibility is Farkas’
Lemma, which states that if K = Rn+ then either (D) is feasible or there is some x ∈ Rn+
with Ax = 0 and 〈c, x〉 < 0. Due to Proposition 2.7, the existence of such a x is equivalent
to the statement that (D) is strongly infeasible. Therefore, whenever (D) is infeasible, it
must be strongly infeasible. This makes for some very convenient theorems of alternatives.
And, in fact, entirely similar results hold when Rn+ is replaced by an arbitrary polyhedral
cone.

A difficulty arises when we move on to non-polyhedral cones. In this case, we have the
possibility of weak infeasibility, which complicates matters significantly. And it is not at all
obvious whether (D) admits finite infeasibility certificates when K is arbitrary. And there
are indeed a few descriptions in the literature of version of asymptotic Farkas’ Lemma,
where infeasibility is proven via sequences, see, for instance, Lemma 6 in [55] where the
result is attributed to R. J. Duffin. But, in fact, one of the earliest finite infeasibility
certificates for a nonpolyhedral cone was given by Ramana in [73] using his extended
duality theory for SDPs. As his technique is strongly connected to facial reduction, it is
no surprise that facial reduction turns out to be a helpful tool for the general case.

Currently almost all the known approaches to infeasibility certificates are connected
in a way or another to facial reduction. This includes the approaches described by Sturm
for SDPs in Theorem 3.5 [79], which was later generalized by Luo and Sturm to mixed

1An easy way to see that is to remember that F = K ∩ spanF , so that F∗ = cl (K∗ + (spanF)⊥).
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SDPs-SOCPs in Theorem 7.5.1 of [54]. It also includes the recent work by Liu and Pataki
[44, 43]. The sole exception is the article by Klep and Schweighofer [40], where they
developed infeasibility certificates for SDPs using tools from Real Algebraic Geometry.

Recall that (D) is infeasible if and only if the reducing directions {d1, . . . , d`} obtained
through FRA or FRA-poly are such that 〈d`, c〉 < 0. Therefore, the reducing directions
function as a finite certificate of the infeasibility of (D). The length of the certificate is
then defined to be `. Here, we will show that the distance to strong duality (Definition
3.26) plus one gives the length of the shortest possible infeasibility certificate arising from
facial reduction.

Proposition 4.3. (D) is infeasible if and only if there is a sequence of reducing directions
{d1, . . . , d`} with 〈d`, c〉 < 0 and ` = dstr(D

′) + 1, where (D′) is the problem sup{0 |
c−A>y ∈ K}.

Moreover, if (D) is infeasible, then any sequence of reducing directions with 〈d`, c〉 < 0
must satisfy ` ≥ dstr(D′) + 1.

Proof. We first prove (⇒). For i ≤ ` − 1, the direction di belongs to F∗i ∩ kerA ∩ {c}⊥
where Fi = K∩{d1}⊥ ∩ . . .∩{di−1}⊥. This means that Fi contains (c− rangeA>)∩K for
every i ≤ `. The last direction d` belongs to F∗` ∩ kerA, so if s = c−A>y were a feasible
point, we would have 〈s, d`〉 = 〈c, d`〉 ≥ 0. However, by hypothesis, 〈d`, c〉 < 0.

We now prove (⇐) and the rest of theorem at the same time. First note that (D) and
(D′) share the same facial reduction sequences. Now, let {d1, . . . , d`} be a facial reduction
sequence for (D) such that 〈d`, c〉 < 0. Due to the assumption that (D) is infeasible, we
have θD = −∞. The reducing directions define a sequence of ` + 1 primal problems (Pi)
with θPi = inf{〈c, x〉 | Ax = 0, x ∈ F∗i } and Fi = K ∩ {d1}⊥ ∩ . . . ∩ {di−1}⊥. Since
〈d`, c〉 < 0, we have θP` = θD. Because (P`) is the problem obtained after ` − 1 facial
reduction steps, we have `− 1 ≥ dstr(D

′).
On the other hand, if {d1, . . . , d`} is a sequence of reduction directions that restores

strong duality in the sense of Definition 3.26 with ` = dstr(D
′), then, using the same

notation as before, we have θP`+1
= inf{〈c, x〉 | Ax = 0, x ∈ F∗`+1} = θD = −∞. This

shows that there exists some d`+1 ∈ kerA ∩ F∗`+1 with 〈c, d`+1〉 < 0.

We now discuss certificates for strong and weak infeasibility. Note that (D) is strongly
infeasible if and only if it admits a certificate of length one. That is, if and only if there
is d ∈ kerA ∩K∗ with 〈c, d〉 < 0.

For weakly infeasible problems, it is enough to recall that a problem is weakly infeasible
if it is infeasible and dist(c+ rangeA>,K) = 0. The latter is, of course, equivalent to (D)
not being strongly infeasible. Therefore, to certify weak infeasibility, it is enough to give a
certificate of infeasibility as in Proposition 4.3 and a certificate of not strong infeasibility,
which can be obtained from item i. of Theorem 4.4. Therefore, to certify weak infeasibility
we need in total (1+dstr(D

′))+(1+dstr(P
′)) vectors, which include (1+dstr(D

′)) reducing
directions for (D′), dstr(P

′) reducing directions for (P ′) and an additional feasible solution
to (D̂). Note also that the problems (P ′) and (D′) are duals of one another.

4.2 Weak infeasibility

In this section, we will take a closer look at weak infeasibility. Let L = rangeA> and
let the triple (K,L, c) denote the feasibility problem of trying to find x ∈ K ∩ (L + c).
Sometimes we will also write (K,V) with V = L + c to denote the same problem. Recall
that (K,L, c) is weakly infeasible if (L+ c) ∩ K = ∅ but dist (L+ c,K) = 0.

Many of the known characterizations of weak infeasibility involve, in a way or another,
infinite sequences (see Table 1 of Luo, Sturm and Zhang [55]). As a computer cannot verify
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infinite sequences, it is very hard to distinguish numerically between weak infeasibility and
weak feasibility, see, for instance, Pólik and Terlaky [70]. This motivates the search for
ways of checking infeasibility without using sequences as in the recent work for semidefinite
programming by Liu and Pataki [43], see Theorem 1 therein. See also Section 4.3 of [40]
by Klep and Schweighofer. These characterizations are finite and no infinite sequences are
needed.

We mention a few related work to weak infeasibility. The feasibility problem (K,L, c)
is weakly infeasible if and only if c ∈ cl (K + L) \ (K + L). Hence, a necessary condition
for weak infeasibility is that K + L fails to be closed. This problem is closely related to
closedness of the image of K by a linear map which is the problem analyzed in detail by
Pataki [65]. Corollary 3.1 in [65] provides a necessary and sufficient condition for the failure
of closedness of K + L, for the case when K is a nice cone. In that case, Pataki’s result
implies that (K,L, c) is weakly infeasible if and only if L⊥ ∩ (cl dir (x,K) \ dir (x,K)) 6= ∅,
where x belongs to the relative interior of L ∩ K and dir (x,K) is the cone of feasible
directions at x. This tells us whether K and L can accommodate a weakly infeasible
problem by choosing c in an appropriate manner.

Weakly infeasible problems are very hard to handle numerically, so they are interesting
challenges for SDP code. In [70], Pólik and Terlaky mentioned the need for a library of
infeasible problems. Later, Waki [88] showed that weakly infeasible SDPs sometimes
arise from polynomial optimization problems. Bonnans and Shapiro [10] also discussed
generation of weakly infeasible SDPs. As a by-product of the proof of Proposition 2.193
therein, it is shown how to construct weakly infeasible problems. More recently, Liu and
Pataki [44] also discussed methods to generate weakly infeasible problems algorithmically.

In [67], Pataki introduced the notion of well-behaved system. (K,L, c) is said to be
well-behaved if for all b ∈ Rm, the optimal value of (D) and of its dual are the same and
the dual is attained whenever it is finite. A problem which is not well-behaved is said
to be badly-behaved. Pataki showed that badly-behaved SDPs can be put into a special
shape, see Theorem 6 in [67]. Then, a necessary condition for weak infeasibility is that
the homogenized system (Sn+, L̃, 0) be badly-behaved, where L̃ is spanned by L and c. See
the comments before Section 4 in [67].

In [47], we showed that if K = Sn+ and (D) is weakly infeasible, then there is a subaffine
space L′ + c′ contained in L + c of dimension at most n − 1 such that (K,L′, c′) is also
weakly infeasible. This can be interpreted as saying that “we need at most n−1 directions
to approach the positive semidefinite cone”. In [44], Liu and Pataki generalized this result
and proved that those affine spaces always exist and `K∗ − 1 is an upper bound for the
dimension of V ′. We proved a bound of r for the direct product of r Lorentz cones [50],
which is tighter than the one in [44]. Here we will refine these results.

Theorem 4.4. i. Let (P ′) be the optimization problem inf{〈c, x〉 | Ax = 0, x ∈ K∗}.
Then, (D) is not strongly infeasible if and only if there are:

(a) a sequence of reducing directions {d1, . . . , d`} for (P ′) restoring strong duality in
the sense of Definition 3.26 with ` = dstr(P

′);

(b) a feasible slack ŝ to (D̂), where (D̂) is the problem sup{0 | c − A>y ∈ (K∗ ∩
{d1}⊥ . . . ∩ {d`}⊥)∗}.

ii. If (D) is not strongly infeasible, there is an affine subspace V ′ ⊆ V such that (V ′,K)
is not strongly infeasible and the dimension of V ′ satisfies

dim (V ′) ≤ dstr(P ′) ≤
r∑
i=1

`poly((Ki)∗),
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iii. If (D) is weakly infeasible, then (V ′,K) is weakly infeasible as well, where V ′ is the
space of item ii..

Proof. i. (⇒) Consider the optimization problem θD′ = sup{0 | c − A>y ∈ K}. Its
corresponding primal is θP ′ = inf{〈c, x〉 | Ax = 0, x ∈ K∗}. Due to the assumption
that (D) is not strongly infeasible, we have θP ′ = 0. Now, let {d1, . . . , d`} be a
sequence of reducing directions for (P ′) that restores strong duality in the sense of
Definition 3.26 with ` = dstr(P

′). This time, the reducing directions define faces
F̂1 ) . . . ) F̂`+1 of K∗ and we have F̂`+1 = K∗ ∩ {d1}⊥ ∩ . . . ∩ {d`}⊥.

Now (P ′) is equivalent to θP̂ = inf{〈c, x〉 | Ax = 0, x ∈ F̂`+1} and the corresponding
dual is θD̂ = sup{0 | c −A>y ∈ F∗`+1}. Since facial reduction done at (P ′) preserves
the primal optimal value, we have θP̂ = θP ′ = 0. Due to our assumption on the
facial reduction sequence, we have θD̂ = 0 and θD̂ is attained. It follows that there is
ŝ = c−A>ŷ such that ŝ ∈ F∗`+1.

(⇐) If (D) were strongly infeasible, then θP ′ = −∞. As θP ′ = θD̂, it would be

impossible for (D̂) to admit a feasible solution.

ii. Let V ′ be the affine space ŝ+L′, where L is spanned by the directions {d1, . . . , d`} of
item i. and ŝ is a feasible slack for (D̂). Since ` = dstr(P

′), we have dimV ′ = dstr(P
′).

Suppose for the sake of contradiction that (V ′,K) is strongly infeasible. Then, we can
use the same set {d1, . . . , d`} as reducing directions for inf{〈ŝ, x〉 | x ∈ L′⊥, x ∈ K∗}.
However, item ii. of Theorem 4.2 implies that sup{0 | s ∈ V ′ ∩ F∗`+1} is strongly
infeasible. But this is impossible, since ŝ is a feasible solution.

Since the number steps required for Phase 1 of FRA-Poly gives an upper bound for
dstr(P

′), we obtain dstr(P
′) ≤

∑r
i=1 `poly((Ki)∗).

iii. Finally, when (D) is infeasible, since V ′ ⊆ V and (V ′,K) is not strongly infeasible,
then it must be the case that (V ′,K) is weakly infeasible.

Due to Theorem 3.25, the bound in Theorem 4.4 will usually compare favorably to
`K∗ − 1. Moreover, it also recovers the bounds described in [47, 50]. Note also that the
problem (P ′) appearing in Theorem 4.4 is such that θP ′ < 0 if and only if (D) is strongly
infeasible.

We now discuss how to use the directions in Theorem 4.4 to construct points arbitrarily
close to the cone without the need of solving additional conic programs. We need a few
auxiliary facts. First, if K is a closed convex cone, then the “distance-to-K” function
satisfies the triangle inequality, i.e., for every a, b ∈ E , we have dist (a+b,K) ≤ dist (a,K)+
dist (b,K).

Lemma 4.5. Let d ∈ K and suppose that s ∈ E is such that dist (s, cl (K + TdK)) ≤ ε,
then

lim
t→+∞

dist (s+ td,K) ≤ ε (4.1)

Proof. Let δ > 0 be arbitrary. Then, there is xδ ∈ TdK, zδ ∈ K such that dist (s, xδ+zδ) ≤
ε+ δ. Then

dist (s+ td,K) ≤ dist (s− xδ − zδ,K) + dist (td+ xδ + zδ,K)

≤ ε+ δ + dist (td+ xδ + zδ,K)

≤ ε+ δ + dist (td+ xδ,K),

55



4.3. THE SDP CASE CHAPTER 4. APPLICATIONS

where the second inequality follows from the fact that dist (s − xδ − zδ,K) ≤ dist (s −
xδ − zδ, 0). The third inequality follows from zδ ∈ K. Because xδ ∈ TdK, we have
limt→+∞ dist (xδ + td,K) = 0, see item ix. of Lemma 2.5. It follows that

lim
t→+∞

dist (s+ td,K) ≤ ε+ δ.

Since δ is arbitrary, we conclude that Equation (4.1) holds.

Suppose that (D) is weakly infeasible and that we have reducing directions {d1, . . . , d`}
for (P ′) and a feasible slack ŝ to (D̂), as in Theorem 4.4. Suppose also that ε > 0 is given
and we wish to obtain a point in c+ rangeA>y whose distance to K is less or equal than
ε.

Recall that we have F1 = K∗ and Fi+1 = Fi ∩ {di}⊥ for every i = 1, . . . , `. Moreover,
F∗i+1 = cl (F∗i + F⊥i+1) = cl (F∗i + TdiF∗i ). This is because the equality Fi+1 = F(di,F∗i )∆

holds and also due to item viii. of Lemma 2.5, where F(di,F∗i ) is the minimal face of F∗i
which contains di.

Since ŝ is a feasible slack to (D̂), we have dist (s,F∗`+1) = dist (s, cl (F∗` + TdiF∗` )) = 0.
By Lemma 4.5, there is α` > 0 such that dist (ŝ + α`d`,F∗` ) ≤ ε

` . In a similar fashion,
F∗` = cl (F∗`−1 +TdiF∗`−1), so we can apply Lemma 4.5 using F∗`−1 in place of K and ŝ+α`d`
in place of s to conclude that there is α`−1 > 0 such that

dist (ŝ+ α`d` + α`−1d`−1,F∗`−1) ≤ 2ε

`
.

By induction, it follows that there are positive α`, . . . , α1 such that

dist

(
ŝ+

∑̀
i=1

αidi,F∗1

)
≤ ε.

Since F∗1 = K, this shows clearly how the directions can be used to approach the cone.
Note that Lemma 4.5 implies that, at each step it, is enough to pick di sufficiently large.
So a simple strategy to compute the αi is just to guess an initial value and keep increasing
it until the distance function satisfies the required bounds.

4.3 The SDP case

In the beginning of our research we paid special attention to the case K = Sn+. So, here we
will specialize some of our results to this case, which has the advantage of giving a more
concrete shape to what have been discussed so far. These results appeared originally in
[47].

As before, we will use the notation (Sn+,L, c) to denote the following Semidefinite
Feasibility Problem (SDFP).

find x, such that x ∈ Sn+ ∩ (L+ c), (SDFP)

where L ⊆ Sn is a subspace of symmetric matrices and c ∈ Sn. We will take a look at how
Theorem 4.4 looks like for the SDP case. First, we need the following auxiliary result.

Proposition 4.6. If (Sn+,L, c) is weakly infeasible, there exists a nonzero vector in Sn+∩L.

Proof. Due to weak infeasibility, there exists a sequence {lk} ⊆ L such that

lim
k→+∞

dist(lk + c,Sn+) = 0.
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Because there are no feasible solutions, the sequence {lk + c} can have no convergent sub-
sequences, from which we conclude that limk→+∞‖lk‖ = +∞. Removing, if necessary, the

lk that are zero, we can consider the bounded sequence
{
lk+c
‖lk‖

}
. Passing to a subsequence

if necessary, we may assume that it converges to some point z∗. The fact that Sn+ is a

cone implies that limk→+∞ dist( l
k+c
‖lk‖ ,Kn) = 0, so we conclude that z∗ ∈ Sn+.

Hence, z∗ = limk→+∞
lk+c
‖lk‖ = lk

‖lk‖ and z∗ ∈ L too.

4.3.1 A decomposition result.

First we introduce some notation. Given (Sn+,L, c) and a matrix A ∈ Sn+ ∩L with rank k,
we will call A a recession direction of rank k (a slightly abuse of the normal definition).
We remark that when (Sn+,L, c) is feasible, A is also a recession direction of the feasible
region. Moreover, A is a reducing direction for the problem (Sn+,L⊥, 0).

Let x ∈ Sn and 0 ≤ k ≤ n. We denote by πk(x). the upper left k × k principal
submatrix of x. For instance, if

x =

 1 2 3
2 4 5
3 5 6

 ,

then,

π2(x) =

(
1 2
2 4

)
.

We define the subproblem πk(Sn+,L, c) of (Sn+,L, c) to be

find u ∈ πk(L+ c), u � 0.

In other words, it is the feasibility problem (πk(Sn+), πk(L), πk(c)). We denote by πk(x), the
lower right (n−k)×(n−k) principal submatrix. In the example above, we have π2(x) = 6.
In a similar manner, we write πk(Sn+,L, c) for the feasibility problem (πk(Sn+), πk(L), πk(c)).
We remark that πn(x) = π0(x) = x and we define π0(x) = πn(x) = 0.

The proposition belows summarizes the properties of the Schur Complement. For
proofs, see Theorem 7.7.6 of [32].

Proposition 4.7 (Schur Complement). Suppose M =
(
A B
B> C

)
is a symmetric matrix

divided in blocks in a way that A is positive definite, then:

• M is positive definite if and only if C −B>A−1B is.

• M is positive semidefinite if and only if C −B>A−1B is.

We now discuss a version of Theorem 4.2 for SDPs.

Theorem 4.8. Let (Sn+,L, c) be a SDFP, and consider a subproblem πk(Sn+,L, c) for
some k > 0. If the subproblem πk(Sn+,L, c) admits an interior recession direction (i.e,
intπk(Sn+) ∩ πk(L) 6= ∅) then:

1. (Sn+,L, c) is strongly feasible if and only if πk(Sn+,L, c) is.

2. (Sn+,L, c) is strongly infeasible if and only if πk(Sn+,L, c) is.

3. (Sn+,L, c) is in weak status if and only if πk(Sn+,L, c) is.
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Proof. Due to the assumption, there exists a n× n matrix

x =

(
A 0
0 0

)
where A is a k × k positive definite matrix.

We now prove items 1 and 2. Item 3 will follow by elimination.

(1) ⇒) If y ∈ L + c is positive definite, all its principal submatrices are also positive
definite. Therefore, πk(y) is positive definite.

(1) ⇐) Suppose that y ∈ L + c is such that πk(y) ∈ intSn−k+ . Then, we may write
y =

(
F E
E> G

)
, where G is (n− k)× (n− k) and positive definite. For large and positive α,

F + αA is positive definite and the Schur complement of y + xα is G−E>(F + αA)−1E.
Since G is positive definite, it is clear that, increasing α if necessary, the Schur complement
is also positive definite. For such an α, y + xα ∈ (L+ c) ∩ intSn+.

(2) ⇒). Suppose (Sn+,L, c) strongly infeasible. Then there exists s ∈ Sn+ such that
s ∈ L⊥ and 〈s, c〉 = −1. As x ∈ L, we have s ∈ Sn+ ∩ {x}⊥. This means that s can

be written as
(

0 0
0 D

)
, where D belongs to Sn−k+ . It follows that πk(s) ∈ πk(L)⊥ and

〈πk(s), πk(c)〉 = −1. By item ii. of Proposition 2.7, πk(Sn+,L, c) is strongly infeasible.

(2) ⇐). Now, suppose πk(Sn+,L, c) is strongly infeasible. Note that πk is a non-
expansive map, i.e, ‖πk(y)− πk(z)‖ ≤ ‖y − z‖ holds. In particular, if

inf
y∈L+c,z∈Sn+

‖πk(y)− πk(z)‖ > 0,

then the same is true for infy∈L+c,z∈Sn+‖y − z‖.

4.3.2 Forward Procedure

Assume that (Sn+,L, c) admits a recession direction Ã1 of rank k1. Theorem 4.8 might not
be directly applicable but after appropriate congruence transformation by a nonsingular
matrix P1, we have that (Sn+, P>1 LP1, P

>
1 cP1) admits a recession direction of the form

A1 =

(
Â1 0
0 0

)
= P>1 Ã1P1,

where Â1 is a k1 × k1 positive definite matrix. The feasibility status of (Sn+,L, c) and

(Sn−k1+ , πk1(P>1 LP1), πk1(P>1 cP1))

are mostly the same in the sense that items 1− 3 of Theorem 4.8 hold.

Now, suppose that (Sn−k1+ , πk1(P>1 LP1), πk1(P>1 cP1)) admits a recession direction Ã2

of rank k2. Then, after appropriate congruence transformation by P̃2, we obtain that

(Sn−k1+ , P̃>2 π̄k1(P>1 LP1)P̃2, P̃
>
2 π̄k1(P>1 cP1)P̃2)

admits a recession direction of the form(
Â2 0
0 0

)
,

where Â2 is k2 × k2 positive definite matrix.

Now, the feasibility status of (Sn−k1+ , πk1(P>1 LP1), πk1(P>1 cP1)) and

(Sn−k1−k2+ , πk2(P̃>2 πk1(P>1 LP1)P̃2), πk2(P̃>2 πk1(P>1 LP1)P̃2))

58



CHAPTER 4. APPLICATIONS 4.3. THE SDP CASE

are mostly the same. Note that instead of applying a congruence transformation by P̃2 to
(Sn−k1+ , πk1(P>1 LP1), πk1(P>1 cP1)), we can apply a congruence transformation by

P2 =

(
Ik1 0

0 P̃2

)
to the original problem (Sn+, P>1 LP1, P

>
1 cP1), i.e., we consider(

Sn+, P>2 P>1 LP1P2, P
>
2 P
>
1 cP1P2

)
Then the subproblem defined by the (n−k1)×(n−k1) lower right block matrix is precisely

(Sn−k1+ , P̃>2 π̄k1(P>1 LP1)P̃2, P̃
>
2 π̄k1(P>1 cP1)P̃2),

and we may pick A2 ∈ P>2 P>1 LP1P2 such that

πk1+k2(A2) =

(
Â2 0
0 0

)
.

Note that A2 has the following shape

A2 =

 ∗ ∗ ∗
∗ Â2 0
∗ 0 0

 .

Generalizing the process outlined above, we obtain the following procedure, which we
call “forward procedure”. Note that the congruence matrix at each step can be taken to
be orthogonal. The set of matrices {A1, . . . , Am} obtained in this way will be called a
set of reducing directions. We note that {A1, . . . , Am} is exactly the same as the set of
matrices obtained when we apply FRA to the problem (P’) in Theorem 4.4. The only
caveat is that we “rotate” the problem to put it into a convenient shape before finding the
next direction.

After each application of Theorem 4.8, the size of the matrices is reduced at least by
one. This means that after at most n iterations, a subproblem with no nonzero reducing
directions is found. At this point, no further directions can be added and we will say that
the set of directions is maximal.
[Forward Procedure (FP)]

Input: (Sn+,L, c)
Output: an orthogonal P , a sequence k1, . . . , km and a maximal set of reducing

directions {A1, . . . , Am} contained in P>LP . The Ai are such that A1 =
(
Â1 0
0 0

)
, A2 =( ∗ ∗ ∗

∗ Â2 0
∗ 0 0

)
, A3 =

( ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ Â3 0
∗ ∗ 0 0

)
and so forth, where Âi is positive definite and lies in Ski+ , for

every i.

1. Set i := 1, L̃ := L, c̃ := c K := Sn+, P := In.

2. Find (i) Ãi ∈ L̃ ∩K, tr(Ãi) = 1 or (ii) B̃ ∈ L̃⊥ ∩ intK, tr(B̃) = 1. (Exactly one of
(i) and (ii) is solvable.) If (ii) is solvable, then stop. (No nonzero reducing direction
exists.)

3. Compute an orthogonal P̃ such that,

P̃>ÃiP̃ =

(
Âi 0
0 0

)
where Âi is a positive definite matrix. Let ki := rank(Ãi).
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4. Compute M =

(
Ik1+...+ki−1

0

0 P̃

)
and set P> := M>P>. (If i = 1, take M = P̃ )

5. Let Ai be any matrix in P>LP such that πk1+...+ki−1
(Ai) = P̃>ÃiP̃ . For each

1 ≤ j < i exchange Aj for M>AjM .

6. Set L̃ := πki(P̃
>L̃P̃ ), c̃ := πki(P̃

>c̃P̃ ), K := πki(Sn+), i := i+ 1 and return to Step 2.
(This step is just to pick the lower-right block after the congruence transformation.)

We now show that if FP is applied to (Sn+,L, c) then the final problem obtained can
never be weakly infeasible.

Proposition 4.9. Suppose that (Sn+,L, c) is such that there is a nonzero element in Sn+∩L.
Applying FP to (Sn+,L, c) we have that:

1. (Sn+,L, c) is strongly feasible if and only if πk1+...+km(Sn+, P>LP, P>cP ) is.

2. (Sn+,L, c) is strongly infeasible if and only if πk1+...+km(Sn+, P>LP, P>cP ) is.

3. (Sn+,L, c) is in weak status if and only if πk1+...+km(Sn+, P>LP, P>cP ) is weakly fea-
sible.

Proof. If m = 0, then the proposition follows because π0 is equal to the identity map. In
the case m = 1, the result follows from Theorem 4.8.

Note that at the i-th iteration, if a direction Ai is found then, after applying the
congruence transformation P̃ , πki(K, P̃

>L̃P̃ , P̃>c̃P̃ ) preserves feasibility properties in the
sense of Theorem 1. Note that it is a SDFP over Sn−k1−...−ki . Also, due to the way M is
selected, we have that equation πki(K, P̃

>L̃P̃ , P̃>c̃P̃ ) = πk1+...+ki(Sn+, P>LP, P>cP ) holds

after Line 4 and before L̃ and K are updated. This justifies items 1. and 2..
Consider the case where (Sn+,L, c) is in weak status. Due to Proposition 4.6, whenever

(Sn+, L̃, c̃) is weakly infeasible we can always find a new direction Ai and the size of problem

decreases by a positive amount, so that (Sn+, L̃, c̃) cannot be weakly infeasible for all
iterations. The only other possibility is weak feasibility, which justifies item 3.

The matrices A1, . . . , Am obtained through FP have the shape
Â1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,


∗ ∗ ∗ ∗
∗ Â2 0 0
∗ 0 0 0
∗ 0 0 0

 ,


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ Â3 0
∗ ∗ 0 0

 , . . .

where Â1, Â2, Â3, . . . are positive definite. The matrix Ai are referred to as reducing
directions, since the Âi are reducing directions. The problem πk1+...+km(Sn+, P>LP, P>cP )
will be referred to as the last subproblem of (Sn+,L, c).

We obtain the following alternative characterization of weak infeasibility based on FP.

Proposition 4.10. (K,L, c) is weakly infeasible if and only if it is in weak status and
is infeasible. Therefore, weak infeasibility is detected by executing FP for checking weak
status and FRA for checking infeasibility.

Example 4.11. Let

L+ c =



t v 1 u
v z + 2 v + 1 z + 1
1 v + 1 u− 1 s
u z + 1 s 0

 | t, u, v, s, z ∈ R

 . (4.2)
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and let us apply FP to (S4
+,L, c). The first direction can be, for instance, A1 =

(
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

)
.

Then k1 = 1 and P̃ is the identity, at this step. At next iteration, we have K = S3
+ and

L̃ =
{(

z v z
v u s
z s 0

)
| u, s, v, z ∈ R

}
. Then, Ã2 can be taken as

(
0 0 0
0 1 0
0 0 0

)
and k2 is 1. A possible

choice of P̃ is
(

0 1 0
1 0 0
0 0 1

)
. Then P is

(
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

)
and we can take A2 =

(
0 0 0 1
0 1 0 0
0 0 0 0
1 0 0 0

)
. L̃ is then

updated and it becomes {( z zz 0 ) | z ∈ R} . The procedure stops here, because 0 is the only
positive semidefinite matrix in L̃.

Now, π2(P>(L + c)P ) is
{(

z+2 z+1
z+1 0

)
| z ∈ R

}
, so π2(S4

+, P
>LP, P>cP ) is a weakly

feasible system. Therefore, by Proposition 4.9, (S4
+,L, c) has weak status and is either

weakly infeasible or weakly feasible. The 0 in the lower right corner of (4.2) forces u = 0,
z = −1 and s = 0, but this assignment produces a negative element in the diagonal. This
tells us that (S4

+,L, c) is infeasible so it must be weakly infeasible.

4.3.3 Number of directions required to approach the positive semidefi-
nite cone

Given a weakly infeasible (Sn+,L, c) a natural question is whether it is always possible
to select a point in x ∈ L + c and then a nonzero direction d ∈ Sn+ ∩ L such that
limt→+∞ dist(x + td,Sn+) = 0 or not. We call weakly infeasible problems having this
property directionally weakly infeasible (DWI). This means that we can approach the cone
by walking along a single direction. The simplest instance of DWI problem is

max 0 s.t.

(
t 1
1 0

)
∈ S2

+, t ∈ R.

Unfortunately, not all weakly infeasible problems are DWI, as shown in the following
instance.

Example 4.12 (A weakly infeasible problem that is not directionally weakly infeasible).

Let (S3
+,L, c) be such that L+ c =

{(
t 1 s
1 s 1
s 1 0

)
| t, s ∈ R

}
and let A1 =

(
1 0 0
0 0 0
0 0 0

)
.

Applying Theorem 1 twice, we see that the problem is in weak status. Looking at its 2×2
lower right block, we see this problem is infeasible and hence is weakly infeasible. But this
problem is not DWI. If (S3

+,L, c) were DWI, we would have limt→+∞ dist(tA1+c′,S3
+) = 0,

for some c′ ∈ L+ c. To show this does not hold, we fix s. Regardless of the value of t ≥ 0,
the minimum eigenvalue of the matrix is uniformly negative, since its 2 × 2 lower right
block is strongly infeasible.

In the following, we show that n − 1 directions are enough to approach the positive
semidefinite cone. First we discuss how the set of reducing directions {A1, . . . , Am} of
FP fits in the concept of tangent cone. We recall that for x ∈ Sn+ the cone of feasible
directions is the set dir (x,Sn+) = {d ∈ Sn | ∃t > 0 s.t x + td ∈ Sn+}. Then the tangent
cone at x is the closure of dir (x,Sn+) and is denoted by cl dir

(
x,Sn+

)
. Recall that by item

ix. of Lemma 2.5, we have that d ∈ cl dir
(
x,Sn+

)
implies limt→+∞ dist(tx+ d,Sn+) = 0.

We remark that if x =
(
D 0
0 0

)
, whereD is positive definite k×k matrix, then cl dir

(
x,Sn+

)
consists of all symmetric matrices ( ∗ ∗∗ E ), where ∗ denotes arbitrary entries and E is a pos-
itive semidefinite (n− k)× (n− k) matrix. See [63] for more details.

The output {A1, . . . , Am} of FP is such that A2 ∈ cl dir
(
A1,Sn+

)
. This is clear from the

shape of A1 and A2, and from a simple argument using the Schur Complement. Now, A3 is

such that πk1+k2(A3) is positive semidefinite. We have A2 =

( ∗ ∗ ∗ ∗
∗ Â2 0 0
∗ 0 0 0
∗ 0 0 0

)
A3 =

( ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ Â3 0
∗ ∗ 0 0

)
.

Then
( ∗ ∗ ∗
∗ Â3 0
∗ 0 0

)
∈ cl dir

((
Â2 0 0
0 0 0
0 0 0

)
,Sn−k1+

)
, i.e, πk1(A3) ∈ cl dir

(
πk1(A2),Sn−k1+

)
. Denote
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k1 + . . .+ ki by Ni and set N0 = 0. Then, for i > 2, we have:

πNi−2(Ai) ∈ cl dir
(
πNi−2(Ai−1),Sn−Ni−2

+

)
.

Moreover, if the last subproblem πNm(Sn+,L, c) has a feasible solution, we can pick some

c′ such that πNm(c′) is positive semidefinite. Then πNm−1(c′) ∈ cl dir
(
πNm−1(Am),Sn−Nm−1

+

)
.

Given ε > 0, by picking αm > 0 sufficiently large we have dist(πNm−1(c′+αmAm),Sn−Nm−1
+ ) <

ε. Now, πNm−2(x+ αmAm) does not necessarily lie on the tangent cone of πNm−2(Am−1)

at Sn−Nm−2
+ , but still it is possible to pick αm−1 > 0 such that

dist(πNm−2(c′ + αmAm + αm−1Am−1),Sn−Nm−2
+ ) < 2ε.

In order to show this, let h ∈ Sn−Nm−1
+ be such that

‖πNm−1(c′ + αmAm)− h‖ = dist(πNm−1(c′ + αmAm),Sn−Nm−1
+ ).

Now, define h̃ to be the matrix πNm−2(c′ + αmAm), except that the lower right (n −
km)× (n− km) block is replaced by h. It follows readily that h̃ lies on the tangent cone of
πNm−2(Am−1). Then, we may pick αm−1 > 0 sufficiently large such that dist(πNm−2(αmAm)+

h,Sn−Nm−2
+ ) < ε. Let y1 = πNm−2(c′ + αmAm), y2 = πNm−2(αm−1Am−1). We then have

the following implications:

dist(y1 + y2,Sn−Nm−2
+ ) ≤ dist(y1 − h̃,Sn−Nm−2

+ ) + dist(y2 + h̃,Sn−Nm−2
+ )

≤ ‖πNm−1(c′ + αmAm)− h‖+ ε ≤ 2ε.

If we continue in this way, it becomes clear that α1, . . . , αm can be selected such that
dist(c′ + αmAm + αm−1Am−1 + . . . + α1A1,Sn+) < mε. This shows how the directions
{A1, . . . , Am} can be used to construct points that are arbitrarily close to Sn+, when the
last subproblem is feasible. This leads to the next theorem, which is a special case of
Theorem 4.4.

Theorem 4.13. If (Sn+,L, c) is weakly infeasible then there exists an affine space of di-
mension at most n− 1 such that L′ + c′ ⊆ L+ c and (Sn+,L′, c′) is weakly infeasible.

Proof. The construction above shows that if L′ is the space spanned by {A1, . . . , Am}
and c′ is taken as above, then (Sn+,L′, c′) is weakly infeasible. As (Sn+,L, c) is weakly
infeasible, we have m > 0. We also have k1 + . . . + km ≤ n, which implies m ≤ n.
Notice that πn(Sn+, P>LP, P>cP ) is strongly feasible, because it is equal to the system
({0}, {0}, 0). Therefore, k1 + . . .+ km < n, which forces m < n.

Note that the discussion above is entirely analogous to what as done in Section 4.2. One
important difference is that in the SDP case, if F is a face of Sn+, we have F∗ = Sn+ +F⊥,
so Lemma 4.5 is not needed.

4.4 The SOCP case

When K is a direct product of several Lorentz cones, we can also be very concrete about
the analysis given so far. In this section, we present the analysis we did for SOCPs [50]
based on the idea of “relaxation sequences”.
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4.4.1 Relaxation of SOCFPs

In this subsection, we show how Second Order Cone Feasibility Problem (SOCFP) can be
relaxed in a way that the feasibility properties are mostly preserved. Consider a feasibility
problem of the form (K,L, c), where K is a direct product Kn1 × . . . ×Knm , where each
Kni is: the trivial cone {0}; Rni ; a Lorentz cone Qni ; a closed half-space defined by a
supporting hyperplane to Qni , i.e., Hni

d for d ∈ Qni \ {0}; or a half-line contained in Qni ,
i.e., h ni

d for d ∈ Qni .
Note that the family of cones having the format above is no more expressive than the

family of products of second order cones. Still, for our purposes we need to consider this
slightly more general situation because these cones will appear as byproducts of Theorem
4.15. We will call them extended second order cones. We remark that the dual cone K∗ is
the direct product of the duals of the cones Kni and it is also an extended second order
cone. It is also clear that we have (Hni

d )∗ = h ni
d .

Suppose that we have a non-zero element a ∈ K, then we define: i)H1(a,K) = {i |
Kni = Qni , ani ∈ riQni} and ii)H2(a,K) = {i | Kni = Qni , ani ∈ (relbdQni) \ {0}}. We
will omit K when it is clear from the context. The lemma below is an easier version of
Lemma 4.1.

Lemma 4.14. Let x ∈ Rn and a ∈ Qn be such that x>a′ > 0. Then x + ta ∈ riQn for
t > 0 sufficiently large.

Proof. The point a must be non-zero and if it is an interior point, then the statement
clearly holds. If a lies in the boundary, then

(x+ ta)2
0 − ‖x+ ta‖2 = 2t(a0x0 − aTx) + x2

0 − ‖x‖2.

However, a0x0 − aTx is equal to x>a′. So if t is large enough we have that (x + ta)2
0 −

‖x+ ta‖2 will be greater than 0.

Theorem 4.15. Let (K,L, c) be a feasibility problem such that K = Kn1 × . . . × Knm.
Suppose that there is a ∈ K ∩ L such that H1(a) ∪ H2(a) is non-empty. Define the cone
K̃ = K̃n1 × . . .× K̃nm such that for every i:

• K̃ni = Rni if i ∈ H1(a),

• K̃ni = Hni
d where d = a′ni, if i ∈ H2(a),

• K̃ni = Kni, otherwise.

Then

i. (K,L, c) is strongly feasible if and only if (K̃,L, c) is strongly feasible;

ii. (K,L, c) is in weak status if and only if (K̃,L, c) is in weak status;

iii. (K,L, c) is strongly infeasible if and only if (K̃,L, c) is strongly infeasible.

Proof. (i) If (K,L, c) is strongly feasible, then for a relative interior point y ∈ L + c, we
have yTnia

′
ni > 0, for all i ∈ H2(a). All the other coordinate blocks of yni stay in the

relative interior of the respective cones. So, (K̃,L, c) is strongly feasible.
Now, if (K̃,L, c) is strongly feasible we pick y ∈ L + c such that y lies in the relative

interior of K̃. For i ∈ H1(a) we have ani ∈ riQni and for i ∈ H2(a) we have yTnia
′
ni > 0.

Hence, if t is sufficiently large we have (y + ta)Tnia
′
ni ∈ int(Qni), for all i ∈ H1(a) ∪H2(a),

by Lemma 4.14. It is also clear that adding ta does not affect the fact that yni ∈ ri(Kni)
for i 6∈ H1(a) ∪H2(a).
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(iii) If (K̃,L, c) is strongly infeasible then (K,L, c) also is because K ⊆ K̃. Let us
prove the converse now. We have that (K,L, c) is strongly infeasible if and only if there
exists s such that s ∈ L⊥ ∩K∗ and sT c < 0 (see Lemma 5 of [55]). In particular, s>a = 0.
This means that s>niani = 0 for every i, because s ∈ K∗ and a ∈ K ∩ L. It follows that
for i ∈ H1(a) we have sni = 0. Also, for i ∈ H2(a) we have that sni is a non-negative
multiple of a′ni (including, of course, the possibility that sni is 0)2. We conclude that s also

produces strong separation for (K̃,L, c) because s ∈ K̃∗. So (K̃,L, c) is strongly infeasible.

Finally, (ii) follows by elimination.

After applying Theorem 4.15 to (K,L, c), it might still be possible to relax it further.
This motivates the next definition.

Definition 4.16 (Relaxation sequence). A relaxation sequence for (K,L, c) is a finite
sequence of conic feasibility problems {(K1,L, c), . . . , (Kγ ,L, c)} such that K1 = K and:

1. Every Ki is an extended second order cone.

2. For i > 1, there is di−1 ∈ Ki−1 ∩ L such that (Ki,L, c) is obtained as a result of
applying Theorem 4.15 to Ki−1 ∩ L and di−1. In addition, we must have Ki−1 ( Ki
(i.e., we do not admit trivial relaxations).

The vectors in {d1, . . . , dγ−1} are called reducing directions, due to the fact that they
came from the application of facial reduction to the dual system (K∗,L⊥, 0). A relaxation
sequence is maximal if it does not admit non-trivial relaxations. The problem (Kγ ,L, c)
is called the last problem of the sequence. The length of the sequence is defined to be γ.

Since every reducing direction is responsible for relaxing at least one Lorentz cone, the
maximum length of a relaxation sequence is m+1, where m is the number of second order
cones appearing in K. Each relaxed problem almost preserves the feasibility status of the
original, in the sense of Theorem 4.15. We will prove that when the relaxation sequence
is maximal, the last problem cannot be weakly infeasible. This is a version of Proposition
4.9 for SOCPs, but in this case, we need a partial polyhedrality result in order to prove
it.

Proposition 4.17. If {(K1,L, c), . . . , (Kγ ,L, c)} is a maximal relaxation sequence for
(K,L, c) then we have:

i. (K,L, c) is strongly feasible if and only if (Kγ ,L, c) is strongly feasible;

ii. (K,L, c) is in weak status if and only if (Kγ ,L, c) is weakly feasible;

iii. (K,L, c) is strongly infeasible if and only if (Kγ ,L, c) is strongly infeasible.

Proof. By induction and using Theorem 4.15, items (i) and (iii) follow. We can also
conclude that (K,L, c) is in weak status if and only if (Kγ ,L, c) is in weak status. Now,
suppose that (Kγ ,L, c) is infeasible and that (K,L, c) is in weak status. To finish the
proof, we have to show that (Kγ ,L, c) cannot be weakly infeasible.

Reordering if necessary, we may assume that Kγ = K̃ × P̃ , where K̃ is the direct

product of Lorentz cones and P is a polyhedral cone. In this case, P̃ is a direct product
of half-spaces and vector spaces. Now, we would like to use Proposition 3.15 by setting
C1 = L + c, C2 = K̃ and P = P̃ . Let us check that Equation (3.8) is satisfied. We have
recC1 ∩ (recC2 × recP ) = L ∩ (K̃ × P̃ ) and linC2 × recP = {0} × P̃ .

2Recall that if x, y ∈ Qn satisfy x>y = 0, then x0y + y0x = 0.
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Pick an element x ∈ L ∩ (K̃ × P̃ ). We must have x ∈ {0} × P , otherwise we would be
able to apply Proposition 4.15 one more time, which would contradict the assumption of
maximality. Since Equation (3.8) is satisfied, it follows that if (Kγ ,L, c) is infeasible, it
must be strongly infeasible.

Example 4.18. Let (K,L, c) be such that K = Q3 ×Q3 and L+ c = {(t, t, s)× (s, s, 1) |
(t, t, s) ∈ Q3, (s, s, 1) ∈ Q3}. Then, a = (1, 1, 0)× (0, 0, 0) ∈ K∩L. Thus, we can relax the
cone constraint from Q3×Q3 to H3

a′n1
×Q3. Now, b = (0, 0, 1)×(1, 1, 0) ∈ H3

a′n1
×Q3. Thus,

we can relax the problem from H3
a′n1
×Q3 to H3

a′n1
×H3

b′n2
. The problem (H3

a′n1
×H3

b′n2
,L, c)

is weakly feasible, because no point in L + c strictly satisfies the inequalities which define
H3
a′n1
× H3

b′n2
. This implies that (K,L, c) is in weak status. Since it is clear that (s, s, 1)

can never belong to Q3, the problem must be weakly infeasible.

4.4.2 The maximum number of directions needed to approach K

Let K be an extended second order cone, therefore it is a direct product of Lorentz cones
and polyhedral cones. Suppose that there are m Lorentz cones among them. In this
section, we will show that given a weakly infeasible feasibility problem (K,L, c) there is
c′ ∈ Rn, a subspace L′ contained in L of dimension at most m such that (K,L′, c′) is
weakly infeasible. This means that starting at c′, at most m directions are needed to
approach the cone. Note that, a priori, the number of direction needed to approach the
cone could be up to the dimension of the affine space L+c. Theorem 4.19 states, however,
it is bounded by m, regardless of the dimension of L+ c.

Theorem 4.19. Let (K,L, c) be a weakly infeasible problem. Then there are a subspace
L′ ⊆ L and c′ ∈ L+ c such that (K,L′, c′) is weakly infeasible and dimension of L′ + c′ is
at most m, where m is the number of Lorentz cones.

Proof. Let {(K1,L, c), . . . , (Kγ ,L, c)} be a maximal relaxation sequence and {d1, . . . , dγ−1}
the associated set of reducing directions. Each di is responsible for relaxing at least one
Lorentz cone. Since there are most m of them, there are at most m directions. Due to
Proposition 4.17, the last problem is weakly feasible, so it admits a feasible solution c′.

If L′ is the space spanned by {d1, . . . , dγ−1} then (K,L′, c′) is weakly infeasible. After
all, (K,L′, c′) shares the same maximal relaxation sequence and Proposition 4.17 implies
that (K,L′, c′) has weak status. Also, L′ + c′ is an affine subspace of L + c, so (K,L′, c′)
is an infeasible problem.
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Chapter 5

Completely solving CLPs with an
interior point oracle

Interior point methods (IPMs) [59] are one of the standard methods for solving conic linear
programs (CLPs). However, in order to function properly, they require that the problem
at hand satisfy certain regularity conditions which may fail to be satisfied in general and
this leads to numerical difficulties. The usual requirement is that both (P) and (D) be
strongly feasible. In this chapter, we suppose the existence of an idealized machine that is
able to solve any CLP having primal and dual relative interior feasible points and discuss
whether it could be used to solve other CLPs which might not satisfy that assumption.
In this chapter, we use the expression that an algorithm or a scheme completely solves an
CLP when it works in the following way.

1. It checks whether the CLP is feasible or not.

2. When the CLP is feasible, it computes the optimal value. If the optimal value is
attained, it computes a point in the relative interior of the optimal set. Moreover,
if the optimal value is not attained, given arbitrary small ε > 0, it can compute a
feasible point whose objective value is within ε distance of the optimal value.

3. When the CLP is infeasible, it distinguishes whether it is strongly infeasible, or
weakly infeasible. Whenever the CLP is strongly infeasible, it computes a certificate
of infeasibility. If the CLP is weakly infeasible, then it can compute a point in the
corresponding affine space whose distance to K is less than an arbitrary small given
positive number.

We now discuss why completely solving a conic linear program is not a trivial task.
We remark that most modern IPM softwares [78, 28, 84] do not require explicit knowledge
of an interior feasible point beforehand. SeDuMi [78], for instance, transforms a standard
form problem into the so-called homogeneous self-dual formulation, which has a trivial
starting point. SDPA [28] and SDPT3 [84] use an infeasible interior point method. The
fact that these methods can work without explicit knowledge of an interior feasible point,
does not mean that they do not require the existence of an interior feasible point. Quite the
opposite, the absence of interior feasible points may introduce theoretical and numerical
difficulties in recovering a solution for the original problem. Also, detection of infeasibility
is a complicated task. Some interior point methods, such as the one discussed in [60] by
Nesterov, Todd and Ye, are able to obtain a certificate of infeasibility if the problem is
dual or primal strongly infeasible, but the situation is less clear in the presence of weak
infeasibility.

Even with the aid of Facial Reduction, the situation is subtle. A key difficulty is
that even if we apply Facial Reduction to (D), this is only enough to restore dual strong
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feasibility and it is entirely possible that (D) is still unattained even after substituting
K by FDmin. Moreover, having a relative interior solution at only one of the sides of the
problem might not be enough to end the numerical difficulties. For instance, in [90], Waki,
Nakata and Muramatsu discussed SDP instances for which known solvers failed to obtain
the correct answer and in one case, this happened even though the problem had an interior
feasible point at the one of the sides of the problem but not at both.

The core of our approach is applying facial reduction two times. First at (D) then at
the primal problem inf{〈c, x〉 | Ax = b, x ∈ (FDmin)∗}. We then show that if θD is finite
then this is enough to obtain a pair of problems that are both strongly feasible. We then
use the tools discussed in the previous chapter to deal with the various possibilities of
infeasibility, nonattainment and so on.

As a by-product of our discussion, we also show the equivalence between the general
CLP optimization problem and the feasibility problem. A question that is trivial for Linear
Programming, but surprisingly subtle for the nonpolyhedral case.

5.1 Double FRA

After applying facial reduction to (D), it is not guaranteed that the new primal (P̃ ) will
be strongly feasible as well. Theorem 5.1 below says that if θD is finite then applying FRA
to (P̃ ) will produce a new pair of problems that are both strongly feasible and such that
the common optimal value is θD. Moreover, (D) is unbounded if and only if this second
facial reduction ends up detecting infeasibility.

Theorem 5.1. Suppose that (D) is feasible. We apply FRA to (D) and obtain the minimal
face FDmin. Now, substitute K∗ by (FDmin)∗ in (P) and denote the resulting problem by (P’).
Apply FRA to (P’) to obtain the minimal face FP ′min ⊆ (FDmin)∗. If FP ′min 6= ∅ substitute
(FDmin)∗ by FP ′min and FDmin by (FP ′min)∗ and denote the resulting problems by (P̃ ) and (D̃).
Then (P̃ ) and (D̃) is a pair of primal and dual conic linear programs such that:

i. θD is finite if and only if (P̃ ) and (D̃) are both strongly feasible. In this case the
common optimal value of (P̃ ) and (D̃) is θD.

ii. θD = +∞ if and only if FP ′min = ∅.

Proof. i. (⇒) If θD is finite, then (P’) attains the optimal value θD. In particular, (P ′)
is feasible. When FRA is applied to (P’), it becomes strongly feasible. By item i. of
Theorem 4.2, substituting FDmin by FP ′min

∗
preserves strong feasibility, so (P̃ ) and (D̃)

are both strongly feasible.

(⇐) The optimal value of D̃ is θD. If (P̃ ) and (D̃) are both strongly feasible, it must
be the case that θD < +∞ since any feasible solution to (P̃ ) generates an upper
bound to θD.

ii. Even though the item follows directly from the previous one, we will explain it a little
bit.

(⇒) If θD were finite, that would contradict the previous item.

(⇐) If FP ′min 6= ∅, then (P̃ ) would be strongly feasible, since it is the result of applying
FRA to (P ′). That would contradict the previous item as well.

5.2 Constructing almost optimal solutions

From the point of view of (D), the first application of facial reduction zeroes the duality
gap and the second one corrects nonattainment. We now take a closer look at this second
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step. Our objective is to show that the directions obtained at the second facial reduction
can be used to construct dual feasible points for (D) that are arbitrarily close to optimality.

In this subsection, our assumption is that (D) was reformulated over FDmin and a new
pair of primal and dual problems (P ′) and (D′) was obtained with θD′ = sup{〈b, y〉 |
c − A>y ∈ FDmin} and θP ′ = inf{〈c, x〉 | Ax = b, x ∈ (FDmin)∗}. We now apply FRA to
(P ′) and obtain problems (P̃ ) and (D̃) such that θP̃ = sup{〈b, y〉 | c − A>y ∈ FP ′min}
and θD̃ = inf{〈c, x〉 | Ax = b, x ∈ (FP ′min)∗}. Let {d1, . . . , d`} be the obtained reducing
directions. They are “dual objects” because they lie in rangeA>. It follows that there are
w1, . . . w` such that −A>wi = di ∈ rangeA>∩ (Fi \ linFi) and 〈b, wi〉 ≥ 0, where

Fi =

{
(F∗i−1 ∩ {di−1}⊥)∗ if i > 1

FDmin if i = 1
(5.1)

For x ∈ K, recall that F(x,K) denotes the minimal face of K which contains x. With this
notation, we have the relations Fi = F(di−1,Fi−1)∆∗ = cl (Fi−1 + F(di−1,Fi−1)∆⊥) =
cl (Fi−1 + Tdi−1

Fi−1), by item viii. of Lemma 2.5. We also have F`+1 = (FP ′min)∗.

Proposition 5.2. Suppose θD < +∞, so that FP ′min 6= ∅ and 〈b, wi〉 = 0, for every i. Now
suppose that y is such that c − A>y ∈ ri (FP ′min)∗, in other words, y is relative interior
solution for (D̃). Then there are α1, . . . , α` such that αi > 0 for every i and

c−A>ỹ ∈ riFDmin,

where

ỹ =

(
y +

∑̀
i=1

αiwi

)
. (5.2)

Moreover, 〈b, ỹ〉 = 〈b, y〉.

Proof. By what we remarked before, we have the relation (FP ′min)∗ = F`+1 = cl (F`+Td`F`).
By hypothesis, we have s = c−A>y ∈ ri (FP ′min)∗ ∈ riF`+Td`F`. Then, Lemma 4.1 ensures
the existence of α` > 0 such that s+α`d` ∈ riF`. We then proceed by induction to obtain
the coefficients α`−1, . . . , α1 in a “top-to-bottom” fashion.

Finally, (5.2) holds because we have 〈b, wi〉 = 0 for every i.

Since θD = θD̃ and (D̃) is strongly feasible, for every ε > 0 there is yε such that yε
is feasible for (D̃), 〈b, yε〉 > θD − ε and the corresponding slack sε = c − A>yε satisfies
sε ∈ ri (FP ′min)∗. We can then invoke Proposition 5.2 to obtain a feasible solution for (D)
with the same objective value. The caveat is that the coefficients αi can become arbitrary
large.

Suppose that sε is obtained and we already computed the reducing directions {d1, . . . , d`}.
As long as we are able to decide membership in Fi and riFi for every i, it is not necessary
to solve any additional conic programs in order to find out a possible choice of coefficients
that will generate ε-optimal solutions for (D). This is because sε + td` ∈ riF` for all t
sufficiently large and positive. So we may start with arbitrary positive value for α` and
increase it until sε + α`d` ∈ riF`. We then do the same with α`−1, . . . , α1.

Finally, note that it is also not necessary to solve a different conic problem to obtain
sε every time ε changes. It is enough to do it twice. First, obtain any relative interior
feasible slack s′ for (D′). Because (D̃) is attained, an optimal slack s∗ exists. Then for
every β ∈ [0, 1), we have zβ = βs∗ + (1 − β)s′ ∈ ri (FP ′min)∗, since s′ is a relative interior
solution. It is then clear that if we wish to obtain an ε-optimal solution for (D̃) that
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belongs to the relative interior, it is enough to take zβ with β sufficiently close to 1. We
can then select the αi appropriately and consider the element

zβ +
∑̀
i=1

diαi ∈ FDmin.

5.2.1 A comparison to an earlier work by Abrams

Note that if (D) were already strongly feasible to begin with, then FDmin = K and there is
no need to do facial reduction at the dual side (D). So applying facial reduction to the
primal problem (P) and considering the corresponding dual has the effect of correcting
nonattainment. Here we compare this approach to an earlier work by Abrams [1], that
seems to predate facial reduction by a few years. Abrams’ discussion is done in the context
of optimizing a convex function subject to convex constraints, but here we will restrict
our attention to the conic linear programming case.

For simplicity we will write (D) in “slack format” and we will also assume that the
linear system “Ax = b” has a solution x0. Recalling that L = rangeA>, we can write (D)
as the following equivalent problem:

inf
s
〈−x0, s〉 (D̂)

subject to s ∈ (c+ L) ∩ K.

If we specialize Abrams’ approach to conic linear programming we obtain the following
procedure:

1. Let S be the recession cone of (D̂). This is the set S = L ∩ K ∩ {s | 〈s, x0〉 ≥ 0}.

2. Let PS⊥ be the orthogonal projection on the subspace S⊥.

3. Let S0 = {(y, 0) ∈ Rm+1 | y ∈ S} and let PS⊥0
be orthogonal projection on S⊥0 =

S⊥ × R.

4. Let h be the convex function whose epigraph is cl (PS⊥0
(epi f)), where f(s) = 〈s,−x0〉.

We then substitute (D) by:

inf
s∈S⊥

h(s) (DS)

subject to s ∈ clPS⊥(FD ),

A key observation in Abrams’ work is that (D) can only be unattained if S 6= {0}. It
seems sensible to remove those troublesome directions by projecting the problem on S⊥.
Unfortunately, the new problem can still be unattained. So we repeat steps 1 through 4
until S = {0}. Of course, we still have to worry whether the optimal value will stay the
same. His Theorem 3.2 states that the optimal value is preserved if the relative interior
of the domain of the objective function intersects the relative interior of the feasible set.
As the objective function is finite everywhere, we are covered by Theorem 3.2.

Note that when (D) is not strongly feasible, then doing facial reduction at the primal
side corrects dual nonattainment, but at the cost of, perhaps, changing the dual optimal
value. Therefore, we will assume that (D) is strongly feasible and will show under this
hypothesis that Abram’s approach can be regarded as sequence of facial reduction/conic
expansion steps, where each step is followed by a projection. The first observation is that
the set S contains the reducing directions that are used to do facial reduction at the primal
side. Now we will take a look at h.
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Proposition 5.3. Suppose that S ⊆ {x0}⊥, this is the case if, for instance, (D) is feasible
and θD < +∞. Then, the function whose epigraph is cl (PS⊥0

(epi f)) is

h(s) =

{
−〈x0, s〉 s ∈ S⊥

+∞ s 6∈ S⊥.

Proof. Note that PS⊥0
(x, µ) = (P⊥S (x), µ). In addition, since f is a linear function,

cl (PS⊥0
(epi f)) = PS⊥0

(epi f). If (x, µ) ∈ epih with µ < +∞, then x ∈ S⊥ and (x, µ) ∈
epi f . As PS⊥(x) = x, we have epih ⊆ PS⊥0 (epi f).

We now show the opposite inclusion. Let (x, µ) ∈ epi f . We can write x = PS(x) +
PS⊥(x). Since S ⊆ {x0}⊥, we have 〈−x0, x〉 = 〈−x0, PS⊥(x)〉, which implies that (PS⊥(x), µ) ∈
epih.

Example 5.4. If the condition S ⊆ {x0}⊥ fails, then Proposition 5.3 may not hold.
Consider the problem θ = inf{−t − s | t ≥ 0, s = 0}. With our previous notation,
we have x0 = (−1,−1) and S = {(t, s) | −t ≥ 0, s = 0}, so that S⊥ = {0} × R and
PS⊥(−1,−1) = (0,−1). If we define ĥ as in Proposition 5.3 we have:

PS⊥0
(epi f) = {0} × R× R

epi ĥ = {(0, s, µ) | −s ≤ µ}.

However, the function h whose epigraph is PS⊥0
(epi f) is the one that maps (t, s) to −∞

if t = 0 and to +∞ if t 6= 0.

We will now take a more careful look at the constraints of (DS). In general, the
intersection of projections is different from the projection of intersection. Nevertheless,
Abrams shows that in this specific case we have

cl (PS⊥(FD )) = cl
(
PS⊥(c− rangeA>) ∩ PS⊥(K)

)
,

see Lemma 3.1 therein. Under the assumption of strong feasibility, we can distribute the
closure operator over the sets of an intersection. Gathering what we have discussed so far,
we can conclude that when θD < +∞ (i.e., θD̂ > −∞), and (D) is strongly feasible then
(DS) can be written as:

inf
s∈S⊥

〈−x0, s〉 (DS)

subject to s ∈
(
PS⊥(c− rangeA>) ∩ clPS⊥(K)

)
.

The next proposition connects what we have done so far with facial reduction.

Proposition 5.5. Suppose that C is a convex set contained in K, let d ∈ riC and let F
be the minimal face of K which contains d. Then

cl (K + spanC) = F∆∗ = cl (K + F∆⊥)

Proof. It is enough to prove that K∗∩{d}⊥ = K∗∩C⊥, since (K∗∩C⊥)∗ = cl (K+spanC).
Note that the inclusion K∗ ∩ {d}⊥ ⊇ K∗ ∩ C⊥ is immediate, since d ∈ C.

Let us prove the opposite inclusion. Suppose that z ∈ K∗ ∩ {d}⊥, then z defines a
supporting a hyperplane for C as well, since C ⊆ K. Since d is a relative interior point,
the equation 〈z, d〉 = 0 implies that {z}⊥ ⊇ C, so that z ∈ C⊥.
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In other words, K+spanS and K+F∆⊥ are almost the same, since they share the same
closure. It is an unfortunate fact, however, that they can be different. Still, cl (K+F∆⊥) is
precisely the dual of the cone obtained through a single facial reduction step by selecting d
as a reducing direction. We also remark that when S ⊆ {x0}⊥, cl (K+ spanS) correspond
to ΓB(K) where, B = {x0}⊥∩L and Γ is the so called “conic expansion operator”, defined in
Section 7 of [55]. On their way to proving the correspondence between conic expansion and
facial reduction, Waki and Muramatsu proved a result essentially equivalent to Proposition
5.5, see Theorem 3.1 therein.

Example 5.6. Let K = S2
+ and S = {

(
t 0
0 0

)
| t ≥ 0}. Note that K + spanS is not closed,

because
(

0 1
1 0

)
does not belong to K+spanS although it belongs to its closure. On the other

hand, if we pick a relative interior point of S and construct the corresponding minimal
face F of K, it is possible to check that K + F∆⊥ is closed. This can also be seen as a
consequence of the fact that the cone S2

+ is nice but devious, see [86] for more details on
nice and devious cones.

We now come to the main result of this section. Under the assumption of strong
feasibility of (D), Abram’s approach can be seen as a successive sequence of facial reduc-
tion/conic expansion steps followed by projections on the orthogonal complement of the
recession cone of the problem.

Theorem 5.7. Let d ∈ riS and let F = K∗ ∩ {d}⊥. When θD̂ > −∞ and (D) is strongly
feasible then

clPS⊥(K) = clPS⊥(K + F∆⊥).

In particular, (DS) is equivalent to:

inf
s∈S⊥

〈−x0, s〉 (DFRA)

subject to s ∈
(
PS⊥(c− rangeA>) ∩ clPS⊥(K + F∆⊥)

)
.

Proof. Recall that linear maps preserve relative interiors, so we have

riPS⊥(K) = riPS⊥(K + spanS)

= PS⊥(ri (cl (K + spanS)))

= PS⊥(ri (cl (K + F∆⊥)))

= riPS⊥(K + F∆⊥),

where the third inequality follows from Proposition 5.5. Since the cones have the same
relative interior, they must have the same closure as well.

5.3 Feasibility vs optimization in conic linear programming

We now discuss the equivalence between optimization and feasibility in conic linear pro-
gramming. Suppose that we have an oracle Oopt that receives as input (D) and returns the
optimal value θD and an optimal solution if it exists. If the problem is unbounded it returns
the symbol “+∞” and if the problem is infeasible it returns the symbol “−∞”. Of course,
any other symbol could be used in place of “+∞” and “−∞”. Suppose also the existence
of Ofeas that receives as input (D) and returns a feasible solution if it exists and the symbol
“−∞” if there is none. It is clear that we can simulate Ofeas by a single call to Oopt. The
more interesting question is whether we can simulate Oopt via polynomially (in m and n)
many calls to Ofeas. For linear programming, this is also easy because if θD is bounded, we
can just feed to Ofeas the system {(x, y) | x ∈ Rn+,Ax = b, c−A>y ∈ Rn+, 〈c, x〉−〈b, y〉 = 0}.
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If the problem is not bounded, there is also a simple system that can be fed to Ofeas to
detect that. For semidefinite programming, this does not work since there could be a
nonzero duality gap between (D) and (P). However, it follows from Ramana’s work that
a similar relation holds between optimization and feasibility in semidefinite programming,
see, in particular, Section 4.3 of [72].

Here we discuss how this could be done for the general linear conic problem. A first
attempt would be to do facial reduction and then feed {(x, y) | x ∈ FDmin

∗
,Ax = b, c −

A>y ∈ FDmin, 〈c, x〉−〈b, y〉 = 0} to Ofeas. This, unfortunately, does not work. Even though
the problem has zero duality gap, θD can be unattained. To fix that we have to do facial
reduction twice.

The first observation is to note that FRA can be done with polynomially many calls to
Ofeas. In fact, the FRA-Poly described in Section 3.3 must stop after finding at most
1 +

∑r
i=1 `poly(Ki) directions, where `poly(Ki) is the distance to polyhedrality. Since∑r

i=1 `poly(Ki) ≤ n, this establishes our claim.

Proposition 5.8. Oopt can be simulated with polynomially (in n and m) many calls to
Ofeas.

Proof. It is enough to follow the following recipe:

1. Check the feasibility of (D). If no feasible solution exists, stop. We have θD = −∞.

2. Do as indicated in Theorem 5.1.

3. If FP ′min = ∅ then stop. We have θD = +∞.

4. Otherwise, feed the system {(x, y) | x ∈ FP ′min,Ax = b, c−A>y ∈ FP ′min

∗
, 〈c, x〉− 〈b, y〉 =

0} to Ofeas and let (x∗, y∗) be the output. Then θD = 〈c, x∗〉.

5. Feed {y | c −A>y ∈ K, 〈b, y〉 = θD} to Ofeas. If (D) is attained then Ofeas will output
an optimal solution y∗.

In practice, for many classes of cones, the only kind of problems for which we have
hope of tackling directly are the ones that are strongly feasible at both the primal and the
dual side, since this is the minimum necessary for running interior point methods (IPMs).
So it makes sense to consider an even more restrictive oracle Oint that receives as input
a pair of problems (D), (P). If (D) and (P) are both strongly feasible, then the oracle
returns a pair of optimal solutions. Clearly, Ofeas can simulate Oint with a single call,
since it is enough to feed to it the feasibility system that correspond to the optimality
conditions. This time, it works because we are assuming strong feasibility at both sides.
What is, perhaps, less trivial is that we can also simulate Ofeas with Oint.

Theorem 5.9. It is possible to simulate Ofeas with polynomially (in m and n) many calls
to Oint. As a consequence, Oopt can be simulated with polynomially (in m and n) many
calls to Oint

Proof. Facial reduction can solve the feasibility problem and it can be done with polyno-
mially many calls to Oint by using the pair of problems (PK) and (DK). Note that this pair
of problems have easy to obtain interior feasible points. Namely, ( e∗

〈e,e∗〉+1 ,
1

〈e,e∗〉+1 ,
1

〈e,e∗〉+1)

for (PK) and (0,−1, 0) for (DK).
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5.4 Completely solving CLPs

In [49], we showed how to “completely solve” general SDPs with Oint. We now discuss how
to extend the results therein to general linear conic programs. First, “completely solving”
includes the ability to check feasibility/infeasibility, detect unboundedness, compute the
optimal value and produce an optimal solution if it exists. This is the part that is already
covered by Theorem 5.9. It is still missing how to obtain points in the relative interior of
the optimal set, when the problem is attained. In case of nonattainment, it would also be
desirable to obtain almost optimal solution. Finally, for weakly infeasible problems, we
would like to obtain points in c+ rangeA> that are arbitrarily close to K.

Here, we summarize the steps that one may take to completely solve (D) using the
Oint.

1) Use facial reduction to find FDmin and a relative interior solution y′ together with cor-
responding slack s′. If FDmin = ∅, then (D) is infeasible.

(a) If (D) is infeasible, solve the feasibility problem in item ii of Proposition 2.7, using
facial reduction. If that problem is infeasible, then (D) is weakly infeasible. If it
is feasible, then (D) is strongly infeasible.

(b) If (D) turns out to be weakly infeasible, the discussion in Section 4.2 shows how
to produce points arbitrarily close to K.

2) Reformulate (D) as a dual strongly feasible CLP over the face FDmin, denote the resulting
problem by (D′). Substitute K∗ by FDmin

∗
in (P) and denote the resulting problem by

(P’). Apply FRA to (P’) to obtain the minimal face FP ′min ⊆ FDmin
∗
, as in Theorem 5.1.

(a) If FP ′min = ∅ then θD = +∞.

3) If FP ′min 6= ∅ substitute FDmin
∗

by FP ′min and FDmin by FP ′min

∗
and denote the resulting

problems by (P̃ ) and (D̃). This case happens if and only if −∞ < θD < +∞

4) Note that at this point we also know relative interior feasible solutions to (P̃ ), since
it is the result of applying FRA to (P ′). Moreover, relative interior solutions to (D′)
are also relative interior solutions to (D̃), see the proof of Theorem 4.2. This means
we can invoke Oint with (P̃ ) and (D̃) as inputs. At this point, we will know θD and an
optimal solution y∗ to (D̃). .

5) Using y′, y∗ and the reducing directions obtained by applying FRA to (P’), we can
follow Section 5.2 and compute feasible solutions to (D) that are arbitrarily close to
optimality.

6) If we wish to check whether the problem is attained or not, we can solve the feasibility
problem of finding a point in {c − A>y ∈ FDmin | 〈b, y〉 = θD}. Applying FRA to this
problem we will also be able to find a relative interior solution of the set of optimal
solutions, if it is non-empty.

5.4.1 The SDP case

The oracles we considered in this chapter can be invoked with any choice of K. As this is a
strong assumption, we might be interested in restricting the possible K to certain families,
which reflects the fact that we only have access to solvers for certain types of problems.
Suppose that we have access to an interior point oracle for SDPs OSDP

int , which is the same
as Oint except that we are only allowed to invoke it with K = Sn+ for some n.

Note that the steps we described to completely solve (D) can also be used to handle
an arbitrary SDP. The only technical detail is that when doing facial reduction, we must
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solve problems over faces of Sn+ or over their dual. As each face is linearly isomorphic to
another Sk+ with k ≤ n, this is not a complicated technical issue. However, for the sake of
completeness, we will discuss it here.

Suppose that K = F∗, where F is a face of Sn+. In addition, we assume that (P) and
(D) are both strongly feasible, so that they are solvable via Oint. We will show that we
can transform (P) and (D) into an equivalent problem that is solvable by OSDP

int .
Recall that due to Proposition 2.10 there is a n × n orthogonal matrix q and r ≤ n

such that

q>Fq =

{(
a 0
0 0

)
∈ Sn | a ∈ Sr+

}
. (5.3)

Using the fact that q is orthogonal, we also have

q>F∗q =

{(
a b
b d

)
∈ Sn | a ∈ Sr+

}
. (5.4)

Now, consider the map ψ : Sn → Sr that takes x ∈ Sn to πr(q
>xq), where πr maps

an n × n matrix to its upper left r × r submatrix. Note that, restricted to F , ψ is a
bijection and maps F to Sr+. Now, let us compare FP = {x ∈ Sn | Ax = b, x ∈ F} and
FD = {y ∈ Rm | c−A>y ∈ F∗} with the feasible sets of the following pair of primal and
dual problems in standard form.

inf
xF

〈ψ(c), xF 〉 (Pψ)

subject to 〈ψ(Ai), xF 〉 = bi i = 1, . . . ,m

xF ∈ Sr+

sup
y
〈b, y〉 (Dψ)

subject to ψ(c)−
m∑
i=1

ψ(Ai)y ∈ Sr+,

Note that (Pψ) and (Dψ) are bona fide SDPs, so as long as they are both strongly feasible,

we may invoke OSDP
int to solve it. Denote the feasible region of (Pψ) by F̂P and the feasible

region of (Dψ) by F̂D .

Proposition 5.10. Consider the restriction of ψ to F . We have ψ(FP ) = F̂P and

ψ−1(F̂P ) = FP . Moreover, if x ∈ F , then 〈c, x〉 = 〈ψ(c), ψ(x)〉. At the dual side, we

have F̂D = FD .

Proof. Note that x ∈ FP if and only if x ∈ F and 〈Ai, x〉 = bi for every i. However, since
q is an orthogonal map, the equality 〈Ai, x〉 = bi holds if and only if 〈q>Aiq, q>xq〉 = bi
holds. Since x ∈ F and (5.3) holds, we have that 〈q>Aiq, q>xq〉 = 〈ψ(Ai), ψ(x)〉. This
same argument also shows that 〈c, x〉 = 〈ψ(c), ψ(x)〉. Using the fact ψ(F) = Sr+, it follows

that FP is mapped to F̂P by ψ. On the other hand, if we have some xF ∈ F̂P , we can
consider the unique element x ∈ F such that ψ(x) = xF and we will have x ∈ FP .

At the dual side, equation (5.4) readily shows that F̂D = FD .

Since we are under the assumption that (P) and (D) are both primal and dual strongly
feasible, it follows readily that (Pψ) and (Dψ) are strongly feasible as well. So we may
invoke OSDP

int to solve it. Now, Proposition 5.10 implies that the optimal value is the same
and we may use ψ to recover solutions for (P) and (D). For example, if x̂ is an optimal
solution for (Pψ), then q

(
x̂ 0
0 0

)
q> will be a primal optimal solution for (P).
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5.4.2 Previous discussions

In the SDP case, apart from the tools described so far, we also have Ramana’s extended
dual. We recall that the Ramana’s dual [72] is a substitute for the Lagrangian dual of
(D). Remarkable features of Ramana’s dual include the fact that it can be written as a
SDP, always affords zero duality gap and that the dual is always attained whenever the
primal optimal value is finite. However, Ramana’s dual is not necessarily suitable to be
used with IPMs due to the fact that it does not ensure the existence of interior feasible
points at both sides. In particular, we might not be able to invoke OSDP

int with a problem
and its Ramana’s dual.

Nevertheless, there is an approach due to de Klerk, Terlaky and Roos [19] that also
aims at solving (D) in a thorough way and makes use of Ramana’s dual. Their tool of
choice is a self-dual embedding strategy of the original pair (P) and (D). However, in the
absence of both primal and dual strong feasibility, the embedded problem might fail to
reveal the optimal value of the original problem or detect infeasibility/nonattainment. To
account for that, they go for a second step, where they consider an embedded problem
using Ramana’s dual. The Ramana’s dual (PR) is a substitute for (P) and they consider
the pair formed by (PR) and its dual (Dcor), which is a “corrected” version of (D). The pair
(PR, Dcor) can then be solved by their embedding strategy to find θD. As the embedded
problem is both primal and dual strongly feasible, it is possible to invoke Oint to solve
it. However, if the solution given by Oint is not of maximum rank at both steps, their
strategy might not work. We should mention that they do show in detail how to build
an interior point method suitable for their approach. Our analysis, on the other hand, is
completely agnostic to the inner workings of the interior point oracle and no assumption
is made on the optimal solutions returned by Oint.

However, missing from their analysis is how one can recover a solution to (D) from a
solution to (Dcor) or to check that this is not possible. Moreover, it is not clear from their
approach how to obtain points close to optimality in case of nonattainment, or points close
to feasibility in case of weak infeasibility.

5.5 A complete example

Here we give a complete example of our approach, as applied to the problem (NASTY-D),
discussed in Section 2.4. For convenience, we restate it here. This time, however we will
permute some of the rows and columns.

sup
y∈R8

− y4 − 2y6 − 2y7 (NASTY-D)

subject to



y1 y3 − 1
y1 y5 − 1

y2 y3

y3 y4 − y5

y4 −0.5y8 + 0.5 y6

−0.5y8 + 0.5 y8 y7

y6 y7 0
y3 − 1 y5 − 1 0


∈ S8

+.
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We have θD = −1, θP = 0 and neither (NASTY-D) nor its primal are attained. The first
step is to apply facial reduction to (D). A possible reducing direction is

d1 =



0
0

0
0

0
0

1
1


.

Then, if x ∈ S8
+ ∩ {d1}⊥, then xij = 0 if i ∈ {7, 8} or j ∈ {7, 8}. We can then reformulate

(NASTY-D) as the following 6× 6 SDP.

sup
y∈R4

− y4 (NASTY-D’)

subject to



y1

y1

y2 1
1 y4 − 1

y4 −0.5y8 + 0.5
−0.5y8 + 0.5 y8

 ∈ S
6
+.

Note that (y1, y2, y4, y8) is feasible for (NASTY-D’) if and only if (y1, y2, 1, y4, 1, 0, 0, y8)
is feasible for (NASTY-D). The new problem (NASTY-D’) is strongly feasible, since a
relative interior slack can be obtained by considering y = (1, 2, 2, 1). This means that
FDmin = S8

+ ∩ {d1}⊥ and facial reduction ends in one step. Note that problem is not
attained. In order to fix that, we write down the corresponding primal problem.

inf
x

2x34 − x44 + x56 (NASTY-P’)

subject to − x11 − x22 = 0

− x33 = 0

− x44 − x55 = −1

x56 = 0

x ∈ S6
+.

As expected, there is no duality gap and an optimal solution to (NASTY-P’) is the matrix
x such that x44 = 1 and all the other entries are zero. Note that (NASTY-P’) is not
strongly feasible. We then apply facial reduction to it. One possible reducing direction is

d′1 =



1
1

1
0

0
0

 .

The face S6
+ ∩ {d′1}⊥ contains the feasible region of (NASTY-P’) and is such that if

x ∈ S6
+ ∩ {d′1}⊥ then xij = 0 for i ∈ {1, 2, 3} or j ∈ {1, 2, 3}. We can then reformulate

(NASTY-P’) as the following 3× 3 SDP.
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inf
x

− x11 + x23 (NASTY-P”)

subject to − x11 − x22 = −1

x23 = 0

x ∈ S3
+.

Note that the feasible solutions to (NASTY-P”) are precisely the projection of feasible
solution to (NASTY-P’). More precisely, x ∈ S3 is feasible for (NASTY-P”) if and only
if
(

0 0
0 x

)
∈ S6 is feasible for (NASTY-P’). After a single facial reduction step, the new

problem (NASTY-P”) is strongly feasible since 1
2I3 is a feasible solution, where I3 is the

3× 3 identity matrix.
Note that the feasible region of the dual problem can be found by “ignoring” the upper

left 3× 3 positive semidefinite constraint in (NASTY-D’).

sup
y∈R2

− y4 (NASTY-D”)

subject to

y4 − 1
y4 −0.5y8 + 0.5

−0.5y8 + 0.5 y8

 ∈ S3
+.

The optimal value is (NASTY-D”) is attained, since it is enough to take y4 = 1 and
y8 = 1. Moreover (NASTY-D”) and (NASTY-P”) are a pair of strongly feasible SDPs, so
we can use OSDP

int to solve them. Unfortunately from an optimal solution to (NASTY-D”)
we cannot recover an optimal solution to (NASTY-D), since the latter is not attained.
Nevertheless, the recipe in Section 5.2 allows us to construct almost optimal points.

For every ε > 0, (1 + ε, 1) is a relative interior solution to (NASTY-D”). However,
(0, 0, 1 + ε, 1) is not feasible for (NASTY-D’). Let sε denote the corresponding slack to
(0, 0, 1 + ε, 1). Then, following the discussion after Proposition 5.2, if α > 0 is large then
αd′1 + sε is a feasible slack for (NASTY-D’) that has value −1 + ε. We can then recover a
feasible slack for (NASTY-D) with the same value.
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Chapter 6

Slack variables, optimality
conditions and numerical
experiments for NSDPs

In this chapter, we will take a look at the following problem.

minimize
x

f(x)

subject to G(x) ∈ Sm+ ,
(P1)

where f : Rn → R and G : Rn → Sm are twice continuously differentiable functions, Sm is
the linear space of real symmetric matrices of dimension m ×m, and Sm+ is the cone of
positive semidefinite matrices in Sm.

We denote the Jordan product by · ◦ ·. This is the bilinear operator that takes W and
Z to

W ◦ Z .
=
WZ + ZW

2
,

for every W,Z ∈ Sm. Recall that the positive semidefinite cone Sm+ is the cone of squares
induced by ◦. That is, Sm+ = {Y ◦ Y | Y ∈ Sm}. This suggests that we can reformulate
(P1) as

minimize
x,Y

f(x)

subject to G(x)− Y ◦ Y = 0.
(P2)

Second Order Optimality Conditions (SOCs) for (P1) were originally derived by Shapiro
in [77] and it might be fair to say that the second order analysis of (P1) is more intricated
than its counterpart for classical nonlinear programs. That is one of the reasons why there
is interest in alternative ways of deriving optimality conditions for (P1), see the articles
by Forsgren [25] and Jarre [34]. Here, we propose a different route.

As in the nonlinear second-order cone programming case [29], if (x∗, Y ∗) is a global
(local) minimizer of (P2), then x∗ is a global (local) minimizer of (P1). Moreover, if x∗ is a
global (local) minimizer of (P1), then there exists Y ∗ such that (x∗, Y ∗) is a global (local)
minimizer of (P2). Therefore, optimality conditions for (P2) induce optimality conditions
for (P1) as well.

At this point we remark that SOCs for both problems are vastly different. While (P2)
is a run-of-the-mill nonlinear programming problem, (P1) has nonlinear conic constraints,
which are more difficult to deal with. Moreover, since the 80’s, it is known that SOCs for
it should include an extra term which take into account the curvature of the cone, see the
papers by Kawasaki [37], Cominetti [17] and Shapiro [77].

The main contribution of this chapter is showing that, under appropriate regularity
conditions, second order conditions for (P1) and (P2) are essentially the same, as we
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will see in Propositions 6.15, 6.16, 6.18 and 6.19. This suggests that the addition of the
slack term already encapsulates most of the nonlinear structure of the cone. Of possible
independent interest, we present a sharp characterization of positive semidefiniteness that
takes into account the rank information, see Lemma 6.1.

We also take a look at the relation between Karush-Kuhn-Tucker (KKT) points of
(P1) and (P2). For instance, if (x, Y,Λ) is a KKT point for (P2), it is not always true
that (x,Λ) will be a KKT point for (P1). In this paper, we shall take a closer look at this
issue and also investigate the relation between constraint qualifications for (P1) and (P2).

Finally, we present a few simple numerical experiments where NSDPs are reformulated
using slack variables. Note that we are not necessarily advocating the use of slack variables
and we are, instead, driven by curiosity about its computational prospects. Nevertheless,
there are a few reasons why this could be interesting.

First of all, conventional wisdom would say that using squared squared slack variables
is a bad idea, but, in reality, even for linear SDPs there are good reasons to (sometimes) use
such variables. In [14, 15], Burer and Monteiro transform a linear SDP inf{trace(CX) |
AX = b,X ∈ Sm+ }, with X ∈ Sn into inf{trace(CV V >) | AV V > = b}, where V is a
square matrix and trace denotes the trace map. The idea was to use a theorem, proven
independently by Barvinok [5] and Pataki [62], which bounds the rank of the possible
optimal solutions. By doing so, it is possible to restrict V to be a rectangular matrix
instead of a square one, thus reducing the number of variables.

Furthermore, while there are a number of solvers for linear SDPs, as we move to
general nonlinear programs, the situation changes drastically. Of course, there are a
number algorithms proposed in the literature, such as augmented Lagrangian methods
[41, 53, 81, 82], sequential semidefinite programming [21, 27, 30, 36] and interior-point
methods [33, 91, 93]. See also the survey by Yamashita and Yabe [92]. Still, there is a
scarcity of widely used solvers such as PENNON [41] and its open-source version PENLAB
[24]. In fact, apart from PENLAB, we are not aware of any other open-source general solver
that is also capable of handling NSDPs. In comparison, nonlinear programming solvers
have benefited from a few more decades of polishing and they are widely available for a
plethora of languages, operational systems and computer systems. So, it makes sense to
check the feasibility of solving (P1) via (P2), as it enables one to use different well-tested
and high-quality solvers.

6.1 Preliminaries and a sharp characterization of positive
semidefiniteness

It is a well-known fact that a matrix Λ ∈ Sm is positive semidefinite if and only if 〈Λ,W 2〉 ≥
0 for all W ∈ Sm. This statement is equivalent to the self-duality of the cone Sm+ .
However, we get no information about the rank of Λ. In the next lemma, we give a
new characterization of positive semidefinite matrices, which takes into account the rank
information.

Lemma 6.1. Let Λ ∈ Sm. The following statements are equivalent:

i. Λ ∈ Sm+ ,

ii. there exists Y ∈ Sm such that

Y ◦ Λ = 0 and 〈W ◦W,Λ〉 > 0, (6.1)

for every nonzero W ∈ Sm which satisfies Y ◦W = 0.

For any Y satisfying (6.1) we have that rank Λ = m− rankY . Moreover, if σ and σ′ are
nonzero eigenvalues of Y , then σ + σ′ 6= 0.
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Proof. Let us prove first that ii. implies i. Since the inner product is invariant under
orthogonal transformations, without loss of generality we may assume that Y is diagonal,
i.e.,

Y =

(
D 0
0 0

)
,

where D is a k × k non-singular diagonal matrix, where k is the rank of Y . We divide Λ
in blocks in a similar fashion:

Λ =

(
A B
B> C

)
,

where A ∈ Sk, B ∈ Rk×(m−k), C ∈ Sm−k. The Jordan product between Y and Λ can be
written as

Y ◦ Λ =

(
D ◦A DB/2
B>D/2 0

)
.

Since D is non-singular, Y ◦ Λ = 0 implies B = 0. Since D is diagonal, we have

2(D ◦A)ij = Aij(Dii +Djj). (6.2)

Again, because D is non-singular, it must be the case that all diagonal elements of A
should be zero. We will prove that, actually, A = 0.

So, suppose that Aij is non-zero for some i and j, with i 6= j. In face of (6.2), this
can only happen if Dii +Djj = 0. Now, let W ∈ Sk be such that it contains two non-zero
elements, Wij = 1 and Wji = 1. Then, W ◦D = 0. Moreover W 2 = W ◦W is the diagonal

matrix having 1 in the (i, i) entry and 1 in the (j, j) entry. Now, taking W̃ =
(
W 0
0 0

)
, we

observe that W̃ ◦ Y = 0. Moreover, 〈W̃ 2,Λ〉 = 0, because Aii and Ajj are zero. This
contradicts our assumptions, and it follows that A must be 0. The same argument shows
that Dii +Djj is never zero, which corresponds to the statement about eigenvalues σ and
σ′ in the lemma.

So far, we have shown that Λ can be written as
(

0 0
0 C

)
. Let us show that C is positive

definite. Let H ∈ Sm−k be arbitrarily chosen. Then the Jordan product between
(

0 0
0 H

)
and Y is 0. It follows that 〈H2, C〉 > 0, which implies that C is positive definite. In
particular, the rank of Λ is equal to the rank of C which is m− rankY .

Let us prove the converse. Similarly, it is enough to consider the case where Λ can be
written as

(
0 0
0 C

)
, with C positive definite. Then, it is enough to take Y =

(
E 0
0 0

)
, where

E is any positive definite matrix. It follows that any matrix W which satisfies Y ◦W = 0,
must have the shape

(
0 0
0 F

)
, for some matrix F . Since C is positive definite, it becomes

clear that 〈W ◦W,Λ〉 > 0, if W is non-zero.

The statement about the sum of non-zero eigenvalues might seem innocuous at first,
but it will be very useful in Section 6.4. For A ∈ Sm, denote by LA : Sm → Sm the linear
operator defined by:

LA(E)
.
= A ◦ E,

for all E ∈ Sm. There are many examples of invertible matrices A for which the operator
LA is non-invertible and this is essentially due to the failure of the condition on the
eigenvalues1. The following proposition is well-known in the context of Euclidean Jordan
algebras (see Proposition 1 of Sturm [80]), but we include here a short-proof nevertheless.

Proposition 6.2. Let A ∈ Sm. Then LA is invertible if and only if σ + σ′ 6= 0 for every
pair of eigenvalues σ, σ′ of A (in particular, A must be invertible).

1Take A =
(
1 0
0 −1

)
, for example.
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Proof. The statements in the proposition are all invariant under orthogonal transforma-
tions, thus before we proceed we may assume, again, that A is already diagonalized, so
Akk is an eigenvalue of A for every k = 1, . . . ,m.

Let us show that the invertibility of LA implies the statement about the eigenvalues
of A. We will do so by proving the contrapositive. Take i and j such that Aii + Ajj = 0.
Consider also W such that all the entries are zero except for Wij = Wji = 1. For such a
W we have A ◦W = 0. This shows that the kernel of LA is non-trivial and consequently,
LA is not invertible.

Reciprocally, since we assume that A is diagonal, for every W ∈ Sm, we have

2(LA(W ))ij = Wij(Aii +Ajj),

for all i and j. Due to the fact that Aii + Ajj is never zero, the kernel of LA must only
contain the zero matrix. Hence LA is invertible.

In view of Proposition 6.2, the matrix D which appears in the proof of Lemma 6.1 is
such that LD is invertible. This will play an important role when we discuss the relation
between the second-order sufficient conditions (SOSCs) of problems (P1) and (P2).

Lemma 6.3. The following statements hold.

(a) For any matrices A,B ∈ Rm×m, let ϕ : Rm×m → R be defined by ϕ(Z)
.
= trace(Z>AZB).

Then, we have ∇ϕ(Z) = AZB +A>ZB>.

(b) For any matrix A ∈ Sm, let ϕ : Sm → R be defined by ϕ(Z)
.
= 〈Z ◦ Z,A〉. Then, we

have ∇ϕ(Z) = 2Z ◦A.

(c) For any matrix A ∈ Rm×m and function θ : Rn → Sm, let ψ : Rn → R be defined by
ψ(x) = 〈θ(x), A〉. Then, we have ∇ψ(x) = ∇θ(x)∗A.

(d) Let A,B ∈ Sm. Then, they commute, i.e., AB = BA, if and only if A and B are si-
multaneously diagonalizable by an orthogonal matrix, i.e., there exists an orthogonal
matrix Q such that QAQ> and QBQ> are diagonal.

(e) Let A,B ∈ Sm+ . Then, AB = 0 if and only if 〈A,B〉 = 0.

Proof. (a) See [6, Section 10.7].

(b) Note that ϕ(Z) = 〈Z ◦ Z,Λ〉 = 1
2〈ZZ

>, A〉+1
2〈Z

>Z,A〉 = 1
2trace(ZZ>A)+1

2trace(Z>ZA) =
1
2trace(Z>AZ) + 1

2trace(Z>ZA). Let ϕ1(Z) = trace(Z>AZ) and ϕ2(Z) = trace(Z>ZA).
Then, from item (a), we have ∇ϕ1(Z) = AZ + A>Z and ∇ϕ2(Z) = ZA + ZA>. Taking
into account the symmetry of A, we have ∇ϕ1(Z) = 2AZ and ∇ϕ2(Z) = 2ZA. Hence we
have ∇ϕ(Z) = 1

2∇ϕ1(Z) + 1
2∇ϕ2(Z) = 2A ◦ Z.

(c) Observe that ψ(x) = 〈θ(x), A〉 = trace(θ(x)A) =
∑

i,j θ(x)ijAij for any x ∈ Rn. Then,
we have

∇ψ(x) =


∑

i,j(∂θ(x)ij/∂x1)Aij
...∑

i,j(∂θ(x)ij/∂xn)Aij

 =

 〈∂θ(x)/∂x1, A〉
...

〈∂θ(x)/∂xn, A〉

 = ∇θ(x)∗A,

where the last equality follows from the definition of adjoint operator.

(d) See [6, Section 8.17].

(e) See [6, Section 8.12].
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6.1.1 KKT conditions

Let the Lagrangian function L : Rn × Sm → R of problem (P1) be defined by

L(x,Λ)
.
= f(x)− 〈G(x),Λ〉.

We say that (x,Λ) ∈ Rn×Sm is a KKT pair of problem (P1) if the following conditions
are satisfied:

∇xL(x,Λ) = 0, (P1.1)

Λ � 0, (P1.2)

G(x) � 0, (P1.3)

Λ ◦G(x) = 0, (P1.4)

where, from Lemma 6.3(c), we have ∇xL(x,Λ) = ∇f(x)−∇G(x)∗Λ. Applying the trace
map at both sides of (P1.4), we see that condition (P1.4) is equivalent to 〈Λ, G(x)〉 = 0.
This result, together with the fact that Λ � 0 and G(x) � 0, shows that (P1.4) is also
equivalent to ΛG(x) = 0, by Lemma 6.3(e). Moreover, the equality (P1.4) implies that
Λ and G(x) commute, which means, by Lemma 6.3(d), that they are simultaneously
diagonalizable by an orthogonal matrix. We also have the following definition.

Definition 6.4 (Strict complementarity). If (x,Λ) ∈ Rn × Sm is a KKT pair of (P1)
such that rankG(x)+rank Λ = m, then (x,Λ) is said to satisfy the strict complementarity
condition.

As for the equality constrained problem (P2), (x, Y,Λ) ∈ Rn × Sm × Sm is a KKT
triple if the conditions below are satisfied:

∇(x,Y )L(x, Y,Λ) = 0,

G(x)− Y ◦ Y = 0,

where the Lagrangian function L(x, Y,Λ) : Rn × Sm × Sm → R is given by

L(x, Y,Λ)
.
= f(x)− 〈G(x)− Y ◦ Y,Λ〉.

From Lemma 6.3(b),(c), these conditions can be written as follows:

∇f(x)−∇G(x)∗Λ = 0, (P2.1)

Λ ◦ Y = 0, (P2.2)

G(x)− Y ◦ Y = 0. (P2.3)

6.1.2 Constraint Qualifications

For (P1), we say that the Mangasarian-Fromovitz Constraint Qualification (MFCQ) holds
at a point x if there exists some d such that

G(x) +∇G(x)d ∈ intSm+ ,

where intSm+ denotes the interior of Sn+, that is, the set of symmetric positive definite
matrices. If x is a local minimum for (P1), MFCQ ensures the existence of a Lagrange
Multiplier Λ and that the set of multipliers is bounded. A more restrictive assump-
tion is the nondegeneracy condition discussed in [77], where it is presented in terms of a
transversality condition on the map G. However, at the end, it boils down to the following
condition:

Sm = lin cl dir
(
G(x),Sm+

)
+ Im∇G(x), (Nondegeneracy)
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where Im∇G(x) denotes the image of the linear map ∇G(x) and lin cl dir
(
G(x),Sn+

)
is the lineality space of the tangent cone cl dir

(
G(x),Sn+

)
, i.e, lin cl dir

(
G(x),Sn+

)
=

cl dir
(
G(x),Sn+

)
∩ −cl dir

(
G(x),Sn+

)
(see, for instance, the observations on page 310 in

[77]). The good thing about (Nondegeneracy) is that it ensures that Λ is unique.

For the problem (P2), a common constraint qualification is the Linear Independence
Constraint Qualification (LICQ), which simply requires that the gradient of the constraints
be linearly independent. In Section 6.3, we will show that LICQ and (Nondegeneracy) are
essentially equivalent.

6.1.3 Second-order conditions

Since (P2) is just an ordinary equality constrained nonlinear program, second-order suffi-
cient conditions are well-known and can be written as follows.

Proposition 6.5. Let (x, Y,Λ) ∈ Rn×Sm×Sm be a KKT pair of the problem (P2). The
second-order sufficient condition (SOSC-NLP) holds if

〈∇2
xL(x,Λ)v, v〉+ 2〈W ◦W,Λ〉 > 0 (6.3)

for every non-zero (v,W ) ∈ Rn × Sm such that ∇G(x)v − 2Y ◦W = 0.

Proof. The second order sufficient condition for (SOSC-NLP) holds if

〈∇2
xL(x, Y,Λ)(v,W ), (v,W )〉 > 0,

for every (v,W ) ∈ Rn × Sm such that ∇G(x)v − 2Y ◦W = 0, see [7, Section 3.3] or
Theorem 12.6 in [61]. However, it holds that

〈∇2
xL(x,Λ)(v,W ), (v,W )〉 = 〈∇2

xL(x,Λ)v, v〉+ 2〈W ◦W,Λ〉.

Similarly, we have the following second order necessary condition. Note that we require
LICQ to hold.

Proposition 6.6. Let (x, Y ) be a local minimum for (P2) and (x, Y,Λ) ∈ Rn ×Sm ×Sm
be a KKT triple such that LICQ holds. Then we the following Second Order Necessary
Condition (SONC) holds (SONC-NLP):

〈∇2
xL(x,Λ)v, v〉+ 2〈W ◦W,Λ〉 ≥ 0 (6.4)

for every (v,W ) ∈ Rn × Sm such that ∇G(x)v − 2Y ◦W = 0.

Proof. See Theorem 12.5 in [61].

SOCs for (P1) are a more delicate matter. Let (x,Λ) be KKT pair of (P1). It is
true that a sufficient condition for optimality is that the Hessian of the Lagrangian be
positive definite over the set of critical directions. However, replacing “positive definite”
for “positive semidefinite” does not yield a necessary condition. Therefore, it seems that
there is a gap between necessary and sufficient conditions. In order to close the gap it is
necessary to add an additional term to the Lagrangian. For the theory behind this see,
for instance, the papers by Kawasaki [37], Cominetti [17], and Bonnans, Cominetti and
Shapiro [9]. The condition below was obtained by Shapiro in [77] and it is sufficent for
(x,Λ) to be a local minimum, see Theorem 9 therein.
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Proposition 6.7. Let (x,Λ) ∈ Rn × Sm be a KKT pair of problem (P1) satisfying strict
complementarity and nondegeneracy. The second-order sufficient condition (SOSC-SDP)
holds if

〈(∇2
xL(x,Λ) +H(x,Λ))d, d〉 > 0 (6.5)

for all nonzero d ∈ C(x), where

C(x)
.
=
{
d ∈ Rn | ∇G(x)d ∈ cl dir

(
G(x),Sm+

)
, 〈∇f(x), d〉 = 0

}
is the critical cone at x, cl dir

(
G(x),Sm+

)
denotes the tangent cone of Sm+ at G(x), and

H(x,Λ)ij
.
= 2trace

(
∂G(x)

∂xi
G(x)†

∂G(x)

∂xj
Λ

)
, (6.6)

for i, j = 1, . . . , n. In this case, (x,Λ) is a local minimum for (P1). Conversely, if (x,Λ)
is a KKT pair satisfying strict complementarity, nondegeneracy and is a local minimum
for (P1), then the following second order necessary condition holds (SONC-SDP):

〈(∇2
xL(x,Λ) +H(x,Λ))d, d〉 ≥ 0 (6.7)

for all nonzero d ∈ C(x).

6.2 Equivalence between KKT points

Proposition 6.8. Let (x,Λ) ∈ Rn × Sm be a KKT pair of problem (P1). Then, there
exists Y ∈ Sm such that (x, Y,Λ) is a KKT triple of (P2).

Proof. Let Y be the positive semidefinite matrix satisfying G(x) = Y ◦ Y . Let us show
that (x, Y,Λ) is a KKT triple of (P2). The conditions (P2.1) and (P2.3) are immediate.
We need to show that (P2.2) holds.

Recall that (P1.4) implies G(x)Λ = 0, due to Lemma 6.3(e). It means that every
column of Λ lies in the kernel of G(x). However, G(x) and Y share exactly the same
kernel, since G(x) = Y 2. It follows that Y Λ = 0, so that Y ◦ Λ = 0.

The converse is not always true, that is, if (x, Y,Λ) is a KKT triple of (P2) it does not
follow that (x,Λ) must be a KKT pair of (P1), since Λ need not to be positive semidefinite.
This, however, is the only obstacle for establishing equivalence.

Proposition 6.9. If (x, Y,Λ) ∈ Rn × Sm × Sm is a KKT triple of (P2) such that Λ is
positive semidefinite, then (x,Λ) is a KKT tuple of (P1).

Proof. The only condition that remains to be verified is (P1.4). Due to (P2.2), we have

0 = 〈Y, Y ◦ Λ〉 = 〈Y ◦ Y ,Λ〉 = 〈G(x),Λ〉.

Since G(x) and Λ are both positive semidefinite, we must have G(x) ◦ Λ = 0.

The previous proposition leads us to consider conditions which ensure that Λ is positive
semidefinite. It turns out that if the second order sufficient condition for (P2) is satisfied
at (x, Y,Λ), then Λ is positive semidefinite. In fact, a weaker condition is enough to ensure
positive semidefiniteness.

Proposition 6.10. Suppose that (x, Y,Λ) ∈ Rn×Sm×Sm is a KKT triple of (P2) such
that Y and Λ also satisfy the assumptions of Lemma (6.1), that is

〈W ◦W,Λ〉 > 0, (6.8)

for every nonzero W ∈ Sm such that Y ◦W = 0. Then (x,Λ) is a KKT pair of (P1)
satisfying strict complementarity (Definition 6.4).
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Proof. Due to Lemma 6.1, Λ is positive semidefinite and rankY = m− rank Λ. Now, since
G(x) = Y 2, we have that rankG(x) = rankY . Therefore (x,Λ) must satisfy the strict
complementarity condition.

Corollary 6.11. Suppose that SOSC-NLP is satisfied at a KKT triple (x, Y,Λ) ∈ Rn ×
Sm × Sm. Then (x,Λ) is a KKT pair for (P1) which satisfies the strict complementarity
condition.

Proof. If we take v = 0 in the definition of SOSC-NLP we have precisely (6.1), so the
result follows from Proposition 6.10.

Proposition 6.12. Suppose that (x,Λ) ∈ Rn×Sm is a KKT pair of (P1) which satisfies
the strict complementarity condition. Then there exists some Y such that (x, Y,Λ) is a
KKT triple of (P2) and Y,Λ satisfy (6.1).

Proof. Without loss of generality, we may assume that G(x) has the shape
(
A 0
0 0

)
, where

A ∈ Sk+ and k = rankG(x). Since G(x) and Λ are both positive semidefinite, the condition
G(x) ◦ Λ = 0 is equivalent to G(x)Λ = 0. It follows that Λ has the shape

(
0 0
0 C

)
, for some

matrix C ∈ Sm−k+ . However, the only way strict complementarity is satisfiable is if C is
positive definite. Therefore, it is enough to pick Y to be the positive semidefinite matrix
satisfying Y 2 = G(x).

Finally, note that if W =
( W1 W2

W>2 W3

)
, with W ∈ Sm,W1 ∈ Sk, W2 ∈ Sm−k, then the

condition Y ◦W = 0 together with Proposition 6.2 implies W1 = 0, W2 = 0. Since C is
positive definite definite, we must have 〈Λ,W ◦W 〉 > 0, if W 6= 0. This shows that (6.1)
is satisfied.

6.3 Relations between constraint qualifications

In this section, we shall show that (Nondegeneracy) is essentially equivalent to LICQ
(linear independence constraint qualification) for (P2). In [77], Shapiro mentions that the
nondegeneracy condition for (P1) is an analogue of sorts of LICQ, but he also states that
the analogy is imperfect. For instance, when G(x) is diagonal, (P1) naturally becomes
an NLP, since the semidefinite constraint is reduced to nonnegativity of the diagonal.
However, even in that case, LICQ and (Nondegeneracy) might not be equivalent (see page
309 of [77]). In this sense, it is interesting to see that a correspondence between the
conditions can be established when (P1) is reformulated as (P2). Before that, we recall
some facts about the geometry of the cone of positive semidefinite matrices.

Let A ∈ Sm+ and U be the m×k matrices whose columns form a basis for the kernel of
A. Then, the tangent cone of Sm+ at A is the set cl dir

(
A,Sm+

)
= {E ∈ Sm | U>EU ∈ Sk+},

see [63] or Equation 26 in [77]. For example, if A can be written as
(
D 0
0 0

)
, where D is

positive definite, then the matrices in cl dir
(
A,Sm+

)
have the shape

(
C F
F> H

)
, where the

only restriction is that H should be positive semidefinite.

Our first step is to notice that (Nondegeneracy) implies that the only matrix which is
orthogonal to both lin cl dir

(
W,Sn+

)
and to Im∇G(x) is the trivial one. In other words:

W ∈ (lin cl dir
(
G(x),Sm+

)
)⊥ and ∇G(x)∗W = 0 =⇒ W = 0. (Nondegeneracy)

On the other hand, the LICQ constraint qualification for (P2) holds at a feasible point
(x, Y ) if the linear function which maps (v,W ) to ∇G(x)v − 2W ◦ Y is surjective. This
happens if and only if the adjoint map has trivial kernel. The adjoint map takes W ∈ Sm
and maps it to (∇G(x)∗W,−2W ◦ Y ). So the surjectivity assumption amounts to requiring
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that every W which satisfies both ∇G(x)∗W = 0 and W ◦ Y = 0 must actually be 0, that
is,

W ◦ Y = 0 and ∇G(x)∗W = 0 =⇒ W = 0. (LICQ)

The subspaces kerLY = {W | Y ◦W = 0} and (lin cl dir
(
G(x),Sm+

)
)⊥ are closely related.

The next proposition clarifies this connection.

Proposition 6.13. Let V = Y 2, then (lin cl dir
(
V,Sm+

)
)⊥ ⊆ kerLY . If Y is positive

semidefinite, then kerLY ⊆ (lin cl dir
(
V,Sm+

)
)⊥ as well.

Proof. Note that ifQ is an orthogonal matrix, then cl dir
(
Q>V Q,Sm+

)
= Q>cl dir

(
V,Sm+

)
Q.

The same is true for kerLY , i.e., kerLQ>Y Q = Q>kerLYQ. So, without loss of generality,
we may assume that Y is diagonal and that

Y =

(
D 0
0 0

)
,

where D is an r × r nonsingular diagonal matrix. Then, we have

cl dir
(
V,Sm+

)
=

{(
A B
B> C

) ∣∣∣∣A ∈ Sr, B ∈ Rr×(m−r), C ∈ Sm−r+

}
,

lin cl dir
(
V,Sm+

)
=

{(
A B
B> 0

) ∣∣∣∣A ∈ Sr, B ∈ Rr×(m−r)
}
,

(lin cl dir
(
V,Sm+

)
)⊥ =

{(
0 0
0 C

) ∣∣∣∣C ∈ Sm−r} .
This shows that every matrix Z ∈ (lin cl dir

(
V,Sm+

)
)⊥ satisfies Y Z = 0 and therefore lies

in kerLY . Now, the kernel of LY can be described as follows:

kerLY =

{(
A 0
0 C

) ∣∣∣∣A ◦D = 0, C ∈ Sm−r
}
.

If Y is positive semidefinite, then D is positive definite and the operator LD is nonsingular.
Hence A ◦D = 0 implies A = 0. In this case, kerLY coincides with (lin cl dir

(
V,Sm+

)
)⊥.

Corollary 6.14. If (x, Y ) satisfies LICQ for (P2), then nondegeneracy is satisfied at x
for (P1). On the other hand, if x satisfies nondegeneracy and if Y =

√
G(x), then (x, Y )

satisfies LICQ for (P2).

6.4 Analysis of the Second Order Suficient Conditions

In this section we examine the relations that hold between KKT points of (P1) and (P2)
that satisfy second order sufficient conditions.

Proposition 6.15. Suppose that (x, Y,Λ) ∈ Rn×Sm×Sm is a KKT triple of (P2) satis-
fying SOSC-NLP. Then (x,Λ) is a KKT pair of (P1) that satisfies strict complementarity
and Equation (6.5).

If additionally, (x, Y,Λ) satisfies LICQ for (P2) or (x, Y ) satisfies nondegeneracy for
(P1), then SOSC-SDP is satisfied as well.

Proof. In Corollary 6.11, we have already shown that (x,Λ) is a KKT pair and strict
complementarity is satisfied. Let us show that Equation (6.5) is also satisfied. So, consider
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an arbitrary nonzero d ∈ Rn such that ∇G(x)d ∈ cl dir
(
G(x),Sm+

)
and 〈∇f(x), d〉 = 0.

We are thus required to show that

〈(∇2
xL(x,Λ) +H(x,Λ))d, d〉 > 0, (6.9)

where H(x,Λ) was defined in (6.6). A first observation is that due to (P1.1), we have
〈∇G(x)d,Λ〉 = 〈d,∇G(x)∗Λ〉 = 〈d,∇f(x)〉 = 0, that is ∇G(x)d ∈ {Λ}⊥. We recall that
H(x,Λ) satisfies:

〈H(x,Λ)d, d〉 = 2〈Λ, (∇G(x)d)>G†(x)∇G(x)d〉.

The strategy here is to first identify the shape and properties of the several matrices
involved before showing that (6.9) holds. Without loss of generality we may assume that
G(x) is diagonal, i.e,

G(x) =

(
D 0
0 0

)
,

where D is a diagonal positive definite k × k matrix. We also have

Y =

(
E 0
0 0

)
,

with E an invertible diagonal matrix such that E2 = D. Since SOSC-NLP holds, con-
sidering v = 0 in (6.3), we obtain 〈W ◦W,Λ〉 > 0 for all nonzero W ∈ Sm such that
W ◦ Y = 0. From (P2.2), we also have Y ◦ Λ = 0, so (6.1) is satisfied. Thus, Lemma 6.1
and Proposition 6.2 ensure that LE is an invertible operator. Moreover, due to the strict
complementarity condition, we obtain

Λ =

(
0 0
0 Γ

)
,

where Γ ∈ Sn−k+ is positive definite. The pseudo-inverse of G(x) is given by

G(x)† =

(
D−1 0

0 0

)
.

We divide ∇G(x)d in blocks in the following fashion:

∇G(x)d =

(
A B
B> C

)
,

where A ∈ Sk, B ∈ Rk×(n−k) and C ∈ Sn−k. Inasmuch as ∇G(x)d lies in the tangent cone
cl dir

(
G(x),Sm+

)
, C must be positive semidefinite . However, 〈∇G(x)d,Λ〉 = 〈C,Γ〉 = 0.

Since Γ is positive definite, this implies C = 0. So that

∇G(x)d =

(
A B
B> 0

)
.

We are now ready to show that (6.9) holds and we shall do that by considering v = d
in (6.3) and exhibiting some W such that ∇G(x)d − 2Y ◦W = 0 and 2〈W ◦W,Λ〉 =
〈H(x,Λ)d, d〉. Then SOSC-NLP will ensure that (6.9) holds. Note that for any Z ∈ Sm−k
we have that

WZ =

(
L−1
E A/2 E−1B
B>E−1 Z

)
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is a solution to the equation ∇G(x)d − 2Y ◦W = 0. Also, any solution to that equation
must have this particular shape. We will now show how to select Z in order to ensure that
2〈W ◦W,Λ〉 = 〈H(x,Λ)d, d〉 holds.

2〈W 2
Z ,Λ〉 − 2〈(∇G(x)d)>G†(x)∇G(x)d,Λ〉 = 2〈Z2 +B>E−2B,Γ〉 − 2〈B>D−1B,Γ〉

= 〈2Z2 + 2B>D−1B − 2B>D−1B,Γ〉
= 〈2Z2,Γ〉
≥ 0 (6.10)

Taking Z = 0, we have 2〈WZ ◦WZ ,Λ〉 = 〈H(x,Λ)d, d〉.

Proposition 6.16. Suppose that (x,Λ) is a KKT point for (P1) satisfying Equation (6.5)
and strict complementarity, then there is Y such that (x, Y,Λ) is a KKT triple for (P2)
satisfying SOSC-NLP.

Proof. Again, we assume that G(x) is diagonal, so that

G(x) =

(
D 0
0 0

)
,

where D is a diagonal positive definite k × k matrix. Take Y such that

Y =

(
E 0
0 0

)
,

where E2 = G(x) and E is positive definite (in particular LE is invertible). Then (x, Y,Λ)
is a KKT point for (P2). Due to complementary slackness and strict complementarity, we
have

Λ =

(
0 0
0 Γ

)
,

where Γ ∈ Sm−k+ is positive definite. We are required to show that

〈∇2
xL(x,Λ)v, v〉+ 2〈W ◦W,Λ〉 > 0, (6.11)

for every non-zero (v,W ) such that ∇G(x)v−2Y ◦W = 0. So, let (v,W ) satisfy ∇G(x)v−
2Y ◦W = 0. Let us first consider what happens when v = 0. Dividing W in blocks we
have:

Y ◦
(
W1 W2

W>2 W3

)
=

(
E ◦W1 EW2/2
W>2 E/2 0

)
.

So Y ◦W = 0, implies W1 = 0 (recall that LE is invertible) and W2 = 0. If W is
not 0, then W3 must be non-zero. Hence, W3 ◦W3 must also be non-zero. We have
〈W ◦W,Λ〉 = 〈W3 ◦W3,Γ〉. But 〈W3 ◦W3,Γ〉 must be greater than 0, since Γ is positive
definite. So, in this case, (6.11) is satisfied.

Now, we suppose that v is non-zero. First, we would like to show that ∇G(x)v lies in
the tangent cone cl dir

(
G(x),Sm+

)
and that ∇G(x)v is orthogonal to Λ. This will ensure

that v lies in the critical cone C(x).
Note that the image of the operator LY only contains matrices having the lower right

(m − k) × (m − k) block equal to 0. Therefore, ∇G(x)v = 2Y ◦W implies that ∇G(x)v
has the shape

∇G(x)v =

(
A B
B> 0

)
.

Hence, ∇G(x)v ∈ cl dir
(
G(x),Sm+

)
and ∇G(x)v is orthogonal to Λ. Due to SOSC-SDP,

we must have
〈(∇2

xL(x,Λ) +H(x,Λ))v, v〉 > 0,
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so if we show that 〈H(x,Λ)v, v〉 ≤ 2〈W ◦W,Λ〉, then this is enough to show (6.11)
must hold. However, since W satisfies ∇G(x)v − 2Y ◦W = 0, the same chain of equali-
ties/inequalities finishing at (6.10) already asserts that 〈H(x,Λ)v, v〉 ≤ 2〈W ◦W,Λ〉.

Here, we remark one interesting consequence of the analysis above. The second order
sufficient condition for NSDPs in [77] is stated under the assumption that the pair (x,Λ)
satisfies both strict complementarity and nondegeneracy. However, since (P1) and (P2)
share the same local minima, Proposition 6.16 implies that we may remove the nondegen-
eracy assumption from SOSC-SDP. We now state a sufficient condition for (P1) based on
the analysis above.

Proposition 6.17 (A Sufficient Condition via Slack Variables). Suppose that (x,Λ) is
a KKT pair for (P1) satisfying strict complementarity. Suppose also that the following
condition holds.

〈∇2
xL(x,Λ)v, v〉+ 2〈W ◦W,Λ〉 > 0 (6.12)

for every non-zero (v,W ) ∈ Rn × Sm such that ∇G(x)v − 2
√
G(x) ◦W = 0. Then x is a

local minimum for (P1).

Apart from the detail of requiring nondegeneracy, the condition above is equivalent to
SOSC-SDP, due to Propositions 6.15 and 6.16.

6.5 Analysis of the Second Order Necessary Conditions

We now take a look at the difference between second order necessary conditions that can
be derived from (P1) and (P2). Since the inequalities (6.4) and (6.7) are not strict, we
need slightly stronger assumption to prove the next proposition.

Proposition 6.18. Suppose that (x, Y,Λ) ∈ Rn × Sm × Sm is a KKT triple of (P2)
satisfying SONC-NLP and such that Y,Λ are positive semidefinite. If (x,Λ) is a KKT
pair satisfying strict complementarity for (P1), then it also satisfies SONC-SDP.

Proof. Since (x, Y,Λ) satisfies LICQ and Y is positive semidefinite, then Corollary 6.14
implies that (x,Λ) satisfies nondegeneracy. Under the assumption that (x,Λ) is strict
complementary, the only thing missing is proving that (6.7) holds. To do that, we proceed
as in Proposition (6.15). We divide G(x),Λ, G(x)† and ∇G(x)d in blocks in the exact
same way. The only difference is that since (6.4) does not hold strictly, we cannot make
use of Lemma 6.1 in order to conclude that LE is invertible. However, since we assumed
that Y is positive semidefinite, all the eigenvalues of E are strictly positive anyway. So,
as before, we can conclude that LE is an invertible operator, by Proposition 6.2. Due
to strict complementarity, we can also conclude that Γ ∈ Sn−k+ is positive definite and
that C = 0. All our ingredients are now in place and we can proceed exactly as in the
proof of Proposition 6.15. Namely, we have to prove that given d ∈ C(x), the inequality
〈(∇2

xL(x,Λ) + H(x,Λ))d, d〉 ≥ 0 holds. As before, the way to go is to craft a matrix W
satisfying both ∇G(x)d − 2Y ◦W = 0 and 〈H(x,Λ)d, d〉 = 2〈W ◦W,Z〉. Then SONC-
NLP will ensure that (6.7) holds. It is enough to take

W =

(
L−1
E (A/2) E−1B
B>E−1 0

)
and follow the same computations that lead to (6.10).

Proposition 6.19. Suppose that (x,Λ) is a KKT pair for (P1) satisfying SONC-SDP,
then there is Y such that (x, Y,Λ) is a KKT triple for (P2) satisfying SONC-NLP.
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Proof. It is enough to choose Y to be
√
G(x). If we do so, Corollary 6.14 ensures that

(x, Y,Λ) satisfies LICQ. We now have to check that (6.4) holds. For this, we can follow
the proof of Proposition 6.16 by considering Equation (6.7) instead of (6.5). No special
considerations are needed for this case.

Suppose that (x,Λ) is a KKT pair of (P1) satisfying nondegeneracy and strict com-
plementarity. Then Proposition 6.18 gives an elementary route to prove that SONC-SDP
holds. This is because if we select Y to be the positive semidefinite square root of G(x),
all the conditions of Proposition 6.18 are satisfied, which means that (6.7) must hold.
Morover, if we were to derive second-order necessary conditions for (P1) from scratch, we
could consider the following.

Proposition 6.20 (A Necessary Condition via Slack Variables). Suppose that (x,Λ) is a
KKT pair for (P1) satisfying strict complementarity, nondegeneracy and suppose that x
is a local minimum. Then the following condition holds:

〈∇2
xL(x,Λ)v, v〉+ 2〈W ◦W,Λ〉 ≥ 0 (6.13)

for every non-zero (v,W ) ∈ Rn × Sm such that ∇G(x)v − 2
√
G(x) ◦W = 0.

Propositions 6.18 and (6.7) ensure that the condition above is equivalent to SONC-
SDP. Comparing Proposition 6.17 and 6.20, we see that the second order conditions derived
through the aid of slack variables have “no-gap” in the sense that, apart from regularity
conditions, the only difference between them is the change from “>” to “≥”.

6.6 Computational Experiments

We tested the slack variables approach in a few simple problems. Our solver of choice
was PENLAB [24], which is based on PENNON [41] and uses an algorithm based on the
augmented lagrangian technique . As far as we know, PENLAB is the only open-source
general nonlinear programming solver capable of handling nonlinear SDP constraints.
Because of that, we have the chance of comparing the “native” approach with the slack
approach using the same code. We ran PENLAB with the default parameters. All the
tests were done in a notebook with the following specs: Ubuntu 14.04, CPU Intel i7-4510U
with 4 cores operating at 2.0Ghz and 4GB of RAM.

In order to use an NLP solver to tackle (P1), we have to select a vectorization strategy.

We decided to vectorize an n×n symmetric matrix by transforming it into an n(n+1)
2 vector,

such that the columns of the lower triangular part are stacked one on top of the other.
For instance,

(
1 2
2 3

)
is transformed to the column vector (1, 2, 3)>.

6.6.1 Modified Hock-Schittkowski problem 71

There is a known suite of problems for testing nonlinear optimization problems collected
by Hock and Schittkowski [31, 76]. The problem below is a modification of problem 71 of
[76] and it comes together with PENLAB. Both the constraints and the objective function
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Table 6.1: Slack vs “native” for (HS)

functions gradients Hessians iterations time (s) opt. value

slack 110 57 44 13 0.54 87.7105
native 123 71 58 13 0.57 87.7105

are nonconvex. The problem has the following formulation:

minimize
x∈R6

x1x4(x1 + x2 + x3) + x3

subject to x1x2x3x4 − x5 − 25 = 0,

x2
1 + x2

2 + x2
3 + x4

4 − x6 − 40 = 0,
x1 x2 0 0
x2 x4 x2 + x3 0
0 x2 + x3 x4 x3

0 0 x3 x1

 ∈ S4
+,

1 ≤ xi ≤ 5, i = 1, 2, 3, 4

xi ≥ 0, i = 5, 6.

(HS)

We reformulate the problem (HS) by removing the positive semidefiniteness constraints
and adding a squared slack variable Y . We then test both formulations using PENLAB.
The initial point is set to be x = (5, 5, 5, 5, 0, 0) and the slack variable to be the identity
matrix Y = I4. This produces infeasible points for both formulations. Nevertheless,
PENLAB was able to solve the problem via both approaches. The results can be seen in
Table 6.1. The first three columns count the numbers of evaluations of the augmented
Lagrangian function, its gradients and its Hessians, respectively. The fourth column is the
number of outer iterations. The “time” column indicates the time in seconds as measured
by PENLAB. The last column indicates the optimal value obtained. It seems that there
were no significant differences in performance between both approaches.

6.6.2 The closest correlation matrix problem - simple version

Given an m×m symmetric matrix H with diagonal entries equal to one, we want to find
the element in Sm+ which is closest to H and has all diagonal entries also equal to one.
The problem can be formulated as follows:

minimize
x

〈X −H,X −H〉
subject to Xii = 1 ∀i,

X ∈ Sm+ .
(Cor)

This problem is convex and due to its structure, we can use slack variables without in-
creasing the number of variables. We have the following formulation.

minimize
X

〈(X ◦X)−H, (X ◦X)−H〉F
subject to (X ◦X)ii = 1 ∀i

X ∈ Sm.
(Cor-Slack)

In our experiments, we generated 100 symmetric matrices H such that the diagonal
elements are all 1 and other elements are uniform random numbers between −1 and 1. For
both Cor and Cor-Slack, we used X = Im as an initial solution in all instances. We solved
problems with m = 5, 10, 15, 20 and the results can be found in Table 6.2. The columns
“mean”, “min” and “max” indicate, respectively, the mean, minimum and maximum of
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Table 6.2: Comparison between Cor and Cor-Slack

Cor-Slack Cor

m mean (s) min (s) max (s) mean (s) min (s) max (s)

5 0.090 0.060 0.140 0.201 0.130 0.250
10 0.153 0.120 0.230 0.423 0.330 0.630
15 0.287 0.210 0.430 1.306 1.020 1.950
20 0.556 0.450 1.180 3.491 2.820 4.990

Instance
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Native

Figure 6.1: Cor vs. Cor-Slack. Instance-by-instance running times for m = 20.

the running times in seconds of all instances. For this problem, both formulations were
able to solve all instances. We included the “mean time” column just to give an idea about
the magnitude of the running time. In reality, for fixed m, the running time oscillated
highly among different instances, as can be seen by the difference between the maximum
and the minimum running times. We noted no significant difference between the optimal
values obtained from both formulations.

We tried, as much as possible, to implement gradients and Hessians of both problems
in a similar way. As Cor is an example that comes with PENLAB, we also performed some
minor tweaks to conform to that goal. Performance-wise, the formulation Cor-Slack seems
to be competitive for this example. In most instances, Cor-Slack had a faster running time.
In Figure 6.1, we show the comparison between running times, instance-by-instance, for
the case m = 20.

6.6.3 The closest correlation matrix problem - extended version

We consider an extended formulation for Cor as suggested in one of PENLAB’s examples,
with extra constraints to bound the eigenvalues of the matrices:

minimize
X,z

〈zX −H, zX −H〉

subject to zXii = 1 ∀i,
Im � X � κIm,

(Cor-Ext)

where κ is some positive number greater than 1 and the notation X � κIm means X −
κIm ∈ Sm+ . This is a nonconvex problem, and using slack variables, we obtain the following
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Table 6.3: Comparison between Cor-Ext and Cor-Ext-Slack

Cor-Ext-Slack Cor-Ext

m mean (s) min (s) max (s) fail mean (s) min (s) max (s) fail

5 0.236 0.130 0.830 15 0.445 0.250 2.130 1
10 0.741 0.420 2.580 3 1.206 0.580 7.300 0
15 4.651 2.090 26.96 15 3.809 1.960 14.12 0
20 24.32 15.20 69.34 8 9.288 5.150 36.81 0

formulation:
minimize
X,Y1,Y2,z

〈zX −H, zX −H〉

subject to zXii = 1 ∀i,
κIm −X = Y1 ◦ Y1,
X − Im = Y2 ◦ Y2.

(Cor-Ext-Slack)

In our experiments, we set κ = 10. As before, we generated 100 symmetric matrices
H whose diagonal elements are all 1 and other elements are uniform random numbers
between −1 and 1. For Cor-Ext, we used z = 1 and X = Im as initial points. For Cor-
Ext-Slack, we used an infeasible starting point z = 1, X = Y2 = Im and Y1 = 3Im. We
solved problems with m = 5, 10, 15, 20 and the results can be found in Table 6.3. The
columns have the same meaning as in Section 6.6.2. This time, we saw a higher failure
rate for the formulation Cor-Ext-Slack. We tried a few different initial points, but the
results stayed mostly the same. The best results were obtained for the case m = 5 and
m = 10, where Cor-Ext-Slack had a performance comparable to Cor-Ext, although the
latter seldom failed. For m = 15 and m = 20, Cor-Ext-Slack was slower than Cor-Ext, but
it was still able to solve the majority of instances. In Figure 6.2, we show the comparison
of running times, instance-by-instance, for the cases m = 10 and m = 20.
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Figure 6.2: Cor-Ext vs Cor-Ext-Slack. Instance-by-instance running times for m = 10 and
m = 20. Failures are represented by omitting the corresponding running time.
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Chapter 7

Concluding remarks

In this thesis we examined topics connected to both conic linear programming and non-
linear semidefinite programming. In this chapter, we will point out directions of future
inquiry for both parts.

7.1 On Part I

In this part, we discussed several examples of ill behavior in conic linear programming and
ways of guarding against it. This included a discussion of FRA-poly, a facial reduction
algorithm suited for directed products of cones. We also did an analysis of weak infea-
sibility, problems with unattained optimal value and this culminated in an approach for
“completely solving” conic linear programs in Chapter 5. Here we outline two possible
paths for future works, the first one is theoretical and the other one has a more practical
character.

7.1.1 A few remaining theoretical issues

Although we have not discussed in detail, facial reduction can be used to obtain what is
called extended duals for conic linear programs. The idea is to replace the usual Lagrangian
dual for another one that behaves nicely even in the absence of regularity conditions. One
important requirement is that in order to write the extended dual down, it should require
no extra computations and the dual must be written completely in terms of the input
data. This was first done by Ramana in [72] for SDPs. Ramana’s dual has a number of
favorable properties: i) it is written in terms of problem data; ii) has polynomial size; iii)
it is always attained if the primal problem is feasible and bounded and, in that case, there
is no duality gap, iv) it induces theorems of alternative similar to Farkas’ lemma.

The current understanding is that Ramana’s extended dual contains implicitly the
constraints that define the reducing directions that are found through facial reduction.
This can be seen, for instance, in the analysis made by Ramana, Tunçel and Wolkowicz
[73] and the work by Pataki [66]. However, due to clever manipulations these constraints
can be written as semidefinite constraints.

The extension of this approach to other cones contains a few subtle issues. Pataki
[66] and, later, Liu and Pataki [44], in particular, show how to extend this approach to
arbitrary closed convex cones. However, one important detail is that their extended dual
might leave the problem class under consideration. A similar issue appears in the article
by Pólik and Terlaky [69], where they show how to obtain extended duals for problems
over symmetric cones. However, the obtained systems were problems over homogeneous
cones, which properly contains the class of symmetric cones. So, again, there seems to be
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a need to go a more “expressive” cone in order to obtain an extended dual. In this sense,
it is still a bit mysterious why there is no such need in the positive semidefinite case.

Even in the case where K is a single Lorentz cone Qn, it is not known whether it is
possible to obtain something similar to Ramana’s dual but written completely in terms
of second order cone constraints. This is upsetting because the conventional Lagrangian
dual for problems over Qn almost satisfy the properties we expect from extended duals.
For instance, Shapiro and Nemirovski showed that if K = Qn and both (D) and (P) are
feasible, then there is no duality gap between (D) and (P). Note that there is no guarantee
of attainment at neither side. We believe it is important to clarify these issues.

We remark that there is a notion of rank for homogeneous cone and, in particular,
Lorentz cones Qn have rank 2, if n ≥ 2. In [69], Pólik and Terlaky show that if an
extended dual for Qn is constructed based on facial reduction, then the resulting cone K̃
appearing at the dual problem has rank 3. Due to a classification result for homogeneous
cones, it follows that K̃ can neither be a single Lorentz cone nor a direct product of Lorentz
cones with n ≥ 2. Still, as far as we understand the situation, this result does not preclude
the possibility of K̃ being representable as, say, the intersection of a subspace and a direct
product of Lorentz cones. Therefore, there is still some hope that an extended dual for
Qn could be obtained by using only second order cone constraints.

Nevertheless, the prospects of obtaining an extended dual for Qn that is also a second
order cone problem in some sense via the usual facial reduction approach seems a bit
grim. Because of that, it could be profitable to turn our attentions to other strategies.
For instance, Klep and Schweighofer [40] also developed an extended dual for SDPs that
can also be cast as an SDP, but they used the machinery of real algebraic geometry instead.
Currently, it is not known the connection, if any, between their approach and Ramana’s
dual. It is also not known whether the approach in [40] can be carried out for other
cones. If it is truly disconnected from facial reduction, then it might not suffer from the
limitations described in [69].

7.1.2 Practical issues

Most of the results we discussed here were theoretical. There are many difficulties one
must face when doing facial reduction in practice. As a consequence, since facial reduction
is such a central part of our analysis, we cannot hope to do much without good facial
reduction implementations.

Our assessment of the zeitgeist is that there is no question that facial reduction (FR)
is a valuable theoretical tool. After all, FR can be used to prove a wealth of results, it
is the theoretical backing for extended duality and it would be hard to have infeasibility
certificates for general cones without it. Moreover, it is the only known way of reducing a
feasible general conic linear problem to the strongly feasible case, considering that conic
expansion is just “dual facial reduction” see [55] and section 4 of [89]. However, when it
comes to practical aspects, there is some skepticism about its applicability. We will now
discuss some of the surrounding criticism.

First of all, facial reduction is considered to be very costly. While this is definitely true,
we should point out that, without facial reduction, we have no hope of solving particularly
nasty problems, since they fail to satisfy important regularity conditions. A variant of this
criticism is saying that facial reduction could be as costly as solving the original problem.
However, there are two important points to keep in mind. The first is, again, that without
FR the problem might not even be solvable in the first place. And the second point is
that as shown in Chapter 3, FR can be carried out by a solving a sequence of problems
that are always primal and dual strongly feasible.

In spite of that, the computation of the reducing directions is still a complicated issue.
We will illustrate the difficulty with the case K = Sn+. Suppose that we have a reducing
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direction d ∈ Sn+ ∩ kerA of rank k with 〈c, d〉 = 0. Then, if we apply an appropriate
transformation to (D), we may assume that

d =

(
A 0
0 0

)
,

where A ∈ Sk+ is positive definite. We then replace Sn+ by the face

Sn+ ∩ {d}⊥ =

{(
0 0
0 C

)
∈ Sn

∣∣∣∣C ∈ Sn−k+

}
.

The problem is that, in practice, since d will be obtained by solving numerically an SDP, it
is very likely that there will be no actual zero eigenvalues and, instead, there will be many
eigenvalues with small norm. Therefore, we have to take in consideration the numerical
inaccuracies when computing the rank of d and its eigenvalues. If we are not careful enough
and the rank of d becomes larger than what “it should be”, the face Sn+∩{d}⊥ gets smaller
and we might end up removing feasible solutions, which is clearly undesirable. A naive
approach would be to truncate all the eigenvalues of d that are smaller than a certain ε.
However, we do not know any bounds on ε that would ensure that this truncation strategy
does not remove feasible solutions.

Nevertheless, this issue can be addressed in a few different ways. One is to do a very
careful numerical analysis of facial reduction as done by Cheung, Schurr and Wolkowicz
in [16]. Their analysis and the algorithms described therein guarantee that the reducing
directions obtained are correct for some problem close to the original one. This is, of
course, a very nice result but it seems that for problems that are ill-behaved, nearby
problems could have widely different feasibility properties.

We can also avoid the problem altogether and try to compute the reducing directions
exactly. Although this task seems hard in general, it might be possible for certain problems
with additional structure, such as the sensor network localization problem in the work by
Krislock and Wolkowicz [42]. See also Section 4.1 of the article by Drusvyatskiy, Pataki
and Wolkowicz [20].

Another possibility is to go for partial facial reduction strategies, such as the one
described by Permenter and Parrilo [68]. The idea is to substitute K by a larger cone
K̃ when doing facial reduction. Since K ⊆ K̃, we will have K̃∗ ⊆ K∗, which means that
if we use K̃ in (DK) and K̃∗ in (PK), we will still obtain a valid reducing direction for
(D). The advantage of doing so is that it might be easier to solve problems over K̃.
In particular, Permenter and Parrilo suggest the usage of polyhedral cones so that the
search for reducing directions can be carried out by linear programming, which means
that they can be computed exactly. The caveat is that partial facial reduction may fail to
find the minimal face FDmin. In spite of that, the numerical experiments shown in [68] are
encouraging and suggest that this is a viable approach for simplifying SDPs. Interestingly,
in many cases where solvers fail to detect infeasibility, if the problem is first preprocessed by
their technique, the solvers then become able to detect infeasibility, see Section 7.7 therein.
We remark that this does not always work, as evidenced by the numerical experiments
done by Liu and Pataki in Section 7 of [44].

It is still an open issue how to do facial reduction effectively for general problems and
this is a topic we plan to explore in the future.

7.2 On Part II

In this part, we have shown that the optimality conditions for a nonlinear semidefinite
program (P1) and its reformulation with slack variables (P2) are essentially the same. One
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intriguing part of this connection is the fact that the addition of squared slack variables
seems to be enough to capture a great deal of the structure of Sm+ . The natural progression
from here is to expand the results to symmetric cones. In this work, we already saw some
results that have a distinct Jordan-algebraic flavour, such as Lemma 6.1. It would be
interesting to see how these results can be further extended and, whether clean proofs can
be obtained without recoursing to the classification of simple Euclidean Jordan algebras.

As for the computational results, we found it mildly surprising that the slack variables
approach was able to outperform the “native” approach in many instances. This warrants
a deeper investigation of whether this could be a reliable tool for attacking NSDPs that
are not linear. These are precisely the ones that are not covered by the earlier work done
by Burer and Monteiro [14, 15].

Another thing that came to our minds was whether it is possible to generalize Burer
and Monteiro [14, 15] approach to a nonlinear setting. Although, in general, we do not
expect to find low rank optimal solutions to NSDPs, we might still find low-rank KKT
multipliers. This could be explored in primal-dual approaches for NSDPs and this is a
topic we are currently investigating.
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of strong infeasibility, 23
of weak infeasibility, 54

cone of feasible directions, 19
conic linear program, 19
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LICQ, 84
MFCQ, 83
nondegeneracy, 83
partial polyhedral Slater’s condition,

34
PPS, 34
Slater’s condition, 23

distance
to polyhedrality, 43
to strong duality, 45

double facial reduction, 67
doubly nonnegative cone, 49

face, 20
conjugated, 20
exposed, 23
minimal, 20
of the Lorentz cone, 25
of the positive semidefinite cone, 24

Facial Reduction Algorithm, 30
auxiliary problem, 31
direction finding problem, 31
worst case, 45

feasibility status, 22
preservation, 52
strong feasibility, 22
strong infeasibility, 22, 23
weak feasibility, 22
weak infeasibility, 22, 53

forward procedure, 59
FRA, see Facial Reduction Algorithm
FRA-Poly, 39

Phase 1, 40
Phase 2, 41

Jordan product, 79

KKT conditions, 83
for NLP, 83
for NSDP, 83

longest chain of faces, 32
Lorentz cone, 25

nonattainment, 67

oracle, 71
feasibility oracle, 71
interior point oracle, 72
optimization oracle, 71

reducing direction, 31

Schur complement, 57
second-order condition, 84
separation

proper, 20
strong, 20

singularity degree, 45
of a doubly nonnegative cone

program, 50
of the intersection of cones, 48

slack reformulation, 79
strict complementarity, 23, 83

dual, 24
primal, 24

supporting hyperplane, 19

tangent cone, 19

weak infeasibility, see feasibility status
in second order cone programming,

62
in semidefinite programming, 56

107


